Sample records for forest deciduous forest

  1. A Regional Simulation to Explore Impacts of Resource Use and Constraints

    DTIC Science & Technology

    2007-03-01

    mountaintops. (10) Deciduous Forest - This class is composed of forests, which contain at least 75% deciduous trees in the canopy, deciduous ... trees , pine plantations, and evergreen woodlands. (12) Mixed Forest - This class includes forests with mixed deciduous /coniferous canopies, natural...reflective surfaces. Classification of forested wetlands dominated by deciduous trees is probably more accurate than that in areas with 104

  2. Climatic controls of vegetation vigor in four contrasting forest types of India--evaluation from National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer datasets (1990-2000).

    PubMed

    Prasad, V Krishna; Anuradha, E; Badarinath, K V S

    2005-09-01

    Ten-day advanced very high resolution radiometer images from 1990 to 2000 were used to examine spatial patterns in the normalized difference vegetation index (NDVI) and their relationships with climatic variables for four contrasting forest types in India. The NDVI signal has been extracted from homogeneous vegetation patches and has been found to be distinct for deciduous and evergreen forest types, although the mixed-deciduous signal was close to the deciduous ones. To examine the decadal response of the satellite-measured vegetation phenology to climate variability, seven different NDVI metrics were calculated using the 11-year NDVI data. Results suggested strong spatial variability in forest NDVI metrics. Among the forest types studied, wet evergreen forests of north-east India had highest mean NDVI (0.692) followed by evergreen forests of the Western Ghats (0.529), mixed deciduous forests (0.519) and finally dry deciduous forests (0.421). The sum of NDVI (SNDVI) and the time-integrated NDVI followed a similar pattern, although the values for mixed deciduous forests were closer to those for evergreen forests of the Western Ghats. Dry deciduous forests had higher values of inter-annual range (RNDVI) and low mean NDVI, also coinciding with a high SD and thus a high coefficient of variation (CV) in NDVI (CVNDVI). SNDVI has been found to be high for wet evergreen forests of north-east India, followed by evergreen forests of the Western Ghats, mixed deciduous forests and dry deciduous forests. Further, the maximum NDVI values of wet evergreen forests of north-east India (0.624) coincided with relatively high annual total precipitation (2,238.9 mm). The time lags had a strong influence in the correlation coefficients between annual total rainfall and NDVI. The correlation coefficients were found to be comparatively high (R2=0.635) for dry deciduous forests than for evergreen forests and mixed deciduous forests, when the precipitation data with a lag of 30 days was correlated against NDVI. Using multiple regression approach models were developed for individual forest types using 16 different climatic indices. A high proportion of the temporal variance (>90%) has been accounted for by three of the precipitation parameters (maximum precipitation, precipitation of the wettest quarter and driest quarter) and two of the temperature parameters (annual mean temperature and temperature of the coldest quarter) for mixed deciduous forests. Similarly, in the case of deciduous forests, four precipitation parameters and three temperature parameters explained nearly 83.6% of the variance. These results suggest differences in the relationship between NDVI and climatic variables based upon the time of growing season, time interval and climatic indices over which they were summed. These results have implications for forest cover mapping and monitoring in tropical regions of India.

  3. Soil organic matter quantity and quality shape microbial community compositions of subtropical broadleaved forests.

    PubMed

    Ding, Junjun; Zhang, Yuguang; Wang, Mengmeng; Sun, Xin; Cong, Jing; Deng, Ye; Lu, Hui; Yuan, Tong; Van Nostrand, Joy D; Li, Diqiang; Zhou, Jizhong; Yang, Yunfeng

    2015-10-01

    As two major forest types in the subtropics, broadleaved evergreen and broadleaved deciduous forests have long interested ecologists. However, little is known about their belowground ecosystems despite their ecological importance in driving biogeochemical cycling. Here, we used Illumina MiSeq sequencing targeting 16S rRNA gene and a microarray named GeoChip targeting functional genes to analyse microbial communities in broadleaved evergreen and deciduous forest soils of Shennongjia Mountain of Central China, a region known as 'The Oriental Botanic Garden' for its extraordinarily rich biodiversity. We observed higher plant diversity and relatively richer nutrients in the broadleaved evergreen forest than the deciduous forest. In odds to our expectation that plant communities shaped soil microbial communities, we found that soil organic matter quantity and quality, but not plant community parameters, were the best predictors of microbial communities. Actinobacteria, a copiotrophic phylum, was more abundant in the broadleaved evergreen forest, while Verrucomicrobia, an oligotrophic phylum, was more abundant in the broadleaved deciduous forest. The density of the correlation network of microbial OTUs was higher in the broadleaved deciduous forest but its modularity was smaller, reflecting lower resistance to environment changes. In addition, keystone OTUs of the broadleaved deciduous forest were mainly oligotrophic. Microbial functional genes associated with recalcitrant carbon degradation were also more abundant in the broadleaved deciduous forests, resulting in low accumulation of organic matters. Collectively, these findings revealed the important role of soil organic matter in shaping microbial taxonomic and functional traits. © 2015 John Wiley & Sons Ltd.

  4. Carbon exchange and quantum efficiency of ecosystem carbon storage in mature deciduous and old-growth coniferous forest in central New England in 2001

    NASA Astrophysics Data System (ADS)

    Hadley, J. L.; Urbanski, S. P.

    2002-12-01

    Carbon storage in forests of the northeastern U.S. and adjacent Canada may be a significant carbon sink, as forests and soils in this region have recovered after agricultural abandonment in the 19th century. Data collected during the 1990's showed that an area of 70 to 100 year old deciduous forest on abandoned farmland in central Massachusetts stored an average of 2.0 Mg C/ha/yr in trees and soil. During 2001 we measured carbon exchange and environmental parameters (above-canopy air temperature, atmospheric humidity, photosynthetically active radiation (PAR) and soil temperature) in both the 70-100 year old deciduous forest and in a nearby eastern hemlock (Tsuga canadensis L.)-dominated forest with trees up to 220 years old that was never cleared for agricultural use. The deciduous forest stored more than 4 Mg C/ ha in 2001, far higher than in any previous year since measurements started in 1991. Highest monthly deciduous forest carbon storage (1.8 - 1.9 Mg ha-1 month-1) occurred in July and August. The hemlock forest stored about 3 Mg C/ha, with peak storage in April and May (0.8 - 0.9Mg C ha-1 month-1), and little or no C storage during August. The differences in carbon storage between the two forests were related to differences in quantum use efficiency. Quantum efficiency of ecosystem carbon storage in the foliated deciduous forest averaged about 0.16 g C /mol PAR and was insensitive to temperature after leaf maturation. In contrast, the average hemlock forest quantum efficiency declined from about 0.10 g C /mol PAR at daily average above-canopy air temperature (T{a}{v}{g}) = 5 oC to zero quantum efficiency (no net carbon storage) at T{a}{v}{g} = 23 oC. Optimum temperatures for carbon storage in the hemlock forest occurred in April. Differences between the two forests are likely due primarily to a higher maximum photosynthetic rate and a more positive temperature response of leaf-level photosynthesis in red oak (the dominant deciduous species) as compared with eastern hemlock. Maintenance of high soil respiration in the hemlock forest during warm dry summer weather may also contribute to declining quantum efficiency of carbon storage in the hemlock forest during the summer.

  5. DEPOSITION VELOCITIES OF SO2 AND O3 OVER AGRICULTURAL AND FOREST ECOSYSTEMS

    EPA Science Inventory

    The results of field studies that measured the flux and deposition velocity of SO2 and O3 are reported. Three of the studies were over agricultural crops (pasture, corn, and soybean), and two were over forest (a deciduous forest and a mixed coniferous - deciduous forest). In al...

  6. Arthropod vertical stratification in temperate deciduous forests: Implications for conservation oriented management

    Treesearch

    Ulyshen Michael

    2011-01-01

    Studies on the vertical distribution patterns of arthropods in temperate deciduous forests reveal highly stratified (i.e., unevenly vertically distributed) communities. These patterns are determined by multiple factors acting simultaneously, including: (1) time (forest age, season, time of day); (2) forest structure (height, vertical foliage complexity, plant surface...

  7. Above-ground sulfur cycling in adjacent coniferous and deciduous forest and watershed sulfur retention in the Georgia Piedmont, U.S.A.

    USGS Publications Warehouse

    Cappellato, R.; Peters, N.E.; Meyers, T.P.

    1998-01-01

    Atmospheric deposition and above-ground cycling of sulfur (S) were evaluated in adjacent deciduous and coniferous forests at the Panola Mountain Research Watershed (PMRW), Georgia U.S.A. Total atmospheric S deposition (wet plus dry) was 12.9 and 12.7 kg ha-1 yr-1 for the deciduous and coniferous forests, respectively, from October 1987 through November 1989. Dry deposition contributes more than 40% to the total atmospheric S deposition, and SO2 is the major source (~55%) of total dry S deposition. Dry deposition to these canopies is similar to regional estimates suggesting that 60-km proximity to emission sources does not noticeably impact dry deposition at PMRW. Below-canopy S fluxes (throughfall plus stemflow) in each forest are 37% higher annually in the deciduous forest than in the coniferous forest. An excess in below-canopy S flux in the deciduous forest is attributed to leaching and higher dry deposition than in the coniferous forest. Total S deposition to the forest floor by throughfall, stemflow and litterfall was 2.4 and 2.8 times higher in the deciduous and coniferous forests, respectively, than annual S growth requirement for foliage and wood. Although A deposition exceeds growth requirement, more than 95% of the total atmospheric S deposition was retained by the watershed in 1988 and 1989. The S retention at PMRW is primarily due to SO2+4 adsorption by iron oxides and hydroxides in watershed soils. The S content in while oak and loblolly pine boles have increased more than 200% in the last 20 yr, possibly reflecting increases in emissions.

  8. Landscape dynamics in Mediterranean oak forests under global change: understanding the role of anthropogenic and environmental drivers across forest types.

    PubMed

    Acácio, Vanda; Dias, Filipe S; Catry, Filipe X; Rocha, Marta; Moreira, Francisco

    2017-03-01

    The Mediterranean region is projected to be extremely vulnerable to global change, which will affect the distribution of typical forest types such as native oak forests. However, our understanding of Mediterranean oak forest responses to future conditions is still very limited by the lack of knowledge on oak forest dynamics and species-specific responses to multiple drivers. We compared the long-term (1966-2006) forest persistence and land cover change among evergreen (cork oak and holm oak) and deciduous oak forests and evaluated the importance of anthropogenic and environmental drivers on observed changes for Portugal. We used National Forest Inventories to quantify the changes in oak forests and explored the drivers of change using multinomial logistic regression analysis and an information theoretical approach. We found distinct trends among oak forest types, reflecting the differences in oak economic value, protection status and management schemes: cork oak forests were the most persistent (62%), changing mostly to pines and eucalypt; holm oak forests were less persistent (53.2%), changing mostly to agriculture; and deciduous oak forests were the least persistent (45.7%), changing mostly to shrublands. Drivers of change had distinct importance across oak forest types, but drivers from anthropogenic origin (wildfires, population density, and land accessibility) were always among the most important. Climatic extremes were also important predictors of oak forest changes, namely extreme temperatures for evergreen oak forests and deficit of precipitation for deciduous oak forests. Our results indicate that under increasing human pressure and forecasted climate change, evergreen oak forests will continue declining and deciduous oak forests will be replaced by forests dominated by more xeric species. In the long run, multiple disturbances may change competitive dominance from oak forests to pyrophytic shrublands. A better understanding of forest dynamics and the inclusion of anthropogenic drivers on models of vegetation change will improve predicting the future of Mediterranean oak forests. © 2016 John Wiley & Sons Ltd.

  9. Riparian litter inputs to streams in the central Oregon Coast Range

    USGS Publications Warehouse

    Hart, Stephanie K.; Hibbs, David E.; Perakis, Steven S.

    2013-01-01

    Riparian-zone vegetation can influence terrestrial and aquatic food webs through variation in the amount, timing, and nutritional content of leaf and other litter inputs. We investigated how riparian-forest community composition, understory density, and lateral slope shaped vertical and lateral litter inputs to 16 streams in the Oregon Coast Range. Riparian forests dominated by deciduous red alder delivered greater annual vertical litter inputs to streams (504 g m−2 y−1) than did riparian forests dominated by coniferous Douglas-fir (394 g m−2 y−1). Deciduous forests also contributed greater lateral litter inputs per meter of stream bank on one side (109 g m−1 y−1) than did coniferous forests (63 g m−1 y−1). Total litter inputs from deciduous forests exceeded those from coniferous forests most strongly in November, coincident with an autumn peak in litter inputs. Lateral litter inputs contributed most to total inputs during winter in both forest types. Annual lateral litter movement increased with slope at deciduous sites, but only in spring/summer months at coniferous sites. Neither experimental removal of understory vegetation nor installation of mesh fences to block downslope litter movement affected lateral litter inputs to streams, suggesting that ground litter moves <5 m downslope annually. N concentrations of several litter fractions were higher at deciduous sites and, when combined with greater litter amounts, yielded twice as much total litter N flux to streams in deciduous than coniferous sites. The presence of red alder in riparian forests along many small streams of the deeply incised and highly dendritic basins of the Oregon Coast Range enhances total fluxes and seasonality of litter delivery to both terrestrial and aquatic food webs in this region and complements the shade and large woody debris provided by large coniferous trees.

  10. Movements, cover-type selection, and survival of fledgling Ovenbirds in managed deciduous and mixed coniferous-deciduous forests

    USGS Publications Warehouse

    Streby, Henry M.; Andersen, David E.

    2013-01-01

    We used radio telemetry to monitor movements, cover-type selection, and survival for fledglings of the mature-forest nesting Ovenbird (Seiurus aurocapilla) at two managed forest sites in north-central Minnesota. Both sites contained forested wetlands, regenerating clearcut stands of various ages, and logging roads, but differed in mature forest composition; one deciduous with open understory, and the other mixed coniferous-deciduous with dense understory. We used compositional analysis, modified to incorporate age-specific limitations in fledgling movements, to assess cover-type selection by fledglings throughout the dependent (on adult care) post-fledging period. Compared to those that were depredated, fledglings from nests in deciduous forest that survived the early post-fledging period had more older (sapling-dominated) clearcut available, directed movements toward older clearcuts and forested wetlands, and used older clearcuts more than other cover types relative to availability. Fledglings that were depredated had more young (shrub-dominated) clearcut and unpaved logging road available, and used mature forest and roads more than expected based on availability. For birds from nests in mixed mature forest with dense understory, movements and cover-type selection were similar between fledglings that survived and those that were depredated. However, fledglings that were depredated at that site also had more young clearcut available than fledglings that survived. We conclude that Ovenbird fledgling survival is influenced by distance of their nest to various non-nesting cover types, and by the subsequent selection among those cover types, but that the influence of non-nesting cover types varies depending on the availability of dense understory vegetation in mature forest.

  11. Nationwide classification of forest types of India using remote sensing and GIS.

    PubMed

    Reddy, C Sudhakar; Jha, C S; Diwakar, P G; Dadhwal, V K

    2015-12-01

    India, a mega-diverse country, possesses a wide range of climate and vegetation types along with a varied topography. The present study has classified forest types of India based on multi-season IRS Resourcesat-2 Advanced Wide Field Sensor (AWiFS) data. The study has characterized 29 land use/land cover classes including 14 forest types and seven scrub types. Hybrid classification approach has been used for the classification of forest types. The classification of vegetation has been carried out based on the ecological rule bases followed by Champion and Seth's (1968) scheme of forest types in India. The present classification scheme has been compared with the available global and national level land cover products. The natural vegetation cover was estimated to be 29.36% of total geographical area of India. The predominant forest types of India are tropical dry deciduous and tropical moist deciduous. Of the total forest cover, tropical dry deciduous forests occupy an area of 2,17,713 km(2) (34.80%) followed by 2,07,649 km(2) (33.19%) under tropical moist deciduous forests, 48,295 km(2) (7.72%) under tropical semi-evergreen forests and 47,192 km(2) (7.54%) under tropical wet evergreen forests. The study has brought out a comprehensive vegetation cover and forest type maps based on inputs critical in defining the various categories of vegetation and forest types. This spatially explicit database will be highly useful for the studies related to changes in various forest types, carbon stocks, climate-vegetation modeling and biogeochemical cycles.

  12. Characterization of seasonal variation of forest canopy in a temperate deciduous broadleaf forest, using daily MODIS data

    Treesearch

    Qingyuan Zhang; Xiangming Xiao; Bobby Braswell; Ernst Linder; Scott Ollinger; Marie-Louise Smith; Julian P. Jenkins; Fred Baret; Andrew D. Richardson; Berrien III Moore; Rakesh Minocha

    2006-01-01

    In this paper, we present an improved procedure for collecting no or little atmosphere- and snow-contaminated observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The resultant time series of daily MODIS data of a temperate deciduous broadleaf forest (the Bartlett Experimental Forest) in 2004 show strong seasonal dynamics of surface...

  13. Flammulated Owls (Otus flammeolus) breeding in deciduous forests

    Treesearch

    Carl D. Marti

    1997-01-01

    The first studies of nesting Flammulated Owls (Otus flammeolus) established the idea that the species needs ponderosa pine (Pinus ponderosa) forests for breeding. In northern Utah, Flammulated Owls nested in montane deciduous forests dominated by quaking aspen (Populus tremuloides). No pines were present but...

  14. DRY DEPOSITION OF POLLUTANTS TO FORESTS

    EPA Science Inventory

    We report on the results of an extensive field campaign to measure dry deposition of ozone and sulfur dioxide to a sample of forest types in the United States. Measurements were made for full growing seasons over a deciduous forest in Pennsylvania and a mixed deciduous-conifer...

  15. [NDVI difference rate recognition model of deciduous broad-leaved forest based on HJ-CCD remote sensing data].

    PubMed

    Wang, Yan; Tian, Qing-Jiu; Huang, Yan; Wei, Hong-Wei

    2013-04-01

    The present paper takes Chuzhou in Anhui Province as the research area, and deciduous broad-leaved forest as the research object. Then it constructs the recognition model about deciduous broad-leaved forest was constructed using NDVI difference rate between leaf expansion and flowering and fruit-bearing, and the model was applied to HJ-CCD remote sensing image on April 1, 2012 and May 4, 2012. At last, the spatial distribution map of deciduous broad-leaved forest was extracted effectively, and the results of extraction were verified and evaluated. The result shows the validity of NDVI difference rate extraction method proposed in this paper and also verifies the applicability of using HJ-CCD data for vegetation classification and recognition.

  16. Interannual variability in the extent and intensity of tropical dry forest deciduousness in the Mexican Yucatan (2000-2016): Drivers and Links to Regional Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Cuba, Nicholas Joseph

    The dry topical forests of the southern Yucatan Peninsula experience multiple natural and anthropogenic disturbances, as well as substantial interannual climate variability that can result in stark interannual differences in vegetation phenology. Dry season deciduousness is a typical response to limit tree water loss during prolonged periods of hot and dry conditions, and this behavior has both direct implications for ecosystem functioning, and the potential to indicate climate conditions when observed using remotely-sensed data. The first research paper of this dissertation advances methods to assess the accuracy of remotely-sensed measurements of canopy conditions using in-situ observations. Linear regression models show the highest correlation (R2 = 0.751) between in-situ canopy gap fraction and Landsat NDWISWIR2. MODIS time series NDWISWIR2 are created for the period March 2000-February 2011, and exhibit stronger correlation with time series of TRMM precipitation data than do MODIS EVI time series (R2= 0.48 vs. R2 = 0.43 in deciduous forest areas). The second paper examines differences between the deciduous phenology of young forest stands and older forest stands. Land-cover maps are overlaid to determine whether forested areas are greater than or less than 22 years old in 2010, and metrics related to deciduous phenology are derived from MODIS EVI2 time series in three years, 2008 to 2011. Statistical tests that compare matched pairs of young (12-22 years) and older (>22 years) forest stand age class samples are used to detect significant differences in metrics related to the intensity and timing of deciduousness. In all three years, younger forests exhibit significantly more intense deciduousness, measured as total seasonal change of EVI2 normalized by annual maximum EVI2 (p<0.001), and exhibit larger EVI2 declines at successive 32-day periods during dry season months (p<0.02), than nearby older forests that are assumed to share similar environmental conditions. explores how deciduousness influences the relationship between land-clearing and regional atmospheric conditions. Two sets of bottom-up estimates of Organic and Black Carbon (OCBC) emissions are derived from MODIS fire and land-cover data in the greater Yucatan region during the burning seasons of years 2003-2013: a control series in which estimated emissions from fires in deciduous forest and non-deciduous forest were modeled in the same way, and a "deciduous-adjusted" series in which the emissions from fires in deciduous forest were estimated to increase throughout the burn season as a result of accumulated leaf litter fuel and increasingly hot and dry understory conditions. The two sets of estimated OCBC emission were compared to top-down modeled values of OCBC from MERRA-2 global reanalysis and a comparison of residual differences measured as Mean Absolute Error (MAE) was made to determine the effect of the deciduous-adjustment on bottom-up estimates. The deciduous-adjustment is shown to decrease MAE relative to the control series for annual total estimates (31% vs. 26%), monthly average values (32% to 21%), and monthly values (39% to 34%) with respect to MERRA-2 OCBC. The largest MAE for annual total values were observed in the years 2009 to 2013, when both bottom-up series substantially underestimated MERRA-2 OCBC. This distribution of error is accounted for in part by the comparatively low amount of early dry-season rainfall during these years, increasing the rate of desiccation of fuel load, and may arise from the large increases to non-standing dead biomass resulting from the damage of category-5 Hurricane Dean in August 2007. These papers together provide a better understanding of the climate conditions and mediating environmental factors that drive the spatial and temporal variability in the intensity of deciduousness, and point toward analyzing deciduousness to reveal information about other environmental phenomena of interest with which it is correlated.

  17. Biodiversity Analysis of Forest Litter Ant Assemblages in the Wayanad Region of Western Ghats Using Taxonomic and Conventional Diversity Measures

    PubMed Central

    Anu, Anto; Sabu, Thomas K.

    2007-01-01

    The diversity of litter ant assemblages in evergreen, deciduous and Shola evergreen (Shola) forest vegetation types of the Wayanad region of the Western Ghats was assessed employing conventional and taxonomic diversity indices. Non-dependence on quantitative data and the ability to relate the phylogenetic structure of assemblages with ecological conditions of the habitat, and to ascertain priorities for conservation of habitats, makes non-parametric taxonomic diversity measures, such as variation in taxonomic distinctness Λ+ and average taxonomic distinctness Δ+, highly useful tools for assessment of litter ant biodiversity. Although Δ+ values saturated leading to closer values for the 3 litter ant assemblages, Λ+ proved to be a more dependable index. Evenness in taxonomic spread was high in ant assemblages in deciduous forests and low in evergreen forests compared to the regional master list. Low Λ+ of ant assemblage in deciduous forests indicates that among the 3 forest vegetation types, deciduous forests provided the most favorable habitat conditions for litter ants. Low evenness, as is indicated by Λ+ in evergreen forests, was attributed to the presence of a group of taxonomically closely related ant assemblage more adapted to prevail in moist and wet ecological conditions. PMID:20334594

  18. Forest aging, disturbance and the carbon cycle.

    PubMed

    Curtis, Peter S; Gough, Christopher M

    2018-05-16

    Contents Summary I. Introduction II. Forest aging and carbon storage III. Successional trends of NEP in northern deciduous forests IV. Mechanisms sustaining NEP in aging deciduous forests Acknowledgements References SUMMARY: Large areas of forestland in temperate North America, as well as in other parts of the world, are growing older and will soon transition into middle and then late successional stages exceeding 100 yr in age. These ecosystems have been important regional carbon sinks as they recovered from prior anthropogenic and natural disturbance, but their future sink strength, or annual rate of carbon storage, is in question. Ecosystem development theory predicts a steady decline in annual carbon storage as forests age, but newly available, direct measurements of forest net CO 2 exchange challenge that prediction. In temperate deciduous forests, where moderate severity disturbance regimes now often prevail, there is little evidence for any marked decline in carbon storage rate during mid-succession. Rather, an increase in physical and biological complexity under these disturbance regimes may drive increases in resource-use efficiency and resource availability that help to maintain significant carbon storage in these forests well past the century mark. Conservation of aging deciduous forests may therefore sustain the terrestrial carbon sink, whilst providing other goods and services afforded by these biologically and structurally complex ecosystems. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  19. OZONE AND SULFUR DIOXIDE DRY DEPOSITION TO FORESTS: OBSERVATIONS AND MODEL EVALUATION

    EPA Science Inventory

    Fluxes and deposition velocities of O3 and SO2 were measured over both a deciduous and a mixed coniferous-deciduous forest for full growing seasons. Fluxes and deposition velocities of O3 were measured over a coniferous forest for a month. Mean deposition velocities of 0.35 t...

  20. Functional role of the herbaceous layer in eastern deciduous forest

    Treesearch

    Katherine J. Elliott; James M. Vose; Jennifer D. Knoepp; Barton D. Clinton; Brian D. Kloeppel

    2014-01-01

    The importance of the herbaceous layer in regulating ecosystem processes in deciduous forests is generally unknown. We use a manipulative study in a rich, mesophytic cove forest in the southern Appalachians to test the following hypotheses: (i) the herbaceous functional group (HFG) in mesophytic coves accelerates carbon and nutrient cycling, (ii) high litter quality...

  1. Spatial patterning of fuels and fire hazard across a central U.S. deciduous forest region

    Treesearch

    Michael C. Stambaugh; Daniel C. Dey; Richard P. Guyette; Hong S. He; Joseph M. Marschall

    2011-01-01

    Information describing spatial and temporal variability of forest fuel conditions is essential to assessing overall fire hazard and risk. Limited information exists describing spatial characteristics of fuels in the eastern deciduous forest region, particularly in dry oak-dominated regions that historically burned relatively frequently. From an extensive fuels survey...

  2. Tertiary climates and floristic relationships at high latitudes in the northern hemisphere

    USGS Publications Warehouse

    Wolfe, J.A.

