CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson-Teixeira, Kristina J.; Davies, Stuart J.; Bennett, Amy C.
2014-09-25
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services, including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamic research sites useful for characterizing forest responses to global change. The broad suite of measurements made at the CTFS-ForestGEO sites make it possible to investigate the complex ways in which global change is impacting forest dynamics. ongoing research across the network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forestmore » diversity and dynamics in a era of global change« less
Nikolay Strigul; Jean Lienard
2015-01-01
Forest inventory datasets offer unprecedented opportunities to model forest dynamics under evolving environmental conditions but they are analytically challenging due to irregular sampling time intervals of the same plot, across the years. We propose here a novel method to model dynamic changes in forest biomass and basal area using forest inventory data. Our...
Interactions of forest disturbance-recovery dynamics with a changing climate
NASA Astrophysics Data System (ADS)
Anderson-Teixeira, K. J.; Miller, A. D.; Tepley, A. J.; Bennett, A. C.; Wang, M.
2015-12-01
As the climate changes, altered disturbance-recovery dynamics in forests worldwide are likely to result in significant biogeochemical and biophysical feedbacks to the climate system. Climate shapes forest disturbance events including tree mortality and fire, with consequent climate feedbacks. For instance, in forests globally, drought increases tree mortality rates, having a stronger impact on larger trees and resulting in greater feedbacks to climate change than would occur if drought sensitivities were equal across tree size classes. Forest regeneration and associated biogeochemical and biophysical feedbacks are also shaped by climate: across the tropics the rate of biomass accumulation is faster in everwet than in seasonally dry climates, and in the Klamath region (N California / S Oregon), post-fire vegetation dynamics and microclimate are shaped by aridity. Forest recovery dynamics will be affected by elevated CO2 and climate change; for instance, models predict that forest regeneration rate, successional dynamics, and climate feedbacks will all be altered under elevated CO2. In combination, climatic impacts on disturbance and recovery can result in dramatic shifts in forest cover on the landscape level. For instance, in fire-prone forested landscapes, forest cover decreases with increasing frequency of high-severity fire and decreasing forest recovery rate, both of which could be altered by climate change, producing rapid loss of forest on the landscape level. Such effects may be amplified by the existence of alternative stable states, which can cause systems to experience non-reversible changes in cover type. Critical transitions in landscape-level forest cover would have significant biogeochemical and biophysical feedbacks. Thus, altered disturbance-recovery dynamics under a changing climate may have sudden and dramatic impacts on forest-climate interactions.
Thom, Dominik; Rammer, Werner; Seidl, Rupert
2017-11-01
Currently, the temperate forest biome cools the earth's climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased disturbance activity in the long run (-10.1%), mainly by reducing the host trees available for bark beetles. Climate change and the resulting future forest dynamics significantly reduced the climate regulation function of the landscape, increasing radiative forcing by up to +10.2% on average over 200 yr. Overall, radiative forcing was most strongly driven by carbon exchange. We conclude that future changes in forest dynamics can cause amplifying climate feedbacks from temperate forest ecosystems.
Crystal L. Raymond; Donald McKenzie
2012-01-01
During the 21st century, climate-driven changes in fire regimes will be a key agent of change in forests of the U.S. Pacific Northwest (PNW). Understanding the response of forest carbon (C) dynamics to increases in fire will help quantify limits on the contribution of forest C storage to climate change mitigation and prioritize forest types for...
Thom, Dominik; Rammer, Werner; Seidl, Rupert
2018-01-01
Currently, the temperate forest biome cools the earth’s climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased disturbance activity in the long run (−10.1%), mainly by reducing the host trees available for bark beetles. Climate change and the resulting future forest dynamics significantly reduced the climate regulation function of the landscape, increasing radiative forcing by up to +10.2% on average over 200 yr. Overall, radiative forcing was most strongly driven by carbon exchange. We conclude that future changes in forest dynamics can cause amplifying climate feedbacks from temperate forest ecosystems. PMID:29628526
Acácio, Vanda; Dias, Filipe S; Catry, Filipe X; Rocha, Marta; Moreira, Francisco
2017-03-01
The Mediterranean region is projected to be extremely vulnerable to global change, which will affect the distribution of typical forest types such as native oak forests. However, our understanding of Mediterranean oak forest responses to future conditions is still very limited by the lack of knowledge on oak forest dynamics and species-specific responses to multiple drivers. We compared the long-term (1966-2006) forest persistence and land cover change among evergreen (cork oak and holm oak) and deciduous oak forests and evaluated the importance of anthropogenic and environmental drivers on observed changes for Portugal. We used National Forest Inventories to quantify the changes in oak forests and explored the drivers of change using multinomial logistic regression analysis and an information theoretical approach. We found distinct trends among oak forest types, reflecting the differences in oak economic value, protection status and management schemes: cork oak forests were the most persistent (62%), changing mostly to pines and eucalypt; holm oak forests were less persistent (53.2%), changing mostly to agriculture; and deciduous oak forests were the least persistent (45.7%), changing mostly to shrublands. Drivers of change had distinct importance across oak forest types, but drivers from anthropogenic origin (wildfires, population density, and land accessibility) were always among the most important. Climatic extremes were also important predictors of oak forest changes, namely extreme temperatures for evergreen oak forests and deficit of precipitation for deciduous oak forests. Our results indicate that under increasing human pressure and forecasted climate change, evergreen oak forests will continue declining and deciduous oak forests will be replaced by forests dominated by more xeric species. In the long run, multiple disturbances may change competitive dominance from oak forests to pyrophytic shrublands. A better understanding of forest dynamics and the inclusion of anthropogenic drivers on models of vegetation change will improve predicting the future of Mediterranean oak forests. © 2016 John Wiley & Sons Ltd.
Global climate change impacts on forests and markets
Xiaohui Tian; Brent Sohngen; John B Kim; Sara Ohrel; Jefferson Cole
2016-01-01
This paper develops an economic analysis of climate change impacts in the global forest sector. It illustrates how potential future climate change impacts can be integrated into a dynamic forestry economics model using data from a global dynamic vegetation model, theMC2model. The results suggest that climate change will cause forest outputs (such as timber) to increase...
Large-scale patterns of turnover and Basal area change in Andean forests.
Báez, Selene; Malizia, Agustina; Carilla, Julieta; Blundo, Cecilia; Aguilar, Manuel; Aguirre, Nikolay; Aquirre, Zhofre; Álvarez, Esteban; Cuesta, Francisco; Duque, Álvaro; Farfán-Ríos, William; García-Cabrera, Karina; Grau, Ricardo; Homeier, Jürgen; Linares-Palomino, Reynaldo; Malizia, Lucio R; Cruz, Omar Melo; Osinaga, Oriana; Phillips, Oliver L; Reynel, Carlos; Silman, Miles R; Feeley, Kenneth J
2015-01-01
General patterns of forest dynamics and productivity in the Andes Mountains are poorly characterized. Here we present the first large-scale study of Andean forest dynamics using a set of 63 permanent forest plots assembled over the past two decades. In the North-Central Andes tree turnover (mortality and recruitment) and tree growth declined with increasing elevation and decreasing temperature. In addition, basal area increased in Lower Montane Moist Forests but did not change in Higher Montane Humid Forests. However, at higher elevations the lack of net basal area change and excess of mortality over recruitment suggests negative environmental impacts. In North-Western Argentina, forest dynamics appear to be influenced by land use history in addition to environmental variation. Taken together, our results indicate that combinations of abiotic and biotic factors that vary across elevation gradients are important determinants of tree turnover and productivity in the Andes. More extensive and longer-term monitoring and analyses of forest dynamics in permanent plots will be necessary to understand how demographic processes and woody biomass are responding to changing environmental conditions along elevation gradients through this century.
Large-Scale Patterns of Turnover and Basal Area Change in Andean Forests
Blundo, Cecilia; Aguilar, Manuel; Aguirre, Nikolay; Aquirre, Zhofre; Álvarez, Esteban; Cuesta, Francisco; Farfán-Ríos, William; García-Cabrera, Karina; Grau, Ricardo; Linares-Palomino, Reynaldo; Malizia, Lucio R.; Cruz, Omar Melo; Osinaga, Oriana; Reynel, Carlos; Silman, Miles R.
2015-01-01
General patterns of forest dynamics and productivity in the Andes Mountains are poorly characterized. Here we present the first large-scale study of Andean forest dynamics using a set of 63 permanent forest plots assembled over the past two decades. In the North-Central Andes tree turnover (mortality and recruitment) and tree growth declined with increasing elevation and decreasing temperature. In addition, basal area increased in Lower Montane Moist Forests but did not change in Higher Montane Humid Forests. However, at higher elevations the lack of net basal area change and excess of mortality over recruitment suggests negative environmental impacts. In North-Western Argentina, forest dynamics appear to be influenced by land use history in addition to environmental variation. Taken together, our results indicate that combinations of abiotic and biotic factors that vary across elevation gradients are important determinants of tree turnover and productivity in the Andes. More extensive and longer-term monitoring and analyses of forest dynamics in permanent plots will be necessary to understand how demographic processes and woody biomass are responding to changing environmental conditions along elevation gradients through this century. PMID:25973977
CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change.
Anderson-Teixeira, Kristina J; Davies, Stuart J; Bennett, Amy C; Gonzalez-Akre, Erika B; Muller-Landau, Helene C; Wright, S Joseph; Abu Salim, Kamariah; Almeyda Zambrano, Angélica M; Alonso, Alfonso; Baltzer, Jennifer L; Basset, Yves; Bourg, Norman A; Broadbent, Eben N; Brockelman, Warren Y; Bunyavejchewin, Sarayudh; Burslem, David F R P; Butt, Nathalie; Cao, Min; Cardenas, Dairon; Chuyong, George B; Clay, Keith; Cordell, Susan; Dattaraja, Handanakere S; Deng, Xiaobao; Detto, Matteo; Du, Xiaojun; Duque, Alvaro; Erikson, David L; Ewango, Corneille E N; Fischer, Gunter A; Fletcher, Christine; Foster, Robin B; Giardina, Christian P; Gilbert, Gregory S; Gunatilleke, Nimal; Gunatilleke, Savitri; Hao, Zhanqing; Hargrove, William W; Hart, Terese B; Hau, Billy C H; He, Fangliang; Hoffman, Forrest M; Howe, Robert W; Hubbell, Stephen P; Inman-Narahari, Faith M; Jansen, Patrick A; Jiang, Mingxi; Johnson, Daniel J; Kanzaki, Mamoru; Kassim, Abdul Rahman; Kenfack, David; Kibet, Staline; Kinnaird, Margaret F; Korte, Lisa; Kral, Kamil; Kumar, Jitendra; Larson, Andrew J; Li, Yide; Li, Xiankun; Liu, Shirong; Lum, Shawn K Y; Lutz, James A; Ma, Keping; Maddalena, Damian M; Makana, Jean-Remy; Malhi, Yadvinder; Marthews, Toby; Mat Serudin, Rafizah; McMahon, Sean M; McShea, William J; Memiaghe, Hervé R; Mi, Xiangcheng; Mizuno, Takashi; Morecroft, Michael; Myers, Jonathan A; Novotny, Vojtech; de Oliveira, Alexandre A; Ong, Perry S; Orwig, David A; Ostertag, Rebecca; den Ouden, Jan; Parker, Geoffrey G; Phillips, Richard P; Sack, Lawren; Sainge, Moses N; Sang, Weiguo; Sri-Ngernyuang, Kriangsak; Sukumar, Raman; Sun, I-Fang; Sungpalee, Witchaphart; Suresh, Hebbalalu Sathyanarayana; Tan, Sylvester; Thomas, Sean C; Thomas, Duncan W; Thompson, Jill; Turner, Benjamin L; Uriarte, Maria; Valencia, Renato; Vallejo, Marta I; Vicentini, Alberto; Vrška, Tomáš; Wang, Xihua; Wang, Xugao; Weiblen, George; Wolf, Amy; Xu, Han; Yap, Sandra; Zimmerman, Jess
2015-02-01
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥ 1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25 °S-61 °N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 °C), changes in precipitation (up to ± 30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g N m(-2) yr(-1) and 3.1 g S m(-2) yr(-1)), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5 km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change. © 2014 John Wiley & Sons Ltd.
Drivers of forest cover dynamics in smallholder farming systems: the case of northwestern Vietnam.
Jadin, Isaline; Vanacker, Veerle; Hoang, Huong Thi Thu
2013-04-01
The national-scale forest recovery of Vietnam started in the early 1990s and is associated with a shift from net deforestation to net reforestation. Large disparities in forest cover dynamics are, however, observed at the local scale. This study aims to unravel the mechanisms driving forest cover change for a mountainous region located in northwest Vietnam. Statistical analyses were used to explore the association between forest cover change and household characteristics. In Sa Pa district, deforestation rates are decreasing, but forest degradation continues at similar rates. Deforestation is not necessarily associated with impoverished ethnic communities or high levels of subsistence farming, and the largest forest cover dynamics are found in villages with the best socio-economic conditions. Our empirical study does not provide strong evidence of a dominant role of agriculture in forest cover dynamics. It shows that empirical studies on local-scale forest dynamics remain important to unravel the complexity of human-environment interactions.
Coulston, John W; Wear, David N; Vose, James M
2015-01-23
Over the past century forest regrowth in Europe and North America expanded forest carbon (C) sinks and offset C emissions but future C accumulation is uncertain. Policy makers need insights into forest C dynamics as they anticipate emissions futures and goals. We used land use and forest inventory data to estimate how forest C dynamics have changed in the southeastern United States and attribute changes to land use, management, and disturbance causes. From 2007-2012, forests yielded a net sink of C because of net land use change (+6.48 Tg C yr(-1)) and net biomass accumulation (+75.4 Tg C yr(-1)). Forests disturbed by weather, insect/disease, and fire show dampened yet positive forest C changes (+1.56, +1.4, +5.48 Tg C yr(-1), respectively). Forest cutting caused net decreases in C (-76.7 Tg C yr(-1)) but was offset by forest growth (+143.77 Tg C yr(-1)). Forest growth rates depend on age or stage of development and projected C stock changes indicate a gradual slowing of carbon accumulation with anticipated forest aging (a reduction of 9.5% over the next five years). Additionally, small shifts in land use transitions consistent with economic futures resulted in a 40.6% decrease in C accumulation.
John W. Coulston; David N. Wear; James M. Vose
2015-01-01
Over the past century forest regrowth in Europe and North America expanded forest carbon (C) sinks and offset C emissions but future C accumulation is uncertain. Policy makers need insights into forest C dynamics as they anticipate emissions futures and goals. We used land use and forest inventory data to estimate how forest C dynamics have changed in the southeastern...
Monitoring coniferous forest biomass change using a Landsat trajectory-based approach
Magdalena Main-Knorn; Warren B. Cohen; Robert E. Kennedy; Wojciech Grodzki; Dirk Pflugmacher; Patrick Griffiths; Patrick Hostert
2013-01-01
Forest biomass is a major store of carbon and thus plays an important role in the regional and global carbon cycle. Accurate forest carbon sequestration assessment requires estimation of both forest biomass and forest biomass dynamics over time. Forest dynamics are characterized by disturbances and recovery, key processes affecting site productivity and the forest...
Coulston, John W.; Wear, David N.; Vose, James M.
2015-01-01
Over the past century forest regrowth in Europe and North America expanded forest carbon (C) sinks and offset C emissions but future C accumulation is uncertain. Policy makers need insights into forest C dynamics as they anticipate emissions futures and goals. We used land use and forest inventory data to estimate how forest C dynamics have changed in the southeastern United States and attribute changes to land use, management, and disturbance causes. From 2007-2012, forests yielded a net sink of C because of net land use change (+6.48 Tg C yr−1) and net biomass accumulation (+75.4 Tg C yr−1). Forests disturbed by weather, insect/disease, and fire show dampened yet positive forest C changes (+1.56, +1.4, +5.48 Tg C yr−1, respectively). Forest cutting caused net decreases in C (−76.7 Tg C yr−1) but was offset by forest growth (+143.77 Tg C yr−1). Forest growth rates depend on age or stage of development and projected C stock changes indicate a gradual slowing of carbon accumulation with anticipated forest aging (a reduction of 9.5% over the next five years). Additionally, small shifts in land use transitions consistent with economic futures resulted in a 40.6% decrease in C accumulation. PMID:25614123
Gutiérrez, Alvaro G.; Armesto, Juan J.; Díaz, M. Francisca; Huth, Andreas
2014-01-01
Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests. PMID:25068869
Gutiérrez, Alvaro G; Armesto, Juan J; Díaz, M Francisca; Huth, Andreas
2014-01-01
Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests.
Karen Schleeweis; Samuel N. Goward; Chengquan Huang; John L. Dwyer; Jennifer L. Dungan; Mary A. Lindsey; Andrew Michaelis; Khaldoun Rishmawi; Jeffery G. Masek
2016-01-01
Using the NASA Earth Exchange platform, the North American Forest Dynamics (NAFD) project mapped forest history wall-to-wall, annually for the contiguous US (1986-2010) using the Vegetation Change Tracker algorithm. As with any effort to identify real changes in remotely sensed time-series, data gaps, shifts in seasonality, misregistration, inconsistent radiometry and...
CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change
Kristina J. Anderson-Teixeira; Stuart J. Davies; Amy C. Bennett; Erika B. Gonzalez-Akre; Helene C. Muller-Landau; S. Joseph Wright; Kamariah Abu Salim; Angélica M. Almeyda Zambrano; Alfonso Alonso; Jennifer L. Baltzer; Yves Basset; Norman A. Bourg; Eben N. Broadbent; Warren Y. Brockelman; Sarayudh Bunyavejchewin; David F. R. P. Burslem; Nathalie Butt; Min Cao; Dairon Cardenas; George B. Chuyong; Keith Clay; Susan Cordell; Handanakere S. Dattaraja; Xiaobao Deng; Matteo Detto; Xiaojun Du; Alvaro Duque; David L. Erikson; Corneille E.N. Ewango; Gunter A. Fischer; Christine Fletcher; Robin B. Foster; Christian P. Giardina; Gregory S. Gilbert; Nimal Gunatilleke; Savitri Gunatilleke; Zhanqing Hao; William W. Hargrove; Terese B. Hart; Billy C.H. Hau; Fangliang He; Forrest M. Hoffman; Robert W. Howe; Stephen P. Hubbell; Faith M. Inman-Narahari; Patrick A. Jansen; Mingxi Jiang; Daniel J. Johnson; Mamoru Kanzaki; Abdul Rahman Kassim; David Kenfack; Staline Kibet; Margaret F. Kinnaird; Lisa Korte; Kamil Kral; Jitendra Kumar; Andrew J. Larson; Yide Li; Xiankun Li; Shirong Liu; Shawn K.Y. Lum; James A. Lutz; Keping Ma; Damian M. Maddalena; Jean-Remy Makana; Yadvinder Malhi; Toby Marthews; Rafizah Mat Serudin; Sean M. McMahon; William J. McShea; Hervé R. Memiaghe; Xiangcheng Mi; Takashi Mizuno; Michael Morecroft; Jonathan A. Myers; Vojtech Novotny; Alexandre A. de Oliveira; Perry S. Ong; David A. Orwig; Rebecca Ostertag; Jan den Ouden; Geoffrey G. Parker; Richard P. Phillips; Lawren Sack; Moses N. Sainge; Weiguo Sang; Kriangsak Sri-ngernyuang; Raman Sukumar; I-Fang Sun; Witchaphart Sungpalee; Hebbalalu Sathyanarayana Suresh; Sylvester Tan; Sean C. Thomas; Duncan W. Thomas; Jill Thompson; Benjamin L. Turner; Maria Uriarte; Renato Valencia; Marta I. Vallejo; Alberto Vicentini; Tomáš Vrška; Xihua Wang; Xugao Wang; George Weiblen; Amy Wolf; Han Xu; Sandra Yap; Jess Zimmerman
2014-01-01
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses...
Itter, Malcolm S; Finley, Andrew O; D'Amato, Anthony W; Foster, Jane R; Bradford, John B
2017-06-01
Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands. © 2017 by the Ecological Society of America.
Robert M. Scheller; Alec M. Kretchun; Steve Van Tuyl; Kenneth L. Clark; Melissa S. Lucash; John Hom
2012-01-01
Accounting for both climate change and natural disturbanceswhich typically result in greenhouse gas emissionsis necessary to begin managing forest carbon sequestration. Gaining a complete understanding of forest carbon dynamics is, however, challenging in systems characterized by historic over-utilization, diverse soils and tree species, and...
David M. Bell; Andrew N. Gray
2015-01-01
Models of forest succession provide an appealing conceptual framework for understanding forest dynamics, but uncertainty in the degree to which patterns are regionally consistent might limit the application of successional theory in forest management. Remeasurements of forest inventory networks provide an opportunity to assess this consistency, improving our...
Modeling long-term changes in forested landscapes and their relation to the Earth's energy balance
NASA Technical Reports Server (NTRS)
Shugart, H. H.; Emanuel, W. R.; Solomon, A. M.
1984-01-01
The dynamics of the forested parts of the Earth's surface on time scales from decades to centuries are discussed. A set of computer models developed at Oak Ridge National Laboratory and elsewhere are applied as tools. These models simulate a landscape by duplicating the dynamics of growth, death and birth of each tree living on a 0.10 ha element of the landscape. This spatial unit is generally referred to as a gap in the case of the forest models. The models were tested against and applied to a diverse array of forests and appear to provide a reasonable representation for investigating forest-cover dynamics. Because of the climate linkage, one important test is the reconstruction of paleo-landscapes. Detailed reconstructions of changes in vegetation in response to changes in climate are crucial to understanding the association of the Earth's vegetation and climate and the response of the vegetation to climate change.
NASA Astrophysics Data System (ADS)
Rashid, Barira; Iqbal, Javed
2018-04-01
Forest Cover dynamics and its understanding is essential for a country's social, environmental, and political engagements. This research provides a methodical approach for the assessment of forest cover along Karakoram Highway. It has great ecological and economic significance because it's a part of China-Pakistan Economic Corridor. Landsat 4, 5 TM, Landsat 7 ETM and Landsat 8 OLI imagery for the years 1990, 2000, 2010 and 2016 respectively were subjected to supervised classification in ArcMap 10.5 to identify forest change. The study area was categorized into five major land use land cover classes i.e., Forest, vegetation, urban, open land and snow cover. Results from post classification forest cover change maps illustrated notable decrease of almost 26 % forest cover over the time period of 26 years. The accuracy assessment revealed the kappa coefficients 083, 0.78, 0.77 and 0.85, respectively. Major reason for this change is an observed replacement of native forest cover with urban areas (12.5 %) and vegetation (18.6 %) However, there is no significant change in the reserved forests along the study area that contributes only 2.97 % of the total forest cover. The extensive forest degradation and risk prone topography of the region has increased the environmental risk of landslides. Hence, effective policies and forest management is needed to protect not only the environmental and aesthetic benefits of the forest cover but also to manage the disaster risks. Apart from the forest assessment, this research gives an insight of land cover dynamics, along with causes and consequences, thereby showing the forest degradation hotspots.
MODELING THE DYNAMICS OF WILDLIFE HABITAT AND POPULATIONS AT THE LANDSCAPE SCALE
A forest dynamics model (FORCLIM) was linked to a spatial wildlife population model (PATCH) to assess the effects of habitat change in a landscape on selected wildlife species. The habitat changes included forest responses to harvesting, development, and climate change on a west...
NASA Astrophysics Data System (ADS)
Jackson, C. R.; Webster, J. R.; Knoepp, J. D.; Elliott, K.; Emanuel, R. E.; Miniat, C.
2017-12-01
In the 1970s, the Coweeta Hydrologic Laboratory Watershed 7 was clearcut from ridge to ridge to observe how far the perturbation would move the ecosystem and how quickly the ecosystem would return to its pre-disturbance state. Nearly 40 years of observations of streamflow and DIN export demonstrate that this view of ecosystem resistance and resilience was too simplistic. Forest disturbance triggered a chain of ecological dynamics that are still evolving. For the first 12 years following watershed road building, forest harvest, and forest regeneration, streamflows and DIN concentrations temporarily increased and then appeared to return to pre-harvest behavior. Thereupon the ecosystem trajectory diverged from expectations. Unexpected successional changes in forest composition interacted with drought cycles, climate change effects, and forest changes due to pests and diseases to push the biogeochemical system into an alternate state featuring persistently high DIN concentrations and hydrological rather than biological control of DIN exports. Thirty years after harvest, these forest changes also increased evapotranspiration and reduced water yields. These ecosystem dynamics were only revealed because of long-term monitoring, and they inspired new research to elucidate mechanisms behind these dynamics. We conclude that long-term approaches are critical for understanding ecosystem dynamics and responses to disturbances.
Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake
NASA Astrophysics Data System (ADS)
Yang, X.; Richardson, T. K.; Jain, A. K.
2010-10-01
We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM) to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades. This study indicates the significance of secondary forests to terrestrial carbon sinks, the importance of nitrogen dynamics to the magnitude of secondary forests carbon uptake, and therefore the need to include both primary and secondary forests and nitrogen dynamics in terrestrial ecosystem models.
Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake
NASA Astrophysics Data System (ADS)
Yang, X.; Richardson, T. K.; Jain, A. K.
2010-04-01
We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM) to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades. This study indicates the significance of secondary forests to terrestrial carbon sinks, the importance of nitrogen dynamics to the magnitude of secondary forests carbon uptake, and therefore the need to include both primary and secondary forests and nitrogen dynamics in terrestrial ecosystem models.
Seventy years of forest growth and community dynamics in an undisturbed northern hardwood forest
Jennifer Pontius; Joshua M. Halman; Paul G. Schaberg
2016-01-01
Long-term forest inventories provide a unique opportunity to quantify changes in forest structure and evaluate how changes compare with current stand development models. An examination of a 70 year record at the Bartlett Experimental Forest, New Hampshire, indicated that although species abundances have primarily changed as expected under natural succession, some...
Recovery dynamics and climate change effects to future New England forests
Matthew J. Duveneck; Jonathan R. Thompson; Eric J. Gustafson; Yu Liang; Arjan M. G. de Bruijn
2017-01-01
Context. Forests throughout eastern North America continue to recover from broad-scale intensive land use that peaked in the nineteenth century. These forests provide essential goods and services at local to global scales. It is uncertain how recovery dynamics, the processes by which forests respond to past forest land use, will continue to...
R.E. Haugo; C.B. Halpern; J.D. Bakker
2011-01-01
Forest-meadow ecotones are prominent and dynamic features of mountain ecosystems. Understanding how vegetation changes are shaped by long-term interactions with trees and are mediated by the physical environment is critical to predicting future trends in biological diversity across these landscapes. We examined 26 yr of vegetation change (1983-2009) across 20 forest-...
Decadal change of forest biomass carbon stocks and tree demography in the Delaware River Basin
Bing Xu; Yude Pan; Alain F. Plante; Arthur Johnson; Jason Cole; Richard Birdsey
2016-01-01
Quantifying forest biomass carbon (C) stock change is important for understanding forest dynamics and their feedbacks with climate change. Forests in the northeastern U.S. have been a net carbon sink in recent decades, but C accumulation in some northern hardwood forests has been halted due to the impact of emerging stresses such as invasive pests, land use change and...
2017-01-01
Forests are experiencing significant changes; studying geographic patterns in forests is critical in understanding the impact of forest dynamics to biodiversity, soil erosion, water chemistry and climate. Few studies have examined forest geographic pattern changes other than fragmentation; however, other spatial processes of forest dynamics are of equal importance. Here, we study forest attrition, the complete removal of forest patches, that can result in complete habitat loss, severe decline of population sizes and species richness, and shifts of local and regional environmental conditions. We aim to develop a simple yet insightful proximity-based spatial indicator capturing forest attrition that is independent of spatial scale and boundaries with worldwide application potential. Using this proximity indicator, we evaluate forest attrition across ecoregions, land ownership and urbanization stratifications across continental United States of America. Nationally, the total forest cover loss was approximately 90,400 km2, roughly the size of the state of Maine, constituting a decline of 2.96%. Examining the spatial arrangement of this change the average FAD was 3674m in 1992 and increased by 514m or 14.0% in 2001. Simulations of forest cover loss indicate only a 10m FAD increase suggesting that the observed FAD increase was more than an order of magnitude higher than expected. Furthermore, forest attrition is considerably higher in the western United States, in rural areas and in public lands. Our mathematical model (R2 = 0.93) supports estimation of attrition for a given forest cover. The FAD metric quantifies forest attrition across spatial scales and geographic boundaries and assesses unambiguously changes over time. The metric is applicable to any landscape and offers a new complementary insight on forest landscape patterns from local to global scales, improving future exploration of drivers and repercussions of forest cover changes and supporting more informative management of forest carbon, changing climate and species biodiversity. PMID:28225787
Yang, Sheng; Mountrakis, Giorgos
2017-01-01
Forests are experiencing significant changes; studying geographic patterns in forests is critical in understanding the impact of forest dynamics to biodiversity, soil erosion, water chemistry and climate. Few studies have examined forest geographic pattern changes other than fragmentation; however, other spatial processes of forest dynamics are of equal importance. Here, we study forest attrition, the complete removal of forest patches, that can result in complete habitat loss, severe decline of population sizes and species richness, and shifts of local and regional environmental conditions. We aim to develop a simple yet insightful proximity-based spatial indicator capturing forest attrition that is independent of spatial scale and boundaries with worldwide application potential. Using this proximity indicator, we evaluate forest attrition across ecoregions, land ownership and urbanization stratifications across continental United States of America. Nationally, the total forest cover loss was approximately 90,400 km2, roughly the size of the state of Maine, constituting a decline of 2.96%. Examining the spatial arrangement of this change the average FAD was 3674m in 1992 and increased by 514m or 14.0% in 2001. Simulations of forest cover loss indicate only a 10m FAD increase suggesting that the observed FAD increase was more than an order of magnitude higher than expected. Furthermore, forest attrition is considerably higher in the western United States, in rural areas and in public lands. Our mathematical model (R2 = 0.93) supports estimation of attrition for a given forest cover. The FAD metric quantifies forest attrition across spatial scales and geographic boundaries and assesses unambiguously changes over time. The metric is applicable to any landscape and offers a new complementary insight on forest landscape patterns from local to global scales, improving future exploration of drivers and repercussions of forest cover changes and supporting more informative management of forest carbon, changing climate and species biodiversity.
A global evaluation of forest interior area dynamics using tree cover data from 2000 to 2012
Kurt Riitters; James Wickham; Jennifer K. Costanza; Peter Vogt
2016-01-01
Context Published maps of global tree cover derived from Landsat data have indicated substantial changes in forest area from 2000 to 2012. The changes can be arranged in different patterns, with different consequences for forest fragmentation. Thus, the changes in forest area do not necessarily equate to changes in...
Louise Loudermilk; Robert Scheller; Peter Weisberg; Jian Yang; Thomas Dilts; Sarah Karam; Carl Skinner
2013-01-01
Understanding how climate change may influence forest carbon (C) budgets requires knowledge of forest growth relationships with regional climate, long-term forest succession, and past and future disturbances, such as wildfires and timber harvesting events. We used a landscape-scale model of forest succession, wildfire, and C dynamics (LANDIS-II) to evaluate the effects...
Daniel J. Krofcheck; Matthew D. Hurteau; Robert M. Scheller; E. Louise Loudermilk
2017-01-01
In frequent fire forests of the western United States, a legacy of fire suppression coupled with increases in fire weather severity have altered fire regimes and vegetation dynamics. When coupled with projected climate change, these conditions have the potential to lead to vegetation type change and altered carbon (C) dynamics. In the Sierra Nevada, fuels...
Ponderosa pine forest structure and northern goshawk reproduction: Response to Beier et al
Richard T. Reynolds; Douglas A. Boyce; Russell T. Graham
2012-01-01
Ecosystem-based forest management requires long planning horizons to incorporate forest dynamics - changes resulting from vegetation growth and succession and the periodic resetting of these by natural and anthropogenic disturbances such as fire, wind, insects, and timber harvests. Given these dynamics, ecosystem-based forest management plans should specify desired...
Yuan, F M; Yi, S H; McGuire, A D; Johnson, K D; Liang, J; Harden, J W; Kasischke, E S; Kurz, W A
2012-12-01
Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites and evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at -0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Fengming; Yi, Shuhua; McGuire, A. David
2012-01-01
Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites andmore » evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at ;0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.« less
Yuan, F.M.; Yi, S.H.; McGuire, A.D.; Johnson, K.D.; Liang, J.; Harden, J.W.; Kasischke, E.S.; Kurz, W.A.
2012-01-01
Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites and evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at ∼0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.
Itter, Malcolm S.; Finley, Andrew O.; D'Amato, Anthony W.; Foster, Jane R.; Bradford, John B.
2017-01-01
Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics—changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands.
Giri, C.; Pengra, Bruce; Zhu, Z.; Singh, A.; Tieszen, L.L.
2007-01-01
Mangrove forests in many parts of the world are declining at an alarming rate—possibly even more rapidly than inland tropical forests. The rate and causes of such changes are not known. The forests themselves are dynamic in nature and are undergoing constant changes due to both natural and anthropogenic forces. Our research objective was to monitor deforestation and degradation arising from both natural and anthropogenic forces. We analyzed multi-temporal satellite data from 1970s, 1990s, and 2000s using supervised classification approach. Our spatio-temporal analysis shows that despite having the highest population density in the world in its periphery, areal extent of the mangrove forest of the Sundarbans has not changed significantly (approximately 1.2%) in the last ∼25 years. The forest is however constantly changing due to erosion, aggradation, deforestation and mangrove rehabilitation programs. The net forest area increased by 1.4% from the 1970s to 1990 and decreased by 2.5% from 1990 to 2000. The change is insignificant in the context of classification errors and the dynamic nature of mangrove forests. This is an excellent example of the co-existence of humans with terrestrial and aquatic plant and animal life. The strong commitment of governments under various protection measures such as forest reserves, wildlife sanctuaries, national parks, and international designations, is believed to be responsible for keeping this forest relatively intact (at least in terms of area). While the measured net loss of mangrove forest is not that high, the change matrix shows that turnover due to erosion, aggradation, reforestation and deforestation was much greater than net change. The forest is under threat from natural and anthropogenic forces leading to forest degradation, primarily due to top-dying disease and over-exploitation of forest resources.
NASA Astrophysics Data System (ADS)
Giri, Chandra; Pengra, Bruce; Zhu, Zhiliang; Singh, Ashbindu; Tieszen, Larry L.
2007-06-01
Mangrove forests in many parts of the world are declining at an alarming rate—possibly even more rapidly than inland tropical forests. The rate and causes of such changes are not known. The forests themselves are dynamic in nature and are undergoing constant changes due to both natural and anthropogenic forces. Our research objective was to monitor deforestation and degradation arising from both natural and anthropogenic forces. We analyzed multi-temporal satellite data from 1970s, 1990s, and 2000s using supervised classification approach. Our spatio-temporal analysis shows that despite having the highest population density in the world in its periphery, areal extent of the mangrove forest of the Sundarbans has not changed significantly (approximately 1.2%) in the last ˜25 years. The forest is however constantly changing due to erosion, aggradation, deforestation and mangrove rehabilitation programs. The net forest area increased by 1.4% from the 1970s to 1990 and decreased by 2.5% from 1990 to 2000. The change is insignificant in the context of classification errors and the dynamic nature of mangrove forests. This is an excellent example of the co-existence of humans with terrestrial and aquatic plant and animal life. The strong commitment of governments under various protection measures such as forest reserves, wildlife sanctuaries, national parks, and international designations, is believed to be responsible for keeping this forest relatively intact (at least in terms of area). While the measured net loss of mangrove forest is not that high, the change matrix shows that turnover due to erosion, aggradation, reforestation and deforestation was much greater than net change. The forest is under threat from natural and anthropogenic forces leading to forest degradation, primarily due to top-dying disease and over-exploitation of forest resources.
Changes in forest biomass and linkage to climate and forest disturbances over Northeastern China.
Zhang, Yuzhen; Liang, Shunlin
2014-08-01
The forests of northeastern China store nearly half of the country's total biomass carbon stocks. In this study, we investigated the changes in forest biomass by using satellite observations and found that a significant increase in forest biomass took place between 2001 and 2010. To determine the possible reasons for this change, several statistical methods were used to analyze the correlations between forest biomass dynamics and forest disturbances (i.e. fires, insect damage, logging, and afforestation and reforestation), climatic factors, and forest development. Results showed that forest development was the most important contributor to the increasing trend of forest biomass from 2001 to 2010, and climate controls were the secondary important factor. Among the four types of forest disturbance considered in this study, forest recovery from fires, and afforestation and reforestation during the past few decades played an important role in short-term biomass dynamics. This study provided observational evidence and valuable information for the relationships between forest biomass and climate as well as forest disturbances. © 2014 John Wiley & Sons Ltd.
Changes in Amazonian forest biomass, dynamics, and composition, 1980-2002
NASA Astrophysics Data System (ADS)
Phillips, Oliver L.; Higuchi, Niro; Vieira, Simone; Baker, Timothy R.; Chao, Kuo-Jung; Lewis, Simon L.
Long-term, on-the-ground monitoring of forest plots distributed across Amazonia provides a powerful means to quantify stocks and fluxes of biomass and biodiversity. Here we examine the evidence for concerted changes in the structure, dynamics, and functional composition of old-growth Amazonian forests over recent decades. Mature forests have, as a whole, gained biomass and undergone accelerated growth and dynamics, but questions remain as to the long-term persistence of these changes. Because forest growth on average exceeds mortality, intact Amazonian forests have been functioning as a carbon sink. We estimate a net biomass increase in trees ≥10 cm diameter of 0.62 ± 0.23 t C ha-1 a-1 through the late twentieth century. If representative of the wider forest landscape, this translates into a sink in South American old-growth forest of at least 0.49 ± 0.18 Pg C a-1. If other biomass and necromass components also increased proportionally, the estimated South American old-growth forest sink is 0.79 ± 0.29 Pg C a-1, before allowing for possible gains in soil carbon. If tropical forests elsewhere are behaving similarly, the old-growth biomass forest sink would be 1.60 ± 0.58 Pg C a-1. This bottom-up estimate of the carbon balance of tropical forests is preliminary, pending syntheses of detailed biometric studies across the other tropical continents. There is also some evidence for recent changes in the functional composition (biodiversity) of Amazonian forest, but the evidence is less comprehensive than that for changes in structure and dynamics. The most likely driver(s) of changes are recent increases in the supply of resources such as atmospheric carbon dioxide, which would increase net primary productivity, increasing tree growth and recruitment, and, in turn, mortality. In the future the growth response of remaining undisturbed Amazonian forests is likely to saturate, and there is a risk of these ecosystems transitioning from sink to source driven by higher respiration (temperature), higher mortality (drought), or compositional change (functional shifts toward lighterwooded plants). Even a modest switch from carbon sink to source for Amazonian forests would impact global climate, biodiversity, and human welfare, while the documented acceleration of tree growth and mortality may already be affecting the interactions of thousands of plant and millions of animal species.
Forest Dynamics in the Eastern Ghats of Tamil Nadu, India
NASA Astrophysics Data System (ADS)
Jayakumar, S.; Ramachandran, A.; Bhaskaran, G.; Heo, J.
2009-02-01
The primary deciduous forests in the Eastern Ghats (EG) of Tamil Nadu (TN) India have undergone many changes owing to various need-based forest managements, such as timber extraction for industry, railway sleepers, charcoal, and forest clearance for hydroelectric projects and agriculture, during preindependence and postindependence periods (i.e., from 1800 to 1980). The enactment of a forest conservation act during the 1980s changed the perception of forest managers from utilization to conservation. This study was taken up to assess the forests dynamics in the EG of TN spatially between 1990 and 2003 and nonspatially between 1900 and the 1980s. Landsat Thematic Mapper (TM) and Indian Remote Sensing satellite (IRS) 1D Linear Imaging and Self Scanning (LISS III) data were used to assess forests during 1990 and 2003, respectively. Field floristic survey and secondary data (such as published literature, floras, books, and forest working plans) were used to assess the forest dynamics in terms of forest type and species composition among the preindependence period, the postindependence period, and the present (i.e., before and after 1980). The satellite data analysis revealed a considerable amount of changes in all forest types during the 13 years. The comparison of species composition and forest types between the past and present revealed that need-based forest management along with anthropogenic activity have altered the primary deciduous forest in to secondary and postextraction secondary forests such as southern thorn and southern thorn scrub forests in the middle [400-900 m above mean sea level (MSL)] and lower slopes (<400 m MSL). However, the evergreen forests present at the upper slope (>900 m MSL) and plateau seemed not to be much affected by the forest management. The changes estimated by the satellite data processing in the major forest types such as evergreen, deciduous, southern thorn, and southern thorn scrub are really alarming because these changes have occurred after the implementation of a forest conservation act. The dependence of local people on forests for various purposes in this region is also considerably high, which might be a key factor for the changes in the forests. The results of this study not only provide an outlook on the present status of the forests and the change trends but also provide the basis for further studies on forests in the EG of TN.
Forest dynamics in the Eastern Ghats of Tamil Nadu, India.
Jayakumar, S; Ramachandran, A; Bhaskaran, G; Heo, J
2009-02-01
The primary deciduous forests in the Eastern Ghats (EG) of Tamil Nadu (TN) India have undergone many changes owing to various need-based forest managements, such as timber extraction for industry, railway sleepers, charcoal, and forest clearance for hydroelectric projects and agriculture, during preindependence and postindependence periods (i.e., from 1800 to 1980). The enactment of a forest conservation act during the 1980s changed the perception of forest managers from utilization to conservation. This study was taken up to assess the forests dynamics in the EG of TN spatially between 1990 and 2003 and nonspatially between 1900 and the 1980s. Landsat Thematic Mapper (TM) and Indian Remote Sensing satellite (IRS) 1D Linear Imaging and Self Scanning (LISS III) data were used to assess forests during 1990 and 2003, respectively. Field floristic survey and secondary data (such as published literature, floras, books, and forest working plans) were used to assess the forest dynamics in terms of forest type and species composition among the preindependence period, the postindependence period, and the present (i.e., before and after 1980). The satellite data analysis revealed a considerable amount of changes in all forest types during the 13 years. The comparison of species composition and forest types between the past and present revealed that need-based forest management along with anthropogenic activity have altered the primary deciduous forest in to secondary and postextraction secondary forests such as southern thorn and southern thorn scrub forests in the middle [400-900 m above mean sea level (MSL)] and lower slopes (<400 m MSL). However, the evergreen forests present at the upper slope (>900 m MSL) and plateau seemed not to be much affected by the forest management. The changes estimated by the satellite data processing in the major forest types such as evergreen, deciduous, southern thorn, and southern thorn scrub are really alarming because these changes have occurred after the implementation of a forest conservation act. The dependence of local people on forests for various purposes in this region is also considerably high, which might be a key factor for the changes in the forests. The results of this study not only provide an outlook on the present status of the forests and the change trends but also provide the basis for further studies on forests in the EG of TN.
NASA Astrophysics Data System (ADS)
Turubanova, S.; Potapov, P.; Krylov, A.; Tyukavina, A.; McCarty, J. L.; Radeloff, V. C.; Hansen, M. C.
2015-04-01
Dramatic political and economic changes in Eastern European countries following the dissolution of the "Eastern Bloc" and the collapse of the Soviet Union greatly affected land-cover and land-use trends. In particular, changes in forest cover dynamics may be attributed to the collapse of the planned economy, agricultural land abandonment, economy liberalization, and market conditions. However, changes in forest cover are hard to quantify given inconsistent forest statistics collected by different countries over the last 30 years. The objective of our research was to consistently quantify forest cover change across Eastern Europe from 1985 until 2012 using the complete Landsat data archive. We developed an algorithm for processing imagery from different Landsat platforms and sensors (TM and ETM+), aggregating these images into a common set of multi-temporal metrics, and mapping annual gross forest cover loss and decadal gross forest cover gain. Our results show that forest cover area increased from 1985 to 2012 by 4.7% across the region. Average annual gross forest cover loss was 0.41% of total forest cover area, with a statistically significant increase from 1985 to 2012. Most forest disturbance recovered fast, with only 12% of the areas of forest loss prior to 1995 not being recovered by 2012. Timber harvesting was the main cause of forest loss. Logging area declined after the collapse of socialism in the late 1980s, increased in the early 2000s, and decreased in most countries after 2007 due to the global economic crisis. By 2012, Central and Baltic Eastern European countries showed higher logging rates compared to their Western neighbours. Comparing our results with official forest cover and change estimates showed agreement in total forest area for year 2010, but with substantial disagreement between Landsat-based and official net forest cover area change. Landsat-based logging areas exhibit strong relationship with reported roundwood production at national scale. Our results allow national and sub-national level analysis of forest cover extent, change, and logging intensity and are available on-line as a baseline for further analyses of forest dynamics and its drivers.
An Amazonian rainforest and its fragments as a laboratory of global change.
Laurance, William F; Camargo, José L C; Fearnside, Philip M; Lovejoy, Thomas E; Williamson, G Bruce; Mesquita, Rita C G; Meyer, Christoph F J; Bobrowiec, Paulo E D; Laurance, Susan G W
2018-02-01
We synthesize findings from one of the world's largest and longest-running experimental investigations, the Biological Dynamics of Forest Fragments Project (BDFFP). Spanning an area of ∼1000 km 2 in central Amazonia, the BDFFP was initially designed to evaluate the effects of fragment area on rainforest biodiversity and ecological processes. However, over its 38-year history to date the project has far transcended its original mission, and now focuses more broadly on landscape dynamics, forest regeneration, regional- and global-change phenomena, and their potential interactions and implications for Amazonian forest conservation. The project has yielded a wealth of insights into the ecological and environmental changes in fragmented forests. For instance, many rainforest species are naturally rare and hence are either missing entirely from many fragments or so sparsely represented as to have little chance of long-term survival. Additionally, edge effects are a prominent driver of fragment dynamics, strongly affecting forest microclimate, tree mortality, carbon storage and a diversity of fauna. Even within our controlled study area, the landscape has been highly dynamic: for example, the matrix of vegetation surrounding fragments has changed markedly over time, succeeding from large cattle pastures or forest clearcuts to secondary regrowth forest. This, in turn, has influenced the dynamics of plant and animal communities and their trajectories of change over time. In general, fauna and flora have responded differently to fragmentation: the most locally extinction-prone animal species are those that have both large area requirements and low tolerance of the modified habitats surrounding fragments, whereas the most vulnerable plants are those that respond poorly to edge effects or chronic forest disturbances, and that rely on vulnerable animals for seed dispersal or pollination. Relative to intact forests, most fragments are hyperdynamic, with unstable or fluctuating populations of species in response to a variety of external vicissitudes. Rare weather events such as droughts, windstorms and floods have had strong impacts on fragments and left lasting legacies of change. Both forest fragments and the intact forests in our study area appear to be influenced by larger-scale environmental drivers operating at regional or global scales. These drivers are apparently increasing forest productivity and have led to concerted, widespread increases in forest dynamics and plant growth, shifts in tree-community composition, and increases in liana (woody vine) abundance. Such large-scale drivers are likely to interact synergistically with habitat fragmentation, exacerbating its effects for some species and ecological phenomena. Hence, the impacts of fragmentation on Amazonian biodiversity and ecosystem processes appear to be a consequence not only of local site features but also of broader changes occurring at landscape, regional and even global scales. © 2017 Cambridge Philosophical Society.
Nicholas R. Vaughn; Gregory P. Asner; Christian P. Giardina
2015-01-01
Fragmentation alters forest canopy structure through various mechanisms, which in turn drive subsequent changes to biogeochemical processes and biological diversity. Using repeated airborne LiDAR (Light Detection and Ranging) mappings, we investigated the size distribution and dynamics of forest canopy gaps across a topical montane forest landscape in Hawaii naturally...
Disturbance dynamics of forested ecosystems
John A. Stanturf
2004-01-01
Forested ecosystems are dynamic, subject to natural developmental processes as well as natural and anthropogenic stresses and disturbances. Degradation is a related term. for lowered productive capacity from changes to forest structure of function (FAO. 2001). Degradation is not synonymous with disturbance, however; disturbance becomes degradation when natural...
Danelle M. Laflower; Matthew D. Hurteau; George W. Koch; Malcolm P. North; Bruce A. Hungate
2016-01-01
Projecting the response of forests to changing climate requires understanding how biotic and abiotic controls on tree growth will change over time. As temperature and interannual precipitation variability increase, the overall forest response is likely to be influenced by species-specific responses to changing climate. Management actions that alter composition...
Jennifer K. Costanza; John W. Coulston; David N. Wear
2017-01-01
The composition of tree species occurring in a forest is important and can be affected by global change drivers such as climate change. To inform assessment and projection of global change impacts at broad extents, we used hierarchical cluster analysis and over 120,000 recent forest inventory plots to empirically define forest tree assemblages across the U.S., and...
Carbon sequestration in managed temperate coniferous forests under climate change
NASA Astrophysics Data System (ADS)
Dymond, Caren C.; Beukema, Sarah; Nitschke, Craig R.; Coates, K. David; Scheller, Robert M.
2016-03-01
Management of temperate forests has the potential to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by negative climate change impacts. We therefore need a better understanding of climate change alterations to temperate forest carbon dynamics before developing mitigation strategies. The purpose of this project was to investigate the interactions of species composition, fire, management, and climate change in the Copper-Pine Creek valley, a temperate coniferous forest with a wide range of growing conditions. To do so, we used the LANDIS-II modelling framework including the new Forest Carbon Succession extension to simulate forest ecosystems under four different productivity scenarios, with and without climate change effects, until 2050. Significantly, the new extension allowed us to calculate the net sector productivity, a carbon accounting metric that integrates aboveground and belowground carbon dynamics, disturbances, and the eventual fate of forest products. The model output was validated against literature values. The results implied that the species optimum growing conditions relative to current and future conditions strongly influenced future carbon dynamics. Warmer growing conditions led to increased carbon sinks and storage in the colder and wetter ecoregions but not necessarily in the others. Climate change impacts varied among species and site conditions, and this indicates that both of these components need to be taken into account when considering climate change mitigation activities and adaptive management. The introduction of a new carbon indicator, net sector productivity, promises to be useful in assessing management effectiveness and mitigation activities.
Patrick A. Zollner; Eric J. Gustafson; Hong S. He; Volker C. Radeloff; David J. Mladenoff
2005-01-01
Dynamic zoning (systematic alteration in the spatial and temporal allocation of even-aged forest management practices) has been proposed as a means to change the spatial pattern of timber harvest across a landscape to maximize forest interior habitat while holding timber harvest levels constant. Simulation studies have established that dynamic zoning strategies...
C. W. Woodall; B. F. Walters; M. B. Russell; J. W. Coulston; G. M. Domke; A. W. D' Amato; P. A. Sowers
2016-01-01
The dynamics of land-use practices (for example, forest versus settlements) is often a major driver of changes in terrestrial carbon (C). As the management and conservation of forest land uses are considered a means of reducing future atmospheric CO2 concentrations, the monitoring of forest C stocks and stock change by categories of land-use...
The role of gap phase processes in the biomass dynamics of tropical forests
Feeley, Kenneth J; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Nur Supardi, M.N; Kassim, Abd Rahman; Tan, Sylvester; Chave, Jérôme
2007-01-01
The responses of tropical forests to global anthropogenic disturbances remain poorly understood. Above-ground woody biomass in some tropical forest plots has increased over the past several decades, potentially reflecting a widespread response to increased resource availability, for example, due to elevated atmospheric CO2 and/or nutrient deposition. However, previous studies of biomass dynamics have not accounted for natural patterns of disturbance and gap phase regeneration, making it difficult to quantify the importance of environmental changes. Using spatially explicit census data from large (50 ha) inventory plots, we investigated the influence of gap phase processes on the biomass dynamics of four ‘old-growth’ tropical forests (Barro Colorado Island (BCI), Panama; Pasoh and Lambir, Malaysia; and Huai Kha Khaeng (HKK), Thailand). We show that biomass increases were gradual and concentrated in earlier-phase forest patches, while biomass losses were generally of greater magnitude but concentrated in rarer later-phase patches. We then estimate the rate of biomass change at each site independent of gap phase dynamics using reduced major axis regressions and ANCOVA tests. Above-ground woody biomass increased significantly at Pasoh (+0.72% yr−1) and decreased at HKK (−0.56% yr−1) independent of changes in gap phase but remained stable at both BCI and Lambir. We conclude that gap phase processes play an important role in the biomass dynamics of tropical forests, and that quantifying the role of gap phase processes will help improve our understanding of the factors driving changes in forest biomass as well as their place in the global carbon budget. PMID:17785266
The role of gap phase processes in the biomass dynamics of tropical forests.
Feeley, Kenneth J; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Nur Supardi, M N; Kassim, Abd Rahman; Tan, Sylvester; Chave, Jérôme
2007-11-22
The responses of tropical forests to global anthropogenic disturbances remain poorly understood. Above-ground woody biomass in some tropical forest plots has increased over the past several decades, potentially reflecting a widespread response to increased resource availability, for example, due to elevated atmospheric CO2 and/or nutrient deposition. However, previous studies of biomass dynamics have not accounted for natural patterns of disturbance and gap phase regeneration, making it difficult to quantify the importance of environmental changes. Using spatially explicit census data from large (50 ha) inventory plots, we investigated the influence of gap phase processes on the biomass dynamics of four 'old-growth' tropical forests (Barro Colorado Island (BCI), Panama; Pasoh and Lambir, Malaysia; and Huai Kha Khaeng (HKK), Thailand). We show that biomass increases were gradual and concentrated in earlier-phase forest patches, while biomass losses were generally of greater magnitude but concentrated in rarer later-phase patches. We then estimate the rate of biomass change at each site independent of gap phase dynamics using reduced major axis regressions and ANCOVA tests. Above-ground woody biomass increased significantly at Pasoh (+0.72% yr(-1)) and decreased at HKK (-0.56% yr(-1)) independent of changes in gap phase but remained stable at both BCI and Lambir. We conclude that gap phase processes play an important role in the biomass dynamics of tropical forests, and that quantifying the role of gap phase processes will help improve our understanding of the factors driving changes in forest biomass as well as their place in the global carbon budget.
Summary and synthesis: past and future changes in the Alaskan Boreal Forest.
F. Stuart Chapin; David McGuire; Roger W. Ruess; Marilyn W. Walker; Richard D. Boone; Mary E. Edwards; Bruce P. Finney; Larry D. Hinzman; Jeremy B. Jones; Glenn P. Juday; Eric S. Kasischke; Knut Kielland; Andrea H. Lloyd; Mark W. Oswood; Chien-Lu Ping; Eric Rexstad; Vladimir E. Romanovsky; Joshua P. Schimel; Elena B. Sparrow; Bjartmar Sveinbjörnsson; David W. Valentine; Keith Van Cleve; David L. Verbyla; Leslie A. Viereck; Richard A. Werner; Tricia L. Wurtz; John Yarie
2006-01-01
Historically the boreal forest has experienced major changes, and it remains a highly dynamic biome today. During cold phases of Quaternary climate cycles, forests were virtually absent from Alaska, and since the postglacial re-establishment of forests ca 13,000 years ago, here have been periods of both relative stability and rapid change (Chapter 5). Today, the...
The effects of seed dispersal on the simulation of long-term forest landscape change
Hong S. He; David J. Mladenoff
1999-01-01
The study of forest landscape change requires an understanding of the complex interactions of both spatial and temporal factors. Traditionally, forest gap models have been used to simulate change on small and independent plots. While gap models are useful in examining forest ecological dynamics across temporal scales, large, spatial processes, such as seed dispersal,...
A. David McGuire; F.S. Chapin; R.W. Ruess
2010-01-01
Long-term research by the Bonanza Creek (BNZ) Long Term Ecological Research (LTER) program has documented natural patterns of interannual and successional variability of the boreal forest in interior Alaska against which we can detect changes in system behavior. Between 2004 and 2010 the BNZ LTER program focused on understanding the dynamics of change through studying...
Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; Diana Burton; Chi-Chung. Chen
2000-01-01
A multiperiod, regional, mathematical programming economic model is used to evaluate the potential economic impacts of global climatic change on the US forest sector. A wide range of scenarios for the biological response of forests to climate change are developed, ranging from small to large changes in forest growth rates. These scenarios are simulated in the economic...
Forest dynamics following eastern hemlock mortality in the southern Appalachians
Chelcy R. Ford; Katherine J. Elliott; Barton D. Clinton; Brian D. Kloeppel; James M. Vose
2011-01-01
Understanding changes in community composition caused by invasive species is critical for predicting effects on ecosystem function, particularly when the invasive threatens a foundation species. Here we focus on dynamics of forest structure, composition and microclimate, and how these interact in southern Appalachian riparian forests following invasion by hemlock...
NASA Astrophysics Data System (ADS)
Armstrong, A. H.; Foster, A.; Rogers, B. M.; Hogg, T.; Michaelian, M.; Shuman, J. K.; Shugart, H. H., Jr.; Goetz, S. J.
2017-12-01
The Arctic-Boreal zone is known be warming at an accelerated rate relative to other biomes. Persistent warming has already affected the high northern latitudes, altering vegetation productivity, carbon sequestration, and many other ecosystem processes and services. The central-western Canadian boreal forests and aspen parkland are experiencing a decade long drought, and rainfall has been identified as a key factor controlling the location of the boundary between forest and prairie in this region. Shifting biome with related greening and browning trends are readily measureable with remote sensing, but the dynamics that create and result from them are not well understood. In this study, we use the University of Virginia Forest Model Enhanced (UVAFME), an individual-based forest model, to simulate the changes that are occurring across the southern boreal and parkland forests of west-central Canada. We present a parameterization of UVAFME for western central Canadian forests, validated with CIPHA data (Climate Change Impacts on the Productivity and Health of Aspen), and improved mortality. In order to gain a fine-scale understanding of how climate change and specifically drought will continue to affect the forests of this region, we simulated forest conditions following CMIP5 climate scenarios. UVAFME predictions were compared with statistical models and satellite observations of productivity across the landscape. Changes in forest cover, forest type, aboveground biomass, and mortality and recruitment dynamics are presented, highlighting the high vulnerability of this region to vegetation transitions associated with future droughts.
Is there a substitution of Pinaceae by Fagaceae in temperate forests at the global scale?
NASA Astrophysics Data System (ADS)
Alfaro Reyna, Teresa; Retana, Javier; Martínez-Vilalta, Jordi
2018-07-01
Reports on forest decline, changes in species composition and the distribution of forests in response to changes in climate and land use are increasing worldwide. Temperate forests are largely dominated by two tree families: Pinaceae and Fagaceae. These two families have distinct functional properties and different responses to environmental factors. Several local and regional assessments, particularly in Europe, have found that species of Fagaceae are invading areas previously dominated by Pinaceae. The main aim of this synthesis study is to analyze the relative dynamics of Pinaceae and Fagaceae species in temperate forests around the world, with the following specific objectives: (1) establish if there is a consistent directional substitution of Pinaceae by Fagaceae worldwide; and (2) determine whether these directional changes are associated with specific climatic conditions or certain geographic regions, reflecting differences in historical forest management and land use. A bibliographic review was performed and 51 papers were found that met the search criteria, including a total of 121 case studies in which the relative dynamics of Pinaceae and Fagaceae were evaluated. Our results show that the relative abundance of Fagaceae increased in 71% of cases (P → F dynamics), whereas Pinaceae relative abundance increased in 17% of cases (F → P) and 12% of cases did not show clear changes. Increases of Fagaceae relative to Pinaceae were less clear in areas where vegetation dynamics were driven by natural disturbances. Our results indicate a widespread increase in dominance of Fagaceae species at the expense of Pinaceae across northern temperate forests, with the exception of Eastern North America. The potential implications for ecosystem function and forest resilience under ongoing climate change are large and clearly deserve further study.
Implications of land-use change on forest carbon stocks in the eastern United States
NASA Astrophysics Data System (ADS)
Puhlick, Joshua; Woodall, Christopher; Weiskittel, Aaron
2017-02-01
Given the substantial role that forests play in removing CO2 from the atmosphere, there has been a growing need to evaluate the carbon (C) implications of various forest management and land-use decisions. Although assessment of land-use change is central to national-level greenhouse gas monitoring guidelines, it is rarely incorporated into forest stand-level evaluations of C dynamics and trajectories. To better inform the assessment of forest stand C dynamics in the context of potential land-use change, we used a region-wide repeated forest inventory (n = 71 444 plots) across the eastern United States to assess forest land-use conversion and associated changes in forest C stocks. Specifically, the probability of forest area reduction between 2002-2006 and 2007-2012 on these plots was related to key driving factors such as proportion of the landscape in forest land use, distance to roads, and initial forest C. Additional factors influencing the actual reduction in forest area were then used to assess the risk of forest land-use conversion to agriculture, settlement, and water. Plots in forests along the Great Plains had the highest periodic (approximately 5 years) probability of land-use change (0.160 ± 0.075; mean ± SD) with forest conversion to agricultural uses accounting for 70.5% of the observed land-use change. Aboveground forest C stock change for plots with a reduction in forest area was -4.2 ± 17.7 Mg ha-1 (mean ± SD). The finding that poorly stocked stands and/or those with small diameter trees had the highest probability of conversion to non-forest land uses suggests that forest management strategies can maintain the US terrestrial C sink not only in terms of increased net forest growth but also retention of forest area to avoid conversion. This study highlights the importance of considering land-use change in planning and policy decisions that seek to maintain or enhance regional C sinks.
Influence of climate change factors on carbon dynamics in northern forested peatlands
C.C Trettin; R. Laiho; K. Minkkinen; J. Laine
2005-01-01
Peatlands are carbon-accumulating wetland ecosystems, developed through an imbalance among organic matter production and decomposition processes. Soil saturation is the principal cause of anoxic conditions that constrain organic matter decay. Accordingly, changes in the hydrologic regime will affect the carbon (C) dynamics in forested peatlands. Our objective is to...
The affection of boreal forest changes on imbalance of Nature (Invited)
NASA Astrophysics Data System (ADS)
Tana, G.; Tateishi, R.
2013-12-01
Abstract: The balance of nature does not exist, and, perhaps, never has existed [1]. In other words, the Mother Nature is imbalanced at all. The Mother Nature is changing every moment and never returns to previous condition. Because of the imbalance of nature, global climate has been changing gradually. To reveal the imbalance of nature, there is a need to monitor the dynamic changes of the Earth surface. Forest cover and forest cover change have been grown in importance as basic variables for modelling of global biogeochemical cycles as well as climate [2]. The boreal area contains 1/3 of the earth's trees. These trees play a large part in limiting harmful greenhouse gases by aborbing much of the earth's carbon dioxide (CO2) [3]. The boreal area mainly consists of needleleaf evergreen forest and needleleaf deciduous forest. Both of the needleleaf evergreen forest and needleleaf deciduous forest play the important roles on the uptake of CO2. However, because of the dormant period of needleleaf evergreen forest are shorter than that of needleleaf deciduous forest, needleleaf evergreen forest makes a greater contribution to the absorbtion of CO2. Satellite sensor because of its ability to observe the Earth continuously, can provide the opportunity to monitor the dynamic changes of the Earth. In this study, we used the MODerate resolution Imaging Spectroradiometer (MODIS) satellite data to monitor the dynamic change of boreal forest area which are mainly consist from needleleaf evergreen forest and needleleaf deciduous forest during 2003-2012. Three years MODIS data from the year 2003, 2008 and 2012 were used to detect the forest changed area. A hybrid change detection method which combines the threshold method and unsupervised classification method was used to detect the changes of forest area. In the first step, the difference of Normalized Difference Vegetation Index (NDVI) of the three years were calculated and were used to extract the changed areas by the threshold method. In the second step, the unsupervised classification method was used to classify and analyze detected change areas derived from the first step. Finally, the changed area were validated using the traning data collected for the three years. The validation result revealed that the forest in the study area has undergone the area and type changes during 2003-2012. The detailed procedure will be presented in the meeting. References: [1] Elton, C.S. (1930). Animal Ecology and Evolution. New York, Oxford University Press. [2] Potapov, P., Hansen, M. C., Stehman, S. V., Loveland, T. R., Pittman, K. (2008). Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss, Remote Sensing of Environment, 112, 3708-3719. [3] Houghton, R. A. (2003). Why are estimates of the terrestrial carbon balance so different? Global Change Biology, 9, 500-509.
Afshin Pourmokhtarian; Charles T. Driscoll; John L. Campbell; Katharine Hayhoe
2012-01-01
Dynamic hydrochemical models are useful tools for understanding and predicting the interactive effects of climate change, atmospheric CO2, and atmospheric deposition on the hydrology and water quality of forested watersheds. We used the biogeochemical model, PnET-BGC, to evaluate the effects of potential future changes in temperature,...
NASA Astrophysics Data System (ADS)
Longo, M.; Keller, M.; Scaranello, M. A., Sr.; dos-Santos, M. N.; Xu, Y.; Huang, M.; Morton, D. C.
2017-12-01
Logging and understory fires are major drivers of tropical forest degradation, reducing carbon stocks and changing forest structure, composition, and dynamics. In contrast to deforested areas, sites that are disturbed by logging and fires retain some, albeit severely altered, forest structure and function. In this study we simulated selective logging using the Ecosystem Demography Model (ED-2) to investigate the impact of a broad range of logging techniques, harvest intensities, and recurrence cycles on the long-term dynamics of Amazon forests, including the magnitude and duration of changes in forest flammability following timber extraction. Model results were evaluated using eddy covariance towers at logged sites at the Tapajos National Forest in Brazil and data on long-term dynamics reported in the literature. ED-2 is able to reproduce both the fast (< 5yr) recovery of water, energy fluxes compared to flux tower, and the typical, field-observed, decadal time scales for biomass recovery when no additional logging occurs. Preliminary results using the original ED-2 fire model show that canopy cover loss of forests under high-intensity, conventional logging cause sufficient drying to support more intense fires. These results indicate that under intense degradation, forests may shift to novel disturbance regimes, severely reducing carbon stocks, and inducing long-term changes in forest structure and composition from recurrent fires.
Zhang, Jian; Huang, Shongming; He, Fangliang
2015-01-01
Tree mortality, growth, and recruitment are essential components of forest dynamics and resiliency, for which there is great concern as climate change progresses at high latitudes. Tree mortality has been observed to increase over the past decades in many regions, but the causes of this increase are not well understood, and we know even less about long-term changes in growth and recruitment rates. Using a dataset of long-term (1958–2009) observations on 1,680 permanent sample plots from undisturbed natural forests in western Canada, we found that tree demographic rates have changed markedly over the last five decades. We observed a widespread, significant increase in tree mortality, a significant decrease in tree growth, and a similar but weaker trend of decreasing recruitment. However, these changes varied widely across tree size, forest age, ecozones, and species. We found that competition was the primary factor causing the long-term changes in tree mortality, growth, and recruitment. Regional climate had a weaker yet still significant effect on tree mortality, but little effect on tree growth and recruitment. This finding suggests that internal community-level processes—more so than external climatic factors—are driving forest dynamics. PMID:25775576
Zhang, Jian; Huang, Shongming; He, Fangliang
2015-03-31
Tree mortality, growth, and recruitment are essential components of forest dynamics and resiliency, for which there is great concern as climate change progresses at high latitudes. Tree mortality has been observed to increase over the past decades in many regions, but the causes of this increase are not well understood, and we know even less about long-term changes in growth and recruitment rates. Using a dataset of long-term (1958-2009) observations on 1,680 permanent sample plots from undisturbed natural forests in western Canada, we found that tree demographic rates have changed markedly over the last five decades. We observed a widespread, significant increase in tree mortality, a significant decrease in tree growth, and a similar but weaker trend of decreasing recruitment. However, these changes varied widely across tree size, forest age, ecozones, and species. We found that competition was the primary factor causing the long-term changes in tree mortality, growth, and recruitment. Regional climate had a weaker yet still significant effect on tree mortality, but little effect on tree growth and recruitment. This finding suggests that internal community-level processes-more so than external climatic factors-are driving forest dynamics.