    1980-01-01

    During the Paleocene and Eocene, climates were characterized by a low mean annual range of temperature (a maximum of 10-15??C), a moderate to high mean annual temperature (10-20??C), and abundant precipitation; strong broad-leaved evergreen vegetation extended to almost lat. 60??N during the Paleocene and to well above 61??N during the Eocene. Poleward of the broad-leaved evergreen forests were forests that were broad-leaved deciduous; these deciduous forests, however, were unlike extant broad-leaved deciduous forests in general floristic composition and physiognomy. Coniferous forests probably occupied the northernmost latitudes. At the end of the Eocene, a major climatic deterioration resulted in a high (> 30??C) mean annual range of temperature and a low mean annual temperature (< 10??C). Vegetation represented temperate broad-leaved deciduous and coniferous forests. The Oligocene and Neogene climatic trends represent a decrease in both mean annual range of temperature and mean annual temperature. Tundra vegetation did not appear until late in the Neogene. The present distribution of broad-leaved evergreens concomitant with the principles of plant physiology indicates that present winter light conditions at high latitudes could not support broad-leaved evergreen forest. A possible solution to the problem is to increase winter light by lessening the inclination of the earth's rotational axis. ?? 1980.

  3. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient.

    PubMed

    Orihuela, Rodrigo L L; Peres, Carlos A; Mendes, Gabriel; Jarenkow, João A; Tabarelli, Marcelo

    2015-01-01

    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.

  4. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient

    PubMed Central

    Orihuela, Rodrigo L. L.; Peres, Carlos A.; Mendes, Gabriel; Jarenkow, João A.; Tabarelli, Marcelo

    2015-01-01

    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide. PMID:26309252

  5. A resource at the crossroads: a history of the central hardwoods

    Treesearch

    Ray R., Jr. Hicks

    1997-01-01

    The Central Hardwood Forest is an oak dominated deciduous forest that stretches from Massachusetts to Arkansas and occurs in hilly to mountainous terrain. It is the largest and most extensive temperate deciduous forest in the world. During the past 20 million years or so, angiosperms have been gradually replacing gymnosperms as the dominant plant form on earth, and...

  6. Changes in conifer and deciduous forest foliar and forest floor chemistry and basal area tree growth across a nitrogen (N) deposition gradient in the northeastern US

    Treesearch

    Johnny L. Boggs; Steven G. McNulty; Linda H. Pardo

    2007-01-01

    We evaluated foliar and forest floor chemistry across a gradient of N deposition in the Northeast at 11 red spruce (Picea rubens Sarg.) sites in 1987/1988 and foliar and forest floor chemistry and basal area growth at six paired spruce and deciduous sites in 1999. The six red spruce plots were a subset of the original 1987/1988 spruce sites. In 1999...

  7. Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S.

    NASA Astrophysics Data System (ADS)

    Hadley, J. L.; Kuzeja, P.; Mulcahy, T.; Singh, S.

    2008-12-01

    Influences of Forest Tree Species and Early Spring Temperature on Surface-Atmosphere Transfers of Water and Carbon in the Northeastern U.S. Julian Hadley, Paul Kuzeja, Safina Singh and Thomas Mulcahy Transfers of water vapor from terrestrial ecosystems to the atmosphere affect regional hydrology, weather and climate over short time scales, and forest-atmosphere CO2 exchange affects global climate over long timescales. To better understand these effects for forests dominated by two very different tree species, we measured forest-atmosphere water vapor and CO2 transfers by the eddy flux technique to at two sites in central Massachusetts USA for three years. Average annual evapotranspiration (ET) for a young deciduous forest dominated by red oak (Quercus rubra L., the most abundant tree species in the area), was about 430 mm or 25 percent greater than for a coniferous forest dominated by 100 to 230 year old eastern hemlock (Tsuga canadensis L.). The difference in ET was most pronounced in July and August when the deciduous forest lost about 50 percent more water by ET in the average year (192 mm for oak forest versus 130 mm for hemlock). These data indicate that if deciduous trees with similar physiology to red oak replace hemlocks, summertime ET will increase while summer streamflow, soil water content and the extent of year- round wetlands will decrease. Increased summertime ET should also lead to slightly higher regional atmospheric humidity and precipitation. Hemlock-to-deciduous forest conversion has occurred from North Carolina to southern New England and is continuing northward as a lethal insect pest, the hemlock woolly adelgid (Adelges tsugae Annand) continues to kill hemlocks. Average annual carbon storage for the old hemlock forest in our study was about 3.3 Mg C/ha, nearly equal to the average for the deciduous forest, 3.5 Mg C/ha. This calls into question ecological theory that predicts large declines in the rate of carbon uptake for old forests, and indicates that annual carbon storage will not necessarily increase over the long term after hemlock trees are killed by the hemlock woolly adelgid and replaced by deciduous species. Maximum monthly carbon storage in the hemlock forest occurred in spring (April and May) and was enhanced by early soil thawing and cessation of nighttime frost. This pattern is probably common to many evergreen conifers in the northeastern U.S., so climate warming that includes an earlier end to freezing temperatures in spring should increase C storage by conifer forests in the northeastern U.S. - unless this effect is canceled out by reduced C uptake or enhanced C loss due to changes in summer and fall climate.

  8. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts.

    PubMed

    Xie, Yingying; Wang, Xiaojing; Silander, John A

    2015-11-03

    Changes in spring and autumn phenology of temperate plants in recent decades have become iconic bio-indicators of rapid climate change. These changes have substantial ecological and economic impacts. However, autumn phenology remains surprisingly little studied. Although the effects of unfavorable environmental conditions (e.g., frost, heat, wetness, and drought) on autumn phenology have been observed for over 60 y, how these factors interact to influence autumn phenological events remain poorly understood. Using remotely sensed phenology data from 2001 to 2012, this study identified and quantified significant effects of a suite of environmental factors on the timing of fall dormancy of deciduous forest communities in New England, United States. Cold, frost, and wet conditions, and high heat-stress tended to induce earlier dormancy of deciduous forests, whereas moderate heat- and drought-stress delayed dormancy. Deciduous forests in two eco-regions showed contrasting, nonlinear responses to variation in these explanatory factors. Based on future climate projection over two periods (2041-2050 and 2090-2099), later dormancy dates were predicted in northern areas. However, in coastal areas earlier dormancy dates were predicted. Our models suggest that besides warming in climate change, changes in frost and moisture conditions as well as extreme weather events (e.g., drought- and heat-stress, and flooding), should also be considered in future predictions of autumn phenology in temperate deciduous forests. This study improves our understanding of how multiple environmental variables interact to affect autumn phenology in temperate deciduous forest ecosystems, and points the way to building more mechanistic and predictive models.

  9. Leaf-on canopy closure in broadleaf deciduous forests predicted during winter

    USGS Publications Warehouse

    Twedt, Daniel J.; Ayala, Andrea J.; Shickel, Madeline R.

    2015-01-01

    Forest canopy influences light transmittance, which in turn affects tree regeneration and survival, thereby having an impact on forest composition and habitat conditions for wildlife. Because leaf area is the primary impediment to light penetration, quantitative estimates of canopy closure are normally made during summer. Studies of forest structure and wildlife habitat that occur during winter, when deciduous trees have shed their leaves, may inaccurately estimate canopy closure. We estimated percent canopy closure during both summer (leaf-on) and winter (leaf-off) in broadleaf deciduous forests in Mississippi and Louisiana using gap light analysis of hemispherical photographs that were obtained during repeat visits to the same locations within bottomland and mesic upland hardwood forests and hardwood plantation forests. We used mixed-model linear regression to predict leaf-on canopy closure from measurements of leaf-off canopy closure, basal area, stem density, and tree height. Competing predictive models all included leaf-off canopy closure (relative importance = 0.93), whereas basal area and stem density, more traditional predictors of canopy closure, had relative model importance of ≤ 0.51.

  10. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests.

    PubMed

    Poorter, Lourens

    2009-03-01

    Shade tolerance is the central paradigm for understanding forest succession and dynamics, but there is considerable debate as to what the salient features of shade tolerance are, whether adult leaves show similar shade adaptations to seedling leaves, and whether the same leaf adaptations are found in forests under different climatic control. Here, adult leaf and metamer traits were measured for 39 tree species from a tropical moist semi-evergreen forest (1580 mm rain yr(-1)) and 41 species from a dry deciduous forest (1160 mm yr(-1)) in Bolivia. Twenty-six functional traits were measured and related to species regeneration light requirements.Adult leaf traits were clearly associated with shade tolerance. Different, rather than stronger, shade adaptations were found for moist compared with dry forest species. Shade adaptations exclusively found in the evergreen moist forest were related to tough and persistent leaves, and shade adaptations in the dry deciduous forest were related to high light interception and water use.These results suggest that, for forests differing in rainfall seasonality, there is a shift in the relative importance of functional leaf traits and performance trade-offs that control light partitioning. In the moist evergreen forest leaf traits underlying the growth-survival trade-off are important, whereas in the seasonally deciduous forest leaf traits underlying the growth trade-off between low and high light might become important.

  11. Evolutionarily stable strategy of carbon and nitrogen investments in forest leaves and its application in vegetation dynamic modeling

    NASA Astrophysics Data System (ADS)

    Weng, E.; Farrior, C.; Dybzinski, R.; Pacala, S. W.

    2015-12-01

    Leaf mass per area (LMA) and leaf lifespan (LL) are two highly correlated plant traits that are key to plant physiological and ecological properties. Usually, low LMA means short LL, high nitrogen (N) content per unit mass, and fast turnover rates of nutrients; high LMA leads to long LL, low N content, and slow turnover rates. Deciduous trees with low LMA and short lifespan leaves have low carbon cost but high nitrogen demand; and evergreen trees, with high LMA and long lifespan leaves, have high carbon cost but low nitrogen demand. These relationships lead to: 1) evergreen trees have higher leaf area index than deciduous trees; 2) evergreen trees' carbon use efficiency is lower than the deciduous trees' because of their thick leaves and therefore high maintenance respiration; 3) the advantage of evergreens trees brought by their extra leaves over deciduous trees diminishes with increase N in ecosystem. These facts determine who will win when trees compete with each other in a N-limited ecosystem. In this study, we formulate a mathematical model according to the relationships between LMA, LL, leaf nitrogen, and leaf building and maintenance cost, where LMA is the fundamental variable determining the other three. We analyze the evolutionarily stable strategies (ESSs) of LMA with this mathematical model by examining the benefits of carbon and nitrogen investments to leaves in ecosystems with different N. The model shows the ESS converges to low LMA at high N and high LMA at low N. At intermediate N, there are two ESSs at low and high ends of LMA, respectively. The ESS also leads to low forest productivity by outcompeting the possible high productive strategies. We design a simulation scheme in an individual-based competition model (LM3-PPA) to simulate forest dynamics as results of the competition between deciduous and evergreen trees in three different biomes, which are temperate deciduous forest, deciduous-evergreen mixed forest, and boreal evergreen forest. The simulated results are consistent with the actual forests. Our model and simulated results indicate the distribution of evergreen and deciduous forests can be explained by one single leaf trait (i.e., LMA) and associated physiological and biogeochemical processes.

  12. Enhancement of understory productivity by asynchronous phenology with overstory competitors in a temperate deciduous forest.

    PubMed

    Jolly, William M; Nemani, Ramakrishna; Running, Steven W

    2004-09-01

    Some saplings and shrubs growing in the understory of temperate deciduous forests extend their periods of leaf display beyond that of the overstory, resulting in periods when understory radiation, and hence productivity, are not limited by the overstory canopy. To assess the importance of the duration of leaf display on the productivity of understory and overstory trees of deciduous forests in the north eastern United States, we applied the simulation model, BIOME-BGC with climate data for Hubbard Brook Experimental Forest, New Hampshire, USA and mean ecophysiological data for species of deciduous, temperate forests. Extension of the overstory leaf display period increased overstory leaf area index (LAI) by only 3 to 4% and productivity by only 2 to 4%. In contrast, extending the growing season of the understory relative to the overstory by one week in both spring and fall, increased understory LAI by 35% and productivity by 32%. A 2-week extension of the growing period in both spring and fall increased understory LAI by 53% and productivity by 55%.

  13. Statistical data on forest fund of Russia and changing of forest productivity in the second half of XX century

    Treesearch

    Alexeyev V.A.; Markov M.V.; R.A. Birdsey; Birdsey R.A.

    2004-01-01

    Contains statistical data on area and growing-stock volume of forest lands in Oblasts, Krays and Republics of Russian Federation, for the period 1961-1998. Positive dynamics of average growing stock for coniferous, deciduous hardwood and deciduous softwood tree stands by stand-age groups were disclosed. The impact of main anthropogenic and natural factors, including...

  14. Spatiotemporal phenological changes in fall foliage peak coloration in deciduous forest and the responses to climatic variation

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Wilson, A. M.

    2017-12-01

    Plant phenology studies typically focus on the beginning and end of the growing season in temperate forests. We know too little about fall foliage peak coloration, which is a bioindicator of plant response in autumn to environmental changes, an important visual cue in fall associated with animal activities, and a key element in fall foliage ecotourism. Spatiotemporal changes in timing of fall foliage peak coloration of temperate forests and the associated environmental controls are not well understood. In this study, we examined multiple color indices to estimate Land Surface Phenology (LSP) of fall foliage peak coloration of deciduous forest in the northeastern USA using Moderate Resolution Imaging Spectroradiometer (MODIS) daily imagery from 2000 to 2015. We used long term phenology ground observations to validate our estimated LSP, and found that Visible Atmospherically Resistant Index (VARI) and Plant Senescence Reflectance Index (PSRI) were good metrics to estimate peak and end of leaf coloration period of deciduous forest. During the past 16 years, the length of period with peak fall foliage color of deciduous forest at southern New England and northern Appalachian forests regions became longer (0.3 7.7 days), mainly driven by earlier peak coloration. Northern New England, southern Appalachian forests and Ozark and Ouachita mountains areas had shorter period (‒0.2 ‒9.2 days) mainly due to earlier end of leaf coloration. Changes in peak and end of leaf coloration not only were associated with changing temperature in spring and fall, but also to drought and heat in summer, and heavy precipitation in both summer and fall. The associations between leaf peak coloration phenology and climatic variations were not consistent among ecoregions. Our findings suggested divergent change patterns in fall foliage peak coloration phenology in deciduous forests, and improved our understanding in the environmental control on timing of fall foliage color change.

  15. Investigating the role of evergreen and deciduous forests in the increasing trend in atmospheric CO2 seasonal amplitude

    NASA Astrophysics Data System (ADS)

    Welp, L.; Calle, L.; Graven, H. D.; Poulter, B.

    2017-12-01

    The seasonal amplitude of Northern Hemisphere atmospheric CO2 concentrations has systematically increased over the last several decades, indicating that the timing and amplitude of net CO2 uptake and release by northern terrestrial ecosystems has changed substantially. Remote sensing, dynamic vegetation modeling, and in-situ studies have explored how changes in phenology, expansion of woody vegetation, and changes in species composition and disturbance regimes, among others, are driven by changes in climate and CO2. Despite these efforts, ecosystem models have not been able to reproduce observed atmospheric CO2 changes. Furthermore, the implications for the source/sink balance of northern ecosystems remains unclear. Changing proportions of evergreen and deciduous tree cover in response to climate change could be one of the key mechanisms that have given rise to amplified atmospheric CO2 seasonality. These two different plant functional types (PFTs) have different carbon uptake seasonal patterns and also different sensitivities to climate change, but are often lumped together as one forest type in global ecosystem models. We will demonstrate the potential that shifting distributions of evergreen and deciduous forests can have on the amplitude of atmospheric CO2. We will show phase differences in the net CO2 seasonal uptake using CO2 flux data from paired evergreen/deciduous eddy covariance towers. We will use simulations of evergreen and deciduous PFTs from the LPJ dynamic vegetation model to explore how climate change may influence the abundance and CO2 fluxes of each. Model results show that the area of deciduous forests is predicted to have increased, and the seasonal amplitude of CO2 fluxes has increased as well. The impact of surface flux seasonal variability on atmospheric CO2 amplitude is examined by transporting fluxes from each forest PFT through the TM3 transport model. The timing of the most intense CO2 uptake leads to an enhanced effect of deciduous forests on the atmospheric CO2 amplitude. These results demonstrate the potential significance of evergreen/deciduous forest PFTs on the amplitude of atmospheric CO2. In order to better understand the causes of the increasing amplitude trend, we encourage creating time-varying maps of evergreen/deciduous PFTs from remote sensing observations.

  16. The Pleistocene biogeography of eastern North America: A nonmigration scenario for deciduous forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loehle, C.; Iltis, H.

    The current reconstruction of the vegetation of eastern North America at the last glacial maximum postulates a very wide zone of tundra and boreal forest south of the ice. This reconstruction requires that the deciduous forest retreated far to the south. The authors believe that this reconstruction is seriously in error. Geologic evidence for glacial activity or tundra is absent from the southern Appalachians. Positive evidence for boreal forest is based on pollen identifications for Picea, Betula, and Pinus, when in reality southern members of these genera have pollen that cannot be distinguished from that of northern members. Further, pollenmore » of typical southern species such as oaks and hickories occurs throughout profiles that past authors had labeled boreal. Pollen evidence for a far southern deciduous forest refuge is lacking. Data on endemics are particularly challenging for the scenario in which deciduous forest migrated to the south and back. The southern Appalachian region is rife with endemics that are often extreme-habitat specialists unable to migrate. The previously glaciated zone is almost completely lacking in endemics. Outlier populations, range boundaries, and absence of certain hybrids all argue against a large boreal zone. The new reconstruction postulates a cold zone no more than 75--100 miles wide south of the ice in the East.« less

  17. Development of national database on long-term deforestation (1930-2014) in Bangladesh

    NASA Astrophysics Data System (ADS)

    Reddy, C. Sudhakar; Pasha, S. Vazeed; Jha, C. S.; Diwakar, P. G.; Dadhwal, V. K.

    2016-04-01

    The aim of the present study is to prepare a nation-wide spatial database on forest cover to assess and monitor the land use changes associated with deforestation in Bangladesh. The multi-source data were interpreted to get the forest cover map of 1930, 1975, 1985, 1995, 2006 and 2014. The spatial information generated on total area under forest cover, rate of deforestation and afforestation, changes across forest types, forest canopy density, replacement land use in deforested area and deforestation hotspots. This spatial analysis has indicated that forest cover is undergoing significant negative change in area and quality. We report that forests in Bangladesh covered an area of 23,140 km2 in 1930 which has decreased to 14,086 km2 in 2014, a net loss of 9054 km2 (39.1%) in eight decades. Analysis of annual rate of gross deforestation for the recent period indicates 0.77% during 2006-2014. During the past eight decades, semi-evergreen forests show loss of 56.4% of forest cover followed by moist deciduous forests (51.5%), dry deciduous forests (43.1%) and mangroves (6.5%). The loss of 23.5% of dense forest cover was found from 1975 to 2014. Dense semi-evergreen forests shows more negative change (36.9%) followed by dense moist deciduous forest (32.7%) from 1975 to 2014. Annual rate of deforestation is higher in dense forests compared to open forests from 2006 to 2014 and indicates increased threat due to anthropogenic pressures. The spatial analysis of forest cover change in mangroves has shown a lower rate of deforestation. Most of the forest conversions have led to the degradation of forests to scrub and transition to agriculture and plantation. The study has identified the 'deforestation hotspots' can help in strategic planning for conservation and management of forest resources.

  18. Occurrence and nest survival of four thrush species on a managed central Appalachian forest

    USGS Publications Warehouse

    Dellinger, R.L.; Wood, P.B.; Keyser, P.D.

    2007-01-01

    The wood thrush (Hylocichla mustelina Gmelin) is a species of concern in the central Appalachians, and is sympatric there with three related species, the American robin (Turdus migratorius Linnaeus), hermit thrush (Catharus guttatus Pallas), and veery (Catharus fuscescens Stephens). Our objectives were to quantify use of mature forests and areas subjected to even-aged harvesting and partial harvesting by these four species by measuring their frequency of occurrence, nest survival, and nest site characteristics. We also compared microhabitat characteristics among the landcover types. During 2001-2003 we conducted point count surveys, monitored nests, and collected nest habitat data on a managed forest in West Virginia. Land cover was digitized into five categories: deciduous and mixed mature forest, deciduous and mixed partial harvest, and even-aged regeneration harvest. Chi-square goodness-of-fit analysis with Bonferroni 95% confidence intervals indicated that deciduous partial harvests were more likely to be inhabited by wood thrushes. The other three species were less likely to occur in deciduous partial harvests, and veery had lower nest survival in partial harvests than in mature forest. Contrary to many published descriptions that suggest thrushes will not nest in even-aged harvests, a small number of all species but hermit thrushes did nest in this cover type, often near a residual canopy tree. Hermit thrushes were less likely to inhabit mature deciduous forest, even-aged harvests, and harvested edges but chose nesting areas in mature mixed forest that was disturbed by road building and the seeding of landings and skid trails >10 years ago. Microhabitat characteristics of landcovers did not differ overall. Our results suggest a relationship with partial harvesting that is positive for wood thrush but negative for the other three species. ?? 2007 Elsevier B.V. All rights reserved.

  19. Fast changes in seasonal forest communities due to soil moisture increase after damming.

    PubMed

    do Vale, Vagner Santiago; Schiavini, Ivan; Araújo, Glein Monteiro; Gusson, André Eduardo; Lopes, Sérgio de Faria; de Oliveira, Ana Paula; do Prado-Júnior, Jamir Afonso; Arantes, Carolina de Silvério; Dias-Neto, Olavo Custodio

    2013-12-01

    Local changes caused by dams can have drastic consequences for ecosystems, not only because they change the water regime but also the modification on lakeshore areas. Thus, this work aimed to determine the changes in soil moisture after damming, to understand the consequences of this modification on the arboreal community of dry forests, some of the most endangered systems on the planet. We studied these changes in soil moisture and the arboreal community in three dry forests in the Araguari River Basin, after two dams construction in 2005 and 2006, and the potential effects on these forests. For this, plots of 20 m x 10 m were distributed close to the impoundment margin and perpendicular to the dam margin in two deciduous dry forests and one semi-deciduous dry forest located in Southeastern Brazil, totaling 3.6 ha sampled. Besides, soil analysis were undertaken before and after impoundment at three different depths (0-10, 20-30 and 40-50 cm). A tree (minimum DBH of 4.77 cm) community inventory was made before (TO) and at two (T2) and four (T4) years after damming. Annual dynamic rates of all communities were calculated, and statistical tests were used to determine changes in soil moisture and tree communities. The analyses confirmed soil moisture increases in all forests, especially during the dry season and at sites closer to the reservoir; besides, an increase in basal area due to the fast growth of many trees was observed. The highest turnover occurred in the first two years after impoundment, mainly due to the higher tree mortality especially of those closer to the dam margin. All forests showed reductions in dynamic rates for subsequent years (T2-T4), indicating that these forests tended to stabilize after a strong initial impact. The modifications were more extensive in the deciduous forests, probably because the dry period resulted more rigorous in these forests when compared to semideciduous forest. The new shorelines created by damming increased soil moisture in the dry season, making plant growth easier. We concluded that several changes occurred in the T0-T2 period and at 0-30 m to the impoundment, mainly for the deciduous forests, where this community turned into a "riparian-deciduous forest" with large basal area in these patches. However, unlike other transitory disturbances, damming is a permanent alteration and transforms the landscape to a different scenario, probably with major long-term consequences for the environment.

  20. Effects of Habitat Structure and Fragmentation on Diversity and Abundance of Primates in Tropical Deciduous Forests in Bolivia.

    PubMed

    Pyritz, Lennart W; Büntge, Anna B S; Herzog, Sebastian K; Kessler, Michael

    2010-10-01

    Habitat structure and anthropogenic disturbance are known to affect primate diversity and abundance. However, researchers have focused on lowland rain forests, whereas endangered deciduous forests have been neglected. We aimed to investigate the relationships between primate diversity and abundance and habitat parameters in 10 deciduous forest fragments southeast of Santa Cruz, Bolivia. We obtained primate data via line-transect surveys and visual and acoustic observations. In addition, we assessed the vegetation structure (canopy height, understory density), size, isolation time, and surrounding forest area of the fragments. We interpreted our results in the context of the historical distribution data for primates in the area before fragmentation and interviews with local people. We detected 5 of the 8 historically observed primate species: Alouatta caraya, Aotus azarae boliviensis, Callithrix melanura, Callicebus donacophilus, and Cebus libidinosus juruanus. Total species number and detection rates decreased with understory density. Detection rates also negatively correlated with forest areas in the surroundings of a fragment, which may be due to variables not assessed, i.e., fragment shape, distance to nearest town. Observations for Alouatta and Aotus were too few to conduct further statistics. Cebus and Callicebus were present in 90% and 70% of the sites, respectively, and their density did not correlate with any of the habitat variables assessed, signaling high ecological plasticity and adaptability to anthropogenic impact in these species. Detections of Callithrix were higher in areas with low forest strata. Our study provides baseline data for future fragmentation studies in Neotropical dry deciduous forests and sets a base for specific conservation measures.

  1. High density of tree-cavities and snags in tropical dry forest of western Mexico raises questions for a latitudinal gradient.

    PubMed

    Vázquez, Leopoldo; Renton, Katherine

    2015-01-01

    It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha), though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters.

  2. High Density of Tree-Cavities and Snags in Tropical Dry Forest of Western Mexico Raises Questions for a Latitudinal Gradient

    PubMed Central

    Vázquez, Leopoldo; Renton, Katherine

    2015-01-01

    It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha), though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters. PMID:25615612

  3. On the difference in the net ecosystem exchange of CO2 between deciduous and evergreen forests in the southeastern United States

    Treesearch

    Kimberly A. Novick; A. Christopher Oishi; Eric J. Ward; Mario B.S. Siqueira; Jehn-Yih Juang; Paul C. Stoy

    2015-01-01

    The southeastern United States is experiencing a rapid regional increase in the ratio of pine to deciduous forest ecosystems at the same time it is experiencing changes in climate. This study is focused on exploring how these shifts will affect the carbon sink capacity of southeastern US forests, which we show here are among the strongest carbon sinks in the...

  4. A comparison of the beetle (Coleoptera) fauna captured at two heights above the ground in a North American temperate deciduous forest

    Treesearch

    Michael D. Ulyshen; James L. Hanula

    2007-01-01

    We compared the beetle fauna captured in 12 pairs of flight intercept traps suspended at two different heights above the ground ($15 m and 0.5 m) in a temperate deciduous forest in the southeastern United States to better understand how the abundance, species richness, diversity and composition of insect communities differ among forest strata. A total of 15,012 beetle...

  5. A comparison of the Beetle (Coleoptera) Fauna Captured at two heights above the ground in a North American temperate deciduous forest

    Treesearch

    Michael Ulyshen; James Hanula

    2007-01-01

    We compared the beetle fauna captured in 12 pairs of flight intercept traps suspended at two different heights above the ground ($15 m and 0.5 m) in a temperate deciduous forest in the southeastern United States to better understand how the abundance, species richness, diversity and composition of insect communities differ among forest strata. A total of 15,012 beetle...

  6. Landscape risk factors for Lyme disease in the eastern broadleaf forest province of the Hudson River valley and the effect of explanatory data classification resolution.

    PubMed

    Messier, Kyle P; Jackson, Laura E; White, Jennifer L; Hilborn, Elizabeth D

    2015-01-01

    This study assessed how landcover classification affects associations between landscape characteristics and Lyme disease rate. Landscape variables were derived from the National Land Cover Database (NLCD), including native classes (e.g., deciduous forest, developed low intensity) and aggregate classes (e.g., forest, developed). Percent of each landcover type, median income, and centroid coordinates were calculated by census tract. Regression results from individual and aggregate variable models were compared with the dispersion parameter-based R(2) (Rα(2)) and AIC. The maximum Rα(2) was 0.82 and 0.83 for the best aggregate and individual model, respectively. The AICs for the best models differed by less than 0.5%. The aggregate model variables included forest, developed, agriculture, agriculture-squared, y-coordinate, y-coordinate-squared, income and income-squared. The individual model variables included deciduous forest, deciduous forest-squared, developed low intensity, pasture, y-coordinate, y-coordinate-squared, income, and income-squared. Results indicate that regional landscape models for Lyme disease rate are robust to NLCD landcover classification resolution. Published by Elsevier Ltd.

  7. Generic Environmental Impact Statement. Air Force Low Altitude Flying Operations. Preliminary Draft. Volume 3

    DTIC Science & Technology

    1990-01-01

    landing strip at Circle. Lodging is available primarily at Circle Hot Springs, approximately 30 miles southwest of Circle. In general, hiking, snowmobiling... timberline ), coniferous forest, and several widespread deciduous species. Coniferous and deciduous forest, alpine and deciduous scrub, shrub tundra, and...white and paper birch, quaking aspen, and balsam poplar. Common shrub species (above and below timberline ) are alder, willow, glandular birch

  8. Greater diversity of soil fungal communities and distinguishable seasonal variation in temperate deciduous forests compared with subtropical evergreen forests of eastern China.

    PubMed

    He, Jinhong; Tedersoo, Leho; Hu, Ang; Han, Conghai; He, Dan; Wei, Hui; Jiao, Min; Anslan, Sten; Nie, Yanxia; Jia, Yongxia; Zhang, Gengxin; Yu, Guirui; Liu, Shirong; Shen, Weijun

    2017-07-01

    Whether and how seasonality of environmental variables impacts the spatial variability of soil fungal communities remain poorly understood. We assessed soil fungal diversity and community composition of five Chinese zonal forests along a latitudinal gradient spanning 23°N to 42°N in three seasons to address these questions. We found that soil fungal diversity increased linearly or parabolically with latitude. The seasonal variations in fungal diversity were more distinguishable in three temperate deciduous forests than in two subtropical evergreen forests. Soil fungal diversity was mainly correlated with edaphic factors such as pH and nutrient contents. Both latitude and its interactions with season also imposed significant impacts on soil fungal community composition (FCC), but the effects of latitude were stronger than those of season. Vegetational properties such as plant diversity and forest age were the dominant factors affecting FCC in the subtropical evergreen forests while edaphic properties were the dominant ones in the temperate deciduous forests. Our results indicate that latitudinal variation patterns of soil fungal diversity and FCC may differ among seasons. The stronger effect of latitude relative to that of season suggests a more important influence by the spatial than temporal heterogeneity in shaping soil fungal communities across zonal forests. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Current forest conditions of older stands of the mixed mesophytic forest region on the Appalachian Plateaus Province of eastern Kentucky

    Treesearch

    James F. Jr. Rosson

    2008-01-01

    E. Lucy Braun coined the term "mixed mesophytic forest" in 1916. These forests are structurally complex and occur extensively across the Appalachian Plateaus Province. This region is considered the epicenter of highest development of the eastern deciduous forest. I used U.S. Forest Service, Forest Inventory and Analysis (FIA) data to study current forest...

  10. Community composition and diversity of ground beetles (Coleoptera: Carabidae) in Yaoluoping National Nature Reserve

    PubMed Central

    Li, Wen-Bo; Liu, Nai-Yi; Wu, Yun-He; Zhang, Yu-Cai; Xu, Qin; Chu, Jun; Wang, Shu-Yan

    2017-01-01

    Abstract This study used pitfall trapping to examine community composition and diversity of ground beetles in five different habitats (coniferous, deciduous, mixed coniferous, farmland, and settlements) within Anhui Yaoluoping National Nature Reserve from May to September 2014. In total, 1,352 ground beetles were collected, belonging to 16 genera and 44 species. Of these, four dominant species Dolichus halensis, Harpalus pastor, Carabus casaleianus, and Pheropsophus jessoensis were identified, respectively, comprising 370, 177, 131, and 123 individuals. The deciduous forest showed greater diversity (3.78 according to Shannon–Weiner index), equitability (0.80 according to Pielou’s index), and dominance (9.52 according to Simpson’s index) when compared with farmland, but species richness in the deciduous forest (27) was lower than that in farmland (35). One-way analysis of variance showed that ground beetle species composition and abundance among different habitats varied significantly. Cluster analysis and principal coordinate analysis showed that farmland shared low community similarity with other habitat types, and coniferous and mixed coniferous forests shared similar community types. Our results indicate that species composition, abundance, and diversity of ground beetles are affected by different habitat types, with deciduous forest types being critical in maintaining the diversity of rare species. We recommend reducing cultivated farmland area and increasing the area of carefully planned deciduous forest in order to better protect ground beetle diversity in the region.

  11. Forest Productivity, Leaf Area, and Terrain in Southern Appalachian Deciduous Forests

    Treesearch

    Paul V. Bolstad; James M. Vose; Steven G. McNulty

    2000-01-01

    Leaf area index (LAI) is an important structural characteristic of forest ecosystems which has been shown to be strongly related to forest mass and energy cycles and forest productivity. LAI is more easily measured than forest productivity, and so a strong relationship between LAI and productivity would be a valuable tool in forest management. While a linear...

  12. Tropical Deforestation in the Bolivian Amazon

    NASA Technical Reports Server (NTRS)

    Tucker, Compton J.; Steininger, Marc K.; Townshend, John R. G.; Killeen, Timothy R.; Desch, Arthur

    2000-01-01

    Landsat satellite images from the mid-1980s and early 1990s were used to map tropical forest extent and deforestation in approximately 800,000 sq km of Amazonian Bolivia. Forest cover extent, including tropical deciduous forest, totalled 472,000 sq km while the area of natural non-forest formations totalled 298,000 sq km. The area deforested totalled 15,000 sq km in the middle 1980s and 28,800 sq km by the early 1990s. The rate of tropical deforestation in the >1,000 mm/y precipitation forest zone of Bolivia was 2,200 sq km/y from 1985-1986 to 1992-1994. We document a spatially-concentrated "deforestation zone" in Santa Cruz Department where >60% of the Bolivian deforestation is occurring at an accelerating rate in areas of tropical deciduous dry forest.

  13. Incubation of air-pollution-control residues from secondary Pb smelter in deciduous and coniferous organic soil horizons: leachability of lead, cadmium and zinc.

    PubMed

    Chrastný, Vladislav; Vaněk, Aleš; Komárek, Michael; Farkaš, Juraj; Drábek, Ondřej; Vokurková, Petra; Němcová, Jana

    2012-03-30

    The leachability of air-pollution-control (APC) residues from a secondary lead smelter in organic soil horizons (F and H) from a deciduous and a coniferous forest during incubation periods of 0, 3 and 6 months were compared in this work. While the concentration of Pb, Zn and Cd associated with the exchangeable/acid extractable fraction in the horizon F from the coniferous forest was higher compared to the deciduous, significantly lower concentrations in the humified horizon H was found. It is suggested that lower pH and a higher share of fulvic acids fraction (FAs) of solid phase soil organic matter (SOM) in the humified soil horizon H from the coniferous compared to the deciduous forest is responsible for a higher metal association with solid phase SOM and therefore a lower metal leaching in a soil system. From this point of view, the humified soil horizon H from the deciduous forest represents a soil system more vulnerable to Pb, Zn and Cd leaching from APC residues. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Spatial and seasonal variations of leaf area index (LAI) in subtropical secondary forests related to floristic composition and stand characters

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjuan; Xiang, Wenhua; Pan, Qiong; Zeng, Yelin; Ouyang, Shuai; Lei, Pifeng; Deng, Xiangwen; Fang, Xi; Peng, Changhui

    2016-07-01

    Leaf area index (LAI) is an important parameter related to carbon, water, and energy exchange between canopy and atmosphere and is widely applied in process models that simulate production and hydrological cycles in forest ecosystems. However, fine-scale spatial heterogeneity of LAI and its controlling factors have yet to be fully understood in Chinese subtropical forests. We used hemispherical photography to measure LAI values in three subtropical forests (Pinus massoniana-Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L. glaber-Cyclobalanopsis glauca evergreen broadleaved forests) from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were analysed using geostatistical methods and the generalised additive models (GAMs) respectively. Our results showed that LAI values differed greatly in the three forests and their seasonal variations were consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for the three forests measured in January and for the L. glaber-C. glauca forest in April, July, and October. Obvious patch distribution pattern of LAI values occurred in three forests during the non-growing period and this pattern gradually dwindled in the growing season. Stem number, crown coverage, proportion of evergreen conifer species on basal area basis, proportion of deciduous species on basal area basis, and forest types affected the spatial variations in LAI values in January, while stem number and proportion of deciduous species on basal area basis affected the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity, and seasonal variations should be considered for sampling strategy in indirect LAI measurement and application of LAI to simulate functional processes in subtropical forests.

  15. Species-specific effects of Asian and European earthworms on microbial communities in Mid-Atlantic deciduous forests

    USDA-ARS?s Scientific Manuscript database

    Earthworm species with different feeding, burrowing, and/or casting behaviors can lead to distinct microbial communities through complex direct and indirect processes. European earthworm invasion into temperate deciduous forests in North America has been shown to alter microbial biomass in the soil ...

  16. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region

    NASA Astrophysics Data System (ADS)

    Miesel, Jessica R.; Hockaday, William C.; Kolka, Randall K.; Townsend, Philip A.

    2015-06-01

    Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition of postfire SOM. We sampled the forest floor layer (i.e., full organic horizon) and 0-10 cm mineral soil from stands dominated by coniferous (Pinus banksiana Lamb.) or deciduous (Populus tremuloides Michx.) species 1-2 months after the 2011 Pagami Creek wildfire in northern Minnesota. We used solid-state 13C NMR to characterize SOM composition across a gradient of fire severity in both forest cover types. SOM composition was affected by fire, even when no statistically significant losses of total C stocks were evident. The most pronounced differences in SOM composition between burned and unburned reference areas occurred in the forest floor for both cover types. Carbohydrate stocks in forest floor and mineral horizons decreased with severity level in both cover types, whereas pyrogenic C stocks increased with severity in the coniferous forest floor and decreased in only the highest severity level in the deciduous forest floor. Loss of carbohydrate and lignin pools contributed to a decreased SOM stability index and increased decomposition index. Our results suggest that increases in fire severity expected to occur under future climate scenarios may lead to changes in SOM composition and dynamics with consequences for postfire forest recovery and C uptake.

  17. Development of a Site Comparison Index: Southeast Upland Forests

    DTIC Science & Technology

    2007-05-01

    was recorded to 0.1 cm, and only individual trees with a DBH =/> 5 cm were tallied. Pine snags and deciduous snags were also measured. Forty-three... tree species (plus Pine Snags and Deciduous Snags) represent- ing 7031 individuals were identified at the 40 sites, ranging from 1433 Loblolly Pines...of 40 sites. Based on basal areas of 24 tree species (N=6903), pine and deciduous snags. Table 1. Ten forest communities independently

  18. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    PubMed

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  19. Photoprotection related to xanthophyll cycle pigments in epiphytic orchids acclimated at different light microenvironments in two tropical dry forests of the Yucatan Peninsula, Mexico.

    PubMed

    de la Rosa-Manzano, Edilia; Andrade, José Luis; García-Mendoza, Ernesto; Zotz, Gerhard; Reyes-García, Casandra

    2015-12-01

    Epiphytic orchids from dry forests of Yucatán show considerable photoprotective plasticity during the dry season, which depends on leaf morphology and host tree deciduousness. Nocturnal retention of antheraxanthin and zeaxanthin was detected for the first time in epiphytic orchids. In tropical dry forests, epiphytes experience dramatic changes in light intensity: photosynthetic photon flux density may be up to an order of magnitude higher in the dry season compared to the wet season. To address the seasonal changes of xanthophyll cycle (XC) pigments and photosynthesis that occur throughout the year, leaves of five epiphytic orchid species were studied during the early dry, dry and wet seasons in a deciduous and a semi-deciduous tropical forests at two vertical strata on the host trees (3.5 and 1.5 m height). Differences in XC pigment concentrations and photosynthesis (maximum quantum efficiency of photosystem II; F v/F m) were larger among seasons than between vertical strata in both forests. Antheraxanthin and zeaxanthin retention reflected the stressful conditions of the epiphytic microhabitat, and it is described here in epiphytes for the first time. During the dry season, both XC pigment concentrations and photosystem II heat dissipation of absorbed energy increased in orchids in the deciduous forest, while F v/F m and nocturnal acidification (ΔH(+)) decreased, clearly as a response to excessive light and drought. Concentrations of XC pigments were higher than those in orchids with similar leaf shape in semi-deciduous forest. There, only Encyclia nematocaulon and Lophiaris oerstedii showed somewhat reduced F v/F m. No changes in ΔH(+) and F v/F m were detected in Cohniella ascendens throughout the year. This species, which commonly grows in forests with less open canopies, showed leaf tilting that diminished light interception. Light conditions in the uppermost parts of the canopy probably limit the distribution of epiphytic orchids and the retention of zeaxanthin can help to cope with light and drought stress in these forests during the dry season.

  20. Millennial-scale variability in vegetation records from the East Asian Islands: Taiwan, Japan and Sakhalin

    NASA Astrophysics Data System (ADS)

    Takahara, Hikaru; Igarashi, Yaeko; Hayashi, Ryoma; Kumon, Fujio; Liew, Ping-Mei; Yamamoto, Masanobu; Kawai, Sayuri; Oba, Tadamichi; Irino, Tomohisa

    2010-10-01

    High-resolution pollen records from Taiwan, Japan and Sakhalin document regional vegetation changes during Dansgaard-Oeschger (D-O) cycles during the last glacial. During the period from the cold phase (GS 18/19) to warm phase (D-O 19), the biome shift from temperate conifer forest to cold/cool conifer forest in Japan and from subtropical forest to temperate deciduous/conifer forest in Taiwan. The vegetation in D-O 17, cool mixed forest in central Japan, temperate deciduous broadleaf forest in western Japan and subtropical forest in Taiwan, indicates warm condition but not wet in all area. These vegetation changes lead to biome shift from MIS (Marine Isotope Stage) 4 to MIS 3. The abundance of Cryptomeria japonica and Fagus crenata in D-O 12 and D-O 8 indicates wet conditions brought by the strong summer monsoon through the Islands and high snowfall brought by the inflow of the Tsushima Warm Current into the Sea of Japan. The registration of other D-O warming events in MIS 3, although reflected by shifts in the abundance of key species, is not sufficient to produce changes in biomes. Development of cold deciduous forest in HS (Heinrich events) 1 in Sakhalin, Hokkaido and central Japan was conspicuous and was much larger than that in YD. Vegetation response in YD was small scale and within the same biome in the East Asian Islands. In D-O 1 at the termination of the last glacial, the same taxa that developed in the early Holocene, cold evergreen needleleaf trees in northern region, temperate deciduous broadleaf trees in central and western Japan, and warm-temperate evergreen trees in Taiwan, increased.

  1. Monitoring boreal forest leaf area index across a Siberian burn chronosequence: a MODIS validation study

    USGS Publications Warehouse

    Cheng, X.; Vierling, Lee; Deering, D.; Conley, A.

    2005-01-01

    Landscapes containing differing amounts of ecological disturbance provide an excellent opportunity to validate and better understand the emerging Moderate Resolution Imaging Spectrometer (MODIS) vegetation products. Four sites, including 1‐year post‐fire coniferous, 13‐year post‐fire deciduous, 24‐year post‐fire deciduous, and >100 year old post‐fire coniferous forests, were selected to serve as a post‐fire chronosequence in the central Siberian region of Krasnoyarsk (57.3°N, 91.6°E) with which to study the MODIS leaf area index (LAI) and vegetation index (VI) products. The collection 4 MODIS LAI product correctly represented the summer site phenologies, but significantly underestimated the LAI value of the >100 year old coniferous forest during the November to April time period. Landsat 7‐derived enhanced vegetation index (EVI) performed better than normalized difference vegetation index (NDVI) to separate the deciduous and conifer forests, and both indices contained significant correlation with field‐derived LAI values at coniferous forest sites (r 2 = 0.61 and r 2 = 0.69, respectively). The reduced simple ratio (RSR) markedly improved LAI prediction from satellite measurements (r 2 = 0.89) relative to NDVI and EVI. LAI estimates derived from ETM+ images were scaled up to evaluate the 1 km resolution MODIS LAI product; from this analysis MODIS LAI overestimated values in the low LAI deciduous forests (where LAI<5) and underestimated values in the high LAI conifer forests (where LAI>6). Our results indicate that further research on the MODIS LAI product is warranted to better understand and improve remote LAI quantification in disturbed forest landscapes over the course of the year.

  2. Mercury in leaf litter in typical suburban and urban broadleaf forests in China.

    PubMed

    Niu, Zhenchuan; Zhang, Xiaoshan; Wang, Zhangwei; Ci, Zhijia

    2011-01-01

    To study the role of leaf litter in the mercury (Hg) cycle in suburban broadleaf forests and the distribution of Hg in urban forests, we collected leaf litter and soil from suburban evergreen and deciduous broadleaf forests and from urban forests in Beijing. The Hg concentrations in leaf litter from the suburban forests varied from 8.3 to 205.0 ng/g, with an average (avg) of (49.7 +/- 36.9) ng/g. The average Hg concentration in evergreen broadleaf forest leaf litter (50.8 + 39.4) ng/g was higher than that in deciduous broadleaf forest leaf litter (25.8 +/- 10.1) ng/g. The estimated Hg fluxes of leaf litter in suburban evergreen and deciduous broadleaf forests were 179.0 and 83.7 mg/(ha x yr), respectively. The Hg concentration in organic horizons (O horizons) ((263.1 +/- 237.2) ng/g) was higher than that in eluvial horizons (A horizons) ((83.9 +/- 52.0) ng/g). These results indicated that leaf litterfall plays an important role in transporting atmospheric mercury to soil in suburban forests. For urban forests in Beijing, the Hg concentrations in leaf litter ranged from 8.8-119.0 (avg 28.1 +/- 16.6) ng/g, with higher concentrations at urban sites than at suburban sites for each tree. The Hg concentrations in surface soil in Beijing were 32.0-25300.0 ng/g and increased from suburban sites to urban sites, with the highest value from Jingshan (JS) Park at the centre of Beijing. Therefore, the distribution of Hg in Beijing urban forests appeared to be strongly influenced by anthropogenic activities.

  3. Forest Restoration in China: Advances, Obstacles, and Perspectives

    Treesearch

    Hai Ren; Hongfang Lu; Jun Wang; Nan Liu; Qinfeng Guo

    2012-01-01

    Because of the prolonged history of disturbance caused by intense human activities, restoration in China has been a major task facing many ecologists and land managers. There are six major forest types in China: cold temperate coniferous forest, temperate coniferous and broad-leaved mixed forest, warm temperate deciduous broad-leaved forest, subtropical evergreen broad...

  4. Persistent and pervasive compositional shifts of western boreal forest plots in Canada.

    PubMed

    Searle, Eric B; Chen, Han Y H

    2017-02-01

    Species compositional shifts have important consequences to biodiversity and ecosystem function and services to humanity. In boreal forests, compositional shifts from late-successional conifers to early-successional conifers and deciduous broadleaves have been postulated based on increased fire frequency associated with climate change truncating stand age-dependent succession. However, little is known about how climate change has affected forest composition in the background between successive catastrophic fires in boreal forests. Using 1797 permanent sample plots from western boreal forests of Canada measured from 1958 to 2013, we show that after accounting for stand age-dependent succession, the relative abundances of early-successional deciduous broadleaves and early-successional conifers have increased at the expense of late-successional conifers with climate change. These background compositional shifts are persistent temporally, consistent across all forest stand ages and pervasive spatially across the region. Rising atmospheric CO 2 promoted early-successional conifers and deciduous broadleaves, and warming increased early-successional conifers at the expense of late-successional conifers, but compositional shifts were not associated with climate moisture index. Our results emphasize the importance of climate change on background compositional shifts in the boreal forest and suggest further compositional shifts as rising CO 2 and warming will continue in the 21st century. © 2016 John Wiley & Sons Ltd.

  5. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment

    Treesearch

    M. Mazur; C.P.J. Mitchell; C.S. Eckley; S.L. Eggert; R.K. Kolka; S.D. Sebestyen; E.B. Swain

    2014-01-01

    Forest harvesting leads to changes in soil moisture, temperature and incident solar radiation, all strong environmental drivers of soil-air mercury (Hg) fluxes. Whether different forest harvesting practices significantly alter Hg fluxes from forest soils is unknown.We conducted a field-scale experiment in a northern Minnesota deciduous forest wherein gaseous Hg...

  6. Assessing ecosystem restoration alternatives in eastern deciduous forests: the view from belowground

    Treesearch

    Ralph E.J. Boerner; Adam T. Coates; Daniel A. Yaussy; Thomas A. Waldrop

    2008-01-01

    Both structural and functional approaches to restoration of eastern deciduous forests are becoming more common as recognition of the altered state of these ecosystems grows. In our study, structural restoration involves mechanically modifying the woody plant assemblage to a species composition, density, and community structure specified by the restoration goals....

  7. Forest Dynamics in the Eastern Ghats of Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Jayakumar, S.; Ramachandran, A.; Bhaskaran, G.; Heo, J.

    2009-02-01

    The primary deciduous forests in the Eastern Ghats (EG) of Tamil Nadu (TN) India have undergone many changes owing to various need-based forest managements, such as timber extraction for industry, railway sleepers, charcoal, and forest clearance for hydroelectric projects and agriculture, during preindependence and postindependence periods (i.e., from 1800 to 1980). The enactment of a forest conservation act during the 1980s changed the perception of forest managers from utilization to conservation. This study was taken up to assess the forests dynamics in the EG of TN spatially between 1990 and 2003 and nonspatially between 1900 and the 1980s. Landsat Thematic Mapper (TM) and Indian Remote Sensing satellite (IRS) 1D Linear Imaging and Self Scanning (LISS III) data were used to assess forests during 1990 and 2003, respectively. Field floristic survey and secondary data (such as published literature, floras, books, and forest working plans) were used to assess the forest dynamics in terms of forest type and species composition among the preindependence period, the postindependence period, and the present (i.e., before and after 1980). The satellite data analysis revealed a considerable amount of changes in all forest types during the 13 years. The comparison of species composition and forest types between the past and present revealed that need-based forest management along with anthropogenic activity have altered the primary deciduous forest in to secondary and postextraction secondary forests such as southern thorn and southern thorn scrub forests in the middle [400-900 m above mean sea level (MSL)] and lower slopes (<400 m MSL). However, the evergreen forests present at the upper slope (>900 m MSL) and plateau seemed not to be much affected by the forest management. The changes estimated by the satellite data processing in the major forest types such as evergreen, deciduous, southern thorn, and southern thorn scrub are really alarming because these changes have occurred after the implementation of a forest conservation act. The dependence of local people on forests for various purposes in this region is also considerably high, which might be a key factor for the changes in the forests. The results of this study not only provide an outlook on the present status of the forests and the change trends but also provide the basis for further studies on forests in the EG of TN.

  8. Forest dynamics in the Eastern Ghats of Tamil Nadu, India.

    PubMed

    Jayakumar, S; Ramachandran, A; Bhaskaran, G; Heo, J

    2009-02-01

    The primary deciduous forests in the Eastern Ghats (EG) of Tamil Nadu (TN) India have undergone many changes owing to various need-based forest managements, such as timber extraction for industry, railway sleepers, charcoal, and forest clearance for hydroelectric projects and agriculture, during preindependence and postindependence periods (i.e., from 1800 to 1980). The enactment of a forest conservation act during the 1980s changed the perception of forest managers from utilization to conservation. This study was taken up to assess the forests dynamics in the EG of TN spatially between 1990 and 2003 and nonspatially between 1900 and the 1980s. Landsat Thematic Mapper (TM) and Indian Remote Sensing satellite (IRS) 1D Linear Imaging and Self Scanning (LISS III) data were used to assess forests during 1990 and 2003, respectively. Field floristic survey and secondary data (such as published literature, floras, books, and forest working plans) were used to assess the forest dynamics in terms of forest type and species composition among the preindependence period, the postindependence period, and the present (i.e., before and after 1980). The satellite data analysis revealed a considerable amount of changes in all forest types during the 13 years. The comparison of species composition and forest types between the past and present revealed that need-based forest management along with anthropogenic activity have altered the primary deciduous forest in to secondary and postextraction secondary forests such as southern thorn and southern thorn scrub forests in the middle [400-900 m above mean sea level (MSL)] and lower slopes (<400 m MSL). However, the evergreen forests present at the upper slope (>900 m MSL) and plateau seemed not to be much affected by the forest management. The changes estimated by the satellite data processing in the major forest types such as evergreen, deciduous, southern thorn, and southern thorn scrub are really alarming because these changes have occurred after the implementation of a forest conservation act. The dependence of local people on forests for various purposes in this region is also considerably high, which might be a key factor for the changes in the forests. The results of this study not only provide an outlook on the present status of the forests and the change trends but also provide the basis for further studies on forests in the EG of TN.