Identifying forest patterns from space to explore dynamics across the circumpolar boreal
NASA Astrophysics Data System (ADS)
Montesano, P. M.; Neigh, C. S. R.; Feng, M.; Channan, S.; Sexton, J. O.; Wagner, W.; Wooten, M.; Poulter, B.; Wang, L.
2017-12-01
A variety of forest patterns are the result of interactions between broad-scale climate and local-scale site factors and history across the northernmost portion of the circumpolar boreal. Patterns of forest extent, height, and cover help describe forest structure transitions that influence future and reflect past dynamics. Coarse spaceborne observations lack structural detail at forest transitions, which inhibits understanding of these dynamics. We highlight: (1) the use of sub-meter spaceborne stereogrammetry for deriving structure estimates in boreal forests; (2) its potential to complement other spaceborne estimates of forest structure at critical scales; and (3) the potential of these sub-meter and other Landsat-derived structure estimates for improving understanding of broad-scale boreal dynamics such as carbon flux and albedo, capturing the spatial variability of the boreal-tundra biome boundary, and assessing its potential for change.
Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil.
Santalahti, Minna; Sun, Hui; Jumpponen, Ari; Pennanen, Taina; Heinonsalo, Jussi
2016-11-01
Fungal communities are important for carbon (C) transformations in boreal forests that are one of the largest C pools in terrestrial ecosystems, warranting thus further investigation of fungal community dynamics in time and space. We investigated fungal diversity and community composition seasonally and across defined soil horizons in boreal Scots pine forest in Finland using 454 pyrosequencing. We collected a total of 120 samples from five vertical soil horizons monthly from March to October; in March, under snow. Boreal forest soil generally harbored diverse fungal communities across soil horizons. The communities shifted drastically and rapidly over time. In late winter, saprotrophs dominated the community and were replaced by ectomycorrhizal fungi during the growing season. Our studies are among the first to dissect the spatial and temporal dynamics in boreal forest ecosystems and highlights the ecological importance of vertically distinct communities and their rapid seasonal dynamics. As climate change is predicted to result in warmer and longer snow-free winter seasons, as well as increase the rooting depth of trees in boreal forest, the seasonal and vertical distribution of fungal communities may change. These changes are likely to affect the organic matter decomposition by the soil-inhabiting fungi and thus alter organic C pools. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bustamante, Mercedes M C; Roitman, Iris; Aide, T Mitchell; Alencar, Ane; Anderson, Liana O; Aragão, Luiz; Asner, Gregory P; Barlow, Jos; Berenguer, Erika; Chambers, Jeffrey; Costa, Marcos H; Fanin, Thierry; Ferreira, Laerte G; Ferreira, Joice; Keller, Michael; Magnusson, William E; Morales-Barquero, Lucia; Morton, Douglas; Ometto, Jean P H B; Palace, Michael; Peres, Carlos A; Silvério, Divino; Trumbore, Susan; Vieira, Ima C G
2016-01-01
Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas: (1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a unified strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The improvement of models and estimates of changes of forest carbon can foster process-oriented monitoring of forest dynamics, including different variables and using spatially explicit algorithms that account for regional and local differences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery pathways, and socioeconomic factors. Generating the data for these models requires affordable large-scale remote-sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots, we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate-change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest governance policies, such as Reducing Emissions from Deforestation and Forest Degradation. © 2015 John Wiley & Sons Ltd.
Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica.
Rozendaal, Danae M A; Chazdon, Robin L
2015-03-01
Second-growth tropical forests are an important global carbon sink. As current knowledge on biomass accumulation during secondary succession is heavily based on chronosequence studies, direct estimates of annual rates of biomass accumulation in monitored stands are largely unavailable. We evaluated the contributions of tree diameter increment, recruitment, and mortality to annual tree biomass change during succession for three groups of tree species: second-growth (SG) specialists, generalists, and old-growth (OG) specialists. We monitored six second-growth tropical forests that varied in stand age and two old-growth forests in northeastern Costa Rica. We monitored these over a period of 8 to 16 years. To assess rates of biomass change during secondary succession, we compared standing biomass and biomass dynamics between second-growth forest stages and old-growth forest, and evaluated the effect of stand age on standing biomass and biomass dynamics in second-growth forests. Standing tree biomass increased with stand age during succession, whereas the rate of biomass change decreased. Biomass change was largely driven by tree diameter increment and mortality, with a minor contribution from recruitment. The relative importance of these demographic drivers shifted over succession. Biomass gain due to tree diameter increment decreased with stand age, whereas biomass loss due to mortality increased. In the age range of our second-growth forests, 10-41 years, SG specialists dominated tree biomass in second-growth forests. SG specialists, and to a lesser extent generalists, also dominated stand-level biomass increase due to tree diameter increment, whereas SG specialists largely accounted for decreases in biomass due to mortality. Our results indicate that tree growth is largely driving biomass dynamics early in succession, whereas both growth and mortality are important later in succession. Biomass dynamics are largely accounted for by a few SG specialists and one generalist species, Pentaclethra macroloba. To assess the generality of our results, similar long-term studies should be compared across tropical forest landscapes.
Andrew R. Meier; Mike R. Saunders
2014-01-01
Compositional and structural changes in response to silvicultural treatments in forest stands are well documented (e.g., Saunders and Wagner 2008), but the stochastic nature of natural disturbance events often precludes direct observation of their impacts on stand dynamics. Though the current dominance of oak-hickory forest types in the Central Hardwoods Forest region...
Climate-FVS Version 2: Content, users guide, applications, and behavior
Nicholas L. Crookston
2014-01-01
Climate change in the 21st Century is projected to cause widespread changes in forest ecosystems. Climate-FVS is a modification to the Forest Vegetation Simulator designed to take climate change into account when predicting forest dynamics at decadal to century time scales. Individual tree climate viability scores measure the likelihood that the climate at a given...
Wen J. Wang; Hong S. He; Frank R. Thompson; Jacob S. Fraser; William D. Dijak
2016-01-01
Context. Forests in the northeastern United States are currently in early- and mid-successional stages recovering from historical land use. Climate change will affect forest distribution and structure and have important implications for biodiversity, carbon dynamics, and human well-being. Objective. We addressed how aboveground biomass (AGB) and...
Observed and projected C change in the Southeastern US
John Coulston; David Wear; Jim Vose
2015-01-01
Over the past century forest regrowth in Europe and North America expanded forest carbon (C) sinks and offset C emissions but future C accumulation is uncertain due to the effects of land use changes, management, disturbance, and climate change. Policy makers need insights into forest C dynamics as they anticipate emissions futures and goals. Using a completely...
Daolan Zheng; Linda S. Heath; Mark J. Ducey; James E. Smith
2011-01-01
We examined spatial patterns of changes in forest area and nonsoil carbon (C) dynamics affected by land use/cover change (LUC) and harvests in 24 northern states of the United States using an integrated methodology combining remote sensing and ground inventory data between 1992 and 2001. We used the Retrofit Change Product from the Multi-Resolution Land Characteristics...
Forest forming process and dynamic vegetation models under global change
A. Shvidenko; E. Gustafson
2009-01-01
The paper analyzes mathematical models that are used to project the dynamics of forest ecosystems on different spatial and temporal scales. Landscape disturbance and succession models (LDSMs) are of a particular interest for studying the forest forming process in Northern Eurasia. They have a solid empirical background and are able to model ecological processes under...
Forest dynamics to precipitation and temperature in the Gulf of Mexico coastal region.
Li, Tianyu; Meng, Qingmin
2017-05-01
The forest is one of the most significant components of the Gulf of Mexico (GOM) coast. It provides livelihood to inhabitant and is known to be sensitive to climatic fluctuations. This study focuses on examining the impacts of temperature and precipitation variations on coastal forest. Two different regression methods, ordinary least squares (OLS) and geographically weighted regression (GWR), were employed to reveal the relationship between meteorological variables and forest dynamics. OLS regression analysis shows that changes in precipitation and temperature, over a span of 12 months, are responsible for 56% of NDVI variation. The forest, which is not particularly affected by the average monthly precipitation in most months, is observed to be affected by cumulative seasonal and annual precipitation explicitly. Temperature and precipitation almost equally impact on NDVI changes; about 50% of the NDVI variations is explained in OLS modeling, and about 74% of the NDVI variations is explained in GWR modeling. GWR analysis indicated that both precipitation and temperature characterize the spatial heterogeneity patterns of forest dynamics.
Forest dynamics to precipitation and temperature in the Gulf of Mexico coastal region
NASA Astrophysics Data System (ADS)
Li, Tianyu; Meng, Qingmin
2017-05-01
The forest is one of the most significant components of the Gulf of Mexico (GOM) coast. It provides livelihood to inhabitant and is known to be sensitive to climatic fluctuations. This study focuses on examining the impacts of temperature and precipitation variations on coastal forest. Two different regression methods, ordinary least squares (OLS) and geographically weighted regression (GWR), were employed to reveal the relationship between meteorological variables and forest dynamics. OLS regression analysis shows that changes in precipitation and temperature, over a span of 12 months, are responsible for 56% of NDVI variation. The forest, which is not particularly affected by the average monthly precipitation in most months, is observed to be affected by cumulative seasonal and annual precipitation explicitly. Temperature and precipitation almost equally impact on NDVI changes; about 50% of the NDVI variations is explained in OLS modeling, and about 74% of the NDVI variations is explained in GWR modeling. GWR analysis indicated that both precipitation and temperature characterize the spatial heterogeneity patterns of forest dynamics.
Almado, Roosevelt P; Miazaki, Angela S; Diniz, Écio S; Moreira, Luis C B; Meira-Neto, João A.A.
2016-01-01
Abstract Background To understand the impacts of global changes on future community compositions, knowledge of community dynamics is of crucial importance. To improve our knowledge of community composition, biomass stock and maintenance of gallery forests in the Brazilian Cerrado, we provide two datasets from the 0.5 ha Corrego Fazendinha Gallery Forest Dynamics Plot and the Corrego Fundo Gallery Forest Dynamics Plot situated in the Bom Despacho region, Minas Gerais, Southeastern Brazil. New information We report diameter at breast height, basal area and height measurements of 3417 trees and treelets identified during three censuses in both areas. PMID:27660529
Changes of forest cover and disturbance regimes in the mountain forests of the Alps☆
Bebi, P.; Seidl, R.; Motta, R.; Fuhr, M.; Firm, D.; Krumm, F.; Conedera, M.; Ginzler, C.; Wohlgemuth, T.; Kulakowski, D.
2017-01-01
Natural disturbances, such as avalanches, snow breakage, insect outbreaks, windthrow or fires shape mountain forests globally. However, in many regions over the past centuries human activities have strongly influenced forest dynamics, especially following natural disturbances, thus limiting our understanding of natural ecological processes, particularly in densely-settled regions. In this contribution we briefly review the current understanding of changes in forest cover, forest structure, and disturbance regimes in the mountain forests across the European Alps over the past millennia. We also quantify changes in forest cover across the entire Alps based on inventory data over the past century. Finally, using the Swiss Alps as an example, we analyze in-depth changes in forest cover and forest structure and their effect on patterns of fire and wind disturbances, based on digital historic maps from 1880, modern forest cover maps, inventory data on current forest structure, topographical data, and spatially explicit data on disturbances. This multifaceted approach presents a long-term and detailed picture of the dynamics of mountain forest ecosystems in the Alps. During pre-industrial times, natural disturbances were reduced by fire suppression and land-use, which included extraction of large amounts of biomass that decreased total forest cover. More recently, forest cover has increased again across the entire Alps (on average +4% per decade over the past 25–115 years). Live tree volume (+10% per decade) and dead tree volume (mean +59% per decade) have increased over the last 15–40 years in all regions for which data were available. In the Swiss Alps secondary forests that established after 1880 constitute approximately 43% of the forest cover. Compared to forests established previously, post-1880 forests are situated primarily on steep slopes (>30°), have lower biomass, a more aggregated forest structure (primarily stem-exclusion stage), and have been more strongly affected by fires, but less affected by wind disturbance in the 20th century. More broadly, an increase in growing stock and expanding forest areas since the mid-19th century have - along with climatic changes - contributed to an increasing frequency and size of disturbances in the Alps. Although many areas remain intensively managed, the extent, structure, and dynamics of the forests of the Alps reflect natural drivers more strongly today than at any time in the past millennium. PMID:28860675
Changes of forest cover and disturbance regimes in the mountain forests of the Alps.
Bebi, P; Seidl, R; Motta, R; Fuhr, M; Firm, D; Krumm, F; Conedera, M; Ginzler, C; Wohlgemuth, T; Kulakowski, D
2017-03-15
Natural disturbances, such as avalanches, snow breakage, insect outbreaks, windthrow or fires shape mountain forests globally. However, in many regions over the past centuries human activities have strongly influenced forest dynamics, especially following natural disturbances, thus limiting our understanding of natural ecological processes, particularly in densely-settled regions. In this contribution we briefly review the current understanding of changes in forest cover, forest structure, and disturbance regimes in the mountain forests across the European Alps over the past millennia. We also quantify changes in forest cover across the entire Alps based on inventory data over the past century. Finally, using the Swiss Alps as an example, we analyze in-depth changes in forest cover and forest structure and their effect on patterns of fire and wind disturbances, based on digital historic maps from 1880, modern forest cover maps, inventory data on current forest structure, topographical data, and spatially explicit data on disturbances. This multifaceted approach presents a long-term and detailed picture of the dynamics of mountain forest ecosystems in the Alps. During pre-industrial times, natural disturbances were reduced by fire suppression and land-use, which included extraction of large amounts of biomass that decreased total forest cover. More recently, forest cover has increased again across the entire Alps (on average +4% per decade over the past 25-115 years). Live tree volume (+10% per decade) and dead tree volume (mean +59% per decade) have increased over the last 15-40 years in all regions for which data were available. In the Swiss Alps secondary forests that established after 1880 constitute approximately 43% of the forest cover. Compared to forests established previously, post-1880 forests are situated primarily on steep slopes (>30°), have lower biomass, a more aggregated forest structure (primarily stem-exclusion stage), and have been more strongly affected by fires, but less affected by wind disturbance in the 20th century. More broadly, an increase in growing stock and expanding forest areas since the mid-19th century have - along with climatic changes - contributed to an increasing frequency and size of disturbances in the Alps. Although many areas remain intensively managed, the extent, structure, and dynamics of the forests of the Alps reflect natural drivers more strongly today than at any time in the past millennium.
Two decades of stability and change in old-growth forest at Mount Rainier National Park.
Steven A. Acker; Jerry F. Franklin; Sarah E. Greene; Ted B. Thomas; Robert Van Pelt; Kenneth J. Bible
2006-01-01
We examined how composition and structure of old-growth and mature forests at Mount Rainier National Park changed between the mid-1970s and mid-1990s. We assessed whether the patterns of forest dynamics observed in lower elevation old-growth forests in the Pacific Northwest held true for the higher-elevation forests of the Park. We used measurements of tree recruitment...
Regional dynamics of forest canopy change and underlying causal processes in the contiguous US
Karen Schleeweis; Samuel N. Goward; Chengquan Huang; Jeffrey G. Masek; Gretchen Moisen; Robert E. Kennedy; Nancy E. Thomas
2013-01-01
The history of forest change processes is written into forest age and distribution and affects earth systems at many scales. No one data set has been able to capture the full forest disturbance and land use record through time, so in this study, we combined multiple lines of evidence to examine trends, for six US regions, in forest area affected by harvest, fire, wind...
Rebecca S.H. Kennedy; Tomas A. Spies
2005-01-01
Changes to minor patch types in forested landscapes may have large consequences for forest biodiversity. The effects of forest management and environment on these secondary patch types are often poorly understood. For example, do early-to-mid successional minor patch types become more expansive as late successional forest types are fragmented or do they also become...
CTFS/ForestGEO: A global network to monitor forest interactions with a changing climate
NASA Astrophysics Data System (ADS)
Anderson-Teixeira, K. J.; Muller-Landau, H.; McMahon, S.; Davies, S. J.
2013-12-01
Forests are an influential component of the global carbon cycle and strongly influence Earth's climate. Climate change is altering the dynamics of forests globally, which may result in significant climate feedbacks. Forest responses to climate change entail both short-term ecophysiological responses and longer-term directional shifts in community composition. These short- and long-term responses of forest communities to climate change may be better understood through long-term monitoring of large forest plots globally using standardized methodology. Here, we describe a global network of forest research plots (CTFS/ForestGEO) of utility for understanding forest responses to climate change and consequent feedbacks to the climate system. CTFS/ForestGEO is an international network consisting of 51 sites ranging in size from 2-150 ha (median size: 25 ha) and spanning from 25°S to 52°N latitude. At each site, every individual > 1cm DBH is mapped and identified, and recruitment, growth, and mortality are monitored every 5 years. Additional measurements include aboveground productivity, carbon stocks, soil nutrients, plant functional traits, arthropod and vertebrates monitoring, DNA barcoding, airborne and ground-based LiDAR, micrometeorology, and weather monitoring. Data from this network are useful for understanding how forest ecosystem structure and function respond to spatial and temporal variation in abiotic drivers, parameterizing and evaluating ecosystem and earth system models, aligning airborne and ground-based measurements, and identifying directional changes in forest productivity and composition. For instance, CTFS/ForestGEO data have revealed that solar radiation and night-time temperature are important drivers of aboveground productivity in moist tropical forests; that tropical forests are mixed in terms of productivity and biomass trends over the past couple decades; and that the composition of Panamanian forests has shifted towards more drought-tolerant species. Ongoing monitoring will be vital to understanding global forest dynamics in an era of climate change.
Alec M. Kretchun; Robert M. Scheller; Melissa S. Lucash; Kenneth L. Clark; John Hom; Steve Van Tuyl; Michael L. Fine
2014-01-01
Disturbance regimes within temperate forests can significantly impact carbon cycling. Additionally, projected climate change in combination with multiple, interacting disturbance effects may disrupt the capacity of forests to act as carbon sinks at large spatial and temporal scales. We used a spatially explicit forest succession and disturbance model, LANDIS-II, to...
Forest dynamics in Oregon landscapes: Evaluation and application of an individual-based model
Busing, R.T.; Solomon, A.M.; McKane, R.B.; Burdick, C.A.
2007-01-01
The FORCLIM model of forest dynamics was tested against field survey data for its ability to simulate basal area and composition of old forests across broad climatic gradients in western Oregon, USA. The model was also tested for its ability to capture successional trends in ecoregions of the west Cascade Range. It was then applied to simulate present and future (1990-2050) forest landscape dynamics of a watershed in the west Cascades. Various regimes of climate change and harvesting in the watershed were considered in the landscape application. The model was able to capture much of the variation in forest basal area and composition in western Oregon even though temperature and precipitation were the only inputs that were varied among simulated sites. The measured decline in total basal area from tall coastal forests eastward to interior steppe was matched by simulations. Changes in simulated forest dominants also approximated those in the actual data. Simulated abundances of a few minor species did not match actual abundances, however. Subsequent projections of climate change and harvest effects in a west Cascades landscape indicated no change in forest dominance as of 2050. Yet, climate-driven shifts in the distributions of some species were projected. The simulation of both stand-replacing and partial-stand disturbances across western Oregon improved agreement between simulated and actual data. Simulations with fire as an agent of partial disturbance suggested that frequent fires of low severity can alter forest composition and structure as much or more than severe fires at historic frequencies. ?? 2007 by the Ecological Society of America.
Exploring tropical forest vegetation dynamics using the FATES model
NASA Astrophysics Data System (ADS)
Koven, C. D.; Fisher, R.; Knox, R. G.; Chambers, J.; Kueppers, L. M.; Christoffersen, B. O.; Davies, S. J.; Dietze, M.; Holm, J.; Massoud, E. C.; Muller-Landau, H. C.; Powell, T.; Serbin, S.; Shuman, J. K.; Walker, A. P.; Wright, S. J.; Xu, C.
2017-12-01
Tropical forest vegetation dynamics represent a critical climate feedback in the Earth system, which is poorly represented in current global modeling approaches. We discuss recent progress on exploring these dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a demographic vegetation model for the CESM and ACME ESMs. We will discuss benchmarks of FATES predictions for forest structure against inventory sites, sensitivity of FATES predictions of size and age structure to model parameter uncertainty, and experiments using the FATES model to explore PFT competitive dynamics and the dynamics of size and age distributions in responses to changing climate and CO2.
Multi-Sensor Remote Sensing of Forest Dynamics in Central Siberia
NASA Technical Reports Server (NTRS)
Ransom, K. J.; Sun, G.; Kharuk, V. I.; Howl, J.
2011-01-01
The forested regions of Siberia, Russia are vast and contain about a quarter of the world's forests that have not experienced harvesting. However, many Siberian forests are facing twin pressures of rapidly changing climate and increasing timber harvest activity. Monitoring the dynamics and mapping the structural parameters of the forest is important for understanding the causes and consequences of changes observed in these areas. Because of the inaccessibility and large extent of this forest, remote sensing data can play an important role for observing forest state and change. In Central Siberia, multi-sensor remote sensing data have been used to monitor forest disturbances and to map above-ground biomass from the Sayan Mountains in the south to the taiga-tundra boundaries in the north. Radar images from the Shuttle Imaging Radar-C (SIR-C)/XSAR mission were used for forest biomass estimation in the Sayan Mountains. Radar images from the Japanese Earth Resources Satellite-1 (JERS-1), European Remote Sensing Satellite-1 (ERS-1) and Canada's RADARSAT-1, and data from ETM+ on-board Landsat-7 were used to characterize forest disturbances from logging, fire, and insect damage in Boguchany and Priangare areas.
Modeling forest mortality caused by drought stress: implications for climate change
Eric J Gustafson; Brian R. Sturtevant
2013-01-01
Climate change is expected to affect forest landscape dynamics in many ways, but it is possible that the most important direct impact of climate change will be drought stress. We combined data from weather stations and forest inventory plots (FIA) across the upper Great Lakes region (USA) to study the relationship between measures of drought stress and mortality for...
R. S. Ahl; S. W. Woods
2006-01-01
Changes in the extent, composition, and configuration of forest cover over time due to succession or disturbance processes can result in measurable changes in streamflow and water yield. Removal of forest cover generally increases streamflow due to reduced canopy interception and evapotranspiration. In watersheds where snow is the dominant source of water, yield...
Changes in fine root dynamics and distribution along a chronosequence of upland oak-hickory forests
Travis W. Idol; Phillip E. Pope; Felix, Jr. Ponder
1997-01-01
Central Hardwood forests regenerate rapidly following a major disturbance like a clear-cut. The subsequent aboveground growth and development of the resulting stands have been well-documented for these forests. However, the belowground components, specifically the dynamics of fine roots, are not well understood. Fine roots are the main vectors through which plants...
NASA Astrophysics Data System (ADS)
Joyce, L. A.; Running, S. W.; Breshears, D. D.; Dale, V.; Malmsheimer, R. W.; Sampson, N.; Sohngen, B.; Woodall, C. W.
2012-12-01
Increasingly the value of US forest carbon dynamics and carbon sequestration is being recognized in discussions of adaptation and mitigation to climate change. Past exploitation of forestlands in the United States for timber, fuelwood, and conversion to agriculture resulted in large swings in forestland area and terrestrial carbon dynamics. The National Climate Assessment explored the implications of current and future stressors, including climate change, to the future of forest carbon dynamics in the United States. While U.S forests and associated harvested wood products sequestered roughly 13 percent of all carbon dioxide emitted in the United States in 2010, the capacity of forests to maintain this amount of carbon sequestration will be affected by the effects of climate change on forest disturbances, tree growth and mortality, changes in species composition, and to a greater extent, the economic and societal influences on forest management and forestland use. Carbon mitigation through forest management includes three strategies: 1) land management to increase forest area (afforestation) and/or avoid deforestation; 2) carbon management in existing forests; and 3) use of wood in place of materials that require more carbon emissions to produce, in place of fossil fuels to produce energy or in wood products for carbon storage. A significant financial incentive facing many private forest owners is the value of their forest lands for conversion to urban or developed uses. In addition, consequences of large scale die-off and wildfire disturbance events from climate change pose major challenges to forestland area and forest management with potential impacts occurring up to regional scales for timber, flooding and erosion risks, other changes in water budgets, and biogeochemical changes including carbon storage. Options for carbon management on existing forests include practices that increase forest growth such as fertilization, irrigation, switch to fast-growing planting stock and shorter rotations, and weed, disease, and insect control, and increasing the interval between harvests or decreasing harvest intensity. Economic drivers will affect future carbon cycle of forests such as shifts in forest age class structure in response to markets, land-use changes such as urbanization, and forest type changes. Future changes in forestland objectives include the potential for bioenergy based on forestland resources, which is as large as 504 million acres of timberland and 91 million acres of other forest land out of the 751 million acres of U.S. forestland. Implications of forest product use for bioenergy depend on the context of specific locations such as feedstock type and prior management, land conditions, transport and storage logistics, conversion processes used to produce energy, distribution and use. Markets for energy from biomass appear to be ready to grow in response to energy pricing, policy and demand, although recent increases in the supply of natural gas have reduced urgency for new biomass projects. Beyond use in the forest industry and some residences, biopower is not a large-scale enterprise in the United States. Societal choices about forest policy will also affect the carbon cycles on public and private forestland.
Modeling of larch forest dynamics under a changing climate in eastern Siberia
NASA Astrophysics Data System (ADS)
Nakai, T.; Kumagai, T.; Iijima, Y.; Ohta, T.; Kotani, A.; Maximov, T. C.; Hiyama, T.
2017-12-01
According to the projection by an earth system model under RCP8.5 scenario, boreal forest in eastern Siberia (near Yakutsk) is predicted to experience significant changes in climate, in which the mean annual air temperature is projected to be positive and the annual precipitation will be doubled by the end of 21st century. Since the forest in this region is underlain by continuous permafrost, both increasing temperature and precipitation can affect the dynamics of forest through the soil water processes. To investigate such effects, we adopted a newly developed terrestrial ecosystem dynamics model named S-TEDy (SEIB-DGVM-originated Terrestrial Ecosystem Dynamics model), which mechanistically simulates "the way of life" of each individual tree and resulting tree mortality under the future climate conditions. This model was first developed for the simulation of the dynamics of a tropical rainforest in the Borneo Island, and successfully reproduced higher mortality of large trees due to a prolonged drought induced by ENSO event of 1997-1998. To apply this model to a larch forest in eastern Siberia, we are developing a soil submodel to consider the effect of thawing-freezing processes. We will present a simulation results using the future climate projection.
Hansen, Matt; Stehman, Steve; Loveland, Tom; Vogelmann, Jim; Cochrane, Mark
2009-01-01
Quantifying rates of forest-cover change is important for improved carbon accounting and climate change modeling, management of forestry and agricultural resources, and biodiversity monitoring. A practical solution to examining trends in forest cover change at global scale is to employ remotely sensed data. Satellite-based monitoring of forest cover can be implemented consistently across large regions at annual and inter-annual intervals. This research extends previous research on global forest-cover dynamics and land-cover change estimation to establish a robust, operational forest monitoring and assessment system. The approach integrates both MODIS and Landsat data to provide timely biome-scale forest change estimation. This is achieved by using annual MODIS change indicator maps to stratify biomes into low, medium and high change categories. Landsat image pairs can then be sampled within these strata and analyzed for estimating area of forest cleared.
McGuire, A. David; Chapin, F. Stuart; Ruess, Roger W.
2016-01-01
Long-term research by the Bonanza Creek (BNZ) Long Term Ecological Research (LTER) program has documented natural patterns of interannual and successional variability of the boreal forest in interior Alaska against which we can detect changes in system behavior. Between 2004 and 2010 the BNZ LTER program focused on understanding the dynamics of change through studying the resilience and vulnerability of Alaska's boreal forest in response to climate warming. The overarching question in this endeavor has been “How are boreal ecosystems responding, both gradually and abruptly, to climate warming, and what new landscape patterns are emerging?”
Yude Pan; Richard Birdsey; John Hom; Kevin McCullough
2007-01-01
We used our GIS variant of the PnET-CN model to investigate changes of forest carbon stocks and fluxes in Mid-Atlantic temperate forests over the last century (1900-2000). Forests in this region are affected by multiple environmental changes including climate, atmospheric CO2 concentration, N deposition and tropospheric ozone, and extensive land disturbances. Our...
Mercedes M. C. Bustamante; Iris Roitman; T. Mitchell Aide; Ane Alencar; Liana O. Anderson; Luiz Aragao; Gregory P. Asner; Jos Barlow; Erika Berenguer; Jeffrey Chambers; Marcos H. Costa; Thierry Fanin; Laerte G. Ferreira; Joice Ferreira; Michael Keller; William E. Magnusson; Lucia Morales-Barquero; Douglas Morton; Jean P. H. B. Ometto; Michael Palace; Carlos A. Peres; Divino Silverio; Susan Trumbore; Ima C. G. Vieira
2015-01-01
Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks...
John F. Dwyer; David J. Nowak
2003-01-01
The significance of the urban forest resource and the powerful forces for change in the urban environment make sustainability a critical issue in urban forest management. The diversity, connectedness, and dynamics of the urban forest establish the context for management that will determine the sustainability of forest structure, health, functions, and benefits. A...
Improving the precision of dynamic forest parameter estimates using Landsat
Evan B. Brooks; John W. Coulston; Randolph H. Wynne; Valerie A. Thomas
2016-01-01
The use of satellite-derived classification maps to improve post-stratified forest parameter estimates is wellestablished.When reducing the variance of post-stratification estimates for forest change parameters such as forestgrowth, it is logical to use a change-related strata map. At the stand level, a time series of Landsat images is
Climate drivers of bark beetle outbreak dynamics in Norway spruce forests
Lorenzo Marini; Bjorn Okland; Anna Maria Jonsson; Barbara Bentz; Allan Carroll; Beat Forster; Jean-Claude Gregoire; Rainer Hurling; Louis Michel Nageleisen; Sigrid Netherer; Hans Peter Ravn; Aaron Weed; Martin Schroeder
2017-01-01
Bark beetles are among the most devastating biotic agents affecting forests globally and several species are expected to be favored by climate change. Given the potential interactions of insect outbreaks with other biotic and abiotic disturbances, and the potentially strong impact of changing disturbance regimes on forest resources, investigating climatic drivers of...
Forest carbon dynamics associated with growth and disturbances in Oklahoma and Texas, 1992-2006
Daolan Zheng; Linda S. Heath; Mark J. Ducey; James E. Smith
2013-01-01
Quantifying forest carbon changes associated with growth and major disturbances is important for management of greenhouse gas emissions related to forests. Regional-level approaches with improved local growth data may refine estimates obtained using coarser resolution information. This study integrates remote-sensing-derived land cover change products, harvest data,...
NASA Astrophysics Data System (ADS)
Trettin, C.; Dai, Z.; Amatya, D. M.
2014-12-01
Long-term climatic and hydrologic observations on the Santee Experimental Forest in the lower coastal plain of South Carolina were used to estimate long-term changes in hydrology and forest carbon dynamics for a pair of first-order watersheds. Over 70 years of climate data indicated that warming in this forest area in the last decades was faster than the global mean; 35+ years of hydrologic records showed that forest ecosystem succession three years following Hurricane Hugo caused a substantial change in the ratio of runoff to precipitation. The change in this relationship between the paired watersheds was attributed to altered evapotranspiration processes caused by greater abundance of pine in the treatment watershed and regeneration of the mixed hardwood-pine forest on the reference watershed. The long-term records and anomalous observations are highly valuable for reliable calibration and validation of hydrological and biogeochemical models capturing the effects of climate variability. We applied the hydrological model MIKESHE that showed that runoff and water table level are sensitive to global warming, and that the sustained warming trends can be expected to decrease stream discharge and lower the mean water table depth. The spatially-explicit biogeochemical model Forest-DNDC, validated using biomass measurements from the watersheds, was used to assess carbon dynamics in response to high resolution hydrologic observation data and simulation results. The simulations showed that the long-term spatiotemporal carbon dynamics, including biomass and fluxes of soil carbon dioxide and methane were highly regulated by disturbance regimes, climatic conditions and water table depth. The utility of linked-modeling framework demonstrated here to assess biogeochemical responses at the watershed scale suggests applications for assessing the consequences of climate change within an urbanizing forested landscape. The approach may also be applicable for validating large-scale models.
[Effects of climate change on forest soil organic carbon storage: a review].
Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen
2010-07-01
Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.
Effects of climate change and shifts in forest composition on forest net primary production
Jyh-Min Chiang; Louts [Louis] R. Iverson; Anantha Prasad; Kim J. Brown
2008-01-01
Forests are dynamic in both structure and species composition, and these dynamics are strongly influenced by climate. However, the net effects of future tree species composition on net primary production (NPP) are not well understood. The objective of this work was to model the potential range shifts of tree species (DISTRIB Model) and predict their impacts on NPP (...
NASA Astrophysics Data System (ADS)
Schwörer, C.; Fisher, D. M.; Gavin, D. G.; Temperli, C.; Bartlein, P. J.
2015-12-01
Mountain forest composition and distribution is strongly affected by temperature and is expected to shift to higher elevations with climate change. However, warmer winters will also lead to an upward shift of the snowline and a decrease in snowpack at lower and intermediate elevations. In the mountain ranges of Western North America, snowpack plays an important role in providing additional moisture during the dry summer months. It is therefore unclear if the projected climate change will lead to a rise of subalpine forest due to a longer growing season or a contraction due to drought stress. Since forest succession processes take place over decades and centuries we use LandClim, a dynamic vegetation model, to assess the impact of climate change on mountain forests on the Olympic Peninsula (Washington, USA). As a reality check we first simulate vegetation dynamics since the last Ice Age and compare model output with paleobotanical data from five natural archives that span the topographic and climatic gradients on the Peninsula. LandClim produces realistic present-day species compositions with respect to elevation and precipitation gradients. Moreover, the simulations of forest dynamics for the last 16,000 years generally agree with the pollen and macrofossil data. We then simulated mountain forests under future climate projections. As a result, our model indicates drastic changes in species composition with a replacement of mountain hemlock (Tsuga mertensiana) by more drought-resistant species such as subalpine fir (Abies lasiocarpa). On the drier, eastern side of the Peninsula, the model even suggests a lowering of timberline due to insufficient moisture availability in shallow alpine soils. Our results have important implications for ecosystem managers and stress the urgency of climate change mitigation.
Colossal carbon! Disturbance and biomass dynamics in Alaska's national forests
John Kirkland; Tara Barrett
2016-01-01
The Chugach and Tongass National Forests are changing, possibly in response to global warming. Forested areas within Alaska's temperate rain forests are creeping into areas that were previously too cold or too wet. These forests are also becoming denser. As biomass increases, the amount of carbon stored in the forest also increases. Tara Barrett, a...
Nyquist, B; Tyson, R; Larsen, K
2007-05-01
In this paper, we present a model for source-sink population dynamics where the locations of source and sink habitats change over time. We do this in the context of the population dynamics of the North American red squirrel, Tamiasciurus hudsonicus, within a forest environment subject to harvesting and regrowth. Harvested patches of forest are initially sinks, then eventually become source habitat again as the forest regrows. At the same time, each harvested patch is gradually recolonized by squirrels from other forest patches. We are interested in the interaction of forest harvesting dynamics with squirrel population dynamics. This depends on the harvesting schedule, and on the choices squirrels make when deciding whether to settle in a mature forest patch or in a recently harvested patch. We find that the time it takes for a second-growth forest patch to be recolonized at the mature forest level is longer than the time required for the habitat quality to be restored to the mature forest level. We also notice that recolonization pressure decreases squirrel populations in neighbouring patches. The connectivity between forest patches and the cutting schedule used also affect the time course of recolonization and steady-state population levels.
Anthropogenic Land-use Change and the Dynamics of Amazon Forest Biomass
NASA Technical Reports Server (NTRS)
Laurance, William F.
2004-01-01
This project was focused on assessing the effects of prevailing land uses, such as habitat fragmentation, selective logging, and fire, on biomass and carbon storage in Amazonian forests, and on the dynamics of carbon sequestration in regenerating forests. Ancillary goals included developing GIs models to help predict the future condition of Amazonian forests, and assessing the effects of anthropogenic climate change and ENS0 droughts on intact and fragmented forests. Ground-based studies using networks of permanent plots were linked with remote-sensing data (including Landsat TM and AVHRR) at regional scales, and higher-resolution techniques (IKONOS imagery, videography, LIDAR, aerial photographs) at landscape and local scales. The project s specific goals were quite eclectic and included: Determining the effects of habitat fragmentation on forest dynamics, floristic composition, and the various components of above- and below-ground biomass. Assessing historical and physical factors that affect trajectories of forest regeneration and carbon sequestration on abandoned lands. Extrapolating results from local studies of biomass dynamics in fragmented and regenerating forests to landscape and regional scales in Amazonia, using remote sensing and GIS. Testing the hypothesis that intact Amazonian forests are functioning as a significant carbon sink. Examining destructive synergisms between forest fragmentation and fire. Assessing the short-term impacts of selective logging on aboveground biomass. Developing GIS models that integrate current spatial data on forest cover, deforestation, logging, mining, highway and roads, navigable rivers, vulnerability to wild fires, protected areas, and existing and planned infrastructure projects, in an effort to predict the future condition of Brazilian Amazonian forests over the next 20-25 years. Devising predictive spatial models to assess the influence of varied biophysical and anthropogenic predictors on Amazonian deforestation.
Kulakowski, Dominik; Seidl, Rupert; Holeksa, Jan; Kuuluvainen, Timo; Nagel, Thomas A.; Panayotov, Momchil; Svoboda, Miroslav; Thorn, Simon; Vacchiano, Giorgio; Whitlock, Cathy; Wohlgemuth, Thomas; Bebi, Peter
2017-01-01
Mountain forests are among the most important ecosystems in Europe as they support numerous ecological, hydrological, climatic, social, and economic functions. They are unique relatively natural ecosystems consisting of long-lived species in an otherwise densely populated human landscape. Despite this, centuries of intensive forest management in many of these forests have eclipsed evidence of natural processes, especially the role of disturbances in long-term forest dynamics. Recent trends of land abandonment and establishment of protected forests have coincided with a growing interest in managing forests in more natural states. At the same time, the importance of past disturbances highlighted in an emerging body of literature, and recent increasing disturbances due to climate change are challenging long-held views of dynamics in these ecosystems. Here, we synthesize aspects of this Special Issue on the ecology of mountain forest ecosystems in Europe in the context of broader discussions in the field, to present a new perspective on these ecosystems and their natural disturbance regimes. Most mountain forests in Europe, for which long-term data are available, show a strong and long-term effect of not only human land use but also of natural disturbances that vary by orders of magnitude in size and frequency. Although these disturbances may kill many trees, the forests themselves have not been threatened. The relative importance of natural disturbances, land use, and climate change for ecosystem dynamics varies across space and time. Across the continent, changing climate and land use are altering forest cover, forest structure, tree demography, and natural disturbances, including fires, insect outbreaks, avalanches, and wind disturbances. Projected continued increases in forest area and biomass along with continued warming are likely to further promote forest disturbances. Episodic disturbances may foster ecosystem adaptation to the effects of ongoing and future climatic change. Increasing disturbances, along with trends of less intense land use, will promote further increases in coarse woody debris, with cascading positive effects on biodiversity, edaphic conditions, biogeochemical cycles, and increased heterogeneity across a range of spatial scales. Together, this may translate to disturbance-mediated resilience of forest landscapes and increased biodiversity, as long as climate and disturbance regimes remain within the tolerance of relevant species. Understanding ecological variability, even imperfectly, is integral to anticipating vulnerabilities and promoting ecological resilience, especially under growing uncertainty. Allowing some forests to be shaped by natural processes may be congruent with multiple goals of forest management, even in densely settled and developed countries. PMID:28860677
Kulakowski, Dominik; Seidl, Rupert; Holeksa, Jan; Kuuluvainen, Timo; Nagel, Thomas A; Panayotov, Momchil; Svoboda, Miroslav; Thorn, Simon; Vacchiano, Giorgio; Whitlock, Cathy; Wohlgemuth, Thomas; Bebi, Peter
2017-03-15
Mountain forests are among the most important ecosystems in Europe as they support numerous ecological, hydrological, climatic, social, and economic functions. They are unique relatively natural ecosystems consisting of long-lived species in an otherwise densely populated human landscape. Despite this, centuries of intensive forest management in many of these forests have eclipsed evidence of natural processes, especially the role of disturbances in long-term forest dynamics. Recent trends of land abandonment and establishment of protected forests have coincided with a growing interest in managing forests in more natural states. At the same time, the importance of past disturbances highlighted in an emerging body of literature, and recent increasing disturbances due to climate change are challenging long-held views of dynamics in these ecosystems. Here, we synthesize aspects of this Special Issue on the ecology of mountain forest ecosystems in Europe in the context of broader discussions in the field, to present a new perspective on these ecosystems and their natural disturbance regimes. Most mountain forests in Europe, for which long-term data are available, show a strong and long-term effect of not only human land use but also of natural disturbances that vary by orders of magnitude in size and frequency. Although these disturbances may kill many trees, the forests themselves have not been threatened. The relative importance of natural disturbances, land use, and climate change for ecosystem dynamics varies across space and time. Across the continent, changing climate and land use are altering forest cover, forest structure, tree demography, and natural disturbances, including fires, insect outbreaks, avalanches, and wind disturbances. Projected continued increases in forest area and biomass along with continued warming are likely to further promote forest disturbances. Episodic disturbances may foster ecosystem adaptation to the effects of ongoing and future climatic change. Increasing disturbances, along with trends of less intense land use, will promote further increases in coarse woody debris, with cascading positive effects on biodiversity, edaphic conditions, biogeochemical cycles, and increased heterogeneity across a range of spatial scales. Together, this may translate to disturbance-mediated resilience of forest landscapes and increased biodiversity, as long as climate and disturbance regimes remain within the tolerance of relevant species. Understanding ecological variability, even imperfectly, is integral to anticipating vulnerabilities and promoting ecological resilience, especially under growing uncertainty. Allowing some forests to be shaped by natural processes may be congruent with multiple goals of forest management, even in densely settled and developed countries.
Liu, J.; Liu, S.; Loveland, Thomas R.; Tieszen, L.L.
2008-01-01
Land cover change is one of the key driving forces for ecosystem carbon (C) dynamics. We present an approach for using sequential remotely sensed land cover observations and a biogeochemical model to estimate contemporary and future ecosystem carbon trends. We applied the General Ensemble Biogeochemical Modelling System (GEMS) for the Laurentian Plains and Hills ecoregion in the northeastern United States for the period of 1975-2025. The land cover changes, especially forest stand-replacing events, were detected on 30 randomly located 10-km by 10-km sample blocks, and were assimilated by GEMS for biogeochemical simulations. In GEMS, each unique combination of major controlling variables (including land cover change history) forms a geo-referenced simulation unit. For a forest simulation unit, a Monte Carlo process is used to determine forest type, forest age, forest biomass, and soil C, based on the Forest Inventory and Analysis (FIA) data and the U.S. General Soil Map (STATSGO) data. Ensemble simulations are performed for each simulation unit to incorporate input data uncertainty. Results show that on average forests of the Laurentian Plains and Hills ecoregion have been sequestrating 4.2 Tg C (1 teragram = 1012 gram) per year, including 1.9 Tg C removed from the ecosystem as the consequences of land cover change. ?? 2008 Elsevier B.V.
Modeling forest dynamics along climate gradients in Bolivia
NASA Astrophysics Data System (ADS)
Seiler, C.; Hutjes, R. W. A.; Kruijt, B.; Quispe, J.; Añez, S.; Arora, V. K.; Melton, J. R.; Hickler, T.; Kabat, P.
2014-05-01
Dynamic vegetation models have been used to assess the resilience of tropical forests to climate change, but the global application of these modeling experiments often misrepresents carbon dynamics at a regional level, limiting the validity of future projections. Here a dynamic vegetation model (Lund Potsdam Jena General Ecosystem Simulator) was adapted to simulate present-day potential vegetation as a baseline for climate change impact assessments in the evergreen and deciduous forests of Bolivia. Results were compared to biomass measurements (819 plots) and remote sensing data. Using regional parameter values for allometric relations, specific leaf area, wood density, and disturbance interval, a realistic transition from the evergreen Amazon to the deciduous dry forest was simulated. This transition coincided with threshold values for precipitation (1400 mm yr-1) and water deficit (i.e., potential evapotranspiration minus precipitation) (-830 mm yr-1), beyond which leaf abscission became a competitive advantage. Significant correlations were found between modeled and observed values of seasonal leaf abscission (R2 = 0.6, p <0.001) and vegetation carbon (R2 = 0.31, p <0.01). Modeled Gross Primary Productivity (GPP) and remotely sensed normalized difference vegetation index showed that dry forests were more sensitive to rainfall anomalies than wet forests. GPP was positively correlated to the El Niño-Southern Oscillation index in the Amazon and negatively correlated to consecutive dry days. Decreasing rainfall trends were simulated to reduce GPP in the Amazon. The current model setup provides a baseline for assessing the potential impacts of climate change in the transition zone from wet to dry tropical forests in Bolivia.
NASA Astrophysics Data System (ADS)
Nolan, R. H.; Lane, P. N.; Mitchell, P. J.; Bradstock, R. A.
2011-12-01
Fire induced changes to the vegetation dynamics in temperate forests have been demonstrated to affect evapotranspiration (Et) rates through increases in plant size and density and stand-level transpiration and interception. In many cases these transient changes in forest structure result in substantial declines in stream flow for protracted periods after the disturbance. However to date research has focused on the wetter 'ash' forests of south-eastern Australia which solely regenerate via seedlings, it is unknown what changes in Et may occur in those forests which re-sprout post-fire. We hypothesize that Et fluxes track post-fire changes in sapwood area and leaf area index (L) in re-sprouting temperate forests, increasing as the forest regenerates. Following the 2009 Black Saturday wildfires in Victoria, we monitored Et rates for over a year in both damp and dry re-sprouting forest, incorporating a range of fire severity classes. Components of Et including overstorey transpiration, rainfall interception loss and forest floor Et were measured in conjunction with changes in L, sapwood area and leaf physiology. The monitoring period began one year post-fire with a typical hot, dry summer, at which stage Et rates in burnt forest were similar or less than those in unburnt forest. During the following summer, which was one of the wettest on record, Et increased across all monitoring plots but particularly so in the burnt forest where seedling regeneration resulted in an understorey L nearly twice that of unburnt forest. Forest floor Et was up to 46% higher in burnt forest, and rainfall interception values accounted for approximately 25% of rainfall compared to 15% in unburnt forest. The greatest increase in canopy transpiration rates over this period occurred in those trees subject to a low intensity fire where most of the canopy remained intact but there was also fire-triggered sprouting of new leaves along the trunk and main branches. In these trees rates of sapflow, standardized by sapwood area, were up to 50% greater than in unburnt trees. Measurements of leaf physiology in mature leaves, regenerating canopy leaves and in seedlings indicate higher rates of stomatal conductance in seedlings, and in the early regeneration phase of canopy leaves, which may be driving higher rates of water use per unit leaf area in the early stages of post-fire regeneration. This research indicates that disturbance-induced changes in vegetation dynamics are dependent on fire severity and can alter forest energy and water balances through changes in stand structure (i.e. L) and adjustments in plant functioning via leaf level increases in water use.
Miranda T. Curzon; Anthony W. D' Amato; Shawn Fraver; Emily S. Huff; Brian J. Palik
2016-01-01
Resource availability and its influence on tree-to-tree interactions are expected to change over the course of forest stand development, but the rarity of long-term datasets has limited examinations of neighborhood crowding over extended time periods. How do a history of neighborhood interactions and population-level dynamics, including demographic transition, impact...
NASA Astrophysics Data System (ADS)
Yue, Chao; Ciais, Philippe; Luyssaert, Sebastiaan; Li, Wei; McGrath, Matthew J.; Chang, Jinfeng; Peng, Shushi
2018-01-01
Land use change (LUC) is among the main anthropogenic disturbances in the global carbon cycle. Here we present the model developments in a global dynamic vegetation model ORCHIDEE-MICT v8.4.2 for a more realistic representation of LUC processes. First, we included gross land use change (primarily shifting cultivation) and forest wood harvest in addition to net land use change. Second, we included sub-grid evenly aged land cohorts to represent secondary forests and to keep track of the transient stage of agricultural lands since LUC. Combination of these two features allows the simulation of shifting cultivation with a rotation length involving mainly secondary forests instead of primary ones. Furthermore, a set of decision rules regarding the land cohorts to be targeted in different LUC processes have been implemented. Idealized site-scale simulation has been performed for miombo woodlands in southern Africa assuming an annual land turnover rate of 5 % grid cell area between forest and cropland. The result shows that the model can correctly represent forest recovery and cohort aging arising from agricultural abandonment. Such a land turnover process, even though without a net change in land cover, yields carbon emissions largely due to the imbalance between the fast release from forest clearing and the slow uptake from agricultural abandonment. The simulation with sub-grid land cohorts gives lower emissions than without, mainly because the cleared secondary forests have a lower biomass carbon stock than the mature forests that are otherwise cleared when sub-grid land cohorts are not considered. Over the region of southern Africa, the model is able to account for changes in different forest cohort areas along with the historical changes in different LUC activities, including regrowth of old forests when LUC area decreases. Our developments provide possibilities to account for continental or global forest demographic change resulting from past anthropogenic and natural disturbances.
Comprehensive monitoring of Bangladesh tree cover inside and outside of forests, 2000-2014
NASA Astrophysics Data System (ADS)
Potapov, P.; Siddiqui, B. N.; Iqbal, Z.; Aziz, T.; Zzaman, B.; Islam, A.; Pickens, A.; Talero, Y.; Tyukavina, A.; Turubanova, S.; Hansen, M. C.
2017-10-01
A novel approach for satellite-based comprehensive national tree cover change assessment was developed and applied in Bangladesh, a country where trees outside of forests play an important role in the national economy and carbon sequestration. Tree cover change area was quantified using the integration of wall-to-wall Landsat-based mapping with a higher spatial resolution sample-based assessment. The total national tree canopy cover area was estimated as 3165 500 ± 186 600 ha in the year 2000, with trees outside forests making up 54% of total canopy cover. Total tree canopy cover increased by 135 700 (± 116 600) ha (4.3%) during the 2000-2014 time interval. Bangladesh exhibits a national tree cover dynamic where net change is rather small, but gross dynamics significant and variable by forest type. Despite the overall gain in tree cover, results revealed the ongoing clearing of natural forests, especially within the Chittagong hill tracts. While forests decreased their tree cover area by 83 600 ha, the trees outside forests (including tree plantations, village woodlots, and agroforestry) increased their canopy area by 219 300 ha. Our results demonstrated method capability to quantify tree canopy cover dynamics within a fine-scale agricultural landscape. Our approach for comprehensive monitoring of tree canopy cover may be recommended for operational implementation in Bangladesh and other countries with significant tree cover outside of forests.
NASA Astrophysics Data System (ADS)
Levine, N. M.; Galbraith, D.; Christoffersen, B. J.; Imbuzeiro, H. A.; Restrepo-Coupe, N.; Malhi, Y.; Saleska, S. R.; Costa, M. H.; Phillips, O.; Andrade, A.; Moorcroft, P. R.
2011-12-01
The Amazonian rainforests play a vital role in global water, energy and carbon cycling. The sensitivity of this system to natural and anthropogenic disturbances therefore has important implications for the global climate. Some global models have predicted large-scale forest dieback and the savannization of Amazonia over the next century [Meehl et al., 2007]. While several studies have demonstrated the sensitivity of dynamic global vegetation models to changes in temperature, precipitation, and dry season length [e.g. Galbraith et al., 2010; Good et al., 2011], the ability of these models to accurately reproduce ecosystem dynamics of present-day transitional or low biomass tropical forests has not been demonstrated. A model-data intercomparison was conducted with four state-of-the-art terrestrial ecosystem models to evaluate the ability of these models to accurately represent structure, function, and long-term biomass dynamics over a range of Amazonian ecosystems. Each modeling group conducted a series of simulations for 14 sites including mature forest, transitional forest, savannah, and agricultural/pasture sites. All models were run using standard physical parameters and the same initialization procedure. Model results were compared against forest inventory and dendrometer data in addition to flux tower measurements. While the models compared well against field observations for the mature forest sites, significant differences were observed between predicted and measured ecosystem structure and dynamics for the transitional forest and savannah sites. The length of the dry season and soil sand content were good predictors of model performance. In addition, for the big leaf models, model performance was highest for sites dominated by late successional trees and lowest for sites with predominantly early and mid-successional trees. This study provides insight into tropical forest function and sensitivity to environmental conditions that will aid in predictions of the response of the Amazonian rainforest to future anthropogenically induced changes.
Monitoring forest dynamics with multi-scale and time series imagery.
Huang, Chunbo; Zhou, Zhixiang; Wang, Di; Dian, Yuanyong
2016-05-01
To learn the forest dynamics and evaluate the ecosystem services of forest effectively, a timely acquisition of spatial and quantitative information of forestland is very necessary. Here, a new method was proposed for mapping forest cover changes by combining multi-scale satellite remote-sensing imagery with time series data. Using time series Normalized Difference Vegetation Index products derived from the Moderate Resolution Imaging Spectroradiometer images (MODIS-NDVI) and Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) images as data source, a hierarchy stepwise analysis from coarse scale to fine scale was developed for detecting the forest change area. At the coarse scale, MODIS-NDVI data with 1-km resolution were used to detect the changes in land cover types and a land cover change map was constructed using NDVI values at vegetation growing seasons. At the fine scale, based on the results at the coarse scale, Landsat TM/ETM+ data with 30-m resolution were used to precisely detect the forest change location and forest change trend by analyzing time series forest vegetation indices (IFZ). The method was tested using the data for Hubei Province, China. The MODIS-NDVI data from 2001 to 2012 were used to detect the land cover changes, and the overall accuracy was 94.02 % at the coarse scale. At the fine scale, the available TM/ETM+ images at vegetation growing seasons between 2001 and 2012 were used to locate and verify forest changes in the Three Gorges Reservoir Area, and the overall accuracy was 94.53 %. The accuracy of the two layer hierarchical monitoring results indicated that the multi-scale monitoring method is feasible and reliable.
A 6 year longitudinal study of post-fire woody carbon dynamics in California's forests
Bianca N.I. Eskelson; Vicente J. Monleon; Jeremy S. Fried
2016-01-01
We examined the dynamics of aboveground forest woody carbon pools â live trees, standing dead trees, and down woodâduring the first 6 years following wildfire across a wide range of conditions, which are characteristic of California forest fires. From repeated measurements of the same plots, we estimated change in woody carbon pools as a function of crown fire severity...
Kalle, Riddhika; Ramesh, Tharmalingam; Downs, Colleen T
2018-01-01
Globally, long-term research is critical to monitor the responses of tropical species to climate and land cover change at the range scale. Citizen science surveys can reveal the long-term persistence of poorly known nomadic tropical birds occupying fragmented forest patches. We applied dynamic occupancy models to 13 years (2002-2014) of citizen science-driven presence/absence data on Cape parrot (Poicephalus robustus), a food nomadic bird endemic to South Africa. We modeled its underlying range dynamics as a function of resource distribution, and change in climate and land cover through the estimation of colonization and extinction patterns. The range occupancy of Cape parrot changed little over time (ψ = 0.75-0.83) because extinction was balanced by recolonization. Yet, there was considerable regional variability in occupancy and detection probability increased over the years. Colonizations increased with warmer temperature and area of orchards, thus explaining their range shifts southeastwards in recent years. Although colonizations were higher in the presence of nests and yellowwood trees (Afrocarpus and Podocarpus spp.), the extinctions in small forest patches (≤227 ha) and during low precipitation (≤41 mm) are attributed to resource constraints and unsuitable climatic conditions. Loss of indigenous forest cover and artificial lake/water bodies increased extinction probabilities of Cape parrot. The land use matrix (fruit farms, gardens, and cultivations) surrounding forest patches provides alternative food sources, thereby facilitating spatiotemporal colonization and extinction in the human-modified matrix. Our models show that Cape parrots are vulnerable to extreme climatic conditions such as drought which is predicted to increase under climate change. Therefore, management of optimum sized high-quality forest patches is essential for long-term survival of Cape parrot populations. Our novel application of dynamic occupancy models to long-term citizen science monitoring data unfolds the complex relationships between the environmental dynamics and range fluctuations of this food nomadic species. © 2017 John Wiley & Sons Ltd.
Long-term boreal forest dynamics and disturbances: a multi-proxy approach
NASA Astrophysics Data System (ADS)
Stivrins, Normunds; Aakala, Tuomas; Kuuluvainen, Timo; Pasanen, Leena; Ilvonen, Liisa; Holmström, Lasse; Seppä, Heikki
2017-04-01
The boreal forest provides a variety of ecosystem services that are threatened under the ongoing climate warming. Along with the climate, there are several factors (fire, human-impact, pathogens), which influence boreal forest dynamics. Combination of short and long-term studies allowing complex assessment of forest response to natural abiotic and biotic stress factors is necessary for sustainable management of the boreal forest now and in the future. The ongoing EBOR (Ecological history and long-term dynamics of the boreal forest ecosystem) project integrates forest ecological and palaeoecological approaches to study boreal forest dynamics and disturbances. Using pollen, non-pollen palynomorphs, micro- and macrocharcoal, tree rings and fire scars, we analysed forest dynamics at stand-scale by sampling small forest hollows (small paludified depressions) and the surrounding forest stands in Finland and western Russia. Using charcoal data, we estimated a fire return interval of 320 years for the Russian sites, and, based on the fungi Neurospora that can grow on charred tree bark after a low-intensity fire, we were able to distinguish low- and high-intensity fire-events. In addition to the influence of fire events and/or fire regime changes, we further assessed potential relationships between tree species and herbivore presence and pathogens. As an example of such a relationship, our preliminary findings indicated a negative relationship between Picea and fungi Lasiosphaeria (caudata), which occurred during times of Picea decline.
Scaling Hydrologic Processes in Boreal Forest Stands: New Eco-hydrological Perspectives or Deja vu?
NASA Astrophysics Data System (ADS)
Silins, U.; Lieffers, V. J.; Landhausser, S. M.; Mendoza, C. A.; Devito, K. J.; Petrone, R. M.; Gan, T. Y.
2006-12-01
The leaf area of forest canopies is both main attribute of stands controlling water balance through transpiration and interception, and "engine" driving stand growth, stand dynamics, and forest succession. While transpiration and interception dynamics are classic themes in forest hydrology, we present results from our eco-hydrological research on boreal trees to highlight how more recent eco-physiological insights into species specific controls over water use and leaf area such as hydraulic architecture, cavitation, sapwood-leaf area relationships, and root system controls over water uptake are providing new insights into integrated atmospheric-autecological controls over these hydrologic processes. These results are discussed in the context of newer eco-hydrological frameworks which may serve to aid in exploring how forest disturbance and subsequent trajectories of hydrologic recovery are likely to affect both forest growth dynamics and hydrology of forested landscapes in response to forest management, severe forest pest epidemics such as the Mountain Pine Beetle epidemic in Western Canada, and climate change.
A.P. Drew; J.D. Boley; Y. Zhao; F.H. Wadsworth
2009-01-01
A plot established in 1943 in a subtropical wet forest at the Luquillo Experimental Forest of Puerto Rico has been assessed periodically for changes in species and size of all trees >4cm diameter. Forest dynamics on a 0.72ha plot (EV-3) at 400masl at El Verde show recovery principally from hurricanes of 1928 and 1932, timber stand improvement in 1958, and from...
Environmental drivers of deadwood dynamics in woodlands and forests
M. Garbarino; R. Marzano; John Shaw; J. N. Long
2015-01-01
Deadwood dynamics play a key role in many forest ecosystems. Understanding the mechanisms involved in the accumulation and depletion of deadwood can enhance our understanding of fundamental processes such as carbon sequestration and disturbance regimes, allowing better predictions of future changes related to alternative management and climate scenarios. A...
James S. Rentch; Thomas M. Schuler
2010-01-01
The proceedings includes 18 peer-reviewed papers and 41 abstracts pertaining to acid deposition and nutrient cycling, ecological classification, forest dynamics, avifauna, wildlife and fisheries, forests pests, climate change, old-growth forest structure, regeneration, and restoration.
Kellomäki, Seppo; Peltola, Heli; Nuutinen, Tuula; Korhonen, Kari T; Strandman, Harri
2008-07-12
This study investigated the sensitivity of managed boreal forests to climate change, with consequent needs to adapt the management to climate change. Model simulations representing the Finnish territory between 60 and 70 degrees N showed that climate change may substantially change the dynamics of managed boreal forests in northern Europe. This is especially probable at the northern and southern edges of this forest zone. In the north, forest growth may increase, but the special features of northern forests may be diminished. In the south, climate change may create a suboptimal environment for Norway spruce. Dominance of Scots pine may increase on less fertile sites currently occupied by Norway spruce. Birches may compete with Scots pine even in these sites and the dominance of birches may increase. These changes may reduce the total forest growth locally but, over the whole of Finland, total forest growth may increase by 44%, with an increase of 82% in the potential cutting drain. The choice of appropriate species and reduced rotation length may sustain the productivity of forest land under climate change.
Correlations among stand ages and forest strata in mixed-oak forests of southeastern Ohio
P. Charles Goebel; David M. Hix
1997-01-01
Many models of landscape ecosystem development, as well as of forest stand dynamics, are based upon spatial and temporal changes in the species composition and structure of various forest strata. However, few document the interrelationships among forest strata, or the response of different strata to alterations of natural disturbance regimes. To examine how...
NASA Astrophysics Data System (ADS)
Novenko, Elena; Tsyganov, Andery; Pisarchuk, Natalia; Kozlov, Daniil
2017-04-01
Understanding the long-term ecological dynamics of swampy boreal forest is essential for assessment of the possible responses and feedbacks of forest ecosystems to climate change and natural disturbance. The multi-proxy record from the Central Forest State Natural Biosphere Reserve (CFSNBR), locate on the South of Valdai Hills, provides important new data on the forest history, human impact, paludification dynamics and environmental changes in the central part of the East European Plain during the Holocene. The results of peat humification, pollen, plant macrofossil, micro charcoal and testate amoeba analyses from forest pealand show that between 7000 and 4000 cal yr BP the southern part of Valdai Hills was occupied by broad-leaved forests. Spruce occurred in forest communities as small admixture and gradually increased its abundance. After 4000 cal yr BP spruce rapidly become the main forest forming species, however broad-leaved trees took place in plant cover. Despite significant climatic fluctuation, mixed broad-leaved-spruce forests persisted in vegetation until 900 cal yr BP and then were replaced by waterlogged herbal spruce forests. The extensive Sphagnum spruce forests are recent plant communities and were formed during the last 100 years that could be explain by changes in water balance of the territory due to both climate and anthropogenic factors. According to reconstruction of Mid- and Late Holocene climate changes, warm and relatively dry period of the Holocene Thermal Maximum (7000-5500 cal yr BP) was followed by climate cooling that included several relatively cold phases at about 5000, 3500, 2000, 1200 cal yr BP and warm intervals at about 2600, 1500 and 900 cal yr BP. The distinct cooling was reconstructed between 800 and 400 cal yr BP, apparently, correlated with the Little Ice Age. Climate dynamics appeared as significant changes of environmental conditions at local ecosystem. Warming phases are indicated by high peat humification and organic matter content and relatively low peat accumulation rates. Peat deposits poses sign of several fire episodes. During cool and humid phases the rate of vertical and lateral peat growth increased, while degree of peat decomposition become lower. Dramatic changes in environmental conditions in the study area and changes in trends of ecosystem dynamics occurred during the last 400-350 year. The obtained results suggest evident climate warming, significant increase in surface wetness and increase fivefold of peat accumulation rates. During the last hundred years, the local wetness in the studied localities became considerably higher that promoted the growth of Sphagnum mosses and overall transformation of forest stands to Sphagnum spruce forests. Evidences of significant human impact on the area about 300-250 cal yr BP were detected by indicator species in pollen analysis and reconstructions of woodland coverage by BMA approach. The modern vegetation of the Reserve may develop from a plant cover with mosaic pattern that included not only the mature spruce forests but also secondary birch woodlands, meadows and agricultural lands. This study was supported by the Russian Science Foundation (Grant 16-17-10045).
NASA Astrophysics Data System (ADS)
Miller, A. D.
2015-12-01
Many aspects of disturbance processes can have large impacts on the composition of plant communities, and associated changes in land cover type in turn have biogeochemical feedbacks to climate. In particular, changes to disturbance regimes can potentially change the number and stability of equilibrial states, and plant community states can differ dramatically in their carbon (C) dynamics, energy balance, and hydrology. Using the Klamath region of northern California as a model system, we present a theoretical analysis of how changes to climate and associated fire dynamics can disrupt high-carbon, long-lived conifer forests and replace them with shrub-chaparral communities that have much lower biomass and are more pyrogenic. Specifically, we develop a tractable model of plant community dynamics, structured by size class, life-history traits, lottery-type competition, and species-specific responses to disturbance. We assess the stability of different states in terms of disturbance frequency and intensity, and quantitatively partition long-term low-density population growth rates into mechanisms that influence critical transitions from stable to bistable behavior. Our findings show how different aspects of disturbance act and interact to control competitive outcomes and stable states, hence ecosystem-atmosphere C exchange. Forests tend to dominate in low frequency and intensity regimes, while shrubs dominate at high fire frequency and intensity. In other regimes, the system is bistable, and the fate of the system depends both on initial conditions and random chance. Importantly, the system can cross a critical threshold where hysteresis prevents easy return to the prior forested state. We conclude that changes in disturbance-recovery dynamics driven by projected climate change can shift this system away from forest dominated in the direction of shrub-dominated landscape. This will result in a large net C release from the landscape, and alter biophysical ecosystem-climate interactions.
Ten year change in forest succession and composition measured by remote sensing
NASA Technical Reports Server (NTRS)
Hall, Forrest G.; Botkin, Daniel B.; Strebel, Donald E.; Woods, Kerry K.; Goetz, Scott J.
1987-01-01
Vegetation dynamics and changes in ecological patterns were measured by remote sensing over a 10 year period (1973 to 1983) for 148,406 landscape elements, covering more than 500 sq km in a protected forested wilderness. Quantitative measurements were made possible by methods to detect ecologically meaningful landscape units; these allowed measurement of ecological transition frequencies and calculation of expected recurrence times. Measured ecological transition frequencies reveal boreal forest wilderness as spatially heterogeneous and highly dynamic, with one-sixth of the area in clearings and early successional stages, consistent with recent postulates about the spatial and temporal patterns of natural ecosystems. Differences between managed forest areas and a protected wilderness allow assessment of different management regimes.