  9. Deciduousness in a seasonal tropical forest in western Thailand: interannual and intraspecific variation in timing, duration and environmental cues.

    PubMed

    Williams, Laura J; Bunyavejchewin, Sarayudh; Baker, Patrick J

    2008-03-01

    Seasonal tropical forests exhibit a great diversity of leaf exchange patterns. Within these forests variation in the timing and intensity of leaf exchange may occur within and among individual trees and species, as well as from year to year. Understanding what generates this diversity of phenological behaviour requires a mechanistic model that incorporates rate-limiting physiological conditions, environmental cues, and their interactions. In this study we examined long-term patterns of leaf flushing for a large proportion of the hundreds of tree species that co-occur in a seasonal tropical forest community in western Thailand. We used the data to examine community-wide variation in deciduousness and tested competing hypotheses regarding the timing and triggers of leaf flushing in seasonal tropical forests. We developed metrics to quantify the nature of deciduousness (its magnitude, timing and duration) and its variability among survey years and across a range of taxonomic levels. Tree species varied widely in the magnitude, duration, and variability of leaf loss within species and across years. The magnitude of deciduousness ranged from complete crown loss to no crown loss. Among species that lost most of their crown, the duration of deciduousness ranged from 2 to 21 weeks. The duration of deciduousness in the majority of species was considerably shorter than in neotropical forests with similar rainfall periodicity. While the timing of leaf flushing varied among species, most ( approximately 70%) flushed during the dry season. Leaf flushing was associated with changes in photoperiod in some species and the timing of rainfall in other species. However, more than a third of species showed no clear association with either photoperiod or rainfall, despite the considerable length and depth of the dataset. Further progress in resolving the underlying internal and external mechanisms controlling leaf exchange will require targeting these species for detailed physiological and microclimatic studies.

  10. Geographical and climatic gradients of evergreen versus deciduous broad-leaved tree species in subtropical China: Implications for the definition of the mixed forest.

    PubMed

    Ge, Jielin; Xie, Zongqiang

    2017-06-01

    Understanding climatic influences on the proportion of evergreen versus deciduous broad-leaved tree species in forests is of crucial importance when predicting the impact of climate change on broad-leaved forests. Here, we quantified the geographical distribution of evergreen versus deciduous broad-leaved tree species in subtropical China. The Relative Importance Value index (RIV) was used to examine regional patterns in tree species dominance and was related to three key climatic variables: mean annual temperature (MAT), minimum temperature of the coldest month (MinT), and mean annual precipitation (MAP). We found the RIV of evergreen species to decrease with latitude at a lapse rate of 10% per degree between 23.5 and 25°N, 1% per degree at 25-29.1°N, and 15% per degree at 29.1-34°N. The RIV of evergreen species increased with: MinT at a lapse rate of 10% per °C between -4.5 and 2.5°C and 2% per °C at 2.5-10.5°C; MAP at a lapse rate of 10% per 100 mm between 900 and 1,600 mm and 4% per 100 mm between 1,600 and 2,250 mm. All selected climatic variables cumulatively explained 71% of the geographical variation in dominance of evergreen and deciduous broad-leaved tree species and the climatic variables, ranked in order of decreasing effects were as follows: MinT > MAP > MAT. We further proposed that the latitudinal limit of evergreen and deciduous broad-leaved mixed forests was 29.1-32°N, corresponding with MAT of 11-18.1°C, MinT of -2.5 to 2.51°C, and MAP of 1,000-1,630 mm. This study is the first quantitative assessment of climatic correlates with the evergreenness and deciduousness of broad-leaved forests in subtropical China and underscores that extreme cold temperature is the most important climatic determinant of evergreen and deciduous broad-leaved tree species' distributions, a finding that confirms earlier qualitative studies. Our findings also offer new insight into the definition and distribution of the mixed forest and an accurate assessment of vulnerability of mixed forests to future climate change.

  11. Forest Carbon Storage in the Northern Midwest, USA: A Bottom-Up Scaling Approach Combining Local Meteorological and Biometric Data With Regional Forest Inventories

    NASA Astrophysics Data System (ADS)

    Curtis, P. S.; Gough, C. M.; Vogel, C. S.

    2005-12-01

    Carbon (C) storage increasingly is considered an important part of the economic return of forestlands, making easily parameterized models for assessing current and future C storage important for both ecosystem and money managers. For the deciduous forests of the northern midwest, USA, detailed information relating annual C storage to local site characteristics can be combined with spatially extensive forest inventories to produce simple, robust models of C storage useful at a variety of scales. At the University of Michigan Biological Station (45o35`' N, 84o42`' W) we measured C storage, or net ecosystem production (NEP), in 65 forest stands varying in age, disturbance history, and productivity (site index) using biometric methods, and independently measured net C exchange at the landscape level using meteorological methods. Our biometric and meteorological estimates of NEP converged to within 1% of each other over five years, providing important confirmation of the robustness of these two approaches applied within northern deciduous forests (Gough et al. 2005). We found a significant relationship between NEP, stand age ( A, yrs), and site index ( Is, m), where NEP = 0.134 + 0.022 * (LN[ A* Is]) (r2 = 0.50, P < 0.02). Site index is an integrated measure of site quality, expressed as 50 yr canopy height. We then used stand age and site index data from forests of similar species composition reported in the USDA Forest Inventory and Analysis database (ncrs2.fs.fed.us/4801/fiadb/) to estimate forest C storage at different scales across the upper midwest, Great Lakes region. Model estimates were validated against independent estimates of C storage for other forests in the region. At the local ecosystem-level (~1 km2) C storage averaged 1.52 Mg ha-1 yr-1. Scaling to the two-county area surrounding our meteorological and biometric study sites, average stand age decreased and site index increased, resulting in estimated storage of 1.62 Mg C ha-1 yr-1, or 0.22 Tg C yr-1 in the 1350 km2 of deciduous forest in this area. For the state of Michigan (31,537 km2 of deciduous forest), average uptake was estimated at 1.55 Mg C ha-1 yr-1, or 4.9 Tg C yr-1 total storage. For the three state region encompassing Minnesota, Michigan, and Wisconsin (97,769 km2 of deciduous forest), we estimated average storage in these forests of 1.51 Mg C ha-1 yr-1, or 14.1 Tg C yr-1 total storage. This storage represents ~ 13 % of regional anthropogenic C emissions (US Department of Energy, 2003). This modest rate of C storage by forests in the region may decrease due to changes in forest succession and land-use, and also in response to climate-driven shifts in the balance between photosynthesis and respiration. Gough C.M., Vogel C.S., Schmid H.P., Su H.-B., and Curtis P.S. 2005. Multi-year convergence of biometric and meteorological estimates of forest carbon storage. Agricultural and Forest Meteorology, In Press.

  12. Long and short term changes in the forests of the Cumberland Plateau and Mountains using large scale forest inventory data

    Treesearch

    Christopher M. Oswalt; Andrew J. Hartsell

    2012-01-01

    The Cumberland Plateau and Mountains (CPM) are a significant component of the eastern deciduous forest with biological and cultural resources strongly connected to and dependent upon the forest resources of the region. As a result, continuous inventory and monitoring is critical. The USDA Forest Service Forest Inventory and Analysis (FIA) program has been collecting...

  13. Forest influences on snow accumulation and snowmelt at the Hubbard Brook Experimental Forest, New Hampshire, USA

    Treesearch

    Colin A. Penn; Beverley C. Wemple; John L. Campbell

    2012-01-01

    Many factors influence snow depth, water content and duration in forest ecosystems. The effects of forest cover and canopy gap geometry on snow accumulation has been well documented in coniferous forests of western North America and other regions; however, few studies have evaluated these effects on snowpack dynamics in mixed deciduous forests of the northeastern USA....

  14. Mapping forest functional type in a forest-shrubland ecotone using SPOT imagery and predictive habitat distribution modelling

    USGS Publications Warehouse

    Assal, Timothy J.; Anderson, Patrick J.; Sibold, Jason

    2015-01-01

    The availability of land cover data at local scales is an important component in forest management and monitoring efforts. Regional land cover data seldom provide detailed information needed to support local management needs. Here we present a transferable framework to model forest cover by major plant functional type using aerial photos, multi-date Système Pour l’Observation de la Terre (SPOT) imagery, and topographic variables. We developed probability of occurrence models for deciduous broad-leaved forest and needle-leaved evergreen forest using logistic regression in the southern portion of the Wyoming Basin Ecoregion. The model outputs were combined into a synthesis map depicting deciduous and coniferous forest cover type. We evaluated the models and synthesis map using a field-validated, independent data source. Results showed strong relationships between forest cover and model variables, and the synthesis map was accurate with an overall correct classification rate of 0.87 and Cohen’s kappa value of 0.81. The results suggest our method adequately captures the functional type, size, and distribution pattern of forest cover in a spatially heterogeneous landscape.

  15. Automated Burned Area Delineation Using IRS AWiFS satellite data

    NASA Astrophysics Data System (ADS)

    Singhal, J.; Kiranchand, T. R.; Rajashekar, G.; Jha, C. S.

    2014-12-01

    India is endowed with a rich forest cover. Over 21% of country's area is covered by forest of varied composition and structure. Out of 67.5 million ha of Indian forests, about 55% of the forest cover is being subjected to fires each year, causing an economic loss of over 440 crores of rupees apart from other ecological effects. Studies carried out by Forest Survey of India reveals that on an average 53% forest cover of the country is prone to fires and 6.17% of the forests are prone to severe fire damage. Forest Survey of India in a countrywide study in 1995 estimated that about 1.45 million hectares of forest are affected by fire annually. According to Forest Protection Division of the Ministry of Environment and Forest (GOI), 3.73 million ha of forests are affected by fire annually in India. Karnataka is one of the southern states of India extending in between latitude 110 30' and 180 25' and longitudes 740 10' and 780 35'. As per Forest Survey of India's State of Forest Report (SFR) 2009, of the total geographic area of 191791sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Typical forest fire season in the study area is from February-May with a peak during March-April every year, though sporadic fire episodes occur in other parts of the year sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Significant area of the deciduous forests, scrub and grasslands is prone to recurrent forest fires every year. In this study we evaluate the feasibility of burned area mapping over a large area (Karnataka state, India) using a semi-automated detection algorithm applied to medium resolution multi spectral data from the IRS AWiFS sensor. The method is intended to be used by non-specialist users for diagnostic rapid burnt area mapping.

  16. Variation in throughfall deposition across a deciduous beech (Fagus sylvatica L.) forest edge in Flanders.

    PubMed

    Devlaeminck, Rebecca; De Schrijver, An; Hermy, Martin

    2005-01-20

    Throughfall deposition and canopy exchange of acidifying and eutrophying compounds and major base cations were studied by means of throughfall analysis in a deciduous beech (Fagus sylvatica L.) forest edge in Belgium over a period of 1 year. Throughfall fluxes of Cl(-), NH(4)(+) and Na(+) were significantly elevated at the forest edge compared to the forest interior. As no edge effect on throughfall water volume could be detected, the observed edge enhancement effects were mainly due to dry deposition and canopy exchange patterns. Indeed, there was an elevated dry deposition of Cl(-), Na(+), K(+), Ca(2+) and Mg(2+) up to 50 m from the field/forest border. Within the forest, throughfall and dry deposition of SO(4)(2-) were highly variable and no significant differences were observed between the forest edge and the forest interior. Leaching of K(+) and Ca(2+) was reduced in the forest edge up to a distance of 30 m from the border. The measured nitrogen and acidic depositions far exceeded the current Flemish critical loads with respect to the protection of biodiversity in forests, especially at the forest edge. This points to an urgent need for controlling emissions as well as the need to consider the elevated deposition load in forest edges when calculating the critical loads in forests.

  17. Quantification of soil respiration in forest ecosystems across China

    NASA Astrophysics Data System (ADS)

    Song, Xinzhang; Peng, Changhui; Zhao, Zhengyong; Zhang, Zhiting; Guo, Baohua; Wang, Weifeng; Jiang, Hong; Zhu, Qiuan

    2014-09-01

    We collected 139 estimates of the annual forest soil CO2 flux and 173 estimates of the Q10 value (the temperature sensitivity) assembled from 90 published studies across Chinese forest ecosystems. We analyzed the annual soil respiration (Rs) rates and the temperature sensitivities of seven forest ecosystems, including evergreen broadleaf forests (EBF), deciduous broadleaf forests (DBF), broadleaf and needleleaf mixed forests (BNMF), evergreen needleleaf forests (ENF), deciduous needleleaf forests (DNF), bamboo forests (BF) and shrubs (SF). The results showed that the mean annual Rs rate was 33.65 t CO2 ha-1 year-1 across Chinese forest ecosystems. Rs rates were significantly different (P < 0.001) among the seven forest types, and were significantly and positively influenced by mean annual temperature (MAT), mean annual precipitation (MAP), and actual evapotranspiration (AET); but negatively affected by latitude and elevation. The mean Q10 value of 1.28 was lower than the world average (1.4-2.0). The Q10 values derived from the soil temperature at a depth of 5 cm varied among forest ecosystems by an average of 2.46 and significantly decreased with the MAT but increased with elevation and latitude. Moreover, our results suggested that an artificial neural network (ANN) model can effectively predict Rs across Chinese forest ecosystems. This study contributes to better understanding of Rs across Chinese forest ecosystems and their possible responses to global warming.

  18. Hydrologic response to and recovery from differing silvicultural systems in a deciduous forest landscape with seasonal snow cover

    NASA Astrophysics Data System (ADS)

    Buttle, J. M.; Beall, F. D.; Webster, K. L.; Hazlett, P. W.; Creed, I. F.; Semkin, R. G.; Jeffries, D. S.

    2018-02-01

    Hydrological consequences of alternative harvesting strategies in deciduous forest landscapes with seasonal snow cover have received relatively little attention. Most forest harvesting experiments in landscapes with seasonal snow cover have focused on clearcutting in coniferous forests. Few have examined alternative strategies such as selection or shelterwood cutting in deciduous stands whose hydrologic responses to harvesting may differ from those of conifers. This study presents results from a 31-year examination of hydrological response to and recovery from alternative harvesting strategies in a deciduous forest landscape with seasonal snow cover in central Ontario, Canada. A quantitative means of assessing hydrologic recovery to harvesting is also developed. Clearcutting resulted in increased water year (WY) runoff. This was accompanied by increased runoff in all seasons, with greatest relative increases in Summer. Direct runoff and baseflow from treatment catchments generally increased following harvesting, although annual peak streamflow did not. Largest increases in WY runoff and seasonal runoff as well as direct runoff and baseflow generally occurred in the selection harvest catchment, likely as a result of interception of hillslope runoff by a forest access road and redirection to the stream channel. Hydrologic recovery appeared to begin towards the end of the experimental period for several streamflow metrics but was incomplete for all harvesting strategies 15 years after harvesting. Geochemical tracing indicated that harvesting enhanced the relative importance of surface and near-surface water pathways on catchment slopes for all treatments, with the clearcut catchment showing the most pronounced and prolonged response. Such insights into water partitioning between flow pathways may assist assessments of the ecological and biogeochemical consequences of forest disturbance.

  19. A Model-Data Intercomparison of Carbon Fluxes, Pools, and LAI in the Community Land Model (CLM) and Alternative Carbon Allocation Schemes

    NASA Astrophysics Data System (ADS)

    Montane, F.; Fox, A. M.; Arellano, A. F.; Alexander, M. R.; Moore, D. J.

    2016-12-01

    Carbon (C) allocation to different plant tissues (leaves, stem and roots) remains a central challenge for understanding the global C cycle, as it determines C residence time. We used a diverse set of observations (AmeriFlux eddy covariance towers, biomass estimates from tree-ring data, and Leaf Area Index measurements) to compare C fluxes, pools, and Leaf Area Index (LAI) data with the Community Land Model (CLM). We ran CLM for seven temperate forests in North America (including evergreen and deciduous sites) between 1980 and 2013 using different C allocation schemes: i) standard C allocation scheme in CLM, which allocates C to the stem and leaves as a dynamic function of annual net primary productivity (NPP); ii) two fixed C allocation schemes, one representative of evergreen and the other one of deciduous forests, based on Luyssaert et al. 2007; iii) an alternative C allocation scheme, which allocated C to stem and leaves, and to stem and coarse roots, as a dynamic function of annual NPP, based on Litton et al. 2007. At our sites CLM usually overestimated gross primary production and ecosystem respiration, and underestimated net ecosystem exchange. Initial aboveground biomass in 1980 was largely overestimated for deciduous forests, whereas aboveground biomass accumulation between 1980 and 2011 was highly underestimated for both evergreen and deciduous sites due to the lower turnover rate in the sites than the one used in the model. CLM overestimated LAI in both evergreen and deciduous sites because the Leaf C-LAI relationship in the model did not match the observed Leaf C-LAI relationship in our sites. Although the different C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, one of the alternative C allocation schemes used (iii) gave more realistic stem C/leaf C ratios, and highly reduced the overestimation of initial aboveground biomass, and accumulated aboveground NPP for deciduous forests by CLM. Our results would suggest using different C allocation schemes for evergreen and deciduous forests. It is crucial to improve CLM in the near future to minimize data-model mismatches, and to address some of the current model structural errors and parameter uncertainties.

  20. Analysis on Difference of Forest Phenology Extracted from EVI and LAI Based on PhenoCams

    NASA Astrophysics Data System (ADS)

    Wang, C.; Jing, L.; Qinhuo, L.

    2017-12-01

    Land surface phenology can make up for the deficiency of field observation with advantages of capturing the continuous expression of phenology on a large scale. However, there are some variability in phenological metrics derived from different satellite time-series data of vegetation parameters. This paper aims at assessing the difference of phenology information extracted from EVI and LAI time series. To achieve this, some web-camera sites were selected to analyze the characteristics between MODIS-EVI and MODIS-LAI time series from 2010 to 2014 for different forest types, including evergreen coniferous forest, evergreen broadleaf forest, deciduous coniferous forest and deciduous broadleaf forest. At the same time, satellite-based phenological metrics were extracted by the Logistics algorithm and compared with camera-based phenological metrics. Results show that the SOS and EOS that are extracted from LAI are close to bud burst and leaf defoliation respectively, while the SOS and EOS that are extracted from EVI is close to leaf unfolding and leaf coloring respectively. Thus the SOS that is extracted from LAI is earlier than that from EVI, while the EOS that is extracted from LAI is later than that from EVI at deciduous forest sites. Although the seasonal variation characteristics of evergreen forests are not apparent, significant discrepancies exist in LAI time series and EVI time series. In addition, Satellite- and camera-based phenological metrics agree well generally, but EVI has higher correlation with the camera-based canopy greenness (green chromatic coordinate, gcc) than LAI.

  1. Vegetation Response to Upper Pliocene Glacial/Interglacial Cyclicity in the Central Mediterranean

    NASA Astrophysics Data System (ADS)

    Combourieu-Nebout, Nathalie

    1993-09-01

    New detailed pollen analysis of the lower part of the Upper Pliocene Semaforo section (Crotone, Italy) documents cyclic behavior of vegetation at the beginning of the Northern Hemisphere glaciations. The competition between four vegetation units (subtropical humid forest, deciduous temperate forest, altitudinal coniferous forest, and open xeric assemblage) probably reflects modifications of vegetation belts at this montane site. Several increases in herbaceous open vegetation regularly alternate with subtropical humid forest, which expresses rapid climatic oscillations. The complete temporal succession—deciduous forest (rich in Quercus), followed by subtropical humid forest (Taxodiaceae and Cathaya), then altitudinal coniferous forest ( Tsuga, Cedrus, Abies, and Picea), and finally herbaceous open vegetation (Graminae, Compositae, and Artemisia )—displays the climatic evolution from warm and humid interglaciation to cold and dry glaciation. It also suggests an independent variation of temperature and humidity, the two main climatic parameters. The vegetation history of southern Calabria recorded in the Semaforo section have been correlated with the ∂ 18O signal established in the Atlantic Ocean.

  2. Stemflow acid neutralization capacity in a broadleaved deciduous forest: the role of edge effects.

    PubMed

    Shiklomanov, Alexey N; Levia, Delphis F

    2014-10-01

    Atmospheric deposition is an important pathway for moisture, nutrient, and pollutant exchange among the atmosphere, forest, and soils. Previous work has shown the importance of proximity to the forest edge to chemical fluxes in throughfall, but far less research has considered stemflow. This study examined the difference in acid neutralization capacity (ANC) of stemflow of nineteen Liriodendron tulipifera L. (yellow poplar) trees between the forest edge and interior in a rural area of northeastern Maryland. We measured ANC directly via potentiometric titration. Stemflow from trees at the forest edge was found to have significantly higher and more variable pH and ANC than in the forest interior (p < 0.01). No mathematical trend between ANC and distance to the forest edge was observed, indicating the importance of individual tree characteristics in stemflow production and chemistry. These results reaffirm the importance of stemflow for acid neutralization by deciduous tree species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Retrieval of forest biomass for tropical deciduous mixed forest using ALOS PALSAR mosaic imagery and field plot data

    NASA Astrophysics Data System (ADS)

    Ningthoujam, Ramesh K.; Joshi, P. K.; Roy, P. S.

    2018-07-01

    Tropical forest is an important ecosystem rich in biodiversity and structural complexity with high woody biomass content. Longer wavelength radar data at L-band sensor provides improved forest biomass (AGB) information due to its higher penetration level and sensitivity to canopy structure. The study presents a regression based woody biomass estimation for tropical deciduous mixed forest dominated by Shorea robusta using ALOS PALSAR mosaic (HH, HV) and field data at the lower Himalayan belt of Northern India. For the purpose of understanding the scattering mechanisms at L-band from this forest type, Michigan Microwave Canopy Scattering model (MIMICS-I) was parameterized with field data to simulate backscatter across polarization and incidence range. Regression analysis between field measured forest biomass and L-band backscatter data from PALSAR mosaic show retrieval of woody biomass up to 100 Mg ha-1 with error between 92 and 94 Mg ha-1 and coefficient of determination (r2) between 0.53 and 0.55 for HH and HH + HV polarized channel at 0.25 ha resolution. This positive relationship could be due to strong volume scattering from ground/trunk interaction at HH-polarized while in combination with direct canopy scattering for HV-polarization at ALOS specific incidence angles as predicted by MIMICS-I model. This study has found that L-band SAR data from currently ALOS-1/-2 and upcoming joint NASA-ISRO SAR (NISAR) are suitable for mapping forest biomass ≤100 Mg ha-1 at 25 m resolution in far incidence range in dense deciduous mixed forest of Northern India.

  4. AmeriFlux US-WCr Willow Creek

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Ankur

    This is the AmeriFlux version of the carbon flux data for the site US-WCr Willow Creek. Site Description - Upland decduous broadleaf forest. Mainly sugar maple, also basswood. Uniform stand atop a very modest hill. Clearcut approximately 80 years ago. Chosen to be representative of the upland deciduous broadleaf forests within the WLEF tall tower flux footprint. It appears to be more heavily forested and more productive than most of the upland deciduous broadleaf forests in the WLEF flux footprint (see publications for more details). It is also important that SE winds are screened from the flux data (see Cookmore » et al, 2004 for details). Propane generator power.« less

  5. Ouragans et diversité biologique dans les forêts tropicales. L'exemple de la Guadeloupe

    NASA Astrophysics Data System (ADS)

    Imbert, Daniel; Roustéau, Alain; Labbé, Patrick

    1998-06-01

    In this work, we consider the role played by hurricanes in the maintenance of high biodiversity, ,and we look at how biodiversity may influence the response of tropical forest ecosystems to hurricane disturbances. After hurricane Hugo struck Guadeloupe in 1989, we started a comparative study on the resistance and the resilience of the rain forest, the semi-deciduous forest and the mangrove forest. It appeared that the resistance of these forests was positively linked to their diversity, which was assessed both through flora richness and structure complexity (resultin from the variety of life forms). Examples of species specific resistance or vulnerability occur in the three forests; however, the higher the ecosystem diversity, the fewer and the weaker they are. Abundant species tend to be less vulnerable than others — at least in the rain forest and in the semi-deciduous forest. Forest recovery operates mainly through pre-existing individuals (surviving trees, coppicing stumps, saplings or seedlings). Pioneer species may slightly and temporarily benefit from large openings, especially in the rain forest. Strong recurrence of hurricanes may lead to the extinction of some rare, vulnerable, short-range disseminating, non pioneer species.

  6. Measuring and Modeling the Effects of Alternate Post-Fire Successional Trajectories on Boreal Forest Carbon Dynamics

    NASA Astrophysics Data System (ADS)

    Loranty, M. M.; Goetz, S. J.; Mack, M. C.; Alexander, H. D.; Beck, P. S.

    2011-12-01

    High latitude ecosystems are experiencing amplified climate warming, and recent evidence suggests concurrent intensification of fire disturbance regimes. In central Alaskan boreal forests, severe burns consume more of the soil organic layer, resulting in increased establishment of deciduous seedlings and altered post-fire stand composition with increased deciduous dominance. Quantifying differences in ecosystem carbon (C) dynamics between forest successional trajectories in response to burn severity is essential for understanding potential changes in regional or global feedbacks between boreal forests and climate. We used the Biome BioGeochemical Cycling model (Biome-BGC) to quantify differences in C stocks and fluxes associated with alternate post-fire successional trajectories related to fire severity. A version of Biome-BGC that allows alternate competing vegetation types was calibrated against a series of aboveground biomass observations from chronosequences of stands with differing post-fire successional trajectories characterized by the proportion of deciduous biomass. The model was able to reproduce observed patterns of biomass accumulation after fire, with stands dominated by deciduous species sequestering more C at a faster rate than stands dominated by conifers. Modeled C fluxes suggest that stands dominated by deciduous species are a stronger sink of atmospheric C soon after disturbance than coniferous stands. These results agree with the few available C flux observations. We use a historic database in conjunction with a map of deciduous canopy cover to explore the consequences of ongoing and potential future changes in the fire regime on central Alaskan C balance.

  7. The affection of boreal forest changes on imbalance of Nature (Invited)

    NASA Astrophysics Data System (ADS)

    Tana, G.; Tateishi, R.

    2013-12-01

    Abstract: The balance of nature does not exist, and, perhaps, never has existed [1]. In other words, the Mother Nature is imbalanced at all. The Mother Nature is changing every moment and never returns to previous condition. Because of the imbalance of nature, global climate has been changing gradually. To reveal the imbalance of nature, there is a need to monitor the dynamic changes of the Earth surface. Forest cover and forest cover change have been grown in importance as basic variables for modelling of global biogeochemical cycles as well as climate [2]. The boreal area contains 1/3 of the earth's trees. These trees play a large part in limiting harmful greenhouse gases by aborbing much of the earth's carbon dioxide (CO2) [3]. The boreal area mainly consists of needleleaf evergreen forest and needleleaf deciduous forest. Both of the needleleaf evergreen forest and needleleaf deciduous forest play the important roles on the uptake of CO2. However, because of the dormant period of needleleaf evergreen forest are shorter than that of needleleaf deciduous forest, needleleaf evergreen forest makes a greater contribution to the absorbtion of CO2. Satellite sensor because of its ability to observe the Earth continuously, can provide the opportunity to monitor the dynamic changes of the Earth. In this study, we used the MODerate resolution Imaging Spectroradiometer (MODIS) satellite data to monitor the dynamic change of boreal forest area which are mainly consist from needleleaf evergreen forest and needleleaf deciduous forest during 2003-2012. Three years MODIS data from the year 2003, 2008 and 2012 were used to detect the forest changed area. A hybrid change detection method which combines the threshold method and unsupervised classification method was used to detect the changes of forest area. In the first step, the difference of Normalized Difference Vegetation Index (NDVI) of the three years were calculated and were used to extract the changed areas by the threshold method. In the second step, the unsupervised classification method was used to classify and analyze detected change areas derived from the first step. Finally, the changed area were validated using the traning data collected for the three years. The validation result revealed that the forest in the study area has undergone the area and type changes during 2003-2012. The detailed procedure will be presented in the meeting. References: [1] Elton, C.S. (1930). Animal Ecology and Evolution. New York, Oxford University Press. [2] Potapov, P., Hansen, M. C., Stehman, S. V., Loveland, T. R., Pittman, K. (2008). Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss, Remote Sensing of Environment, 112, 3708-3719. [3] Houghton, R. A. (2003). Why are estimates of the terrestrial carbon balance so different? Global Change Biology, 9, 500-509.

  8. ABOVEGROUND BIOMASS DISTRIBUTION OF US EASTERN HARDWOOD FORESTS AND THE USE OF LARGE TREES AS AN INDICATOR OF FOREST DEVELOPMENT

    EPA Science Inventory

    Past clearing and harvesting of the deciduous hardwood forests of eastern USA released large amount of carbon dioxide into the atmosphere, but through recovery and regrowth these forests are now accumulating atmospheric carbon (C). This study examined quantities and distribution ...

  9. Indiana's forest resource in 2000

    Treesearch

    Thomas L. Schmidt; Manfred E. Mielke; Phillip T. Marshall

    2002-01-01

    Results of the 2000 annual inventory of Indiana show that the previous trend of increasing area of forest land and growing-stock volumes has leveled off. Deciduous species continue to dominate Indiana''s forests, accounting for 96 percent of the total growing-stock volume. Known pests in Indiana''s forests include gypsy moth, eastern tent...

  10. Insect-plant interactions in anthropogenically transformed ecosystems

    Treesearch

    Evgeny V. Kultunov; Victor I. Ponomarev; Sergey I. Fedorenko

    1991-01-01

    Structural and functional changes in forests due to anthropogenic factors have a considerable impact on the interaction of phytophagous insects with the phytocenosis. Many features of these processes have yet to be investigated in the deciduous forest conditions of the forest-steppe zone. We investigated birch forests disturbed by anthropogenic factors in the middle...

  11. Clarifying the role of fire in the deciduous forests of eastern North America: reply to Matlack

    Treesearch

    Michael C. Stambaugh; J. Morgan Varner; Reed F. Noss; Daniel C. Dey; Norman L. Christensen; Robert F. Baldwin; Richard P. Guyette; Brice B. Hanberry; Craig A. Harper; Sam G. Lindblom; Thomas A. Waldrop

    2015-01-01

    Fire is an important disturbance in ecosystems across the eastern deciduous forests of North America (Brose et al. 2014). Matlack (2013) provided an interpretation of historical and contemporary fire in this region. Although we applaud Matlack for correcting simplistic assumptions that fire was ubiquitous and all plant communities need to burn regularly to maintain...

  12. Fire ecology and bird populations in eastern deciduous forests

    Treesearch

    Vanessa L. Artman; Todd F. Hutchinson; Jeffrey D. Brawn; Jeffrey D. Brawn

    2005-01-01

    Eastern deciduous forests are located across the central portion of eastern North America and provide habitat for a wide diversity of bird species. The occurrence of fi re in the region has been associated with the presence of humans for over 10,000 yr. While pre-European fire regimes are poorly understood, fire is widely thought to have promoted and maintained large...

  13. Tree growth, foliar chemistry, and nitrogen cycling across a nitrogen deposition gradient in southern Appalachian deciduous forests

    Treesearch

    Johnny L. Boggs; Steven G. McNulty; Michael J. Gavazzi; Jennifer Moore Myers

    2005-01-01

    The declining health of high-elevation red spruce (Picea rubens Sarg.) and Fraser fir (Abies fraseri (Pursh) Poir.) in the southern Appalachian region has long been linked to nitrogen (N)deposition. Recently, N deposition has also been proposed as a source of negative health impacts in lower elevation deciduous forests. In 1998 we...

  14. Historic disturbance regimes promote tree diversity only under low browsing regimes in eastern deciduous forest

    Treesearch

    Tim Nuttle; Alejandro A. Royo; Mary Beth Adams; Walter P. Carson

    2013-01-01

    Eastern deciduous forests are changing in species composition and diversity outside of classical successional trajectories. Three disturbance mechanisms appear central to this phenomenon: fire frequency is reduced, canopy gaps are smaller, and browsers are more abundant. Which factor is most responsible is a matter of great debate and remains unclear, at least partly...

  15. Vegetation responses to interglacial warming in the Arctic, examples from Lake El'gygytgyn, northeast Siberia

    NASA Astrophysics Data System (ADS)

    Lozhkin, A. V.; Anderson, P. M.

    2013-01-01

    Palynological data from Lake El'gygytgyn reveal responses of plant communities to a range of climatic conditions that can help assess the possible impact of global warming on arctoboreal ecosystems. Vegetation associated with climatic optima suggests two types of interglacial responses: one is dominated by deciduous taxa (the postglacial thermal maximum (PGTM) and marine isotope stage (MIS5)) and the second by evergreen conifers (MIS11, MIS31). The MIS11 forests show a similarity to Picea-Larix-Betula-Alnus forests of Siberia. While dark coniferous forest also characterizes MIS31, the pollen taxa show an affinity to the modern boreal forest of the lower Amur valley in the Russian Far East. Despite vegetation differences during the thermal maxima, all four glacial-interglacial transitions are alike, being dominated by deciduous woody taxa. Initially Betula shrub tundra established and was replaced by tundra with tree-sized shrubs (PGTM), Betula woodland (MIS5), or Betula-Larix (MIS11, MIS31) forest. The consistent occurrence of deciduous forest and/or high shrub tundra in all interglaciations as they approach or achieve maximum warmth underscores the significance of this biome for modeling efforts. The El'gygytgyn data also suggest the possible elimination or massive reduction of arctic plant communities under extreme warm-earth scenarios.

  16. Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe)

    NASA Astrophysics Data System (ADS)

    Feurdean, Angelica; Veski, Siim; Florescu, Gabriela; Vannière, Boris; Pfeiffer, Mirjam; O'Hara, Robert B.; Stivrins, Normunds; Amon, Leeli; Heinsalu, Atko; Vassiljev, Jüri; Hickler, Thomas

    2017-08-01

    Disturbances by fire are essential for the functioning of boreal/hemiboreal forests, but knowledge of long-term fire regime dynamics is limited. We analysed macrocharcoal morphologies and pollen of a sediment record from Lake Lielais Svētiņu (eastern Latvia), and in conjunction with fire traits analysis present the first record of Holocene variability in fire regime, fuel sources and fire types in boreal forests of the Baltic region. We found a phase of moderate to high fire activity during the cool and moist early (mean fire return interval; mFRI of ∼280 years; 11,700-7500 cal yr BP) and the late (mFRI of ∼190 years; 4500-0 cal yr BP) Holocene and low fire activity (mFRI of ∼630 years) during the Holocene Thermal Optimum (7500-4500 cal yr BP). Charcoal morphotypes and the pollen record show the predominance of frequent surface fires, occasionally transitioning to the crown during Pinus sylvestris-Betula boreal forests and less frequent surface fires during the dominance of temperate deciduous forests. In contrast to the prevailing opinion that fires in boreal forests are mostly low to moderate severity surface fires, we found evidence for common occurrence of stand-replacing crown fires in Picea abies canopy. Our results highlight that charcoal morphotypes analysis allows for distinguishing the fuel types and surface from crown fires, therefore significantly advancing our interpretation of fire regime. Future warmer temperatures and increase in the frequency of dry spells and abundant biomass accumulation can enhance the fire risk on the one hand, but will probably promote the expansion of broadleaf deciduous forests to higher latitudes, on the other hand. By highlighting the capability of broadleaf deciduous forests to act as fire-suppressing landscape elements, our results suggest that fire activity may not increase in the Baltic area under future climate change.

  17. Vulnerability of forest vegetation to anthropogenic climate change in China.

    PubMed

    Wan, Ji-Zhong; Wang, Chun-Jing; Qu, Hong; Liu, Ran; Zhang, Zhi-Xiang

    2018-04-15

    China has large areas of forest vegetation that are critical to biodiversity and carbon storage. It is important to assess vulnerability of forest vegetation to anthropogenic climate change in China because it may change the distributions and species compositions of forest vegetation. Based on the equilibrium assumption of forest communities across different spatial and temporal scales, we used species distribution modelling coupled with endemics-area relationship to assess the vulnerability of 204 forest communities across 16 vegetation types under different climate change scenarios in China. By mapping the vulnerability of forest vegetation to climate change, we determined that 78.9% and 61.8% of forest vegetation should be relatively stable in the low and high concentration scenarios, respectively. There were large vulnerable areas of forest vegetation under anthropogenic climate change in northeastern and southwestern China. The vegetation of subtropical mixed broadleaf evergreen and deciduous forest, cold-temperate and temperate mountains needleleaf forest, and temperate mixed needleleaf and broadleaf deciduous forest types were the most vulnerable under climate change. Furthermore, the vulnerability of forest vegetation may increase due to high greenhouse gas concentrations. Given our estimates of forest vegetation vulnerability to anthropogenic climate change, it is critical that we ensure long-term monitoring of forest vegetation responses to future climate change to assess our projections against observations. We need to better integrate projected changes of temperature and precipitation into climate-adaptive conservation strategies for forest vegetation in China. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Study on identifying deciduous forest by the method of feature space transformation

    NASA Astrophysics Data System (ADS)

    Zhang, Xuexia; Wu, Pengfei

    2009-10-01

    The thematic remotely sensed information extraction is always one of puzzling nuts which the remote sensing science faces, so many remote sensing scientists devotes diligently to this domain research. The methods of thematic information extraction include two kinds of the visual interpretation and the computer interpretation, the developing direction of which is intellectualization and comprehensive modularization. The paper tries to develop the intelligent extraction method of feature space transformation for the deciduous forest thematic information extraction in Changping district of Beijing city. The whole Chinese-Brazil resources satellite images received in 2005 are used to extract the deciduous forest coverage area by feature space transformation method and linear spectral decomposing method, and the result from remote sensing is similar to woodland resource census data by Chinese forestry bureau in 2004.

  19. Spatial and temporal trends in distribution of forest fires in Central and Eastern Europe

    Treesearch

    Ryszard Szczygieł; Barbara Ubysz; Tomasz Zawiła-Niedźwiecki

    2009-01-01

    Forest in Central and Eastern Europe (CEE) covers 56,285,000 ha (5% of European total forested area). Forest cover in CEE makes 30% of land use. Almost 50% of the forest under study is formed by coniferous species and only 30% by deciduous ones. Forest younger than 60 years old grows on 57% of that area. These factors, together with climate conditions cause that on the...

  20. SRTM-DEM and Landsat ETM+ data for mapping tropical dry forest cover and biodiversity assessment in Nicaragua

    Treesearch

    S.E. Sesnie; S.E. Hagell; S.M. Otterstrom; C.L. Chambers; B.G. Dickson

    2008-01-01

    Tropical dry and deciduous forest comprises as much as 42% of the world’s tropical forests, but has received far less attention than forest in wet tropical areas. Land use change threatens to greatly reduce the extent of dry forest that is known to contain high levels of plant and animal diversity. Forest fragmentation may further endanger arboreal mammals that play...

  1. Hypholoma lateritium isolated from coarse woody debris, the forest floor, and mineral soil in a deciduous forest in New Hampshire

    Treesearch

    Therese A. Thompson; R. Greg Thorn; Kevin T. Smith

    2012-01-01

    Fungi in the Agaricomycetes (Basidiomycota) are the primary decomposers in temperate forests of dead wood on and in the forest soil. Through the use of isolation techniques selective for saprotrophic Agaricomycetes, a variety of wood decay fungi were isolated from a northern hardwood stand in the Bartlett Experimental Forest, New Hampshire, USA. In particular,

  2. Forest in My Neighborhood: An Exercise Using Aerial Photos to Engage Students in Forest Ecology & Land Use History

    ERIC Educational Resources Information Center

    Matlack, Glenn R.; McEwan, Ryan W.

    2008-01-01

    Human activity has profoundly altered the deciduous forest of the eastern United States. Modern forest is a patchwork of stands of varying ages, sizes, and shapes reflecting a complex history of land use. Much modern forest is nestled in and around human communities, and faces the threat of imminent clearance for residential and commercial…

  3. Survey for Armillaria by plant associations in northern Arizona

    Treesearch

    Christ W. Hoffman; Robert L. Mathiasen; Richard W. Hofstetter; Mary Lou Fairweather; John D. Shaw; John W. Hanna; Ned B. Klopfenstein

    2014-01-01

    Fungi in the genus Armillaria are associated with an important disease of deciduous and coniferous trees and shrubs in western North America. This study examined the distribution of Armillaria by forest habitat types on the Kaibab National Forest and northern Coconino National Forest, Arizona. Over 400 trees were examined for Armillaria in 76 Interior West Forest...

  4. Shifts and future trends in the forest resources of the Central Hardwood region

    Treesearch

    Thomas L. Schmidt; William H. McWilliams

    2003-01-01

    Forests in the Central Hardwood region are undergoing change in terms of area, volume, species composition, and forest structure. These forests are dominated by deciduous species; are increasing their average stand size, volume, and age; and, are experiencing woody plant species replacement as shade intolerant species are being replaced by more shade tolerant species....

  5. Shifts and future trends in the forest resources of the Central Hardwood Region

    Treesearch

    Thomas L. Schmidt; William H. McWilliams

    2003-01-01

    Forests in the Central Hardwood region are undergoing change in terms of area, volume, species composition, and forest structure. These forests are dominated by deciduous species; are increasing their average stand size, volume, and age; and, are experiencing woody plant species replacement as shade intolerant species are being replaced by more shade tolerant species....

  6. Conservation assessment for bloodroot in the Black Hills National Forest, South Dakota and Wyoming

    Treesearch

    J. Hope Hornbeck; Carolyn Hull Sieg; Deanna J. Reyher

    2003-01-01

    Bloodroot, Sanguinaria canadensis L. (Papaveraceae), is a common spring flowering herb in the deciduous forests of eastern North America. It is disjunctly distributed in the northeastern Black Hills of South Dakota. There are 22 known occurrences of bloodroot on Black Hills National Forest in hardwood forests, shrub thickets, and floodplain habitats of limited...

  7. Long-term (13 Years) decomposition rates of forest floor organic matter on paired coniferous and deciduous watersheds with contrasting temperature regimes

    Treesearch

    Robert G. Qualls

    2016-01-01

    Two sets of paired watersheds on north and South facing slopes were utilized to simulate the effects of temperature differences that are on the scale of those expected with near-term climatic warming on decomposition. Two watersheds were pine plantations (Pinus strobus L.) and two were mature deciduous forests established at similar elevation...

  8. Effects of seasonal variation of photosynthetic capacity on the carbon fluxes of a temperate deciduous forest

    Treesearch

    David Medvigy; Su-Jong Jeong; Kenneth L. Clark; Nicholas S. Skowronski; Karina V. R. Schäfer

    2013-01-01

    Seasonal variation in photosynthetic capacity is an important part of the overall seasonal variability of temperate deciduous forests. However, it has only recently been introduced in a few terrestrial biosphere models, and many models still do not include it. The biases that result from this omission are not well understood. In this study, we use the Ecosystem...

  9. Soil macroinvertebrate communities across a productivity gradient in deciduous forests of eastern North America

    Treesearch

    Evelyn S. Wenk; Mac A. Callaham; Joseph O' Brien; Paul J. Hanson

    2016-01-01

    Within the temperate, deciduous forests of the eastern US, diverse soil-fauna communities are structured by a combination of environmental gradients and interactions with other biota. The introduction of non-native soil taxa has altered communities and soil processes, and adds another degree of variability to these systems. We sampled soil macroinvertebrate abundance...

  10. Seed morphology, germination phenology, and capacity to form a seed bank in six herbaceous layer apiaceae species of the eastern deciduous forest

    Treesearch

    Tracy S. Hawkins; Jerry M. Baskin; Carol C. Baskin

    2007-01-01

    We compared seed mass, seed morphology, and long-term germination phenology of three monocarpic (MI and three polycarpic (P) Apiaceae species of the herbaceous layer of the Eastern Deciduous Forest. Seeds (mericarps) of the six species differed considerably in mass, shape, and ornamentation. Mean seed masses were ranked Cryptotaenia canadensis (M)...

  11. Dispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes.

    PubMed

    Tautenhahn, Susanne; Lichstein, Jeremy W; Jung, Martin; Kattge, Jens; Bohlman, Stephanie A; Heilmeier, Hermann; Prokushkin, Anatoly; Kahl, Anja; Wirth, Christian

    2016-06-01

    Fire is a primary driver of boreal forest dynamics. Intensifying fire regimes due to climate change may cause a shift in boreal forest composition toward reduced dominance of conifers and greater abundance of deciduous hardwoods, with potential biogeochemical and biophysical feedbacks to regional and global climate. This shift has already been observed in some North American boreal forests and has been attributed to changes in site conditions. However, it is unknown if the mechanisms controlling fire-induced changes in deciduous hardwood cover are similar among different boreal forests, which differ in the ecological traits of the dominant tree species. To better understand the consequences of intensifying fire regimes in boreal forests, we studied postfire regeneration in five burns in the Central Siberian dark taiga, a vast but poorly studied boreal region. We combined field measurements, dendrochronological analysis, and seed-source maps derived from high-resolution satellite images to quantify the importance of site conditions (e.g., organic layer depth) vs. seed availability in shaping postfire regeneration. We show that dispersal limitation of evergreen conifers was the main factor determining postfire regeneration composition and density. Site conditions had significant but weaker effects. We used information on postfire regeneration to develop a classification scheme for successional pathways, representing the dominance of deciduous hardwoods vs. evergreen conifers at different successional stages. We estimated the spatial distribution of different successional pathways under alternative fire regime scenarios. Under intensified fire regimes, dispersal limitation of evergreen conifers is predicted to become more severe, primarily due to reduced abundance of surviving seed sources within burned areas. Increased dispersal limitation of evergreen conifers, in turn, is predicted to increase the prevalence of successional pathways dominated by deciduous hardwoods. The likely fire-induced shift toward greater deciduous hardwood cover may affect climate-vegetation feedbacks via surface albedo, Bowen ratio, and carbon cycling. © 2015 John Wiley & Sons Ltd.

  12. Forest type effects on the retention of radiocesium in organic layers of forest ecosystems affected by the Fukushima nuclear accident

    PubMed Central

    Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa

    2016-01-01

    The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests. PMID:27974832

  13. Forest type effects on the retention of radiocesium in organic layers of forest ecosystems affected by the Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa

    2016-12-01

    The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests.

  14. The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest.

    PubMed

    Abd Latif, Zulkiflee; Blackburn, George Alan

    2010-03-01

    The creation of gaps can strongly influence forest regeneration and habitat diversity within forest ecosystems. However, the precise characteristics of such effects depend, to a large extent, upon the way in which gaps modify microclimate and soil water content. Hence, the aim of this study was to understand the effects of gap creation and variations in gap size on forest microclimate and soil water content. The study site, in North West England, was a mixed temperate broadleaved deciduous forest dominated by mature sessile oak (Quercus petraea), beech (Fagus sylvatica) and ash (Fraxinus excelsior) with some representatives of sycamore (Acer pseudoplatanus). Solar radiation (I), air temperature (T(A)), soil temperature (T(S)), relative humidity (h), wind speed (v) and soil water content (Psi) were measured at four natural treefall gaps created after a severe storm in 2006 and adjacent sub-canopy sites. I, T(A), T(S), and Psi increased significantly with gap size; h was consistently lower in gaps than the sub-canopy but did not vary with gap size, while the variability of v could not be explained by the presence or size of gaps. There were systematic diurnal patterns in all microclimate variables in response to gaps, but no such patterns existed for Psi. These results further our understanding of the abiotic and consequent biotic responses to gaps in broadleaved deciduous forests created by natural treefalls, and provide a useful basis for evaluating the implications of forest management practices.

  15. Disturbance, complexity, and succession of net ecosystem production in North America’s temperate deciduous forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gough, Christopher; Curtis, Peter; Hardiman, Brady

    Century-old forests in the U.S. upper Midwest and Northeast power much of North Amer- ica’s terrestrial carbon (C) sink, but these forests’ production and C sequestration capacity are expected to soon decline as fast-growing early successional species die and are replaced by slower growing late successional species. But will this really happen? Here we marshal empirical data and ecological theory to argue that substantial declines in net ecosystem production (NEP) owing to reduced forest growth, or net primary production (NPP), are not imminent in regrown temperate deciduous forests over the next several decades. Forest age and production data for temperatemore » deciduous forests, synthesized from published literature, suggest slight declines in NEP and increasing or stable NPP during middle successional stages. We revisit long-held hypotheses by EP Odum and others that suggest low-severity, high-frequency disturbances occurring in the region’s aging forests will, against intuition, maintain NEP at higher-than- expected rates by increasing ecosystem complexity, sustaining or enhancing NPP to a level that largely o sets rising C losses as heterotrophic respiration increases. This theoretical model is also supported by biological evidence and observations from the Forest Accelerated Succession Experiment in Michigan, USA. Ecosystems that experience high-severity disturbances that simplify ecosystem complexity can exhibit substantial declines in production during middle stages of succession. However, observations from these ecosystems have exerted a disproportionate in uence on assumptions regarding the trajectory and magnitude of age-related declines in forest production. We conclude that there is a wide ecological space for forests to maintain NPP and, in doing so, lessens the declines in NEP, with signi cant implications for the future of the North American carbon sink. Our intellectual frameworks for understanding forest C cycle dynamics and resilience need to catch up to our more complex and nuanced understanding of ecological succession.« less

  16. VOLATILE ORGANIC COMPOUND EMISSION RATES FROM MIXED DECIDUOUS AND CONIFEROUS FORESTS IN NORTHERN WISCONSIN, USA

    EPA Science Inventory

    Biogenic emissions of volatile organic compounds (VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regio...

  17. Simulation of regional temperature change effect of land cover change in agroforestry ecotone of Nenjiang River Basin in China

    NASA Astrophysics Data System (ADS)

    Liu, Tingxiang; Zhang, Shuwen; Yu, Lingxue; Bu, Kun; Yang, Jiuchun; Chang, Liping

    2017-05-01

    The Northeast China is one of typical regions experiencing intensive human activities within short time worldwide. Particularly, as the significant changes of agriculture land and forest, typical characteristics of pattern and process of agroforestry ecotone change formed in recent decades. The intensive land use change of agroforestry ecotone has made significant change for regional land cover, which had significant impact on the regional climate system elements and the interactions among them. This paper took agroforestry ecotone of Nenjiang River Basin in China as study region and simulated temperature change based on land cover change from 1950s to 1978 and from 1978 to 2010. The analysis of temperature difference sensitivity to land cover change based on Weather Research and Forecasting (WRF) model showed that the land cover change from 1950s to 1978 induced warming effect over all the study area, including the change of grassland to agriculture land, grassland to deciduous broad-leaved forest, and deciduous broad-leaved forest to shrub land. The land cover change from 1978 to 2010 induced cooling effect over all the study area, including the change of deciduous broad-leaved forest to agriculture land, grassland to agriculture land, shrub land to agriculture land, and deciduous broad-leaved forest to grassland. In addition, the warming and cooling effect of land cover change was more significant in the region scale than specific land cover change area.

  18. Analyzing remote sensing geobotanical trends in Quetico Provincial Park, Ontario, Canada, using digital elevation data

    NASA Technical Reports Server (NTRS)

    Warner, Timothy A.; Campagna, David J.; Levandowski, Don W.; Cetin, Haluk; Evans, Carla S.

    1991-01-01

    A 10 x 13-km area in Quetico Provincial Park, Canada has been studied using a digital elevation model to separate different drainage classes and to examine the influence of site factors and lithology on vegetation. Landsat Thematic Mapper data have been classified into six forest classes of varying deciduous-coniferous cover through nPDF, a procedure based on probability density functions. It is shown that forests growing on mafic lithologies are enriched in deciduous species, compared to those growing on granites. Of the forest classes found on mafics, the highest coniferous component was on north facing slopes, and the highest deciduous component on south facing slopes. Granites showed no substantial variation between site classes. The digital elevation derived site data is considered to be an important tool in geobotanical investigations.

  19. Vegetation responses to interglacial warming in the Arctic: examples from Lake El'gygytgyn, Far East Russian Arctic

    NASA Astrophysics Data System (ADS)

    Lozhkin, A. V.; Anderson, P. M.