Buma, Brian; Barrett, Tara M
2015-09-01
Natural forest growth and expansion are important carbon sequestration processes globally. Climate change is likely to increase forest growth in some regions via CO2 fertilization, increased temperatures, and altered precipitation; however, altered disturbance regimes and climate stress (e.g. drought) will act to reduce carbon stocks in forests as well. Observations of asynchrony in forest change is useful in determining current trends in forest carbon stocks, both in terms of forest density (e.g. Mg ha(-1) ) and spatially (extent and location). Monitoring change in natural (unmanaged) areas is particularly useful, as while afforestation and recovery from historic land use are currently large carbon sinks, the long-term viability of those sinks depends on climate change and disturbance dynamics at their particular location. We utilize a large, unmanaged biome (>135 000 km(2) ) which spans a broad latitudinal gradient to explore how variation in location affects forest density and spatial patterning: the forests of the North American temperate rainforests in Alaska, which store >2.8 Pg C in biomass and soil, equivalent to >8% of the C in contiguous US forests. We demonstrate that the regional biome is shifting; gains exceed losses and are located in different spatio-topographic contexts. Forest gains are concentrated on northerly aspects, lower elevations, and higher latitudes, especially in sheltered areas, whereas loss is skewed toward southerly aspects and lower latitudes. Repeat plot-scale biomass data (n = 759) indicate that within-forest biomass gains outpace losses (live trees >12.7 cm diameter, 986 Gg yr(-1) ) on gentler slopes and in higher latitudes. This work demonstrates that while temperate rainforest dynamics occur at fine spatial scales (<1000 m(2) ), the net result of thousands of individual events is regionally patterned change. Correlations between the disturbance/establishment imbalance and biomass accumulation suggest the potential for relatively rapid biome shifts and biomass changes. © 2015 John Wiley & Sons Ltd.
Derek B. Van Berkel; Bronwyn Rayfield; Sebastián Martinuzzi; Martin J. Lechowicz; Eric White; Kathleen P. Bell; Chris R. Colocousis; Kent F. Kovacs; Anita T. Morzillo; Darla K. Munroe; Benoit Parmentier; Volker C. Radeloff; Brian J. McGill
2018-01-01
Sparsely settled forests (SSF) are poorly studied, coupled natural and human systems involving rural communities in forest ecosystems that are neither largely uninhabited wildland nor forests on the edges of urban areas. We developed and applied a multidisciplinary approach to define, map, and examine changes in the spatial extent and structure of both the landscapes...
On the road to national mapping and attribution of the processes underlying U.S
Karen Schleeweis; Gretchen G. Moisen; Todd A. Schroeder; Chris Toney; Elizabeth A. Freeman
2015-01-01
Questions regarding the impact of natural and anthropogenic forest change events (temporary and persisting) on energy, water and nutrient cycling, forest sustainability and resilience, and ecosystem services call for a full suite of information on the spatial and temporal trends of forest dynamics. Temporal and spatial patterns of change along with their magnitude and...
Nicholas L. Crookston; Gerald E. Rehfeldt; Gary E. Dixon; Aaron R. Weiskittel
2010-01-01
To simulate stand-level impacts of climate change, predictors in the widely used Forest Vegetation Simulator (FVS) were adjusted to account for expected climate effects. This was accomplished by: (1) adding functions that link mortality and regeneration of species to climate variables expressing climatic suitability, (2) constructing a function linking site index to...
Nicholas L. Crookston; Gerald E. Rehfeldt; Gary E. Dixon; Aaron R. Weiskittel
2010-01-01
To simulate stand-level impacts of climate change, predictors in the widely used Forest Vegetation Simulator (FVS) were adjusted to account for expected climate effects. This was accomplished by: (1) adding functions that link mortality and regeneration of species to climate variables expressing climatic suitability, (2) constructing a function linking site index to...
Understanding trends in observations of forest disturbance and their underlying causal processes
Karen Schleeweis; Samuel N. Goward; Chengquan Huang; Jeffrey Masek; Gretchen G. Moisen
2012-01-01
Estimates of forest canopy areal extent, configuration, and change have been developed from satellite-based imagery and ground-based inventories to improve understanding of forest dynamics and how they interact with other Earth systems across many scales. The number of these types of studies has grown in recent years, yet few have assessed the multiple change processes...
Brad Oberle; Kiona Ogle; Amy E. Zanne; Christopher W. Woodall
2018-01-01
When standing dead trees (snags) fall, they have major impacts on forest ecosystems. Snag fall can redistribute wildlife habitat and impact public safety, while governing important carbon (C) cycle consequences of tree mortality because ground contact accelerates C emissions during deadwood decay. Managing the consequences of altered snag dynamics in changing forests...
J.B. Kauffman; R.F. Hughes; C. Heider
2009-01-01
Current rates of deforestation and the resulting C emissions in the tropics exceed those of secondary forest regrowth and C sequestration. Changing land-use strategies that would maintain standing forests may be among the least expensive of climate change mitigation options. Further, secondary tropical forests have been suggested to have great value for their potential...
Tweiten, Michael A; Calcote, Randy R; Lynch, Elizabeth A; Hotchkiss, Sara C; Schuurman, Gregor W
2015-10-01
Landscape-scale vulnerability assessment from multiple sources, including paleoecological site histories, can inform climate change adaptation. We used an array of lake sediment pollen and charcoal records to determine how soils and landscape factors influenced the variability of forest composition change over the past 2000 years. The forests in this study are located in northwestern Wisconsin on a sandy glacial outwash plain. Soils and local climate vary across the study area. We used the Natural Resource Conservation Service's Soil Survey Geographic soil database and published fire histories to characterize differences in soils and fire history around each lake site. Individual site histories differed in two metrics of past vegetation dynamics: the extent to which white pine (Pinus strobus) increased during the Little Ice Age (LIA) climate period and the volatility in the rate of change between samples at 50-120 yr intervals. Greater increases of white pine during the LIA occurred on sites with less sandy soils (R² = 0.45, P < 0.0163) and on sites with relatively warmer and drier local climate (R² = 0.55, P < 0.0056). Volatility in the rate of change between samples was positively associated with LIA fire frequency (R² = 0.41, P < 0.0256). Over multi-decadal to centennial timescales, forest compositional change and rate-of-change volatility were associated with higher fire frequency. Over longer (multi-centennial) time frames, forest composition change, especially increased white pine, shifted most in sites with more soil moisture. Our results show that responsiveness of forest composition to climate change was influenced by soils, local climate, and fire. The anticipated climatic changes in the next century will not produce the same community dynamics on the same soil types as in the past, but understanding past dynamics and relationships can help us assess how novel factors and combinations of factors in the future may influence various site types. Our results support climate change adaptation efforts to monitor and conserve the landscape's full range of geophysical features.
NASA Astrophysics Data System (ADS)
Telesnina, V. M.; Kurganova, I. N.; Lopes de Gerenyu, V. O.; Ovsepyan, L. A.; Lichko, V. I.; Ermolaev, A. M.; Mirin, D. M.
2017-12-01
The postagrogenic dynamics of acidity and some parameters of humus status have been studied in relation to the restoration of zonal vegetation in southern taiga (podzolic and soddy-podzolic soils ( Retisols)), coniferous-broadleaved (subtaiga) forest (gray forest soil ( Luvic Phaeozem)), and forest-steppe (gray forest soil ( Haplic Phaeozem)) subzones. The most significant transformation of the studied properties of soils under changing vegetation has been revealed for poor sandy soils of southern taiga. The degree of changes in the content and stocks of organic carbon, the enrichment of humus in nitrogen, and acidity in the 0- to 20-cm soil layer during the postagrogenic evolution decreases from north to south. The adequate reflection of soil physicochemical properties in changes of plant cover is determined by the climatic zone and the land use pattern. A correlation between the changes in the soil acidity and the portion of acidophilic species in the plant cover is revealed for the southern taiga subzone. A positive relationship is found between the content of organic carbon and the share of species preferring humus-rich soils in the forest-steppe zone.
Moore, C.T.; Conroy, M.J.
2006-01-01
Stochastic and structural uncertainties about forest dynamics present challenges in the management of ephemeral habitat conditions for endangered forest species. Maintaining critical foraging and breeding habitat for the endangered red-cockaded woodpecker (Picoides borealis) requires an uninterrupted supply of old-growth forest. We constructed and optimized a dynamic forest growth model for the Piedmont National Wildlife Refuge (Georgia, USA) with the objective of perpetuating a maximum stream of old-growth forest habitat. Our model accommodates stochastic disturbances and hardwood succession rates, and uncertainty about model structure. We produced a regeneration policy that was indexed by current forest state and by current weight of evidence among alternative model forms. We used adaptive stochastic dynamic programming, which anticipates that model probabilities, as well as forest states, may change through time, with consequent evolution of the optimal decision for any given forest state. In light of considerable uncertainty about forest dynamics, we analyzed a set of competing models incorporating extreme, but plausible, parameter values. Under any of these models, forest silviculture practices currently recommended for the creation of woodpecker habitat are suboptimal. We endorse fully adaptive approaches to the management of endangered species habitats in which predictive modeling, monitoring, and assessment are tightly linked.
Trajectory-based change detection for automated characterization of forest disturbance dynamics
Robert E. Kennedy; Warren B. Cohen; Todd A. Schroeder
2007-01-01
Satellite sensors are well suited to monitoring changes on the Earth's surface through provision of consistent and repeatable measurements at a spatial scale appropriate for many processes causing change on the land surface. Here, we describe and test a new conceptual approach to change detection of forests using a dense temporal stack of Landsat Thematic Mapper (...
Spaceborne Potential for Examining Taiga-Tundra Ecotone Form and Vulnerability
NASA Technical Reports Server (NTRS)
Montesano, Paul M.; Sun, Guoqing; Dubayah, Ralph O.; Ranson, K. Jon
2016-01-01
In the taiga-tundra ecotone (TTE), site-dependent forest structure characteristics can influence the subtle and heterogeneous structural changes that occur across the broad circumpolar extent. Such changes may be related to ecotone form, described by the horizontal and vertical patterns of forest structure (e.g., tree cover, density and height) within TTE forest patches, driven by local site conditions, and linked to ecotone dynamics. The unique circumstance of subtle, variable and widespread vegetation change warrants the application of spaceborne data including high-resolution (less than 5m) spaceborne imagery (HRSI) across broad scales for examining TTE form and predicting dynamics. This study analyzes forest structure at the patch-scale in the TTE to provide a means to examine both vertical and horizontal components of ecotone form. We demonstrate the potential of spaceborne data for integrating forest height and density to assess TTE form at the scale of forest patches across the circumpolar biome by (1) mapping forest patches in study sites along the TTE in northern Siberia with a multi-resolution suite of spaceborne data, and (2) examining the uncertainty of forest patch height from this suite of data across sites of primarily diffuse TTE forms. Results demonstrate the opportunities for improving patch-scale spaceborne estimates of forest height, the vertical component of TTE form, with HRSI. The distribution of relative maximum height uncertainty based on prediction intervals is centered at approximately 40%, constraining the use of height for discerning differences in forest patches. We discuss this uncertainty in light of a conceptual model of general ecotone forms, and highlight how the uncertainty of spaceborne estimates of height can contribute to the uncertainty in identifying TTE forms. A focus on reducing the uncertainty of height estimates in forest patches may improve depiction of TTE form, which may help explain variable forest responses in the TTE to climate change and the vulnerability of portions of the TTE to forest structure change. structural changes.
Dynamics of Tree Species Diversity in Unlogged and Selectively Logged Malaysian Forests.
Shima, Ken; Yamada, Toshihiro; Okuda, Toshinori; Fletcher, Christine; Kassim, Abdul Rahman
2018-01-18
Selective logging that is commonly conducted in tropical forests may change tree species diversity. In rarely disturbed tropical forests, locally rare species exhibit higher survival rates. If this non-random process occurs in a logged forest, the forest will rapidly recover its tree species diversity. Here we determined whether a forest in the Pasoh Forest Reserve, Malaysia, which was selectively logged 40 years ago, recovered its original species diversity (species richness and composition). To explore this, we compared the dynamics of secies diversity between unlogged forest plot (18.6 ha) and logged forest plot (5.4 ha). We found that 40 years are not sufficient to recover species diversity after logging. Unlike unlogged forests, tree deaths and recruitments did not contribute to increased diversity in the selectively logged forests. Our results predict that selectively logged forests require a longer time at least than our observing period (40 years) to regain their diversity.
Groenendijk, Peter; van der Sleen, Peter; Vlam, Mart; Bunyavejchewin, Sarayudh; Bongers, Frans; Zuidema, Pieter A
2015-10-01
The important role of tropical forests in the global carbon cycle makes it imperative to assess changes in their carbon dynamics for accurate projections of future climate-vegetation feedbacks. Forest monitoring studies conducted over the past decades have found evidence for both increasing and decreasing growth rates of tropical forest trees. The limited duration of these studies restrained analyses to decadal scales, and it is still unclear whether growth changes occurred over longer time scales, as would be expected if CO2 -fertilization stimulated tree growth. Furthermore, studies have so far dealt with changes in biomass gain at forest-stand level, but insights into species-specific growth changes - that ultimately determine community-level responses - are lacking. Here, we analyse species-specific growth changes on a centennial scale, using growth data from tree-ring analysis for 13 tree species (~1300 trees), from three sites distributed across the tropics. We used an established (regional curve standardization) and a new (size-class isolation) growth-trend detection method and explicitly assessed the influence of biases on the trend detection. In addition, we assessed whether aggregated trends were present within and across study sites. We found evidence for decreasing growth rates over time for 8-10 species, whereas increases were noted for two species and one showed no trend. Additionally, we found evidence for weak aggregated growth decreases at the site in Thailand and when analysing all sites simultaneously. The observed growth reductions suggest deteriorating growth conditions, perhaps due to warming. However, other causes cannot be excluded, such as recovery from large-scale disturbances or changing forest dynamics. Our findings contrast growth patterns that would be expected if elevated CO2 would stimulate tree growth. These results suggest that commonly assumed growth increases of tropical forests may not occur, which could lead to erroneous predictions of carbon dynamics of tropical forest under climate change. © 2015 John Wiley & Sons Ltd.
Tree cover bimodality in savannas and forests emerging from the switching between two fire dynamics.
De Michele, Carlo; Accatino, Francesco
2014-01-01
Moist savannas and tropical forests share the same climatic conditions and occur side by side. Experimental evidences show that the tree cover of these ecosystems exhibits a bimodal frequency distribution. This is considered as a proof of savanna-forest bistability, predicted by dynamic vegetation models based on non-linear differential equations. Here, we propose a change of perspective about the bimodality of tree cover distribution. We show, using a simple matrix model of tree dynamics, how the bimodality of tree cover can emerge from the switching between two linear dynamics of trees, one in presence and one in absence of fire, with a feedback between fire and trees. As consequence, we find that the transitions between moist savannas and tropical forests, if sharp, are not necessarily catastrophic.
Piecing together the fragments: Elucidating edge effects on forest carbon dynamics
NASA Astrophysics Data System (ADS)
Hutyra, L.; Smith, I. A.; Reinmann, A.; Marrs, J.; Thompson, J.
2017-12-01
Forest fragmentation is pervasive throughout the world's forests, impacting growing conditions and carbon dynamics through edge effects that produce gradients in microclimate, biogeochemistry, and stand structure. Despite the majority of the world's forests being <1km from an edge, our understanding of forest carbon dynamics is largely derived from intact forest systems. In the northeastern USA, we find that over 23% of the current forest area is just 30m from an agricultural or developed edge. Edge effects on the carbon cycle vary in their magnitude by biome, but current forest carbon accounting methods and ecosystem models largely do not include edge effects, highlighting an important gap in our understanding of the terrestrial carbon cycle. Characterizing the role of forest fragmentation in regional and global biogeochemical cycles necessitates advancing our understanding of how shifts in microenvironment at the forest edge interact with local prevailing drivers of global change and limitations to microbial activity and forest growth. This study synthesizes the literature related to edge effects and the carbon cycle, considering how fragmentation affects the growing conditions of the world's remaining forests based on risks and opportunities for forests near the edge.
Introduction to forest growth and yield
John W., Jr. Moser
1989-01-01
Forests are dynamic communities that are constantly changing. To the casual observer, only the most obvious change, such as the death of a tree, may be discernible. However, other changes are continually occurring. Trees grow in both height and diameter. This is termed survivor growth. Ingrowth occurs when a tree's diameter grows larger than an arbitrarily...
NASA Astrophysics Data System (ADS)
Yue, Chao; Ciais, Philippe; Li, Wei
2018-02-01
Several modelling studies reported elevated carbon emissions from historical land use change (ELUC) by including bidirectional transitions on the sub-grid scale (termed gross land use change), dominated by shifting cultivation and other land turnover processes. However, most dynamic global vegetation models (DGVMs) that have implemented gross land use change either do not account for sub-grid secondary lands, or often have only one single secondary land tile over a model grid cell and thus cannot account for various rotation lengths in shifting cultivation and associated secondary forest age dynamics. Therefore, it remains uncertain how realistic the past ELUC estimations are and how estimated ELUC will differ between the two modelling approaches with and without multiple sub-grid secondary land cohorts - in particular secondary forest cohorts. Here we investigated historical ELUC over 1501-2005 by including sub-grid forest age dynamics in a DGVM. We run two simulations, one with no secondary forests (Sageless) and the other with sub-grid secondary forests of six age classes whose demography is driven by historical land use change (Sage). Estimated global ELUC for 1501-2005 is 176 Pg C in Sage compared to 197 Pg C in Sageless. The lower ELUC values in Sage arise mainly from shifting cultivation in the tropics under an assumed constant rotation length of 15 years, being 27 Pg C in Sage in contrast to 46 Pg C in Sageless. Estimated cumulative ELUC values from wood harvest in the Sage simulation (31 Pg C) are however slightly higher than Sageless (27 Pg C) when the model is forced by reconstructed harvested areas because secondary forests targeted in Sage for harvest priority are insufficient to meet the prescribed harvest area, leading to wood harvest being dominated by old primary forests. An alternative approach to quantify wood harvest ELUC, i.e. always harvesting the close-to-mature forests in both Sageless and Sage, yields similar values of 33 Pg C by both simulations. The lower ELUC from shifting cultivation in Sage simulations depends on the predefined forest clearing priority rules in the model and the assumed rotation length. A set of sensitivity model runs over Africa reveal that a longer rotation length over the historical period likely results in higher emissions. Our results highlight that although gross land use change as a former missing emission component is included by a growing number of DGVMs, its contribution to overall ELUC remains uncertain and tends to be overestimated when models ignore sub-grid secondary forests.
Drummond, Mark A.; Griffith, Glenn E.; Auch, Roger F.; Stier, Michael P.; Taylor, Janis L.; Hester, David J.; Riegle, Jodi L.; McBeth, Jamie L.
2017-01-01
Forests have historically been under significant land use pressures that cause periods of degradation, clearance, and recovery. To understand these changes, studies are needed that place trends in a historical landscape context and also examine recent dynamics. Here, we use historical investigation (c. 1800) and an examination of land use and land cover change between 1973 and 2006 to establish a baseline trajectory of the forested system of the south-central United States (US) plains. The study culminates in a highly detailed accounting of the processes and causes of land change between 2001 and 2006. In the study region, the forest transitioned from early low-intensity use, to clearance for farming and timber, to widespread recovery from degradation beginning in the 1930s. By 1970, the region was transitioning from recovered woodlands to an intensive regime of recurrent timber harvest and replanting. The recurring cycle inherent in intensive silviculture has been the main cause of land change for the past several decades, accounting for more than 95% of the total extent of change between 2001 and 2006. The transition to forest recovery in the south-central US was an important historical occurrence. However, the dynamic post-transition landscape needs to be better understood.
Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime
2015-01-01
We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.
Spatiotemporal patterns of fire-induced forest mortality in boreal regions and its potential drivers
NASA Astrophysics Data System (ADS)
Yang, J.; Tian, H.; Pan, S.; Hansen, M.; Wang, Y.
2017-12-01
Wildfire is the major natural disturbance in boreal forests, which have substantially affected various biological and biophysical processes. Although a few previous studies examined fire severity in boreal regions and reported a higher fire-induced forest mortality in boreal North America than in boreal Eurasia, it remains unclear how this mortality changes over time and how environmental factors affect the temporal dynamics of mortality at a large scale. By using a combination of multiple sources of satellite observations, we investigate the spatiotemporal patterns of fire-induced forest mortality in boreal regions, and examine the contributions of potential drivers. Our results show that forest composition is the key factor influencing the spatial variations of fire mortality across ecoregions. For the temporal variations, we find that the late-season burning was associated with higher fire intensity, which lead to greater forest mortality than the early-season burning. Forests burned in the warm and dry years had greater mortality than those burned in the cool and wet years. Our findings suggest that climate warming and drying not only stimulated boreal fire frequency, but also enhanced fire severity and forest mortality. Due to the significant effects of forest mortality on vegetation structure and ecosystem carbon dynamics, the spatiotemporal changes of fire-induced forest mortality should be explicitly considered to better understand fire impacts on regional and global climate change.
NASA Astrophysics Data System (ADS)
Trefilova, O. V.; Efimov, D. Yu.
2015-08-01
The results of the integrated analysis of changes in the state of vegetation and soils (Cutanic Albeluvisol) at the different stages of natural forest regeneration (4-, 11- and 24-year-old felled areas) and in a mature fir forest of the short grass-green moss forest types in the northern part of the western slope of the Yenisei Ridge are presented. A dynamic trend of fir forests restoration to the formation of the structure characteristics of the initial forest types is shown to be performed through the stages of forest meadows and secondary short grass (forbs) and birch stands. The changes in vegetation are accompanied by the fast transformation of the soil properties towards the improvement of soil fertilization However, these changes are temporary.
David M. Bell; Andrew N. Gray
2016-01-01
While ecological succession shapes contemporary forest structure and dynamics, other factors like forest structure (dense vs. sparse canopies) and climate may alter structural trajectories. To assess potential sources of variation in structural trajectories, we examined proportional biomass change for a regionally dominant tree species, Douglas-fir (...
Managing ecosystems for forest health: An approach and the effects on uses and values
Chadwick D. Oliver; Dennis E. Ferguson; Alan E. Harvey; Herbert S. Malany; John M. Mandzak; Robert W. Mutch
1994-01-01
Forest health is most appropriately based on the scientific paradigm of dynamic, constantly changing forest ecosystems. Many forests in the Inland West now support high levels of insect infestations, disease epidemics, fire susceptibilities, and imbalances in stand structures and habitats because of natural processes and past management practices. Impending,...
Main dynamics and drivers of boreal forests fire regimes during the Holocene
NASA Astrophysics Data System (ADS)
Molinari, Chiara; Lehsten, Veiko; Blarquez, Olivier; Clear, Jennifer; Carcaillet, Christopher; Bradshaw, Richard HW
2015-04-01
Forest fire is one of the most critical ecosystem processes in the boreal megabiome, and it is likely that its frequency, size and severity have had a primary role in vegetation dynamics since the Last Ice Age (Kasischke & Stocks 2000). Fire not only organizes the physical and biological attributes of boreal forests, but also affects biogeochemical cycling, particularly the carbon balance (Balshi et al. 2007). Due to their location at climatically sensitive northern latitudes, boreal forests are likely to be significantly affected by global warming with a consequent increase in biomass burning (Soja et al. 2007), a variation in vegetation structure and composition (Johnstone et al. 2004) and a rise in atmospheric carbon dioxide concentration (Bond-Lamberty et al. 2007). Even if the ecological role of wildfire in boreal forest is widely recognized, a clearer understanding of the environmental factors controlling fire dynamics and how variations in fire regimes impact forest ecosystems is essential in order to place modern fire processes in a meaningful context for projecting ecosystem behaviour in a changing environment (Kelly et al. 2013). Because fire return intervals and successional cycles in boreal forests occur over decadal to centennial timescales (Hu et al. 2006), palaeoecological research seems to be one of the most promising tool for elucidating ecosystem changes over a broad range of environmental conditions and temporal scales. Within this context, our first aim is to reconstruct spatial and temporal patterns of boreal forests fire dynamics during the Holocene based on sedimentary charcoal records. As a second step, trends in biomass burning will be statistically analysed in order to disentangle between regional and local drivers. The use of European and north-American sites will give us the unique possibility to perform a large scale analysis on one of the broadest biome in the world and to underline the different patterns of fire in these two continents. Balshi MS, McGuire AD, Zhuang Q et al. (2007) The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis. J. Geophys. Res. 112:G2. Bond-Lamberty B, Peckham SD, Ahl DE et al. (2007) Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450: 89-92. Hu FS, Brubaker LB, Gavin DG et al. (2006) How climate and vegetation influence the fire regime of the Alaskan boreal biome: the Holocene perspective. Mitigation Adapt. Strateg. Glob. Chang. 11: 829-846. Johnstone JF, Chapin III FS, Foote J et al. (2004) Decadal observations of tree regeneration following fire in boreal forests. Can. J. For. Res. 34: 267-273. Kasischke ES & Stocks BJ (2000) Fire, Climate Change and Carbon Cycling in the Boreal Forest. Ecological Studies 138, Springer-Verlag, New York. Kelly RF, Chipman ML, Higuera PE et al. (2013) Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc. Natl. Acad. Sci. U.S.A. 110: 13055-13060. Soja AJ, Tchebakova NM, French NHF et al. (2007) Climate-induced boreal forest change: predictions versus current observations. Glob. Planet. Chang. 56: 274-296.
Simulating the dynamics of linear forests in great plains agroecosystems under changing climates
Qinfeng Guo; J. Brandle; Michele Schoeneberger; D. Buettner
2004-01-01
Most forest growth models are not suitable for the highly fragmented, linear (or linearly shaped) forests in the Great Plains agroecosystems (e.g., windbreaks, riparian forest buffers), where such forests are a minor but ecologically important component of the land mosaics. This study used SEEI)SCAPE, a recently modified gap model designed for cultivated land mosaics...
Mapping Process to Pattern in the Landscape Change of the Amazonian Frontier
NASA Technical Reports Server (NTRS)
Walker, Robert
2003-01-01
Changes in land use and land cover are dynamic processes reflecting a sequence of decisions made by individual land managers. In developing economies, these decisions may be embedded in the evolution of individual households, as is often the case in indigenous areas and agricultural frontiers. One goal of the present article is to address the land use and land-cover decisions of colonist farmers in the Amazon Basin as a function, in part, of household characteristics. Another goal is to generalize the issue of tropical deforestation into a broader discussion on forest dynamics. The extent of secondary forest in tropical areas has been well documented in South America and Africa. Agricultural-plot abandonment often occurs in tandem with primary forest clearance and as part of the same decision-making calculus. Consequently, tropical deforestation and forest succession are not independent processes in the landscape. This article presents a framework that integrates them into a model of forest dynamics at household level, and in so doing provides an account of the spatial pattern of deforestation that has been observed in the Amazon's colonization frontiers.
Tree Circumference Dynamics in Four Forests Characterized Using Automated Dendrometer Bands
McMahon, Sean M.; Detto, Matteo; Lutz, James A.; Davies, Stuart J.; Chang-Yang, Chia-Hao; Anderson-Teixeira, Kristina J.
2016-01-01
Stem diameter is one of the most commonly measured attributes of trees, forming the foundation of forest censuses and monitoring. Changes in tree stem circumference include both irreversible woody stem growth and reversible circumference changes related to water status, yet these fine-scale dynamics are rarely leveraged to understand forest ecophysiology and typically ignored in plot- or stand-scale estimates of tree growth and forest productivity. Here, we deployed automated dendrometer bands on 12–40 trees at four different forested sites—two temperate broadleaf deciduous, one temperate conifer, and one tropical broadleaf semi-deciduous—to understand how tree circumference varies on time scales of hours to months, how these dynamics relate to environmental conditions, and whether the structure of these variations might introduce substantive error into estimates of woody growth. Diurnal stem circumference dynamics measured over the bark commonly—but not consistently—exhibited daytime shrinkage attributable to transpiration-driven changes in stem water storage. The amplitude of this shrinkage was significantly correlated with climatic variables (daily temperature range, vapor pressure deficit, and radiation), sap flow and evapotranspiration. Diurnal variations were typically <0.5 mm circumference in amplitude and unlikely to be of concern to most studies of tree growth. Over time scales of multiple days, the bands captured circumference increases in response to rain events, likely driven by combinations of increased stem water storage and bark hydration. Particularly at the tropical site, these rain responses could be quite substantial, ranging up to 1.5 mm circumference expansion within 48 hours following a rain event. We conclude that over-bark measurements of stem circumference change sometimes correlate with but have limited potential for directly estimating daily transpiration, but that they can be valuable on time scales of days to weeks for characterizing changes in stem growth and hydration. PMID:28030646
Forest turnover rates follow global and regional patterns of productivity
Stephenson, N.L.; van Mantgem, P.J.
2005-01-01
Using a global database, we found that forest turnover rates (the average of tree mortality and recruitment rates) parallel broad-scale patterns of net primary productivity. First, forest turnover was higher in tropical than in temperate forests. Second, as recently demonstrated by others, Amazonian forest turnover was higher on fertile than infertile soils. Third, within temperate latitudes, turnover was highest in angiosperm forests, intermediate in mixed forests, and lowest in gymnosperm forests. Finally, within a single forest physiognomic type, turnover declined sharply with elevation (hence with temperature). These patterns of turnover in populations of trees are broadly similar to the patterns of turnover in populations of plant organs (leaves and roots) found in other studies. Our findings suggest a link between forest mass balance and the population dynamics of trees, and have implications for understanding and predicting the effects of environmental changes on forest structure and terrestrial carbon dynamics. ??2005 Blackwell Publishing Ltd/CNRS.
P.L. Weaver
2013-01-01
Ridges within the lower montane rain forests (sensu Beard) of the Caribbean Basin are dominated by Dacryodes excelsa, a tree species known as tabonuco in Puerto Rico and gommier in the Lesser Antilles. Periodially, hurricanes traverse the islands causing changes in structure, species composition, and dynamics of forests. The chronology of post-hurricane vegetation...
A dynamic ecosystem growth model for forests at high complexity structure
NASA Astrophysics Data System (ADS)
Collalti, A.; Perugini, L.; Chiti, T.; Matteucci, G.; Oriani, A.; Santini, M.; Papale, D.; Valentini, R.
2012-04-01
Forests ecosystem play an important role in carbon cycle, biodiversity conservation and for other ecosystem services and changes in their structure and status perturb a delicate equilibrium that involves not only vegetation components but also biogeochemical cycles and global climate. The approaches to determine the magnitude of these effects are nowadays various and one of those include the use of models able to simulate structural changes and the variations in forests yield The present work shows the development of a forest dynamic model, on ecosystem spatial scale using the well known light use efficiency to determine Gross Primary Production. The model is predictive and permits to simulate processes that determine forest growth, its dynamic and the effects of forest management using eco-physiological parameters easy to be assessed and to be measured. The model has been designed to consider a tri-dimensional cell structure composed by different vertical layers depending on the forest type that has to be simulated. These features enable the model to work on multi-layer and multi-species forest types, typical of Mediterranean environment, at the resolution of one hectare and at monthly time-step. The model simulates, for each layer, a value of available Photosynthetic Active Radiation (PAR) through Leaf Area Index, Light Extinction Coefficient and cell coverage, the transpiration rate that is closely linked to the intercepted light and the evaporation from soil. Using this model it is possible to evaluate the possible impacts of climate change on forests that may result in decrease or increase of productivity as well as the feedback of one or more dominated layers in terms of CO2 uptake in a forest stand and the effects of forest management activities during the forest harvesting cycle. The model has been parameterised, validated and applied in a multi-layer, multi-age and multi-species Italian turkey oak forest (Q. cerris L., C. betulus L. and C. avellana L.) where the medium-term (10 years) development of forest parameters were simulated. The results obtained for net primary production and for stem, root and foliage compartments as well as for forest structure i.e. Diameter at Breast Height, height and canopy cover are in good accordance with field data (R2>0.95). These results show how the model is able to predict forest yield as well as forest dynamic with good accuracy and encourage testing the model capability on other sites with a more complex forest structure and for long-time period with an higher spatial resolution.
RGB-NDVI colour composites for visualizing forest change dynamics
NASA Technical Reports Server (NTRS)
Sader, S. A.; Winne, J. C.
1992-01-01
The study presents a simple and logical technique to display and quantify forest change using three dates of satellite imagery. The normalized difference vegetation index (NDVI) was computed for each date of imagery to define high and low vegetation biomass. Color composites were generated by combining each date of NDVI with either the red, green, or blue (RGB) image planes in an image display monitor. Harvest and regeneration areas were quantified by applying a modified parallelepiped classification creating an RGB-NDVI image with 27 classes that were grouped into nine major forest change categories. Aerial photographs and stand history maps are compared with the forest changes indicated by the RGB-NDVI image. The utility of the RGB-NDVI technique for supporting forest inventories and updating forest resource information systems are presented and discussed.
Russell, Matthew B.; Woodall, Christopher W.; D'Amato, Anthony W.; Fraver, Shawn; Bradford, John B.
2014-01-01
Forest ecosystems play a critical role in mitigating greenhouse gas emissions. Forest carbon (C) is stored through photosynthesis and released via decomposition and combustion. Relative to C fixation in biomass, much less is known about C depletion through decomposition of woody debris, particularly under a changing climate. It is assumed that the increased temperatures and longer growing seasons associated with projected climate change will increase the decomposition rates (i.e., more rapid C cycling) of downed woody debris (DWD); however, the magnitude of this increase has not been previously addressed. Using DWD measurements collected from a national forest inventory of the eastern United States, we show that the residence time of DWD may decrease (i.e., more rapid decomposition) by as much as 13% over the next 200 years, depending on various future climate change scenarios and forest types. Although existing dynamic global vegetation models account for the decomposition process, they typically do not include the effect of a changing climate on DWD decomposition rates. We expect that an increased understanding of decomposition rates, as presented in this current work, will be needed to adequately quantify the fate of woody detritus in future forests. Furthermore, we hope these results will lead to improved models that incorporate climate change scenarios for depicting future dead wood dynamics in addition to a traditional emphasis on live-tree demographics.
Aboveground Biomass and Dynamics of Forest Attributes using LiDAR Data and Vegetation Model
NASA Astrophysics Data System (ADS)
V V L, P. A.
2015-12-01
In recent years, biomass estimation for tropical forests has received much attention because of the fact that regional biomass is considered to be a critical input to climate change. Biomass almost determines the potential carbon emission that could be released to the atmosphere due to deforestation or conservation to non-forest land use. Thus, accurate biomass estimation is necessary for better understating of deforestation impacts on global warming and environmental degradation. In this context, forest stand height inclusion in biomass estimation plays a major role in reducing the uncertainty in the estimation of biomass. The improvement in the accuracy in biomass shall also help in meeting the MRV objectives of REDD+. Along with the precise estimate of biomass, it is also important to emphasize the role of vegetation models that will most likely become an important tool for assessing the effects of climate change on potential vegetation dynamics and terrestrial carbon storage and for managing terrestrial ecosystem sustainability. Remote sensing is an efficient way to estimate forest parameters in large area, especially at regional scale where field data is limited. LIDAR (Light Detection And Ranging) provides accurate information on the vertical structure of forests. We estimated average tree canopy heights and AGB from GLAS waveform parameters by using a multi-regression linear model in forested area of Madhya Pradesh (area-3,08,245 km2), India. The derived heights from ICESat-GLAS were correlated with field measured tree canopy heights for 60 plots. Results have shown a significant correlation of R2= 74% for top canopy heights and R2= 57% for stand biomass. The total biomass estimation 320.17 Mt and canopy heights are generated by using random forest algorithm. These canopy heights and biomass maps were used in vegetation models to predict the changes biophysical/physiological characteristics of forest according to the changing climate. In our study we have used Dynamic Global Vegetation Model to understand the possible vegetation dynamics in the event of climate change. The vegetation represents a biogeographic regime. Simulations were carried out for 70 years time period. The model produced leaf area index and biomass for each plant functional type and biome for each grid in that region.
Elkin, Ché; Giuggiola, Arnaud; Rigling, Andreas; Bugmann, Harald
2015-06-01
In many regions of the world, drought is projected to increase under climate change, with potential negative consequences for forests and their ecosystem services (ES). Forest thinning has been proposed as a method for at least temporarily mitigating drought impacts, but its general applicability and longer-term impacts are unclear. We use a process-based forest model to upscale experimental data for evaluating the impacts of forest thinning in a drought-susceptible valley in the interior of the European Alps, with the specific aim of assessing (1) when and where thinning may be most effective and (2) the longer-term implications for forest dynamics. Simulations indicate that forests will be impacted by climate-induced increases in drought across a broad elevation range. At lower elevations, where drought is currently prevalent, thinning is projected to temporarily reduce tree mortality, but to have minor impacts on forest dynamics in the longer term. Thinning may be particularly useful at intermediate and higher elevations as a means of temporarily reducing mortality in drought-sensitive species such as Norway spruce and larch, which currently dominate these elevations. However, in the longer term, even intense thinning will likely not be sufficient to prevent a climate change induced dieback of these species, which is projected to occur under even moderate climate change. Thinning is also projected to have the largest impact on long-term forest dynamics at intermediate elevations, with the magnitude of the impact depending on the timing and intensity of thinning. More intense thinning that is done later is projected to more strongly promote a transition to more drought-tolerant species. We conclude that thinning is a viable option for temporarily reducing the negative drought impacts on forests, but that efficient implementation of thinning should be contingent on a site-specific evaluation of the near term risk of significant drought, and how thinning will impact the rate and direction of climate driven forest conversion.
A sensitive slope: estimating landscape patterns of forest resilience in a changing climate
Jill F. Johnstone; Eliot J.B. McIntire; Eric J. Pedersen; Gregory King; Michael J.F. Pisaric
2010-01-01
Changes in Earth's environment are expected to stimulate changes in the composition and structure of ecosystems, but it is still unclear how the dynamics of these responses will play out over time. In long-lived forest systems, communities of established individuals may be resistant to respond to directional climate change, but may be highly sensitive to climate...
An integrated land change model for projecting future climate and land change scenarios
Wimberly, Michael; Sohl, Terry L.; Lamsal, Aashis; Liu, Zhihua; Hawbaker, Todd J.
2013-01-01
Climate change will have myriad effects on ecosystems worldwide, and natural and anthropogenic disturbances will be key drivers of these dynamics. In addition to climatic effects, continual expansion of human settlement into fire-prone forests will alter fire regimes, increase human vulnerability, and constrain future forest management options. There is a need for modeling tools to support the simulation and assessment of new management strategies over large regions in the context of changing climate, shifting development patterns, and an expanding wildland-urban interface. To address this need, we developed a prototype land change simulator that combines human-driven land use change (derived from the FORE-SCE model) with natural disturbances and vegetation dynamics (derived from the LADS model) and incorporates novel feedbacks between human land use and disturbance regimes. The prototype model was implemented in a test region encompassing the Denver metropolitan area along with its surrounding forested and agricultural landscapes. Initial results document the feasibility of integrated land change modeling at a regional scale but also highlighted conceptual and technical challenges for this type of model integration. Ongoing development will focus on improving climate sensitivities and modeling constraints imposed by climate change and human population growth on forest management activities.
NASA Astrophysics Data System (ADS)
Caldwell, P.; Elliott, K.; Hartsell, A.; Miniat, C.
2016-12-01
Climate change and disturbances are threatening the ability of forested watersheds to provide the clean, reliable, and abundant fresh water necessary to support aquatic ecosystems and a growing human population. Forested watersheds in the eastern US have undergone significant change over the 20th century due to natural and introduced disturbances and a legacy of land use. We hypothesize that changes in forest age and species composition (i.e., forest change) associated with these disturbances may have altered forest water use and thus streamflow (Q) due to inherent differences in transpiration among species and forest ages. To test this hypothesis, we quantified changes in Q from 1960 to 2012 in 202 US Geological Survey forested reference watersheds across the eastern US, and separated the effect of changes in climate from forest change using Auto-Regressive Integrated Moving Average (ARIMA) time series modeling. We linked changes in Q to forest disturbance, forest ages and species composition using the Landsat-based North American Forest Dynamics dataset and plot-level USDA Forest Service Forest Inventory and Analysis (FIA) data. We found that 172 of the 202 sites (85%) exhibited changes in Q not accounted for by climate that we attributed to forest change and/or land use change. Among these, 76 (44%) had declining Q due to forest change (mostly in the southeastern US) while 96 (56%) had increasing Q (mostly in the mid-Atlantic and northeastern US). Across the 172 sites with forest-related changes in Q, 34% had at least 10% of the watershed area disturbed at least once from 1986-2010. In a case study of three watersheds, FIA data indicated that changes in forest structure and species composition explained observed changes in Q beyond climate effects. Our results suggest that forest-related changes in Q may have significant implications for water supply in the region and may inform forest management strategies to mitigate climate change impacts on water resources.
NASA Astrophysics Data System (ADS)
Kelsey, Katharine Cashman
Climate change is resulting in a number of rapid changes in forests worldwide. Forests comprise a critical component of the global carbon cycle, and therefore climate-induced changes in forest carbon balance have the potential to create a feedback within the global carbon cycle and affect future trajectories of climate change. In order to further understanding of climate-driven changes in forest carbon balance, I (1) develop a method to improve spatial estimates forest carbon stocks, (2) investigate the effect of climate change and forest management actions on forest recovery and carbon balance following disturbance, and (3) explore the relationship between climate and forest growth, and identify climate-driven trends in forest growth through time, within San Juan National Forest in southwest Colorado, USA. I find that forest carbon estimates based on texture analysis from LandsatTM imagery improve regional forest carbon maps, and this method is particularly useful for estimating carbon stocks in forested regions affected by disturbance. Forest recovery from disturbance is also a critical component of future forest carbon stocks, and my results indicate that both climate and forest management actions have important implications for forest recovery and carbon dynamics following disturbance. Specifically, forest treatments that use woody biomass removed from the forest for electricity production can reduce carbon emissions to the atmosphere, but climate driven changes in fire severity and forest recovery can have the opposite effect on forest carbon stocks. In addition to the effects of disturbance and recovery on forest condition, I also find that climate change is decreasing rates of forest growth in some species, likely in response to warming summer temperatures. These growth declines could result in changes of vegetation composition, or in extreme cases, a shift in vegetation type that would alter forest carbon storage. This work provides insight into both current and future changes in forest carbon balance as a consequence of climate change and forest management in the western US.
Dynamically incorporating late-successional forest in sustainable landscapes
Ann E. Camp; Paul F. Hessburg; Richard L. Everett
1996-01-01
Ecosystems and landscapes change over time as a function of vegetation characteristics and disturbance regimes, including fire. Interactions between disturbance events and forest development (succession) create patterns of vegetation across landscapes. These patterns result from, and change with respect to, species compositions and structures that arise from...
Spaceborne potential for examining taiga-tundra ecotone form and vulnerability
NASA Astrophysics Data System (ADS)
Montesano, Paul M.; Sun, Guoqing; Dubayah, Ralph O.; Ranson, K. Jon
2016-07-01
In the taiga-tundra ecotone (TTE), site-dependent forest structure characteristics can influence the subtle and heterogeneous structural changes that occur across the broad circumpolar extent. Such changes may be related to ecotone form, described by the horizontal and vertical patterns of forest structure (e.g., tree cover, density, and height) within TTE forest patches, driven by local site conditions, and linked to ecotone dynamics. The unique circumstance of subtle, variable, and widespread vegetation change warrants the application of spaceborne data including high-resolution (< 5 m) spaceborne imagery (HRSI) across broad scales for examining TTE form and predicting dynamics. This study analyzes forest structure at the patch scale in the TTE to provide a means to examine both vertical and horizontal components of ecotone form. We demonstrate the potential of spaceborne data for integrating forest height and density to assess TTE form at the scale of forest patches across the circumpolar biome by (1) mapping forest patches in study sites along the TTE in northern Siberia with a multi-resolution suite of spaceborne data and (2) examining the uncertainty of forest patch height from this suite of data across sites of primarily diffuse TTE forms. Results demonstrate the opportunities for improving patch-scale spaceborne estimates of forest height, the vertical component of TTE form, with HRSI. The distribution of relative maximum height uncertainty based on prediction intervals is centered at ˜ 40 %, constraining the use of height for discerning differences in forest patches. We discuss this uncertainty in light of a conceptual model of general ecotone forms and highlight how the uncertainty of spaceborne estimates of height can contribute to the uncertainty in identifying TTE forms. A focus on reducing the uncertainty of height estimates in forest patches may improve depiction of TTE form, which may help explain variable forest responses in the TTE to climate change and the vulnerability of portions of the TTE to forest structure change.
Forest transitions in Eastern Europe and their effects on carbon budgets.
Kuemmerle, Tobias; Kaplan, Jed O; Prishchepov, Alexander V; Rylsky, Ilya; Chaskovskyy, Oleh; Tikunov, Vladimir S; Müller, Daniel
2015-08-01
Forests often rebound from deforestation following industrialization and urbanization, but for many regions our understanding of where and when forest transitions happened, and how they affected carbon budgets remains poor. One such region is Eastern Europe, where political and socio-economic conditions changed drastically over the last three centuries, but forest trends have not yet been analyzed in detail. We present a new assessment of historical forest change in the European part of the former Soviet Union and the legacies of these changes on contemporary carbon stocks. To reconstruct forest area, we homogenized statistics at the provincial level for ad 1700-2010 to identify forest transition years and forest trends. We contrast our reconstruction with the KK11 and HYDE 3.1 land change scenarios, and use all three datasets to drive the LPJ dynamic global vegetation model to calculate carbon stock dynamics. Our results revealed that forest transitions in Eastern Europe occurred predominantly in the early 20th century, substantially later than in Western Europe. We also found marked geographic variation in forest transitions, with some areas characterized by relatively stable or continuously declining forest area. Our data suggest extensive deforestation in European Russia already prior to ad 1700, and even greater deforestation in the 18th and 19th centuries than in the KK11 and HYDE scenarios. Based on our reconstruction, cumulative carbon emissions from deforestation were greater before 1700 (60 Pg C) than thereafter (29 Pg C). Summed over our entire study area, forest transitions led to a modest uptake in carbon over recent decades, with our dataset showing the smallest effect (<5.5 Pg C) and a more heterogeneous pattern of source and sink regions. This suggests substantial sequestration potential in regrowing forests of the region, a trend that may be amplified through ongoing land abandonment, climate change, and CO2 fertilization. © 2015 John Wiley & Sons Ltd.
Tropical forests and the changing earth system.
Lewis, Simon L
2006-01-29
Tropical forests are global epicentres of biodiversity and important modulators of the rate of climate change. Recent research on deforestation rates and ecological changes within intact forests, both areas of recent research and debate, are reviewed, and the implications for biodiversity (species loss) and climate change (via the global carbon cycle) addressed. Recent impacts have most likely been: (i) a large source of carbon to the atmosphere, and major loss of species, from deforestation and (ii) a large carbon sink within remaining intact forest, accompanied by accelerating forest dynamism and widespread biodiversity changes. Finally, I look to the future, suggesting that the current carbon sink in intact forests is unlikely to continue, and that the tropical forest biome may even become a large net source of carbon, via one or more of four plausible routes: changing photosynthesis and respiration rates, biodiversity changes in intact forest, widespread forest collapse via drought, and widespread forest collapse via fire. Each of these scenarios risks potentially dangerous positive feedbacks with the climate system that could dramatically accelerate and intensify climate change. Given that continued land-use change alone is already thought to be causing the sixth mass extinction event in Earth's history, should such feedbacks occur, the resulting biodiversity and societal consequences would be even more severe.
NASA Astrophysics Data System (ADS)
Lee, J.; Kim, M.; Son, Y.; Lee, W. K.
2017-12-01
Korean forests have recovered by the national-scale reforestation program and can contribute to the national greenhouse gas (GHG) mitigation goal. The forest carbon (C) sequestration is expected to change by climate change and forest management regime. In this context, estimating the changes in GHG mitigation potential of Korean forestry sector by climate and management is a timely issue. Thus, we estimated the forest C sequestration of Korea under four scenarios (2010-2050): constant temperature with no management (CT_No), representative concentration pathway (RCP) 8.5 with no management (RCP_No), constant temperature with thinning management (CT_Man), and RCP 8.5 with thinning management (RCP_Man). Dynamic stand growth model (KO-G-Dynamic; for biomass) and forest C model (FBDC model; for non-biomass) were used at approximately 64,000 simulation units (1km2). As model input data, the forest data (e.g., forest type and stand age) and climate data were spatially prepared from the national forest inventories and the RCP 8.5 climate data. The model simulation results showed that the mean annual C sequestrations during the period (Tg C yr-1) were 11.0, 9.9, 11.5, and 10.5, respectively, under the CT_No, RCP_No, CT_Man, and RCP_Man, respectively, at the national scale. The C sequestration decreased with the time passage due to the maturity of the forests. The climate change seemed disadvantageous to the C sequestration by the forest ecosystems (≒ -1.0 Tg C yr-1) due to the increase in organic matter decomposition. In particular, the decrease in C sequestration by the climate change was greater for the needle-leaved species, compared to the broad-leaved species. Meanwhile, the forest management enhanced forest C sequestration (≒ 0.5 Tg C yr-1). Accordingly, implementing appropriate forest management strategies for adaptation would contribute to maintaining the C sequestration by Korean forestry sector under climate change. Acknowledgement: This study was supported by Korean Ministry of Environment (2014001310008).
Jorge Durán; Jennifer L. Morse; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer
2014-01-01
Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity...
The new forest carbon accounting framework for the United States
NASA Astrophysics Data System (ADS)
Domke, G. M.; Woodall, C. W.; Coulston, J.; Wear, D. N.; Healey, S. P.; Walters, B. F.
2015-12-01
The forest carbon accounting system used in recent National Greenhouse Gas Inventories (NGHGI) was developed more than a decade ago when the USDA Forest Service, Forest Inventory and Analysis annual inventory system was in its infancy and contemporary questions regarding the terrestrial sink (e.g., attribution) did not exist. The time has come to develop a new framework that can quickly address new questions, enables forest carbon analytics, and uses all the inventory information (e.g., disturbances and land use change) while having the flexibility to engage a wider breadth of stakeholders and partner agencies. The Forest Carbon Accounting Framework (FCAF) is comprised of a forest dynamics module and a land use dynamics module. Together these modules produce data-driven estimates of carbon stocks and stock changes in forest ecosystems that are sensitive to carbon sequestration, forest aging, and disturbance effects as well as carbon stock transfers associated with afforestation and deforestation. The new accounting system was used in the 2016 NGHGI report and research is currently underway to incorporate emerging non-live tree carbon pool data, remotely sensed information, and auxiliary data (e.g., climate information) into the FCAF.
Yao, Jing; He, Xingyuan; He, Hongshi; Chen, Wei; Dai, Limin; Lewis, Bernard J.; Yu, Lizhong
2016-01-01
Unlike the virgin forest in the Changbaishan Nature Reserve in northeastern China, little research on a landscape scale has been conducted on secondary forests in the region under conditions of a warming climate. This research was undertaken in the upper Hun River region where the vegetation is representative of the typical secondary forest of northeastern China. The spatially explicit forest landscape model LANDIS was utilized to simulate the responses of forest restoration dynamics to anthropogenic disturbance (planting and harvesting) and evaluate the difference of the restoration process under continuation of current climatic conditions and climate warming. The results showed that: (1) The interaction of planting and harvesting has organizational scale effects on the forest. The combination of planting and harvesting policies has significant effects on the overall forest but not on individual species. (2) The area expansion of the historically dominant species Pinus koraiensis is less under climate warming than under continuation of current climatic conditions. These suggests that we should carefully take historically dominant species as the main focus for forest restoration, especially when they are near their natural distribution boundary, because they are probably less capable of successfully adapting to climate change. PMID:26725308
Yao, Jing; He, Xingyuan; He, Hongshi; Chen, Wei; Dai, Limin; Lewis, Bernard J; Yu, Lizhong
2016-01-04
Unlike the virgin forest in the Changbaishan Nature Reserve in northeastern China, little research on a landscape scale has been conducted on secondary forests in the region under conditions of a warming climate. This research was undertaken in the upper Hun River region where the vegetation is representative of the typical secondary forest of northeastern China. The spatially explicit forest landscape model LANDIS was utilized to simulate the responses of forest restoration dynamics to anthropogenic disturbance (planting and harvesting) and evaluate the difference of the restoration process under continuation of current climatic conditions and climate warming. The results showed that: (1) The interaction of planting and harvesting has organizational scale effects on the forest. The combination of planting and harvesting policies has significant effects on the overall forest but not on individual species. (2) The area expansion of the historically dominant species Pinus koraiensis is less under climate warming than under continuation of current climatic conditions. These suggests that we should carefully take historically dominant species as the main focus for forest restoration, especially when they are near their natural distribution boundary, because they are probably less capable of successfully adapting to climate change.
John C. Brissette; Michael R. Saunders; Laura S. Kenefic; Paul E. Sendak
2006-01-01
The most comprehensive study of stand dynamics in the Acadian Forest Region is an experiment by the USDA Forest Service at the Penobscot Experimental Forest (PEF) in Maine. It was established from 1952-1957 to study changes in structure, composition, and productivity from an array of silvicultural treatments. Ingrowth, accretion, and mortality of individual trees (!Y0....
W. Wang; J. Xiao; S. V. Ollinger; J. Chen; A. Noormets
2014-01-01
Stand-replacing disturbances including harvests have substantial impacts on forest carbon (C) fluxes and stocks. The quantification and simulation of these effects is essential for better understanding forest C dynamics and informing forest management 5 in the context of global change. We evaluated the process-based forest ecosystem model, PnET-CN, for how well and by...
Nitrogen dynamics in managed boreal forests: Recent advances and future research directions.
Sponseller, Ryan A; Gundale, Michael J; Futter, Martyn; Ring, Eva; Nordin, Annika; Näsholm, Torgny; Laudon, Hjalmar
2016-02-01
Nitrogen (N) availability plays multiple roles in the boreal landscape, as a limiting nutrient to forest growth, determinant of terrestrial biodiversity, and agent of eutrophication in aquatic ecosystems. We review existing research on forest N dynamics in northern landscapes and address the effects of management and environmental change on internal cycling and export. Current research foci include resolving the nutritional importance of different N forms to trees and establishing how tree-mycorrhizal relationships influence N limitation. In addition, understanding how forest responses to external N inputs are mediated by above- and belowground ecosystem compartments remains an important challenge. Finally, forestry generates a mosaic of successional patches in managed forest landscapes, with differing levels of N input, biological demand, and hydrological loss. The balance among these processes influences the temporal patterns of stream water chemistry and the long-term viability of forest growth. Ultimately, managing forests to keep pace with increasing demands for biomass production, while minimizing environmental degradation, will require multi-scale and interdisciplinary perspectives on landscape N dynamics.
Nicki J. Whitehouse
2006-01-01
This paper outlines the usefulness of using fossil insects, particularly Coleoptera (beetles), preserved in waterlogged palaeoenvironmental and archaeological deposits in understanding the changing nature of forest ecosystems and their associated insect population dynamics over the last 10,000 years. Research in Europe has highlighted the complex nature of early forest...
Becky K. Kerns; Margaret M. Moore; Stephen C. Hart
2008-01-01
In the last century, ponderosa pine forests in the Southwest have changed from more open park-like stands of older trees to denser stands of younger, small-diameter trees. Considerable information exists regarding ponderosa pine forest fire history and recent shifts in stand structure and composition, yet quantitative studies investigating understory reference...
Fine root dynamics across a chronosequence of upland temperate deciduous forests
Travis W. Idol; Phillip E. Pope; Felix Jr. Ponder
2000-01-01
Following a major disturbance event in forests that removes most of the standing vegetation, patterns of fine root growth, mortality, and decomposition may be altered from the pre-disturbance conditions. The objective of this study was to describe the changes in the seasonal and spatial dynamics of fine root growth, mortality, and decomposition that occur following...
Wildfire and drought dynamics destabilize carbon stores of fire-suppressed forests
J. Mason Earles; Malcolm P. North; Matthew D. Hurteau
2014-01-01
Widespread fire suppression and thinning have altered the structure and composition of many forests in the western United States, making them more susceptible to the synergy of large-scale drought and fire events. We examine how these changes affect carbon storage and stability compared to historic fire-adapted conditions. We modeled carbon dynamics under possible...
Valerie Rapp
2002-01-01
Pacific Northwest forests and all their species evolved with fires, floods, windstorms, landslides, and other disturbances. The dynamics of disturbance were basic to how forests changed and renewed. Disturbance regimes, as scientists call the long-term patterns of these eventsâwhat kind of event, how often, how large, and how severeâcreated the landscape patterns seen...
Valerie Rapp
2003-01-01
Pacific Northwest forests and all their species evolved with fires, floods, windstorms, landslides, and other disturbances. The dynamics of disturbance were basic to how forests changed and renewed. Disturbance regimes, as scientists call the long-term patterns of these eventsâwhat kind of event, how often, how large, and how severeâcreated the landscape patterns seen...
Kretchun, Alec M; Scheller, Robert M; Lucash, Melissa S; Clark, Kenneth L; Hom, John; Van Tuyl, Steve
2014-01-01
Disturbance regimes within temperate forests can significantly impact carbon cycling. Additionally, projected climate change in combination with multiple, interacting disturbance effects may disrupt the capacity of forests to act as carbon sinks at large spatial and temporal scales. We used a spatially explicit forest succession and disturbance model, LANDIS-II, to model the effects of climate change, gypsy moth (Lymantria dispar L.) defoliation, and wildfire on the C dynamics of the forests of the New Jersey Pine Barrens over the next century. Climate scenarios were simulated using current climate conditions (baseline), as well as a high emissions scenario (HadCM3 A2 emissions scenario). Our results suggest that long-term changes in C cycling will be driven more by climate change than by fire or gypsy moths over the next century. We also found that simulated disturbances will affect species composition more than tree growth or C sequestration rates at the landscape level. Projected changes in tree species biomass indicate a potential increase in oaks with climate change and gypsy moth defoliation over the course of the 100-year simulation, exacerbating current successional trends towards increased oak abundance. Our research suggests that defoliation under climate change may play a critical role in increasing the variability of tree growth rates and in determining landscape species composition over the next 100 years.
Kretchun, Alec M.; Scheller, Robert M.; Lucash, Melissa S.; Clark, Kenneth L.; Hom, John; Van Tuyl, Steve
2014-01-01
Disturbance regimes within temperate forests can significantly impact carbon cycling. Additionally, projected climate change in combination with multiple, interacting disturbance effects may disrupt the capacity of forests to act as carbon sinks at large spatial and temporal scales. We used a spatially explicit forest succession and disturbance model, LANDIS-II, to model the effects of climate change, gypsy moth (Lymantria dispar L.) defoliation, and wildfire on the C dynamics of the forests of the New Jersey Pine Barrens over the next century. Climate scenarios were simulated using current climate conditions (baseline), as well as a high emissions scenario (HadCM3 A2 emissions scenario). Our results suggest that long-term changes in C cycling will be driven more by climate change than by fire or gypsy moths over the next century. We also found that simulated disturbances will affect species composition more than tree growth or C sequestration rates at the landscape level. Projected changes in tree species biomass indicate a potential increase in oaks with climate change and gypsy moth defoliation over the course of the 100-year simulation, exacerbating current successional trends towards increased oak abundance. Our research suggests that defoliation under climate change may play a critical role in increasing the variability of tree growth rates and in determining landscape species composition over the next 100 years. PMID:25119162
Legaard, Kasey R; Sader, Steven A; Simons-Legaard, Erin M
2015-01-01
Sustainable forest management is based on functional relationships between management actions, landscape conditions, and forest values. Changes in management practices make it fundamentally more difficult to study these relationships because the impacts of current practices are difficult to disentangle from the persistent influences of past practices. Within the Atlantic Northern Forest of Maine, U.S.A., forest policy and management practices changed abruptly in the early 1990s. During the 1970s-1980s, a severe insect outbreak stimulated salvage clearcutting of large contiguous tracts of spruce-fir forest. Following clearcut regulation in 1991, management practices shifted abruptly to near complete dependence on partial harvesting. Using a time series of Landsat satellite imagery (1973-2010) we assessed cumulative landscape change caused by these very different management regimes. We modeled predominant temporal patterns of harvesting and segmented a large study area into groups of landscape units with similar harvest histories. Time series of landscape composition and configuration metrics averaged within groups revealed differences in landscape dynamics caused by differences in management history. In some groups (24% of landscape units), salvage caused rapid loss and subdivision of intact mature forest. Persistent landscape change was created by large salvage clearcuts (often averaging > 100 ha) and conversion of spruce-fir to deciduous and mixed forest. In groups that were little affected by salvage (56% of landscape units), contemporary partial harvesting caused loss and subdivision of intact mature forest at even greater rates. Patch shape complexity and edge density reached high levels even where cumulative harvest area was relatively low. Contemporary practices introduced more numerous and much smaller patches of stand-replacing disturbance (typically averaging <15 ha) and a correspondingly large amount of edge. Management regimes impacted different areas to different degrees, producing different trajectories of landscape change that should be recognized when studying the impact of policy and management practices on forest ecology.
Legaard, Kasey R.; Sader, Steven A.; Simons-Legaard, Erin M.
2015-01-01
Sustainable forest management is based on functional relationships between management actions, landscape conditions, and forest values. Changes in management practices make it fundamentally more difficult to study these relationships because the impacts of current practices are difficult to disentangle from the persistent influences of past practices. Within the Atlantic Northern Forest of Maine, U.S.A., forest policy and management practices changed abruptly in the early 1990s. During the 1970s-1980s, a severe insect outbreak stimulated salvage clearcutting of large contiguous tracts of spruce-fir forest. Following clearcut regulation in 1991, management practices shifted abruptly to near complete dependence on partial harvesting. Using a time series of Landsat satellite imagery (1973-2010) we assessed cumulative landscape change caused by these very different management regimes. We modeled predominant temporal patterns of harvesting and segmented a large study area into groups of landscape units with similar harvest histories. Time series of landscape composition and configuration metrics averaged within groups revealed differences in landscape dynamics caused by differences in management history. In some groups (24% of landscape units), salvage caused rapid loss and subdivision of intact mature forest. Persistent landscape change was created by large salvage clearcuts (often averaging > 100 ha) and conversion of spruce-fir to deciduous and mixed forest. In groups that were little affected by salvage (56% of landscape units), contemporary partial harvesting caused loss and subdivision of intact mature forest at even greater rates. Patch shape complexity and edge density reached high levels even where cumulative harvest area was relatively low. Contemporary practices introduced more numerous and much smaller patches of stand-replacing disturbance (typically averaging <15 ha) and a correspondingly large amount of edge. Management regimes impacted different areas to different degrees, producing different trajectories of landscape change that should be recognized when studying the impact of policy and management practices on forest ecology. PMID:26106893
NASA Astrophysics Data System (ADS)
Tepley, A. J.; Veblen, T. T.; Perry, G.; Anderson-Teixeira, K. J.
2015-12-01
In the face of on-going climatic warming and land-use change, there is growing concern that temperate forest landscapes could be near a tipping point where relatively small changes to the fire regime or altered post-fire vegetation dynamics could lead to extensive conversion to shrublands or savannas. To evaluate vulnerability and resilience to such conversion, we develop a simple model based on three factors we hypothesize to be key in predicting temperate forest responses to changing fire regimes: (1) the hazard rate (i.e., the probability of burning in the next year given the time since the last fire) in closed-canopy forests, (2) the hazard rate for recently-burned, open-canopy vegetation, and (3) the time to redevelop canopy closure following fire. We generate a response surface representing the proportions of the landscape potentially supporting closed-canopy forest and non-forest vegetation under nearly all combinations of these three factors. We then place real landscapes on this response surface to assess the type and magnitude of changes to the fire regime that would drive extensive forest loss. We show that the deforestation of much of New Zealand that followed initial human colonization and the introduction of a new ignition source ca. 750 years ago was essentially inevitable due to the slow rate of forest recovery after fire and the high flammability of post-fire vegetation. In North America's Pacific Northwest, by contrast, a predominantly forested landscape persisted despite two periods of widespread burning in the recent past due in large part to faster post-fire forest recovery and less pronounced differences in flammability between forests and the post-fire vegetation. We also assess the factors that could drive extensive deforestation in other regions to identify where management could reduce this potential and to guide field and modeling work to better understand the responses and ecological feedbacks to changing fire regimes.
Wylie, Bruce K.; Rigge, Matthew B.; Brisco, Brian; Mrnaghan, Kevin; Rover, Jennifer R.; Long, Jordan
2014-01-01
A warming climate influences boreal forest productivity, dynamics, and disturbance regimes. We used ecosystem models and 250 m satellite Normalized Difference Vegetation Index (NDVI) data averaged over the growing season (GSN) to model current, and estimate future, ecosystem performance. We modeled Expected Ecosystem Performance (EEP), or anticipated productivity, in undisturbed stands over the 2000–2008 period from a variety of abiotic data sources, using a rule-based piecewise regression tree. The EEP model was applied to a future climate ensemble A1B projection to quantify expected changes to mature boreal forest performance. Ecosystem Performance Anomalies (EPA), were identified as the residuals of the EEP and GSN relationship and represent performance departures from expected performance conditions. These performance data were used to monitor successional events following fire. Results suggested that maximum EPA occurs 30–40 years following fire, and deciduous stands generally have higher EPA than coniferous stands. Mean undisturbed EEP is projected to increase 5.6% by 2040 and 8.7% by 2070, suggesting an increased deciduous component in boreal forests. Our results contribute to the understanding of boreal forest successional dynamics and its response to climate change. This information enables informed decisions to prepare for, and adapt to, climate change in the Yukon River Basin forest.
NASA Astrophysics Data System (ADS)
Liang, N.; Kim, S.; Shimoyama, K.; Kim, Y.; Hirano, T.; Takagi, K.; Fujinuma, Y.; Mukai, H.; Takahashi, Y.; Kakubari, Y.; Wang, Q.; Nakane, K.
2007-12-01
Regional networks for measuring carbon sequestration or loss by terrestrial ecosystems on a year round basis have been in operation since the mid-1990s. However, continuous measurements of soil CO2 efflux, the largest component of ecosystem respiration have only been reported over similar time scales at a few of the sites. We have developed a multichannel automated chamber system that can be used for continuous measuring soil CO2 efflux. The system equips 8 to 24 large automated chambers (90*90*50 cm, L*W*H). Since 1997, we have installed the chamber systems in the tundra in west Siberia, boreal forest in Alaska, cool- temperate and temperate forests in Japan, Korea and China, tropical seasonal forest in Thailand, and tropical rainforest in Malaysia. Annual soil CO2 effluxes were estimated to be about 5-6 tC ha-1 y-1 in the boreal and cool-temperate forests, 10 tC ha-1 y-1 in the temperate forests, and 30 tC ha-1 y-1 in the tropical rainforests. Efflux showed significant seasonality in the boreal and temperate forest that corresponding with the seasonal soil temperature. However, the wavelike efflux rates in the tropical forests were correlated with the seasonality of soil moisture. From 2007, a big project that funded by Ministry of the Environment of Japan (MOE) has launched to evaluate the response and feedback of soil carbon dynamics of Japanese forest ecosystems to global change. We are installing another 6 chamber systems at the six of Japanese typical forests to conduct the soil warming experiments. For scaling-up the chamber experiments and understanding the mechanisms of soil organic matter (SOM) dynamics to global change, soil samples from about 100 forest ecosystems will be incubated for modeling development. Furthermore, the environmental (temperature and CO2) controlled large open-top chambers have been employed to investigate the balance of SOM (the input from litter falls and loss due to the decomposition) of forest ecosystems with global change.
The role of forest disturbance in global forest mortality and terrestrial carbon fluxes
NASA Astrophysics Data System (ADS)
Pugh, Thomas; Arneth, Almut; Smith, Benjamin; Poulter, Benjamin
2017-04-01
Large-scale forest disturbance dynamics such as insect outbreaks, wind-throw and fires, along with anthropogenic disturbances such as logging, have been shown to turn forests from carbon sinks into intermittent sources, often quite dramatically so. There is also increasing evidence that disturbance regimes in many regions are changing as a result of climatic change and human land-management practices. But how these landscape-scale events fit into the wider picture of global tree mortality is not well understood. Do such events dominate global carbon turnover, or are their effects highly regional? How sensitive is global terrestrial carbon exchange to realistic changes in the occurrence rate of such disturbances? Here, we combine recent advances in global satellite observations of stand-replacing forest disturbances and in compilations of forest inventory data, with a global terrestrial ecosystem model which incorporates an explicit representation of the role of disturbance in forest dynamics. We find that stand-replacing disturbances account for a fraction of wood carbon turnover that varies spatially from less than 5% in the tropical rainforest to ca. 50% in the mid latitudes, and as much as 90% in some heavily-managed regions. We contrast the size of the land-atmosphere carbon flux due to this disturbance with other components of the terrestrial carbon budget. In terms of sensitivity, we find a quasi log-linear relationship of disturbance rate to total carbon storage. Relatively small changes in disturbance rates at all latitudes have marked effects on vegetation carbon storage, with potentially very substantial implications for the global terrestrial carbon sink. Our results suggest a surprisingly small effect of disturbance type on large-scale forest vegetation dynamics and carbon storage, with limited evidence of widespread increases in nitrogen limitation as a result of increasing future disturbance. However, the influence of disturbance type on soil carbon stocks is very large, illustrating the importance of further efforts to distinguish disturbance drivers at the global scale. Setting our knowledge of forest disturbance into the wider uncertainty in forest mortality processes generally, we offer a perspective for improving understanding of the role of disturbance in global forest carbon cycling.
Stephen F. Arno; Michael G. Harrington
1999-01-01
The 88-year photo sequences, descriptions of historical changes, and the initial results from ecosystembased management treatments at Lick Creek portray a dynamic, ever-changing forest. The goals of ecosystem- based management at Lick Creek are to continuously maintain an open forest containing old growth as well as younger age classes of ponderosa pine. Half a century...
Simulating forest management and its effect on landscape pattern
Eric J. Gustafson
2017-01-01
Landscapes are characterized by their structure (the spatial arrangement of landscape elements), their ecological function (how ecological processes operate within that structure), and the dynamics of change (disturbance and recovery). Thus, understanding the dynamic nature of landscapes and predicting their future dynamics are of particular emphasis. Landscape change...
Tropical forests and global change: filling knowledge gaps.
Zuidema, Pieter A; Baker, Patrick J; Groenendijk, Peter; Schippers, Peter; van der Sleen, Peter; Vlam, Mart; Sterck, Frank
2013-08-01
Tropical forests will experience major changes in environmental conditions this century. Understanding their responses to such changes is crucial to predicting global carbon cycling. Important knowledge gaps exist: the causes of recent changes in tropical forest dynamics remain unclear and the responses of entire tropical trees to environmental changes are poorly understood. In this Opinion article, we argue that filling these knowledge gaps requires a new research strategy, one that focuses on trees instead of leaves or communities, on long-term instead of short-term changes, and on understanding mechanisms instead of documenting changes. We propose the use of tree-ring analyses, stable-isotope analyses, manipulative field experiments, and well-validated simulation models to improve predictions of forest responses to global change. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Reinmann, A.; Hutyra, L.
2016-12-01
Forest fragmentation resulting from land use and land cover change is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. However, our understanding of forest carbon dynamics and their response to climate largely comes from unfragmented forest systems, which presents an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink, but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge. These ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance, but across southern New England, USA it increases carbon uptake and storage by 12.5 ± 2.9% and 9.6 ± 1.4%, respectively. However, we also find that forest growth near the edge declines three times faster than in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.
Kauffman, J Boone; Hughes, R Flint; Heider, Chris
2009-07-01
Current rates of deforestation and the resulting C emissions in the tropics exceed those of secondary forest regrowth and C sequestration. Changing land-use strategies that would maintain standing forests may be among the least expensive of climate change mitigation options. Further, secondary tropical forests have been suggested to have great value for their potential to sequester atmospheric C. These options require an understanding of and capability to quantify C dynamics at landscape scales. Because of the diversity of physical and biotic features of tropical forests as well as approaches and intensities of land uses within the neotropics, there are tremendous differences in the capacity of different landscapes to store and sequester C. Major gaps in our current knowledge include quantification of C pools, rates and patterns of biomass loss following land-cover change, and quantification of the C storage potential of secondary forests following abandonment. In this paper we present a synthesis and further analyses from recent studies that describe C pools, patterns of C decline associated with land use, and rates of C accumulation following secondary-forest establishment--all information necessary for climate-change mitigation options. Ecosystem C pools of Neotropical primary forests minimally range from approximately 141 to 571 Mg/ha, demonstrating tremendous differences in the capacity of different forests to store C. Most of the losses in C and nutrient pools associated with conversion occur when fires are set to remove the slashed forest to prepare sites for crop or pasture establishment. Fires burning slashed primary forests have been found to result in C losses of 62-80% of prefire aboveground pools in dry (deciduous) forest landscapes and 29-57% in wet (evergreen) forest landscapes. Carbon emissions equivalent to the aboveground primary-forest pool arise from repeated fires occurring in the first 4 to 10 years following conversion. Feedbacks of climate change, land-cover change, and increasing habitat fragmentation may result in increases of both the area burned and the total quantity of biomass consumed per unit area by fire. These effects may well limit the capacity for future tropical forests to sequester C and nutrients.
Increased topsoil carbon stock across China's forests.
Yang, Yuanhe; Li, Pin; Ding, Jinzhi; Zhao, Xia; Ma, Wenhong; Ji, Chengjun; Fang, Jingyun
2014-08-01
Biomass carbon accumulation in forest ecosystems is a widespread phenomenon at both regional and global scales. However, as coupled carbon-climate models predicted, a positive feedback could be triggered if accelerated soil carbon decomposition offsets enhanced vegetation growth under a warming climate. It is thus crucial to reveal whether and how soil carbon stock in forest ecosystems has changed over recent decades. However, large-scale changes in soil carbon stock across forest ecosystems have not yet been carefully examined at both regional and global scales, which have been widely perceived as a big bottleneck in untangling carbon-climate feedback. Using newly developed database and sophisticated data mining approach, here we evaluated temporal changes in topsoil carbon stock across major forest ecosystem in China and analysed potential drivers in soil carbon dynamics over broad geographical scale. Our results indicated that topsoil carbon stock increased significantly within all of five major forest types during the period of 1980s-2000s, with an overall rate of 20.0 g C m(-2) yr(-1) (95% confidence interval, 14.1-25.5). The magnitude of soil carbon accumulation across coniferous forests and coniferous/broadleaved mixed forests exhibited meaningful increases with both mean annual temperature and precipitation. Moreover, soil carbon dynamics across these forest ecosystems were positively associated with clay content, with a larger amount of SOC accumulation occurring in fine-textured soils. In contrast, changes in soil carbon stock across broadleaved forests were insensitive to either climatic or edaphic variables. Overall, these results suggest that soil carbon accumulation does not counteract vegetation carbon sequestration across China's forest ecosystems. The combination of soil carbon accumulation and vegetation carbon sequestration triggers a negative feedback to climate warming, rather than a positive feedback predicted by coupled carbon-climate models. © 2014 John Wiley & Sons Ltd.
Ruiz-Gutierrez, Viviana; Zipkin, Elise F.; Dhondt, Andre A.
2010-01-01
1. Worldwide loss of biodiversity necessitates a clear understanding of the factors driving population declines as well as informed predictions about which species and populations are at greatest risk. The biggest threat to the long-term persistence of populations is the reduction and changes in configuration of their natural habitat. 2. Inconsistencies have been noted in the responses of populations to the combined effects of habitat loss and fragmentation. These have been widely attributed to the effects of the matrix habitats in which remnant focal habitats are typically embedded. 3. We quantified the potential effects of the inter-patch matrix by estimating occupancy and colonization of forest and surrounding non-forest matrix (NF). We estimated species-specific parameters using a dynamic, multi-species hierarchical model on a bird community in southwestern Costa Rica. 4. Overall, we found higher probabilities of occupancy and colonization of forest relative to the NF across bird species, including those previously categorized as open habitat generalists not needing forest to persist. Forest dependency was a poor predictor of occupancy dynamics in our study region, largely predicting occupancy and colonization of only non-forest habitats. 5. Our results indicate that the protection of remnant forest habitats is key for the long-term persistence of all members of the bird community in this fragmented landscape, including species typically associated with open, non-forest habitats. 6.Synthesis and applications. We identified 39 bird species of conservation concern defined by having high estimates of forest occupancy, and low estimates of occupancy and colonization of non-forest. These species survive in forest but are unlikely to venture out into open, non-forested habitats, therefore, they are vulnerable to the effects of habitat loss and fragmentation. Our hierarchical community-level model can be used to estimate species-specific occupancy dynamics for focal and inter-patch matrix habitats to identify which species within a community are likely to be impacted most by habitat loss and fragmentation. This model can be applied to other taxa (i.e. amphibians, mammals and insects) to estimate species and community occurrence dynamics in response to current environmental conditions and to make predictions in response to future changes in habitat configurations.
Simulating forest landscape disturbances as coupled human and natural systems
Wimberly, Michael; Sohl, Terry L.; Liu, Zhihua; Lamsal, Aashis
2015-01-01
Anthropogenic disturbances resulting from human land use affect forest landscapes over a range of spatial and temporal scales, with diverse influences on vegetation patterns and dynamics. These processes fall within the scope of the coupled human and natural systems (CHANS) concept, which has emerged as an important framework for understanding the reciprocal interactions and feedbacks that connect human activities and ecosystem responses. Spatial simulation modeling of forest landscape change is an important technique for exploring the dynamics of CHANS over large areas and long time periods. Landscape models for simulating interactions between human activities and forest landscape dynamics can be grouped into two main categories. Forest landscape models (FLMs) focus on landscapes where forests are the dominant land cover and simulate succession and natural disturbances along with forest management activities. In contrast, land change models (LCMs) simulate mosaics of different land cover and land use classes that include forests in addition to other land uses such as developed areas and agricultural lands. There are also several examples of coupled models that combine elements of FLMs and LCMs. These integrated models are particularly useful for simulating human–natural interactions in landscapes where human settlement and agriculture are expanding into forested areas. Despite important differences in spatial scale and disciplinary scope, FLMs and LCMs have many commonalities in conceptual design and technical implementation that can facilitate continued integration. The ultimate goal will be to implement forest landscape disturbance modeling in a CHANS framework that recognizes the contextual effects of regional land use and other human activities on the forest ecosystem while capturing the reciprocal influences of forests and their disturbances on the broader land use mosaic.
NASA Astrophysics Data System (ADS)
Reyer, Christopher P. O.; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G.; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P.; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Guerra Hernández, Juan; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J.; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A.; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E.; Hanewinkel, Marc
2017-03-01
Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.
Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc
2017-01-01
Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures. PMID:28855959
Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João Hn; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc
2017-03-16
Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.
NASA Astrophysics Data System (ADS)
Nakai, T.; Kumagai, T.; Saito, T.; Matsumoto, K.; Kume, T.; Nakagawa, M.; Sato, H.
2015-12-01
Bornean tropical rain forests are among the moistest biomes of the world with abundant rainfall throughout the year, and considered to be vulnerable to a change in the rainfall regime; e.g., high tree mortality was reported in such forests induced by a severe drought associated with the ENSO event in 1997-1998. In order to assess the effect (risk) of future climate change on eco-hydrology in such tropical rain forests, it is important to understand the water use of trees individually, because the vulnerability or mortality of trees against climate change can depend on the size of trees. Therefore, we refined the Spatially Explicit Individual-Based Dynamic Global Vegetation Model (SEIB-DGVM) so that the transpiration and its control by stomata are calculated for each individual tree. By using this model, we simulated the transpiration of each tree and its DBH-size dependency, and successfully reproduced the measured data of sap flow of trees and eddy covariance flux data obtained in a Bornean lowland tropical rain forest in Lambir Hills National Park, Sarawak, Malaysia.
Li, Xiao-Na; He, Hong-Shi; Wu, Zhi-Wei; Liang, Yu
2012-12-01
With the combination of forest landscape model (LANDIS) and forest gap model (LINKAGES), this paper simulated the effects of climate change on the boreal forest landscape in the Great Xing'an Mountains, and compared the direct effects of climate change and the effects of climate warming-induced fires on the forest landscape. The results showed that under the current climate conditions and fire disturbances, the forest landscape in the study area could maintain its dynamic balance, and Larix gmelinii was still the dominant tree species. Under the future climate and fire disturbances scenario, the distribution area of L. gmelinii and Pinus pumila would be decreased, while that of Betula platyphylla, Populus davidiana, Populus suaveolens, Chosenia arbutifolia, and Pinus sylvestris var. mongolica would be increased, and the forest fragmentation and forest diversity would have an increase. The changes of the forest landscape lagged behind climate change. Climate warming would increase the growth of most tree species except L. gmelinii, while the increased fires would increase the distribution area of P. davidiana, P. suaveolens, and C. arbutifolia and decrease the distribution area of L. gmelinii, P. sylvestris var. mongolica, and P. pumila. The effects of climate warming-induced fires on the forest landscape were almost equal to the direct effects of climate change, and aggravated the direct effects of climate change on forest composition, forest landscape fragmentation, and forest landscape diversity.
NASA Astrophysics Data System (ADS)
Liang, S.; Hurteau, M. D.; Westerling, A. L.
2014-12-01
The Sierra Nevada Mountains are occupied by a diversity of forest types that sort by elevation. The interaction of changing climate and altered disturbance regimes (e.g. fire) has the potential to drive changes in forest distribution as a function of species-specific response. Quantifying the effects of these drivers on species distributions and productivity under future climate-fire interactions is necessary for informing mitigation and adaptation efforts. In this study, we assimilated forest inventory and soil survey data and species life history traits into a landscape model, LANDIS-II, to quantify the response of forest dynamics to the interaction of climate change and large wildfire frequency in the Sierra Nevada. We ran 100-year simulations forced with historical climate and climate projections from three models (GFDL, CNRM and CCSM3) driven by the A2 emission scenario. We found that non-growing season NPP is greatly enhanced by 15%-150%, depending on the specific climate projection. The greatest increase occurs in subalpine forests. Species-specific response varied as a function of life history characteristics. The distribution of drought and fire-tolerant species, such as ponderosa pine, expanded by 7.3-9.6% from initial conditions, while drought and fire-intolerant species, such as white fir, showed little change in the absence of fire. Changes in wildfire size and frequency influence species distributions by altering the successional stage of burned patches. The range of responses to different climate models demonstrates the sensitivity of these forests to climate variability. The scale of climate projections relative to the scale of forest simulations presents a source of uncertainty, particularly at the ecotone between forest types and for identifying topographically mediated climate refugia. Improving simulations will likely require higher resolution climate projections.
[Impacts of forest and precipitation on runoff and sediment in Tianshui watershed and GM models].
Ouyang, H
2000-12-01
This paper analyzed the impacts of foret stand volume and precipitation on annual erosion modulus, mean sediment, maximum sediment, mean runoff, maximum runoff, minimum runoff, mean water level, maximum water level and minimum water level in Tianshui watershed, and also analyzed the effect of the variation of forest stand volume on monthly mean runoff, minimum runoff and mean water level. The dynamic models of grey system GM(1, N) were constructed to simulate the changes of these hydrological elements. The dynamic GM models on the impact of stand volumes of different forest types(Chinese fir, masson pine and broad-leaved forests) with different age classes(young, middle-aged, mature and over-mature) and that of precipitation on the hydrological elements were also constructed, and their changes with time were analyzed.
NASA Astrophysics Data System (ADS)
Russell, M. B.; Woodall, C. W.; D'Amato, A. W.; Fraver, S.; Bradford, J. B.
2014-06-01
Forest ecosystems play a critical role in mitigating greenhouse gas emissions. Long-term forest carbon (C) storage is determined by the balance between C fixation into biomass through photosynthesis and C release via decomposition and combustion. Relative to C fixation in biomass, much less is known about C depletion through decomposition of woody debris, particularly under a changing climate. It is assumed that the increased temperatures and longer growing seasons associated with projected climate change will increase the decomposition rates (i.e., more rapid C cycling) of downed woody debris (DWD); however, the magnitude of this increase has not been previously addressed. Using DWD measurements collected from a national forest inventory of the eastern United States, we show that the residence time of DWD may decrease (i.e., more rapid decomposition) by as much as 13% over the next 200 years depending on various future climate change scenarios and forest types. Although existing dynamic global vegetation models account for the decomposition process, they typically do not include the effect of a changing climate on DWD decomposition rates. We expect that an increased understanding of decomposition rates, as presented in this current work, will be needed to adequately quantify the fate of woody detritus in future forests. Furthermore, we hope these results will lead to improved models that incorporate climate change scenarios for depicting future dead wood dynamics, in addition to a traditional emphasis on live tree demographics.
NASA Astrophysics Data System (ADS)
Drobyshev, Igor; Bergeron, Yves; Girardin, Martin P.; Gauthier, Sylvie; Ols, Clémentine; Ojal, John
2017-10-01
The length of the fire cycle is a critical factor affecting the vegetation cover in boreal and temperate regions. However, its responses to climate change remain poorly understood. We reanalyzed data from earlier studies of forest age structures at the landscape level, in order to map the evolution of regional fire cycles across Eastern North American boreal and temperate forests, following the termination of the Little Ice Age (LIA). We demonstrated a well-defined spatial pattern of post-LIA changes in the length of fire cycles toward lower fire activity during the 1800s and 1900s. The western section of Eastern North America (west of 77°W) experienced a decline in fire activity as early as the first half of the 1800s. By contrast, the eastern section showed these declines as late as the early 1900s. During a regionally fire-prone period of the 1910s-1920s, forests in the western section of Eastern boreal North America burned more than forests in the eastern section. The climate appeared to dominate over vegetation composition and human impacts in shaping the geographical pattern of the post-LIA change in fire activity. Changes in the atmospheric circulation patterns following the termination of the LIA, specifically changes in Arctic Oscillation and the strengthening of the Continental Polar Trough, were likely drivers of the regional fire dynamics.
Landscape dynamics in the wildland-urban interface
Wayne C. Zipperer
2012-01-01
The wildlandâurban interface represents landscape changeâchanges brought about by urbanization, by shifts in forest management, and altered disturbance regimes, each having ecological, social, and economic ramifications. In this chapter, I will focus on some of the ecological ramifications associated with landscape change, primarily forest fragmentation and...
Tropical-Forest Structure and Biomass Dynamics from TanDEM-X Radar Interferometry
Robert Treuhaft; Yang Lei; Fabio Gonçalves; Michael Keller; João Santos; Maxim Neumann; André Almeida
2017-01-01
Changes in tropical-forest structure and aboveground biomass (AGB) contribute directly to atmospheric changes in CO2, which, in turn, bear on global climate. This paper demonstrates the capability of radar-interferometric phase-height time series at X-band (wavelength = 3 cm) to monitor changes in vertical structure and AGB, with sub-hectare and monthly spatial and...
A. De Bruijn; E.J. Gustafson; B.R. Sturtevant; J.R. Foster; B.R. Miranda; N.I. Lichti; D.F. Jacobs
2014-01-01
Ecological models built on phenomenological relationships and behavior of the past may not be robustunder novel conditions of the future because global changes are producing environmental conditions that forests have not experienced historically. We developed a new succession extension for the LANDIS-II forest landscape model, PnET-Succession, to simulate forest growth...
A comparison of forest dynamics at two sites in the Southeastern Ozark Mountains of Missouri
Michael A. Jenkins; Stephen G. Pallardy
1993-01-01
Changes in tree species composition and regeneration patterns were studied in 53 permanent vegetation plots located at two sites (Pioneer Forest and University State Forest) in oak-hickory forests of southeastern Missouri where mortality and decline of red oak species have been identified. The two sites also exhibited differing levels of decline and mortality. Between...
David N. Wear; Robert Huggett
2011-01-01
This chapter describes how forest type and age distributions might be expected to change in the Appalachian-Cumberland portions of the Central Hardwood Region over the next 50 years. Forecasting forest conditions requires accounting for a number of biophysical and socioeconomic dynamics within an internally consistent modeling framework. We used the US Forest...
Becky K. Kerns; Margaret M. Moore; Stephen C. Hart
2008-01-01
In the last century, ponderosa pine forests in the Southwest have changed from more open park-like stands of older trees to denser stands of younger, smalldiameter trees. Considerable information exists regarding ponderosa pine forest fire history and recent shifts in stand structure and composition, yet quantitative studies investigating understory reference...
Forest fragmentation and bird community dynamics: inference at regional scales
Thierry Boulinier; James D. Nichols; James E. Hines; John R. Sauer; Curtis H. Flather; Kenneth H. Pollock
2001-01-01
With increasing fragmentation of natural areas and a dramatic reduction of forest cover in several parts of the world, quantifying the impact of such changes on species richness and community dynamics has been a subject of much concern. Here, we tested whether in more fragmented landscapes there was a lower number of area-sensitive species and higher local extinction...
The effects of wind disturbance on temperate rain forest structure and dynamics of southeast Alaska.
Gregory J. Nowacki; Marc G. Kramer
1998-01-01
Wind disturbance plays a fundamental role in shaping forest dynamics in southeast Alaska. Recent studies have increased our appreciation for the effects of wind at both large and small scales. Current thinking is that wind disturbance characteristics change over a continuum dependent on landscape features (e.g., exposure, landscape position, topography). Data modeling...
Christopher M. Gough; John R. Seiler
2004-01-01
Forest soils store an immense quantity of labile carbon (C) and a may be large potential sink for atmospheric C. Forest management practices such as fertilization may enhance overall C storage in soils, yet changes in physiological processes following nutrient amendments have not been widely investigated. We intensively monitored below-ground C dynamics for nearly 200...
NASA Astrophysics Data System (ADS)
Trierweiler, A.; Powers, J. S.; Xu, X.; Gei, M. G.; Medvigy, D.
2017-12-01
As one of the most threatened tropical biomes, Seasonal Dry Tropical Forests (TDF) have undergone extensive land-use change. However, some areas are undergoing recovery into secondary forests. Despite their broad distribution (42% of tropical forests), they are under-studied compared to wet tropical forests and our understanding of their biogeochemical cycling and belowground processes are limited. Here, we use models along with field measurements to improve our understanding of nutrient cycling and limitation in secondary TDFs. We ask (1) Is there modeling evidence that tropical dry forests can become nutrient limited? (2) What are the most important mechanisms employed to avoid nutrient limitation? (3) How might climate change alter biogeochemical cycling and nutrient limitation in recovering TDF? We use a new version of the Ecosystem Demography (ED2) model that has been recently parameterized for TDFs and incorporates a range of plant functional groups (including deciduousness and N2-fixation) and multiple resource constraints (carbon, nitrogen, phosphorus, and water). In the model, plants then can dynamically adjust their carbon allocation and nutrient acquisition strategies using N2-fixing bacteria and mycorrhizal fungi according to the nutrient limitation status. We ran the model for a nutrient gradient of field sites in Costa Rica and explored the sensitivity of nutrient limitation to key mechanisms including litter respiration, N resorption, N2-fixation, and overflow respiration. Future runs will evaluate how CO2 and climate change affect recovering TDFs. We found increasing nutrient limitation across the nutrient gradient of sites. Nitrogen limitation dominated the nutrient limitation signal. In the model, forest litter accumulation was negatively correlated with site fertility in Costa Rican forests. Our sensitivity analyses indicate that N2-fixer abundance, decomposition rates, and adding more explicit microbial dynamics are key factors in overcoming this limitation. These insights improve our understanding of how TDFs function and are especially relevant to the management of recovering secondary TDFs by highlighting potential bottlenecks in the recovery process.
Remote sensing monitoring and driving force analysis to forest and greenbelt in Zhuhai
NASA Astrophysics Data System (ADS)
Yuliang Qiao, Pro.
As an important city in the southern part of Chu Chiang Delta, Zhuhai is one of the four special economic zones which are opening up to the outside at the earliest in China. With pure and fresh air and trees shading the street, Zhuhai is a famous beach port city which is near the mountain and by the sea. On the basis of Garden City, the government of Zhuhai decides to build National Forest City in 2011, which firstly should understand the situation of greenbelt in Zhuhai in short term. Traditional methods of greenbelt investigation adopt the combination of field surveying and statistics, whose efficiency is low and results are not much objective because of artificial influence. With the adventure of the information technology such as remote sensing to earth observation, especially the launch of many remote sensing satellites with high resolution for the past few years, kinds of urban greenbelt information extraction can be carried out by using remote sensing technology; and dynamic monitoring to spatial pattern evolvement of forest and greenbelt in Zhuhai can be achieved by the combination of remote sensing and GIS technology. Taking Landsat5 TM data in 1995, Landsat7 ETM+ data in 2002, CCD and HR data of CBERS-02B in 2009 as main information source, this research firstly makes remote sensing monitoring to dynamic change of forest and greenbelt in Zhuhai by using the combination of vegetation coverage index and three different information extraction methods, then does a driving force analysis to the dynamic change results in 3 months. The results show: the forest area in Zhuhai shows decreasing tendency from 1995 to 2002, increasing tendency from 2002 to 2009; overall, the forest area show a small diminution tendency from 1995 to 2009. Through the comparison to natural and artificial driving force, the artificial driving force is the leading factor to the change of forest and greenbelt in Zhuhai. The research results provide a timely and reliable scientific basis for the Zhuhai Government in building National Forest City. Keywords: forest and greenbelt; remote sensing; dynamic monitoring; driving force; vegetation coverage
Estimating Amazonian rainforest stability and the likelihood for large-scale forest dieback
NASA Astrophysics Data System (ADS)
Rammig, Anja; Thonicke, Kirsten; Jupp, Tim; Ostberg, Sebastian; Heinke, Jens; Lucht, Wolfgang; Cramer, Wolfgang; Cox, Peter
2010-05-01
Annually, tropical forests process approximately 18 Pg of carbon through respiration and photosynthesis - more than twice the rate of anthropogenic fossil fuel emissions. Current climate change may be transforming this carbon sink into a carbon source by changing forest structure and dynamics. Increasing temperatures and potentially decreasing precipitation and thus prolonged drought stress may lead to increasing physiological stress and reduced productivity for trees. Resulting decreases in evapotranspiration and therefore convective precipitation could further accelerate drought conditions and destabilize the tropical ecosystem as a whole and lead to an 'Amazon forest dieback'. The projected direction and intensity of climate change vary widely within the region and between different scenarios from climate models (GCMs). In the scope of a World Bank-funded study, we assessed the 24 General Circulation Models (GCMs) evaluated in the 4th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR4) with respect to their capability to reproduce present-day climate in the Amazon basin using a Bayesian approach. With this approach, greater weight is assigned to the models that simulate well the annual cycle of rainfall. We then use the resulting weightings to create probability density functions (PDFs) for future forest biomass changes as simulated by the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJmL) to estimate the risk of potential Amazon rainforest dieback. Our results show contrasting changes in forest biomass throughout five regions of northern South America: If photosynthetic capacity and water use efficiency is enhanced by CO2, biomass increases across all five regions. However, if CO2-fertilisation is assumed to be absent or less important, then substantial dieback occurs in some scenarios and thus, the risk of forest dieback is considerably higher. Particularly affected are regions in the central Amazon basin. The range of potential biomass change arising from the weighting of rainfall patterns is smaller than the uncertainty arising from CO2-fertilisation effects, which highlights the importance of reducing the uncertainties in the direct effects of CO2 on tropical ecosystems. Strong biomass changes also imply changes in forest structure and thus, forest stability. Our results display shifts in forest composition from closed rainforest to more open forest or even shrubland. Our probability-based risk analysis could be used to advise regional forest protection.
Spatial and temporal dynamics of disturbance interactions along an ecological gradient
Christopher D. O' Connor
2013-01-01
Interactions among site conditions, disturbance events, and climate determine the patterns of forest species recruitment and mortality across landscapes. Forests of the American Southwest have undergone significant changes over a century of altered disturbance regimes, human land uses, and changing environmental conditions. Along steep vertical gradients such as those...
Helman, David; Lensky, Itamar M; Yakir, Dan; Osem, Yagil
2017-07-01
More frequent and intense droughts are projected during the next century, potentially changing the hydrological balances in many forested catchments. Although the impacts of droughts on forest functionality have been vastly studied, little attention has been given to studying the effect of droughts on forest hydrology. Here, we use the Budyko framework and two recently introduced Budyko metrics (deviation and elasticity) to study the changes in the water yields (rainfall minus evapotranspiration) of forested catchments following a climatic drought (2006-2010) in pine forests distributed along a rainfall gradient (P = 280-820 mm yr -1 ) in the Eastern Mediterranean (aridity factor = 0.17-0.56). We use a satellite-based model and meteorological information to calculate the Budyko metrics. The relative water yield ranged from 48% to 8% (from the rainfall) in humid to dry forests and was mainly associated with rainfall amount (increasing with increased rainfall amount) and bedrock type (higher on hard bedrocks). Forest elasticity was larger in forests growing under drier conditions, implying that drier forests have more predictable responses to drought, according to the Budyko framework, compared to forests growing under more humid conditions. In this context, younger forests were shown more elastic than older forests. Dynamic deviation, which is defined as the water yield departure from the Budyko curve, was positive in all forests (i.e., less-than-expected water yields according to Budyko's curve), increasing with drought severity, suggesting lower hydrological resistance to drought in forests suffering from larger rainfall reductions. However, the dynamic deviation significantly decreased in forests that experienced relatively cooler conditions during the drought period. Our results suggest that forests growing under permanent dry conditions might develop a range of hydrological and eco-physiological adjustments to drought leading to higher hydrological resilience. In the context of predicted climate change, such adjustments are key factors in sustaining forested catchments in water-limited regions. © 2016 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson-Teixeira, Kristina J.; DeLucia, Evan H.; Duval, Benjamin D.
2015-10-29
To advance understanding of C dynamics of forests globally, we compiled a new database, the Forest C database (ForC-db), which contains data on ground-based measurements of ecosystem-level C stocks and annual fluxes along with disturbance history. This database currently contains 18,791 records from 2009 sites, making it the largest and most comprehensive database of C stocks and flows in forest ecosystems globally. The tropical component of the database will be published in conjunction with a manuscript that is currently under review (Anderson-Teixeira et al., in review). Database development continues, and we hope to maintain a dynamic instance of the entiremore » (global) database.« less
Climate and anthropogenic impacts on forest vegetation derived from satellite data
NASA Astrophysics Data System (ADS)
Zoran, M.; Savastru, R.; Savastru, D.; Tautan, M.; Miclos, S.; Baschir, L.
2010-09-01
Vegetation and climate interact through a series of complex feedbacks, which are not very well understood. The patterns of forest vegetation are largely determined by temperature, precipitation, solar irradiance, soil conditions and CO2 concentration. Vegetation impacts climate directly through moisture, energy, and momentum exchanges with the atmosphere and indirectly through biogeochemical processes that alter atmospheric CO2 concentration. Changes in forest vegetation land cover/use alter the surface albedo and radiation fluxes, leading to a local temperature change and eventually a vegetation response. This albedo (energy) feedback is particularly important when forests mask snow cover. Forest vegetation-climate feedback regimes are designated based on the temporal correlations between the vegetation and the surface temperature and precipitation. The different feedback regimes are linked to the relative importance of vegetation and soil moisture in determining land-atmosphere interactions. Forest vegetation phenology constitutes an efficient bio-indicator of impacts of climate and anthropogenic changes and a key parameter for understanding and modeling vegetation-climate interactions. Climate variability represents the ensemble of net radiation, precipitation, wind and temperature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vegetation Index (NDVIs), which requires NDVI time-series with good time resolution, over homogeneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal forest vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images over 1989 - 2009 period for a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, from IKONOS and LANDSAT TM and ETM satellite images and meteorological data. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. For investigated test area, considerable NDVI decline was observed for drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and topography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation .
Coulston, John W.; Wear, David N.
2017-01-01
The composition of tree species occurring in a forest is important and can be affected by global change drivers such as climate change. To inform assessment and projection of global change impacts at broad extents, we used hierarchical cluster analysis and over 120,000 recent forest inventory plots to empirically define forest tree assemblages across the U.S., and identified the indicator and dominant species associated with each. Cluster typologies in two levels of a hierarchy of forest assemblages, with 29 and 147 groups respectively, were supported by diagnostic criteria. Groups in these two levels of the hierarchy were labeled based on the top indicator species in each, and ranged widely in size. For example, in the 29-cluster typology, the sugar maple-red maple assemblage contained the largest number of plots (30,068), while the butternut-sweet birch and sourwood-scarlet oak assemblages were both smallest (6 plots each). We provide a case-study demonstration of the utility of the typology for informing forest climate change impact assessment. For five assemblages in the 29-cluster typology, we used existing projections of changes in importance value (IV) for the dominant species under one low and one high climate change scenario to assess impacts to the assemblages. Results ranged widely for each scenario by the end of the century, with each showing an average decrease in IV for dominant species in some assemblages, including the balsam fir-quaking aspen assemblage, and an average increase for others, like the green ash-American elm assemblage. Future work should assess adaptive capacity of these forest assemblages and investigate local population- and community-level dynamics in places where dominant species may be impacted. This typology will be ideal for monitoring, assessing, and projecting changes to forest communities within the emerging framework of macrosystems ecology, which emphasizes hierarchies and broad extents. PMID:28877258
Assessing Impacts of Climate Change on Forests: The State of Biological Modeling
DOE R&D Accomplishments Database
Dale, V. H.; Rauscher, H. M.
1993-04-06
Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.
Kansas' forest resources, 2005
W. Keith Moser; Gary J. Brand; Melissa Powers
2007-01-01
The USDA Forest Service, Northern Research Station, Forest Inventory and Analysis (NRS-FIA) program is changing to a Web-based, dynamically linked reporting system. As part of the process, this year NRS-FIA is producing this abbreviated summary of 2005 data. This resource bulletin reports on area, volume, and biomass using data from 2001 through 2005. Estimates from...
The population dynamics of goldenseal by habitat type on the Hoosier National Forest
S. P. Meyer; G. R. Parker
2003-01-01
Goldenseal (Hydrastis canadensis L.) is an herbaceous species found throughout the central hardwood forest ecosystem that is harvested from the wild for the medicinal herb trade. A total of 147 goldenseal populations were classified according to the Ecological Classification Guide developed for the Hoosier National Forest, and change in population...
Gainesville's urban forest canopy cover
Francisco Escobedo; Jennifer A. Seitz; Wayne Zipperer
2009-01-01
Ecosystem benefits from trees are linked directly to the amount of healthy urban forest canopy cover. Urban forest cover is dynamic and changes over time due to factors such as urban development, windstorms, tree removals, and growth. The amount of a city's canopy cover depends on its land use, climate, and people's preferences. This fact sheet examines how...
Using DCOM to support interoperability in forest ecosystem management decision support systems
W.D. Potter; S. Liu; X. Deng; H.M. Rauscher
2000-01-01
Forest ecosystems exhibit complex dynamics over time and space. Management of forest ecosystems involves the need to forecast future states of complex systems that are often undergoing structural changes. This in turn requires integration of quantitative science and engineering components with sociopolitical, regulatory, and economic considerations. The amount of data...
Seasonal Course of Boreal Forest Reflectance
NASA Astrophysics Data System (ADS)
Rautiainen, M.; Heiskanen, J.; Mottus, M.; Eigemeier, E.; Majasalmi, T.; Vesanto, V.; Stenberg, P.
2011-12-01
According to the IPCC 2007 report, northern ecosystems are especially likely to be affected by climate change. Therefore, understanding the seasonal dynamics of boreal ecosystems and linking their phenological phases to satellite reflectance data is crucial for the efficient monitoring and modeling of northern hemisphere vegetation dynamics and productivity trends in the future. The seasonal reflectance course of a boreal forest is a result of the temporal cycle in optical properties of both the tree canopy and understory layers. Seasonal reflectance changes of the two layers are explained by the complex combination of changes in biochemistry and geometrical structure of different plant species as well as seasonal and diurnal variation in solar illumination. Analyzing the role of each of the contributing factors can only be achieved by linking radiative transfer modeling to empirical reflectance data sets. The aim of our project is to identify the seasonal reflectance changes and their driving factors in boreal forests from optical satellite images using new forest reflectance modeling techniques based on the spectral invariants theory. We have measured an extensive ground reference database on the seasonal changes of structural and optical properties of tree canopy and understory layers for a boreal forest site in central Finland in 2010. The database is complemented by a concurrent time series of Hyperion and SPOT satellite images. We use the empirical ground reference database as input to forest reflectance simulations and validate our simulation results using the empirical reflectance data obtained from satellite images. Based on our simulation results, we quantify 1) the driving factors influencing the seasonal reflectance courses of a boreal forest, and 2) the relative contribution of the understory and tree-level layers to forest reflectance as the growing season proceeds.
Modeling carbon stocks in a secondary tropical dry forest in the Yucatan Peninsula, Mexico
Zhaohua Dai; Richard A. Birdsey; Kristofer D. Johnson; Juan Manuel Dupuy; Jose Luis Hernandez-Stefanoni; Karen Richardson
2014-01-01
The carbon balance of secondary dry tropical forests of Mexicoâs Yucatan Peninsula is sensitive to human and natural disturbances and climate change. The spatially explicit process model Forest-DeNitrification-DeComposition (DNDC) was used to estimate forest carbon dynamics in this region, including the effects of disturbance on carbon stocks. Model evaluation using...
Eric J. Gustafson; Brian R. Miranda; Arjan M.G. De Bruijn; Brian R. Sturtevant; Mark E. Kubiske
2017-01-01
Forest landscape models (FLM) are increasingly used to project the effects of climate change on forested landscapes, yet most use phenomenological approaches with untested assumptions about future forest dynamics. We used a FLM that relies on first principles to mechanistically simulate growth (LANDIS-II with PnET-Succession) to systematically explore how landscapes...
Collaborating for success: implementation of the interior Alaska inventory
Brendt Mueller; Dan Irvine
2015-01-01
Interior Alaskaâs boreal forests are approximately 112 million acres in size, or 15 percent of the United States forest land. This is currently a very dynamic region with rising temperatures, melting permafrost, changes in vegetation, fire, carbon, and water cycles due to a warming climate. This is the last forested area in the United States where the national Forest...
Coarse woody type: A new method for analyzing coarse woody debris and forest change
C. W. Woodall; L. M. Nagel
2006-01-01
The species composition of both standing live and down dead trees has been used separately to determine forest stand dynamics in large-scale forest ecosystem assessments. The species composition of standing live trees has been used to indicate forest stand diversity while the species composition of down dead trees has been used to indicate wildlife habitat. To assess...
Linda A. Joyce; David T. Price; David P. Coulson; Daniel W. McKenney; R. Martin Siltanen; Pia Papadopol; Kevin Lawrence
2014-01-01
A set of climate change projections for the United States was developed for use in the 2010 USDA Forest Service RPA Assessment. These climate projections, along with projections for population dynamics, economic growth, and land use change in the United States, comprise the RPA scenarios and are used in the RPA Assessment to project future renewable resource conditions...
Bottomland Hardwood Forests along the Upper Mississippi River
Yin, Y.; Nelson, J.C.; Lubinski, S.J.
1997-01-01
Bottomland hardwood forests along the United States' Upper Mississippi River have been drastically reduced in acreage and repeatedly logged during the nineteenth and twentieth centuries. Conversion to agricultural land, timber harvesting, and river modifications for flood prevention and for navigation were the primary factors that caused the changes. Navigation structures and flood-prevention levees have altered the fluvial geomorphic dynamics of the river and floodplain system. Restoration and maintenance of the diversity, productivity, and natural regeneration dynamics of the bottomland hardwood forests under the modified river environment represent a major management challenge.
Mapping national scale land cover disturbance for the continental United States, 2006 to 2010
NASA Astrophysics Data System (ADS)
Hansen, M. C.; Potapov, P. V.; Egorov, A.; Roy, D. P.; Loveland, T. R.
2011-12-01
Data from the Web-Enabled Landsat Data (WELD) project were used to quantify forest cover loss and bare ground gain dynamics for the continental United States at a 30 meter spatial resolution from 2006 to 2010. Results illustrate the land cover dynamics associated with forestry, urbanization and other medium to long-term cover conversion processes. Ephemeral changes, such as crop rotations and fallows or inundation, were not quantified. Forest disturbance is pervasive at the national-scale, while increasing bare ground is found in growing urban areas as well as in mining regions. The methods applied are an outgrowth of the Vegetation Continuous Field (VCF) method, initially employed with MODIS data and then WELD data to map percent cover variables. As in our previous work with MODIS in mapping forest change, we applied the VCF method to characterize forest cover loss and bare ground gain probability per pixel. Additional themes will be added to provide a more comprehensive picture of national-scale land dynamics based on these initial results using WELD.
Forest-climate interactions in fragmented tropical landscapes.
Laurance, William F
2004-03-29
In the tropics, habitat fragmentation alters forest-climate interactions in diverse ways. On a local scale (less than 1 km), elevated desiccation and wind disturbance near fragment margins lead to sharply increased tree mortality, thus altering canopy-gap dynamics, plant community composition, biomass dynamics and carbon storage. Fragmented forests are also highly vulnerable to edge-related fires, especially in regions with periodic droughts or strong dry seasons. At landscape to regional scales (10-1000 km), habitat fragmentation may have complex effects on forest-climate interactions, with important consequences for atmospheric circulation, water cycling and precipitation. Positive feedbacks among deforestation, regional climate change and fire could pose a serious threat for some tropical forests, but the details of such interactions are poorly understood.
A Black Swan and Sub-continental Scale Dynamics in Humid, Late-Holocene Broadleaf Forests
NASA Astrophysics Data System (ADS)
Pederson, N.; Dyer, J.; McEwan, R.; Hessl, A. E.; Mock, C. J.; Orwig, D.; Rieder, H. E.; Cook, B. I.
2012-12-01
In humid regions with dense broadleaf-dominated forests where gap-dynamics is the prevailing disturbance regime, paleoecological evidence shows regional-scale changes in forest composition associated with climatic change. To investigate the potential for regional events in late-Holocene forests, we use tree-ring data from 76 populations covering 840,000 km2 and 5.3k tree recruitment dates spanning 1.4 million km2 in the eastern US to investigate the occurrence of simultaneous forest dynamics across a humid region. We compare regional forest dynamics with an independent set of annually-resolved tree ring record of hydroclimate to examine whether climate dynamics might drive forest dynamics in this humid region. In forests where light availability is an important limitation for tree recruitment, we document a pulse of tree recruitment during the mid- to late-1600s across the eastern US. This pulse, which can be inferred as large-scale canopy opening, occurred during an era that multiple proxies indicate as extended drought between two intense pluvial. Principal component analysis of the 76 populations indicates a step-change increase in average ring width during the late-1770s resembling a potential canopy accession event over 42,800 km2 of the southeastern US. Growth-release analysis of populations loading strongly on this eigenvector indicates severe canopy disturbance from 1775-1779 that peaked in 1776. The 1776 event follows a period with extended droughts and severe large-scale frost event. We hypothesize these climatic events lead to elevated tree mortality in the late-1770s and canopy accession for understory trees. Superposed epoch analysis reveals that spikes of elevated canopy disturbance from 1685-1850 CE are significantly associated with drought. Extreme value theory statistics indicates the 1776 event lies beyond the 99.9 quantile and nearly 7 sigmas above the 1685-1850 mean rate of disturbance. The time-series of canopy disturbance from 1685-1850 is so poorly described by a Gaussian distribution that it can be considered 'heavy tailed'. Preliminary results show that disturbance events that affect >3-5% of the trees in our dataset occur approximately every 200 years. The most extreme rates (>5%) occur approximately every 500-1000 years. These statistics indicate that the 1775-1779 heavy-tail event can also be considered a 'Black Swan', the rare event that has the potential to alter a system's trajectory further than common events. Our results challenge traditional views regarding characteristic disturbance regime in humid temperate forests, and speak to the importance of punctuated climatic events in shaping forest structure for centuries. Such an understanding is critical given the potential of more frequent extreme climatic events in the future.
Forest disturbances under climate change
NASA Astrophysics Data System (ADS)
Seidl, Rupert; Thom, Dominik; Kautz, Markus; Martin-Benito, Dario; Peltoniemi, Mikko; Vacchiano, Giorgio; Wild, Jan; Ascoli, Davide; Petr, Michal; Honkaniemi, Juha; Lexer, Manfred J.; Trotsiuk, Volodymyr; Mairota, Paola; Svoboda, Miroslav; Fabrika, Marek; Nagel, Thomas A.; Reyer, Christopher P. O.
2017-06-01
Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests.
Forest disturbances under climate change
Seidl, Rupert; Thom, Dominik; Kautz, Markus; Martin-Benito, Dario; Peltoniemi, Mikko; Vacchiano, Giorgio; Wild, Jan; Ascoli, Davide; Petr, Michal; Honkaniemi, Juha; Lexer, Manfred J.; Trotsiuk, Volodymyr; Mairota, Paola; Svoboda, Miroslav; Fabrika, Marek; Nagel, Thomas A.; Reyer, Christopher P. O.
2017-01-01
Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests. PMID:28861124
Eric J. Gustafson; Arjan M.G. De Bruijn; Robert E. Pangle; Jean-Marc Limousin; Nate G. McDowell; William T. Pockman; Brian R. Sturtevant; Jordan D. Muss; Mark E. Kubiske
2015-01-01
Fundamental drivers of ecosystem processes such as temperature and precipitation are rapidly changing and creating novel environmental conditions. Forest landscape models (FLM) are used by managers and policy-makers to make projections of future ecosystem dynamics under alternative management or policy options, but the links between the fundamental drivers and...
Lin, Guigang; McCormack, M Luke; Ma, Chengen; Guo, Dali
2017-02-01
Compared with ectomycorrhizal (ECM) forests, arbuscular mycorrhizal (AM) forests are hypothesized to have higher carbon (C) cycling rates and a more open nitrogen (N) cycle. To test this hypothesis, we synthesized 645 observations, including 22 variables related to below-ground C and N dynamics from 100 sites, where AM and ECM forests co-occurred at the same site. Leaf litter quality was lower in ECM than in AM trees, leading to greater forest floor C stocks in ECM forests. By contrast, AM forests had significantly higher mineral soil C concentrations, and this result was strongly mediated by plant traits and climate. No significant differences were found between AM and ECM forests in C fluxes and labile C concentrations. Furthermore, inorganic N concentrations, net N mineralization and nitrification rates were all higher in AM than in ECM forests, indicating 'mineral' N economy in AM but 'organic' N economy in ECM trees. AM and ECM forests show systematic differences in mineral vs organic N cycling, and thus mycorrhizal type may be useful in predicting how different tree species respond to multiple environmental change factors. By contrast, mycorrhizal type alone cannot reliably predict below-ground C dynamics without considering plant traits and climate. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Olguin-Alvarez, M. I.; Wayson, C.; Fellows, M.; Birdsey, R.; Smyth, C.; Magnan, M.; Dugan, A.; Mascorro, V.; Alanís, A.; Serrano, E.; Kurz, W. A.
2017-12-01
Since 2012, the Mexican government through its National Forestry Commission, with support from the Commission for Environmental Cooperation, the Forest Services of Canada and USA, the SilvaCarbon Program and research institutes in Mexico, has made important progress towards the use of carbon dynamics models ("gain-loss" approach) for greenhouse gas (GHG) emissions monitoring and projections into the future. Here we assess the biophysical mitigation potential of policy alternatives identified by the Mexican Government (e.g. net zero deforestation rate, sustainable forest management) based on a systems approach that models carbon dynamics in forest ecosystems, harvested wood products and substitution benefits in two contrasting states of Mexico. We provide key messages and results derived from the use of the Carbon Budget Model of the Canadian Forest Sector and a harvested wood products model, parameterized with input data from Mexicós National Forest Monitoring System (e.g. forest inventories, remote sensing, disturbance data). The ultimate goal of this tri-national effort is to develop data and tools for carbon assessment in strategic landscapes in North America, emphasizing the need to include multiple sectors and types of collaborators (scientific and policy-maker communities) to design more comprehensive portfolios for climate change mitigation in accordance with the Paris Agreement of the United Nation Framework Convention on Climate Change (e.g. Mid-Century Strategy, NDC goals).
Sleeter, Benjamin M.; Liu, Jinxun; Daniel, Colin; Rayfield, Bronwyn; Sherba, Jason; Hawbaker, Todd J.; Zhu, Zhiliang; Selmants, Paul; Loveland, Thomas R.
2018-01-01
Changes in land use and land cover (LULC) can have profound effects on terrestrial carbon dynamics, yet their effects on the global carbon budget remain uncertain. While land change impacts on ecosystem carbon dynamics have been the focus of numerous studies, few efforts have been based on observational data incorporating multiple ecosystem types spanning large geographic areas over long time horizons. In this study we use a variety of synoptic-scale remote sensing data to estimate the effect of LULC changes associated with urbanization, agricultural expansion and contraction, forest harvest, and wildfire on the carbon balance of terrestrial ecosystems (forest, grasslands, shrublands, and agriculture) in the conterminous United States (i.e. excluding Alaska and Hawaii) between 1973 and 2010. We estimate large net declines in the area of agriculture and forest, along with relatively small increases in grasslands and shrublands. The largest net change in any class was an estimated gain of 114 865 km2 of developed lands, an average rate of 3282 km2 yr−1. On average, US ecosystems sequestered carbon at an annual rate of 254 Tg C yr−1. In forest lands, the net sink declined by 35% over the study period, largely a result of land-use legacy, increasing disturbances, and reductions in forest area due to land use conversion. Uncertainty in LULC change data contributed to a ~16% margin of error in the annual carbon sink estimate prior to 1985 (approximately ±40 Tg C yr−1). Improvements in LULC and disturbance mapping starting in the mid-1980s reduced this uncertainty by ~50% after 1985. We conclude that changes in LULC are a critical component to understanding ecosystem carbon dynamics, and continued improvements in detection, quantification, and attribution of change have the potential to significantly reduce current uncertainties.
NASA Astrophysics Data System (ADS)
Sleeter, Benjamin M.; Liu, Jinxun; Daniel, Colin; Rayfield, Bronwyn; Sherba, Jason; Hawbaker, Todd J.; Zhu, Zhiliang; Selmants, Paul C.; Loveland, Thomas R.
2018-04-01
Changes in land use and land cover (LULC) can have profound effects on terrestrial carbon dynamics, yet their effects on the global carbon budget remain uncertain. While land change impacts on ecosystem carbon dynamics have been the focus of numerous studies, few efforts have been based on observational data incorporating multiple ecosystem types spanning large geographic areas over long time horizons. In this study we use a variety of synoptic-scale remote sensing data to estimate the effect of LULC changes associated with urbanization, agricultural expansion and contraction, forest harvest, and wildfire on the carbon balance of terrestrial ecosystems (forest, grasslands, shrublands, and agriculture) in the conterminous United States (i.e. excluding Alaska and Hawaii) between 1973 and 2010. We estimate large net declines in the area of agriculture and forest, along with relatively small increases in grasslands and shrublands. The largest net change in any class was an estimated gain of 114 865 km2 of developed lands, an average rate of 3282 km2 yr‑1. On average, US ecosystems sequestered carbon at an annual rate of 254 Tg C yr‑1. In forest lands, the net sink declined by 35% over the study period, largely a result of land-use legacy, increasing disturbances, and reductions in forest area due to land use conversion. Uncertainty in LULC change data contributed to a ~16% margin of error in the annual carbon sink estimate prior to 1985 (approximately ±40 Tg C yr‑1). Improvements in LULC and disturbance mapping starting in the mid-1980s reduced this uncertainty by ~50% after 1985. We conclude that changes in LULC are a critical component to understanding ecosystem carbon dynamics, and continued improvements in detection, quantification, and attribution of change have the potential to significantly reduce current uncertainties.
La Sorte, Frank A; Fink, Daniel; Blancher, Peter J; Rodewald, Amanda D; Ruiz-Gutierrez, Viviana; Rosenberg, Kenneth V; Hochachka, Wesley M; Verburg, Peter H; Kelling, Steve
2017-12-01
Understanding the susceptibility of highly mobile taxa such as migratory birds to global change requires information on geographic patterns of occurrence across the annual cycle. Neotropical migrants that breed in North America and winter in Central America occur in high concentrations on their non-breeding grounds where they spend the majority of the year and where habitat loss has been associated with population declines. Here, we use eBird data to model weekly patterns of abundance and occurrence for 21 forest passerine species that winter in Central America. We estimate species' distributional dynamics across the annual cycle, which we use to determine how species are currently associated with public protected areas and projected changes in climate and land-use. The effects of global change on the non-breeding grounds is characterized by decreasing precipitation, especially during the summer, and the conversion of forest to cropland, grassland, or peri-urban. The effects of global change on the breeding grounds are characterized by increasing winter precipitation, higher temperatures, and the conversion of forest to peri-urban. During spring and autumn migration, species are projected to encounter higher temperatures, forests that have been converted to peri-urban, and increased precipitation during spring migration. Based on current distributional dynamics, susceptibility to global change is characterized by the loss of forested habitats on the non-breeding grounds, warming temperatures during migration and on the breeding grounds, and declining summer rainfall on the non-breeding grounds. Public protected areas with low and medium protection status are more prevalent on the non-breeding grounds, suggesting that management opportunities currently exist to mitigate near-term non-breeding habitat losses. These efforts would affect more individuals of more species during a longer period of the annual cycle, which may create additional opportunities for species to respond to changes in habitat or phenology that are likely to develop under climate change. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Gochis, D. J.; Gutmann, E. D.; Brooks, P. D.; Reed, D. E.; Ewers, B. E.; Pendall, E.; Biederman, J. A.; Harpold, A. A.; Barnard, H. R.; Hu, J.
2011-12-01
Forest dynamics induced by insect infestation can have a significant, local impact on plant physiological regulation of water, energy and carbon fluxes. Rapid mortality succeeded by more gradually varying land cover changes are presently thought to initiate a cascade of changes to water, energy and carbon budgets at the forest stand scale. Initial model sensitivity results have suggested very strong changes in land-atmosphere exchanges of these variables. Specifically, model results from the Noah land surface model, a relatively simple model, have suggested that loss of transpiration function may result in a nearly 50% increase in seasonal soil moisture values and similar increases in runoff production for locations in the central Rocky Mountains. However, differing model structures, such as the representation of plant canopy architecture, snowpack dynamics, dynamic vegetation and hillslope hydrologic processes, may significantly confound the synthesis of results from different modeling systems. We assess the performance of new suite of model simulations from three different land surface models of differing model structures and complexity levels against a comprehensive set of field observations of land surface flux and state variables. The focus of the analysis is in diagnosing how model structure influences changes in energy, water and carbon budget partitioning prior to and following insect infestation. Specific emphasis in this presentation is placed on verifying variables that characterize top of canopy and within canopy energy and water fluxes. We conclude the presentation with a set of recommendations about the advantages and disadvantages of various model structures in their simulation of insect driven forest dynamics.
Structure and dynamics of an upland old- growth forest at Redwood National Park, California
van Mantgem, Philip J.; Stuart, John D.
2011-01-01
Many current redwood forest management targets are based on old-growth conditions, so it is critical that we understand the variability and range of conditions that constitute these forests. Here we present information on the structure and dynamics from six one-hectare forest monitoring plots in an upland old-growth forest at Redwood National Park, California. We surveyed all stems =20 cm DBH in 1995 and 2010, allowing us to estimate any systematic changes in these stands. Stem size distributions for all species and for redwood (Sequoia sempervirens (D. Don) Endl.) alone did not appreciably change over the 15 year observation interval. Recruitment and mortality rates were roughly balanced, as were basal area dynamics (gains from recruitment and growth versus losses from mortality). Similar patterns were found for Sequoia alone. The spatial structure of stems at the plots suggested a random distribution of trees, though the pattern for Sequoia alone was found to be significantly clumped at small scales (< 5 m) at three of the six plots. These results suggest that these forests, including populations of Sequoia, have been generally stable over the past 15 years at this site, though it is possible that fire exclusion may be affecting recruitment of smaller Sequoia (< 20 cm DBH). The non-uniform spatial arrangement of stems also suggests that restoration prescriptions for second-growth redwood forests that encourage uniform spatial arrangements do not appear to mimic current upland old-growth conditions.
Assessing spatiotemporal changes in forest carbon turnover times in observational data and models
NASA Astrophysics Data System (ADS)
Yu, K.; Smith, W. K.; Trugman, A. T.; van Mantgem, P.; Peng, C.; Condit, R.; Anderegg, W.
2017-12-01
Forests influence global carbon and water cycles, biophysical land-atmosphere feedbacks, and atmospheric composition. The capacity of forests to sequester atmospheric CO2 in a changing climate depends not only on the response of carbon uptake (i.e., gross primary productivity) but also on the simultaneous change in carbon residence time. However, changes in carbon residence with climate change are uncertain, impacting the accuracy of predictions of future terrestrial carbon cycle dynamics. Here, we use long-term forest inventory data representative of tropical, temperate, and boreal forests; satellite-based estimates of net primary productivity and vegetation carbon stock; and six models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to investigate spatiotemporal trends in carbon residence time and its relation to climate. Forest inventory and satellite-based estimates of carbon residence time show a pervasive decreasing trend across global forests. In contrast, the CMIP5 models diverge in predicting historical and future trends in carbon residence time. Divergence across CMIP5 models indicate carbon turnover times are not well constrained by observations, which likely contributes to large variability in future carbon cycle projections.
Climate and wildfires in the North American boreal forest.
Macias Fauria, Marc; Johnson, E A
2008-07-12
The area burned in the North American boreal forest is controlled by the frequency of mid-tropospheric blocking highs that cause rapid fuel drying. Climate controls the area burned through changing the dynamics of large-scale teleconnection patterns (Pacific Decadal Oscillation/El Niño Southern Oscillation and Arctic Oscillation, PDO/ENSO and AO) that control the frequency of blocking highs over the continent at different time scales. Changes in these teleconnections may be caused by the current global warming. Thus, an increase in temperature alone need not be associated with an increase in area burned in the North American boreal forest. Since the end of the Little Ice Age, the climate has been unusually moist and variable: large fire years have occurred in unusual years, fire frequency has decreased and fire-climate relationships have occurred at interannual to decadal time scales. Prolonged and severe droughts were common in the past and were partly associated with changes in the PDO/ENSO system. Under these conditions, large fire years become common, fire frequency increases and fire-climate relationships occur at decadal to centennial time scales. A suggested return to the drier climate regimes of the past would imply major changes in the temporal dynamics of fire-climate relationships and in area burned, a reduction in the mean age of the forest, and changes in species composition of the North American boreal forest.
Broadbent, Eben N.; Almeyda Zambrano, Angélica M.; Asner, Gregory P.; Soriano, Marlene; Field, Christopher B.; de Souza, Harrison Ramos; Peña-Claros, Marielos; Adams, Rachel I.; Dirzo, Rodolfo; Giles, Larry
2014-01-01
Secondary forests cover large areas of the tropics and play an important role in the global carbon cycle. During secondary forest succession, simultaneous changes occur among stand structural attributes, soil properties, and species composition. Most studies classify tree species into categories based on their regeneration requirements. We use a high-resolution secondary forest chronosequence to assign trees to a continuous gradient in species successional status assigned according to their distribution across the chronosequence. Species successional status, not stand age or differences in stand structure or soil properties, was found to be the best predictor of leaf trait variation. Foliar δ13C had a significant positive relationship with species successional status, indicating changes in foliar physiology related to growth and competitive strategy, but was not correlated with stand age, whereas soil δ13C dynamics were largely constrained by plant species composition. Foliar δ15N had a significant negative correlation with both stand age and species successional status, – most likely resulting from a large initial biomass-burning enrichment in soil 15N and 13C and not closure of the nitrogen cycle. Foliar %C was neither correlated with stand age nor species successional status but was found to display significant phylogenetic signal. Results from this study are relevant to understanding the dynamics of tree species growth and competition during forest succession and highlight possibilities of, and potentially confounding signals affecting, the utility of leaf traits to understand community and species dynamics during secondary forest succession. PMID:24516525
Broadbent, Eben N; Almeyda Zambrano, Angélica M; Asner, Gregory P; Soriano, Marlene; Field, Christopher B; de Souza, Harrison Ramos; Peña-Claros, Marielos; Adams, Rachel I; Dirzo, Rodolfo; Giles, Larry
2014-01-01
Secondary forests cover large areas of the tropics and play an important role in the global carbon cycle. During secondary forest succession, simultaneous changes occur among stand structural attributes, soil properties, and species composition. Most studies classify tree species into categories based on their regeneration requirements. We use a high-resolution secondary forest chronosequence to assign trees to a continuous gradient in species successional status assigned according to their distribution across the chronosequence. Species successional status, not stand age or differences in stand structure or soil properties, was found to be the best predictor of leaf trait variation. Foliar δ(13)C had a significant positive relationship with species successional status, indicating changes in foliar physiology related to growth and competitive strategy, but was not correlated with stand age, whereas soil δ(13)C dynamics were largely constrained by plant species composition. Foliar δ(15)N had a significant negative correlation with both stand age and species successional status, - most likely resulting from a large initial biomass-burning enrichment in soil (15)N and (13)C and not closure of the nitrogen cycle. Foliar %C was neither correlated with stand age nor species successional status but was found to display significant phylogenetic signal. Results from this study are relevant to understanding the dynamics of tree species growth and competition during forest succession and highlight possibilities of, and potentially confounding signals affecting, the utility of leaf traits to understand community and species dynamics during secondary forest succession.
Peter M. Groffman; Richard V. Pouyat; Mary L. Cadenasso; Wayne C. Zipperer; Katalin Szlavecz; Ian D. Yesilonis; Lawrence E. Band; Grace S. Brush
2006-01-01
Forests embedded in an urban matrix are a useful venue for investigating the effects of multiple factors such as climate change, altered disturbance regimes and species invasions on forest ecosystems. Urban forests also represent a significant land area, with potentially important effects on landscape and regional scale nitrogen (N) and carbon (C) storage and flux. We...
The specificity of host-bat fly interaction networks across vegetation and seasonal variation.
Zarazúa-Carbajal, Mariana; Saldaña-Vázquez, Romeo A; Sandoval-Ruiz, César A; Stoner, Kathryn E; Benitez-Malvido, Julieta
2016-10-01
Vegetation type and seasonality promote changes in the species composition and abundance of parasite hosts. However, it is poorly known how these variables affect host-parasite interaction networks. This information is important to understand the dynamics of parasite-host relationships according to biotic and abiotic changes. We compared the specialization of host-bat fly interaction networks, as well as bat fly and host species composition between upland dry forest and riparian forest and between dry and rainy seasons in a tropical dry forest in Jalisco, Mexico. Bat flies were surveyed by direct collection from bats. Our results showed that host-bat fly interaction networks were more specialized in upland dry forest compared to riparian forest. Bat fly species composition was different between the dry and rainy seasons, while host species composition was different between upland dry forest and riparian forest. The higher specialization in upland dry forest could be related to the differences in bat host species composition and their respective roosting habits. Variation in the composition of bat fly species between dry and rainy seasons coincides with the seasonal shifts in their species richness. Our study confirms the high specialization of host-bat fly interactions and shows the importance of biotic and abiotic factors to understand the dynamics of parasite-host interactions.
Nitrogen alters carbon dynamics during early succession in boreal forest
Steven D. Allison; Tracy B. Gartner; Michelle C. Mack; Krista McGuire; Kathleen Treseder
2010-01-01
Boreal forests are an important source of wood products, and fertilizers could be used to improve forest yields, especially in nutrient poor regions of the boreal zone. With climate change, fire frequencies may increase, resulting in a larger fraction of the boreal landscape present in early successional stages. Since most fertilization studies have focused on mature...
Fangmin Zhang; Yude Pan; Richard A. Birdsey; Jing M. Chen; Alexa Dugan
2017-01-01
Currently, US forests constitute a large carbon sink, comprising about 9 % of the global terrestrial carbon sink. Wildfire is the most significant disturbance influencing carbon dynamics in US forests. Our objective is to estimate impacts of climate change, CO2 concentration, and nitrogen deposition on the future net biome productivity (NBP) of...
The human context: Land ownership, resource uses, and social dynamics
David N. Wear
2012-01-01
The forests and grasslands of the Eastern United States have been subject to more than two centuries of episodic change, generally characterized by forest clearing, agricultural use, abandonment, reforestation, and recovery. Today, rapid colonization of forests and other rural lands by people, the spread of many floral and faunal nonnative invasive species and, in some...
Cordilleran forest scaling dynamics and disturbance regimes quantified by aerial LiDAR
Tyson L. Swetnam
2013-01-01
Semi-arid forests are in a period of rapid transition as a result of unprecedented landscape scale fires, insect outbreaks, drought, and anthropogenic land use practices. Understanding how historically episodic disturbances led to coherent forest structural and spatial patterns that promoted resilience and resistance is a critical part of addressing change. Here my...
NASA Astrophysics Data System (ADS)
Lucas, M.; Trauernicht, C.; Carlson, K. M.; Miura, T.; Giambelluca, T. W.; Chen, Q.
2017-12-01
The past decades in Hawaii have seen large scale land use change and land cover shifts. However, much these dynamics are only described anecdotally or studied at a single locale, with little information on the extent, rate, or direction of change. This lack of data hinders any effort to assess, plan, and prioritize land management. To improve assessments of statewide vegetation and land cover change, this project developed high resolution, sub-pixel, percent cover maps of forest, grassland and bare earth at annual time steps from 1999 to 2016. Vegetation cover was quantified using archived LANDSAT imagery and a custom remote-sensing algorithm developed in the Google Earth Engine platform. A statistical trend analysis of annual maps of the these three proportional land covers were then used to detect land cover transitions across the archipelago. The aim of this work focused on quantifying the total area of change, annual rates of change and final vegetation cover outcomes statewide. Additionally these findings were attributed to past and current land uses and management history by compiling spatial datasets of development, agriculture, forest restoration sites and burned areas statewide. Results indicated that nearly 10% of the state's land surfaces are suspected to have transitioned between the three cover classes during the study period. Total statewide net change resulted in a gain in forest cover with largest areas of change occurring in unmanaged areas, current and past pastoral land, commercial forestry and abandoned cultivated land. The fastest annual rates of change were forest increases that occurred in restoration areas and commercial forestry. These findings indicate that Hawaii is going through a forest transition, primarily driven by agricultural abandonment with likely feedbacks from invasive species, but also influenced by the establishment of forestry production on former agricultural lands that show potential for native forest restoration. These results directly link land management history to land cover outcomes using an innovative approach to quantify change. It is also the first study to quantify forest transition dynamics in Hawaii and points to the need for similar assessments in post-agricultural landscapes on other oceanic islands.
Forest cover changes due to hydrocarbon extraction disturbance in central Pennsylvania (2004–2010)
Roig-Silva, Coral; Slonecker, Terry; Milheim, Lesley; Ballew, Jesse R.; Winters, S. Gail
2016-01-01
The state of Pennsylvania has a long history of oil and gas extraction. In recent years with advances in technology such as hydraulic fracturing, hydrocarbon sources that were not profitable in the past are now being exploited. Here, we present an assessment of the cumulative impact of oil and gas extraction activities on the forests of 35 counties in Pennsylvania and their intersecting sub-watersheds between 2004 and 2010. The assessment categorizes counties and sub-watersheds based on the estimated amount of change to forest cover in the area. From the data collected we recognize that although forest cover has not been greatly impacted (with an average loss of percent forest coverage of 0.16% at the county level), landscape structure is affected. Increase in edge forest and decrease in interior forest is evident in many of the counties and sub-watersheds examined. These changes can have a detrimental effect on forest biodiversity and dynamics.