    2013-06-01

    Preliminary analyses of Lake El'gygytgyn sediment indicate a wide range of ecosystem responses to warmer than present climates. While palynological work describing all interglacial vegetation is ongoing, sufficient data exist to compare recent warm events (the postglacial thermal maximum, PGTM, and marine isotope stage, MIS5) with "super" interglaciations (MIS11, MIS31). Palynological assemblages associated with these climatic optima suggest two types of vegetation responses: one dominated by deciduous taxa (PGTM, MIS5) and the second by evergreen conifers (MIS11, MIS31). MIS11 forests show a similarity to modern Picea-Larix-Betula-Alnus forests of Siberia. While dark coniferous forest also characterizes MIS31, the pollen taxa show an affinity to the boreal forest of the lower Amur valley (southern Russian Far East). Despite vegetation differences during these thermal maxima, all glacial-interglacial transitions are alike, being dominated by deciduous woody taxa. Initially Betula shrub tundra established and was replaced by tundra with tree-sized shrubs (PGTM), Betula woodland (MIS5), or Betula-Larix (MIS11, MIS31) forest. The consistent occurrence of deciduous forest and/or high shrub tundra before the incidence of maximum warmth underscores the importance of this biome for modeling efforts. The El'gygytgyn data also suggest a possible elimination or massive reduction of Arctic plant communities under extreme warm-earth scenarios.

  20. The Abundance of Salamanders in Forest Stands with Different Histories of Disturbance

    Treesearch

    F. Harvey Pough; Donald H. Rhodes; Andres Collazo

    1987-01-01

    Because of the importance of salamanders in forest food chains, the effects of forest management practices on populations of these animals warrant consideration. We compared the numbers and activity patterns of salamanders in areas of a deciduous forest in central New York State that had been cut selectively for firewood, or c1earcut, or planted with conifers. Numbers...

  1. Will more nitrogen enhance carbon storage in young forest stands in central Appalachia?

    Treesearch

    Zachariah K. Fowler; Mary Beth Adams; William T. Peterjohn

    2015-01-01

    Many temperate deciduous forests in the Eastern US are secondary, regrowing forests and have experienced decades of elevated inputs of acidic compounds and biologically available nitrogen (N) from the atmosphere. These young forests play an important role in the global carbon (C) cycle as C sinks, and it is possible that acidic deposition will influence the strength...

  2. Spread of an invasive grass in closed-canopy deciduous forests across local and regional environmental gradients

    Treesearch

    Cynthia D. Huebner

    2010-01-01

    Spread of Microstegium vimineum, an invasive exotic grass, in closed-canopy forests of West Virginia, U.S. was evaluated across a local (roadside to forest interior) and regional (across two geographic provinces) environmental gradient. Seed dispersal distances from roadside populations into forest interiors based on seed rain and soil seed bank data...

  3. Seed longevity and dormancy state suggest management strategies for garlic mustard (Alliaria petiolata) and Japanese stiltgrass (Microstegium vimineum) in deciduous forest sites

    Treesearch

    Mame E. Redwood; Glenn R. Matlack; Cynthia D. Huebner

    2018-01-01

    An effective management plan for invasive herb populations must consider the potential for regeneration from the soil seedbank. To test chis potential, we examined two species, Japanese scilcgrass and garlic mustard, at deciduous forest sites in southeastern Ohio. Seeds were buried in nylon mesh bags and recovered at regular intervals over 24 mo. Recovered seeds were...

  4. Moose habitat in Massachusetts: Assessing use at the southern edge of the range

    USGS Publications Warehouse

    Wattles, David W.; DeStefano, Stephen

    2013-01-01

    Moose (Alces alces) have recently re-occupied a portion of their range in the temperate deciduous forest of the northeastern United States after a more than 200 year absence. In southern New England, moose are exposed to a variety of forest types, increasing development, and higher ambient temperatures as compared to other parts of their geographic range. Additionally, large-scale disturbances that shape forest structure and expansive naturally occurring shrub-willow communities used commonly elsewhere are lacking. We used utilization distributions to determine third order habitat selection (selection within the home range) of GPS-collared moose. In central Massachusetts, forests regenerating from logging were the most heavily used cover type in all seasons (48 - 63% of core area use). Habitat use of moose in western Massachusetts varied more seasonally, with regenerating forests used most heavily in summer and fall (57 and 46%, respectively), conifer and mixed forests in winter (47 - 65%), and deciduous forests in spring (41%). This difference in habitat selection reflected the transition from northern forest types to more southern forest types across the state. The intensive use of patches of regenerating forest emphasizes the importance of sustainable forest harvesting to moose. This study provides the first assessment of habitat requirements in this southern portion of moose range and provides insights into re-establishment of moose in unoccupied portions of its historic range in New York and Pennsylvania.

  5. Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010

    PubMed Central

    Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhang, Geli; Roy, Partha Sarathi; Joshi, Pawan Kumar; Gilani, Hammad; Murthy, Manchiraju Sri Ramachandra; Jin, Cui; Wang, Jie; Zhang, Yao; Chen, Bangqian; Menarguez, Michael Angelo; Biradar, Chandrashekhar M.; Bajgain, Rajen; Li, Xiangping; Dai, Shengqi; Hou, Ying; Xin, Fengfei; Moore III, Berrien

    2016-01-01

    Extensive forest changes have occurred in monsoon Asia, substantially affecting climate, carbon cycle and biodiversity. Accurate forest cover maps at fine spatial resolutions are required to qualify and quantify these effects. In this study, an algorithm was developed to map forests in 2010, with the use of structure and biomass information from the Advanced Land Observation System (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) mosaic dataset and the phenological information from MODerate Resolution Imaging Spectroradiometer (MOD13Q1 and MOD09A1) products. Our forest map (PALSARMOD50 m F/NF) was assessed through randomly selected ground truth samples from high spatial resolution images and had an overall accuracy of 95%. Total area of forests in monsoon Asia in 2010 was estimated to be ~6.3 × 106 km2. The distribution of evergreen and deciduous forests agreed reasonably well with the median Normalized Difference Vegetation Index (NDVI) in winter. PALSARMOD50 m F/NF map showed good spatial and areal agreements with selected forest maps generated by the Japan Aerospace Exploration Agency (JAXA F/NF), European Space Agency (ESA F/NF), Boston University (MCD12Q1 F/NF), Food and Agricultural Organization (FAO FRA), and University of Maryland (Landsat forests), but relatively large differences and uncertainties in tropical forests and evergreen and deciduous forests. PMID:26864143

  6. Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010.

    PubMed

    Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhang, Geli; Roy, Partha Sarathi; Joshi, Pawan Kumar; Gilani, Hammad; Murthy, Manchiraju Sri Ramachandra; Jin, Cui; Wang, Jie; Zhang, Yao; Chen, Bangqian; Menarguez, Michael Angelo; Biradar, Chandrashekhar M; Bajgain, Rajen; Li, Xiangping; Dai, Shengqi; Hou, Ying; Xin, Fengfei; Moore, Berrien

    2016-02-11

    Extensive forest changes have occurred in monsoon Asia, substantially affecting climate, carbon cycle and biodiversity. Accurate forest cover maps at fine spatial resolutions are required to qualify and quantify these effects. In this study, an algorithm was developed to map forests in 2010, with the use of structure and biomass information from the Advanced Land Observation System (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) mosaic dataset and the phenological information from MODerate Resolution Imaging Spectroradiometer (MOD13Q1 and MOD09A1) products. Our forest map (PALSARMOD50 m F/NF) was assessed through randomly selected ground truth samples from high spatial resolution images and had an overall accuracy of 95%. Total area of forests in monsoon Asia in 2010 was estimated to be ~6.3 × 10(6 )km(2). The distribution of evergreen and deciduous forests agreed reasonably well with the median Normalized Difference Vegetation Index (NDVI) in winter. PALSARMOD50 m F/NF map showed good spatial and areal agreements with selected forest maps generated by the Japan Aerospace Exploration Agency (JAXA F/NF), European Space Agency (ESA F/NF), Boston University (MCD12Q1 F/NF), Food and Agricultural Organization (FAO FRA), and University of Maryland (Landsat forests), but relatively large differences and uncertainties in tropical forests and evergreen and deciduous forests.

  7. Ecology of Missouri Forests. Instructional Unit. Conservation Education Series.

    ERIC Educational Resources Information Center

    Jackson, Jim

    This unit is designed to help science, social studies, vocational agriculture, and other teachers incorporate forest ecology concepts into their subject matter. The unit includes: (1) topic outline; (2) unit objectives; (3) background information on climate and soils, levels of a deciduous forest, age classes, food and energy relationships, forest…

  8. Managing Gambel oak in southwestern ponderosa pine forests: the status of our knowledge

    Treesearch

    Scott R. Abella

    2008-01-01

    Gambel oak (Quercus gambelii) is a key deciduous species in southwestern ponderosa pine (Pinus ponderosa) forests and is important for wildlife habitat, soil processes, and human values. This report (1) summarizes Gambel oak's biological characteristics and importance in ponderosa pine forests, (2) synthesizes literature on...

  9. Carbon exchange and venting anomalies in an upland deciduous forest in northern Wisconsin, USA

    Treesearch

    Bruce D. Cook; Kenneth J. Davis; Weiguo Wang; Ankur Desai; Bradford W. Berger; Ron M. Teclaw; Jonathan G. Martin; Paul V. Bolstad; Peter S. Bakwin; Chuixiang Yi; Warren Heilman

    2004-01-01

    Turbulent fluxes of carbon, water vapor, and temperature were continuously measured above an upland forest in north central Wisconsin during 1999 and 2000 using the eddy covariance method. Maple (Acer saccharum), basswood (Tilia americana), and green ash (Fraxinus pennsylvanica) species found in this forest...

  10. EVALUATION OF FOREST CANOPY MODELS FOR ESTIMATING ISOPRENE EMISSIONS

    EPA Science Inventory

    During the summer of 1992, isoprene emissions were measured in a mixed deciduous forest near Oak Ridge, Tennessee. Measurements were aimed at the experimental scale-up of emissions from the leaf level to the forest canopy to the mixed layer. Results from the scale-up study are co...

  11. Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5) on carbon fluxes, pools, and turnover in temperate forests

    NASA Astrophysics Data System (ADS)

    Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.; MacBean, Natasha; Alexander, M. Ross; Dye, Alex; Bishop, Daniel A.; Trouet, Valerie; Babst, Flurin; Hessl, Amy E.; Pederson, Neil; Blanken, Peter D.; Bohrer, Gil; Gough, Christopher M.; Litvak, Marcy E.; Novick, Kimberly A.; Phillips, Richard P.; Wood, Jeffrey D.; Moore, David J. P.

    2017-09-01

    How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocation schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.-iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m-2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m-2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C-LAI relationship in the model did not match the observed leaf C-LAI relationship at our sites. Although the four C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, D-Litton gave more realistic Cstem / Cleaf ratios and strongly reduced the overestimation of initial aboveground biomass and aboveground NPP for deciduous forests by D-CLM4.5. We identified key structural and parameterization deficits that need refinement to improve the accuracy of LSMs in the near future. These include changing how C is allocated in fixed and dynamic schemes based on data from current forest syntheses and different parameterization of allocation schemes for different forest types. Our results highlight the utility of using measurements of aboveground biomass to evaluate and constrain the C allocation scheme in LSMs, and suggest that stem turnover is overestimated by CLM4.5 for these AmeriFlux sites. Understanding the controls of turnover will be critical to improving long-term C processes in LSMs.

  12. Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5) on carbon fluxes, pools, and turnover in temperate forests

    DOE PAGES

    Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.; ...

    2017-09-22

    How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocationmore » schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.–iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m -2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m -2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C–LAI relationship in the model did not match the observed leaf C–LAI relationship at our sites. Although the four C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, D-Litton gave more realistic C stem/C leaf ratios and strongly reduced the overestimation of initial aboveground biomass and aboveground NPP for deciduous forests by D-CLM4.5. We identified key structural and parameterization deficits that need refinement to improve the accuracy of LSMs in the near future. These include changing how C is allocated in fixed and dynamic schemes based on data from current forest syntheses and different parameterization of allocation schemes for different forest types. Our results highlight the utility of using measurements of aboveground biomass to evaluate and constrain the C allocation scheme in LSMs, and suggest that stem turnover is overestimated by CLM4.5 for these AmeriFlux sites. Understanding the controls of turnover will be critical to improving long-term C processes in LSMs.« less

  13. Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5) on carbon fluxes, pools, and turnover in temperate forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.

    How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocationmore » schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.–iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m -2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m -2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C–LAI relationship in the model did not match the observed leaf C–LAI relationship at our sites. Although the four C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, D-Litton gave more realistic C stem/C leaf ratios and strongly reduced the overestimation of initial aboveground biomass and aboveground NPP for deciduous forests by D-CLM4.5. We identified key structural and parameterization deficits that need refinement to improve the accuracy of LSMs in the near future. These include changing how C is allocated in fixed and dynamic schemes based on data from current forest syntheses and different parameterization of allocation schemes for different forest types. Our results highlight the utility of using measurements of aboveground biomass to evaluate and constrain the C allocation scheme in LSMs, and suggest that stem turnover is overestimated by CLM4.5 for these AmeriFlux sites. Understanding the controls of turnover will be critical to improving long-term C processes in LSMs.« less

  14. [Parameter optimization of BEPS model based on the flux data of the temperate deciduous broad-leaved forest in Northeast China.

    PubMed

    Lu, Wei; Fan, Wen Yi; Tian, Tian

    2016-05-01

    Keeping other parameters as empirical constants, different numerical combinations of the main photosynthetic parameters V c max and J max were conducted to estimate daily GPP by using the iteration method in this paper. To optimize V c max and J max in BEPSHourly model at hourly time steps, simulated daily GPP using different numerical combinations of the parameters were compared with the flux tower data obtained from the temperate deciduous broad-leaved forest of the Maoershan Forest Farm in Northeast China. Comparing the simulated daily GPP with the observed flux data in 2011, the results showed that optimal V c max and J max for the deciduous broad-leaved forest in Northeast China were 41.1 μmol·m -2 ·s -1 and 82.8 μmol·m -2 ·s -1 respectively with the minimal RMSE and the maximum R 2 of 1.10 g C·m -2 ·d -1 and 0.95. After V c max and J max optimization, BEPSHourly model simulated the seasonal variation of GPP better.

  15. Geospatial monitoring and prioritization of forest fire incidences in Andhra Pradesh, India.

    PubMed

    Manaswini, G; Sudhakar Reddy, C

    2015-10-01

    Forest fire has been identified as one of the key environmental issue for long-term conservation of biodiversity and has impact on global climate. Spatially multiple observations are necessary for monitoring of forest fires in tropics for understanding conservation efficacy and sustaining biodiversity in protected areas. The present work was carried out to estimate the spatial extent of forest burnt areas and fire frequency using Resourcesat Advanced Wide Field Sensor (AWiFS) data (2009, 2010, 2012, 2013 and 2014) in Andhra Pradesh, India. The spatio-temporal analysis shows that an area of 7514.10 km(2) (29.22% of total forest cover) has been affected by forest fires. Six major forest types are distributed in Andhra Pradesh, i.e. semi-evergreen, moist deciduous, dry deciduous, dry evergreen, thorn and mangroves. Of the total forest burnt area, dry deciduous forests account for >75%. District-wise analysis shows that Kurnool, Prakasam and Cuddapah have shown >100 km(2) of burnt area every year. The total forest burnt area estimate covering protected areas ranges between 6.9 and 22.3% during the study period. Spatial burnt area analysis for protected areas in 2014 indicates 37.2% of fire incidences in the Nagarjunasagar Srisailam Tiger Reserve followed by 20.2 % in the Sri Lankamalleswara Wildlife Sanctuary, 20.1% in the Sri Venkateswara Wildlife Sanctuary and 17.4% in the Gundla Brahmeswaram Wildlife Sanctuary. The analysis of cumulative fire occurrences from 2009 to 2014 has helped in delineation of conservation priority hotspots using a spatial grid cell approach. Conservation priority hotspots I and II are distributed in major parts of study area including protected areas of the Nagarjunasagar Srisailam Tiger Reserve and Gundla Brahmeswaram Wildlife Sanctuary. The spatial database generated will be useful in studies related to influence of fires on species adaptability, ecological damage assessment and conservation planning.

  16. Extended leaf phenology and the autumn niche in deciduous forest invasions.

    PubMed

    Fridley, Jason D

    2012-05-17

    The phenology of growth in temperate deciduous forests, including the timing of leaf emergence and senescence, has strong control over ecosystem properties such as productivity and nutrient cycling, and has an important role in the carbon economy of understory plants. Extended leaf phenology, whereby understory species assimilate carbon in early spring before canopy closure or in late autumn after canopy fall, has been identified as a key feature of many forest species invasions, but it remains unclear whether there are systematic differences in the growth phenology of native and invasive forest species or whether invaders are more responsive to warming trends that have lengthened the duration of spring or autumn growth. Here, in a 3-year monitoring study of 43 native and 30 non-native shrub and liana species common to deciduous forests in the eastern United States, I show that extended autumn leaf phenology is a common attribute of eastern US forest invasions, where non-native species are extending the autumn growing season by an average of 4 weeks compared with natives. In contrast, there was no consistent evidence that non-natives as a group show earlier spring growth phenology, and non-natives were not better able to track interannual variation in spring temperatures. Seasonal leaf production and photosynthetic data suggest that most non-native species capture a significant proportion of their annual carbon assimilate after canopy leaf fall, a behaviour that was virtually absent in natives and consistent across five phylogenetic groups. Pronounced differences in how native and non-native understory species use pre- and post-canopy environments suggest eastern US invaders are driving a seasonal redistribution of forest productivity that may rival climate change in its impact on forest processes.

  17. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests.

    PubMed

    Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena

    2015-05-06

    Tropospheric ozone concentrations have increased by 60-100% in the Northern Hemisphere since the 19(th) century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected.

  18. Remote sensing-based estimation of annual soil respiration at two contrasting forest sites

    DOE PAGES

    Gu, Lianhong; Huang, Ni; Black, T. Andrew; ...

    2015-11-23

    Soil respiration (R s), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this article, we proposed a methodology for the remote estimation of annual R s at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest).

  19. Germination, survival, and early growth of three invasive plants in response to five forest management regimes common to US northeastern deciduous forests

    Treesearch

    Cynthia D. Huebner; Adam E. Regula; David W. McGill

    2018-01-01

    The association between invasive plants and disturbance is well-documented. Most forest management regimes include disturbance (i.e., harvesting and fire) to improve regeneration of native plants, such as oaks. There is a need for land managers of northeastern forests to foster regeneration of native species without promoting invasive species establishment. We...

  20. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region

    Treesearch

    Jessica R. Miesel; William C. Hockaday; Randy Kolka; Philip A. Townsend

    2015-01-01

    Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition...

  1. Interannual Variations in Ecosystem Oxidative Ratio in Croplands, Deciduous Forest, Coniferous Forest, and Early Successional Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.; Hockaday, W. C.; Gallagher, M. E.; Calligan, L.

    2009-12-01

    Ecosystem net primary productivity (NPP) can vary significantly with annual variations in precipitation and temperature. These climate variations can also drive changes in plant carbon allocation patterns. Shifting allocation patterns can lead to variation in net ecosystem biochemical stocks (e.g. kg cellulose, lignin, protein, and lipid/ha), which can in turn lead to shifts in ecosystem oxidative ratio (OR). OR is the molar ratio of O2 released : CO2 fixed during biosynthesis. Major plant biochemicals vary substantially in oxidative ratio, ranging from average organic acid OR values of 0.75 to average lipid OR values of 1.37 (Masiello et al., 2008). OR is a basic property of ecosystem biochemistry, and is also an essential variable needed to constrain the size of the terrestrial biospheric carbon sink (Keeling et al., 1996). OR is commonly assumed to be 1.10 (e.g. Prentice et al., 2001), but small variations in net ecosystem OR can drive large errors in estimates of the size of the terrestrial carbon sink (Randerson et al., 2006). We hypothesized that interannual changes in climate may drive interannual variation in ecosystem OR values. Working at Kellogg Biological Station NSF LTER, we measured the annual average OR of coniferous and deciduous forests, an early successional forest, and croplands under both corn and soy. There are clear distinctions between individual ecosystems (e.g., the soy crops have a higher OR than the corn crops, and the coniferous forests have a higher OR than the deciduous forests), but the ecosystems themselves retained remarkably constant annual OR values between 1998 and 2008.

  2. Amphibian and reptile abundance in riparian and upslope areas of five forest types in western Oregon

    USGS Publications Warehouse

    Gomez, D.M.; Anthony, R.G.

    1996-01-01

    We compared species composition and relative abundance of herpetofauna between riparian and upslope habitats among 5 forest types (shrub, open sapling-pole, large sawtimber and old-growth conifer forests, and deciduous forests) in Western Oregon. Riparian- and upslope- associated species were identified based on capture frequencies from pitfall trapping. Species richness was similar among forest types but slightly greater in the shrub stands. The abundances of 3 species differed among forest types. Total captures was highest in deciduous forests, intermediate in the mature conifer forests, and lowest in the 2 young coniferous forests. Species richness was similar between stream and upslope habitats; however, captures were higher in riparian than upslope habitat. Tailed frogs (Ascaphus truei), Dunn's salamanders (Plethodon dunni), roughskin newts(Tanicha granulosa), Pacific giant salamanders (Dicamptodon tenebrosus) and red-legged frogs(Rana aurora) were captured more frequently in riparian than upslope habitats. Of these species the red-legged frog and Pacific giant salamander may depend on riparian habitat for at least part of their life requirements, while tailed frogs, Dunn's salamanders and roughskin newts appear to be riparian associated species. In addition, we found Oregon salamanders (Ensatina eschscholtzi) were associated with upslope habitats. We suggest riparian management zones should be al least 75-100 m on each side of the stream and that management for upslope/and or old forest associates may be equally as important as for riparian species.

  3. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence.

    PubMed

    Hasselquist, Niles J; Allen, Michael F; Santiago, Louis S

    2010-12-01

    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (Ψ(L)) relative to late-seral trees (-1.01 ± 0.14 and -0.54 ± 0.07 MPa, respectively). Although Ψ(L) did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ(18)O values relative to drought-deciduous trees (-2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar (18)O (∆(18)O(l)) and (13)C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season.

  4. Towards the harmonization between National Forest Inventory and Forest Condition Monitoring. Consistency of plot allocation and effect of tree selection methods on sample statistics in Italy.

    PubMed

    Gasparini, Patrizia; Di Cosmo, Lucio; Cenni, Enrico; Pompei, Enrico; Ferretti, Marco

    2013-07-01

    In the frame of a process aiming at harmonizing National Forest Inventory (NFI) and ICP Forests Level I Forest Condition Monitoring (FCM) in Italy, we investigated (a) the long-term consistency between FCM sample points (a subsample of the first NFI, 1985, NFI_1) and recent forest area estimates (after the second NFI, 2005, NFI_2) and (b) the effect of tree selection method (tree-based or plot-based) on sample composition and defoliation statistics. The two investigations were carried out on 261 and 252 FCM sites, respectively. Results show that some individual forest categories (larch and stone pine, Norway spruce, other coniferous, beech, temperate oaks and cork oak forests) are over-represented and others (hornbeam and hophornbeam, other deciduous broadleaved and holm oak forests) are under-represented in the FCM sample. This is probably due to a change in forest cover, which has increased by 1,559,200 ha from 1985 to 2005. In case of shift from a tree-based to a plot-based selection method, 3,130 (46.7%) of the original 6,703 sample trees will be abandoned, and 1,473 new trees will be selected. The balance between exclusion of former sample trees and inclusion of new ones will be particularly unfavourable for conifers (with only 16.4% of excluded trees replaced by new ones) and less for deciduous broadleaves (with 63.5% of excluded trees replaced). The total number of tree species surveyed will not be impacted, while the number of trees per species will, and the resulting (plot-based) sample composition will have a much larger frequency of deciduous broadleaved trees. The newly selected trees have-in general-smaller diameter at breast height (DBH) and defoliation scores. Given the larger rate of turnover, the deciduous broadleaved part of the sample will be more impacted. Our results suggest that both a revision of FCM network to account for forest area change and a plot-based approach to permit statistical inference and avoid bias in the tree sample composition in terms of DBH (and likely age and structure) are desirable in Italy. As the adoption of a plot-based approach will keep a large share of the trees formerly selected, direct tree-by-tree comparison will remain possible, thus limiting the impact on the time series comparability. In addition, the plot-based design will favour the integration with NFI_2.

  5. [Nesting habitat characterization for Amazona oratrix (Psittaciformes: Psittacidae) in the Central Pacific, Mexico].

    PubMed

    Monterrubio-Rico, Tiberio C; Álvarez-Jara, Margarito; Tellez-Garcia, Loreno; Tena-Morelos, Carlos

    2014-09-01

    The nesting requirements of the Yellow-headed Parrot (Amazona oratrix) are poorly understood, despite their broad historical distribution, high demand for pet trade and current endangered status. Information concerning their nesting requirements is required in order to design specific restoration and conser- vation actions. To assess this, we studied their nesting ecology in the Central Pacific, Michoacan, Mexico during a ten year period. The analyzed variables ranged from local scale nest site characteristics such as nesting tree species, dimensions, geographic positions, diet and nesting forest patches structure, to large scale features such as vegetation use and climatic variables associated to the nesting tree distributions by an ecological niche model using Maxent. We also evaluated the parrot tolerance to land management regimes, and compared the Pacific nest trees with 18 nest trees recorded in an intensively managed private ranch in Tamaulipas, Gulf of Mexico. Parrots nested in tall trees with canopy level cavities in 92 nest-trees recorded from 11 tree species. The 72.8% of nesting occurred in trees of Astronium graveolens, and Enterolobium cyclocarpum which qualified as key- stone trees. The forests where the parrots nested, presented a maximum of 54 tree species, 50% of which were identified as food source; besides, these areas also had a high abundance of trees used as food supply. The lowest number of tree species and trees to forage occurred in an active cattle ranch, whereas the highest species rich- ness was observed in areas with natural recovery. The nesting cavity entrance height from above ground of the Pacific nesting trees resulted higher than those found in the Gulf of Mexico. We hypothesize that the differences may be attributed to Parrot behavioral differences adapting to differential poaching pressure and cavity avail- ability. Nesting trees were found in six vegetation types; however the parrots preferred conserved and riparian semi-deciduous forest for nesting, with fewer nests in deciduous forest, while nesting in transformed agricultural fields was avoided. The main climatic variables associated with the potential distribution of nests were: mean temperature of wettest quarter, mean diurnal temperature range, and precipitation of wettest month. Suitable cli- matic conditions for the potential presence of nesting trees were present in 61% of the region; however, most of the area consisted of tropical deciduous forests (55.8%), while semi-deciduous tropical forests covered only 17% of the region. These results indicated the importance to conserve semi-deciduous forests as breeding habitats for the Yellow-headed Parrot, and revealed the urgent need to implement conservation and restoration actions. These should include a total ban of land use change in tropical semi-deciduous forest areas, and for selective logging of all keystone tree species; besides, we recommend the establishment of wildlife sanctuaries in important nesting areas, and a series of tropical forest restoration programs in the Central Pacific coast.