Richard D. Bergman; James Salazar; Scott Bowe
2012-01-01
Static life cycle assessment does not fully describe the carbon footprint of construction wood because of carbon changes in the forest and product pools over time. This study developed a dynamic greenhouse gas (GHG) inventory approach using US Forest Service and life-cycle data to estimate GHG emissions on construction wood for two different end-of-life scenarios....
NASA Astrophysics Data System (ADS)
Wijaya, A.; Sugardiman Budiharto, R. A.; Tosiani, A.; Murdiyarso, D.; Verchot, L. V.
2015-04-01
Indonesia possesses the third largest tropical forests coverage following Brazilian Amazon and Congo Basin regions. This country, however, suffered from the highest deforestation rate surpassing deforestation in the Brazilian Amazon in 2012. National capacity for forest change assessment and monitoring has been well-established in Indonesia and the availability of national forest inventory data could largely assist the country to report their forest carbon stocks and change over more than two decades. This work focuses for refining forest cover change mapping and deforestation estimate at national scale applying over 10,000 scenes of Landsat scenes, acquired in 1990, 1996, 2000, 2003, 2006, 2009, 2011 and 2012. Pre-processing of the data includes, geometric corrections and image mosaicking. The classification of mosaic Landsat data used multi-stage visual observation approaches, verified using ground observations and comparison with other published materials. There are 23 land cover classes identified from land cover data, presenting spatial information of forests, agriculture, plantations, non-vegetated lands and other land use categories. We estimated the magnitude of forest cover change and assessed drivers of forest cover change over time. Forest change trajectories analysis was also conducted to observe dynamics of forest cover across time. This study found that careful interpretations of satellite data can provide reliable information on forest cover and change. Deforestation trend in Indonesia was lower in 2000-2012 compared to 1990-2000 periods. We also found that over 50% of forests loss in 1990 remains unproductive in 2012. Major drivers of forest conversion in Indonesia range from shrubs/open land, subsistence agriculture, oil palm expansion, plantation forest and mining. The results were compared with other available datasets and we obtained that the MOF data yields reliable estimate of deforestation.
Satellite derived forest phenology and its relation with nephropathia epidemica in Belgium.
Barrios, José Miguel; Verstraeten, Willem W; Maes, Piet; Clement, Jan; Aerts, Jean-Marie; Haredasht, Sara Amirpour; Wambacq, Julie; Lagrou, Katrien; Ducoffre, Geneviève; Van Ranst, Marc; Berckmans, Daniel; Coppin, Pol
2010-06-01
The connection between nephropathia epidemica (NE) and vegetation dynamics has been emphasized in recent studies. Changing climate has been suggested as a triggering factor of recently observed epidemiologic peaks in reported NE cases. We have investigated whether there is a connection between the NE occurrence pattern in Belgium and specific trends in remotely sensed phenology parameters of broad-leaved forests. The analysis of time series of the MODIS Enhanced Vegetation Index revealed that changes in forest phenology, considered in literature as an effect of climate change, may affect the mechanics of NE transmission.
Satellite Derived Forest Phenology and Its Relation with Nephropathia Epidemica in Belgium
Barrios, José Miguel; Verstraeten, Willem W.; Maes, Piet; Clement, Jan; Aerts, Jean-Marie; Haredasht, Sara Amirpour; Wambacq, Julie; Lagrou, Katrien; Ducoffre, Geneviève; Van Ranst, Marc; Berckmans, Daniel; Coppin, Pol
2010-01-01
The connection between nephropathia epidemica (NE) and vegetation dynamics has been emphasized in recent studies. Changing climate has been suggested as a triggering factor of recently observed epidemiologic peaks in reported NE cases. We have investigated whether there is a connection between the NE occurrence pattern in Belgium and specific trends in remotely sensed phenology parameters of broad-leaved forests. The analysis of time series of the MODIS Enhanced Vegetation Index revealed that changes in forest phenology, considered in literature as an effect of climate change, may affect the mechanics of NE transmission. PMID:20644685
McDonnell, T C; Belyazid, S; Sullivan, T J; Bell, M; Clark, C; Blett, T; Evans, T; Cass, W; Hyduke, A; Sverdrup, H
2018-06-01
Ecological effects of atmospheric nitrogen (N) and sulfur (S) deposition on two hardwood forest sites in the eastern United States were simulated in the context of a changing climate using the dynamic coupled biogeochemical/ecological model chain ForSAFE-Veg. The sites are a mixed oak forest in Shenandoah National Park, Virginia (Piney River) and a mixed oak-sugar maple forest in Great Smoky Mountains National Park, Tennessee (Cosby Creek). The sites have received relatively high levels of both S and N deposition and the climate has warmed over the past half century or longer. The model was used to evaluate the composition of the understory plant communities, the alignment between plant species niche preferences and ambient conditions, and estimate changes in relative species abundances as reflected by plant cover under various scenarios of future atmospheric N and S deposition and climate change. The main driver of ecological effects was soil solution N concentration. Results of this research suggested that future climate change might compromise the capacity for the forests to sustain habitat suitability. However, vegetation results should be considered preliminary until further model validation can be performed. With expected future climate change, preliminary estimates suggest that sustained future N deposition above 7.4 and 5.0 kg N/ha/yr is expected to decrease contemporary habitat suitability for indicator plant species located at Piney River and Cosby Creek, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Old-growth forests can accumulate carbon in soils
Zhou, G.; Liu, S.; Li, Z.; Zhang, Dongxiao; Tang, X.; Zhou, C.; Yan, J.; Mo, J.
2006-01-01
Old-growth forests have traditionally been considered negligible as carbon sinks because carbon uptake has been thought to be balanced by respiration. We show that the top 20-centimeter soil layer in preserved old-growth forests in southern China accumulated atmospheric carbon at an unexpectedly high average rate of 0.61 megagrams of carbon hectare-1 year-1 from 1979 to 2003. This study suggests that the carbon cycle processes in the belowground system of these forests are changing in response to the changing environment. The result directly challenges the prevailing belief in ecosystem ecology regarding carbon budget in old-growth forests and supports the establishment of a new, nonequilibrium conceptual framework to study soil carbon dynamics.
NASA Astrophysics Data System (ADS)
Jiang, Y.; Rastetter, E.; Shaver, G. R.; Rocha, A. V.
2012-12-01
In Alaska, fire disturbance is a major component influencing the soil water and energy balance in both tundra and boreal forest ecosystems. Fire-caused changes in soil environment further affect both above- and below-ground carbon cycles depending on different fire severities. Understanding the effects of fire disturbance on soil thermal change requires implicit modeling work on the post-fire soil thawing and freezing processes. In this study, we model the soil temperature profiles in multiple burned and non-burned sites using a well-developed soil thermal model which fully couples soil water and heat transport. The subsequent change in carbon dynamics is analyzed based on site level observations and simulations from the Multiple Element Limitation (MEL) model. With comparison between burned and non-burned sites, we compare and contrast fire effects on soil thermal and carbon dynamics in continuous permafrost (Anaktuvik fire in north slope), discontinuous permafrost (Erickson Creek fire at Hess Creek) and non-permafrost zone (Delta Junction fire in interior Alaska). Then we check the post-fire recovery of soil temperature profiles at sites with different fire severities in both tundra and boreal forest fire areas. We further project the future changes in soil thermal and carbon dynamics using projected climate data from Scenarios Network for Alaska & Arctic Planning (SNAP). This study provides information to improve the understanding of fire disturbance on soil thermal and carbon dynamics and the consequent response under a warming climate.
NASA Technical Reports Server (NTRS)
Nepstad, Daniel; Stone, Thomas; Davidson, Eric; Trumbore, Susan E.
1992-01-01
The main objective of these NASA-funded projects is to improve our understanding of land-use impacts on soil carbon dynamics in the Amazon Basin. Soil contains approximately one half of tropical forest carbon stocks, yet the fate of this carbon following forest impoverishment is poorly studied. Our mechanistics approach draws on numerous techniques for measuring soil carbon outputs, inputs, and turnover time in the soils of adjacent forest and pasture ecosystems at our research site in Paragominas, state of Para, Brazil. We are scaling up from this site-specific work by analyzing Basin-wide patterns in rooting depth and rainfall seasonality, the two factors that we believe should explain much of the variation in tropical soil carbons dynamics. In this report, we summarize ongoing measurements at our Paragominas study site, progress in employing new field data to understand soil C dynamics, and some surprising results from our regional, scale-up work.
Gap Models as Tools for Sustainable Development under Environmental Changes in Northern Eurasia
NASA Astrophysics Data System (ADS)
Shugart, H. H., Jr.; Wang, B.; Brazhnik, K.; Armstrong, A. H.; Foster, A.
2017-12-01
Agent-based models of complex systems or as used in this review, Individual-based Models (IBMs), emerged in the 1960s and early 1970s, across diverse disciplines from astronomy to zoology. IBMs arose from a deeply embedded ecological tradition of understanding the dynamics of ecosystems from a "bottom-up" accounting of the interactions of the parts. In this case, individual trees are principal among the parts. Because they are computationally demanding, these models have prospered as the power of digital computers has increased exponentially over the decades following the 1970s. Forest IBMs are no longer computationally bound from developing continental- or global-scale simulations of responses of forests to climate and other changes. Gap models simulate the changes in forests by simulating the birth, growth and death of each individual tree on small plots of land that in summation comprise a forest (or set of sample plots on a forested landscape or region). Currently, gap models have grown from continental-scale and even global-scale applications to assess the potential consequences of climate change on natural forests. These predictions are valuable in the planning and anticipatory decision-making needed to sustainably manage a vast region such as Northern Eurasia. Modifications to the models have enabled simulation of disturbances including fire, insect outbreak and harvest. These disturbances have significant exogenous drivers, notably weather variables, but their effects are also a function of the endogenous conditions involving the structure of forest itself. This feedback between the forest and its environment can in some cases produce hysteresis and multiple-stable operating-regimes for forests. Such responses, often characterized as "tipping points" could play a significant role in increasing risk under environmental change, notably global warming. Such dynamics in a management context imply regional systems that could be "unforgiving" of management mistakes.
Dynamic phenotypic plasticity in photosynthesis and biomass patterns in Douglas-fir seedlings
A. C. Koehn; G. I. McDonald; D. L. Turner; D. L. Adams
2010-01-01
As climate changes, understanding the mechanisms long-lived conifers use to adapt becomes more important. Light gradients within a forest stand vary constantly with the changes in climate, and the minimum light required for survival plays a major role in plant community dynamics. This study focuses on the dynamic plasticity of Douglas-fir (Pseudotsuga menziesii var....
Gunnar C. Carnwath; David W. Peterson; Cara R. Nelson
2012-01-01
There is increasing interest in actively managing forests to increase their resilience to climate-related changes. Although forest managers rely heavily on the use of silvicultural treatments that manipulate stand structure and stand dynamics to modify responses to climate change, few studies have directly assessed the effects of stand structure or canopy position on...
Assessing the stability of tree ranges and influence of disturbance in eastern US forests
C.W. Woodall; K. Zhu; J.A. Westfall; C.M. Oswalt; A.W. D' Amato; B.F. Walters; H.E. Lintz
2013-01-01
Shifts in tree species ranges may occur due to global climate change, which in turn may be exacerbated by natural disturbance events. Within the context of global climate change, developing techniques to monitor tree range dynamics as affected by natural disturbances may enable mitigation/adaptation of projected impacts. Using a forest inventory across the eastern U.S...
James M. Lenihan; Dominique Bachelet; Ronald P. Neilson; Raymond Drapeck
2008-01-01
The response of vegetation distribution, carbon, and fire to three scenarios of future climate change was simulated for California using the MC1 Dynamic General Vegetation Model. Under all three scenarios, Alpine/Subalpine Forest cover declined, and increases in the productivity of evergreen hardwoods led to the displacement of Evergreen Conifer Forest by Mixed...
Climate Change Impacts on Forest Succession and Future Productivity
NASA Astrophysics Data System (ADS)
Mohan, J. E.; Melillo, J. M.; Clark, J. S.; Schlesinger, W. H.
2012-12-01
Change in ecosystem carbon (C) dynamics with forest succession is a long-studied topic in ecology, and secondary forests currently comprise a significant proportion of the global land base. Although mature forests are generally more important for conserving species and habitats, early successional trees and stands typically have higher rates of productivity, including net ecosystem productivity (NEP), which represents carbon available for sequestration. Secondary forests undergoing successional development are thus major players in the current global carbon cycle, yet how forests will function in the future under warmer conditions with higher atmospheric carbon dioxide (CO2) concentrations is unknown. Future forest C dynamics will depend, in part, on future species composition. Data from "Forests of the Future" research in a number of global change experiments provide insights into how forests may look in terms of dominant species composition, and thus function, in a future world. Studies at Free-Air Carbon Dioxide (FACE) experiments at Duke Forest and other facilities, plus climate warming experiments such as those at the Harvard Forest, suggest a common underlying principle of vegetation responses to environmental manipulation: Namely, that shade-tolerant woody species associating with arbuscular mycorrhizal (AM) fungi show greater growth stimulation than ectomycorrhizal-associating (ECM) trees which are more common in temperate and boreal forests (Fig. 1 of relative growth rates standardized by pre-treatment rates). This may be due in part to the role of AM fungi in obtaining soil phosphorus and inorganic forms of nitrogen for plant associates. In combination, these results suggest a shift in future forest composition towards less-productive tree species that generally acquire atmospheric CO2 at lower annual rates, as well as a competitive advantage extended to woody vines such as poison ivy. Due to higher atmospheric CO2 and warmer temperatures, forests of the future may become less-productive than those of today.
Fast changes in seasonal forest communities due to soil moisture increase after damming.
do Vale, Vagner Santiago; Schiavini, Ivan; Araújo, Glein Monteiro; Gusson, André Eduardo; Lopes, Sérgio de Faria; de Oliveira, Ana Paula; do Prado-Júnior, Jamir Afonso; Arantes, Carolina de Silvério; Dias-Neto, Olavo Custodio
2013-12-01
Local changes caused by dams can have drastic consequences for ecosystems, not only because they change the water regime but also the modification on lakeshore areas. Thus, this work aimed to determine the changes in soil moisture after damming, to understand the consequences of this modification on the arboreal community of dry forests, some of the most endangered systems on the planet. We studied these changes in soil moisture and the arboreal community in three dry forests in the Araguari River Basin, after two dams construction in 2005 and 2006, and the potential effects on these forests. For this, plots of 20 m x 10 m were distributed close to the impoundment margin and perpendicular to the dam margin in two deciduous dry forests and one semi-deciduous dry forest located in Southeastern Brazil, totaling 3.6 ha sampled. Besides, soil analysis were undertaken before and after impoundment at three different depths (0-10, 20-30 and 40-50 cm). A tree (minimum DBH of 4.77 cm) community inventory was made before (TO) and at two (T2) and four (T4) years after damming. Annual dynamic rates of all communities were calculated, and statistical tests were used to determine changes in soil moisture and tree communities. The analyses confirmed soil moisture increases in all forests, especially during the dry season and at sites closer to the reservoir; besides, an increase in basal area due to the fast growth of many trees was observed. The highest turnover occurred in the first two years after impoundment, mainly due to the higher tree mortality especially of those closer to the dam margin. All forests showed reductions in dynamic rates for subsequent years (T2-T4), indicating that these forests tended to stabilize after a strong initial impact. The modifications were more extensive in the deciduous forests, probably because the dry period resulted more rigorous in these forests when compared to semideciduous forest. The new shorelines created by damming increased soil moisture in the dry season, making plant growth easier. We concluded that several changes occurred in the T0-T2 period and at 0-30 m to the impoundment, mainly for the deciduous forests, where this community turned into a "riparian-deciduous forest" with large basal area in these patches. However, unlike other transitory disturbances, damming is a permanent alteration and transforms the landscape to a different scenario, probably with major long-term consequences for the environment.
Forest fragmentation and bird community dynamics: inference at regional scales
Boulinier, T.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Flather, C.H.; Pollock, K.H.
2001-01-01
With increasing fragmentation of natural areas and a dramatic reduction of forest cover in several parts of the world, quantifying the impact of such changes on species richness and community dynamics has been a subject of much concern. Here, we tested whether in more fragmented landscapes there was a lower number of area-sensitive species and higher local extinction and turnover rates, which could explain higher temporal variability in species richness. To investigate such potential landscape effects at a regional scale, we merged two independent, large-scale monitoring efforts: the North American Breeding Bird Survey (BBS) and the Land Use and Land Cover Classification data from the U.S. Geological Survey. We used methods that accounted for heterogeneity in the probability of detecting species to estimate species richness and temporal changes in the bird communities for BBS routes in three mid-Atlantic U.S. states. Forest breeding bird species were grouped prior to the analyses into area-sensitive and non-area-sensitive species according to previous studies. We tested predictions relating measures of forest structure at one point in time (1974) to species richness at that time and to parameters of forest bird community change over the following 22-yr-period (1975-1996). We used the mean size of forest patches to characterize landscape structure, as high correlations among landscape variables did not allow us to disentangle the relative roles of habitat fragmentation per se and habitat loss. As predicted, together with lower species richness for area-sensitive species on routes surrounded by landscapes with lower mean forest-patch size, we found higher mean year-to-year rates of local extinction. Moreover, the mean year-to-year rates of local turnover (proportion of locally new species) for area-sensitive species were also higher in landscapes with lower mean forest-patch size. These associations were not observed for the non-area-sensitive species group. These results suggest that landscape structure may influence forest bird communities at regional scales through its effects on the total number of species but also on the temporal rates of change in community composition. Evidence for higher rates of local extinction and turnover in more fragmented landscapes suggests that bird communities function as metapopulations at a regional scale, and points out the importance of colonizations and recolonizations from surrounding landscapes to local community dynamics. Further, our results illustrate that the methods used to estimate the community parameters can be a powerful statistical tool in addressing questions relative to the dynamics of communities.
NASA Astrophysics Data System (ADS)
Clear, Jennifer; Chiverrell, Richard; Kunes, Petr; Svoboda, Miroslav; Boyle, John
2016-04-01
Disturbance dynamics in forest ecosystems shows signs of perturbation in the light of changing climate regimes with the frequency and intensity of events (e.g. pathogens in North America and Central Europe) amplified, becoming more frequent and severe. The montane Norway spruce (Picea abies) dominated forests of Central Europe are a niche habitat and environment; situated outside their natural boreal distribution (e.g. Fenno-Scandinavia). These communities are at or near their ecological limits and are vulnerable to both short term disturbances (e.g. fire, windstorm and pathogens) and longer-term environmental change (e.g. climate induced stress and changing disturbance patterns). Researches have linked negative impacts on spruce forest with both wind disturbance (wind-throw) and outbreaks of spruce bark beetle (Ips typographus), and there is growing evidence for co-association with wind damage enhancing pathogenic outbreaks. Examples include: in the Bohemian Forest (Czech Republic) the mid-1990s spruce bark beetle outbreak and the 2007 windstorm and subsequent bark beetle outbreak. In the High Tatra Mountains (Slovakia) there is a further co-association of forest disturbance with windstorms (2004 and 2014) and an ongoing bark beetle outbreak. The scale and severity of these recent outbreaks of spruce bark beetle are unprecedented in the historical forest records. Here, findings from ongoing research developing and integrating data from dendroecological, sedimentary palaeoecological and geochemical time series to develop a longer-term perspective on forest dynamics in these regions. Tree-ring series from plots or forest stands (>500) are used alongside lake (5) and forest hollow (3) sediments from the Czech and Slovak Republics to explore the local, regional and biogeographical scale of forest disturbances. Dendroecological data showing tree-ring gap recruitment and post-suppression growth release highlight frequent disturbance events focused on tree or forest stand spatial scales, but are patchy in terms of reoccurrence. However they highlight levels of disturbance in the late 19th Century. Sediment records from lakes and forest hollows record variable pollen influx (beetle host / non-host ratios) and a stratigraphy that includes mineral in-wash events. μXRF scanning of lakes in the region with varying catchments and catchment-to-lake area ratios show spikes in K, Zr, Ti concentrations reflecting frequent erosive episodes throughout the Holocene. Linking across the temporal scales inherent in dendroecological (0 to 250 years) and sedimentary (0 to 11,500 years) is enhancing our understanding of disturbance dynamics. The identified recent and ongoing forest disturbances coupled with well-evidenced events in the 19th century highlight the need for the longer sedimentary perspective to assess whether contemporary climate warming has and continues to stretch the resilience of these fragile ecosystems. Our data are informative to the ongoing land-management conflict between active forest management (harvesting valuable timber and salvage logging) and forest conservation agenda encouraging forest dynamics and disturbance recovery.
[Comparison of soil respiration in natural Castanopsis carlesii forest and plantation forest].
Wu, Jun-Jun; Yang, Zhi-Jie; Weng, Fa-Jin; Liu, Xiao-Fei; Chen, Chao-Qi; Lin, Wei-Sheng; Wang, Xiao-Hong; Chen, Tan
2014-06-01
By using the Li-8100 open soil carbon flux system, the dynamic change of soil respiration rate in natural Castanopsis carlesii and plantation of Castanopsis carlesii forests in Geshikao Nature Reserve in Fujian Province of China were measured from January 2011 to December 2011, with the relationship between the dynamic changes and the relation affecting factors analyzed. The monthly variation of soil respiration in the two types of forests were both single-peaked,with the peaks appeared in early June [7.03 micromol x (m2 x s) (-1)] andlate July [5.12 micromol x (m2 x s)(-1)], respectively. The average annual soil respiration rates of the two forests were 3.74 micromol x (m2 x s)(-1) and 3.05 micromol x (m2 x s)(-1), respectively, showing significant difference. Soil temperature was the main factor affecting soil respiration, explaining 80.1% and 81.0% of the monthly variation of soil respiration. There was a significant positive correlation between the soil respiration rate and soil moisture content in natural Castanopsis carlesii forest, but lower correlation in plantation of Castanopsis carlesii forest. The soil respiration had extremely significant correlation with the litterfall mass of the current month and the month before. The Q10 values of soil respiration in natural Castanopsis carlesii and plantation of Castanopsis carlesii forests were 1.86 and 2.01, and the annual CO2 fluxes were 14.34 t x (hm2 x a)(-1) and 11.18 t x (hm2 x a)(-1), respectively. The soil respiration declined by 22.03% after natural forest was changed to plantation forest.
ROOT GROWTH AND TURNOVER IN DIFFERENT AGED PONDEROSA PINE STANDS IN OREGON, USA
The impacts of pollution and climate change on soil carbon dynamics are poorly understood, in part due to a lack of information regarding root production and turnover in natural ecosystems. In order to examine how root dynamics change with stand age in ponderosa pine forests (...
Tepley, Alan J; Thompson, Jonathan R; Epstein, Howard E; Anderson-Teixeira, Kristina J
2017-10-01
In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon-cycle feedbacks to climate change. Such concerns are particularly valid in the Klamath Region of northern California and southwestern Oregon, where severe fire initially converts montane conifer forests to systems dominated by broadleaf trees and shrubs. Conifers eventually overtop the competing vegetation, but until they do, these systems could be perpetuated by a cycle of reburning. To assess the vulnerability of conifer forests to increased fire activity and altered forest recovery dynamics in a warmer, drier climate, we characterized vegetation dynamics following severe fire in nine fire years over the last three decades across the climatic aridity gradient of montane conifer forests. Postfire conifer recruitment was limited to a narrow window, with 89% of recruitment in the first 4 years, and height growth tended to decrease as the lag between the fire year and the recruitment year increased. Growth reductions at longer lags were more pronounced at drier sites, where conifers comprised a smaller portion of live woody biomass. An interaction between seed-source availability and climatic aridity drove substantial variation in the density of regenerating conifers. With increasing climatic water deficit, higher propagule pressure (i.e., smaller patch sizes for high-severity fire) was needed to support a given conifer seedling density, which implies that projected future increases in aridity could limit postfire regeneration across a growing portion of the landscape. Under a more severe prospective warming scenario, by the end of the century more than half of the area currently capable of supporting montane conifer forest could become subject to minimal conifer regeneration in even moderate-sized (10s of ha) high-severity patches. © 2017 John Wiley & Sons Ltd.
Vanderwel, Mark C; Coomes, David A; Purves, Drew W
2013-05-01
The role of tree mortality in the global carbon balance is complicated by strong spatial and temporal heterogeneity that arises from the stochastic nature of carbon loss through disturbance. Characterizing spatio-temporal variation in mortality (including disturbance) and its effects on forest and carbon dynamics is thus essential to understanding the current global forest carbon sink, and to predicting how it will change in future. We analyzed forest inventory data from the eastern United States to estimate plot-level variation in mortality (relative to a long-term background rate for individual trees) for nine distinct forest regions. Disturbances that produced at least a fourfold increase in tree mortality over an approximately 5 year interval were observed in 1-5% of plots in each forest region. The frequency of disturbance was lowest in the northeast, and increased southwards along the Atlantic and Gulf coasts as fire and hurricane disturbances became progressively more common. Across the central and northern parts of the region, natural disturbances appeared to reflect a diffuse combination of wind, insects, disease, and ice storms. By linking estimated covariation in tree growth and mortality over time with a data-constrained forest dynamics model, we simulated the implications of stochastic variation in mortality for long-term aboveground biomass changes across the eastern United States. A geographic gradient in disturbance frequency induced notable differences in biomass dynamics between the least- and most-disturbed regions, with variation in mortality causing the latter to undergo considerably stronger fluctuations in aboveground stand biomass over time. Moreover, regional simulations showed that a given long-term increase in mean mortality rates would support greater aboveground biomass when expressed through disturbance effects compared with background mortality, particularly for early-successional species. The effects of increased tree mortality on carbon stocks and forest composition may thus depend partly on whether future mortality increases are chronic or episodic in nature. © 2013 Blackwell Publishing Ltd.
Vanderwel, Mark C; Coomes, David A; Purves, Drew W
2013-01-01
The role of tree mortality in the global carbon balance is complicated by strong spatial and temporal heterogeneity that arises from the stochastic nature of carbon loss through disturbance. Characterizing spatio-temporal variation in mortality (including disturbance) and its effects on forest and carbon dynamics is thus essential to understanding the current global forest carbon sink, and to predicting how it will change in future. We analyzed forest inventory data from the eastern United States to estimate plot-level variation in mortality (relative to a long-term background rate for individual trees) for nine distinct forest regions. Disturbances that produced at least a fourfold increase in tree mortality over an approximately 5 year interval were observed in 1–5% of plots in each forest region. The frequency of disturbance was lowest in the northeast, and increased southwards along the Atlantic and Gulf coasts as fire and hurricane disturbances became progressively more common. Across the central and northern parts of the region, natural disturbances appeared to reflect a diffuse combination of wind, insects, disease, and ice storms. By linking estimated covariation in tree growth and mortality over time with a data-constrained forest dynamics model, we simulated the implications of stochastic variation in mortality for long-term aboveground biomass changes across the eastern United States. A geographic gradient in disturbance frequency induced notable differences in biomass dynamics between the least- and most-disturbed regions, with variation in mortality causing the latter to undergo considerably stronger fluctuations in aboveground stand biomass over time. Moreover, regional simulations showed that a given long-term increase in mean mortality rates would support greater aboveground biomass when expressed through disturbance effects compared with background mortality, particularly for early-successional species. The effects of increased tree mortality on carbon stocks and forest composition may thus depend partly on whether future mortality increases are chronic or episodic in nature. PMID:23505000
Rocha, Ricardo; Ovaskainen, Otso; López-Baucells, Adrià; Farneda, Fábio Z; Sampaio, Erica M; Bobrowiec, Paulo E D; Cabeza, Mar; Palmeirim, Jorge M; Meyer, Christoph F J
2018-02-28
Tropical forest loss and fragmentation are due to increase in coming decades. Understanding how matrix dynamics, especially secondary forest regrowth, can lessen fragmentation impacts is key to understanding species persistence in modified landscapes. Here, we use a whole-ecosystem fragmentation experiment to investigate how bat assemblages are influenced by the regeneration of the secondary forest matrix. We surveyed bats in continuous forest, forest fragments and secondary forest matrix habitats, ~15 and ~30 years after forest clearance, to investigate temporal changes in the occupancy and abundance of old-growth specialist and habitat generalist species. The regeneration of the second growth matrix had overall positive effects on the occupancy and abundance of specialists across all sampled habitats. Conversely, effects on generalist species were negligible for forest fragments and negative for secondary forest. Our results show that the conservation potential of secondary forests for reverting faunal declines in fragmented tropical landscapes increases with secondary forest age and that old-growth specialists, which are often of most conservation concern, are the greatest beneficiaries of secondary forest maturation. Our findings emphasize that the transposition of patterns of biodiversity persistence in island ecosystems to fragmented terrestrial settings can be hampered by the dynamic nature of human-dominated landscapes.
Seasonality of a boreal forest: a remote sensing perspective
NASA Astrophysics Data System (ADS)
Rautiainen, Miina; Heiskanen, Janne; Lukes, Petr; Majasalmi, Titta; Mottus, Matti; Pisek, Jan
2016-04-01
Understanding the seasonal dynamics of boreal ecosystems through interpretation of satellite reflectance data is needed for efficient large-scale monitoring of northern vegetation dynamics and productivity trends. Satellite remote sensing enables continuous global monitoring of vegetation status and is not limited to single-date phenological metrics. Using remote sensing also enables gaining a wider perspective to the seasonality of vegetation dynamics. The seasonal reflectance cycles of boreal forests observed in optical satellite images are explained by changes in biochemical properties and geometrical structure of vegetation as well as seasonal variation in solar illumination. This poster provides a synthesis of a research project (2010-2015) dedicated to monitoring the seasonal cycle of boreal forests. It is based on satellite and field data collected from the Hyytiälä Forestry Field Station in Finland. The results highlight the role understory vegetation has in forming the forest reflectance measured by satellite instruments.
Kathleen S. Knight; Daniel A. Herms; John Cardina; Robert Long; Joanne Rebbeck; Kamal J.K. Gandhi; Annemarie Smith; Wendy S. Klooster; Catherine P. Herms; Alejandro A. Royo
2010-01-01
The effects of emerald ash borer (EAB) (Agrilus planipennis) on forest ecosystems are being studied through a collaborative research program involving the U.S. Forest Service's Northern Research Station and The Ohio State University. We are monitoring the decline and mortality of >4,500 ash trees and saplings, EAB population density, changes...
Changes in snag populations in northern Arizona mixed-conifer and ponderosa pine forests, 1997-2002
Joseph L. Ganey; Scott C. Vojta
2005-01-01
Snags (standing dead trees) are important components of forests that contribute to ecological processes and provide habitat for many life forms. We monitored dynamics of snag populations on 1-ha plots in southwestern mixed-conifer (n = 53 plots) and ponderosa pine (Pinus ponderosa, n = 60 plots) forests in north-central Arizona from 1997 to 2002. Of...
Post-Fire Changes in Forest Biomass Retrieved by Airborne LiDAR in Amazonia
Luciane Sato; Vitor Gomes; Yosio Shimabukuro; Michael Keller; Egidio Arai; Maiza dos-Santos; Irving Brown; Luiz Aragão
2016-01-01
Fire is one of the main factors directly impacting Amazonian forest biomass and dynamics. Because of Amazoniaâs large geographical extent, remote sensing techniques are required for comprehensively assessing forest fire impacts at the landscape level. In this context, Light Detection and Ranging (LiDAR) stands out as a technology capable of retrieving direct...
Matthew G. Olson; Benjamin O. Knapp; John M. Kabrick
2017-01-01
Landscape forest management is an approach to meeting diverse objectives that collectively span multiple spatial scales. It is critical that we understand the long-term effects of landscape management on the structure and composition of forest tree communities to ensure that these practices are sustainable. Furthermore, it is increasingly important to also consider...
Wildfire and fuel treatment effects on forest carbon dynamics in the western United States
Joseph C. Restiano; David L. Peterson
2013-01-01
Sequestration of carbon (C) in forests has the potential to mitigate the effects of climate change by offsetting future emissions of greenhouse gases. However, in dry temperate forests, wildfire is a natural disturbance agent with the potential to release large fluxes of C into the atmosphere. Climate-driven increases in wildfire extent and severity arc expected to...
Ash, the emerald ash borer, and private forest land management
Tom Crowe
2010-01-01
Forest management through emerald ash borer (EAB) will be a dynamic process that will change based on the best information available at the time. Management decisions will depend on the anticipated time of EAB arrival; the diameter and number of ash present in the forest stand; the diameter and number of other desirable and undesirable species present in the stand (...
Jennifer A. Holm; H.H. Shugart; Skip J. Van Bloem; G.R. Larocque
2012-01-01
Because of human pressures, the need to understand and predict the long-term dynamics and development of subtropical dry forests is urgent. Through modifications to the ZELIG simulation model, including the development of species- and site-specific parameters and internal modifications, the capability to model and predict forest change within the 4500-ha Guanica State...
Wildfire and drought dynamics destabilize carbon stores of fire-suppressed forests.
Earles, J Mason; North, Malcolm P; Hurteau, Matthew D
2014-06-01
Widespread fire suppression and thinning have altered the structure and composition of many forests in the western United States, making them more susceptible to the synergy of large-scale drought and fire events. We examine how these changes affect carbon storage and stability compared to historic fire-adapted conditions. We modeled carbon dynamics under possible drought and fire conditions over a 300-year simulation period in two mixed-conifer conditions common in the western United States: (1) pine-dominated with an active fire regime and (2) fir-dominated, fire suppressed forests. Fir-dominated stands, with higher live- and dead-wood density, had much lower carbon stability as drought and fire frequency increased compared to pine-dominated forest. Carbon instability resulted from species (i.e., fir's greater susceptibility to drought and fire) and stand (i.e., high density of smaller trees) conditions that develop in the absence of active management. Our modeling suggests restoring historic species composition and active fire regimes can significantly increase carbon stability in fire-suppressed, mixed-conifer forests. Long-term management of forest carbon should consider the relative resilience of stand structure and composition to possible increases in disturbance frequency and intensity under changing climate.
NASA Astrophysics Data System (ADS)
Erler, A. E.; Shuman, J. K.; Soukhavolosky, V.; Kovalev, A.; Stevens, T.; Shugart, H. H.
2008-12-01
FAREAST: an individual-based forest dynamics model was initially developed to simulate the forested region around Changbai Mountain in northern China. In recent years the model has been expanded across Siberia. The model output for biomass (tCha-1) has been verified against forest inventory data for a number of sites across Russia. With this success, an additional module for the model was written by Anton Kovalev to predict the impact of insect disturbance on the Boreal forests. This model predicts the probability of an insect outbreak occurring, and then, by assessing each individual tree in a modeled stand, predicts whether a tree will be killed as a result of insect predation. From this, a disturbance index is calculated that includes lost biomass as a result of insect disturbance and subsequent species composition. This disturbance "fingerprint" is being compared to forest inventory and insect disturbance data from the Usolsky forests in the Krasnoyarsk region of central Siberia. Silkworm disturbance is expressed in this geo- database as a percentage of trees damaged or killed in a stand. The forest inventory data allows us to calculate a biomass estimate that will be compared to the biomass outputs generated by the model post insect disturbance. The validation of simulated biomass with independent inventory data confirms that FAREAST is a robust model of Russian forest dynamics. Effective validation of the insect disturbance model will allow us to generate a more complete picture of the changing ecology of the Siberian Boreal landscape. The economic cost of lumber lost as a result of Silkworm damage has been enormous, if verified, FAREAST will afford us the opportunity to estimate the extent of that loss and predict the changing ecological dynamics of the Boreal forest system under the worlds evolving climate.
Chen, Guangsheng; Tian, Hanqin; Huang, Chengquan; ...
2013-07-01
Forest ecosystems in the southern United States are dramatically altered by three major disturbances: timber harvesting, hurricane, and permanent land conversion. Understanding and quantifying effects of disturbance on forest carbon, nitrogen, and water cycles is critical for sustainable forest management in this region. In this study, we introduced a process-based ecosystem model for simulating forest disturbance impacts on ecosystem carbon, nitrogen, and water cycles. Based on forest mortality data classified from Landsat TM/ETM + images, this model was then applied to estimate changes in carbon storage using Mississippi and Alabama as a case study. Mean annual forest mortality rate formore » these states was 2.37%. Due to frequent disturbance, over 50% of the forest land in the study region was less than 30 years old. Forest disturbance events caused a large carbon source (138.92 Tg C, 6.04 Tg C yr -1; 1 Tg = 10 12 g) for both states during 1984–2007, accounting for 2.89% (4.81% if disregard carbon storage changes in wood products) of the total forest carbon storage in this region. Large decreases and slow recovery of forest biomass were the main causes for carbon release. Forest disturbance could result in a carbon sink in few areas if wood product carbon was considered as a local carbon pool, indicating the importance of accounting for wood product carbon when assessing forest disturbance effects. The legacy effects of forest disturbance on ecosystem carbon storage could last over 50 years. Lastly, this study implies that understanding forest disturbance impacts on carbon dynamics is of critical importance for assessing regional carbon budgets.« less
NASA Astrophysics Data System (ADS)
Pisek, J.; Lang, M.; Kuusk, J.; Kobayashi, H.; Suzuki, R.; Rautiainen, M.; Schaepman, M. E.; Nikopensius, M.; Raabe, K.
2013-12-01
Since ground vegetation (understory) has an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal and temperate forests, its reflectance spectra are urgently needed in various forest reflectance modelling efforts. However, systematic reflectance data covering different site types are almost missing. Measurement of understory reflectance is a real challenge because of extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum and its variable nature. Understory consists of several sub-layers (tree regeneration, shrub, grasses or dwarf shrub, mosses or lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional problems are introduced by patchiness of ground vegetation, ground surface roughness and understory-overstory relations. Due to this variability, remote sensing might be the only technology to provide consistent data at the required spatially extensive scales. Here we follow on our previous effort at mapping understory reflectance dynamics using multi-angle remote sensing observations (Pisek et al. (2012). Retrieval of seasonal dynamics of forest understory reflectance in a Northern European boreal forest from MODIS BRDF data. Remote Sensing of Environment, 117, 464-468). This presentation will focus on the validation of this approach against an extended collection of different types of forest sites with available in-situ understory reflectance measurements distributed along a wide latitudinal gradient: a sparse black spruce forest in Alaska (Poker range; 65.12 N), a northern European boreal forest (Hyytiala; 61.85 N), hemiboreal needleleaf and deciduous stands in Estonia (Jarvselja; 58.27 N), a temperate deciduous forest in Switzerland (Laegeren; 47.48 N), and a dense black spruce forest in Canada (Sudbury; 47.16 N). Our results are pertinent to the ultimate goal of production of circumpolar maps of seasonal dynamics of forest understory over boreal forests using the MODIS BRDF data, starting from 2000. This will allow us to assess the changes in seasonal dynamics of boreal forest understory over the full decade.
Vulnerability of Forests in India: A National Scale Assessment.
Sharma, Jagmohan; Upgupta, Sujata; Jayaraman, Mathangi; Chaturvedi, Rajiv Kumar; Bala, Govindswamy; Ravindranath, N H
2017-09-01
Forests are subjected to stress from climatic and non-climatic sources. In this study, we have reported the results of inherent, as well as climate change driven vulnerability assessments for Indian forests. To assess inherent vulnerability of forests under current climate, we have used four indicators, namely biological richness, disturbance index, canopy cover, and slope. The assessment is presented as spatial profile of inherent vulnerability in low, medium, high and very high vulnerability classes. Fourty percent forest grid points in India show high or very high inherent vulnerability. Plantation forests show higher inherent vulnerability than natural forests. We assess the climate change driven vulnerability by combining the results of inherent vulnerability assessment with the climate change impact projections simulated by the Integrated Biosphere Simulator dynamic global vegetation model. While 46% forest grid points show high, very high, or extremely high vulnerability under future climate in the short term (2030s) under both representative concentration pathways 4.5 and 8.5, such grid points are 49 and 54%, respectively, in the long term (2080s). Generally, forests in the higher rainfall zones show lower vulnerability as compared to drier forests under future climate. Minimizing anthropogenic disturbance and conserving biodiversity can potentially reduce forest vulnerability under climate change. For disturbed forests and plantations, adaptive management aimed at forest restoration is necessary to build long-term resilience.
Vulnerability of Forests in India: A National Scale Assessment
NASA Astrophysics Data System (ADS)
Sharma, Jagmohan; Upgupta, Sujata; Jayaraman, Mathangi; Chaturvedi, Rajiv Kumar; Bala, Govindswamy; Ravindranath, N. H.
2017-09-01
Forests are subjected to stress from climatic and non-climatic sources. In this study, we have reported the results of inherent, as well as climate change driven vulnerability assessments for Indian forests. To assess inherent vulnerability of forests under current climate, we have used four indicators, namely biological richness, disturbance index, canopy cover, and slope. The assessment is presented as spatial profile of inherent vulnerability in low, medium, high and very high vulnerability classes. Fourty percent forest grid points in India show high or very high inherent vulnerability. Plantation forests show higher inherent vulnerability than natural forests. We assess the climate change driven vulnerability by combining the results of inherent vulnerability assessment with the climate change impact projections simulated by the Integrated Biosphere Simulator dynamic global vegetation model. While 46% forest grid points show high, very high, or extremely high vulnerability under future climate in the short term (2030s) under both representative concentration pathways 4.5 and 8.5, such grid points are 49 and 54%, respectively, in the long term (2080s). Generally, forests in the higher rainfall zones show lower vulnerability as compared to drier forests under future climate. Minimizing anthropogenic disturbance and conserving biodiversity can potentially reduce forest vulnerability under climate change. For disturbed forests and plantations, adaptive management aimed at forest restoration is necessary to build long-term resilience.
Surface elevation dynamics in a regenerating mangrove forest at Homebush Bay, Australia
Rogers, K.; Saintilan, N.; Cahoon, D.
2005-01-01
Following the dieback of an interior portion of a mangrove forest at Homebush Bay, Australia, surface elevation tables and feldspar marker horizons were installed in the impacted, intermediate and control forest to measure vertical accretion, elevation change, and shallow subsidence. The objectives of the study were to determine current vertical accretion and elevation change rates as a guide to understanding mangrove dieback, ascertain the factors controlling surface elevation change, and investigate the sustainability of the mangrove forest under estimated sea-level rise conditions. The study demonstrates that the influences on surface dynamics are more complex than soil accretion and soil autocompaction alone. During strong vegetative regrowth in the impacted forest, surface elevation increase exceeded vertical accretion apparently as a result of belowground biomass production. In addition, surface elevation in all forest zones was correlated with total monthly rainfall during a severe El Ni?o event, highlighting the importance of rainfall to groundwater recharge and surface elevation. Surface elevation increase for all zones exceeded the 85-year sea level trend for Sydney Harbour. Since mean sea-level also decreased during the El Ni?o event, the decrease in surface elevation did not translate to an increase in inundation frequency or influence the sustainability of the mangrove forest. These findings indicate that subsurface soil processes such as organic matter accumulation and groundwater flux can significantly influence mangrove surface elevation, and contribute to the long-term sustainability of mangrove systems under a scenario of rising sea levels.
Holocene carbon dynamics at the forest-steppe ecotone of southern Siberia.
Mackay, Anson William; Seddon, Alistair W R; Leng, Melanie J; Heumann, Georg; Morley, David W; Piotrowska, Natalia; Rioual, Patrick; Roberts, Sarah; Swann, George E A
2017-05-01
The forest-steppe ecotone in southern Siberia is highly sensitive to climate change; global warming is expected to push the ecotone northwards, at the same time resulting in degradation of the underlying permafrost. To gain a deeper understanding of long-term forest-steppe carbon dynamics, we use a highly resolved, multiproxy, palaeolimnological approach, based on sediment records from Lake Baikal. We reconstruct proxies that are relevant to understanding carbon dynamics including carbon mass accumulation rates (CMAR; g C m -2 yr -1 ) and isotope composition of organic matter (δ 13 C TOC ). Forest-steppe dynamics were reconstructed using pollen, and diatom records provided measures of primary production from near- and off-shore communities. We used a generalized additive model (GAM) to identify significant change points in temporal series, and by applying generalized linear least-squares regression modelling to components of the multiproxy data, we address (1) What factors influence carbon dynamics during early Holocene warming and late Holocene cooling? (2) How did carbon dynamics respond to abrupt sub-Milankovitch scale events? and (3) What is the Holocene carbon storage budget for Lake Baikal. CMAR values range between 2.8 and 12.5 g C m -2 yr -1 . Peak burial rates (and greatest variability) occurred during the early Holocene, associated with melting permafrost and retreating glaciers, while lowest burial rates occurred during the neoglacial. Significant shifts in carbon dynamics at 10.3, 4.1 and 2.8 kyr bp provide compelling evidence for the sensitivity of the region to sub-Milankovitch drivers of climate change. We estimate that 1.03 Pg C was buried in Lake Baikal sediments during the Holocene, almost one-quarter of which was buried during the early Holocene alone. Combined, our results highlight the importance of understanding the close linkages between carbon cycling and hydrological processes, not just temperatures, in southern Siberian environments. © 2016 John Wiley & Sons Ltd.
Foster, Jane R; D'Amato, Anthony W
2015-12-01
Ecotones are transition zones that form, in forests, where distinct forest types meet across a climatic gradient. In mountains, ecotones are compressed and act as potential harbingers of species shifts that accompany climate change. As the climate warms in New England, USA, high-elevation boreal forests are expected to recede upslope, with northern hardwood species moving up behind. Yet recent empirical studies present conflicting findings on this dynamic, reporting both rapid upward ecotonal shifts and concurrent increases in boreal species within the region. These discrepancies may result from the limited spatial extent of observations. We developed a method to model and map the montane forest ecotone using Landsat imagery to observe change at scales not possible for plot-based studies, covering mountain peaks over 39 000 km(2) . Our results show that ecotones shifted downward or stayed stable on most mountains between 1991 and 2010, but also shifted upward in some cases (13-15% slopes). On average, upper ecotone boundaries moved down -1.5 m yr(-1) in the Green Mountains, VT, and -1.3 m yr(-1) in the White Mountains, NH. These changes agree with remeasured forest inventory data from Hubbard Brook Experimental Forest, NH, and suggest that processes of boreal forest recovery from prior red spruce decline, or human land use and disturbance, may swamp out any signal of climate-mediated migration in this ecosystem. This approach represents a powerful framework for evaluating similar ecotonal dynamics in other mountainous regions of the globe. © 2015 John Wiley & Sons Ltd.
Assessment of Climate Impact Changes on Forest Vegetation Dynamics by Satellite Remote Sensing
NASA Astrophysics Data System (ADS)
Zoran, Maria
Climate variability represents the ensemble of net radiation, precipitation, wind and temper-ature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Forest vegetation phenology constitutes an efficient bio-indicator of climate and anthropogenic changes impacts and a key parameter for understanding and modelling vegetation-climate in-teractions. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vege-tation Index (NDVIs), which requires NDVI time-series with good time resolution, over homo-geneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and ETM satellite images and meteorological data over l995-2007 period. For investigated test area, considerable NDVI decline was observed between 1995 and 2008 due to the drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and to-pography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation . The paper aims to describe observed trends and potential impacts based on scenarios from simulations with regional climate models and other downscaling procedures.
Michael G. Shelton; Michael D. Cain
1999-01-01
The R.R. Reynolds Research Natural Area is a 32-ha second-growth forest with little human intervention for nearly 60 years. In this paper, the authors characterize the existing vegetation, which represents 60 years of successional change with no major disturbances, and report vegetative changes over a 5-year period, which suggest the future successional direction....
An imperative need for global change research in tropical forests.
Zhou, Xuhui; Fu, Yuling; Zhou, Lingyan; Li, Bo; Luo, Yiqi
2013-09-01
Tropical forests play a crucial role in regulating regional and global climate dynamics, and model projections suggest that rapid climate change may result in forest dieback or savannization. However, these predictions are largely based on results from leaf-level studies. How tropical forests respond and feedback to climate change is largely unknown at the ecosystem level. Several complementary approaches have been used to evaluate the effects of climate change on tropical forests, but the results are conflicting, largely due to confounding effects of multiple factors. Although altered precipitation and nitrogen deposition experiments have been conducted in tropical forests, large-scale warming and elevated carbon dioxide (CO2) manipulations are completely lacking, leaving many hypotheses and model predictions untested. Ecosystem-scale experiments to manipulate temperature and CO2 concentration individually or in combination are thus urgently needed to examine their main and interactive effects on tropical forests. Such experiments will provide indispensable data and help gain essential knowledge on biogeochemical, hydrological and biophysical responses and feedbacks of tropical forests to climate change. These datasets can also inform regional and global models for predicting future states of tropical forests and climate systems. The success of such large-scale experiments in natural tropical forests will require an international framework to coordinate collaboration so as to meet the challenges in cost, technological infrastructure and scientific endeavor.
Sustainable forest management and impacts on forest responses to a changing climate
NASA Astrophysics Data System (ADS)
Stover, D. B.; Parker, G.; Riutta, T.; Capretz, R.; Murthy, I.; Haibao, R.; Bebber, D.
2009-12-01
Impacts from human activities at varying scales and intensities have a profound influence on forest carbon dynamics in addition to interactions with climate. As such, forest carbon stocks and fluxes are among the least well-defined elements of the global carbon cycle, and great uncertainty remains in predicting the effect of climate change on forest dynamics. In some cases, these management-climate interactions are well known, but often represent a fundamental gap in our understanding of ecosystem responses and are likely to be important in improving modeling of climate change, and in valuing forest carbon. To improve understanding of human induced forest management-climate interactions, a network of permanent study plots has been established in five sites around the world - in the US, UK, Brazil, India and China. The sites are near larger global monitoring (Smithsonian CTFS) plots to facilitate comparisons. At each site, a series of 1-ha plots have been placed in forest stands with differing management regimes and histories. Utilizing citizen scientists from HSBC bank, all trees >5 cm dbh are tagged, mapped, identified to species, and diameter is recorded within each plot. A subset of trees have dendrometer bands attached, to record seasonal growth. Dead wood and litterfall samples are taken, and microclimate is recorded with automatic sensors. Serial measurements will allow correlation of forest dynamics with weather. Although the studies are at an early stage current results indicate above-ground biomass estimates are 102-288 Mg ha-1 for intermediate and mature Liriodendron tulipifera-dominated stands in the US, respectively. In India, mature semi-natural evergreen forests biomass estimates are 192-235 Mg ha-1 while plantation and semi-natural core forests in the UK are estimated at 211-292 Mg ha-1. Successional Atlantic forests in Brazil are estimated to contain 192-235 Mg ha-1. In the US, initial results have demonstrated dramatic differences in microclimate (soil and air temperature and penetrance of phosynthetically active radiation) and canopy structure (the vertical distribution of surfaces) between the intact and selectively logged stands. These variables will be used as indicators of the strength and speed of ecosystem recovery to logging. In the UK, plantations had greater biomass than the semi-natural plots, due to differences in age structure; however, trees above 50 cm dbh comprised 3% of total stems but almost 50% of the biomass in the semi-natural plots. Comparisons will be made among the various modes of forest disturbance to determine how these could influence ecosystem responses to climate change. Increasing human and climatic pressures on the world's forests will necessitate further long-term studies and cross-ecosystem comparisons of this nature which lends itself to application of an intensive citizen science program.
Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy
Asner, Gregory P.; Nepstad, Daniel; Cardinot, Gina; Ray, David
2004-01-01
Amazônia contains vast stores of carbon in high-diversity ecosystems, yet this region undergoes major changes in precipitation affecting land use, carbon dynamics, and climate. The extent and structural complexity of Amazon forests impedes ground studies of ecosystem functions such as net primary production (NPP), water cycling, and carbon sequestration. Traditional modeling and remote-sensing approaches are not well suited to tropical forest studies, because (i) biophysical mechanisms determining drought effects on canopy water and carbon dynamics are poorly known, and (ii) remote-sensing metrics of canopy greenness may be insensitive to small changes in leaf area accompanying drought. New spaceborne imaging spectroscopy may detect drought stress in tropical forests, helping to monitor forest physiology and constrain carbon models. We combined a forest drought experiment in Amazônia with spaceborne imaging spectrometer measurements of this area. With field data on rainfall, soil water, and leaf and canopy responses, we tested whether spaceborne hyperspectral observations quantify differences in canopy water and NPP resulting from drought stress. We found that hyperspectral metrics of canopy water content and light-use efficiency are highly sensitive to drought. Using these observations, forest NPP was estimated with greater sensitivity to drought conditions than with traditional combinations of modeling, remote-sensing, and field measurements. Spaceborne imaging spectroscopy will increase the accuracy of ecological studies in humid tropical forests. PMID:15071182
Krawchuk, Meg A; Cumming, Steve G
2011-01-01
Predictions of future fire activity over Canada's boreal forests have primarily been generated from climate data following assumptions that direct effects of weather will stand alone in contributing to changes in burning. However, this assumption needs explicit testing. First, areas recently burned can be less likely to burn again in the near term, and this endogenous regulation suggests the potential for self-limiting, negative biotic feedback to regional climate-driven increases in fire. Second, forest harvest is ongoing, and resulting changes in vegetation structure have been shown to affect fire activity. Consequently, we tested the assumption that fire activity will be driven by changes in fire weather without regulation by biotic feedback or regional harvest-driven changes in vegetation structure in the mixedwood boreal forest of Alberta, Canada, using a simulation experiment that includes the interaction of fire, stand dynamics, climate change, and clear cut harvest management. We found that climate change projected with fire weather indices calculated from the Canadian Regional Climate Model increased fire activity, as expected, and our simulations established evidence that the magnitude of regional increase in fire was sufficient to generate negative feedback to subsequent fire activity. We illustrate a 39% (1.39-fold) increase in fire initiation and 47% (1.47-fold) increase in area burned when climate and stand dynamics were included in simulations, yet 48% (1.48-fold) and 61% (1.61-fold) increases, respectively, when climate was considered alone. Thus, although biotic feedbacks reduced burned area estimates in important ways, they were secondary to the direct effect of climate on fire. We then show that ongoing harvest management in this region changed landscape composition in a way that led to reduced fire activity, even in the context of climate change. Although forest harvesting resulted in decreased regional fire activity when compared to unharvested conditions, forest composition and age structure was shifted substantially, illustrating a trade-off between management goals to minimize fire and conservation goals to emulate natural disturbance.
Navarrete, Diego; Sitch, Stephen; Aragão, Luiz E O C; Pedroni, Lucio
2016-10-01
Strategies to mitigate climate change by reducing deforestation and forest degradation (e.g. REDD+) require country- or region-specific information on temporal changes in forest carbon (C) pools to develop accurate emission factors. The soil C pool is one of the most important C reservoirs, but is rarely included in national forest reference emission levels due to a lack of data. Here, we present the soil organic C (SOC) dynamics along 20 years of forest-to-pasture conversion in two subregions with different management practices during pasture establishment in the Colombian Amazon: high-grazing intensity (HG) and low-grazing intensity (LG) subregions. We determined the pattern of SOC change resulting from the conversion from forest (C3 plants) to pasture (C4 plants) by analysing total SOC stocks and the natural abundance of the stable isotopes (13) C along two 20-year chronosequences identified in each subregion. We also analysed soil N stocks and the natural abundance of (15) N during pasture establishment. In general, total SOC stocks at 30 cm depth in the forest were similar for both subregions, with an average of 47.1 ± 1.8 Mg C ha(-1) in HG and 48.7 ± 3.1 Mg C ha(-1) in LG. However, 20 years after forest-to-pasture conversion SOC in HG decreased by 20%, whereas in LG SOC increased by 41%. This net SOC decrease in HG was due to a larger reduction in C3-derived input and to a comparatively smaller increase in C4-derived C input. In LG both C3- and C4-derived C input increased along the chronosequence. N stocks were generally similar in both subregions and soil N stock changes during pasture establishment were correlated with SOC changes. These results emphasize the importance of management practices involving low-grazing intensity in cattle activities to preserve SOC stocks and to reduce C emissions after land-cover change from forest to pasture in the Colombian Amazon. © 2016 John Wiley & Sons Ltd.
Global patterns of kelp forest change over the past half-century.
Krumhansl, Kira A; Okamoto, Daniel K; Rassweiler, Andrew; Novak, Mark; Bolton, John J; Cavanaugh, Kyle C; Connell, Sean D; Johnson, Craig R; Konar, Brenda; Ling, Scott D; Micheli, Fiorenza; Norderhaug, Kjell M; Pérez-Matus, Alejandro; Sousa-Pinto, Isabel; Reed, Daniel C; Salomon, Anne K; Shears, Nick T; Wernberg, Thomas; Anderson, Robert J; Barrett, Nevell S; Buschmann, Alejandro H; Carr, Mark H; Caselle, Jennifer E; Derrien-Courtel, Sandrine; Edgar, Graham J; Edwards, Matt; Estes, James A; Goodwin, Claire; Kenner, Michael C; Kushner, David J; Moy, Frithjof E; Nunn, Julia; Steneck, Robert S; Vásquez, Julio; Watson, Jane; Witman, Jon D; Byrnes, Jarrett E K
2016-11-29
Kelp forests (Order Laminariales) form key biogenic habitats in coastal regions of temperate and Arctic seas worldwide, providing ecosystem services valued in the range of billions of dollars annually. Although local evidence suggests that kelp forests are increasingly threatened by a variety of stressors, no comprehensive global analysis of change in kelp abundances currently exists. Here, we build and analyze a global database of kelp time series spanning the past half-century to assess regional and global trends in kelp abundances. We detected a high degree of geographic variation in trends, with regional variability in the direction and magnitude of change far exceeding a small global average decline (instantaneous rate of change = -0.018 y -1 ). Our analysis identified declines in 38% of ecoregions for which there are data (-0.015 to -0.18 y -1 ), increases in 27% of ecoregions (0.015 to 0.11 y -1 ), and no detectable change in 35% of ecoregions. These spatially variable trajectories reflected regional differences in the drivers of change, uncertainty in some regions owing to poor spatial and temporal data coverage, and the dynamic nature of kelp populations. We conclude that although global drivers could be affecting kelp forests at multiple scales, local stressors and regional variation in the effects of these drivers dominate kelp dynamics, in contrast to many other marine and terrestrial foundation species.
Global patterns of kelp forest change over the past half-century
Krumhansl, Kira A.; Okamoto, Daniel K.; Rassweiler, Andrew; Novak, Mark; Bolton, John J.; Cavanaugh, Kyle C.; Connell, Sean D.; Johnson, Craig R.; Konar, Brenda; Ling, Scott D.; Micheli, Fiorenza; Norderhaug, Kjell M.; Pérez-Matus, Alejandro; Sousa-Pinto, Isabel; Reed, Daniel C.; Salomon, Anne K.; Shears, Nick T.; Wernberg, Thomas; Anderson, Robert J.; Barrett, Nevell S.; Buschmann, Alejandro H.; Carr, Mark H.; Caselle, Jennifer E.; Derrien-Courtel, Sandrine; Edgar, Graham J.; Edwards, Matt; Estes, James A.; Goodwin, Claire; Kenner, Michael C.; Kushner, David J.; Nunn, Julia; Steneck, Robert S.; Vásquez, Julio; Watson, Jane; Witman, Jon D.
2016-01-01
Kelp forests (Order Laminariales) form key biogenic habitats in coastal regions of temperate and Arctic seas worldwide, providing ecosystem services valued in the range of billions of dollars annually. Although local evidence suggests that kelp forests are increasingly threatened by a variety of stressors, no comprehensive global analysis of change in kelp abundances currently exists. Here, we build and analyze a global database of kelp time series spanning the past half-century to assess regional and global trends in kelp abundances. We detected a high degree of geographic variation in trends, with regional variability in the direction and magnitude of change far exceeding a small global average decline (instantaneous rate of change = −0.018 y−1). Our analysis identified declines in 38% of ecoregions for which there are data (−0.015 to −0.18 y−1), increases in 27% of ecoregions (0.015 to 0.11 y−1), and no detectable change in 35% of ecoregions. These spatially variable trajectories reflected regional differences in the drivers of change, uncertainty in some regions owing to poor spatial and temporal data coverage, and the dynamic nature of kelp populations. We conclude that although global drivers could be affecting kelp forests at multiple scales, local stressors and regional variation in the effects of these drivers dominate kelp dynamics, in contrast to many other marine and terrestrial foundation species. PMID:27849580
Satellite remote sensing assessment of climate impact on forest vegetation dynamics
NASA Astrophysics Data System (ADS)
Zoran, M.
2009-04-01
Forest vegetation phenology constitutes an efficient bio-indicator of impacts of climate and anthropogenic changes and a key parameter for understanding and modelling vegetation-climate interactions. Climate variability represents the ensemble of net radiation, precipitation, wind and temperature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vegetation Index (NDVIs), which requires NDVI time-series with good time resolution, over homogeneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and ETM satellite images and meteorological data over l995-2007 period. For investigated test area, considerable NDVI decline was observed between 1995 and 2007 due to the drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and topography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation . The paper aims to describe observed trends and potential impacts based on scenarios from simulations with regional climate models and other downscaling procedures.
Current and future patterns of fire-induced forest degradation in Amazonia
NASA Astrophysics Data System (ADS)
De Faria, Bruno L.; Brando, Paulo M.; Macedo, Marcia N.; Panday, Prajjwal K.; Soares-Filho, Britaldo S.; Coe, Michael T.
2017-09-01
Amazon droughts directly increase forest flammability by reducing forest understory air and fuel moisture. Droughts also increase forest flammability indirectly by decreasing soil moisture, triggering leaf shedding, branch loss, and tree mortality—all of which contribute to increased fuel loads. These direct and indirect effects can cause widespread forest fires that reduce forest carbon stocks in the Amazon, with potentially important consequences for the global carbon cycle. These processes are expected to become more widespread, common, and intense as global climate changes, yet the mechanisms linking droughts, wildfires, and associated changes in carbon stocks remain poorly understood. Here, we expanded the capabilities of a dynamic forest carbon model to better represent (1) drought effects on carbon and fuel dynamics and (2) understory fire behavior and severity. We used the refined model to quantify changes in Pan-Amazon live carbon stocks as a function of the maximum climatological water deficit (MCWD) and fire intensity, under both historical and future climate conditions. We found that the 2005 and 2010 droughts increased potential fire intensity by 226 kW m-1 and 494 kW m-1, respectively. These increases were due primarily to increased understory dryness (109 kW m-1 in 2005; 124 kW m-1 in 2010) and altered forest structure (117 kW m-1 in 2005; 370 kW m-1 in 2010) effects. Combined, these historic droughts drove total simulated reductions in live carbon stocks of 0.016 (2005) and 0.027 (2010) PgC across the Amazon Basin. Projected increases in future fire intensity increased simulated carbon losses by up to 90% per unit area burned, compared with modern climate. Increased air temperature was the primary driver of changes in simulated future fire intensity, while reduced precipitation was secondary, particularly in the eastern portion of the Basin. Our results show that fire-drought interactions strongly affect live carbon stocks and that future climate change, combined with the synergistic effects of drought on forest flammability, may strongly influence the stability of tropical forests in the future.
Multidecadal stability in tropical rain forest structure and dynamics across an old-growth landscape
Clark, Deborah A.; Oberbauer, Steven F.; Kellner, James R.
2017-01-01
Have tropical rain forest landscapes changed directionally through recent decades? To answer this question requires tracking forest structure and dynamics through time and across within-forest environmental heterogeneity. While the impacts of major environmental gradients in soil nutrients, climate and topography on lowland tropical rain forest (TRF) structure and function have been extensively analyzed, the effects of the shorter environmental gradients typical of mesoscale TRF landscapes remain poorly understood. To evaluate multi-decadal performance of an old-growth TRF at the La Selva Biological Station, Costa Rica, we established 18 0.5-ha annually-censused forest inventory plots in a stratified-random design across major landscape edaphic gradients. Over the 17-year study period, there were moderate differences in stand dynamics and structure across these gradients but no detectable difference in woody productivity. We found large effects on forest structure and dynamics from the mega-Niño event at the outset of the study, with subdecadal recovery and subsequent stabilization. To extend the timeline to >40 years, we combined our findings with those from earlier studies at this site. While there were annual to multiannual variations in the structure and dynamics, particularly in relation to local disturbances and the mega-Niño event, at the longer temporal scale and broader spatial scale this landscape was remarkably stable. This stability contrasts notably with a current hypothesis of increasing biomass and dynamics of TRF, which we term the Bigger and Faster Hypothesis (B&FHo). We consider possible reasons for the contradiction and conclude that it is currently not possible to independently assess the vast majority of previously published B&FHo evidence due to restricted data access. PMID:28981502
Alexeyev V.A.; Markov M.V.; R.A. Birdsey; Birdsey R.A.
2004-01-01
Contains statistical data on area and growing-stock volume of forest lands in Oblasts, Krays and Republics of Russian Federation, for the period 1961-1998. Positive dynamics of average growing stock for coniferous, deciduous hardwood and deciduous softwood tree stands by stand-age groups were disclosed. The impact of main anthropogenic and natural factors, including...
Christopher R. Webster; Yvette L. Dickinson; Julia I. Burton; Lee E. Frelich; Michael A. Jenkins; Christel C. Kern; Patricia Raymond; Michael R. Saunders; Michael B. Walters; John L. Willis
2018-01-01
Declines in the diversity of herbaceous and woody plant species in the understory of eastern North American hardwood forests are increasingly common. Forest managers are tasked with maintaining and/or promoting species diversity and resilience; however, the success of these efforts depends on a robust understanding of past and future system dynamics and identification...
K.A. Magrini; R.J. Evans; C.M. Hoover; C.C. Elam; M.F. Davis
2002-01-01
The components of soil organic matter (SOM) and their degradation dynamics in forest soils are difficult to study and thus poorly understood,due to time-consuming sample collection, preparation, and difficulty of analyzing and identifying major components. As a result, changes in soil organic matter chemical composition as a function of age, forest type, or disturbance...
Salim Belyazid; Scott Bailey; Harald Sverdrup
2010-01-01
The Hubbard Brook Ecosystem Study presents a unique opportunity for studying long-term ecosystem responses to changes in anthropogenic factors. Following industrialisation and the intensification of agriculture, the Hubbard Brook Experimental Forest (HBEF) has been subject to increased loads of atmospheric deposition, particularly sulfur and nitrogen. The deposition of...
Matthew J. Reilly; Thomas A. Spies
2016-01-01
Tree mortality is an important demographic process and primary driver of forest dynamics, yet there are relatively few plot-based studies that explicitly quantify mortality and compare the relative contribution of endogenous and exogenous disturbances at regional scales. We used repeated observations on 289,390 trees in 3673 1 ha plots on U.S. Forest Service lands in...
Charles C. Rhoades; Robert M. Hubbard; Kelly Elder
2017-01-01
Forests of western North America are currently experiencing extensive tree mortality from a variety of bark beetle species, and insect outbreaks are projected to increase under warmer, drier climates. Unlike the abrupt biogeochemical changes typical after wildfire and timber harvesting, the outcomes of insect outbreaks are poorly understood. The mountain pine bark...
NASA Astrophysics Data System (ADS)
Jayakaran, A. D.; Williams, T. M.; Ssegane, H.; Amatya, D. M.; Song, B.; Trettin, C. C.
2014-03-01
Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal South Carolina watersheds in terms of streamflow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over 30 years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds - a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic change in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of evapotranspiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.
A Conceptual Model of Riparian Forest Response to Channel Abandonment on Meandering Rivers
NASA Astrophysics Data System (ADS)
Stella, J. C.; Hayden, M. K.; Battles, J. J.; Piegay, H.; Dufour, S.; Fremier, A. K.
2008-12-01
On alluvial rivers, hydrogeomorphic regimes exert a primary control on the regeneration of pioneer riparian forest stands and thus their composition and age structure. Seasonal flow patterns provide the necessary conditions for recruitment, and channel migration drives patterns of forest stand dynamics. To date, studies of pioneer riparian forest structure have focused primarily on point bar habitats, where woody vegetation typically recruits with decadal frequency in even-aged bands parallel to the river margin. However, there are indications that other recruitment pathways exist and can be important from a population and conservation perspective. On floodplains where channel migration occurs as infrequent cutoff or avulsion events, the geometry and position of the old channel relative to the new one determines rates and patterns of sedimentation and flood frequency. These conditions provide a brief opportunity for forest recruitment, and geomorphic evolution of the former channel habitat in turn influences forest dynamics. The population implications of this alternative forest regeneration pathway depend on the temporal dynamics of channel abandonment versus the rate of lateral channel migration. Preliminary analysis indicates that the geographic scope of this ecogeomorphological process is sizable. Along the Sacramento River (CA) and Ain River (France), for example, cottonwood-dominated stands associated with abandoned channels tend to be less frequent in number (38% of all stands) but larger in area (accounting for 53% of all forest area) relative to forest stands associated with laterally migrating point bars. Dendrochronological analysis confirms that tree ages in floodplain stands corresponds to the first decade after channel abandonment. These data indicate that changes to the rate and scale of channel abandonment due to human and climatic alterations to the flow regime will likely influence riparian corridor-wide tree population structure and forest dynamics.
An empirical, integrated forest biomass monitoring system
NASA Astrophysics Data System (ADS)
Kennedy, Robert E.; Ohmann, Janet; Gregory, Matt; Roberts, Heather; Yang, Zhiqiang; Bell, David M.; Kane, Van; Hughes, M. Joseph; Cohen, Warren B.; Powell, Scott; Neeti, Neeti; Larrue, Tara; Hooper, Sam; Kane, Jonathan; Miller, David L.; Perkins, James; Braaten, Justin; Seidl, Rupert
2018-02-01
The fate of live forest biomass is largely controlled by growth and disturbance processes, both natural and anthropogenic. Thus, biomass monitoring strategies must characterize both the biomass of the forests at a given point in time and the dynamic processes that change it. Here, we describe and test an empirical monitoring system designed to meet those needs. Our system uses a mix of field data, statistical modeling, remotely-sensed time-series imagery, and small-footprint lidar data to build and evaluate maps of forest biomass. It ascribes biomass change to specific change agents, and attempts to capture the impact of uncertainty in methodology. We find that: • A common image framework for biomass estimation and for change detection allows for consistent comparison of both state and change processes controlling biomass dynamics. • Regional estimates of total biomass agree well with those from plot data alone. • The system tracks biomass densities up to 450-500 Mg ha-1 with little bias, but begins underestimating true biomass as densities increase further. • Scale considerations are important. Estimates at the 30 m grain size are noisy, but agreement at broad scales is good. Further investigation to determine the appropriate scales is underway. • Uncertainty from methodological choices is evident, but much smaller than uncertainty based on choice of allometric equation used to estimate biomass from tree data. • In this forest-dominated study area, growth and loss processes largely balance in most years, with loss processes dominated by human removal through harvest. In years with substantial fire activity, however, overall biomass loss greatly outpaces growth. Taken together, our methods represent a unique combination of elements foundational to an operational landscape-scale forest biomass monitoring program.
Williams, Christopher A; Vanderhoof, Melanie K; Khomik, Myroslava; Ghimire, Bardan
2014-03-01
Clearcutting and other forest disturbances perturb carbon, water, and energy balances in significant ways, with corresponding influences on Earth's climate system through biogeochemical and biogeophysical effects. Observations are needed to quantify the precise changes in these balances as they vary across diverse disturbances of different types, severities, and in various climate and ecosystem type settings. This study combines eddy covariance and micrometeorological measurements of surface-atmosphere exchanges with vegetation inventories and chamber-based estimates of soil respiration to quantify how carbon, water, and energy fluxes changed during the first 3 years following forest clearing in a temperate forest environment of the northeastern US. We observed rapid recovery with sustained increases in gross ecosystem productivity (GEP) over the first three growing seasons post-clearing, coincident with large and relatively stable net emission of CO2 because of overwhelmingly large ecosystem respiration. The rise in GEP was attributed to vegetation changes not environmental conditions (e.g., weather), but attribution to the expansion of leaf area vs. changes in vegetation composition remains unclear. Soil respiration was estimated to contribute 44% of total ecosystem respiration during summer months and coarse woody debris accounted for another 18%. Evapotranspiration also recovered rapidly and continued to rise across years with a corresponding decrease in sensible heat flux. Gross short-wave and long-wave radiative fluxes were stable across years except for strong wintertime dependence on snow covered conditions and corresponding variation in albedo. Overall, these findings underscore the highly dynamic nature of carbon and water exchanges and vegetation composition during the regrowth following a severe forest disturbance, and sheds light on both the magnitude of such changes and the underlying mechanisms with a unique example from a temperate, deciduous broadleaf forest. © 2013 John Wiley & Sons Ltd.
Teixido, Alberto L; Quintanilla, Luis G; Carreño, Francisco; Gutiérrez, David
2010-01-01
Changes in forested landscapes may have important consequences for ecosystem services and biodiversity conservation. In northern Spain, major changes in land use occurred during the second half of the 20th century, but their impacts on forests have not been quantified. We evaluated the dynamics of landscape and forest distribution patterns between 1957 and 2003 in Fragas do Eume Natural Park (northwestern Spain). We used orthoimages and a set of standard landscape metrics to determine transitions between land cover classes and to examine forest distribution patterns. Eucalypt plantations showed the greatest increase in area (197%) over time. Furthermore, transitions to eucalypt plantations were found in all major land cover classes. Forest showed a net decline of 20% in total area and represented 30% of the landscape area in 2003. Forest losses were mainly due to eucalypt plantations and the building of a water reservoir, while forest gains were due to increases in shrubland, meadows and cultivated fields which had been recolonised. Forest patch size and core area decreased, and edge length increased over time. In turn, increases were obtained in mean distance between forest patches, and in adjacency to eucalypt plantations and to a water reservoir. These results suggest an increase in forest fragmentation from 1957 to 2003, as well as a change in the nature of the habitat surrounding forest patches. This study shows that land use changes, mostly from eucalypt plantation intensification, negatively affected forested habitats, although some regeneration was ongoing through ecological succession from land abandonment. Copyright 2009 Elsevier Ltd. All rights reserved.
Changing Amazon biomass and the role of atmospheric CO2 concentration, climate, and land use
NASA Astrophysics Data System (ADS)
Almeida Castanho, Andrea D.; Galbraith, David; Zhang, Ke; Coe, Michael T.; Costa, Marcos H.; Moorcroft, Paul
2016-01-01
The Amazon tropical evergreen forest is an important component of the global carbon budget. Its forest floristic composition, structure, and function are sensitive to changes in climate, atmospheric composition, and land use. In this study biomass and productivity simulated by three dynamic global vegetation models (Integrated Biosphere Simulator, Ecosystem Demography Biosphere Model, and Joint UK Land Environment Simulator) for the period 1970-2008 are compared with observations from forest plots (Rede Amazónica de Inventarios Forestales). The spatial variability in biomass and productivity simulated by the DGVMs is low in comparison to the field observations in part because of poor representation of the heterogeneity of vegetation traits within the models. We find that over the last four decades the CO2 fertilization effect dominates a long-term increase in simulated biomass in undisturbed Amazonian forests, while land use change in the south and southeastern Amazonia dominates a reduction in Amazon aboveground biomass, of similar magnitude to the CO2 biomass gain. Climate extremes exert a strong effect on the observed biomass on short time scales, but the models are incapable of reproducing the observed impacts of extreme drought on forest biomass. We find that future improvements in the accuracy of DGVM predictions will require improved representation of four key elements: (1) spatially variable plant traits, (2) soil and nutrients mediated processes, (3) extreme event mortality, and (4) sensitivity to climatic variability. Finally, continued long-term observations and ecosystem-scale experiments (e.g. Free-Air CO2 Enrichment experiments) are essential for a better understanding of the changing dynamics of tropical forests.
NASA Astrophysics Data System (ADS)
Sulla-Menashe, Damien; Woodcock, Curtis E.; Friedl, Mark A.
2018-01-01
Recent studies have used satellite-derived normalized difference vegetation index (NDVI) time series to explore geographic patterns in boreal forest greening and browning. A number of these studies indicate that boreal forests are experiencing widespread browning, and have suggested that these patterns reflect decreases in forest productivity induced by climate change. Here we use NDVI time series from Landsat, which has much higher quality and spatial resolution than imagery used in most previous studies, to characterize biogeographic patterns in greening and browning across Canada’s boreal forest and to explore the drivers behind observed trends. Our results show that the majority of NDVI changes in Canada’s boreal forest reflect disturbance-recovery dynamics not climate change impacts, that greening and browning trends outside of disturbed forests are consistent with expected ecological responses to regional changes in climate, and that observed NDVI changes are geographically limited and relatively small in magnitude. By examining covariance between changes in NDVI and temperature and precipitation in locations not affected by disturbance, our results isolate and characterize the nature and magnitude of greening and browning directly associated with climate change. Consistent with biogeographic theory, greening and browning unrelated to disturbance tended to be located in ecotones near boundaries of the boreal forest bioclimatic envelope. We observed greening to be most prevalent in Eastern Canada, which is more humid, and browning to be most prevalent in Western Canada, where forests are more prone to moisture stress. We conclude that continued long-term climate change has the potential to significantly alter the character and function of Canada’s boreal forest, but recent changes have been modest and near-term impacts are likely to be focused in or near ecotones.
Dynamics of Ecosystem Services during Forest Transitions in Reventazón, Costa Rica.
Vallet, Améline; Locatelli, Bruno; Levrel, Harold; Brenes Pérez, Christian; Imbach, Pablo; Estrada Carmona, Natalia; Manlay, Raphaël; Oszwald, Johan
2016-01-01
The forest transition framework describes the temporal changes of forest areas with economic development. A first phase of forest contraction is followed by a second phase of expansion once a turning point is reached. This framework does not differentiate forest types or ecosystem services, and describes forests regardless of their contribution to human well-being. For several decades, deforestation in many tropical regions has degraded ecosystem services, such as watershed regulation, while increasing provisioning services from agriculture, for example, food. Forest transitions and expansion have been observed in some countries, but their consequences for ecosystem services are often unclear. We analyzed the implications of forest cover change on ecosystem services in Costa Rica, where a forest transition has been suggested. A review of literature and secondary data on forest and ecosystem services in Costa Rica indicated that forest transition might have led to an ecosystem services transition. We modeled and mapped the changes of selected ecosystem services in the upper part of the Reventazón watershed and analyzed how supply changed over time in order to identify possible transitions in ecosystem services. The modeled changes of ecosystem services is similar to the second phase of a forest transition but no turning point was identified, probably because of the limited temporal scope of the analysis. Trends of provisioning and regulating services and their tradeoffs were opposite in different spatial subunits of our study area, which highlights the importance of scale in the analysis of ecosystem services and forest transitions. The ecosystem services transition framework proposed in this study is useful for analyzing the temporal changes of ecosystem services and linking socio-economic drivers to ecosystem services demand at different scales.
Suggestions for Forest Conservation Policy under Climate Change
NASA Astrophysics Data System (ADS)
Choe, H.; Thorne, J. H.; Lee, D. K.; Seo, C.
2015-12-01
Climate change and the destruction of natural habitats by land-use change are two main factors in decreasing terrestrial biodiversity. Studying land-use and climate change and their impact under different scenarios can help suggest policy directions for future events. This study explores the spatial results of different land use and climate models on the extent of species rich areas in South Korea. We built land use models of forest conversion and created four 2050 scenarios: (1) a loss trend following current levels, resulting in 15.5% lost; (2) similar loss, but with forest conservation in areas with suitable future climates; (3) a reduction of forest loss by 50%; and (4) a combination of preservation of forest climate refugia and overall reduction of loss by 50%. Forest climate refugia were identified through the use of species distribution models run on 1,031 forest plant species to project current and 2050 distributions. We calculated change in species richness under four climate projections, permitting an assessment of forest refugia zones. We then crossed the four land use models with the climate-driven change in species richness. Forest areas predominantly convert to agricultural areas, while climate-suitable extents for forest plants decline and move northward, especially to higher elevations. Scenario 2, that has the higher level of deforestation but protects future species rich areas, conserves nearly as much future biodiversity as scenario 3, which reduced deforestation rates by 50%. This points to the importance of including biogeographic climate dynamics in forest policy. Scenario 4 was the most effective at conserving forest biodiversity. We suggest conserving forest areas with suitable climates for biodiversity conservation and the establishment of monoculture plantations targeted to areas where species richness will decline based on our results.
Dynamics of Ecosystem Services during Forest Transitions in Reventazón, Costa Rica
Vallet, Améline; Locatelli, Bruno; Levrel, Harold; Brenes Pérez, Christian; Imbach, Pablo; Estrada Carmona, Natalia; Manlay, Raphaël; Oszwald, Johan
2016-01-01
The forest transition framework describes the temporal changes of forest areas with economic development. A first phase of forest contraction is followed by a second phase of expansion once a turning point is reached. This framework does not differentiate forest types or ecosystem services, and describes forests regardless of their contribution to human well-being. For several decades, deforestation in many tropical regions has degraded ecosystem services, such as watershed regulation, while increasing provisioning services from agriculture, for example, food. Forest transitions and expansion have been observed in some countries, but their consequences for ecosystem services are often unclear. We analyzed the implications of forest cover change on ecosystem services in Costa Rica, where a forest transition has been suggested. A review of literature and secondary data on forest and ecosystem services in Costa Rica indicated that forest transition might have led to an ecosystem services transition. We modeled and mapped the changes of selected ecosystem services in the upper part of the Reventazón watershed and analyzed how supply changed over time in order to identify possible transitions in ecosystem services. The modeled changes of ecosystem services is similar to the second phase of a forest transition but no turning point was identified, probably because of the limited temporal scope of the analysis. Trends of provisioning and regulating services and their tradeoffs were opposite in different spatial subunits of our study area, which highlights the importance of scale in the analysis of ecosystem services and forest transitions. The ecosystem services transition framework proposed in this study is useful for analyzing the temporal changes of ecosystem services and linking socio-economic drivers to ecosystem services demand at different scales. PMID:27390869
Mosaics of Change: Cross-Scale Forest Cover Dynamics and Drivers in Tibetan Yunnan, China
NASA Astrophysics Data System (ADS)
Van Den Hoek, Jamon
In reaction to devastating floods on the Yangtze River in the summer of 1998, the Chinese Central Government introduced a logging ban as part of the Natural Forest Protection Program (NFPP) with the goal of dramatically increasing national forest cover. Since then, over 11 billion USD has been allocated to the program, but the NFPP's success at promoting reforestation is unclear as neither the extent of forest cover change, nor the potential factors influencing the spatial variability of change have been examined. This research employs a case study in northwest Yunnan Province, southwest China, to evaluate the spatial variability of forest cover change under the NFPP and investigate drivers that have influenced recent patterns of change. I employ a mixed methods, cross-scale research framework that includes the analysis of areal trajectories and spatial variability of Landsat-5 imagery-derived forest cover change at three administrative levels before and after the NFPP's introduction; landscape ecology-based metrics to measure the shifting patterns of forest cover change at the patch level; and household interview data on village-level forest resource use patterns and processes in three neighboring villages. Prefecture- and county-level analyses suggest rather stable forest cover across the three-county study area since the introduction of the ban, though township-level measures of forest cover change show a degree of spatial variability as well as a temporal delay in policy implementation effectiveness. Village-level remote sensing analysis shows comparable amounts of forest cover change between study villages but disparate forest resource use patterns in terms of location and amount. Though all research villages continue to exploit local forests for firewood and timber relatively unfettered by policy restrictions, villagers with tourism-derived income are able to buy forest products collected in outside forests much more often; this redistributes local-scale deforestation to the benefit of local and detriment of distant forests. Tourism is often heralded as the solution to rural development challenges in China's southwest, but this research shows the unintended consequences that may result from inconsistent participation at the village-level, consequences which merely redirect, not reduce, forest use pressures, and that are contrary to the goals of state policy.
John B Kim; Erwan Monier; Brent Sohngen; G Stephen Pitts; Ray Drapek; James McFarland; Sara Ohrel; Jefferson Cole
2016-01-01
We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a...
Wei Ren; Hanqin Tian; Bo Tao; Art Chappelka; Ge Sun; et al
2011-01-01
Aim We investigated how ozone pollution and climate change/variability have interactively affected net primary productivity (NPP) and net carbon exchange (NCE) across Chinaâs forest ecosystem in the past half century. Location Continental China. Methods Using the dynamic land ecosystem model (DLEM) in conjunction with 10-km-resolution gridded historical data sets (...
The Study of Driving Forces of Land Use Transformation in the Pearl River Delta during 1990 to 2010※
NASA Astrophysics Data System (ADS)
Yang, Kun; Wang, Xiuming; Zhao, Peng; Liu, Xucheng; Zhang, Yuhuan
2018-05-01
Based on the land use data of the study area in 1990, 2000 and 2010, the paper tries to analyse the characteristic of land use and cover change (LUCC) in Pearl River Delta and its driving forces as well as the differences of driving forces among Shenzhen, Dongguan and Foshan by adopting the approaches of land use dynamic degree, the land use transition matrix and case studies. The results show that a large amount of farmland and forests have been converted to construction land in the study area, and the synthesize land use dynamic degrees of the study area are 2.3% and 6.2% during 1990-2000 and 2000-2010, respectively. The results also indicate that Zhuhai and Shenzhen have the highest land use dynamic degree among the nine cities of Pearl River Delta during 1990-2000, and Dongguan has the highest land use dynamic degree during 2000-2010. It can be inferred that the transitions from farmland and forest to construction land have been propelled by the local economic development and population growth, and the land use changes in forest and grassland have been driven by natural factors such as slope and elevation.
Mihai, Bogdan; Săvulescu, Ionuț; Rujoiu-Mare, Marina; Nistor, Constantin
2017-12-01
The paper explores the dynamics of the forest cover change in the Iezer Mountains, part of Southern Carpathians, in the context of the forest ownership recovery and deforestation processes, combined with the effects of biotic and abiotic disturbances. The aim of the study is to map and evaluate the typology and the spatial extension of changes in the montane forest cover between 700 and 2462m a.s.l., sampling all the representative Carpathian ecosystems, from the European beech zone up to the spruce-fir zone and the subalpine-alpine pastures. The methodology uses a change detection analysis of satellite imagery with Landsat ETM+/OLI and Sentinel-2 MSI data. The workflow started with a complete calibration of multispectral data from 2002, before the massive forest restitution to private owners, after the Law 247/2005 empowerment, and 2015, the intensification of deforestation process. For the data classification, a Maximum Likelihood supervised classification algorithm was utilized. The forest change map was developed after combining the classifications in a unitary formula using image difference. The principal outcome of the research identifies the type of forest cover change using a quantitative formula. This information can be integrated in the future decision-making strategies for forest stand management and sustainable development. Copyright © 2017 Elsevier B.V. All rights reserved.
Olivares, Ingrid; Svenning, Jens-Christian; van Bodegom, Peter M; Valencia, Renato; Balslev, Henrik
2017-03-01
Are the hyperdiverse local forests of the western Amazon undergoing changes linked to global and local drivers such as climate change, or successional dynamics? We analyzed local climatic records to assess potential climatic changes in Yasuní National Park, Ecuador, and compared two censuses (1995, 2012) of a palm community to assess changes in community structure and composition. Over 17 years, the structure and composition of this palm community remained remarkably stable. Soil humidity was significantly lower and canopy conditions were significantly more open in 2012 compared to 1995, but local climatic records showed that no significant changes in precipitation, temperature or river level have occurred during the last decade. Thus, we found no evidence of recent directional shifts in climate or the palm community in Yasuní. The absence of changes in local climate and plant community dynamics in Yasuní contrasts with recent findings from eastern Amazon, where environmental change is driving significant changes in ecosystem dynamics. Our findings suggest that until now, local forests in the northwest Amazon may have escaped pressure from climate change. The stability of this rich palm community embedded in the hyperdiverse Yasuní National Park underlines its uniqueness as a sanctuary for the protection of Amazonian diversity from global change impacts. © 2016 John Wiley & Sons Ltd.
Virah-Sawmy, Malika; Bonsall, Michael B; Willis, Katherine J
2009-12-23
Madagascar's rainforests are among the most biodiverse in the world. Understanding the population dynamics of important species within these forests in response to past climatic variability provides valuable insight into current and future species composition. Here, we use a population-level approach to analyse palaeoecological records over the last 5300 years to understand how populations of Symphonia cf. verrucosa became locally extinct in some rainforest fragments along the southeast coast of Madagascar in response to rapid climate change, yet persisted in others. Our results indicate that regional (climate) variability contributed to synchronous decline of S. cf. verrucosa populations in these forests. Superimposed on regional fluctuations were local processes that could have contributed or mitigated extinction. Specifically, in the forest with low soil nutrients, population model predictions indicated that there was coexistence between S. cf. verrucosa and Erica spp., but in the nutrient-rich forest, interspecific effects between Symphonia and Erica spp. may have pushed Symphonia to extinction at the peak of climatic change. We also demonstrate that Symphonia is a good indicator of a threshold event, exhibiting erratic fluctuations prior to and long after the critical climatic point has passed.
Spruce reproduction dynamics on Alaska's Kenai Peninsula, 1987-2000.
Willem W.S. van Hees
2005-01-01
During the past 30 years, spruce forests of Alaskaâs Kenai Peninsula have undergone dramatic changes resulting from widespread spruce bark beetle(Dendroctonus rufipennis (Kirby)) infestation. In 1987 and again in 2000, the Pacific Northwest Research Station's Forest Inventory and Analysis Program conducted initial and remeasurement inventories...
NASA Astrophysics Data System (ADS)
Widayanto, B.; Karsidi, R.; Kusnandar; Sutrisno, J.
2018-03-01
Forests have a role and function in providing good atmosphere with stable oxygen content and affecting global climate stability. Good forest management will provide stable climatic conditions in global climate change. A good forest is managed to provide a sustainable environment condition. This study aims to analyze the relationship of various factors affecting the sustainability of private forests management. This research is a quantitative research with survey method and determination of sampling are was by purposive sampling. Sampling method using multiple stage cluster sampling with 60 samples. From the results it was found that the successful sustainable private forest management influenced by various factors, such as group dynamics, stakeholder support, community institutions, and farmer participation. The continuity of private forest management is determined by the fulfillment of economic, social and environmental dimensions. The most interesting finding is that the group dynamics conditions are very good, whereas the sense of togetherness among community is very strong under limited resources managing private forests. The sense of togetherness resulted creativity to diversify business and thus reduced the pressure in exploiting the forest. Some people think that managing the people's forest as a culture so that its existence can be more sustainable.
Opposing effects of fire severity on climate feedbacks in Siberian larch forests
NASA Astrophysics Data System (ADS)
Loranty, M. M.; Alexander, H. D.; Natali, S.; Kropp, H.; Mack, M. C.; Bunn, A. G.; Davydov, S. P.; Erb, A.; Kholodov, A. L.; Schaaf, C.; Wang, Z.; Zimov, N.; Zimov, S. A.
2017-12-01
Boreal larch forests in northeastern Siberia comprise nearly 25% of the continuous permafrost zone. Structural and functional changes in these ecosystems will have important climate feedbacks at regional and global scales. Like boreal ecosystems in North America, fire is an important determinant of landscape scale forest distribution, and fire regimes are intensifying as climate warms. In Siberian larch forests are dominated by a single tree species, and there is evidence that fire severity influences post-fire forest density via impacts on seedling establishment. The extent to which these effects occur, or persist, and the associated climate feedbacks are not well quantified. In this study we use forest stand inventories, in situ observations, and satellite remote sensing to examine: 1) variation in forest density within and between fire scars, and 2) changes in land surface albedo and active layer dynamics associated with forest density variation. At the landscape scale we observed declines in Landsat derived albedo as forests recovered in the first several decades after fire, though canopy cover varied widely within and between individual fire scars. Within an individual mid-successional fire scar ( 75 years) we observed canopy cover ranging from 15-90% with correspondingly large ranges of albedo during periods of snow cover, and relatively small differences in albedo during the growing season. We found an inverse relationship between canopy density and soil temperature within this fire scar; high-density low-albedo stands had cooler soils and shallower active layers, while low-density stands had warmer soils and deeper active layers. Intensive energy balance measurements at a high- and low- density site show that canopy cover alters the magnitude and timing of ground heat fluxes that affect active layer properties. Our results show that fire impacts on stand structure in Siberian larch forests affect land surface albedo and active layer dynamics in ways that may lead to opposing climate feedbacks. At effectively large scales these changes constitute positive and negative climate feedbacks, respectively. Accurate predictive understanding of terrestrial Arctic climate feedbacks requires improved knowledge regarding the ecological consequences of changing fire regimes in Siberian boreal forests.
NASA Astrophysics Data System (ADS)
Fischer, Rico; Huth, Andreas
2014-05-01
Large areas of tropical forests are disturbed due to climate change and human influence. Experts estimate that the last remaining rainforests could be destroyed in less than 100 years with strong consequences for both developing and industrial countries. Using a modelling approach we analyse how disturbances modify carbon stocks and carbon fluxes of African rainforests. In this study we use the process-based, individual-oriented forest model FORMIND. The main processes of this model are tree growth, mortality, regeneration and competition. The study regions are tropical rainforests in the Kilimanjaro region and Madagascar. Modelling above and below ground carbon stocks, we analyze the impact of disturbances and climate change on forest dynamics and forest carbon stocks. Droughts and fire events change the structure of tropical rainforests. Human influence like logging intensify this effect. With the presented results we could establish new allometric relationships between forest variables and above ground carbon stocks in tropical regions. Using remote sensing techniques, these relationships would offer the possibility for a global monitoring of the above ground carbon stored in the vegetation.
NASA Astrophysics Data System (ADS)
Domke, G. M.; Williams, C. A.; Birdsey, R.; Pendall, E.
2017-12-01
In North America forest and grassland ecosystems play a major role in the carbon cycle. Here we present the latest trends and projections of United States and North American carbon cycle processes, stocks, and flows in the context of interactions with global scale budgets and climate change impacts in managed and unmanaged grassland and forest ecosystems. We describe recent trends in natural and anthropogenic disturbances in these ecosystems as well as the carbon dynamics associated with land use and land cover change. We also highlight carbon management science and tools for informing decisions and opportunities for improving carbon measurements, observations, and projections in forests and grasslands.
Lucas, Christine M; Sheikh, Pervaze; Gagnon, Paul R; Mcgrath, David G
2016-01-01
The contribution of working forests to tropical conservation and development depends upon the maintenance of ecological integrity under ongoing land use. Assessment of ecological integrity requires an understanding of the structure, composition, and function and major drivers that govern their variability. Working forests in tropical river floodplains provide many goods and services, yet the data on the ecological processes that sustain these services is scant. In flooded forests of riverside Amazonian communities, we established 46 0.1-ha plots varying in flood duration, use by cattle and water buffalo, and time since agricultural abandonment (30-90 yr). We monitored three aspects of ecological integrity (stand structure, species composition, and dynamics of trees and seedlings) to evaluate the impacts of different trajectories of livestock activity (alleviation, stasis, and intensification) over nine years. Negative effects of livestock intensification were solely evident in the forest understory, and plots alleviated from past heavy disturbance increased in seedling density but had higher abundance of thorny species than plots maintaining low activity. Stand structure, dynamics, and tree species composition were strongly influenced by the natural pulse of seasonal floods, such that the defining characteristics of integrity were dependent upon flood duration (3-200 d). Forests with prolonged floods ≥ 140 d had not only lower species richness but also lower rates of recruitment and species turnover relative to forests with short floods <70 d. Overall, the combined effects of livestock intensification and prolonged flooding hindered forest regeneration, but overall forest integrity was largely related to the hydrological regime and age. Given this disjunction between factors mediating canopy and understory integrity, we present a subset of metrics for regeneration and recruitment to distinguish forest condition by livestock trajectory. Although our study design includes confounded factors that preclude a definitive assessment of the major drivers of ecological change, we provide much-needed data on the regrowth of a critical but poorly studied ecosystem. In addition to its emphasis on the dynamics of tropical wetland forests undergoing anthropogenic and environmental change, our case study is an important example for how to assess of ecological integrity in working forests of tropical ecosystems.
Ruete, Alejandro; Snäll, Tord; Jönsson, Mari
2016-07-01
Diversity patterns and dynamics at forest edges are not well understood. We disentangle the relative importance of edge-effect variables on spatio-temporal patterns in species richness and occupancy of deadwood-dwelling fungi in fragmented old-growth forests. We related richness and log occupancy by 10 old-growth forest indicator fungi and by two common fungi to log conditions in natural and anthropogenic edge habitats of 31 old-growth Picea abies forest stands in central Sweden. We compared edge-to-interior gradients (100 m) to the forest interior (beyond 100 m), and we analyzed stand-level changes after 10 yr. Both richness and occupancy of logs by indicator species was negatively related to adjacent young clear-cut edges, but this effect decreased with increasing clear-cut age. The occupancy of logs by indicator species also increased with increasing distance to the natural edges. In contrast, the occupancy of logs by common species was positively related or unrelated to distance to clear-cut edges regardless of the edge age, and this was partly explained by fungal specificity to substrate quality. Stand-level mean richness and mean occupancy of logs did not change for indicator or common species over a decade. By illustrating the importance of spatial and temporal dimensions of edge effects, we extend the general understanding of the distribution and diversity of substrate-confined fungi in fragmented old-growth forests. Our results highlight the importance of longer forest rotation times adjacent to small protected areas and forest set-asides, where it may take more than 50 yr for indicator species richness levels to recover to occupancy levels observed in the forest interior. Also, non-simultaneous clear-cutting of surrounding productive forests in a way that reduces the edge effect over time (i.e., dynamic buffers) may increase the effective core area of small forest set-asides and improve their performance on protecting species of special concern for conservation. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
SATO, H.; Iwahana, G.; Ohta, T.
2013-12-01
Siberian larch forest is the largest coniferous forest region in the world. In this vast region, larch often forms nearly pure stands, regenerated by recurrent fire. This region is characterized by a short and dry growing season; the annual mean precipitation for Yakutsk was only about 240 mm. To maintain forest ecosystem under such small precipitation, underlying permafrost and seasonal soil freezing-thawing-cycle have been supposed to play important roles; (1) frozen ground inhibits percolation of soil water into deep soil layers, and (2) excess soil water at the end of growing season can be carried over until the next growing season as ice, and larch trees can use the melt water. As a proof for this explanation, geographical distribution of Siberian larch region highly coincides with continuous and discontinuous permafrost zone. Recent observations and simulation studies suggests that existences of larch forest and permafrost in subsurface layer are co-dependent; permafrost maintains the larch forest by enhancing water use efficiency of trees, while larch forest maintains permafrost by inhibiting solar radiation and preventing heat exchanges between soil and atmosphere. Owing to such complexity and absence of enough ecosystem data available, current-generation Earth System Models significantly diverse in their prediction of structure and key ecosystem functions in Siberian larch forest under changing climate. Such uncertainty should in turn expand uncertainty over predictions of climate, because Siberian larch forest should have major role in the global carbon balance with its huge area and vast potential carbon pool within the biomass and soil, and changes in boreal forest albedo can have a considerable effect on Northern Hemisphere climate. In this study, we developed an integrated ecosystem model, which treats interactions between plant-dynamics and freeze-thaw cycles. This integrated model contains a dynamic global vegetation model SEIB-DGVM, which simulates plant and carbon dynamics. It also contains a one-dimensional land surface model NOAH 2.7.1, which simulates soil moisture (both liquid and frozen), soil temperature, snowpack depth and density, canopy water content, and the energy and water fluxes. This integrated model quantitatively reconstructs post-fire development of forest structure (i.e. LAI and biomass) and organic soil layer, which dampens heat exchanges between soil and atmosphere. With the post-fire development of LAI and the soil organic layer, the integrated model also quantitatively reconstructs changes in seasonal maximum of active layer depth. The integrated model is then driven by the IPCC A1B scenario of rising atmospheric CO2, and by climate changes during the twenty-first century resulting from the change in CO2. This simulation suggests that forecasted global warming would causes decay of Siberian larch ecosystem, but such responses could be delayed by "memory effect" of the soil organic layer for hundreds of years.
NASA Astrophysics Data System (ADS)
Kennedy, R. E.; Hughes, J.; Neeti, N.; Yang, Z.; Gregory, M.; Roberts, H.; Kane, V. R.; Powell, S. L.; Ohmann, J.
2016-12-01
Because carbon pools and fluxes on wooded landscapes are constrained by their type, age and health, understanding the causes and consequences of carbon change requires frequent observation of forest condition and of disturbance, mortality, and growth processes. As part of USDA and NASA funded efforts, we built empirical monitoring system that integrates time-series Landsat imagery, Forest Inventory and Analysis (FIA) plot data, small-footprint lidar data, and aerial photos to characterize key carbon dynamics in forested ecosystems of Washington, Oregon and California. Here we report yearly biomass estimates for every forested 30 by 30m pixel in the states of Washington, Oregon, and California from 1990 to 2010, including spatially explicit estimates of uncertainty in our yearly predictions. Total biomass at the ecoregion scale agrees well with estimates from FIA plot data alone, currently the only method for reliable monitoring in the forests of the region. Comparisons with estimates of biomass modeled from four small-footprint lidar acquisitions in overlapping portions of our study area show general patterns of agreement between the two types of estimation, but also reveal some disparities in spatial pattern potentially attributable to age and vegetation condition. Using machine-learning techniques based on both Landsat image time series and high resolution aerial photos, we then modeled the agent causing change in biomass for every change event in the region, and report the relative distribution of carbon loss attributable to natural disturbances (primarily fire and insect-related mortality) versus anthropogenic causes (forest management and development).
A meta-analysis of soil microbial biomass responses to forest disturbances
Holden, Sandra R.; Treseder, Kathleen K.
2013-01-01
Climate warming is likely to increase the frequency and severity of forest disturbances, with uncertain consequences for soil microbial communities and their contribution to ecosystem C dynamics. To address this uncertainty, we conducted a meta-analysis of 139 published soil microbial responses to forest disturbances. These disturbances included abiotic (fire, harvesting, storm) and biotic (insect, pathogen) disturbances. We hypothesized that soil microbial biomass would decline following forest disturbances, but that abiotic disturbances would elicit greater reductions in microbial biomass than biotic disturbances. In support of this hypothesis, across all published studies, disturbances reduced soil microbial biomass by an average of 29.4%. However, microbial responses differed between abiotic and biotic disturbances. Microbial responses were significantly negative following fires, harvest, and storms (48.7, 19.1, and 41.7% reductions in microbial biomass, respectively). In contrast, changes in soil microbial biomass following insect infestation and pathogen-induced tree mortality were non-significant, although biotic disturbances were poorly represented in the literature. When measured separately, fungal and bacterial responses to disturbances mirrored the response of the microbial community as a whole. Changes in microbial abundance following disturbance were significantly positively correlated with changes in microbial respiration. We propose that the differential effect of abiotic and biotic disturbances on microbial biomass may be attributable to differences in soil disruption and organic C removal from forests among disturbance types. Altogether, these results suggest that abiotic forest disturbances may significantly decrease soil microbial abundance, with corresponding consequences for microbial respiration. Further studies are needed on the effect of biotic disturbances on forest soil microbial communities and soil C dynamics. PMID:23801985
Forest cover change and fragmentation using Landsat data in Maçka State Forest Enterprise in Turkey.
Cakir, Günay; Sivrikaya, Fatih; Keleş, Sedat
2008-02-01
Monitoring forest cover change and understanding the dynamic of forest cover is increasingly important in sustainable development and management of forest ecosystems. This paper uses remote sensing (RS) techniques to monitor forest cover change in Maçka State Forest Enterprise (MSFE) located in NE of Turkey through 1975 to 2000 and then analyses spatial and temporal changes in forest cover by Geographical Information Systems (GIS) and FRAGSTATStrade mark. Forest cover changes were detected from a time series of satellite images of Landsat MSS in 1975, Landsat TM in 1987, and Landsat ETM+ in 2000 using RS and GIS. The results showed that total forest area, productive forest area and degraded forest area increased while broadleaf forest area and non forest area decreased. Mixed forest and degraded forest increased during the first (1975-1987) period, but decreased during the second (1987-2000) period. During the whole study period, the annual forestation rate was 152 ha year(-1), equivalent to 0.27% year(-1) using the compound-interest-rate formula. The total number of patches increased from 36,204 to 48,092 (33%), and mean size of forest patch (MPS) decreased from 2.8 ha to 2.1 ha during a 25 year period. Number of smaller patches (patches in 0-100 ha size class) increased, indicating more fragmented landscape over time that might create a risk for the maintenance of biodiversity of the area. While total population increased from 1975 to 2000 (3.7%), rural population constantly decreased. The increase of forest areas may well be explained by the fact that demographic movement of rural areas concentrated into Maçka City Center. These figures also indicated that decrease in the rural population might likely lead to the release of human pressure to forest areas, probably resulting in a positive development of forest areas.
Impacts of Myanmar's Democratic Transition on its Land Cover Dynamics.
NASA Astrophysics Data System (ADS)
Biswas, S.
2016-12-01
Recently Myanmar transitioned from a closed economy, military government to market based economy and democracy. The impacts of the political and economic transition on its land cover can be described by characterizing the land cover dynamics during the transition period. Preliminary stratified sampling of forest conversions revealed that most changes from forest to non-forest are due to establishment of rubber plantations. Agricultural concessions are granted by the government to develop the agriculture sector and rubber is the most common plantation crop in Southern Myanmar. This study establishes a method to map and quantify the extent and age of rubber plantations in Thaton district of Myanmar using satellite remote sensing, GIS and ground data. The resultant rubber maps can be used to inform policy on land use planning, agriculture, forest and sustainable development.
Dynamic model of forest area on flood zone of Padang City, West Sumatra Province-Indonesia
NASA Astrophysics Data System (ADS)
Dewata, Indang; Iswandi, U.
2018-05-01
The flood disaster has caused many harm to human life, and the change of watershed characteristic is one of the factors causing the flood disaster. The increase of deforestation due to the increase of water causes the occurrence of flood disaster in the rainy season. The research objective was to develop a dynamic model of forest on flood hazard zone using powersim 10.1. In model development, there are three scenarios: optimistic, moderate, and pessimistic. The study shows that in Padang there are about 13 percent of high flood hazard zones. Deforestation of 4.5 percent/year is one cause that may increased the flooding intensity in Padang. There will be 14 percent of total forest area when management policy of forest absence in 2050.
E.S. Kane; W.C. Hockaday; M.R. Turetsky; C.A. Masiello; D.W. Valentine; B.P. Finney; J.A. Badlock
2010-01-01
There is still much uncertainty as to how wildfire affects the accumulation of burn residues (such as black carbon [BC]) in the soil, and the corresponding changes in soil organic carbon (SOC) composition in boreal forests. We investigated SOC and BC composition in black spruce forests on different landscape positions in Alaska, USA. Mean BC stocks in surface mineral...
Lauro R. Nogueira; José Leonardo M. Goncalves; Vera L. Engel; John A. Parrotta
2011-01-01
Brazilâs Atlantic Forest ecosystem has been greatly affected by land use changes, with only 11.26% of its original vegetation cover remaining. Currently, Atlantic Forest restoration is receiving increasing attention because of its potential for carbon sequestration and the important role of soil carbon in the global carbon balance. Soil organic matter is also essential...
Mark D. Nelson; Sean P. Healey; W. Keith Moser; Mark H. Hansen
2009-01-01
Effects of a catastrophic blowdown event in northern Minnesota, USA were assessed using field inventory data, aerial sketch maps and satellite image data processed through the North American Forest Dynamics programme. Estimates were produced for forest area and net volume per unit area of live trees pre- and post-disturbance, and for changes in volume per unit area and...
NASA Technical Reports Server (NTRS)
Hirsch, A. I.; Little, W. S.; Houghton, R. A.; Scott, N. A.; White, J. D.
2004-01-01
We developed a process-based model of forest growth, carbon cycling, and land cover dynamics named CARLUC (for CARbon and Land Use Change) to estimate the size of terrestrial carbon pools in terra firme (non-flooded) forests across the Brazilian Legal Amazon and the net flux of carbon resulting from forest disturbance and forest recovery from disturbance. Our goal in building the model was to construct a relatively simple ecosystem model that would respond to soil and climatic heterogeneity that allows us to study of the impact of Amazonian deforestation, selective logging, and accidental fire on the global carbon cycle. This paper focuses on the net flux caused by deforestation and forest re-growth over the period from 1970-1998. We calculate that the net flux to the atmosphere during this period reached a maximum of approx. 0.35 PgC/yr (1PgC = 1 x 10(exp I5) gC) in 1990, with a cumulative release of approx. 7 PgC from 1970- 1998. The net flux is higher than predicted by an earlier study by a total of 1 PgC over the period 1989-1 998 mainly because CARLUC predicts relatively high mature forest carbon storage compared to the datasets used in the earlier study. Incorporating the dynamics of litter and soil carbon pools into the model increases the cumulative net flux by approx. 1 PgC from 1970-1998, while different assumptions about land cover dynamics only caused small changes. The uncertainty of the net flux, calculated with a Monte-Carlo approach, is roughly 35% of the mean value (1 SD).
NASA Astrophysics Data System (ADS)
Chitale, V. S.; Behera, M. D.
2014-10-01
The change in the tropical forests could be clearly linked to the expansion of the human population and economies. An understanding of the anthropogenic forcing plays an important role in analyzing the impacts of climate change and the fate of tropical forests in the present and future scenario. In the present study, we analyze the impact of natural and anthropogenic factors in forest dynamics in Katerniaghat wildlife sanctuary situated along the Indo-Nepal border in Uttar Pradesh state, India. The study site is under tremendous pressure due to anthropogenic factors from surrounding areas since last three decades. The vegetation cover of the sanctuary primarily comprised of Shorea robusta forests, Tectona grandis plantation, and mixed deciduous forest; while the land cover comprised of agriculture, barren land, and water bodies. The classification accuracy was 83.5%, 91.5%, and 95.2% with MSS, IKONOS, and Quickbird datasets, respectively. Shorea robusta forests showed an increase of 16 km2; while Tectona grandis increased by 63.01 km2 during 1975-2010. The spatial heterogeneity in these tropical vegetation classes surrounded by the human dominated agricultural lands could not be addressed using Landsat MSS data due to coarse spatial resolution; whereas the IKONOS and Quickbird satellite datasets proved to advantageous, thus being able to precisely address the variations within the vegetation classes as well as in the land cover classes and along the edge areas. Massive deforestation during 1970s along the adjoining international boundary with Nepal has led to destruction of the wildlife corridor and has exposed the wildlife sanctuary to human interference like grazing and poaching. Higher rates of forest dynamics during the 25-year period indicate the vulnerability of the ecosystem to the natural and anthropogenic disturbances in the proximity of the sanctuary.
Samuel, M.D.; Hobbelen, P.H.F.; Decastro, F.; Ahumada, J.A.; Lapointe, D.A.; Atkinson, C.T.; Woodworth, B.L.; Hart, P.J.; Duffy, D.C.
2011-01-01
We developed an epidemiological model of avian malaria (Plasmodium relictum) across an altitudinal gradient on the island of Hawaii that includes the dynamics of the host, vector, and parasite. This introduced mosquito-borne disease is hypothesized to have contributed to extinctions and major shifts in the altitudinal distribution of highly susceptible native forest birds. Our goal was to better understand how biotic and abiotic factors influence the intensity of malaria transmission and impact on susceptible populations of native Hawaiian forest birds. Our model illustrates key patterns in the malaria-forest bird system: high malaria transmission in low-elevation forests with minor seasonal or annual variation in infection;episodic transmission in mid-elevation forests with site-to-site, seasonal, and annual variation depending on mosquito dynamics;and disease refugia in high-elevation forests with only slight risk of infection during summer. These infection patterns are driven by temperature and rainfall effects on parasite incubation period and mosquito dynamics across an elevational gradient and the availability of larval habitat, especially in mid-elevation forests. The results from our model suggest that disease is likely a key factor in causing population decline or restricting the distribution of many susceptible Hawaiian species and preventing the recovery of other vulnerable species. The model also provides a framework for the evaluation of factors influencing disease transmission and alternative disease control programs, and to evaluate the impact of climate change on disease cycles and bird populations. ??2011 by the Ecological Society of America.
Forest Management Devolution: Gap Between Technicians' Design and Villagers' Practices in Madagascar
NASA Astrophysics Data System (ADS)
Rives, Fanny; Carrière, Stéphanie M.; Montagne, Pierre; Aubert, Sigrid; Sibelet, Nicole
2013-10-01
In the 1980s, tropical forest-management principles underwent a shift toward approaches giving greater responsibilities to rural people. One argument for such a shift were the long-term relations established between rural people and their natural resources. In Madagascar, a new law was drawn up in 1996 (Gelose law), which sought to integrate rural people into forest management. A gap was observed between the changes foreseen by the projects implementing the Gelose law and the actual changes. In this article, we use the concept of the social-ecological system (SES) to analyze that gap. The differences existing between the planned changes set by the Gelose contract in the village of Ambatoloaka (northwest of Madagascar) and the practices observed in 2010 were conceptualized as a gap between two SESs. The first SES is the targeted one (i.e., a virtual one); it corresponds to the designed Gelose contract. The second SES is the observed one. It is characterized by the heterogeneity of forest users and uses, which have several impacts on forest management, and by very dynamic social and ecological systems. The observed SES has been reshaped contingent on the constraints and opportunities offered by the Gelose contract as well as on other ecological and social components. The consequences and opportunities that such an SES reshaping would offer to improve the implementation of the Gelose law are discussed. The main reasons explaining the gap between the two SESs are as follows: (1) the clash between static and homogeneous perceptions in the targeted SES and the dynamics and heterogeneity that characterize the observed SES; and (2) the focus on one specific use of forest ecosystems (i.e., charcoal-making) in the targeted SES. Forest management in the observed SES depends on several uses of forest ecosystems.
Assessing the influence of historic net and gross land changes on the carbon fluxes of Europe.
Fuchs, Richard; Schulp, Catharina J E; Hengeveld, Geerten M; Verburg, Peter H; Clevers, Jan G P W; Schelhaas, Mart-Jan; Herold, Martin
2016-07-01
Legacy effects of land cover/use on carbon fluxes require considering both present and past land cover/use change dynamics. To assess past land use dynamics, model-based reconstructions of historic land cover/use are needed. Most historic reconstructions consider only the net area difference between two time steps (net changes) instead of accounting for all area gains and losses (gross changes). Studies about the impact of gross and net land change accounting methods on the carbon balance are still lacking. In this study, we assessed historic changes in carbon in soils for five land cover/use types and of carbon in above-ground biomass of forests. The assessment focused on Europe for the period 1950 to 2010 with decadal time steps at 1-km spatial resolution using a bookkeeping approach. To assess the implications of gross land change data, we also used net land changes for comparison. Main contributors to carbon sequestration between 1950 and 2010 were afforestation and cropland abandonment leading to 14.6 PgC sequestered carbon (of which 7.6 PgC was in forest biomass). Sequestration was highest for old-growth forest areas. A sequestration dip was reached during the 1970s due to changes in forest management practices. Main contributors to carbon emissions were deforestation (1.7 PgC) and stable cropland areas on peaty soils (0.8 PgC). In total, net fluxes summed up to 203 TgC yr(-1) (98 TgC yr(-1) in forest biomass and 105 TgC yr(-1) in soils). For areas that were subject to land changes in both reconstructions (35% of total area), the differences in carbon fluxes were about 68%. Overall for Europe the difference between accounting for either gross or net land changes led to 7% difference (up to 11% per decade) in carbon fluxes with systematically higher fluxes for gross land change data. © 2015 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Peddle, Derek R.; Huemmrich, K. Fred; Hall, Forrest G.; Masek, Jeffrey G.; Soenen, Scott A.; Jackson, Chris D.
2011-01-01
Canopy reflectance model inversion using look-up table approaches provides powerful and flexible options for deriving improved forest biophysical structural information (BSI) compared with traditional statistical empirical methods. The BIOPHYS algorithm is an improved, physically-based inversion approach for deriving BSI for independent use and validation and for monitoring, inventory and quantifying forest disturbance as well as input to ecosystem, climate and carbon models. Based on the multiple-forward mode (MFM) inversion approach, BIOPHYS results were summarized from different studies (Minnesota/NASA COVER; Virginia/LEDAPS; Saskatchewan/BOREAS), sensors (airborne MMR; Landsat; MODIS) and models (GeoSail; GOMS). Applications output included forest density, height, crown dimension, branch and green leaf area, canopy cover, disturbance estimates based on multi-temporal chronosequences, and structural change following recovery from forest fires over the last century. Good correspondences with validation field data were obtained. Integrated analyses of multiple solar and view angle imagery further improved retrievals compared with single pass data. Quantifying ecosystem dynamics such as the area and percent of forest disturbance, early regrowth and succession provide essential inputs to process-driven models of carbon flux. BIOPHYS is well suited for large-area, multi-temporal applications involving multiple image sets and mosaics for assessing vegetation disturbance and quantifying biophysical structural dynamics and change. It is also suitable for integration with forest inventory, monitoring, updating, and other programs.
Behling, Hermann; Pillar, Valério DePatta
2007-02-28
Palaeoecological background information is needed for management and conservation of the highly diverse mosaic of Araucaria forest and Campos (grassland) in southern Brazil. Questions on the origin of Araucaria forest and grasslands; its development, dynamic and stability; its response to environmental change such as climate; and the role of human impact are essential. Further questions on its natural stage of vegetation or its alteration by pre- and post-Columbian anthropogenic activity are also important. To answer these questions, palaeoecological and palaeoenvironmental data based on pollen, charcoal and multivariate data analysis of radiocarbon dated sedimentary archives from southern Brazil are used to provide an insight into past vegetation changes, which allows us to improve our understanding of the modern vegetation and to develop conservation and management strategies for the strongly affected ecosystems in southern Brazil.
NASA Astrophysics Data System (ADS)
Kim, J. B.; Kerns, B. K.; Halofsky, J.
2014-12-01
GCM-based climate projections and downscaled climate data proliferate, and there are many climate-aware vegetation models in use by researchers. Yet application of fine-scale DGVM based simulation output in national forest vulnerability assessments is not common, because there are technical, administrative and social barriers for their use by managers and policy makers. As part of a science-management climate change adaptation partnership, we performed simulations of vegetation response to climate change for four national forests in the Blue Mountains of Oregon using the MC2 dynamic global vegetation model (DGVM) for use in vulnerability assessments. Our simulation results under business-as-usual scenarios suggest a starkly different future forest conditions for three out of the four national forests in the study area, making their adoption by forest managers a potential challenge. However, using DGVM output to structure discussion of potential vegetation changes provides a suitable framework to discuss the dynamic nature of vegetation change compared to using more commonly available model output (e.g. species distribution models). From the onset, we planned and coordinated our work with national forest managers to maximize the utility and the consideration of the simulation results in planning. Key lessons from this collaboration were: (1) structured and strategic selection of a small number climate change scenarios that capture the range of variability in future conditions simplified results; (2) collecting and integrating data from managers for use in simulations increased support and interest in applying output; (3) a structured, regionally focused, and hierarchical calibration of the DGVM produced well-validated results; (4) simple approaches to quantifying uncertainty in simulation results facilitated communication; and (5) interpretation of model results in a holistic context in relation to multiple lines of evidence produced balanced guidance. This latest point demonstrates the importance of using model out as a forum for discussion along with other information, rather than using model output in an inappropriately predictive sense. These lessons are being applied currently to other national forests in the Pacific Northwest to contribute in vulnerability assessments.
Distribution and dynamics of mangrove forests of South Asia.
Giri, Chandra; Long, Jordan; Abbas, Sawaid; Murali, R Mani; Qamer, Faisal M; Pengra, Bruce; Thau, David
2015-01-15
Mangrove forests in South Asia occur along the tidal sea edge of Bangladesh, India, Pakistan, and Sri Lanka. These forests provide important ecosystem goods and services to the region's dense coastal populations and support important functions of the biosphere. Mangroves are under threat from both natural and anthropogenic stressors; however the current status and dynamics of the region's mangroves are poorly understood. We mapped the current extent of mangrove forests in South Asia and identified mangrove forest cover change (gain and loss) from 2000 to 2012 using Landsat satellite data. We also conducted three case studies in Indus Delta (Pakistan), Goa (India), and Sundarbans (Bangladesh and India) to identify rates, patterns, and causes of change in greater spatial and thematic details compared to regional assessment of mangrove forests. Our findings revealed that the areal extent of mangrove forests in South Asia is approximately 1,187,476 ha representing ∼7% of the global total. Our results showed that from 2000 to 2012, 92,135 ha of mangroves were deforested and 80,461 ha were reforested with a net loss of 11,673 ha. In all three case studies, mangrove areas have remained the same or increased slightly, however, the turnover was greater than the net change. Both, natural and anthropogenic factors are responsible for the change and turnover. The major causes of forest cover change are similar throughout the region; however, specific factors may be dominant in specific areas. Major causes of deforestation in South Asia include (i) conversion to other land use (e.g. conversion to agriculture, shrimp farms, development, and human settlement), (ii) over-harvesting (e.g. grazing, browsing and lopping, and fishing), (iii) pollution, (iv) decline in freshwater availability, (v) floodings, (vi) reduction of silt deposition, (vii) coastal erosion, and (viii) disturbances from tropical cyclones and tsunamis. Our analysis in the region's diverse socio-economic and environmental conditions highlights complex patterns of mangrove distribution and change. Results from this study provide important insight to the conservation and management of the important and threatened South Asian mangrove ecosystem. Published by Elsevier Ltd.
Keith, Heather; Lindenmayer, David B; Mackey, Brendan G; Blair, David; Carter, Lauren; McBurney, Lachlan; Okada, Sachiko; Konishi-Nagano, Tomoko
2014-01-01
Carbon stock change due to forest management and disturbance must be accounted for in UNFCCC national inventory reports and for signatories to the Kyoto Protocol. Impacts of disturbance on greenhouse gas (GHG) inventories are important for many countries with large forest estates prone to wildfires. Our objective was to measure changes in carbon stocks due to short-term combustion and to simulate longer-term carbon stock dynamics resulting from redistribution among biomass components following wildfire. We studied the impacts of a wildfire in 2009 that burnt temperate forest of tall, wet eucalypts in south-eastern Australia. Biomass combusted ranged from 40 to 58 tC ha(-1), which represented 6-7% and 9-14% in low- and high-severity fire, respectively, of the pre-fire total biomass carbon stock. Pre-fire total stock ranged from 400 to 1040 tC ha(-1) depending on forest age and disturbance history. An estimated 3.9 TgC was emitted from the 2009 fire within the forest region, representing 8.5% of total biomass carbon stock across the landscape. Carbon losses from combustion were large over hours to days during the wildfire, but from an ecosystem dynamics perspective, the proportion of total carbon stock combusted was relatively small. Furthermore, more than half the stock losses from combustion were derived from biomass components with short lifetimes. Most biomass remained on-site, although redistributed from living to dead components. Decomposition of these components and new regeneration constituted the greatest changes in carbon stocks over ensuing decades. A critical issue for carbon accounting policy arises because the timeframes of ecological processes of carbon stock change are longer than the periods for reporting GHG inventories for national emissions reductions targets. Carbon accounts should be comprehensive of all stock changes, but reporting against targets should be based on human-induced changes in carbon stocks to incentivise mitigation activities.
Keith, Heather; Lindenmayer, David B.; Mackey, Brendan G.; Blair, David; Carter, Lauren; McBurney, Lachlan; Okada, Sachiko; Konishi-Nagano, Tomoko
2014-01-01
Carbon stock change due to forest management and disturbance must be accounted for in UNFCCC national inventory reports and for signatories to the Kyoto Protocol. Impacts of disturbance on greenhouse gas (GHG) inventories are important for many countries with large forest estates prone to wildfires. Our objective was to measure changes in carbon stocks due to short-term combustion and to simulate longer-term carbon stock dynamics resulting from redistribution among biomass components following wildfire. We studied the impacts of a wildfire in 2009 that burnt temperate forest of tall, wet eucalypts in south-eastern Australia. Biomass combusted ranged from 40 to 58 tC ha−1, which represented 6–7% and 9–14% in low- and high-severity fire, respectively, of the pre-fire total biomass carbon stock. Pre-fire total stock ranged from 400 to 1040 tC ha−1 depending on forest age and disturbance history. An estimated 3.9 TgC was emitted from the 2009 fire within the forest region, representing 8.5% of total biomass carbon stock across the landscape. Carbon losses from combustion were large over hours to days during the wildfire, but from an ecosystem dynamics perspective, the proportion of total carbon stock combusted was relatively small. Furthermore, more than half the stock losses from combustion were derived from biomass components with short lifetimes. Most biomass remained on-site, although redistributed from living to dead components. Decomposition of these components and new regeneration constituted the greatest changes in carbon stocks over ensuing decades. A critical issue for carbon accounting policy arises because the timeframes of ecological processes of carbon stock change are longer than the periods for reporting GHG inventories for national emissions reductions targets. Carbon accounts should be comprehensive of all stock changes, but reporting against targets should be based on human-induced changes in carbon stocks to incentivise mitigation activities. PMID:25208298
Senf, Cornelius; Pflugmacher, Dirk; Hostert, Patrick; Seidl, Rupert
2017-08-01
Remote sensing is a key information source for improving the spatiotemporal understanding of forest ecosystem dynamics. Yet, the mapping and attribution of forest change remains challenging, particularly in areas where a number of interacting disturbance agents simultaneously affect forest development. The forest ecosystems of Central Europe are coupled human and natural systems, with natural and human disturbances affecting forests both individually and in combination. To better understand the complex forest disturbance dynamics in such systems, we utilize 32-year Landsat time series to map forest disturbances in five sites across Austria, the Czech Republic, Germany, Poland, and Slovakia. All sites consisted of a National Park and the surrounding forests, reflecting three management zones of different levels of human influence (managed, protected, strictly protected). This allowed for a comparison of spectral, temporal, and spatial disturbance patterns across a gradient from natural to coupled human and natural disturbances. Disturbance maps achieved overall accuracies ranging from 81% to 93%. Disturbance patches were generally small, with 95% of the disturbances being smaller than 10 ha. Disturbance rates ranged from 0.29% yr -1 to 0.95% yr -1 , and differed substantially among management zones and study sites. Natural disturbances in strictly protected areas were longer in duration (median of 8 years) and slightly less variable in magnitude compared to human-dominated disturbances in managed forests (median duration of 1 year). However, temporal dynamics between natural and human-dominated disturbances showed strong synchrony, suggesting that disturbance peaks are driven by natural events affecting managed and unmanaged areas simultaneously. Our study demonstrates the potential of remote sensing for mapping forest disturbances in coupled human and natural systems, such as the forests of Central Europe. Yet, we also highlight the complexity of such systems in terms of agent attribution, as many natural disturbances are modified by management responding to them outside protected areas.
NASA Astrophysics Data System (ADS)
Senf, Cornelius; Pflugmacher, Dirk; Hostert, Patrick; Seidl, Rupert
2017-08-01
Remote sensing is a key information source for improving the spatiotemporal understanding of forest ecosystem dynamics. Yet, the mapping and attribution of forest change remains challenging, particularly in areas where a number of interacting disturbance agents simultaneously affect forest development. The forest ecosystems of Central Europe are coupled human and natural systems, with natural and human disturbances affecting forests both individually and in combination. To better understand the complex forest disturbance dynamics in such systems, we utilize 32-year Landsat time series to map forest disturbances in five sites across Austria, the Czech Republic, Germany, Poland, and Slovakia. All sites consisted of a National Park and the surrounding forests, reflecting three management zones of different levels of human influence (managed, protected, strictly protected). This allowed for a comparison of spectral, temporal, and spatial disturbance patterns across a gradient from natural to coupled human and natural disturbances. Disturbance maps achieved overall accuracies ranging from 81% to 93%. Disturbance patches were generally small, with 95% of the disturbances being smaller than 10 ha. Disturbance rates ranged from 0.29% yr-1 to 0.95% yr-1, and differed substantially among management zones and study sites. Natural disturbances in strictly protected areas were longer in duration (median of 8 years) and slightly less variable in magnitude compared to human-dominated disturbances in managed forests (median duration of 1 year). However, temporal dynamics between natural and human-dominated disturbances showed strong synchrony, suggesting that disturbance peaks are driven by natural events affecting managed and unmanaged areas simultaneously. Our study demonstrates the potential of remote sensing for mapping forest disturbances in coupled human and natural systems, such as the forests of Central Europe. Yet, we also highlight the complexity of such systems in terms of agent attribution, as many natural disturbances are modified by management responding to them outside protected areas.
Successional dynamics in Neotropical forests are as uncertain as they are predictable
Norden, Natalia; Angarita, Héctor A.; Bongers, Frans; Martínez-Ramos, Miguel; Granzow-de la Cerda, Iñigo; van Breugel, Michiel; Lebrija-Trejos, Edwin; Meave, Jorge A.; Vandermeer, John; Williamson, G. Bruce; Finegan, Bryan; Mesquita, Rita; Chazdon, Robin L.
2015-01-01
Although forest succession has traditionally been approached as a deterministic process, successional trajectories of vegetation change vary widely, even among nearby stands with similar environmental conditions and disturbance histories. Here, we provide the first attempt, to our knowledge, to quantify predictability and uncertainty during succession based on the most extensive long-term datasets ever assembled for Neotropical forests. We develop a novel approach that integrates deterministic and stochastic components into different candidate models describing the dynamical interactions among three widely used and interrelated forest attributes—stem density, basal area, and species density. Within each of the seven study sites, successional trajectories were highly idiosyncratic, even when controlling for prior land use, environment, and initial conditions in these attributes. Plot factors were far more important than stand age in explaining successional trajectories. For each site, the best-fit model was able to capture the complete set of time series in certain attributes only when both the deterministic and stochastic components were set to similar magnitudes. Surprisingly, predictability of stem density, basal area, and species density did not show consistent trends across attributes, study sites, or land use history, and was independent of plot size and time series length. The model developed here represents the best approach, to date, for characterizing autogenic successional dynamics and demonstrates the low predictability of successional trajectories. These high levels of uncertainty suggest that the impacts of allogenic factors on rates of change during tropical forest succession are far more pervasive than previously thought, challenging the way ecologists view and investigate forest regeneration. PMID:26080411
Successional dynamics in Neotropical forests are as uncertain as they are predictable.
Norden, Natalia; Angarita, Héctor A; Bongers, Frans; Martínez-Ramos, Miguel; Granzow-de la Cerda, Iñigo; van Breugel, Michiel; Lebrija-Trejos, Edwin; Meave, Jorge A; Vandermeer, John; Williamson, G Bruce; Finegan, Bryan; Mesquita, Rita; Chazdon, Robin L
2015-06-30
Although forest succession has traditionally been approached as a deterministic process, successional trajectories of vegetation change vary widely, even among nearby stands with similar environmental conditions and disturbance histories. Here, we provide the first attempt, to our knowledge, to quantify predictability and uncertainty during succession based on the most extensive long-term datasets ever assembled for Neotropical forests. We develop a novel approach that integrates deterministic and stochastic components into different candidate models describing the dynamical interactions among three widely used and interrelated forest attributes--stem density, basal area, and species density. Within each of the seven study sites, successional trajectories were highly idiosyncratic, even when controlling for prior land use, environment, and initial conditions in these attributes. Plot factors were far more important than stand age in explaining successional trajectories. For each site, the best-fit model was able to capture the complete set of time series in certain attributes only when both the deterministic and stochastic components were set to similar magnitudes. Surprisingly, predictability of stem density, basal area, and species density did not show consistent trends across attributes, study sites, or land use history, and was independent of plot size and time series length. The model developed here represents the best approach, to date, for characterizing autogenic successional dynamics and demonstrates the low predictability of successional trajectories. These high levels of uncertainty suggest that the impacts of allogenic factors on rates of change during tropical forest succession are far more pervasive than previously thought, challenging the way ecologists view and investigate forest regeneration.
140-Year Dynamics of a Forest Ecotone Under Climate and Environmental Change
NASA Astrophysics Data System (ADS)
Thorne, J. H.; Kelsey, R.
2006-12-01
Terrestrial plant species live within elevational limits. Response to climate change at the lower edge of a species' range can be quite different from response at its upper limits. Lower edge dynamics can sometimes lead to rapid shifts, if establishment conditions have changed. Under those circumstances, stand replacing disturbances can cause the local extirpation of the species because subsequent recruitment is ineffectual. We examined the position of lower edge of Pinus ponderosa forests in El Dorado County, California, where the tree occupies a broad elevational gradient. We found that over 140 years, this forest had shifted upslope over 500 meters. Minimum monthly air temperatures from stations forming an elevational transect in these mountains have warmed over the past 60 years by over 30 C. In the zone of the shift, this means that now no months are frozen, whereas 60 years ago December, January and February were below 00C. This warming is associated with advancing summer drought conditions, which set the stage for drought stress and reduced competitive abilities in the seedlings. We present an estimate for how much sooner summer drought conditions begin. Potential confounding factors: including grazing, agriculture, fires and urban expansion were found to occupy only 40% of the 540 km2 of forests lost since 1850 in the County. Forest change here is a disturbance initiated, recruitment limited system. Implications of this research include that the lower edge of coniferous systems are sensitive to climate change, via a combination of direct and indirect effects. A possible feedback between this edge and the lower limits of the snowline is discussed.
Seidl, Rupert; Rammer, Werner
2017-07-01
Growing evidence suggests that climate change could substantially alter forest disturbances. Interactions between individual disturbance agents are a major component of disturbance regimes, yet how interactions contribute to their climate sensitivity remains largely unknown. Here, our aim was to assess the climate sensitivity of disturbance interactions, focusing on wind and bark beetle disturbances. We developed a process-based model of bark beetle disturbance, integrated into the dynamic forest landscape model iLand (already including a detailed model of wind disturbance). We evaluated the integrated model against observations from three wind events and a subsequent bark beetle outbreak, affecting 530.2 ha (3.8 %) of a mountain forest landscape in Austria between 2007 and 2014. Subsequently, we conducted a factorial experiment determining the effect of changes in climate variables on the area disturbed by wind and bark beetles separately and in combination. iLand was well able to reproduce observations with regard to area, temporal sequence, and spatial pattern of disturbance. The observed disturbance dynamics was strongly driven by interactions, with 64.3 % of the area disturbed attributed to interaction effects. A +4 °C warming increased the disturbed area by +264.7 % and the area-weighted mean patch size by +1794.3 %. Interactions were found to have a ten times higher sensitivity to temperature changes than main effects, considerably amplifying the climate sensitivity of the disturbance regime. Disturbance interactions are a key component of the forest disturbance regime. Neglecting interaction effects can lead to a substantial underestimation of the climate change sensitivity of disturbance regimes.