  6. Comparison of throughfall chemistry in a mature hemlock forest and an early-successional deciduous forest resulting from salvage logging in Whately, Massachusetts

    NASA Astrophysics Data System (ADS)

    Zukswert, J. M.; Rhodes, A. L.; Dwyer, C. H.; Sweezy, T.

    2012-12-01

    Removal of foundation species as a result of disturbance events such as exotic species invasions can alter community composition and ecosystem function. The current hemlock woolly adelgid (Adelges tsugae) infestation in eastern North America that threatens the eastern hemlock (Tsuga canadensis), a foundation species, has motivated salvage logging efforts. Ecological succession resulting from salvage logging of hemlock would eventually produce a deciduous hardwood forest. The chemistry of throughfall beneath a mature hemlock forest canopy is expected to be more acidic than throughfall from a mature deciduous forest canopy because hemlock foliage releases more organic acids and fewer base cations. The chemical composition of throughfall during the early successional transition from hemlock to deciduous is less understood. We hypothesize that throughfall chemistry in a deciduous forest consisting primarily of juvenile trees may be more similar to direct precipitation because leaf area index is smaller. Differences between hemlock throughfall and direct precipitation may be larger due to the denser canopy of these mature trees. We compared the chemical composition of precipitation, hemlock throughfall, and black birch throughfall for 26 precipitation events from 4 March to 30 July 2012. The black birch (Betula lenta) forest patch resulted from salvage logging of hemlocks twenty years ago at the MacLeish Field Station in Whately, MA. From the three plots we measured the volume of water collected and pH, acid neutralizing capacity, dissolved organic carbon (DOC), and concentrations of cations (Ca2+, K+, Na+, Mg2+, NH4+), anions (Cl-, NO3-, SO42-), and dissolved silica. Precipitation totaled 405 mm during the course of the study. Throughfall totaled 347 mm in the black birch plot and 315 mm in the hemlock plot. The proportion of precipitation passing through the forest canopy was smaller in hemlock throughfall than black birch throughfall during small precipitation events (depth < 10 mm), but appeared comparable in larger events. Before leaf emergence, differences between base cation and DOC deposition were not significant (p>0.05, n = 5) for throughfall and direct precipitation. After leaf emergence, base cation and DOC deposition was significantly (p<0.05, n = 21) greater in throughfall than direct precipitation. Additionally, K+, Mg2+, and DOC deposition were significantly greater in hemlock throughfall than black birch throughfall. Black birch throughfall had significantly less H+ deposition than direct precipitation, which suggests that the black birch canopy appears to neutralize the acidity of the precipitation. H+ deposition in hemlock throughfall, however, was not significantly different than precipitation, which could be due to its higher DOC. These results suggest that the successional stage of a deciduous forest canopy has an effect on throughfall chemistry. Lower deposition of base cations prior to and during this juvenile stage could affect soil chemistry by increasing soil acidity and lowering base saturation.

  7. Vegetation carbon sequestration in Chinese forests from 2010 to 2050.

    PubMed

    He, Nianpeng; Wen, Ding; Zhu, Jianxing; Tang, Xuli; Xu, Li; Zhang, Li; Hu, Huifeng; Huang, Mei; Yu, Guirui

    2017-04-01

    Forests store a large part of the terrestrial vegetation carbon (C) and have high C sequestration potential. Here, we developed a new forest C sequestration (FCS) model based on the secondary succession theory, to estimate vegetation C sequestration capacity in China's forest vegetation. The model used the field measurement data of 3161 forest plots and three future climate scenarios. The results showed that logistic equations provided a good fit for vegetation biomass with forest age in natural and planted forests. The FCS model has been verified with forest biomass data, and model uncertainty is discussed. The increment of vegetation C storage in China's forest vegetation from 2010 to 2050 was estimated as 13.92 Pg C, while the average vegetation C sequestration rate was 0.34 Pg C yr -1 with a 95% confidence interval of 0.28-0.42 Pg C yr -1 , which differed significantly between forest types. The largest contributor to the increment was deciduous broadleaf forest (37.8%), while the smallest was deciduous needleleaf forest (2.7%). The vegetation C sequestration rate might reach its maximum around 2020, although vegetation C storage increases continually. It is estimated that vegetation C sequestration might offset 6-8% of China's future emissions. Furthermore, there was a significant negative relationship between vegetation C sequestration rate and C emission rate in different provinces of China, suggesting that developed provinces might need to compensate for undeveloped provinces through C trade. Our findings will provide valuable guidelines to policymakers for designing afforestation strategies and forest C trade in China. © 2016 John Wiley & Sons Ltd.

  8. [Spatial pattern of sub-alpine forest restoration in west Sichuan].

    PubMed

    Zhang, Yuandong; Liu, Shirong; Zhao, Changming

    2005-09-01

    West Sichuan sub-alpine is an extension of Qinghai-Tibet Plateau to southeast China, which is covered mainly with dark coniferous forest. As a result of long-term large scale over-logging, the forests have been greatly reduced and degraded. Nowadays, the forest restoration and regeneration in the region are being highlighted. Selecting Miyaluo as a case study area and employing the methods of plot investigation, ETM image interpretation, and overlaying vegetation map with digital topography, this paper analyzed the relations between the appearance and origin of four forest vegetation types, along with their topography differentiation and spatial patterns after a large scale logging and regeneration. The results showed that the appearance of forest vegetations was significantly correlated with their origin. Old coniferous forests (OC) were primitive ones, middle-aged and young coniferous forests (MYC) were from artificial regeneration, deciduous broadleaf forests (DB) were natural secondary ones, while mixed coniferous and deciduous forests (MCD) were partly from natural secondary ones and others from the conjunct action of artificial and natural regeneration. The main cut area in Miyaluo located in the sites with elevation from 2 800 to 3 600 m, where forest restoration appeared difference among different aspects. MYC was mainly distributed on sunny and half-sunny slope, DB and MCD were distributed on shady and half-shady slope, and OC were reserved on the sites with elevation more than 3 600 m. In the process of forest restoration, the four forest vegetation types were in mosaic pattern, and the landscape was seriously fragmentized.

  9. Strategic management of five deciduous forest invaders using Microstegium vimineum as a model species

    Treesearch

    Cynthia D. Huebner

    2007-01-01

    This paper links key plant invasive traits with key landscape traits to define strategic management for five common forest invaders, using empirical data of Microstegium vimineum dispersal into forests as a preliminary model. Microstegium vimineum exhibits an Allee effect that may allow management to focus on treating its source...

  10. A nondestructive technique to monitor the relative abundance of terrestrial salamanders

    Treesearch

    Richard M. DeGraaf; Mariko Yamasaki

    1992-01-01

    Salamanders are abundant vertebrates in many forest ecosystems, and their annual biomass production can be important in forest food webs (Pough et al. 1987). Population densities of eastern redback salamanders (Plethodon cinereus) can exceed 2 individuals/m2 in deciduous forests of the United States (Heatwole 1962, Jaeger 1980...

  11. Factors influencing avian habitat selection between oak-hickory and mesic forests in southern Illinois

    Treesearch

    Kevin P. Sierzega; Michael W. Eichholz

    2014-01-01

    Oak (Quercus spp.) regeneration has declined drastically over the past century in eastern deciduous forests predominantly because of decreased disturbance (i.e., fire). Many forests are undergoing mesophication, a positive feedback system that occurs within closed-canopy systems wherein shade-tolerant, late successional, mesic species such as maples...

  12. Introduction, study area description, and experimental design

    Treesearch

    Elaine Kennedy Sutherland; Todd F. Hutchinson; Daniel A. Yaussy

    2003-01-01

    Throughout much of the Eastern Deciduous Forest, the sustainability of oak-dominated forests is threatened by poor oak regeneration as other tree species increase in abundance. Historically, fire was a frequent process in oak-dominated ecosystems (savannas, woodlands, open-structured forests) as Native Americans and then Euro-American settlers used fire for a variety...

  13. Forest management and nutrient cycling in eastern hardwoods

    Treesearch

    James H. Patric; David W. Smith

    1975-01-01

    The literature was reviewed for reports on nutrient cycling in the eastern deciduous forest, particularly with respect to nitrogen, and for effects of forest management on the nutrient cycle. Although most such research has dealt with conifers, a considerable body of literature relates to hardwoods. Usually, only those references that dealt quantitatively with nutrient...

  14. Refining the oak-fire hypothesis for management of oak-dominated forests of the eastern United States

    Treesearch

    Mary A. Arthur; Heather D. Alexander; Daniel C. Dey; Callie J. Schweitzer; David L. Loftis

    2012-01-01

    Prescribed fires are increasingly implemented throughout eastern deciduous forests to accomplish various management objectives, including maintenance of oak-dominated (Quercus spp.) forests. Despite a regional research-based understanding of prehistoric and historic fire regimes, a parallel understanding of contemporary fire use to preserve oak...

  15. The Forest, Part 4: Late Summer and Fall

    ERIC Educational Resources Information Center

    Johnson, Elfriede Nemetz

    1973-01-01

    Briefly describes the ecology of a deciduous forest, and suggests activities for observing and appreciating the changes that occur during the Fall. Simple experiments relating to mosses and lichens are outlined. (JR)

  16. Altered dynamics of broad-leaved tree species in a Chinese subtropical montane mixed forest: the role of an anomalous extreme 2008 ice storm episode.

    PubMed

    Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang

    2015-04-01

    Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations.

  17. Altered dynamics of broad-leaved tree species in a Chinese subtropical montane mixed forest: the role of an anomalous extreme 2008 ice storm episode

    PubMed Central

    Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang

    2015-01-01

    Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations. PMID:25897387

  18. On the vertical distribution of bees in a temperate deciduous forest

    Treesearch

    Michael Ulyshen; Villa Soon; James Hanula

    2010-01-01

    1. Despite a growing interest in forest canopy biology, very few studies have examined the vertical distribution of forest bees. In this study, bees were sampled using 12 pairs of flight-intercept traps suspended in the canopy (‡15 m) and near the ground (0.5 m) in a bottomland hardwood forest in the southeastern United States. 2. In total, 6653 bees from 5 families...

  19. Lead sequestration and species redistribution during soil organic matter decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  20. Comparison of Evapotranspiration and Forest Cover Type in the Southeast United States: A Long-term Water Budget Approach

    NASA Astrophysics Data System (ADS)

    Younger, S. E.

    2015-12-01

    This study assessed the relationship between evapotranspiration (ET) and different types of forest for 74 gaged drainage basins in the Southeast United States with at least 29 years of data and greater than 40% forest cover. The objective was to determine if a difference in tree water use was detectible at the USGS gaged basin scale. It was hypothesized that ET rates are higher in Evergreen dominated watershed due to greater annual productivity. Discharge from United States Geological Survey (USGS) gages (D), landcover from the National Landcover Dataset (NLCD), and precipitation (P) from Daymet, Mauer, Observed Gridded, and PRISM. Annual ET was estimated using ET = P - D. To reduce geological influences the study basins were selected from an area of crystalline bedrock within the Piedmont and Southern Blue Ridge physiographic provinces. Correlations between ET and forest type show a significant difference between evergreen and deciduous forest cover. Evergreen forest dominated watersheds had a positive relationship with ET. Deciduous and Mixed forest dominated watersheds had a negative relationship with ET. These findings are similar to other studies looking at the effect of forest type on ET although other land uses in the basins have potentially indiscernible influences on discharge.

  1. Roosevelt elk selection of temperate rain forest seral stages in western Washington

    USGS Publications Warehouse

    Schroer, Greg L.; Jenkins, Kurt J.; Moorhead, Bruce B.

    1993-01-01

    We studied habitat selection by Roosevelt elk (Cervus elaphus roosevelti) in a temperate rain forest in the lower Queets River Valley of the western Olympic Peninsula, Washington from June 1986-July 1987. Elk annual home ranges included predominantly unlogged forests protected within Olympic National Park and logged, regenerating forests adjacent to the park. Radio-collared elk selected valley floors during all seasons except winter, when elk frequently used an adjoining plateau 60 m above the floodplain. In winder, radio-collared elk selected 6-15 year-old clearcuts, which were available on the plateau. Elk selected mature deciduous forests of the valley floor during spring, summer, and autumn, and generally they selected old-age Sitka spruce forests during autumn and winter. Young clearcuts (1-5 years old) and even-aged, regenerating stands (16-150 years old) generally were avoided during all seasons. Management practices that retain preferred habitat of elk, such as deciduous forests, 6-15 yr-old coniferous stands, and old-age coniferous bottomland forests will benefit elk, particularly on elk ranges managed for short-rotation, even-aged stands. Silvicultural alternatives to typical even-aged stand management, such as uneven-aged management and commercial thinning, should also be considered for improving and maintaining interspersion of forage and cover.

  2. Application of satellite data and LARS's data processing techniques to mapping vegetation of the Dismal Swamp. M.S. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Messmore, J. A.

    1976-01-01

    The feasibility of using digital satellite imagery and automatic data processing techniques as a means of mapping swamp forest vegetation was considered, using multispectral scanner data acquired by the LANDSAT-1 satellite. The site for this investigation was the Dismal Swamp, a 210,000 acre swamp forest located south of Suffolk, Va. on the Virginia-North Carolina border. Two basic classification strategies were employed. The initial classification utilized unsupervised techniques which produced a map of the swamp indicating the distribution of thirteen forest spectral classes. These classes were later combined into three informational categories: Atlantic white cedar (Chamaecyparis thyoides), Loblolly pine (Pinus taeda), and deciduous forest. The subsequent classification employed supervised techniques which mapped Atlantic white cedar, Loblolly pine, deciduous forest, water and agriculture within the study site. A classification accuracy of 82.5% was produced by unsupervised techniques compared with 89% accuracy using supervised techniques.

  3. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    PubMed Central

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-01-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period – a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI – high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments. PMID:24757012

  4. Resource partitioning by evergreen and deciduous species in a tropical dry forest.

    PubMed

    Álvarez-Yépiz, Juan C; Búrquez, Alberto; Martínez-Yrízar, Angelina; Teece, Mark; Yépez, Enrico A; Dovciak, Martin

    2017-02-01

    Niche differentiation can lead to coexistence of plant species by partitioning limiting resources. Light partitioning promotes niche differentiation in tropical humid forests, but it is unclear how niche partitioning occurs in tropical dry forests where both light and soil resources can be limiting. We studied the adult niche of four dominant evergreen (cycad, palm) and drought-deciduous (legume, oak) species co-occurring along environmental gradients. We analyzed light intensity and soil fertility effects on key functional traits related to plant carbon and water economy, how these traits determine species' functional strategies, and how these strategies relate to relative species abundance and spatial patterns. Light intensity was negatively associated with a key trait linked to plant water economy (leaf δ 13 C, a proxy for long-term water-use efficiency-WUE), while soil fertility was negatively associated with a key trait for plant carbon economy (LNC, leaf nitrogen content). Evergreens were highly sclerophyllous and displayed an efficient water economy but poor carbon economy, in agreement with a conservative resource-use strategy (i.e., high WUE but low LNC, photosynthetic rates and stature). Conversely, deciduous species, with an efficient carbon economy but poor water economy, exhibited an exploitative resource-use strategy (i.e., high LNC, photosynthetic rates and stature, but low WUE). Evergreen and deciduous species segregated spatially, particularly at fine-scales, as expected for species with different resource-use strategies. The efficient water economy of evergreens was related to their higher relative abundance, suggesting a functional advantage against drought-deciduous species in water-limited environments within seasonally dry tropical forests.

  5. AVIRIS spectral trajectories for forested areas of the Gifford Pinchot National Forest

    NASA Technical Reports Server (NTRS)

    Sabol, Donald E., Jr.; Smith, Milton O.; Adams, John B.; Zukin, Janet H.; Tucker, Compton J.; Roberts, Dar A.; Gillespie, Alan R.

    1995-01-01

    A simple mixing model employing reference endmembers (green vegetation, non-photosynthetic vegetation, soil and shade), and using 180 AVIRIS bands, was used to establish an interpretive framework for a forested area in the Pacific Northwest. A regrowth trend, based on changes in the endmember proportions, was defined for conifers that extends from clearcuts to mature forest, and by implication to old growth. Deciduous species within replanted forest plots caused the fractions to be displaced from the main coniferous regrowth trend and to move toward the green vegetation fraction. The results indicate that the spectral information in AVIRIS can be inverted to estimate approximate stand age and relative proportion of deciduous species in the context of the area studied. Using AVIRIS we measured a 3 to 5 percent increase in woody material in old-growth forest, as distinct from other mature forest. This result is consistent with a predicted increase in NPV in old-growth forest, based on field observations. Previous application of the mixing analysis to a TM image of the same area separated old growth based solely on the shade fraction; however the approach required successful removal of shade introduced by topography. Our new results suggest that with the high spectral resolution and high signal-to-noise of AVIRIS images it may be possible to characterize and map old-growth forests in the Northwest using both the NPV fraction and shade.

  6. Evaluation and prediction of shrub cover in coastal Oregon forests (USA)

    Treesearch

    Becky K. Kerns; Janet L. Ohmann

    2004-01-01

    We used data from regional forest inventories and research programs, coupled with mapped climatic and topographic information, to explore relationships and develop multiple linear regression (MLR) and regression tree models for total and deciduous shrub cover in the Oregon coastal province. Results from both types of models indicate that forest structure variables were...

  7. EAB induced tree mortality impacts ecosystem respiration and tree water use in an experimental forest

    Treesearch

    Charles E. Flower; Douglas J. Lynch; Kathleen S. Knight; Miquel A. Gonzales-Meler

    2011-01-01

    The invasive emerald ash borer (Agrilus planipennis Fairmaire, EAB) has been spreading across the forest landscape of the Midwest resulting in the rapid decline of ash trees (Fraxinus spp.). Ash trees represent a dominant riparian species in temperate deciduous forests of the Eastern United States (USDA FIA Database). Prior...

  8. Dominance of legume trees alters nutrient relations in mixed species forest restoration plantings within seven years

    Treesearch

    Ilyas Siddique; Vera Lex Engel; David Lamb; Gabriela B. Nardoto; Jean P.H.B. Ometto; Luiz A. Martinelli; Susanne Schmidt

    2008-01-01

    Failures in reforestation are often attributed to nutrient limitation for tree growth. We compared tree performance and nitrogen and phosphorus relations in adjacent mixed-species plantings of contrasting composition, established for forest restoration on Ultisol soil, originally covered by tropical semi-deciduous Atlantic Forest in Southeast Brazil. Nutrient relations...

  9. Monitoring Insects to Maintain Biodiversity in Ogawa Forest Reserve

    Treesearch

    S. Makino; T. Inoue; K. Hamaguchi; K. Okabe; I. Okochi; H. Tanaka; H. Goto; M. Hasegawa; M. Sueyoshi

    2006-01-01

    The results of a biodiversity monitoring program conducted in the Ogawa Forest Reserve and its vicinity, situated in a temperate region of Japan, identified three different patterns for species richness. Forests of the region are characterized by a mosaic of secondary deciduous stands of various ages scattered among plantations of conifers. The three different types of...

  10. Soluble organic and inorganic nutrient fluxes in clearcut and mature deciduous forests

    Treesearch

    R.G. Qualls; B.L. Haines; W.T. Swank; S.W. Tyler

    2000-01-01

    The mechanisms by which forest ecosystems retain or lose soluble inorganic nutrients after disturbance are well known, but substantial amounts of soluble organic nutrients may also be released from cut vegetation. Our objective was to compare the leaching of dissolved organic and inorganic nutrients in cut and mature forest stands and to develop hypotheses about...

  11. Vertical distribution and seasonality of predatory wasps (Hymenoptera: Vespidae) in a temperate deciduous forest

    Treesearch

    Michael D. Ulyshen; Villu Soon; James L. Hanula

    2011-01-01

    Efforts to investigate the vertical dimension of forests continue to refine our thinking on issues of biodiversity and ecology. Arthropod communities exhibit a high degree of vertical stratification in forests worldwide but the vertical distribution patterns of most taxa remain largely unexplored or poorly understood. For example, only 2 studies provide information on...

  12. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests

    Treesearch

    Andrew D. Richardson; David Y. Hollinger; D. Bryan Dail; John T. Lee; J. William Munger; John O' Keefe

    2009-01-01

    Spring phenology is thought to exert a major influence on the carbon (C) balance of temperate and boreal ecosystems. We investigated this hypothesis using four spring onset phenological indicators in conjunction with surface-atmosphere CO2 exchange data from the conifer-dominated Howland Forest and deciduous-dominated Harvard Forest AmeriFlux...

  13. Litterfall in the hardwood forest of a minor alluvial-floodplain

    Treesearch

    Calvin E. Meier; John A. Stanturf; Emile S. Gardiner

    2006-01-01

    within mature deciduous forests, annual development of foliar biomass is a major component of aboveground net primary production and nutrient demand. As litterfall, this same foliage becomes a dominant annual transfer of biomass and nutrients to the detritus pathway. We report litterfall transfers of a mature bottomland hardwood forest in a minor alluvial-floodplain...

  14. Establishment of an invasive grass in closed-canopy deciduous forests across local and regional environmental gradients

    Treesearch

    Cynthia D. Huebner

    2010-01-01

    Establishment of Microstegium vimineum, an invasive exotic grass, in closed-canopy U.S. eastern forests was evaluated across a local (roadside to forest interior) and regional (across two geographic provinces) environmental gradient in West Virginia. The two geographic provinces were the Allegheny Plateau (more mesic) and the Ridge and Valley...

  15. Role of natural organic matter on iodine and (239)(,240)Pu distribution and mobility in environmental samples from the northwestern Fukushima Prefecture, Japan.

    PubMed

    Xu, Chen; Zhang, Saijin; Sugiyama, Yuko; Ohte, Nobuhito; Ho, Yi-Fang; Fujitake, Nobuhide; Kaplan, Daniel I; Yeager, Chris M; Schwehr, Kathleen; Santschi, Peter H

    2016-03-01

    In order to assess how environmental factors are affecting the distribution and migration of radioiodine and plutonium that were emitted from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, we quantified iodine and (239,240)Pu concentration changes in soil samples with different land uses (urban, paddy, deciduous forest and coniferous forest), as well as iodine speciation in surface water and rainwater. Sampling locations were 53-63 km northwest of the FDNPP within a 75-km radius, in close proximity of each other. A ranking of the land uses by their surface soil (<4 cm) stable (127)I concentrations was coniferous forest > deciduous forest > urban > paddy, and (239,240)Pu concentrations ranked as deciduous forest > coniferous forest > paddy ≥ urban. Both were quite distinct from that of (134)Cs and (137)Cs: urban > coniferous forest > deciduous forest > paddy, indicating differences in their sources, deposition phases, and biogeochemical behavior in these soil systems. Although stable (127)I might not have fully equilibrated with Fukushima-derived (129)I, it likely still works as a proxy for the long-term fate of (129)I. Surficial soil (127)I content was well correlated to soil organic matter (SOM) content, regardless of land use type, suggesting that SOM might be an important factor affecting iodine biogeochemistry. Other soil chemical properties, such as Eh and pH, had strong correlations to soil (127)I content, but only within a given land use (e.g., within urban soils). Organic carbon (OC) concentrations and Eh were positively, and pH was negatively correlated to (127)I concentrations in surface water and rain samples. It is also noticeable that (127)I in the wet deposition was concentrated in both the deciduous and coniferous forest throughfall and stemfall water, respectively, comparing to the bulk rainwater. Further, both forest throughfall and stemflow water consisted exclusively of organo-iodine, suggesting all inorganic iodine in the original bulk deposition (∼ 28.6% of total iodine) have been completely converted to organo-iodine. Fukushima-derived (239,240)Pu was detectable at a distance ∼ 61 km away, NW of FDNPP. However, it is confined to the litter layer, even three years after the FDNPP accident-derived emissions. Plutonium-239,240 activities were significantly correlated with soil OC and nitrogen contents, indicating Pu may be associated with nitrogen-containing SOM, similar to what has been observed at other locations in the United States. Together, these finding suggest that natural organic matter (NOM) plays a key role in affecting the fate and transport of I and Pu and may warrant greater consideration for predicting long-term stewardship of contaminated areas and evaluating various remediation options in Japan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Final Environmental Assessment: Lease with Omaha Public Power District (OPPD) to Support New United States Strategic Command (USSTRATCOM) Facility and Existing Base Load

    DTIC Science & Technology

    2013-02-01

    Biological Resources The area around and encompassing Offutt AFB is the western edge of the Eastern Deciduous Forest and borders on the ecotone...that separates the Eastern Deciduous Forest from the Tall and Mid Grass Prairies. Early photos of the Offutt AFB area indicate that it was grassland...regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington

  17. Influence of Different Forest System Management Practices on Leaf Litter Decomposition Rates, Nutrient Dynamics and the Activity of Ligninolytic Enzymes: A Case Study from Central European Forests

    PubMed Central

    Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk

    2014-01-01

    Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling. PMID:24699676

  18. Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from central European forests.

    PubMed

    Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk

    2014-01-01

    Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.