NASA Astrophysics Data System (ADS)
Rankine, C. J.; Sánchez-Azofeifa, G.
2011-12-01
In the face of unprecedented global change driven by anthropogenic pressure on natural systems it has become imperative to monitor and better understand potential shifts in ecosystem functioning and services from local to global scales. The utilization of automated sensors technologies offers numerous advantages over traditional on-site ecosystem surveying techniques and, as a result, sensor networks are becoming a powerful tool in environmental monitoring programs. Tropical forests, renowned for their biodiversity, are important regulators of land-atmosphere fluxes yet the seasonally dry tropical forests, which account for 40% of forested ecosystems in the American tropics, have been severely degraded over the past several decades and not much is known of their capacity to recover. With less than 1% of these forests protected, our ability to monitor the dynamics and quantify changes in the remaining primary and recovering secondary tropical dry forests is vital to understanding mechanisms of ecosystem stress responses and climate feedback with respect to annual productivity and desertification processes in the tropics. The remote sensing component of the Tropi-Dry: Human and Biophysical Dimensions of Tropical Dry Forests in the Americas research network supports a network of long-term tropical ecosystem monitoring platforms which focus on the dynamics of seasonally dry tropical forests in the Americas. With over 25 sensor station deployments operating across a latitudinal gradient in Mexico, Costa Rica, Brazil, and Argentina continuously collecting hyper-temporal sensory input based on standardized deployment parameters, this monitoring system is unique among tropical environments. Technologies used in the network include optical canopy phenology towers, understory wireless sensing networks, above and below ground microclimate stations, and digital cameras. Sensory data streams are uploaded to a cyber-infrastructure initiative, denominated Enviro-Net°, for data storage, management, visualization, and retrieval for further analysis. The use of tower and ground-based optical sensor networks and meteorological monitoring instrumentation has proven effective in capturing seasonal growth patterns in primary and secondary forest stands. Furthermore, the observed trends in above and below ground microclimate variables are shown to closely correlate with in-situ vegetative indices (NDVI and EVI) across study sites. These long-term environmental sensory data streams provide valuable insights as to how these threatened semi-arid ecosystems regenerate after disturbances and how they respond to environmental stress such as climate change in the tropical and sub-tropical latitudes.
Alternative stable states and the sustainability of forests, grasslands, and agriculture.
Henderson, Kirsten A; Bauch, Chris T; Anand, Madhur
2016-12-20
Endangered forest-grassland mosaics interspersed with expanding agriculture and silviculture occur across many parts of the world, including the southern Brazilian highlands. This natural mosaic ecosystem is thought to reflect alternative stable states driven by threshold responses of recruitment to fire and moisture regimes. The role of adaptive human behavior in such systems remains understudied, despite its pervasiveness and the fact that such ecosystems can exhibit complex dynamics. We develop a nonlinear mathematical model of coupled human-environment dynamics in mosaic systems and social processes regarding conservation and economic land valuation. Our objective is to better understand how the coupled dynamics respond to changes in ecological and social conditions. The model is parameterized with southern Brazilian data on mosaic ecology, land-use profits, and questionnaire results concerning landowner preferences and conservation values. We find that the mosaic presently resides at a crucial juncture where relatively small changes in social conditions can generate a wide variety of possible outcomes, including complete loss of mosaics; large-amplitude, long-term oscillations between land states that preclude ecosystem stability; and conservation of the mosaic even to the exclusion of agriculture/silviculture. In general, increasing the time horizon used for conservation decision making is more likely to maintain mosaic stability. In contrast, increasing the inherent conservation value of either forests or grasslands is more likely to induce large oscillations-especially for forests-due to feedback from rarity-based conservation decisions. Given the potential for complex dynamics, empirically grounded nonlinear dynamical models should play a larger role in policy formulation for human-environment mosaic ecosystems.
Tree diversity mitigates defoliation after a drought-induced tipping point.
Sousa-Silva, Rita; Verheyen, Kris; Ponette, Quentin; Bay, Elodie; Sioen, Geert; Titeux, Hugues; Van de Peer, Thomas; Van Meerbeek, Koenraad; Muys, Bart
2018-05-26
Understanding the processes that underlie drought-related tree vitality loss is essential for anticipating future forest dynamics, and for developing management plans aiming at increasing the resilience of forests to climate change. Forest vitality has been continuously monitored in Europe since the acid rain alert in the 1980s, and the intensive monitoring plots of ICP Forests offer the opportunity to investigate the effects of air pollution and climate change on forest condition. By making use of over 100 long-term monitoring plots, where crown defoliation has been assessed extensively since 1990, we discovered a progressive shift from a negative to a positive effect of species richness on forest health. The observed tipping point in the balance of net interactions, from competition to facilitation, has never been reported from real ecosystems outside experimental conditions; and the strong temporal consistency of our observations with increasing drought stress emphasizes its climate change relevance. Furthermore, we show that higher species diversity has reduced the severity of defoliation in the long term. Our results confirm the greater resilience of diverse forests to future climate change-induced stress. More generally, they add to an accumulating body of evidence on the large potential of tree species mixtures to face manifold disturbances in a changing world. © 2018 John Wiley & Sons Ltd.
Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk
2014-01-01
Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling. PMID:24699676
Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk
2014-01-01
Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.
Caldwell, Peter V; Miniat, Chelcy F; Elliott, Katherine J; Swank, Wayne T; Brantley, Steven T; Laseter, Stephanie H
2016-09-01
Climate change and forest disturbances are threatening the ability of forested mountain watersheds to provide the clean, reliable, and abundant fresh water necessary to support aquatic ecosystems and a growing human population. Here, we used 76 years of water yield, climate, and field plot vegetation measurements in six unmanaged, reference watersheds in the southern Appalachian Mountains of North Carolina, USA to determine whether water yield has changed over time, and to examine and attribute the causal mechanisms of change. We found that annual water yield increased in some watersheds from 1938 to the mid-1970s by as much as 55%, but this was followed by decreases up to 22% by 2013. Changes in forest evapotranspiration were consistent with, but opposite in direction to the changes in water yield, with decreases in evapotranspiration up to 31% by the mid-1970s followed by increases up to 29% until 2013. Vegetation survey data showed commensurate reductions in forest basal area until the mid-1970s and increases since that time accompanied by a shift in dominance from xerophytic oak and hickory species to several mesophytic species (i.e., mesophication) that use relatively more water. These changes in forest structure and species composition may have decreased water yield by as much as 18% in a given year since the mid-1970s after accounting for climate. Our results suggest that changes in climate and forest structure and species composition in unmanaged forests brought about by disturbance and natural community dynamics over time can result in large changes in water supply. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Novenko, E. Yu; Tsyganov, A. N.; Olchev, A. V.
2018-01-01
New multi-proxy records (pollen, testate amoebae, and charcoal) were applied to reconstruct the vegetation dynamics in the boreal forest area of the southern part of Valdai Hills (the Central Forest Biosphere Reserve) during the Holocene. The reconstructions of the mean annual temperature and precipitation, the climate moisture index (CMI), peatland surface moisture, and fire activity have shown that climate change has a significant impact on the boreal forests of European Russia. Temperature growth and decreased moistening during the warmest phases of the Holocene Thermal Maximum in 7.0-6.2 ka BP and 6.0-5.5 ka BP and in the relatively warm phase in 3.4-2.5 ka BP led to structural changes in plant communities, specifically an increase in the abundance of broadleaf tree species in forest stands and the suppression of Picea. The frequency of forest fires was higher in that period, and it resulted in the replacement of spruce forests by secondary stands with Betula and Pinus. Despite significant changes in the climatic parameters projected for the 21st century using even the optimistic RCP2.6 scenario, the time lag between climate changes and vegetation responses makes any catastrophic vegetation disturbances (due to natural reasons) in the area in the 21st century unlikely.
Multi-aged Forest: an Optimal Management Strategy for Carbon Sequestration
NASA Astrophysics Data System (ADS)
Yao, L.; Tang, X.; Ma, M.
2017-12-01
Disturbances and climatic changes significantly affect forest ecosystem productivity, water use efficiency (WUE) and carbon (C) flux dynamics. A deep understanding of terrestrial feedbacks to such effects and recovery mechanisms in forests across contrasting climatic regimes is essential to predict future regional/global C and water budgets, which are also closely related to the potential forest management decisions. However, the resilience of multi-aged and even-aged forests to disturbances has been debated for more than 60 years because of technical measurement constraints. Here we evaluated 62 site-years of eddy covariance measurements of net ecosystem production (NEP), evapotranspiration (ET), the estimates of gross primary productivity (GPP), ecosystem respiration (Re) and ecosystem-level WUE, as well as the relationships with environmental controls in three chronosequences of multi- and even-aged coniferous forests covering the Mediterranean, temperate and boreal regions. Age-specific dynamics in multi-year mean annual NEP and WUE revealed that forest age is a key variable that determines the sign and magnitude of recovering forest C source-sink strength from disturbances. However, the trends of annual NEP and WUE across succession stages between two stand structures differed substantially. The successional patterns of NEP exhibited an inverted-U trend with age at the two even-aged chronosequences, whereas NEP of the multi-aged chronosequence increased steadily through time. Meanwhile, site-level WUE of even-aged forests decreased gradually from young to mature, whereas an apparent increase occurred for the same forest age in multi-aged stands. Compared with even-aged forests, multi-aged forests sequestered more CO2 with forest age and maintained a relatively higher WUE in the later succession periods. With regard to the available flux measurements in this study, these behaviors are independent of tree species, stand ages and climate conditions . We also found that distinctly different environmental factors controlled forest C and water fluxes under three climatic regimes.These findings will provide important implications for forest management strategies to mitigate global climate change.
African Savanna-Forest Boundary Dynamics: A 20-Year Study
Cuni-Sanchez, Aida; White, Lee J. T.; Calders, Kim; Jeffery, Kathryn J.; Abernethy, Katharine; Burt, Andrew; Disney, Mathias; Gilpin, Martin; Gomez-Dans, Jose L.; Lewis, Simon L.
2016-01-01
Recent studies show widespread encroachment of forest into savannas with important consequences for the global carbon cycle and land-atmosphere interactions. However, little research has focused on in situ measurements of the successional sequence of savanna to forest in Africa. Using long-term inventory plots we quantify changes in vegetation structure, above-ground biomass (AGB) and biodiversity of trees ≥10 cm diameter over 20 years for five vegetation types: savanna; colonising forest (F1), monodominant Okoume forest (F2); young Marantaceae forest (F3); and mixed Marantaceae forest (F4) in Lopé National Park, central Gabon, plus novel 3D terrestrial laser scanning (TLS) measurements to assess forest structure differences. Over 20 years no plot changed to a new stage in the putative succession, but F1 forests strongly moved towards the structure, AGB and diversity of F2 forests. Overall, savanna plots showed no detectable change in structure, AGB or diversity using this method, with zero trees ≥10 cm diameter in 1993 and 2013. F1 and F2 forests increased in AGB, mainly as a result of adding recruited stems (F1) and increased Basal Area (F2), whereas F3 and F4 forests did not change substantially in structure, AGB or diversity. Critically, the stability of the F3 stage implies that this stage may be maintained for long periods. Soil carbon was low, and did not show a successional gradient as for AGB and diversity. TLS vertical plant profiles showed distinctive differences amongst the vegetation types, indicating that this technique can improve ecological understanding. We highlight two points: (i) as forest colonises, changes in biodiversity are much slower than changes in forest structure or AGB; and (ii) all forest types store substantial quantities of carbon. Multi-decadal monitoring is likely to be required to assess the speed of transition between vegetation types. PMID:27336632
African Savanna-Forest Boundary Dynamics: A 20-Year Study.
Cuni-Sanchez, Aida; White, Lee J T; Calders, Kim; Jeffery, Kathryn J; Abernethy, Katharine; Burt, Andrew; Disney, Mathias; Gilpin, Martin; Gomez-Dans, Jose L; Lewis, Simon L
2016-01-01
Recent studies show widespread encroachment of forest into savannas with important consequences for the global carbon cycle and land-atmosphere interactions. However, little research has focused on in situ measurements of the successional sequence of savanna to forest in Africa. Using long-term inventory plots we quantify changes in vegetation structure, above-ground biomass (AGB) and biodiversity of trees ≥10 cm diameter over 20 years for five vegetation types: savanna; colonising forest (F1), monodominant Okoume forest (F2); young Marantaceae forest (F3); and mixed Marantaceae forest (F4) in Lopé National Park, central Gabon, plus novel 3D terrestrial laser scanning (TLS) measurements to assess forest structure differences. Over 20 years no plot changed to a new stage in the putative succession, but F1 forests strongly moved towards the structure, AGB and diversity of F2 forests. Overall, savanna plots showed no detectable change in structure, AGB or diversity using this method, with zero trees ≥10 cm diameter in 1993 and 2013. F1 and F2 forests increased in AGB, mainly as a result of adding recruited stems (F1) and increased Basal Area (F2), whereas F3 and F4 forests did not change substantially in structure, AGB or diversity. Critically, the stability of the F3 stage implies that this stage may be maintained for long periods. Soil carbon was low, and did not show a successional gradient as for AGB and diversity. TLS vertical plant profiles showed distinctive differences amongst the vegetation types, indicating that this technique can improve ecological understanding. We highlight two points: (i) as forest colonises, changes in biodiversity are much slower than changes in forest structure or AGB; and (ii) all forest types store substantial quantities of carbon. Multi-decadal monitoring is likely to be required to assess the speed of transition between vegetation types.
Song, Xiang; Zeng, Xiaodong
2017-02-01
The climate has important influences on the distribution and structure of forest ecosystems, which may lead to vital feedback to climate change. However, much of the existing work focuses on the changes in carbon fluxes or water cycles due to climate change and/or atmospheric CO 2 , and few studies have considered how and to what extent climate change and CO 2 influence the ecosystem structure (e.g., fractional coverage change) and the changes in the responses of ecosystems with different characteristics. In this work, two dynamic global vegetation models (DGVMs): IAP-DGVM coupled with CLM3 and CLM4-CNDV, were used to investigate the response of the forest ecosystem structure to changes in climate (temperature and precipitation) and CO 2 concentration. In the temperature sensitivity tests, warming reduced the global area-averaged ecosystem gross primary production in the two models, which decreased global forest area. Furthermore, the changes in tree fractional coverage (Δ F tree ; %) from the two models were sensitive to the regional temperature and ecosystem structure, i.e., the mean annual temperature (MAT; °C) largely determined whether Δ F tree was positive or negative, while the tree fractional coverage ( F tree ; %) played a decisive role in the amplitude of Δ F tree around the globe, and the dependence was more remarkable in IAP-DGVM. In cases with precipitation change, F tree had a uniformly positive relationship with precipitation, especially in the transition zones of forests (30% < F tree < 60%) for IAP-DGVM and in semiarid and arid regions for CLM4-CNDV. Moreover, Δ F tree had a stronger dependence on F tree than on the mean annual precipitation (MAP; mm/year). It was also demonstrated that both models captured the fertilization effects of the CO 2 concentration.
Asko Noormets; Steve G. McNulty; Jared L. DeForest; Ge Sun; Qinglin Li; Jiquan Chen
2008-01-01
Climate change projections predict an intensifying hydrologic cycle and an increasing frequency of droughts, yet quantitative understanding of the effects on ecosystem carbon exchange remains limitedHere, the effect of contrasting precipitation and soil moisture dynamics were evaluated on forest carbon exchange using 2 yr of...
Dynamics of buckbrush populations under simulated forest restoration alternatives
David W. Huffman; Margaret M. Moore
2008-01-01
Plant population models are valuable tools for assessing ecological tradeoffs between forest management approaches. In addition, these models can provide insight on plant life history patterns and processes important for persistence and recovery of populations in changing environments. In this study, we evaluated a set of ecological restoration alternatives for their...
Dynamics of buckbrush populations under simulated forest restoration alternatives (P-53)
David W. Huffman; Margaret M. Moore
2008-01-01
Plant population models are valuable tools for assessing ecological tradeoffs between forest management approaches. In addition, these models can provide insight on plant life history patterns and processes important for persistence and recovery of populations in changing environments. In this study, we evaluated a set of ecological restoration alternatives for their...
Preserving nature in forested wilderness areas and national parks
Miron L. Heinselman
1971-01-01
The natural forest ecosystems of some of our national parks and wilderness areas are endangered by subtle ecological changes primarily because we have failed to understand the dynamic nature of these ecosystems and because protection programs frequently have excluded the very factors that produce natural plant and animal communities. Maintaining natural ecosystems...
Altered species interactions and implications for natural regeneration in whitebark pine communities
Shawn T. McKinney; Diana F. Tomback; Carl E. Fiedler
2011-01-01
Whitebark pine (Pinus albicaulis) decline has altered trophic interactions and led to changes in community dynamics in many Rocky Mountain subalpine forests (McKinney and Tomback 2007). Here we discuss how altered species interactions, driven by disproportionate whitebark pine mortality, constrain the capability of whitebark pine forests to contribute genetic material...
Integrated modeling of long-term vegetation and hydrologic dynamics in Rocky Mountain watersheds
Robert Steven Ahl
2007-01-01
Changes in forest structure resulting from natural disturbances, or managed treatments, can have negative and long lasting impacts on water resources. To facilitate integrated management of forest and water resources, a System for Long-Term Integrated Management Modeling (SLIMM) was developed. By combining two spatially explicit, continuous time models, vegetation...
abstract for journal article We characterized vertical variation in the seasonal depletion of stored soil moisture in old-growth ponderosa pine (OG-PP, xeric), and young and old-growth Douglas-fir (Y-DF, OG-DF, mesic) forests to evaluate changes in water availability for root up...
Transient synchrony among populations of five foliage-feeding Lepidoptera
Maartje J. Klapwijk; Jonathan A. Walter; Anikó Hirka; György Csóka; Christer Björkman; Andrew M. Liebhold
2018-01-01
Studies of transient population dynamics have largely focused on temporal changes in dynamical behaviour, such as the transition between periods of stability and instability. This study explores a related dynamic pattern, namely transient synchrony during a 49-year period among populations of five sympatric species of forest insects that share host tree resources. The...
NASA Astrophysics Data System (ADS)
Henrot, Alexandra-Jane; François, Louis; Dury, Marie; Hambuckers, Alain; Jacquemin, Ingrid; Minet, Julien; Tychon, Bernard; Heinesch, Bernard; Horemans, Joanna; Deckmyn, Gaby
2015-04-01
Eddy covariance measurements are an essential resource to understand how ecosystem carbon fluxes react in response to climate change, and to help to evaluate and validate the performance of land surface and vegetation models at regional and global scale. In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), vegetation dynamics and carbon fluxes of forest and grassland ecosystems simulated by the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) are evaluated and validated by comparison of the model predictions with eddy covariance data. Here carbon fluxes (e.g. net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RECO)) and evapotranspiration (ET) simulated with the CARAIB model are compared with the fluxes measured at several eddy covariance flux tower sites in Belgium and Western Europe, chosen from the FLUXNET global network (http://fluxnet.ornl.gov/). CARAIB is forced either with surface atmospheric variables derived from the global CRU climatology, or with in situ meteorological data. Several tree (e.g. Pinus sylvestris, Fagus sylvatica, Picea abies) and grass species (e.g. Poaceae, Asteraceae) are simulated, depending on the species encountered on the studied sites. The aim of our work is to assess the model ability to reproduce the daily, seasonal and interannual variablility of carbon fluxes and the carbon dynamics of forest and grassland ecosystems in Belgium and Western Europe.
Morgan L. Wiechmann; Matthew D. Hurteau; Malcolm P. North; George W. Koch; Lucie Jerabkova
2015-01-01
Forests sequester carbon from the atmosphere, helping mitigate climate change. In fire-prone forests, burn events result in direct and indirect emissions of carbon. High fire-induced tree mortality can cause a transition from a carbon sink to source, but thinning and prescribed burning can reduce fire severity and carbon loss when wildfire occurs. However, treatment...
Carbon Cycling Dynamics in Response to Pine Beetle Infection and Climate Variation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monson, Russell K.
2015-01-26
We originally proposed to study and discover the changes that have occurred in soil carbon pools, as a result of tree mortality due to beetle infection, and the ease by which those pools release CO2 to the atmosphere in mountain forests in the Western US. We studied forest plots at two sites – the Niwot Ridge AmeriFlux site and the Fraser Experimental Forest site, both in Colorado.
NASA Astrophysics Data System (ADS)
Moore, Dan; Jost, Georg; Nelson, Harry; Smith, Russell
2013-04-01
Over the last 15 years, there has been extensive mortality of pine forests in western North America associated with an outbreak of Mountain Pine Beetle, often followed by salvage logging. The objective of this study was to quantify the separate and combined effects of forest recovery and climate change over the 21st century on catchment hydrology in the San Jose watershed, located in the semi-arid Interior Plateau of British Columbia. Forest cover changes were simulated using a dynamic spatial model that uses a decentralized planning approach. We implemented management strategies representing current timber management objectives around achieving targeted harvest levels and incorporating existing management constraints under two different scenarios, one with no climate change and one under climate change, using climate-adjusted growth and yield curves. In addition, higher rates of fire disturbance were modelled under climate change. Under climate change, while productivity improves for some species (mainly Douglas-fir on better quality sites), on drier and poorer quality sites most species, especially Lodgepole Pine, become significantly less productive, and stocking is reduced to the point that those sites transition into grasslands. The combined effect of initial age classes (where the forest has been severely impacted by MPB), increased fire, and reduced stocking results in a greater proportion of the forest in younger age classes compared to a "Business As Usual" scenario with no climate change. The hydrologic responses to changes in vegetation cover and climate were evaluated with the flexible Hydrology Emulator and Modelling Platform (HEMP) developed at the University of British Columbia. HEMP allows a flexible discretization of the landscape. Water is moved vertically within landscape units by processes such as precipitation, canopy interception and soil infiltration, and routed laterally between units as a function of local soil and groundwater storage. The model was calibrated and tested on three stream gauges and on snow course data. A 'guided' GLUE approach was used to address the effects of parameter uncertainty and uncertainty in streamflow data on the uncertainty in future projections. Overall, the establishment and growth of post-disturbance forest stands result in a substantial reduction in snow accumulation and melt rates, and an increase in evapotranspiration, together resulting in a reduction in streamflow. The influence of projected climate warming was to advance the timing of spring melt, exacerbating the reductions in late-summer streamflow associated with forest recovery. In some climate scenarios, increases in precipitation helped to offset reductions in streamflow associated with forest recovery. Some challenges associated with linking output from the forest dynamics simulations and the hydrologic model are identified and potential solutions discussed.
DANGOL, Dharma Raj; MAHARJAN, Keshav Lall
2013-01-01
This paper describes changes of species composition and population of flora in space and time in western Chitwan, Nepal. This paper also discusses on the changes in flora due to flood and human activities. To illustrate these changes, we used survey data collected from January to April of 1996, 2000, and 2007 from the Barandabhar forest, National Park forest and the forests along the Narayani River banks, grasslands of National Park and common lands of western Chitwan as a part of longitudinal study on “reciprocal relation of population and the environment”. From these data, density values were calculated to analyze spatial and temporal changes in flora species composition and population. We also noted the changes of top species in time and space in due course of time. If the species and its rank not changed, their densities (population) values of flora species changed. We found that changes in species composition, population, appearance or disappearance of flora from a particular space (research plot) were noted as a result of natural forces or human activities. PMID:25061414
Dangol, Dharma Raj; Maharjan, Keshav Lall
2012-06-30
This paper describes changes of species composition and population of flora in space and time in western Chitwan, Nepal. This paper also discusses on the changes in flora due to flood and human activities. To illustrate these changes, we used survey data collected from January to April of 1996, 2000, and 2007 from the Barandabhar forest, National Park forest and the forests along the Narayani River banks, grasslands of National Park and common lands of western Chitwan as a part of longitudinal study on "reciprocal relation of population and the environment". From these data, density values were calculated to analyze spatial and temporal changes in flora species composition and population. We also noted the changes of top species in time and space in due course of time. If the species and its rank not changed, their densities (population) values of flora species changed. We found that changes in species composition, population, appearance or disappearance of flora from a particular space (research plot) were noted as a result of natural forces or human activities.
Clark, Jason A.; Loehman, Rachel A.; Keane, Robert E.
2017-01-01
We present landscape simulation results contrasting effects of changing climates on forest vegetation and fire regimes in Yellowstone National Park, USA, by mid-21st century. We simulated potential changes to fire dynamics and forest characteristics under three future climate projections representing a range of potential future conditions using the FireBGCv2 model. Under the future climate scenarios with moderate warming (>2°C) and moderate increases in precipitation (3–5%), model simulations resulted in 1.2–4.2 times more burned area, decreases in forest cover (10–44%), and reductions in basal area (14–60%). In these same scenarios, lodgepole pine (Pinus contorta) decreased in basal area (18–41%), while Douglas-fir (Pseudotsuga menziesii) basal area increased (21–58%). Conversely, mild warming (<2°C) coupled with greater increases in precipitation (12–13%) suggested an increase in forest cover and basal area by mid-century, with spruce and subalpine fir increasing in abundance. Overall, we found changes in forest tree species compositions were caused by the climate-mediated changes in fire regime (56–315% increase in annual area burned). Simulated changes in forest composition and fire regime under warming climates portray a landscape that shifts from lodgepole pine to Douglas-fir caused by the interaction between the magnitude and seasonality of future climate changes, by climate-induced changes in the frequency and intensity of wildfires, and by tree species response.
Lim, Cheng Ling; Prescott, Graham W; De Alban, Jose Don T; Ziegler, Alan D; Webb, Edward L
2017-12-01
Political transitions often trigger substantial environmental changes. In particular, deforestation can result from the complex interplay among the components of a system-actors, institutions, and existing policies-adapting to new opportunities. A dynamic conceptual map of system components is particularly useful for systems in which multiple actors, each with different worldviews and motivations, may be simultaneously trying to alter different facets of the system, unaware of the impacts on other components. In Myanmar, a global biodiversity hotspot with the largest forest area in mainland Southeast Asia, ongoing political and economic reforms are likely to change the dynamics of deforestation drivers. A fundamental conceptual map of these dynamics is therefore a prerequisite for interventions to reduce deforestation. We used a system-dynamics approach and causal-network analysis to determine the proximate causes and underlying drivers of forest loss and degradation in Myanmar from 1995 to 2016 and to articulate the linkages among them. Proximate causes included infrastructure development, timber extraction, and agricultural expansion. These were stimulated primarily by formal agricultural, logging, mining, and hydropower concessions and economic investment and social issues relating to civil war and land tenure. Reform of land laws, the link between natural resource extraction and civil war, and the allocation of agricultural concessions will influence the extent of future forest loss and degradation in Myanmar. The causal-network analysis identified priority areas for policy interventions, for example, creating a public registry of land-concession holders to deter corruption in concession allocation. We recommend application of this analytical approach to other countries, particularly those undergoing political transition, to inform policy interventions to reduce forest loss and degradation. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Cumulative effects of wildfires on forest dynamics in the eastern Cascade Mountains, USA.
Reilly, Matthew J; Elia, Mario; Spies, Thomas A; Gregory, Matthew J; Sanesi, Giovanni; Lafortezza, Raffaele
2018-03-01
Wildfires pose a unique challenge to conservation in fire-prone regions, yet few studies quantify the cumulative effects of wildfires on forest dynamics (i.e., changes in structural conditions) across landscape and regional scales. We assessed the contribution of wildfire to forest dynamics in the eastern Cascade Mountains, USA from 1985 to 2010 using imputed maps of forest structure (i.e., tree size and canopy cover) and remotely sensed burn severity maps. We addressed three questions: (1) How do dynamics differ between the region as a whole and the unburned portion of the region? (2) How do dynamics vary among vegetation zones differing in biophysical setting and historical fire frequency? (3) How have forest structural conditions changed in a network of late successional reserves (LSRs)? Wildfires affected 10% of forests in the region, but the cumulative effects at this scale were primarily slight losses of closed-canopy conditions and slight gains in open-canopy conditions. In the unburned portion of the region (the remaining 90%), closed-canopy conditions primarily increased despite other concurrent disturbances (e.g., harvest, insects). Although the effects of fire were largely dampened at the regional scale, landscape scale dynamics were far more variable. The warm ponderosa pine and cool mixed conifer zones experienced less fire than the region as a whole despite experiencing the most frequent fire historically. Open-canopy conditions increased slightly in the mixed conifer zone, but declined across the ponderosa pine zone even with wildfires. Wildfires burned 30% of the cold subalpine zone, which experienced the greatest increase in open-canopy conditions and losses of closed-canopy conditions. LSRs were more prone to wildfire than the region as a whole, and experienced slight declines in late seral conditions. Despite losses of late seral conditions, wildfires contributed to some conservation objectives by creating open habitats (e.g., sparse early seral and woodland conditions) that otherwise generally decreased in unburned landscapes despite management efforts to increase landscape diversity. This study demonstrates the potential for wildfires to contribute to regional scale conservation objectives, but implications for management and biodiversity at landscape scales vary geographically among biophysical settings, and are contingent upon historical dynamics and individual species habitat preferences. © 2017 by the Ecological Society of America.
Dai, Er Fu; Zhou, Heng; Wu, Zhuo; Wang, Xiao-Fan; Xi, Wei Min; Zhu, Jian Jia
2016-10-01
Global climate warming has significant effect on territorial ecosystem, especially on forest ecosystem. The increase in temperature and radiative forcing will significantly alter the structure and function of forest ecosystem. The southern plantation is an important part of forests in China, its response to climate change is getting more and more intense. In order to explore the responses of southern plantation to climate change under future climate scenarios and to reduce the losses that might be caused by climate change, we used climatic estimated data under three new emission scenarios, representative concentration pathways (RCPs) scenarios (RCP2.6 scenario, RCP4.5 scenario, and RCP8.5 scenario). We used the spatially dynamic forest landscape model LANDIS-2, coupled with a forest ecosystem process model PnET-2, to simulate the impact of climate change on aboveground net primary production (ANPP), species' establishment probability (SEP) and aboveground biomass of Moshao forest farm in Huitong Ecological Station, which located in Hunan Province during the period of 2014-2094. The results showed that there were obvious differences in SEP and ANPP among different forest types under changing climate. The degrees of response of SEP to climate change for different forest types were shown as: under RCP2.6 and RCP4.5, artificial coniferous forest>natural broadleaved forest>artificial broadleaved forest. Under RCP8.5, natural broadleaved forest>artificial broadleaved forest>artificial coniferous forest. The degrees of response of ANPP to climate change for different forest types were shown as: under RCP2.6, artificial broadleaved forest> natural broadleaved forest>artificial coniferous forest. Under RCP4.5 and RCP8.5, natural broadleaved forest>artificial broadleaved forest>artificial coniferous forest. The aboveground biomass of the artificial coniferous forest would decline at about 2050, but the natural broadleaved forest and artificial broadleaved forest showed a rising trend in general. During the period of 2014-2094, the total aboveground biomass under RCP2.6, RCP4.5 and RCP8.5 scenarios increased by 68.2%, 79.3% and 72.6%, respectively. The total aboveground biomass under various climatic scenarios sort as: RCP4.5>RCP8.5>RCP2.6. We thought that an appropriate temperature might be beneficial to the biomass accumulation in this study area. However, overextended temperature might hinder the sustainable development of forest production and ecological function.
[Effects of land use change on landscape pattern vulnerability in Yinchuan Basin, Northwest China].
Ren, Zhi-yuan; Zhang, Han
2016-01-01
Landscape pattern vulnerability reflects the instability and sensitivity of ecological system to external disturbances and helps to understand the status and trend of ecological environment. This paper used landscape sensitivity index and landscape adaptability index to construct the landscape pattern vulnerability index of Yinchuan Basin, and got the distribution of the landscape pattern vulnerability in 2001 and 2013. Our study explored the effect of the land use degree composite index, the integrated land use dynamic degree, the importance index of land use change and various types of land transfer on landscape pattern vulnerability. Results showed that the land use degree composite index was mainly caused by the increase of the arable land, forest and the construction land. The higher proportion of the arable land or forest, the lower the vulnerability was, and the construction land had the opposite effect. With the increase of integrated land use dynamic degree, the construction land significantly increased the vulnerability, followed by grassland, and the forest significantly decreased the vulnerability, followed by the arable land. As the importance index of land use change increasing, the arable land could significantly decrease the vulnerability, followed by the forest, the grassland had a weaker trend with no obvious pattern, and the construction land significantly increased the vulnerability. When the arable land, forest and the grassland were the maintypes of land use transfer, the increasing proportion of the construction land increased the vulnerability. When the construction land was the main type of land use transfer, the grassland and forest improved the vulnerability and the arable land had the opposite effect. Changes in the number of land use types influenced the spatial structure of land use to a certain extent, which could offer a reference on using and developing the land resources scientifically. The ternary diagram could reflect the impact of various types of and use change on the landscape vulnerability, which diagram enriched the content of the research on the land use and change.
NASA Astrophysics Data System (ADS)
Couto-Santos, F. R.; Luizao, F. J.; Camargo, P. B.
2013-12-01
The evolutionary history of savannas influenced by short term climate cycles, during the Quaternary Period, could prompt variations in forest cover often related to movements of the forest-savanna boundary. In this study we investigated current and past changes in the structure of vegetation and the origins of savannas of different natures in a biogeographically and climatic transitional forest-savanna area in northern Amazonia. Variations in the isotopic composition of soil organic matter (δ13C) from surface soils (0-10 cm) along forest-savanna boundaries, detected by a sigmoidal non-linear function, were used to identify current changes in vegetation, while past changes were inferred by discontinuities in the evolution of δ13C with soil depth using piecewise regression associated with radiocarbon dating (14C). By comparing small isolated savanna enclaves inside a strictly protected nature reserve (ESEC Maracá) with its outskirts unprotected continuous savanna matrix, we found that origins and the patterns of dynamics were distinct between these areas and did not respond in the same way to climate change and fire events, either in the last decades or during the Holocene. The stability of the present boundaries of the surrounding savanna matrix reflects the resilience of the transitional forests under a recent intensified fire regime and favorable climate, while the deep forest soil isotopic signal indicated a forest shrinkage of at least 70 m occurring since its origin in early Holocene until 780 years BP associated with a climate drier than the current one. Contrarily, the protected enclaves inside ESEC Maracá, remained stable since the middle Holocene, suggesting a non-anthropogenic origin related to soil edaphic conditions, but with recent dynamics of advancing forest by 8 m century-1 favored by current climate and lacking fire events. A detailed understanding of the origins of savannas of distinct natures and the way they are affected by climate and fire events provided by carbon isotopes and radiocarbon analysis in both short and long term could help predict the future of these ecosystems under the envisaged climate change scenario. Financial Support: Boticário Group Foundation (Fundação Grupo Boticário); National Council for Scientific and Technological Development (CNPq); The Minas Gerais State Research Foundation (FAPEMIG).
Ancient human disturbances may be skewing our understanding of Amazonian forests.
McMichael, Crystal N H; Matthews-Bird, Frazer; Farfan-Rios, William; Feeley, Kenneth J
2017-01-17
Although the Amazon rainforest houses much of Earth's biodiversity and plays a major role in the global carbon budget, estimates of tree biodiversity originate from fewer than 1,000 forest inventory plots, and estimates of carbon dynamics are derived from fewer than 200 recensus plots. It is well documented that the pre-European inhabitants of Amazonia actively transformed and modified the forest in many regions before their population collapse around 1491 AD; however, the impacts of these ancient disturbances remain entirely unaccounted for in the many highly influential studies using Amazonian forest plots. Here we examine whether Amazonian forest inventory plot locations are spatially biased toward areas with high probability of ancient human impacts. Our analyses reveal that forest inventory plots, and especially forest recensus plots, in all regions of Amazonia are located disproportionately near archaeological evidence and in areas likely to have ancient human impacts. Furthermore, regions of the Amazon that are relatively oversampled with inventory plots also contain the highest values of predicted ancient human impacts. Given the long lifespan of Amazonian trees, many forest inventory and recensus sites may still be recovering from past disturbances, potentially skewing our interpretations of forest dynamics and our understanding of how these forests are responding to global change. Empirical data on the human history of forest inventory sites are crucial for determining how past disturbances affect modern patterns of forest composition and carbon flux in Amazonian forests.
NASA Astrophysics Data System (ADS)
Poulter, B.; Pederson, N.; Liu, H.; Zhu, Z.; D'Arrigo, R.; Ciais, P.; Davi, N.; Frank, D. C.; Leland, C.; Myneni, R.; Piao, S.; Wang, T.
2012-12-01
Semi-arid ecosystems play an important role in regulating global climate and their response to climate change will depend on interactions between temperature, precipitation, and CO2. However, in cool-arid environments, precipitation is not the only limitation to forest productivity. For example, interactions between changes in precipitation and air temperature may enhance soil moisture stress while simultaneously extending growing season length, with unclear consequences for net carbon uptake. This presentation evaluates recent trends in productivity and seasonality of forests located in Inner Asia (Mongolia and Northern China) using satellite remote sensing, dendrochronology, and dynamic global vegetation model (DGVM) simulations to quantify the sensitivity of forest dynamics to decadal climate variability and trends. Long-term trends from satellite observations of FPAR between 1982-2010 show a greening of 21% of the region in spring (March, April May), but with 10% of the area 'browning' during summertime (June, July, August), the results of which are corroborated by trends in NPP simulated by the LPJ DGVM. Spring greening trends in FPAR are mainly explained by long-term trends in precipitation whereas summer browning trends are correlated with decreasing precipitation. Tree ring data from 25 sites confirm annual growth increments are mainly limited by summer precipitation (June, July, August) in Mongolia, and spring precipitation in northern China (March, April, May), with relatively weak prior-year lag effects. An ensemble of climate projections from the IPCC CMIP3 models indicates that warming temperatures (spring, summer) are expected to be associated with higher summer precipitation, which combined with CO2 causes large increases in NPP and eventual increase in forest cover in the Mongolian steppe. In the absence of a strong direct CO2 fertilization effect on plant growth (e.g., due to nutrient limitation), water stress or decreased carbon gain from higher autotrophic respiration results in decreased productivity and loss of forest cover.
NASA Astrophysics Data System (ADS)
Broder, Tanja; Knorr, Klaus-Holger; Biester, Harald
2017-04-01
Peatlands and peaty riparian zones are major sources of dissolved organic matter (DOM), but are poorly understood in terms of export dynamics and controls thereof. Thereby quality of DOM affects function and behavior of DOM in aquatic ecosystems, but DOM quality can also help to track DOM sources and their export dynamics under specific hydrologic preconditions. The objective of this study was to elucidate controls on temporal variability in DOM concentration and quality in stream water draining a bog and a forested peaty riparian zone, particularly considering drought and storm flow events. DOM quality was monitored using spectrofluorometric indices for aromaticity (SUVA254), apparent molecular size (SR) and precursor organic material (FI), as well as PARAFAC modeling of excitation emission matrices (EEMs). Indices for DOM quality exhibited major changes due to different hydrologic conditions, but patterns were also dependent on season. Stream water at the forested site with mineral, peaty soils generally exhibited higher variability in DOM concentrations and quality compared to the outflow of an ombrotrophic bog, where DOM was less susceptible to changes in hydrologic conditions. During snowmelt and spring events, near-surface protein-like DOM pools were exported. A microbial DOM fraction originating from groundwater and deep peat layers was increasing during drought, while a strongly microbially altered DOM fraction was also exported by discharge events with dry preconditions at the forested site. This might be due to accelerated microbial activity in the peaty riparian zone of the forested site under these preconditions. Our study demonstrated that DOM export dynamics are not only a passive mixing of different hydrological sources, but monitoring studies have to consider that DOM quality depends on hydrologic preconditions and season. Moreover, the forested peaty riparian zone generated the most variability in headwater DOM quantity and quality, as could be tracked by the used spectrofluorometric indices.
NASA Astrophysics Data System (ADS)
Eisner, Stephanie; Huang, Shaochun; Majasalmi, Titta; Bright, Ryan; Astrup, Rasmus; Beldring, Stein
2017-04-01
Forests are recognized for their decisive effect on landscape water balance with structural forest characteristics as stand density or species composition determining energy partitioning and dominant flow paths. However, spatial and temporal variability in forest structure is often poorly represented in hydrological modeling frameworks, in particular in regional to large scale hydrological modeling and impact analysis. As a common practice, prescribed land cover classes (including different generic forest types) are linked to parameter values derived from literature, or parameters are determined by calibration. While national forest inventory (NFI) data provide comprehensive, detailed information on hydrologically relevant forest characteristics, their potential to inform hydrological simulation over larger spatial domains is rarely exploited. In this study we present a modeling framework that couples the distributed hydrological model HBV with forest structural information derived from the Norwegian NFI and multi-source remote sensing data. The modeling framework, set up for the entire of continental Norway at 1 km spatial resolution, is explicitly designed to study the combined and isolated impacts of climate change, forest management and land use change on hydrological fluxes. We use a forest classification system based on forest structure rather than biomes which allows to implicitly account for impacts of forest management on forest structural attributes. In the hydrological model, different forest classes are represented by three parameters: leaf area index (LAI), mean tree height and surface albedo. Seasonal cycles of LAI and surface albedo are dynamically simulated to make the framework applicable under climate change conditions. Based on a hindcast for the pilot regions Nord-Trøndelag and Sør-Trøndelag, we show how forest management has affected regional hydrological fluxes during the second half of the 20th century as contrasted to climate variability.
NASA Astrophysics Data System (ADS)
Stella, J. C.; Harper, E. B.; Fremier, A. K.; Hayden, M. K.; Battles, J. J.
2009-12-01
In high-order alluvial river systems, physical factors of flooding and channel migration are particularly important drivers of riparian forest dynamics because they regulate habitat creation, resource fluxes of water, nutrients and light that are critical for growth, and mortality from fluvial disturbance. Predicting vegetation composition and dynamics at individual sites in this setting is challenging, both because of the stochastic nature of the flood regime and the spatial variability of flood events. Ecological models that correlate environmental factors with species’ occurrence and abundance (e.g., ’niche models’) often work well in infrequently-disturbed upland habitats, but are less useful in river corridors and other dynamic zones where environmental conditions fluctuate greatly and selection pressures on disturbance-adapted organisms are complex. In an effort to help conserve critical riparian forest habitat along the middle Sacramento River, CA, we are taking a mechanistic approach to quantify linkages between fluvial and biotic processes for Fremont cottonwood (Populus fremontii), a keystone pioneer tree in dryland rivers ecosystems of the U.S. Southwest. To predict the corridor-wide population effects of projected changes to the disturbance regime from flow regulation, climate change, and landscape modifications, we have coupled a physical model of channel meandering with a patch-based population model that incorporates the climatic, hydrologic, and topographic factors critical for tree recruitment and survival. We employed these linked simulations to study the relative influence of the two most critical habitat types--point bars and abandoned channels--in sustaining the corridor-wide cottonwood population over a 175-year period. The physical model uses discharge data and channel planform to predict the spatial distribution of new habitat patches; the population model runs on top of this physical template to track tree colonization and survival on each patch. Model parameters of tree life-history traits (e.g., dispersal timing) and hydrogeomorphic processes (e.g., sedimentation rate) were determined by field and experimental studies, and aerial LIDAR, with separate range of values for point bar versus floodplain habitats. In most runs, abandoned channels were colonized one third as frequently as point bars, but supported much larger forest patches when colonization was successful (from 15-99% of forest area, depending on point bar success). Independent evaluation of aerial photos confirm that cottonwood forest stands associated with abandoned channels were less frequent (38% of all stands) but more extensive (53% of all forest area) relative to those caused by migrating point bars. Results indicate that changes to the rate and scale of river migration, and particularly channel abandonment, from human and climatic alterations to the flow regime will likely influence riparian corridor-wide tree population structure and forest dynamics, with consequences for the community of organisms that depend on this habitat.
Implications of land use change on the national terrestrial carbon budget of Georgia.
Olofsson, Pontus; Torchinava, Paata; Woodcock, Curtis E; Baccini, Alessandro; Houghton, Richard A; Ozdogan, Mutlu; Zhao, Feng; Yang, Xiaoyuan
2010-09-13
Globally, the loss of forests now contributes almost 20% of carbon dioxide emissions to the atmosphere. There is an immediate need to reduce the current rates of forest loss, and the associated release of carbon dioxide, but for many areas of the world these rates are largely unknown. The Soviet Union contained a substantial part of the world's forests and the fate of those forests and their effect on carbon dynamics remain unknown for many areas of the former Eastern Bloc. For Georgia, the political and economic transitions following independence in 1991 have been dramatic. In this paper we quantify rates of land use changes and their effect on the terrestrial carbon budget for Georgia. A carbon book-keeping model traces changes in carbon stocks using historical and current rates of land use change. Landsat satellite images acquired circa 1990 and 2000 were analyzed to detect changes in forest cover since 1990. The remote sensing analysis showed that a modest forest loss occurred, with approximately 0.8% of the forest cover having disappeared after 1990. Nevertheless, growth of Georgian forests still contribute a current national sink of about 0.3 Tg of carbon per year, which corresponds to 31% of the country anthropogenic carbon emissions. We assume that the observed forest loss is mainly a result of illegal logging, but we have not found any evidence of large-scale clear-cutting. Instead local harvesting of timber for household use is likely to be the underlying driver of the observed logging. The Georgian forests are a currently a carbon sink and will remain as such until about 2040 if the current rate of deforestation persists. Forest protection efforts, combined with economic growth, are essential for reducing the rate of deforestation and protecting the carbon sink provided by Georgian forests.
Resilience of Alaska's Boreal Forest to Climatic Change
NASA Technical Reports Server (NTRS)
Chapin, F. S., III; McGuire, A. D.; Ruess, R. W.; Hollingsworth, T. N.; Mack, M. C.; Johnstone, J. F.; Kasischke, E. S.; Euskirchen, E. S.; Jones, J. B.; Jorgenson, M. T.;
2010-01-01
This paper assesses the resilience of Alaska s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.
Resilience of Alaska’s boreal forest to climatic change
Chapin, F.S.; McGuire, A. David; Ruess, Roger W.; Hollingsworth, Teresa N.; Mack, M.C.; Johnstone, J.F.; Kasischke, E.S.; Euskirchen, E.S.; Jones, J.B.; Jorgenson, M.T.; Kielland, K.; Kofinas, G.; Turetsky, M.R.; Yarie, J.; Lloyd, A.H.; Taylor, D.L.
2010-01-01
This paper assesses the resilience of Alaska’s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska’s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social–ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.
Response of Sierra Nevada forests to projected climate-wildfire interactions.
Liang, Shuang; Hurteau, Matthew D; Westerling, Anthony LeRoy
2017-05-01
Climate influences forests directly and indirectly through disturbance. The interaction of climate change and increasing area burned has the potential to alter forest composition and community assembly. However, the overall forest response is likely to be influenced by species-specific responses to environmental change and the scale of change in overstory species cover. In this study, we sought to quantify how projected changes in climate and large wildfire size would alter forest communities and carbon (C) dynamics, irrespective of competition from nontree species and potential changes in other fire regimes, across the Sierra Nevada, USA. We used a species-specific, spatially explicit forest landscape model (LANDIS-II) to evaluate forest response to climate-wildfire interactions under historical (baseline) climate and climate projections from three climate models (GFDL, CCSM3, and CNRM) forced by a medium-high emission scenario (A2) in combination with corresponding climate-specific large wildfire projections. By late century, we found modest changes in the spatial distribution of dominant species by biomass relative to baseline, but extensive changes in recruitment distribution. Although forest recruitment declined across much of the Sierra, we found that projected climate and wildfire favored the recruitment of more drought-tolerant species over less drought-tolerant species relative to baseline, and this change was greatest at mid-elevations. We also found that projected climate and wildfire decreased tree species richness across a large proportion of the study area and transitioned more area to a C source, which reduced landscape-level C sequestration potential. Our study, although a conservative estimate, suggests that by late century, forest community distributions may not change as intact units as predicted by biome-based modeling, but are likely to trend toward simplified community composition as communities gradually disaggregate and the least tolerant species are no longer able to establish. The potential exists for substantial community composition change and forest simplification beyond this century. © 2016 John Wiley & Sons Ltd.
Satellite assessment of increasing tree cover 1982-2016
NASA Astrophysics Data System (ADS)
Song, X. P.; Hansen, M.
2017-12-01
The Earth's vegetation has undergone dramatic changes as we enter the Anthropocene. Recent studies have quantified global forest cover dynamics and resulting biogeochemical and biophysical impacts to the climate for the post-2000 time period. However, long-term gradual changes in undisturbed forests are less well quantified. We mapped annual tree cover using satellite data and quantified tree cover change during 1982-2016. The dataset was produced by combining optical observations from multiple satellite sensors, including the Advanced Very High Resolution Radiometer, the Moderate Resolution Imaging Spectroradiometer, the Landsat Enhanced Thematic Mapper Plus and various very high spatial resolution sensors. Contrary to current understanding of forest area change, global tree cover increased by 7%. The overall net gain in tree cover is a result of net loss in the tropics overweighed by net gain in the subtropical, temperate and boreal zones. All mountain systems, regardless of climate domain, experienced increases in tree cover. Regional patterns of tree cover gain including eastern United States, eastern Europe and southern China, indicate profound influences of socioeconomic, political or land management changes in shaping long-term environmental change. Results provide the first comprehensive record of global tree cover dynamics over the past four decades and may be used to reduce uncertainties in the quantification of the global carbon cycle.
Ogawa, Mifuyu; Yamaura, Yuichi; Abe, Shin; Hoshino, Daisuke; Hoshizaki, Kazuhiko; Iida, Shigeo; Katsuki, Toshio; Masaki, Takashi; Niiyama, Kaoru; Saito, Satoshi; Sakai, Takeshi; Sugita, Hisashi; Tanouchi, Hiroyuki; Amano, Tatsuya; Taki, Hisatomo; Okabe, Kimiko
2011-07-01
Many indicators/indices provide information on whether the 2010 biodiversity target of reducing declines in biodiversity have been achieved. The strengths and limitations of the various measures used to assess the success of such measures are now being discussed. Biodiversity dynamics are often evaluated by a single biological population metric, such as the abundance of each species. Here we examined tree population dynamics of 52 families (192 species) at 11 research sites (three vegetation zones) of Japanese old-growth forests using two population metrics: number of stems and basal area. We calculated indices that track the rate of change in all species of tree by taking the geometric mean of changes in population metrics between the 1990s and the 2000s at the national level and at the levels of the vegetation zone and family. We specifically focused on whether indices based on these two metrics behaved similarly. The indices showed that (1) the number of stems declined, whereas basal area did not change at the national level and (2) the degree of change in the indices varied by vegetation zone and family. These results suggest that Japanese old-growth forests have not degraded and may even be developing in some vegetation zones, and indicate that the use of a single population metric (or indicator/index) may be insufficient to precisely understand the state of biodiversity. It is therefore important to incorporate more metrics into monitoring schemes to overcome the risk of misunderstanding or misrepresenting biodiversity dynamics.
Raija Laiho; Jukka Laine; Carl C. Trettin; Leena Finér
2004-01-01
Peatlands form a large carbon (C) pool but their C sink is labile and susceptible to changes in climate and land-use. Some pristine peatlands are forested, and others have the potential: the amount of arboreal vegetation is likely to increase if soil water levels are lowered as a consequence of climate change. On those sites tree litter dynamics may be crucial for the...
Cropland management dynamics as a driver of forest cover change in European Russia (Invited)
NASA Astrophysics Data System (ADS)
Tyukavina, A.; Krylov, A.; Potapov, P.; Turubanova, S.; Hansen, M.; McCarty, J. L.
2013-12-01
The European part of Russia spans over 40% of the European subcontinent and comprises most of Europe's temperate and boreal forests. The region has undergone a socio-economic transition during the last two decades that has resulted in radical changes in land management. Large-scale agriculture land abandonment caused massive afforestation in the Central and Northern parts of the region (Alcantara et al. 2012). Afforestation of former croplands is currently not included in the official forestry statistical reports (Potapov et al. 2012), but is likely to have major impacts on regional carbon budgets (Kuemmerle et al. 2009). We employed a complete archive of Landsat TM and ETM+ imagery and automatic data processing algorithm to create regional time-sequential image composites and multi-temporal metrics for 1985-2012. Spectral metrics were used as independent variables to map forest cover and change with help of supervised machine learning algorithms and trend analysis. Forest cover loss was attributed to fires, harvesting, and wind/disease dynamics, while forest cover gain was disaggregated into reforestation and afforestation using pre-1990 TM imagery as baseline data. Special attention was paid to agricultural abandonment. Fire events of the last decade have been further characterized by ignition place, time, and burning intensity using MODIS fire detection data. Change detection products have been validated using field data collected during summer 2012 and 2013 and high resolution imagery. Massive arable land abandonment caused forest area increase within Central agricultural regions. While total logging area decreased after the USSR breakdown, logging and other forms of clearing increased within the Central and Western parts of the region. Gross forest gain and loss were nearly balanced within region; however, the most populated regions of European Russia featured the highest rate of net forest cover loss during the last decade. The annual burned forest area as well as area of windstorms damage significantly increased, especially in the Central regions. Fires predominantly affected pine forests and drained peatlands prone to summer droughts. Fire date and ignition analysis showed that forest fires are not related to extensive spring-time agricultural burning. References: Alcantara, C., T. Kuemmerle, A. V. Prishchepov & V. C. Radeloff. 2012. Mapping abandoned agriculture with multi-temporal MODIS satellite data. 334-347. Remote Sensing of Environment. Kuemmerle, T., O. Chaskovskyy, J. Knorn, V. C. Radeloff, I. Kruhlov, W. S. Keeton & P. Hostert. 2009. Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007. Remote Sensing of Environment, 113, 1194-1207. Potapov, P., S. Turubanova, I. Zhuravleva, M. Hansen, A. Yaroshenko & A. Manisha. 2012. Forest Cover Change within the Russian European North after the Breakdown of Soviet Union (1990-2005) 1-11. International Journal of Forestry Research.
NASA Astrophysics Data System (ADS)
Jayakaran, A. D.; Williams, T. M.; Ssegane, H.; Amatya, D. M.; Song, B.; Trettin, C. C.
2013-09-01
Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal watersheds in South Carolina in terms of stream flow and vegetation dynamics, both before and after the hurricane's passage in 1989. The study objectives were to quantify the magnitude and timing of changes including a reversal in relative streamflow-difference between two paired watersheds, and to examine the selective impacts of a hurricane on the vegetative composition of the forest. We related these impacts to their potential contribution to change watershed hydrology through altered evapotranspiration processes. Using over thirty years of monthly rainfall and streamflow data we showed that there was a significant transformation in the hydrologic character of the two watersheds - a transformation that occurred soon after the hurricane's passage. We linked the change in the rainfall-runoff relationship to a catastrophic shift in forest vegetation due to selective hurricane damage. While both watersheds were located in the path of the hurricane, extant forest structure varied between the two watersheds as a function of experimental forest management techniques on the treatment watershed. We showed that the primary damage was to older pines, and to some extent larger hardwood trees. We believe that lowered vegetative water use impacted both watersheds with increased outflows on both watersheds due to loss of trees following hurricane impact. However, one watershed was able to recover to pre hurricane levels of canopy transpiration at a quicker rate due to the greater abundance of pine seedlings and saplings in that watershed.
NASA Astrophysics Data System (ADS)
Garner, G.; Hannah, D. M.; Malcolm, I.; Sadler, J. P.
2012-12-01
Riparian forest is recognised as important for moderating stream temperature variability and has the potential to mitigate thermal extremes in a changing climate. Previous research on the heat exchanges controlling water column temperature has often been short-term or seasonally-constrained, with the few multi-year studies limited to a maximum of two years. This study advances previous work by providing a longer-term perspective which allows assessment of inter-annual variability in stream temperature, microclimate and heat exchange dynamics between a semi-natural woodland and a moorland (no trees) reach of the Girnock Burn, a tributary of the Scottish Dee. Automatic weather stations collected 15-minute data over seven consecutive years, which to our knowledge is a unique data set in providing the longest term perspective to date on stream temperature, microclimate and heat exchange processes. Results for spring-summer indicate that the presence of a riparian canopy has a consistent effect between years in reducing the magnitude and variability of mean daily water column temperature and daily net energy totals. Differences in the magnitude and variability in net energy fluxes between the study reaches were driven primarily by fluctuations in net radiation and latent heat fluxes in response to between- and within-year variability in growth of the riparian forest canopy at the forest and prevailing weather conditions at both the forest and moorland. This research provides new insights on the inter-annual variability of stream energy exchanges for moorland and forested reaches under a wide range of climatological and hydrological conditions. The findings therefore provide a more robust process basis for modelling the impact of changes in forest practice and climate change on river thermal dynamics.
Low historical nitrogen deposition effect on carbon sequestration in the boreal zone
NASA Astrophysics Data System (ADS)
Fleischer, K.; Wârlind, D.; van der Molen, M. K.; Rebel, K. T.; Arneth, A.; Erisman, J. W.; Wassen, M. J.; Smith, B.; Gough, C. M.; Margolis, H. A.; Cescatti, A.; Montagnani, L.; Arain, A.; Dolman, A. J.
2015-12-01
Nitrogen (N) cycle dynamics and N deposition play an important role in determining the terrestrial biosphere's carbon (C) balance. We assess global and biome-specific N deposition effects on C sequestration rates with the dynamic global vegetation model LPJ-GUESS. Modeled CN interactions are evaluated by comparing predictions of the C and CN version of the model with direct observations of C fluxes from 68 forest FLUXNET sites. N limitation on C uptake reduced overestimation of gross primary productivity for boreal evergreen needleleaf forests from 56% to 18%, presenting the greatest improvement among forest types. Relative N deposition effects on C sequestration (dC/dN) in boreal, temperate, and tropical sites ranged from 17 to 26 kg C kg N-1 when modeled at site scale and were reduced to 12-22 kg C kg N-1 at global scale. We find that 19% of the recent (1990-2007) and 24% of the historical global C sink (1900-2006) was driven by N deposition effects. While boreal forests exhibit highest dC/dN, their N deposition-induced C sink was relatively low and is suspected to stay low in the future as no major changes in N deposition rates are expected in the boreal zone. N deposition induced a greater C sink in temperate and tropical forests, while predicted C fluxes and N-induced C sink response in tropical forests were associated with greatest uncertainties. Future work should be directed at improving the ability of LPJ-GUESS and other process-based ecosystem models to reproduce C cycle dynamics in the tropics, facilitated by more benchmarking data sets. Furthermore, efforts should aim to improve understanding and model representations of N availability (e.g., N fixation and organic N uptake), N limitation, P cycle dynamics, and effects of anthropogenic land use and land cover changes.
Fifty years dynamics of Russian forests: Impacts on the earth system
NASA Astrophysics Data System (ADS)
Shvidenko, Anatoly; Schepaschenko, Dmitry; Kraxner, Florian
2015-04-01
The paper presents a succinct history of Russian forests during the time period of 1960-2010 and reanalysis of their impacts on global carbon and nitrogen cycles. We present dynamics of land cover change (including major categories of forest land) and biometric characteristics of forests (species composition, age structure, growing stock volume etc.) based on reconciling all relevant information (data of forest and land inventories, official forest management statistics, multi-sensor remote sensing products, data of forest pathological monitoring etc.). Completeness and reliability of background information was different during the period of the study. Forest inventory data and official statistics were partially modified based on relevant auxiliary information and used for 1960-2000. The analysis for 2001-2010 was provided with a crucial use of multi-sensor remote sensing data. For this last period a hybrid forest mask was developed at resolution of 230m by integration of 8 remote sensing products and using geographical weighted regression and data of crowdsourcing. During the considered 50 years forested areas of Russia substantially increased by middle of 1990s and slightly declined (at about 5%) after. Indicators needed for assessment of carbon and nitrogen cycles of forest ecosystems were defined for the entire period (aggregated estimates by decades for 1960-2000 and yearly for 2001-2010) based on unified methodology with some peculiarities following from availability of information. Major results were obtained by landscape-ecosystem method that uses as comprehensive as possible empirical and semi-empirical information on ecosystems and landscapes in form of an Integrated Land Information System and complimentary combines pool- and flux-based methods. We discuss and quantify major drivers of forest cover change (socio-economic, environmental and climatic) including forest management (harvest, reforestation and afforestation), impacts of seasonal weather on carbon fluxes (Net Primary Production, Heterotrophic Respiration), disturbances (fire, outbreaks of insects and diseases), and industrial pressure (land change, air pollution, water and soil contamination). During the entire period Russian forests provided the net carbon sink in range from 350-700 Tg C yr-1 with inter-annual variability in limits of 10-15% for the entire country. The overall sink is a result of superposition of trends of major carbon fluxes (caused by removal of harvested wood and use of forest products; land cover change; impact of climatic trends; change of disturbance regimes) and inter-annual variation of seasonal weather. Major indicators of the nitrogen cycle are assessed and discussed in connection with the carbon cycle. We provide comparative analysis of other results published for the considered period taken into account successive improvements of information and methodology used for studying the major biogeochemical cycles.
Five millennia of frozen vegetation and fire dynamics from an ice core in the Mongolian Altai
NASA Astrophysics Data System (ADS)
Brügger, S. O.; Gobet, E.; Sigl, M.; Osmont, D.; Papina, T.; Rudaya, N.; Schwikowski, M.; Tinner, W.
2017-12-01
The steppes of the Altai region in Central Asia are highly vulnerable to e.g. drought and overgrazing. Degradation during the past decades may undermine their resilience under global change conditions. Knowledge about past vegetation and fire dynamics in Mongolian Altai may contribute to a better understanding of future climate and human impact responses, however, paleo records are scarce in the area. Our novel high-alpine ice record from Tsambagarav glacier (48°39.338'N, 90°50.826'E, 4130m asl) in the Mongolian Altai provides unique paleoenvironmental informations at the landscape scale. The site is surrounded by dry steppes with scattered boreal tree stands. We assume that the site collects pollen and spores within several hundred km. The archive provides an exceptional temporal resolution with a sound chronology covering the past 5500 years (Herren et al. 2013). Microfossil analysis allows to reconstruct large-scale fire and vegetation dynamics to gain a better understanding of the timing and causes of late Holocene response variability. We use pollen as proxies for vegetation composition and structure, microscopic charcoal as a proxy for fire activity (Eichler et al. 2011), and spheroidal carbonaceous particles (SCPs or soots) as a proxy for fossil fuel combustion. Here we present the first microscopic charcoal record from Mongolia and link it to vegetation dynamics of the past. The reconstructed mid to late Holocene forest collapses likely in response to climate change underscore the vulnerability of relict forest ecosystems in the Mongolian Altai. Our multiproxy-study suggests that moisture is more important than temperature for forest preservation. The lacking resilience of vegetation to moisture changes in the past emphasizes the vulnerability of large forests in neighboring dry areas such as the Russian Altai, if global warming is associated to moisture declines as future projections forecast (IPCC; Climate Change 2013). References: Eichler et al. (2011). An ice-core based history of Siberian forest fires since AD 1250. Quat Sci Rev 30(9) Herren et al. (2013). The onset of Neoglaciation 6000 years ago in western Mongolia revealed by an ice core from the Tsambagarav mountain range. Quat Sci Rev 69 IPCC; Climate Change (2013): The Physical Science Basis. IPCC Working Group I Contribution to AR5
NASA Astrophysics Data System (ADS)
Welp, L.; Calle, L.; Graven, H. D.; Poulter, B.
2017-12-01
The seasonal amplitude of Northern Hemisphere atmospheric CO2 concentrations has systematically increased over the last several decades, indicating that the timing and amplitude of net CO2 uptake and release by northern terrestrial ecosystems has changed substantially. Remote sensing, dynamic vegetation modeling, and in-situ studies have explored how changes in phenology, expansion of woody vegetation, and changes in species composition and disturbance regimes, among others, are driven by changes in climate and CO2. Despite these efforts, ecosystem models have not been able to reproduce observed atmospheric CO2 changes. Furthermore, the implications for the source/sink balance of northern ecosystems remains unclear. Changing proportions of evergreen and deciduous tree cover in response to climate change could be one of the key mechanisms that have given rise to amplified atmospheric CO2 seasonality. These two different plant functional types (PFTs) have different carbon uptake seasonal patterns and also different sensitivities to climate change, but are often lumped together as one forest type in global ecosystem models. We will demonstrate the potential that shifting distributions of evergreen and deciduous forests can have on the amplitude of atmospheric CO2. We will show phase differences in the net CO2 seasonal uptake using CO2 flux data from paired evergreen/deciduous eddy covariance towers. We will use simulations of evergreen and deciduous PFTs from the LPJ dynamic vegetation model to explore how climate change may influence the abundance and CO2 fluxes of each. Model results show that the area of deciduous forests is predicted to have increased, and the seasonal amplitude of CO2 fluxes has increased as well. The impact of surface flux seasonal variability on atmospheric CO2 amplitude is examined by transporting fluxes from each forest PFT through the TM3 transport model. The timing of the most intense CO2 uptake leads to an enhanced effect of deciduous forests on the atmospheric CO2 amplitude. These results demonstrate the potential significance of evergreen/deciduous forest PFTs on the amplitude of atmospheric CO2. In order to better understand the causes of the increasing amplitude trend, we encourage creating time-varying maps of evergreen/deciduous PFTs from remote sensing observations.
Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang
2015-04-01
Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations.
Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang
2015-01-01
Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations. PMID:25897387
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Anirban; Mondal, Arun; Mukherjee, Sandip; Khatua, Dipam; Ghosh, Subhajit; Mitra, Debasish; Ghosh, Tuhin
2014-08-01
In the Himalayan states of India, with increasing population and activities, large areas of forested land are being converted into other land-use features. There is a definite cause and effect relationship between changing practice for development and changes in land use. So, an estimation of land use dynamics and a futuristic trend pattern is essential. A combination of geospatial and statistical techniques were applied to assess the present and future land use/land cover scenario of Gangtok, the subHimalayan capital of Sikkim. Multi-temporal satellite imageries of the Landsat series were used to map the changes in land use of Gangtok from 1990 to 2010. Only three major land use classes (built-up area and bare land, step cultivated area, and forest) were considered as the most dynamic land use practices of Gangtok. The conventional supervised classification, and spectral indices-based thresholding using NDVI (Normalized Difference Vegetation Index) and SAVI (Soil Adjusted Vegetation Index) were applied along with the accuracy assessments. Markov modelling was applied for prediction of land use/land cover change and was validated. SAVI provides the most accurate estimate, i.e., the difference between predicted and actual data is minimal. Finally, a combination of Markov modelling and SAVI was used to predict the probable land-use scenario in Gangtok in 2020 AD, which indicted that more forest areas will be converted for step cultivation by the year 2020.
NASA Astrophysics Data System (ADS)
Kennedy, R. S.
2010-12-01
Forests of the mountainous landscapes of the maritime Pacific Northwestern USA may have high carbon sequestration potential via their high productivity and moderate to infrequent fire regimes. With climate change, there may be shifts in incidence and severity of fire, especially in the drier areas of the region, via changes to forest productivity and hydrology, and consequent effects to C sequestration and forest structure. To explore this issue, I assessed potential effects of fire management (little fire suppression/wildland fire management/highly effective fire suppression) under two climate change scenarios on future C sequestration dynamics (amounts and spatial pattern) in Olympic National Park, WA, over a 500-year simulation period. I used the simulation platform FireBGCv2, which contains a mechanistic, individual tree succession model, a spatially explicit climate-based biophysical model that uses daily weather data, and a spatially explicit fire model incorporating ignition, spread, and effects on ecosystem components. C sequestration patterns varied over time and spatial and temporal patterns differed somewhat depending on the climate change scenario applied and the fire management methods employed. Under the more extreme climate change scenario with little fire suppression, fires were most frequent and severe and C sequestration decreased. General trends were similar under the more moderate climate change scenario, as compared to current climate, but spatial patterns differed. Both climate change scenarios under highly effective fire suppression showed about 50% of starting total C after the initial transition phase, whereas with 10% fire suppression both scenarios exhibited about 10% of starting amounts. Areas of the landscape that served as refugia for older forest under increasing frequency of high severity fire were also hotspots for C sequestration in a landscape experiencing increasing frequency of disturbance with climate change.
Jyh-Min Chiang; Ryan W. McEwan; Daniel A. Yaussy; Kim J. Brown
2008-01-01
More than 70 years of fire suppression has influenced forest dynamics and led to the accumulation of fuels in many forests of the United States. To address these changes, forest managers increasingly seek to restore historical ecosystem structure and function through the reintroduction of fire and disturbance processes that mimic fire such as silvicultural thinning. In...
Hagenbo, Andreas; Clemmensen, Karina E; Finlay, Roger D; Kyaschenko, Julia; Lindahl, Björn D; Fransson, Petra; Ekblad, Alf
2017-04-01
In boreal forest soils, ectomycorrhizal fungi are fundamentally important for carbon (C) dynamics and nutrient cycling. Although their extraradical mycelium (ERM) is pivotal for processes such as soil organic matter build-up and nitrogen cycling, very little is known about its dynamics and regulation. In this study, we quantified ERM production and turnover, and examined how these two processes together regulated standing ERM biomass in seven sites forming a chronosequence of 12- to 100-yr-old managed Pinus sylvestris forests. This was done by determining ERM biomass, using ergosterol as a proxy, in sequentially harvested in-growth mesh bags and by applying mathematical models. Although ERM production declined with increasing forest age from 1.2 to 0.5 kg ha -1 d -1 , the standing biomass increased from 50 to 112 kg ha -1 . This was explained by a drastic decline in mycelial turnover from seven times to one time per year with increasing forest age, corresponding to mean residence times from 25 d up to 1 yr. Our results demonstrate that ERM turnover is the main factor regulating biomass across differently aged forest stands. Explicit inclusion of ERM parameters in forest ecosystem C models may significantly improve their capacity to predict responses of mycorrhiza-mediated processes to management and environmental changes. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Integrating Biodiversity into Biosphere-Atmosphere Interactions Using Individual-Based Models (IBM)
NASA Astrophysics Data System (ADS)
Wang, B.; Shugart, H. H., Jr.; Lerdau, M.
2017-12-01
A key component regulating complex, nonlinear, and dynamic biosphere-atmosphere interactions is the inherent diversity of biological systems. The model frameworks currently widely used, i.e., Plant Functional Type models) do not even begin to capture the metabolic and taxonomic diversity found in many terrestrial systems. We propose that a transition from PFT-based to individual-based modeling approaches (hereafter referred to as IBM) is essential for integrating biodiversity into research on biosphere-atmosphere interactions. The proposal emerges from our studying the interactions of forests with atmospheric processes in the context of climate change using an individual-based forest volatile organic compounds model, UVAFME-VOC. This individual-based model can explicitly simulate VOC emissions based on an explicit modelling of forest dynamics by computing the growth, death, and regeneration of each individual tree of different species and their competition for light, moisture, and nutrient, from which system-level VOC emissions are simulated by explicitly computing and summing up each individual's emissions. We found that elevated O3 significantly altered the forest dynamics by favoring species that are O3-resistant, which, meanwhile, are producers of isoprene. Such compositional changes, on the one hand, resulted in unsuppressed forest productivity and carbon stock because of the compensation by O3-resistant species. On the other hand, with more isoprene produced arising from increased producers, a possible positive feedback loop between tropospheric O3 and forest thereby emerged. We also found that climate warming will not always stimulate isoprene emissions because warming simultaneously reduces isoprene emissions by causing a decline in the abundance of isoprene-emitting species. These results suggest that species diversity is of great significance and that individual-based modelling strategies should be applied in studying biosphere-atmosphere interactions.
NASA Astrophysics Data System (ADS)
Williams, C. A.; Gu, H.
2016-12-01
Protecting forest carbon stores and uptake is central to national and international policies aimed at mitigating climate change. The success of such polices relies on high quality, accurate reporting (Tier 3) that earns the greatest financial value of carbon credits and hence incentivizes forest conservation and protection. Methods for Tier 3 Measuring, Reporting, and Verification (MRV) are still in development, generally involving some combination of direct remote sensing, ground based inventorying, and computer modeling, but have tended to emphasize assessments of live aboveground carbon stocks with a less clear connection to the real target of MRV which is carbon emissions and removals. Most existing methods are also ambiguous as to the mechanisms that underlie carbon accumulation, and any have limited capacity for forecasting carbon dynamics over time. This paper reports on the design and implementation of a new method for Tier 3 MRV, decision support, and forecasting that is being applied to assess forest carbon dynamics across the conterminous US. The method involves parameterization of a carbon cycle model (CASA) to match yield data from the US forest inventory (FIA). A range of disturbance types and severities are imposed in the model to estimate resulting carbon emissions, carbon uptake, and carbon stock changes post-disturbance. Resulting trajectories are then applied to landscapes at the 30-m pixel level based on two remote-sensing based data products. One documents the year, type, and severity of disturbance in recent decades. The second documents aboveground biomass which is used to estimate time since disturbance and associated carbon fluxes and stocks. Results will highlight high-resolution (30 m) annual carbon stocks and fluxes from 1990 to 2010 for select regions of interest across the US. Spatial analyses reveal regional patterns in US forest carbon stocks and fluxes as they respond to forest types, climate, and disturbances. Temporal analyses document effects of recent disturbance trends and demonstrate the method's capacity for quantifying changes in forest carbon over time as needed for UNFCCC reporting.
NASA Astrophysics Data System (ADS)
Wasige, John E.; Groen, Thomas A.; Smaling, Eric; Jetten, Victor
2013-04-01
The Kagera Basin is a high value ecosystem in the Lake Victoria watershed because of the hydrological and food services it provides. The basin has faced large scale human induced land use and land cover changes (LUCC), but quantitative data is to date lacking. A combination of ancillary data and satellite imagery were interpreted to construct LUCC dynamics for the last century. This study is an initial step towards assessing the impact of LUCC on sustainable agriculture and water quality in the watershed. The results show that large trends of LUCC have rapidly occurred over the last 100 years. The most dominant LUCC processes were gains in farmland areas (not detectable in 1901 to 60% in 2010) and a net reduction in dense forest (7% to 2.6%), woodlands (51% to 6.9%) and savannas (35% to 19.6%) between 1901 and 2010. Forest degradation rapidly occurred during 1974 and 1995 but the forest re-grew between 1995 and 2010 due to forest conservation efforts. Afforestation efforts have resulted in plantation forest increases between 1995 and 2010. The rates of LUCC observed are higher than those reported in Sub Saharan Africa (SSA) and other parts of the world. This is one of the few studies in SSA at a basin scale that combines multi-source spatio-temporal data on land cover to enable long-term quantification of land cover changes. In the discussion we address future research needs for the area based on the results of this study. These research needs include quantifying the impacts of land cover change on nutrient and sediment dynamics, soil organic carbon stocks, and changes in biodiversity.
Smiraglia, D; Ceccarelli, T; Bajocco, S; Perini, L; Salvati, L
2015-10-01
This study implements an exploratory data analysis of landscape metrics and a change detection analysis of land use and population density to assess landscape dynamics (1954-2008) in two physiographic zones (plain and hilly-mountain area) of Emilia Romagna, northern Italy. The two areas are characterized by different landscape types: a mixed urban-rural landscape dominated by arable land and peri-urban settlements in the plain and a traditional agro-forest landscape in the hilly-mountain area with deciduous and conifer forests, scrublands, meadows, and crop mosaic. Urbanization and, to a lesser extent, agricultural intensification were identified as the processes underlying landscape change in the plain. Land abandonment determining natural forestation and re-forestation driven by man was identified as the process of change most representative of the hilly-mountain area. Trends in landscape metrics indicate a shift toward more fragmented and convoluted patterns in both areas. Number of patches, the interspersion and juxtaposition index, and the large patch index are the metrics discriminating the two areas in terms of landscape patterns in 1954. In 2008, mean patch size, edge density, interspersion and juxtaposition index, and mean Euclidean nearest neighbor distance were the metrics with the most different spatial patterns in the two areas. The exploratory data analysis of landscape metrics contributed to link changes over time in both landscape composition and configuration providing a comprehensive picture of landscape transformations in a wealthy European region. Evidence from this study are hoped to inform sustainable land management designed for homogeneous landscape units in similar socioeconomic contexts.
NASA Astrophysics Data System (ADS)
Sullivan, B. W.; Nasto, M.; Alvarez-Clare, S.; Cole, R. J.; Reed, S.; Chazdon, R.; Davidson, E. A.; Cleveland, C. C.
2015-12-01
Extensive deforestation of tropical rainforest often leads to agricultural abandonment and secondary forest regeneration. The land area of secondary rainforest is soon likely to exceed that of primary forest, highlighting the importance of secondary tropical rainforest in the global carbon (C) cycle. Secondary forests often grow rapidly, but the role soil nutrients play in regulating secondary forest productivity remains unsettled. Consistent with biogeochemical theory, a landmark study from a set of sites in the Amazon Basin showed that secondary forests had low nitrogen (N) availability and relatively higher phosphorus (P) availability immediately after abandonment, but that as succession proceeded, N availability "recuperated" and there was relatively less P available. To address whether such changes in N and P availability during secondary forest growth are common, we reviewed 38 studies in lowland tropical rainforest that reported changes in 23 different metrics of N and P cycling during secondary succession. We calculated slopes (rates of change) during secondary succession for each metric in each study, and analyzed patterns in these rates of change. Significant trends during secondary succession were more evident in soils than in plants, but in most cases, the variability among studies was surprisingly low. Both soil N and P availability increased through succession, at least in surface soil. Such consistent changes imply substantial biogeochemical resilience of tropical forest soils in spite of differing land use histories and species compositions among studies. In most cases, slopes were similar whether primary forest was included in, or excluded from, our analysis, suggesting that secondary succession eventually leads to similar biogeochemical conditions as those found in primary forest. Our results suggesting consistent changes in N and P availability during succession provide a biogeochemical rationale for the conservation and restoration value of tropical secondary forests, and may be of utility to coupled C-nutrient models projecting primary productivity in a dynamic tropical biome.
Divergent phenological response to hydroclimate variability in forested mountain watersheds
Taehee Hwang; Lawrence E. Band; Chelcy F. Miniat; Conghe Song; Paul V . Bolstad; James M. Vose; Jason P. Love
2014-01-01
Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep...
James S. Clark; Louis Iverson; Christopher W. Woodall; Craig D. Allen; David M. Bell; Don C. Bragg; Anthony W. D' Amato; Frank W. Davis; Michelle H. Hersh; Ines Ibanez; Stephen T. Jackson; Stephen Matthews; Neil Pederson; Matthew Peters; Mark W. Schwartz; Kristen M. Waring; Niklaus E. Zimmermann
2016-01-01
We synthesize insights from current understanding of drought impacts at stand-to-biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand-level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition...
Jennifer A Holm; Skip J Van Bloem; Guy R Larocque; Herman H Shugart
2017-01-01
Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model-based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical...
Sarah M. Butler; Alan S. White; Katherine J. Elliott; Robert S. Seymour
2014-01-01
Understanding the patterns of past disturbance allows further insight into the complex composition, structure, and function of current and future forests, which is increasingly important in a world where disturbance characteristics are changing. Our objectives were to define disturbance causes, rates (percent disturbance per decade), magnitudes and frequency (time...
Joshua M. Halman; Paul G. Schaberg; Gary J. Hawley; Christopher F. Hansen; Timothy J. Fahey
2015-01-01
Acid deposition induced losses of calcium (Ca) from northeastern forests have had negative effects on forest health for decades, including the mobilization of potentially phytotoxic aluminum (Al) from soils. To evaluate the impact of changes in Ca and Al availability on sugar maple (Acer saccharum Marsh.) and American beech (Fagus...
Brian R. Sturtevant; V. Quinn; L.E. Robert; D. Kneeshaw; P. James; M.-J. Fortin; P. Wolter; P. Townsend; B. Cooke; D. Anderson
2010-01-01
The balance of evidence suggests forest insect outbreaks today are more damaging than ever because of changes in forest composition and structure induced by fire suppression and post-harvest proliferation of tree species intolerant to herbivory. We hypothesized that landscape connectivity of acceptable host trees increases defoliator population connectivity, altering...
J.M. Warren; F.C. Meinzer; J.R. Brooks; J.C. Domec
2005-01-01
We characterized vertical variation in the seasonal release of stored soil moisture in old-growth ponderosa pine (OG-PP, xeric), and young and old-growth Douglas-fir (Y-DF, OG-DF, mesic) forests to evaluate changes in water availability for root uptake. Soil water potential (ψ) and volumetric water content (θ...
Stand dynamics of relict red spruce in the Alarka Creek headwaters, North Carolina
Beverly Collins; Thomas M. Schuler; W. Mark Ford; Danielle. Hawkins
2010-01-01
Disjunct red spruce (Picea rubens Sarg.) forests in the southern Appalachians can serve as models for understanding past and future impacts of climate change and other perturbations for larger areas of high-elevation forests throughout the Appalachians. We conducted a vegetation and dendrochronological survey to determine the age, size class, and...
Patterns of Oak Dominance in the Eastern Ouachita Mountains Suggested by Early Records
Don C. Bragg
2004-01-01
Many years of human influence across the Interior Highlands have caused profound changes in forest composition, disturbance regimes, and understory dynamics. However, information on the historical condition of these forests is limited. General Land Office (GLO) records, old documents, and contemporary studies provided data on the township encompassing the Lake Winona...
Some ecological, economic, and social consequences of bark beetle infestations
Robert A. Progar; Adris Eglitis; John E. Lundquist
2009-01-01
Bark beetles are powerful agents of change in dynamic forest ecosystems. Most assessments of the effects of bark beetle outbreaks have been based on negative impacts on timber production. The positive effects of bark beetle activities are much less well understood. Bark beetles perform vital functions at all levels of scale in forest ecosystems. At the landscape...
NASA Astrophysics Data System (ADS)
Fernandez, Maria Jose; Ortiz, Carlos; Kitzler, Barbara; Curiel, Jorge; Rubio, Agustin
2016-04-01
Over recent decades in the Iberian Peninsula, altitudinal shifts from Pinus sylvestris L. to Quercus pyrenaica Willd species has been observed as a consequence of Global Change, meaning changes in temperature, precipitation, land use and forestry. The forest conversion from pine to oak can alter the litter quality and quantity provided to the soil and thereby the soil microbial community composition and functioning. Since soil microbiota plays an important role in organic matter decomposition, and this in turn is key in biogeochemical cycles and forest ecosystems productivity, the rate in which forests produce and consume greenhouse gases can be also affected by changes in forest composition. In other words, changes in litter decomposition will ultimately affect downstream carbon and nitrogen dynamics although this impact is uncertain. In order to predict changes in carbon and nitrogen stocks in Global Change scenarios, it is necessary to deepen the impact of vegetation changes on soil microbial communities, litter decomposition dynamics (priming effect) and the underlying interactions between these factors. To test this, we conducted a full-factorial transplant microcosms experiment mixing both fresh soils and litter from Pyrenean oak, Scots pine and mixed stands collected inside their transitional area in Central Spain. The microcosms consisted in soil cylinders inside Kilner jars used as chambers inside an incubator. In this experiment, we investigated how and to what extent the addition of litter with different quality (needles, oak leaves and mixed needles-leaves) to soil inoculums with contrasting soil microbiota impact on (i) soil CO2, NO, N2O and CH4 efflux rates, (ii) total organic carbon and nitrogen and (iii) dissolved organic carbon and nitrogen. Furthermore, we assessed if these responses were controlled by changes in the microbial community structure using the PLFA analyses prior and after the incubation period of 54 days.
A half-century analysis of landscape dynamics in southern Québec, Canada.
Jobin, Benoît; Latendresse, Claudie; Baril, Alain; Maisonneuve, Charles; Boutin, Céline; Côté, Dominique
2014-04-01
We studied landscape dynamics for three time periods (<1950, 1965, and 1997) along a gradient of agricultural intensity from highly intensive agriculture to forested areas in southern Québec. Air photos were analyzed to obtain long-term information on land cover (crop and habitat types) and linear habitats (hedgerows and riparian habitats) and landscape metrics were calculated to quantify changes in habitat configuration. Anthropogenic areas increased in all types of landscapes but mostly occurred in the highly disturbed cash crop dominated landscape. Perennial crops (pasture and hayfields) were largely converted into annual crops (corn and soybean) between 1965 and 1997. The coalescence of annual crop fields resulted in a more homogeneous agricultural landscape. Old fields and forest cover was consistently low and forest fragmentation remained stable through time in the intensive agriculture landscapes. However, forest cover increased and forest fragmentation receded in the forest-dominated landscapes following farm abandonment and the transition of old fields into forests. Tree-dominated hedgerows and riparian habitats increased in areas with intensive agriculture. Observed changes in land cover classes are related to proximate factors, such as surficial deposits and topography. Agriculture intensification occurred in areas highly suitable for agriculture whereas farm abandonment was observed in poor-quality agriculture terrains. Large-scale conversion of perennial crops into annual crops along with continued urbanization exerts strong pressures on residual natural habitats and their inhabiting wildlife. The afforestation process occurring in the more forested landscapes along with the addition of tree-dominated hedgerows and riparian habitats in the agriculture-dominated landscapes should improve landscape ecological value.
NASA Astrophysics Data System (ADS)
Hawkins, L. R.; Rupp, D. E.; Li, S.; Mote, P.; Sparrow, S.; Massey, N.
2016-12-01
The forests of western North America serve as a carbon sink sequestering carbon and slowing the rise of CO2 in the atmosphere. Though still positive, the rate of net carbon uptake has been in decline over the past two decades. Regional drought has been shown to slow forest productivity and net carbon uptake despite warmer temperatures and longer growing seasons. With drought conditions projected to increase in frequency and severity under climate change there is concern that these forests' capacity as an effective carbon sink will continue to decrease in the future. To investigate how changes in regional hydroclimate may affect future carbon uptake in western US forests we dynamically downscaled global climate simulations using a 25-km resolution regional climate model HadRM3P with the land surface scheme MOSES2. We generated a 100-member ensemble of simulations for an historical period (1985-2015) and mid-21st century period (2030-2060) under Representative Concentration Pathway 8.5. We evaluated the effects of regional changes in atmospheric moisture demand, seasonality of water supply, and water stress on forest productivity and carbon uptake. We investigated how these changes in hydroclimate interact with the relaxing of temperature controls. This work can inform future adaptation efforts through improving our understanding of climatic controls on forest carbon sequestration.
Increasing atmospheric humidity and CO 2 concentration alleviate forest mortality risk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yanlan; Parolari, Anthony J.; Kumar, Mukesh
Climate-induced forest mortality is being increasingly observed throughout the globe. Alarmingly, it is expected to exacerbate under climate change due to shifting precipitation patterns and rising air temperature. However, the impact of concomitant changes in atmospheric humidity and CO 2 concentration through their influence on stomatal kinetics remains a subject of debate and inquiry. By using a dynamic soil–plant–atmosphere model, mortality risks associated with hydraulic failure and stomatal closure for 13 temperate and tropical forest biomes across the globe are analyzed. The mortality risk is evaluated in response to both individual and combined changes in precipitation amounts and their seasonalmore » distribution, mean air temperature, specific humidity, and atmospheric CO 2 concentration. Model results show that the risk is predicted to significantly increase due to changes in precipitation and air temperature regime for the period 2050–2069. However, this increase may largely get alleviated by concurrent increases in atmospheric specific humidity and CO 2 concentration. The increase in mortality risk is expected to be higher for needleleaf forests than for broadleaf forests, as a result of disparity in hydraulic traits. These findings will further facilitate decisions about intervention and management of different forest types under changing climate.« less
Increasing atmospheric humidity and CO 2 concentration alleviate forest mortality risk
Liu, Yanlan; Parolari, Anthony J.; Kumar, Mukesh; ...
2017-08-28
Climate-induced forest mortality is being increasingly observed throughout the globe. Alarmingly, it is expected to exacerbate under climate change due to shifting precipitation patterns and rising air temperature. However, the impact of concomitant changes in atmospheric humidity and CO 2 concentration through their influence on stomatal kinetics remains a subject of debate and inquiry. By using a dynamic soil–plant–atmosphere model, mortality risks associated with hydraulic failure and stomatal closure for 13 temperate and tropical forest biomes across the globe are analyzed. The mortality risk is evaluated in response to both individual and combined changes in precipitation amounts and their seasonalmore » distribution, mean air temperature, specific humidity, and atmospheric CO 2 concentration. Model results show that the risk is predicted to significantly increase due to changes in precipitation and air temperature regime for the period 2050–2069. However, this increase may largely get alleviated by concurrent increases in atmospheric specific humidity and CO 2 concentration. The increase in mortality risk is expected to be higher for needleleaf forests than for broadleaf forests, as a result of disparity in hydraulic traits. These findings will further facilitate decisions about intervention and management of different forest types under changing climate.« less
Analysis And Assessment Of Forest Cover Change For The State Of Wisconsin
NASA Astrophysics Data System (ADS)
Perry, C. H.; Nelson, M. D.; Stueve, K.; Gormanson, D.
2010-12-01
The Forest Inventory and Analysis (FIA) program of the USDA Forest Service is charged with documenting the status and trends of forest resources of the United States. Since the 1930s, FIA has implemented an intensive field campaign that collects measurements on plots distributed across all ownerships, historically completing analyses which include estimates of forest area, volume, mortality, growth, removals, and timber products output in various ways, such as by ownership, region, or State. Originally a periodic inventory, FIA has been measuring plots on an annual basis since the passage of the Agriculture Research, Extension and Education Reform Act of 1998 (Farm Bill). The resulting change in sampling design and intensity presents challenges to establishing baseline and measuring changes in forest area and biomass. A project jointly sponsored by the Forest Service and the National Aeronautics and Space Agency (NASA) titled “Integrating Landscape-scale Forest Measurements with Remote Sensing and Ecosystem Models to Improve Carbon Management Decisions” seeks to improve estimates of landscape- and continental-scale carbon dynamics and causes of change for North American forest land, and to use this information to support land management decisions. Specifically, we are developing and applying methods to scale up intensive biomass and carbon measurements from the field campaign to larger land management areas while simultaneously estimating change in the above-ground forest carbon stocks; the State of Wisconsin is being used as the testbed for this large-scale integration remote sensing with field measurements. Once defined, the temporal and spatial patterns of forest resources by watershed for Lake Superior and Lake Michigan outputs are being integrated into water quality assessments for the Great Lakes.
Distribution and dynamics of the invasive native hay-scented fern
Songlin Fei; Peter Gould; Melanie Kaeser; Kim Steiner
2010-01-01
The spread and dominance of the invasive native hay-scented fern in the understory is one of the most significant changes to affect the forest ecosystems in the northeastern United States in the last century. We studied changes in the distribution and dynamics of hay-scented fern at a large scale over a 10-yr period in Pennsylvania. The study included 56 stands...
Temperate forest health in an era of emerging megadisturbance
Millar, Constance I.; Stephenson, Nathan L.
2015-01-01
Although disturbances such as fire and native insects can contribute to natural dynamics of forest health, exceptional droughts, directly and in combination with other disturbance factors, are pushing some temperate forests beyond thresholds of sustainability. Interactions from increasing temperatures, drought, native insects and pathogens, and uncharacteristically severe wildfire are resulting in forest mortality beyond the levels of 20th-century experience. Additional anthropogenic stressors, such as atmospheric pollution and invasive species, further weaken trees in some regions. Although continuing climate change will likely drive many areas of temperate forest toward large-scale transformations, management actions can help ease transitions and minimize losses of socially valued ecosystem services.
NASA Astrophysics Data System (ADS)
Lane, P. N.; Sheridan, G. J.; Nyman, P.; Nolan, R.; Nokse, P. J.
2013-12-01
Wildfire is a particularly significant disturbance event in forested landscapes. Around 40,000 km2 of largely forested land has been burnt in south eastern Australia in the past decade. Fire effects on erosion and water quality have been widely reported and studied in many environments, but nutrient dynamics and evapotranspiration (ET) and streamflow are also of significant concern or interest. However the hydrologic response and recovery trajectories of the majority of eucalypt forests has been poorly known. Likewise, the coupling of ET response with sediment and nutrient dynamics has not been explored widely. Our research over the past decade into sediment, nutrients and ET/flow dynamics in differing forest types has led to new insights into this resilience/recovery question in eucalypt forests. This research has encompassed scales from the point to large catchment, identified the driving processes, and led to models that deal with discrete events and risk/probability frameworks. Broadly, we suggest there are two distinct 'sets' of responses and recovery trajectories depending on forest type. (1) wet eucalypt stands of E. regnans and E. delegatensis and associated 'ash' stands; and (2) the drier 'mixed-species' forests. The hydrologic responses of (1) may be summarized as: (i) Widespread mortality of trees exposed to moderate-hot fire, leading to dense single-age regeneration. ET is suppressed for 1-3 years, then increases to exceed that of a stands > 30 years old, with a concomitant inverse effect on flow. This recovery trajectory may play out until forests reach maturity (~100 years) or are re-burnt (ii) Sediment and nutrients (P and N principally) exports can increase by 1-2 orders of magnitude, but export rates recover with 2 years of the fire. Erosion processes are largely non-rill. Water quality issues (per event) are relatively short term (days) For case (2): (i) These stands are fire-resistant and show low (~10 %) rates of mortality. Leaf are recovery (and hence ET) is via epicormic leaves and seedling recruitment. ET response appears to be related to fire severity, with moderate severities producing higher ET rates for some years following leaf recovery. However ecological responses indicate theories of hydrologic equilibrium fit these forests and pre-fire ET rates are likely to recover within 5-10 years. (ii) Changes to peak flow can occur, but are scale-dependent, with only small convective storms cells likely to produce flood flows, and recovery likely within 2 years (iii) Erosion can be by both rill and non-rill processes, and may also be in form of debris flows (DF) in steeper topography. Debris flows produce increased loads x orders of magnitude, and can cause water quality issues on the scale of weeks or months. The key factors (aside from topography and background sediment supply) in rainfall return interval and water repellency/infiltration dynamics mean the time domain for DF is about 2 years. Although the impacts of discrete fire events are relatively short for most disturbance issues, fire return intervals and intensities may have longer term consequences. Higher frequency fires combined with a drying climate may result in less resilient forests systems with changed hydrologic characteristics. An example is re-seeding forests re-burnt before seed can develop, with consequent ET changes.
Chapman, Colin A; Schoof, Valérie A M; Bonnell, Tyler R; Gogarten, Jan F; Calmé, Sophie
2015-05-26
Despite strong links between sociality and fitness that ultimately affect the size of animal populations, the particular social and ecological factors that lead to endangerment are not well understood. Here, we synthesize approximately 25 years of data and present new analyses that highlight dynamics in forest composition, food availability, the nutritional quality of food, disease, physiological stress and population size of endangered folivorous red colobus monkeys (Procolobus rufomitratus). There is a decline in the quality of leaves 15 and 30 years following two previous studies in an undisturbed area of forest. The consumption of a low-quality diet in one month was associated with higher glucocorticoid levels in the subsequent month and stress levels in groups living in degraded forest fragments where diet was poor was more than twice those in forest groups. In contrast, forest composition has changed and when red colobus food availability was weighted by the protein-to-fibre ratio, which we have shown positively predicts folivore biomass, there was an increase in the availability of high-quality trees. Despite these changing social and ecological factors, the abundance of red colobus has remained stable, possibly through a combination of increasing group size and behavioural flexibility. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Zhang, Xiao; Liu, Shirong; Li, Xiangzhen; Wang, Jingxin; Ding, Qiong; Wang, Hui; Tian, Chao; Yao, Minjie; An, Jiaxing; Huang, Yongtao
2016-03-01
To understand the temporal responses of soil prokaryotic communities to clear-cutting disturbance, we examined the changes in soil bacterial and archaeal community composition, structure and diversity along a chronosequence of forest successional restoration using high-throughput 16S rRNA gene sequencing. Our results demonstrated that clear-cutting significantly altered soil bacterial community structure, while no significant shifts of soil archaeal communities were observed. The hypothesis that soil bacterial communities would become similar to those of surrounding intact primary forest with natural regeneration was supported by the shifts in the bacterial community composition and structure. Bacterial community diversity patterns induced by clear-cutting were consistent with the intermediate disturbance hypothesis. Dynamics of bacterial communities was mostly driven by soil properties, which collectively explained more than 70% of the variation in bacterial community composition. Community assembly data revealed that clear-cutting promoted the importance of the deterministic processes in shaping bacterial communities, coinciding with the resultant low resource environments. But assembly processes in the secondary forest returned a similar level compared to the intact primary forest. These findings suggest that bacterial community dynamics may be predictable during the natural recovery process. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sjögersten, Sofie; Wookey, Philip A
2009-02-01
Changes in temperature and moisture resulting from climate change are likely to strongly modify the ecosystem carbon sequestration capacity in high-latitude areas, both through vegetation shifts and via direct warming effects on photosynthesis and decomposition. This paper offers a synthesis of research addressing the potential impacts of climate warming on soil processes and carbon fluxes at the forest-tundra ecotone in Scandinavia. Our results demonstrated higher rates of organic matter decomposition in mountain birch forest than in tundra heath soils, with markedly shallower organic matter horizons in the forest. Field and laboratory experiments suggest that increased temperatures are likely to increase CO2 efflux from both tundra and forest soil providing moisture availability does not become limiting for the decomposition process. Furthermore, colonization of tundra heath by mountain birch forest would increase rates of decomposition, and thus CO2 emissions, from the tundra heath soils, which currently store substantial amounts of potentially labile carbon. Mesic soils underlying both forest and tundra heath are currently weak sinks of atmospheric methane, but the strength of this sink could be increased with climate warming and/or drying.
Navarrete, Diego; Sitch, Stephen; Aragão, Luiz E O C; Pedroni, Lucio; Duque, Alvaro
2016-04-15
Dead wood, composed of coarse standing and fallen woody debris (CWD), is an important carbon (C) pool in tropical forests and its accounting is needed to reduce uncertainties within the strategies to mitigate climate change by reducing deforestation and forest degradation (REDD+). To date, information on CWD stocks in tropical forests is scarce and effects of land-cover conversion and land management practices on CWD dynamics remain largely unexplored. Here we present estimates on CWD stocks in primary forests in the Colombian Amazon and their dynamics along 20 years of forest-to-pasture conversion in two sub-regions with different management practices during pasture establishment: high-grazing intensity (HG) and low-grazing intensity (LG) sub-regions. Two 20-year-old chronosequences describing the forest-to-pasture conversion were identified in both sub-regions. The line-intersect and the plot-based methods were used to estimate fallen and standing CWD stocks, respectively. Total necromass in primary forests was similar between both sub-regions (35.6 ± 5.8 Mg ha(-1) in HG and 37.0 ± 7.4 Mg ha(-1) in LG). An increase of ∼124% in CWD stocks followed by a reduction to values close to those at the intact forests were registered after slash-and-burn practice was implemented in both sub-regions during the first two years of forest-to-pasture conversion. Implementation of machinery after using fire in HG pastures led to a reduction of 82% in CWD stocks during the second and fifth years of pasture establishment, compared to a decrease of 41% during the same period in LG where mechanization is not implemented. Finally, average necromass 20 years after forest-to-pasture conversion decreased to 3.5 ± 1.4 Mg ha(-1) in HG and 9.3 ± 3.5 Mg ha(-1) in LG, representing a total reduction of between 90% and 75% in each sub-region, respectively. These results highlight the importance of low-grazing intensity management practices during ranching activities in the Colombian Amazon to reduce C emissions associated with land-cover change from forest to pasture. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sierra, Carlos A; Loescher, Henry W; Harmon, Mark E; Richardson, Andrew D; Hollinger, David Y; Perakis, Steven S
2009-10-01
Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed approximately 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data.
Estimating the risk of Amazonian forest dieback.
Rammig, Anja; Jupp, Tim; Thonicke, Kirsten; Tietjen, Britta; Heinke, Jens; Ostberg, Sebastian; Lucht, Wolfgang; Cramer, Wolfgang; Cox, Peter
2010-08-01
*Climate change will very likely affect most forests in Amazonia during the course of the 21st century, but the direction and intensity of the change are uncertain, in part because of differences in rainfall projections. In order to constrain this uncertainty, we estimate the probability for biomass change in Amazonia on the basis of rainfall projections that are weighted by climate model performance for current conditions. *We estimate the risk of forest dieback by using weighted rainfall projections from 24 general circulation models (GCMs) to create probability density functions (PDFs) for future forest biomass changes simulated by a dynamic vegetation model (LPJmL). *Our probabilistic assessment of biomass change suggests a likely shift towards increasing biomass compared with nonweighted results. Biomass estimates range between a gain of 6.2 and a loss of 2.7 kg carbon m(-2) for the Amazon region, depending on the strength of CO(2) fertilization. *The uncertainty associated with the long-term effect of CO(2) is much larger than that associated with precipitation change. This underlines the importance of reducing uncertainties in the direct effects of CO(2) on tropical ecosystems.
Carbon savings with transatlantic trade in pellets: accounting for market-driven effects
NASA Astrophysics Data System (ADS)
Wang, Weiwei; Dwivedi, Puneet; Abt, Robert; Khanna, Madhu
2015-11-01
Exports of pellets from the United States (US) are growing significantly to meet the demand for renewable energy in the European Union. This transatlantic trade in pellets has raised questions about the greenhouse gas (GHG) intensity of these pellets and their effects on conventional forest product markets in the US. This paper examines the GHG intensity of pellets exported from the US using either forest biomass only or forest and agricultural biomass combined. We develop an integrated dynamic, price-endogenous, partial equilibrium model of the forestry, agricultural, and transportation sectors in the US to investigate not only the direct life-cycle GHG intensity of pellets but also the accompanying indirect market and land use effects induced by changes in prices of forest and agricultural products over the 2007-2032 period. Across different scenarios of high and low pellet demand that can be met with either forest biomass only or with forest and agricultural biomass, we find that the GHG intensity of pellet based electricity is 74% to 85% lower than that of coal-based electricity. We also find that the GHG intensity of pellets produced using agricultural and forest biomass is 28% to 34% lower than that of pellets produced using forest biomass only. GHG effects due to induced direct and indirect changes in forest carbon stock caused by changes in harvest rotations, changes in land use and in conventional wood production account for 11% to 26% of the overall GHG intensity of pellets produced from forest biomass only; these effects are negative with the use of forest and agricultural biomass.
Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha; Thompson, Jill; Zimmerman, Jess K; Murphy, Lora
2018-01-01
Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here, we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured interannual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including aboveground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate. © 2017 John Wiley & Sons Ltd.
Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha C.; Thompson, Jill; Zimmerman, Jess K.; Murphy, Lora
2018-01-01
Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured inter-annual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including above-ground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.
Impacts of climate change on the global forest sector
Perez-Garcia, J.; Joyce, L.A.; McGuire, A.D.; Xiao, X.
2002-01-01
The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors that strongly influence the effects of climate change on the global forest sector.
Radiative forcing impacts of boreal forest biofuels: a scenario study for Norway in light of albedo.
Bright, Ryan M; Strømman, Anders Hammer; Peters, Glen P
2011-09-01
Radiative forcing impacts due to increased harvesting of boreal forests for use as transportation biofuel in Norway are quantified using simple climate models together with life cycle emission data, MODIS surface albedo data, and a dynamic land use model tracking carbon flux and clear-cut area changes within productive forests over a 100-year management period. We approximate the magnitude of radiative forcing due to albedo changes and compare it to the forcing due to changes in the carbon cycle for purposes of attributing the net result, along with changes in fossil fuel emissions, to the combined anthropogenic land use plus transport fuel system. Depending on albedo uncertainty and uncertainty about the geographic distribution of future logging activity, we report a range of results, thus only general conclusions about the magnitude of the carbon offset potential due to changes in surface albedo can be drawn. Nevertheless, our results have important implications for how forests might be managed for mitigating climate change in light of this additional biophysical criterion, and in particular, on future biofuel policies throughout the region. Future research efforts should be directed at understanding the relationships between the physical properties of managed forests and albedo, and how albedo changes in time as a result of specific management interventions.
NASA Astrophysics Data System (ADS)
Foster, A.; Armstrong, A. H.; Shuman, J. K.; Ranson, K.; Shugart, H. H., Jr.; Rogers, B. M.; Goetz, S. J.
2017-12-01
Global temperatures have increased about 0.2°C per decade since 1979, and the high latitudes are warming faster than the rest of the globe. Climate change within Alaska is likely to bring about increased drought and longer fire seasons, as well as increases in the severity and frequency of fires. These changes in disturbance regimes and their associated effects on ecosystem C stocks, including permafrost, may lead to a positive feedback to further climate warming. As of now, it is uncertain how vegetation will respond to ongoing climate change, and the addition of disturbance effects leads to even more complicated and varied scenarios. Through ecological modeling, we have the capacity to examine forest processes at multiple temporal and spatial scales, allowing for the testing of complex interactions between vegetation, climate, and disturbances. The University of Virginia Forest Model Enhanced (UVAFME) is an individual tree-based forest model that has been updated for use in interior boreal Alaska, with a new permafrost model and updated fire simulation. These updated submodels allow for feedback between soils, vegetation, and fire severity through fuels tracking and impact of depth of burn on permafrost dynamics. We present these updated submodels as well as calibration and validation of UVAFME to the Yukon River Basin in Alaska, with comparisons to inventory data. We also present initial findings from simulations of potential future forest biomass, structure, and species composition across the Yukon River Basin under expected changes in precipitation, temperature, and disturbances. We predict changing climate and the associated impacts on wildfire and permafrost dynamics will result in shifts in biomass and species composition across the region, with potential for further feedback to the climate-vegetation-disturbance system. These simulations advance our understanding of the possible futures for the Alaskan boreal forest, which is a valuable part of the global carbon budget.
Molecular Assessment of litter decay dynamics across old and young forest sites
NASA Astrophysics Data System (ADS)
Filley, T. R.; Crow, S.; Gamblin, D.; McCormick, M.; Whigham, D.; Taylor, D. L.
2006-12-01
The response of soil organic matter pools to changes in litter input, land cover, and ýinvertebrate activity is a research area of intensive study given the proposed impacts that ýrising CO2 and surface temperatures may have on forest productivity and distribution of ýinvasive species. In a mixed deciduous forest at the Smithsonian Environmental ýResearch Center litter amendment plots were established in old (120-150 y) and young ýý(50-70 y) forests. In May 2004, six plots were amended with locally collected ýLirodendron tulipifera wood (chipped) and leaves. At the same time, leaf and wood litter ýbag decomposition experiments on the sites were also started. Changes in the ýconcentration and composition of biopolymers, e.g. lignin and cutin/suberin, after ýapproximately four months of decay were tracked by alkaline CuO extraction. Resultant ýleaf and wood litter in the surface amendments was distinct between age groupings. ýYoung sites exhibited the greatest change in chemical character showing increased lignin ýand decreased cutin/suberin resulting in a cutin-poor residue. Minor changes to ýbiopolymer character were observed in older sites with residues exhibiting small but ýopposite trends to the young sites. In contrast, the litter bag studies exhibited little to no ývariation in chemistry with age of stand; although, generally leaf litter showed the ýgreatest age-related effect. These patterns in litter decay are consistent with both ýmicrobial activity and relative biomass of invasive earthworms; young forests exhibit ýrelatively higher activity of both phenol oxidase and B-glucosidase in the soil (0-5 cm) ýplots and greater biomass and relative abundance invasive earthworms. These results are ýimportant as they show how stand age and the presence of invertebrate species may have ýimportant controls on the impact that many global change drivers may have on forest soil ýand carbon exchange dynamics.ý
Tall Amazonian forests are less sensitive to precipitation variability
NASA Astrophysics Data System (ADS)
Giardina, Francesco; Konings, Alexandra G.; Kennedy, Daniel; Alemohammad, Seyed Hamed; Oliveira, Rafael S.; Uriarte, Maria; Gentine, Pierre
2018-06-01
Climate change is altering the dynamics, structure and function of the Amazon, a biome deeply connected to the Earth's carbon cycle. Climate factors that control the spatial and temporal variations in forest photosynthesis have been well studied, but the influence of forest height and age on this controlling effect has rarely been considered. Here, we present remote sensing observations of solar-induced fluorescence (a proxy for photosynthesis), precipitation, vapour-pressure deficit and canopy height, together with estimates of forest age and aboveground biomass. We show that photosynthesis in tall Amazonian forests, that is, forests above 30 m, is three times less sensitive to precipitation variability than in shorter (less than 20 m) forests. Taller Amazonian forests are also found to be older, have more biomass and deeper rooting systems1, which enable them to access deeper soil moisture and make them more resilient to drought. We suggest that forest height and age are an important control of photosynthesis in response to interannual precipitation fluctuations. Although older and taller trees show less sensitivity to precipitation variations, they are more susceptible to fluctuations in vapour-pressure deficit. Our findings illuminate the response of Amazonian forests to water stress, droughts and climate change.
A dynamical model for bark beetle outbreaks
Vlastimil Krivan; Mark Lewis; Barbara J. Bentz; Sharon Bewick; Suzanne M. Lenhart; Andrew Liebhold
2016-01-01
Tree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The role of environmental conditions on driving beetle outbreaks is becoming increasingly important as global climatic change alters environmental factors, such as drought stress, that, in turn, govern tree resistance. Furthermore, dynamics between beetles and trees...
NASA Astrophysics Data System (ADS)
Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.
2017-12-01
Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.
Fire, humans, and climate: modeling distribution dynamics of boreal forest waterbirds.
Börger, Luca; Nudds, Thomas D
2014-01-01
Understanding the effects of landscape change and environmental variability on ecological processes is important for evaluating resource management policies, such as the emulation of natural forest disturbances. We analyzed time series of detection/nondetection data using hierarchical models in a Bayesian multi-model inference framework to decompose the dynamics of species distributions into responses to environmental variability, spatial variation in habitat conditions, and population dynamics and interspecific interactions, while correcting for observation errors and variation in sampling regimes. We modeled distribution dynamics of 14 waterbird species (broadly defined, including wetland and riparian species) using data from two different breeding bird surveys collected in the Boreal Shield ecozone within Ontario, Canada. Temporal variation in species occupancy (2000-2006) was primarily driven by climatic variability. Only two species showed evidence of consistent temporal trends in distribution: Ring-necked Duck (Aythya collaris) decreased, and Red-winged Blackbird (Agelaius phoeniceus) increased. The models had good predictive ability on independent data over time (1997-1999). Spatial variation in species occupancy was strongly related to the distribution of specific land cover types and habitat disturbance: Fire and forest harvesting influenced occupancy more than did roads, settlements, or mines. Bioclimatic and habitat heterogeneity indices and geographic coordinates exerted negligible influence on most species distributions. Estimated habitat suitability indices had good predictive ability on spatially independent data (Hudson Bay Lowlands ecozone). Additionally, we detected effects of interspecific interactions. Species responses to fire and forest harvesting were similar for 13 of 14 species; thus, forest-harvesting practices in Ontario generally appeared to emulate the effects of fire for waterbirds over timescales of 10-20 years. Extrapolating to all 84 waterbird species breeding on the Ontario Boreal Shield, however, suggested that up to 30 species may instead have altered (short-term) distribution dynamics due to forestry practices. Hence, natural disturbances are critical components of the ecology of the boreal forest and forest practices which aim to approximate them may succeed in allowing the maintenance of the associated species, but improved monitoring and modeling of large-scale boreal forest bird distribution dynamics will be necessary to resolve existing uncertainties, especially on less-common species.
Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions
Thom, Dominik; Rammer, Werner; Seidl, Rupert
2016-01-01
The rates of anthropogenic climate change substantially exceed those at which forest ecosystems – dominated by immobile, long-lived organisms – are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest-dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate-induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate-induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process-based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid- to low-elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous adaptation need to be considered more explicitly in the ongoing efforts to safeguard biodiversity and ecosystem services provisioning. PMID:27633953
Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions.
Thom, Dominik; Rammer, Werner; Seidl, Rupert
2017-01-01
The rates of anthropogenic climate change substantially exceed those at which forest ecosystems - dominated by immobile, long-lived organisms - are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest-dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate-induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate-induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process-based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid- to low-elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous adaptation need to be considered more explicitly in the ongoing efforts to safeguard biodiversity and ecosystem services provisioning. © 2016 John Wiley & Sons Ltd.
Higher temporal variability of forest breeding bird communities in fragmented landscapes
Boulinier, T.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Flather, C.H.; Pollock, K.H.
1998-01-01
Understanding the relationship between animal community dynamics and landscape structure has become a priority for biodiversity conservation. In particular, predicting the effects of habitat destruction that confine species to networks of small patches is an important prerequisite to conservation plan development. Theoretical models that predict the occurrence of species in fragmented landscapes, and relationships between stability and diversity do exist. However, reliable empirical investigations of the dynamics of biodiversity have been prevented by differences in species detection probabilities among landscapes. Using long-term data sampled at a large spatial scale in conjunction with a capture-recapture approach, we developed estimates of parameters of community changes over a 22-year period for forest breeding birds in selected areas of the eastern United States. We show that forest fragmentation was associated not only with a reduced number of forest bird species, but also with increased temporal variability in the number of species. This higher temporal variability was associated with higher local extinction and turnover rates. These results have major conservation implications. Moreover, the approach used provides a practical tool for the study of the dynamics of biodiversity.
Approaches to modeling landscape-scale drought-induced forest mortality
Gustafson, Eric J.; Shinneman, Douglas
2015-01-01
Drought stress is an important cause of tree mortality in forests, and drought-induced disturbance events are projected to become more common in the future due to climate change. Landscape Disturbance and Succession Models (LDSM) are becoming widely used to project climate change impacts on forests, including potential interactions with natural and anthropogenic disturbances, and to explore the efficacy of alternative management actions to mitigate negative consequences of global changes on forests and ecosystem services. Recent studies incorporating drought-mortality effects into LDSMs have projected significant potential changes in forest composition and carbon storage, largely due to differential impacts of drought on tree species and interactions with other disturbance agents. In this chapter, we review how drought affects forest ecosystems and the different ways drought effects have been modeled (both spatially and aspatially) in the past. Building on those efforts, we describe several approaches to modeling drought effects in LDSMs, discuss advantages and shortcomings of each, and include two case studies for illustration. The first approach features the use of empirically derived relationships between measures of drought and the loss of tree biomass to drought-induced mortality. The second uses deterministic rules of species mortality for given drought events to project changes in species composition and forest distribution. A third approach is more mechanistic, simulating growth reductions and death caused by water stress. Because modeling of drought effects in LDSMs is still in its infancy, and because drought is expected to play an increasingly important role in forest health, further development of modeling drought-forest dynamics is urgently needed.
Land use and household energy dynamics in Malawi
NASA Astrophysics Data System (ADS)
Jagger, Pamela; Perez-Heydrich, Carolina
2016-12-01
Interventions to mitigate household air pollution (HAP) from cooking with solid fuels often fail to take into account the role of access to freely available woodfuels in determining fuel choice and willingness to adopt clean cooking technologies, key factors in mitigating the burden of HAP. We use national-scale remote sensing data on land use land cover change, and population representative data from two waves of the Malawi Living Standards Measurement Survey to explore the relationship between land use change and the type of fuel households use, time spent collecting fuel, and expenditures on fuel, hypothesizing that land use dynamics influence household-level choice of primary cooking fuel. We find considerable heterogeneity with respect to regeneration and deforestation/degradation dynamics and evidence of spatial clustering. We find that regeneration of forests and woodlands increases the share of households that collect fuelwood, whereas deforestation and degradation lead households to purchase fuelwood. We also find that a relatively large share of land under woody savannah or degraded forest (versus fully stocked forest) increases fuel collection time. Areas with regeneration happening at broader scale experience increases in fuel expenditures. Our findings have implications for the spatial targeting of interventions designed to mitigate HAP.
Forest Ecosystem Dynamics Assessment and Predictive Modelling in Eastern Himalaya
NASA Astrophysics Data System (ADS)
Kushwaha, S. P. S.; Nandy, S.; Ahmad, M.; Agarwal, R.
2011-09-01
This study focused on the forest ecosystem dynamics assessment and predictive modelling deforestation and forest cover prediction in a part of north-eastern India i.e. forest areas along West Bengal, Bhutan, Arunachal Pradesh and Assam border in Eastern Himalaya using temporal satellite imagery of 1975, 1990 and 2009 and predicted forest cover for the period 2028 using Cellular Automata Markov Modedel (CAMM). The exercise highlighted large-scale deforestation in the study area during 1975-1990 as well as 1990-2009 forest cover vectors. A net loss of 2,334.28 km2 forest cover was noticed between 1975 and 2009, and with current rate of deforestation, a forest area of 4,563.34 km2 will be lost by 2028. The annual rate of deforestation worked out to be 0.35 and 0.78% during 1975-1990 and 1990-2009 respectively. Bamboo forest increased by 24.98% between 1975 and 2009 due to opening up of the forests. Forests in Kokrajhar, Barpeta, Darrang, Sonitpur, and Dhemaji districts in Assam were noticed to be worst-affected while Lower Subansiri, West and East Siang, Dibang Valley, Lohit and Changlang in Arunachal Pradesh were severely affected. Among different forest types, the maximum loss was seen in case of sal forest (37.97%) between 1975 and 2009 and is expected to deplete further to 60.39% by 2028. The tropical moist deciduous forest was the next category, which decreased from 5,208.11 km2 to 3,447.28 (33.81%) during same period with further chances of depletion to 2,288.81 km2 (56.05%) by 2028. It noted progressive loss of forests in the study area between 1975 and 2009 through 1990 and predicted that, unless checked, the area is in for further depletion of the invaluable climax forests in the region, especially sal and moist deciduous forests. The exercise demonstrated high potential of remote sensing and geographic information system for forest ecosystem dynamics assessment and the efficacy of CAMM to predict the forest cover change.
NASA Astrophysics Data System (ADS)
Trugman, A. T.; Fenton, N.; Bergeron, Y.; Xu, X.; Welp, L.; Medvigy, D.
2015-12-01
Soil organic layer dynamics strongly affect boreal forest development after fire. Field studies show that soil organic layer thickness exerts a species-specific control on propagule establishment in the North American boreal forest. On organic soils thicker than a few centimeters, all propagules are less able to recruit, but broadleaf trees recruit less effectively than needleleaf trees. In turn, forest growth controls organic layer accumulation through modulating litter input and litter quality. These dynamics have not been fully incorporated into models, but may be essential for accurate projections of ecosystem carbon storage. Here, we develop a data-constrained model for understanding boreal forest development after fire. We update the ED2 model to include new aspen and black spruce species-types, species-specific propagule survivorship dependent on soil organic layer depth, species-specific litter decay rates, dynamically accumulating moss and soil organic layers, and nitrogen fixation by cyanobacteria associated with moss. The model is validated against diverse observations ranging from monthly to centennial timescales and spanning a climate gradient in Alaska, central Canada, and Quebec. We then quantify differences in forest development that result from changes in organic layer accumulation, temperature, and nitrogen. We find that (1) the model accurately reproduces a range of observations throughout the North American boreal forest; (2) the presence of a thick organic layer results in decreased decomposition and decreased aboveground productivity, effects that can increase or decrease ecosystem carbon uptake depending on location-specific attributes; (3) with a mean warming of 4°C, some forests switch from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing ecosystem accumulation by ~30% after 300 years; (4) the availability of nitrogen regulates successional dynamics such than broadleaf species are less able to compete with needleleaf trees under low nitrogen regimes. We conclude that a joint regulation between the soil organic layer, temperature, and nitrogen will likely play an important role in influencing boreal forests development after fire in future climates, and should be represented in models.
Belyazid, Salim; Kurz, Dani; Braun, Sabine; Sverdrup, Harald; Rihm, Beat; Hettelingh, Jean-Paul
2011-03-01
A dynamic model of forest ecosystems was used to investigate the effects of climate change, atmospheric deposition and harvest intensity on 48 forest sites in Sweden (n = 16) and Switzerland (n = 32). The model was used to investigate the feasibility of deriving critical loads for nitrogen (N) deposition based on changes in plant community composition. The simulations show that climate and atmospheric deposition have comparably important effects on N mobilization in the soil, as climate triggers the release of organically bound nitrogen stored in the soil during the elevated deposition period. Climate has the most important effect on plant community composition, underlining the fact that this cannot be ignored in future simulations of vegetation dynamics. Harvest intensity has comparatively little effect on the plant community in the long term, while it may be detrimental in the short term following cutting. This study shows: that critical loads of N deposition can be estimated using the plant community as an indicator; that future climatic changes must be taken into account; and that the definition of the reference deposition is critical for the outcome of this estimate. Copyright © 2010 Elsevier Ltd. All rights reserved.
[Application of spatially explicit landscape model in soil loss study in Huzhong area].
Xu, Chonggang; Hu, Yuanman; Chang, Yu; Li, Xiuzhen; Bu, Renchang; He, Hongshi; Leng, Wenfang
2004-10-01
Universal Soil Loss Equation (USLE) has been widely used to estimate the average annual soil loss. In most of the previous work on soil loss evaluation on forestland, cover management factor was calculated from the static forest landscape. The advent of spatially explicit forest landscape model in the last decade, which explicitly simulates the forest succession dynamics under natural and anthropogenic disturbances (fire, wind, harvest and so on) on heterogeneous landscape, makes it possible to take into consideration the change of forest cover, and to dynamically simulate the soil loss in different year (e.g. 10 years and 20 years after current year). In this study, we linked a spatially explicit landscape model (LANDIS) with USLE to simulate the soil loss dynamics under two scenarios: fire and no harvest, fire and harvest. We also simulated the soil loss with no fire and no harvest as a control. The results showed that soil loss varied periodically with simulation year, and the amplitude of change was the lowest under the control scenario and the highest under the fire and no harvest scenario. The effect of harvest on soil loss could not be easily identified on the map; however, the cumulative effect of harvest on soil loss was larger than that of fire. Decreasing the harvest area and the percent of bare soil increased by harvest could significantly reduce soil loss, but had no significant effects on the dynamic of soil loss. Although harvest increased the annual soil loss, it tended to decrease the variability of soil loss between different simulation years.
The potential negative impacts of global climate change on tropical montane cloud forests
NASA Astrophysics Data System (ADS)
Foster, Pru
2001-10-01
Nearly every aspect of the cloud forest is affected by regular cloud immersion, from the hydrological cycle to the species of plants and animals within the forest. Since the altitude band of cloud formation on tropical mountains is limited, the tropical montane cloud forest occurs in fragmented strips and has been likened to island archipelagoes. This isolation and uniqueness promotes explosive speciation, exceptionally high endemism, and a great sensitivity to climate. Global climate change threatens all ecosystems through temperature and rainfall changes, with a typical estimate for altitude shifts in the climatic optimum for mountain ecotones of hundreds of meters by the time of CO 2 doubling. This alone suggests complete replacement of many of the narrow altitude range cloud forests by lower altitude ecosystems, as well as the expulsion of peak residing cloud forests into extinction. However, the cloud forest will also be affected by other climate changes, in particular changes in cloud formation. A number of global climate models suggest a reduction in low level cloudiness with the coming climate changes, and one site in particular, Monteverde, Costa Rica, appears to already be experiencing a reduction in cloud immersion. The coming climate changes appear very likely to upset the current dynamic equilibrium of the cloud forest. Results will include biodiversity loss, altitude shifts in species' ranges and subsequent community reshuffling, and possibly forest death. Difficulties for cloud forest species to survive in climate-induced migrations include no remaining location with a suitable climate, no pristine location to colonize, migration rates or establishment rates that cannot keep up with climate change rates and new species interactions. We review previous cloud forest species redistributions in the paleo-record in light of the coming changes. The characteristic epiphytes of the cloud forest play an important role in the light, hydrological and nutrient cycles of the cloud forest and are especially sensitive to atmospheric climate change, especially humidity, as the epiphytes can occupy incredibly small eco-niches from the canopy to crooks to trunks. Even slight shifts in climate can cause wilting or death to the epiphyte community. Similarly, recent cloud forest animal redistributions, notably frog and lizard disappearances, may be driven by climate changes. Death of animals or epiphytes may have cascading effects on the cloud forest web of life. Aside from changes in temperature, precipitation, and cloudiness, other climate changes may include increasing dry seasons, droughts, hurricanes and intense rain storms, all of which might increase damage to the cloud forest. Because cloud forest species occupy such small areas and tight ecological niches, they are not likely to colonize damaged regions. Fire, drought and plant invasions (especially non-native plants) are likely to increase the effects of any climate change damage in the cloud forest. As has frequently been suggested in the literature, all of the above factors combine to make the cloud forest a likely site for observing climate change effects in the near future.
NASA Astrophysics Data System (ADS)
Simonson, W.; Ruiz-Benito, P.; Valladares, F.; Coomes, D.
2015-09-01
Woodlands represent highly significant carbon sinks globally, though could lose this function under future climatic change. Effective large-scale monitoring of these woodlands has a critical role to play in mitigating for, and adapting to, climate change. Mediterranean woodlands have low carbon densities, but represent important global carbon stocks due to their extensiveness and are particularly vulnerable because the region is predicted to become much hotter and drier over the coming century. Airborne lidar is already recognized as an excellent approach for high-fidelity carbon mapping, but few studies have used multi-temporal lidar surveys to measure carbon fluxes in forests and none have worked with Mediterranean woodlands. We use a multi-temporal (five year interval) airborne lidar dataset for a region of central Spain to estimate above-ground biomass (AGB) and carbon dynamics in typical mixed broadleaved/coniferous Mediterranean woodlands. Field calibration of the lidar data enabled the generation of grid-based maps of AGB for 2006 and 2011, and the resulting AGB change were estimated. There was a close agreement between the lidar-based AGB growth estimate (1.22 Mg ha-1 year-1) and those derived from two independent sources: the Spanish National Forest Inventory, and a~tree-ring based analysis (1.19 and 1.13 Mg ha-1 year-1, respectively). We parameterised a simple simulator of forest dynamics using the lidar carbon flux measurements, and used it to explore four scenarios of fire occurrence. Under undisturbed conditions (no fire occurrence) an accelerating accumulation of biomass and carbon is evident over the next 100 years with an average carbon sequestration rate of 1.95 Mg C ha-1 year-1. This rate reduces by almost a third when fire probability is increased to 0.01, as has been predicted under climate change. Our work shows the power of multi-temporal lidar surveying to map woodland carbon fluxes and provide parameters for carbon dynamics models. Space deployment of lidar instruments in the near future could open the way for rolling out wide-scale forest carbon stock monitoring to inform management and governance responses to future environmental change.
NASA Astrophysics Data System (ADS)
Simonson, W.; Ruiz-Benito, P.; Valladares, F.; Coomes, D.
2016-02-01
Woodlands represent highly significant carbon sinks globally, though could lose this function under future climatic change. Effective large-scale monitoring of these woodlands has a critical role to play in mitigating for, and adapting to, climate change. Mediterranean woodlands have low carbon densities, but represent important global carbon stocks due to their extensiveness and are particularly vulnerable because the region is predicted to become much hotter and drier over the coming century. Airborne lidar is already recognized as an excellent approach for high-fidelity carbon mapping, but few studies have used multi-temporal lidar surveys to measure carbon fluxes in forests and none have worked with Mediterranean woodlands. We use a multi-temporal (5-year interval) airborne lidar data set for a region of central Spain to estimate above-ground biomass (AGB) and carbon dynamics in typical mixed broadleaved and/or coniferous Mediterranean woodlands. Field calibration of the lidar data enabled the generation of grid-based maps of AGB for 2006 and 2011, and the resulting AGB change was estimated. There was a close agreement between the lidar-based AGB growth estimate (1.22 Mg ha-1 yr-1) and those derived from two independent sources: the Spanish National Forest Inventory, and a tree-ring based analysis (1.19 and 1.13 Mg ha-1 yr-1, respectively). We parameterised a simple simulator of forest dynamics using the lidar carbon flux measurements, and used it to explore four scenarios of fire occurrence. Under undisturbed conditions (no fire) an accelerating accumulation of biomass and carbon is evident over the next 100 years with an average carbon sequestration rate of 1.95 Mg C ha-1 yr-1. This rate reduces by almost a third when fire probability is increased to 0.01 (fire return rate of 100 years), as has been predicted under climate change. Our work shows the power of multi-temporal lidar surveying to map woodland carbon fluxes and provide parameters for carbon dynamics models. Space deployment of lidar instruments in the near future could open the way for rolling out wide-scale forest carbon stock monitoring to inform management and governance responses to future environmental change.
Ancient human disturbances may be skewing our understanding of Amazonian forests
McMichael, Crystal N. H.; Matthews-Bird, Frazer; Farfan-Rios, William; Feeley, Kenneth J.
2017-01-01
Although the Amazon rainforest houses much of Earth’s biodiversity and plays a major role in the global carbon budget, estimates of tree biodiversity originate from fewer than 1,000 forest inventory plots, and estimates of carbon dynamics are derived from fewer than 200 recensus plots. It is well documented that the pre-European inhabitants of Amazonia actively transformed and modified the forest in many regions before their population collapse around 1491 AD; however, the impacts of these ancient disturbances remain entirely unaccounted for in the many highly influential studies using Amazonian forest plots. Here we examine whether Amazonian forest inventory plot locations are spatially biased toward areas with high probability of ancient human impacts. Our analyses reveal that forest inventory plots, and especially forest recensus plots, in all regions of Amazonia are located disproportionately near archaeological evidence and in areas likely to have ancient human impacts. Furthermore, regions of the Amazon that are relatively oversampled with inventory plots also contain the highest values of predicted ancient human impacts. Given the long lifespan of Amazonian trees, many forest inventory and recensus sites may still be recovering from past disturbances, potentially skewing our interpretations of forest dynamics and our understanding of how these forests are responding to global change. Empirical data on the human history of forest inventory sites are crucial for determining how past disturbances affect modern patterns of forest composition and carbon flux in Amazonian forests. PMID:28049821
NASA Astrophysics Data System (ADS)
Conway, S.
2014-12-01
The Truckee Ranger District on the Tahoe National Forest, in the heart of the Sierra Nevada Mountains, has a rich history of human activities. Native American influences, comstock-era logging, fire suppression, development, and recreation have all shaped the natural environment into what it is today. Like much of our national forests in California, forest conditions that have developed are generally much more homogenous and less resistant to disturbance from fire, insect, and disease than they might have been without the myriad of human influences. However, in order to improve the resiliency of our forests to stand replacing disturbances like high severity fire, while managing for integrated anthropomorphic values, it is imperative that management evolve to meet those dynamic needs. Recent advances in remote sensing and GIS allow land managers more access to forest information and can inform site specific prescriptions to change site specific undesirable conditions. It is ecologically and politically complex, yet our forests deserve that microscope. This particular presentation will focus on how the Truckee Ranger District began this process of incorporating several values, generated from stakeholder collaboration, into one project's goals and how those lessons learned informed their most recent project.
You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin
2016-03-01
Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models.
You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin
2016-01-01
Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871
Nitrogen cycling during secondary succession in Atlantic Forest of Bahia, Brazil.
Winbourne, Joy B; Feng, Aida; Reynolds, Lovinia; Piotto, Daniel; Hastings, Meredith G; Porder, Stephen
2018-01-22
Carbon accumulation in tropical secondary forests may be limited in part by nitrogen (N) availability, but changes in N during tropical forest succession have rarely been quantified. We explored N cycle dynamics across a chronosequence of secondary tropical forests in the Mata Atlântica of Bahia, Brazil in order to understand how quickly the N cycle recuperates. We hypothesized that N fixation would decline over the course of succession as N availability and N gaseous losses increased. We measured N fixation, KCl-extractable N, net mineralization and nitrification, resin-strip sorbed N, gaseous N emissions and the soil δ 15 N in stands that were 20, 35, 50, and > 50 years old. Contrary to our initial hypothesis, we found no significant differences between stand ages in any measured variable. Our findings suggest that secondary forests in this region of the Atlantic forest reached pre-disturbance N cycling dynamics after just 20 years of succession. This result contrasts with previous study in the Amazon, where the N cycle recovered slowly after abandonment from pasture reaching pre-disturbance N cycling levels after ~50 years of succession. Our results suggest the pace of the N cycle, and perhaps tropical secondary forest, recovery, may vary regionally.
Assessing Ecological Impacts According to Land Use Change
NASA Astrophysics Data System (ADS)
Jeong, S.; Lee, D. K.; Jeong, W.; Jeong, S. G.; Jin, Y.
2015-12-01
Land use patterns have changed by human activities, and it has affected the structure and dynamics of ecosystems. In particular, the conversion of forests into other land use has caused environmental degradation and loss of biodiversity. The evaluation of species and their habitat can be preferentially considered to prevent or minimize the adverse effects of land use change. The objective of study is identifying the impacts of environmental conditions on forest ecosystems by comparing ecological changes with time series spatial data. Species distribution models were developed for diverse species with presence data and time-series environmental variables, which allowed comparison of the habitat suitability and connectivity. Habitat suitability and connectivity were used to estimate impacts of forest ecosystems due to land use change. Our result suggested that the size and degree of ecological impacts are were different depending on the properties of land use change. The elements and species were greatly affected by the land use change according to the results. This study suggested that a methodology for measuring the interference of land use change in species habitat and connectivity. Furthermore, it will help to conserve and manage forest by identifying priority conservation areas with influence factor and scale.
Gregory, Stephen D.; Brook, Barry W.; Goossens, Benoît; Ancrenaz, Marc; Alfred, Raymond; Ambu, Laurentius N.; Fordham, Damien A.
2012-01-01
Background Southeast Asian deforestation rates are among the world’s highest and threaten to drive many forest-dependent species to extinction. Climate change is expected to interact with deforestation to amplify this risk. Here we examine whether regional incentives for sustainable forest management will be effective in improving threatened mammal conservation, in isolation and when combined with global climate change mitigation. Methodology/Principal Findings Using a long time-series of orangutan nest counts for Sabah (2000–10), Malaysian Borneo, we evaluated the effect of sustainable forest management and climate change scenarios, and their interaction, on orangutan spatial abundance patterns. By linking dynamic land-cover and downscaled global climate model projections, we determine the relative influence of these factors on orangutan spatial abundance and use the resulting statistical models to identify habitat crucial for their long-term conservation. We show that land-cover change the degradation of primary forest had the greatest influence on orangutan population size. Anticipated climate change was predicted to cause reductions in abundance in currently occupied populations due to decreased habitat suitability, but also to promote population growth in western Sabah by increasing the suitability of presently unoccupied regions. Conclusions/Significance We find strong quantitative support for the Sabah government’s proposal to implement sustainable forest management in all its forest reserves during the current decade; failure to do so could result in a 40 to 80 per cent regional decline in orangutan abundance by 2100. The Sabah orangutan is just one (albeit iconic) example of a forest-dependent species that stands to benefit from sustainable forest management, which promotes conservation of existing forests. PMID:22970145