  19. Potential changes in forest composition could reduce impacts of climate change on boreal wildfires.

    PubMed

    Terrier, Aurélie; Girardin, Martin P; Périé, Catherine; Legendre, Pierre; Bergeron, Yves

    2013-01-01

    There is general consensus that wildfires in boreal forests will increase throughout this century in response to more severe and frequent drought conditions induced by climate change. However, prediction models generally assume that the vegetation component will remain static over the next few decades. As deciduous species are less flammable than conifer species, it is reasonable to believe that a potential expansion of deciduous species in boreal forests, either occurring naturally or through landscape management, could offset some of the impacts of climate change on the occurrence of boreal wildfires. The objective of this study was to determine the potential of this offsetting effect through a simulation experiment conducted in eastern boreal North America. Predictions of future fire activity were made using multivariate adaptive regression splines (MARS) with fire behavior indices and ecological niche models as predictor variables so as to take into account the effects of changing climate and tree distribution on fire activity. A regional climate model (RCM) was used for predictions of future fire risk conditions. The experiment was conducted under two tree dispersal scenarios: the status quo scenario, in which the distribution of forest types does not differ from the present one, and the unlimited dispersal scenario, which allows forest types to expand their range to fully occupy their climatic niche. Our results show that future warming will create climate conditions that are more prone to fire occurrence. However, unlimited dispersal of southern restricted deciduous species could reduce the impact of climate change on future fire occurrence. Hence, the use of deciduous species could be a good option for an efficient strategic fire mitigation strategy aimed at reducing fire Propagation in coniferous landscapes and increasing public safety in remote populated areas of eastern boreal Canada under climate change.

  20. Uav-Based Photogrammetric Point Clouds and Hyperspectral Imaging for Mapping Biodiversity Indicators in Boreal Forests

    NASA Astrophysics Data System (ADS)

    Saarinen, N.; Vastaranta, M.; Näsi, R.; Rosnell, T.; Hakala, T.; Honkavaara, E.; Wulder, M. A.; Luoma, V.; Tommaselli, A. M. G.; Imai, N. N.; Ribeiro, E. A. W.; Guimarães, R. B.; Holopainen, M.; Hyyppä, J.

    2017-10-01

    Biodiversity is commonly referred to as species diversity but in forest ecosystems variability in structural and functional characteristics can also be treated as measures of biodiversity. Small unmanned aerial vehicles (UAVs) provide a means for characterizing forest ecosystem with high spatial resolution, permitting measuring physical characteristics of a forest ecosystem from a viewpoint of biodiversity. The objective of this study is to examine the applicability of photogrammetric point clouds and hyperspectral imaging acquired with a small UAV helicopter in mapping biodiversity indicators, such as structural complexity as well as the amount of deciduous and dead trees at plot level in southern boreal forests. Standard deviation of tree heights within a sample plot, used as a proxy for structural complexity, was the most accurately derived biodiversity indicator resulting in a mean error of 0.5 m, with a standard deviation of 0.9 m. The volume predictions for deciduous and dead trees were underestimated by 32.4 m3/ha and 1.7 m3/ha, respectively, with standard deviation of 50.2 m3/ha for deciduous and 3.2 m3/ha for dead trees. The spectral features describing brightness (i.e. higher reflectance values) were prevailing in feature selection but several wavelengths were represented. Thus, it can be concluded that structural complexity can be predicted reliably but at the same time can be expected to be underestimated with photogrammetric point clouds obtained with a small UAV. Additionally, plot-level volume of dead trees can be predicted with small mean error whereas identifying deciduous species was more challenging at plot level.

  1. Human-environment interaction during the Mesolithic- Neolithic transition in the NE Iberian Peninsula. Vegetation history, climate change and human impact during the Early-Middle Holocene in the Eastern Pre-Pyrenees

    NASA Astrophysics Data System (ADS)

    Revelles, J.; Burjachs, F.; Palomo, A.; Piqué, R.; Iriarte, E.; Pérez-Obiol, R.; Terradas, X.

    2018-03-01

    The synthetic analysis of several pollen records from sub-Mediterranean lowland Pre-Pyrenean regions evidences expansion of forests during the Early Holocene in Northeastern Iberia and the establishment of dense deciduous broadleaf forests during the Holocene Climate Optimum. Pollen records show the broadleaf deciduous forests resilience against cooling phases during the Mid-Holocene period, with slight regressions of oak woodlands and expansion of conifers or xerophytic taxa contemporary to some cooling episodes (i.e. 8.2 and 7.2 kyr cal. BP). Major vegetation changes influenced by climate change occurred in the transition to the Late Holocene, in terms of the start of a succession from broadleaf deciduous forests to evergreen sclerophyllous woodlands. The lack of evidence of previous occupation seems to support the Neolithisation of the NE Iberian Peninsula as a result of a process of migration of farming populations to uninhabited or sparsely inhabited territories. In that context, remarkable changes in vegetation were recorded from 7.3 kyr cal. BP onwards in the Lake Banyoles area, where the establishment of permanent farming settlements caused the deforestation of oak woodlands. In La Garrotxa region, short deforestation episodes affecting broadleaf deciduous forests, together with expansion of grasslands and presence of Cerealia-t were documented in the period 7.4-6.0 kyr cal. BP. Finally, in the coastal area, where less evidence of Early Neolithic occupations is recorded, evidence of Neolithic impact is reflected in the presence of Cerealia-t in 6.5-6.2 kyr cal. BP, but no strong human transformation of landscape was carried out until more recent chronologies.

  2. Late Permian Forest Composition And Climate Revealed From High-Resolution Carbon Isotopes In Fossil Tree Rings

    NASA Astrophysics Data System (ADS)

    Gulbranson, E.; Isbell, J. L.; Taylor, E. L.; Ryberg, P. E.; Taylor, T. N.

    2012-12-01

    Late Permian forests from Antarctica are one of a few examples of polar forest biomes in Earth history. We present a paleoforestry and geochemical study of three contemporaneous Late Permian fossil forests and geochemical analysis of fossil wood specimens from the Permian-Triassic contact in Antarctica. Late Permian paleoforestry analysis suggests that these forests responded to disturbance in exactly the opposite manner as compared to modern boreal forests, with forest thinning and loss of understory vegetation occurring towards areas of disturbance. New high-resolution carbon isotope data from 6 permineralized stumps, 32 tree rings studied in total, indicate that these forests were mixed evergreen and deciduous, but dominated by deciduous trees. Moreover, intra-tree ring and ring-to-ring variation of δ13C values suggest that the Late Permian polar climate maintained wet winters, with precipitation in the austral winter being a factor of three greater than the austral summer. Such seasonality in precipitation implies the development of a temperate-like climate at polar latitudes following the demise of the late Paleozoic ice age. High-resolution carbon isotopes in tree rings in a stratigraphic succession of Late Permian fossil wood to fossil wood at the Permian-Triassic contact indicates that Antarctica experienced a change in precipitation patterns around the time of the Permian-Triassic boundary, marked by intervals of pronounced drying juxtaposed against wetter conditions.

  3. Growth and yield model application in tropical rain forest management

    Treesearch

    James Atta-Boateng; John W., Jr. Moser

    2000-01-01

    Analytical tools are needed to evaluate the impact of management policies on the sustainable use of rain forest. Optimal decisions concerning the level of management inputs require accurate predictions of output at all relevant input levels. Using growth data from 40 l-hectare permanent plots obtained from the semi-deciduous forest of Ghana, a system of 77 differential...

  4. The importance of streamside sandbars to ground beetle (Coleoptera, Carabidae) communities in a deciduous forest.

    Treesearch

    S. Horn; M.D. Ulyshen

    2009-01-01

    We used pitfall traps to sample ground beetles on sandbars along a small woodland stream and in the adjacent floodplain forest (Oglethorpe Co., GA, USA). We captured a total of 1,477 ground beetles representing 41 species. Twenty-two species were exclusive to sandbars, while eight were found only in the forested habitat. Ground beetles...

  5. Logging legacies affect insect pollinator communities in southern Appalachian forests

    Treesearch

    Michelle M. Jackson; Monica G. Turner; Scott M. Pearson

    2014-01-01

    Many temperate deciduous forests are recovering from past logging, but the effects of logging legacies and environmental gradients on forest insect pollinators have not been well studied. In this study, we asked how pollinator abundance and community composition varied with distance from logging roads and elevation in old (logged >90 years ago) and young (logged 20–...

  6. Climate response of five oak species in the eastern deciduous forest of the southern Appalachain Mountains, USA

    Treesearch

    James H Speer; Henry D Grission-Mayer; Kenneth H Orivs; Cathryn H: Greenberg

    2009-01-01

    The climatic response of trees that occupy closed canopy forests in the eastern United States (US) is important to understanding the possible trajectory these forests may lake in response to a warming climate. Our study examined tree rings of 664 trees from five oak species (white (Querclus alba L), black (Quercus "velutina Lam...

  7. Energy content in dried leaf litter of some oaks and mixed mesophytic species that replace oaks

    Treesearch

    Aaron D. Stottlemeyer; G. Geoff Wang; Patrick H. Brose; Thomas A. Waldrop

    2010-01-01

    Mixed-mesophytic hardwood tree species are replacing upland oaks in vast areas of the Eastern United States deciduous forest. Some researchers have suggested that the leaf litter of mixed-mesophytic, oak replacement species renders forests less flammable where forest managers wish to restore a natural fire regime. We performed chemical analyses on dried leaf litter...

  8. Productivity of early successional shrubland birds in clearcuts and groupcuts in an eastern deciduous forest

    Treesearch

    David I. King; Richard M. DeGraaf; Curtice R. Griffin

    2001-01-01

    Uneven-aged forest management has been advocated as a silvicultural practice because of concerns about the negative effects of even-aged management on birds that dwell in mature forests. Recent evidence, however, indicates that in the northeastern United States, bird species that inhabit early successional habitats may be experiencing more widespread declines than...

  9. Regional distribution and dynamics of coarse woody debris in Midwestern old-growth forests

    Treesearch

    Martin A. Spetich; Stephen R. Shifley; George R. Parker

    1999-01-01

    Old-growth forests have been noted for containing significant quantities of deadwood. However, there has been no coordinated effort to quantify the deadwood component of old-growth remnants across large regions of temperate deciduous forest. We present results of a regional inventory that quantifies and examines regional and temporal trends for deadwood in upland old-...

  10. Dynamics of a temperate deciduous forest under landscape-scale management: Implications for adaptability to climate change

    Treesearch

    Matthew G. Olson; Benjamin O. Knapp; John M. Kabrick

    2017-01-01

    Landscape forest management is an approach to meeting diverse objectives that collectively span multiple spatial scales. It is critical that we understand the long-term effects of landscape management on the structure and composition of forest tree communities to ensure that these practices are sustainable. Furthermore, it is increasingly important to also consider...

  11. Advancement of tree species across ecotonal borders into non-forested ecosystems

    NASA Astrophysics Data System (ADS)

    Hanberry, Brice B.; Hansen, Mark H.

    2015-10-01

    Woody species are increasing in density, causing transition to more densely wooded vegetation states, and encroaching across ecotonal borders into non-forested ecosystems. We examined USDA Forest Service Forest Inventory and Analysis data to identify tree species that have expanded longitudinally in range, particularly into the central United States. We analyzed compositional differences within ecological regions (i.e., subsections) in eastern and western ranges of species using repeated measures ANOVA. We considered differences in outer ranges to indicate range expansion or contraction. We also estimated the shift in forest area and basal area relative to the center of the US and compared change in deciduous forest land cover. Out of 80 candidate species, 22 species expanded to the west, seven species expanded to the east, and five species expanded in both directions. During the survey interval, eastern tree species advanced into the predominantly non-forested ecosystems of central United States. Eastern cottonwood, eastern hophornbeam, eastern redbud, honeylocust, Osage-orange, pecan, red mulberry, and Shumard oak represent some of the species that are advancing eastern forest boundaries across forest-grassland ecotones into the central United States. Forest land has shifted towards the center of the continent, as has the center of mean tree basal area, and a simple comparison of deciduous cover change also displayed forest advancement into the central United States from eastern forests. The expanding species may spread along riparian migration corridors that provide protection from drought. Humans use the advancing tree species for windbreaks, fencerows, and ornamental landscaping, while wildlife spread fruit seeds, which results in unintentional assisted migration, or translocation, to drier sites across the region.

  12. Diurnal and Seasonal Trends in Canopy Transpiration and Conductance of Pristine Forest Types in Belize, Central America

    NASA Technical Reports Server (NTRS)

    Zimmermann, R.; Oren, R.; Billings, S.; Muller-Ezards, C.; Schaaff, C.; Strohmeier, P.; Obermaier, E.

    1994-01-01

    Five semi-deciduous broadleaf forest types growing over tropical karst in Belize, Central America, were monitored for three years to study diurnal and seasonal changes of transpiration and micro-meteorologic conditions.

  13. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence

    PubMed Central

    Allen, Michael F.; Santiago, Louis S.

    2010-01-01

    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (ΨL) relative to late-seral trees (−1.01 ± 0.14 and −0.54 ± 0.07 MPa, respectively). Although ΨL did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ18O values relative to drought-deciduous trees (−2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar 18O (∆18Ol) and 13C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season. PMID:20658152

  14. More than Drought: Precipitation Variance, Excessive Wetness, Pathogens and the Future of the Western Edge of the Eastern Deciduous Forest.

    PubMed

    Hubbart, Jason A; Guyette, Richard; Muzika, Rose-Marie

    2016-10-01

    For many regions of the Earth, anthropogenic climate change is expected to result in increasingly divergent climate extremes. However, little is known about how increasing climate variance may affect ecosystem productivity. Forest ecosystems may be particularly susceptible to this problem considering the complex organizational structure of specialized species niche adaptations. Forest decline is often attributable to multiple stressors including prolonged heat, wildfire and insect outbreaks. These disturbances, often categorized as megadisturbances, can push temperate forests beyond sustainability thresholds. Absent from much of the contemporary forest health literature, however, is the discussion of excessive precipitation that may affect other disturbances synergistically or that might represent a principal stressor. Here, specific points of evidence are provided including historic climatology, variance predictions from global change modeling, Midwestern paleo climate data, local climate influences on net ecosystem exchange and productivity, and pathogen influences on oak mortality. Data sources reveal potential trends, deserving further investigation, indicating that the western edge of the Eastern Deciduous forest may be impacted by ongoing increased precipitation, precipitation variance and excessive wetness. Data presented, in conjunction with recent regional forest health concerns, suggest that climate variance including drought and excessive wetness should be equally considered for forest ecosystem resilience against increasingly dynamic climate. This communication serves as an alert to the need for studies on potential impacts of increasing climate variance and excessive wetness in forest ecosystem health and productivity in the Midwest US and similar forest ecosystems globally. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Water use and carbon exchange of red oak- and eastern hemlock-dominated forests in the northeastern USA: implications for ecosystem-level effects of hemlock woolly adelgid.

    PubMed

    Hadley, Julian L; Kuzeja, Paul S; Daley, Michael J; Phillips, Nathan G; Mulcahy, Thomas; Singh, Safina

    2008-04-01

    Water use and carbon exchange of a red oak-dominated (Quercus rubra L.) forest and an eastern hemlock-dominated (Tsuga canadensis L.) forest, each located within the Harvard Forest in north-central Massachusetts, were measured for 2 years by the eddy flux method. Water use by the red oak forest reached 4 mm day(-1), compared to a maximum of 2 mm day(-1) by the eastern hemlock forest. Maximal carbon (C) uptake rate was also higher in the red oak forest than in the eastern hemlock forest (about 25 versus 15 micromol m(-2) s(-1)). Sap flux measurements indicated that transpiration of red oak, and also of black birch (Betula lenta L.), which frequently replaces eastern hemlock killed by hemlock woolly adelgid (Adelges tsugae Annand.), were almost twice that of eastern hemlock. Despite the difference between species in maximum summertime C assimilation rate, annual C storage of the eastern hemlock forest almost equaled that of the red oak forest because of net C uptake by eastern hemlock during unusually warm fall and spring weather, and a near-zero C balance during the winter. Thus, the effect on C storage of replacing eastern hemlock forest with a forest dominated by deciduous species is unclear. Carbon storage by eastern hemlock forests during fall, winter and spring is likely to increase in the event of climate warming, although this may be offset by C loss during hotter summers. Our results indicate that, although forest water use will decrease immediately following eastern hemlock mortality due to the hemlock woolly adelgid, the replacement of eastern hemlock by deciduous species such as red oak will likely increase summertime water use over current rates in areas where hemlock is a major forest species.

  16. Future species composition will affect forest water use after loss of eastern hemlock from southern Appalachian forests.

    PubMed

    Brantley, Steven; Ford, Chelcy R; Vose, James M

    2013-06-01

    Infestation of eastern hemlock (Tsuga canadensis (L.) Carr.) with hemlock woolly adelgid (HWA, Adelges tsugae) has caused widespread mortality of this key canopy species throughout much of the southern Appalachian Mountains in the past decade. Because eastern hemlock is heavily concentrated in riparian habitats, maintains a dense canopy, and has an evergreen leaf habit, its loss is expected to have a major impact on forest processes, including transpiration (E(t)). Our goal was to estimate changes in stand-level E(t) since HWA infestation, and predict future effects of forest regeneration on forest E(t) in declining eastern hemlock stands where hemlock represented 50-60% of forest basal area. We used a combination of community surveys, sap flux measurements, and empirical models relating sap flux-scaled leaf-level transpiration (E(L)) to climate to estimate the change in E(t) after hemlock mortality and forecast how forest E(t) will change in the future in response to eastern hemlock loss. From 2004 to 2011, eastern hemlock mortality reduced annual forest E(t) by 22% and reduced winter E(t) by 74%. As hemlock mortality increased, growth of deciduous tree species--especially sweet birch (Betula lenta L.), red maple (Acer rubrum L.), yellow poplar (Liriodendron tulipifera L.), and the evergreen understory shrub rosebay rhododendron (Rhododendron maximum L.)--also increased, and these species will probably dominate post-hemlock riparian forests. All of these species have higher daytime E(L) rates than hemlock, and replacement of hemlock with species that have less conservative transpiration rates will result in rapid recovery of annual stand E(t). Further, we predict that annual stand E(t) will eventually surpass E(t) levels observed before hemlock was infested with HWA. This long-term increase in forest E(t) may eventually reduce stream discharge, especially during the growing season. However, the dominance of deciduous species in the canopy will result in a permanent reduction in winter E(t) and possible increase in winter stream discharge. The effects of hemlock die-off and replacement with deciduous species will have a significant impact on the hydrologic flux of forest transpiration, especially in winter. These results highlight the impact that invasive species can have on landscape-level ecosystem fluxes.

  17. Emma Lucy Braun's forest plots in eastern North America.

    PubMed

    Ricklefs, Robert E

    2018-02-01

    Relative abundances of tree species are presented for the 348 forest plots described in E. Lucy Braun's (1950) book, Deciduous Forests of Eastern North America (Hafner, New York, facsimile reprint 1972). Information about the plots includes forest type, location with latitude and longitude, WorldClim climate variables, and sources of original studies where applicable. No copyright restrictions are associated with the use of this data set. Please cite this article when the data are used in other publications. © 2017 by the Ecological Society of America.

  18. Forest Ecosystem Dynamics Assessment and Predictive Modelling in Eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Kushwaha, S. P. S.; Nandy, S.; Ahmad, M.; Agarwal, R.

    2011-09-01

    This study focused on the forest ecosystem dynamics assessment and predictive modelling deforestation and forest cover prediction in a part of north-eastern India i.e. forest areas along West Bengal, Bhutan, Arunachal Pradesh and Assam border in Eastern Himalaya using temporal satellite imagery of 1975, 1990 and 2009 and predicted forest cover for the period 2028 using Cellular Automata Markov Modedel (CAMM). The exercise highlighted large-scale deforestation in the study area during 1975-1990 as well as 1990-2009 forest cover vectors. A net loss of 2,334.28 km2 forest cover was noticed between 1975 and 2009, and with current rate of deforestation, a forest area of 4,563.34 km2 will be lost by 2028. The annual rate of deforestation worked out to be 0.35 and 0.78% during 1975-1990 and 1990-2009 respectively. Bamboo forest increased by 24.98% between 1975 and 2009 due to opening up of the forests. Forests in Kokrajhar, Barpeta, Darrang, Sonitpur, and Dhemaji districts in Assam were noticed to be worst-affected while Lower Subansiri, West and East Siang, Dibang Valley, Lohit and Changlang in Arunachal Pradesh were severely affected. Among different forest types, the maximum loss was seen in case of sal forest (37.97%) between 1975 and 2009 and is expected to deplete further to 60.39% by 2028. The tropical moist deciduous forest was the next category, which decreased from 5,208.11 km2 to 3,447.28 (33.81%) during same period with further chances of depletion to 2,288.81 km2 (56.05%) by 2028. It noted progressive loss of forests in the study area between 1975 and 2009 through 1990 and predicted that, unless checked, the area is in for further depletion of the invaluable climax forests in the region, especially sal and moist deciduous forests. The exercise demonstrated high potential of remote sensing and geographic information system for forest ecosystem dynamics assessment and the efficacy of CAMM to predict the forest cover change.

  19. Influence of vegetation structure on lidar-derived canopy height and fractional cover in forested riparian buffers during leaf-off and leaf-on conditions.

    PubMed

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available.

  20. Statewide land cover derived from multiseasonal Landsat TM data: A retrospective of the WISCLAND project

    USGS Publications Warehouse

    Reese, H.M.; Lillesand, T.M.; Nagel, D.E.; Stewart, J.S.; Goldmann, R.A.; Simmons, T.E.; Chipman, J.W.; Tessar, P.A.

    2002-01-01

    Landsat Thematic Mapper (TM) data were the basis in production of a statewide land cover data set for Wisconsin, undertaken in partnership with U.S. Geological Survey's (USGS) Gap Analysis Program (GAP). The data set contained seven classes comparable to Anderson Level I and 24 classes comparable to Anderson Level II/III. Twelve scenes of dual-date TM data were processed with methods that included principal components analysis, stratification into spectrally consistent units, separate classification of upland, wetland, and urban areas, and a hybrid supervised/unsupervised classification called "guided clustering." The final data had overall accuracies of 94% for Anderson Level I upland classes, 77% for Level II/III upland classes, and 84% for Level II/III wetland classes. Classification accuracies for deciduous and coniferous forest were 95% and 93%, respectively, and forest species' overall accuracies ranged from 70% to 84%. Limited availability of acceptable imagery necessitated use of an early May date in a majority of scene pairs, perhaps contributing to lower accuracy for upland deciduous forest species. The mixed deciduous/coniferous forest class had the lowest accuracy, most likely due to distinctly classifying a purely mixed class. Mixed forest signatures containing oak were often confused with pure oak. Guided clustering was seen as an efficient classification method, especially at the tree species level, although its success relied in part on image dates, accurate ground troth, and some analyst intervention. ?? 2002 Elsevier Science Inc. All rights reserved.

  1. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    PubMed Central

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  2. Fine Root Growth Phenology, Production, and Turnover in a Northern Hardwood Forest Ecosystem

    Treesearch

    Dudley J. Raynal

    1994-01-01

    A large part of the nutrient flux in deciduous forests is through fine root turnover, yet this process is seldom measured. As part of a nutrient cycling study, fine root dynamics were studied for two years at Huntington Forest in the Adirondack Mountain region of New York, USA. Root growth phenology was characterized using field rhizotrons, three methods were used to...

  3. Ecological and ecophysiological attributes and responses to fire in eastern oak forests

    Treesearch

    Marc D. Abrams

    2006-01-01

    Prior to European settlement vast areas of the eastern U. S. deciduous forest were dominated by oak species. Evidence indicates that periodic understory fire was an important ecological factor in the historical development of oak forests. During European settlement of the late 19th and early 20th century, much of the Eastern United States was impacted by land clearing...

  4. Using Lidar and color infrared imagery to successfully measure stand characteristics on the William B. Bankhead National Forest, Alabama

    Treesearch

    Jeffrey Stephens; Luben Dimov; Callie Schweitzer; Wubishet Tadesse

    2008-01-01

    Light detection and ranging (Lidar) and color infrared imagery (CIR) were used to quantify forest structure and to distinguish deciduous from coniferous trees for selected stands on the William B. Bankhead National Forest in Alabama. Lidar bare ground and vegetation point clouds were used to determine tree heights and tree locations. Lidar accuracy was assessed by...

  5. Comparison of soil organic matter dynamics at five temperate deciduous forests with physical fractionation and radiocarbon measurements

    Treesearch

    Karis J. McFarlane; Margaret S. Torn; Paul J. Hanson; Rachel C. Porras; Christopher W. Swanston; Mac A. Callaham; Thomas P. Guilderson

    2013-01-01

    Forest soils represent a significant pool for carbon sequestration and storage, but the factors controlling soil carbon cycling are not well constrained.We compared soil carbon dynamics at five broadleaf forests in the Eastern US that vary in climate, soil type, and soil ecology: two sites at the University of Michigan Biological Station (MI-Coarse, sandy;MI-Fine,...

  6. Abundance and population structure of eastern worm snakes in forest stands with various levels of overstory tree retention

    Treesearch

    Zachary I. Felix; Yong Wang; Callie Jo Schweitzer

    2010-01-01

    In-depth analyses of a species’ response to canopy retention treatments can provide insight into reasons for observed changes in abundance. The eastern worm snake (Carphophis amoenus amoenus Say) is common in many eastern deciduous forests, yet little is known about the ecology of the species in managed forests. We examined the relationship between...

  7. Effects of forest management on soil carbon: results of some long-term resampling studies

    Treesearch

    D.W. Johnson; Jennifer D. Knoepp; Wayne T. Swank; J. Shan; L.A. Morris; David H. D.H. van Lear; P.R. Kapeluck

    2002-01-01

    The effects of harvest intensity (sawlog, SAW; whole tree, WTH; and complete tree, CTH) on biomass and soil carbon (C) were studied in four forested sites in the Southeastern United States: (mixed deciduous forests at Oak Ridge, TN and Coweeta, NC; Pinus taeda at Clemson, SC; and P. eliottii at Bradford, FL). In general, harvesting had no lasting...

  8. The importance of streamside sandbars to ground beetle (Coleoptera, Carabidae) communities in a deciduous forest

    Treesearch

    Scott Horn; Michael Ulyshen

    2009-01-01

    We used pitfall traps to sample ground beetles on sandbars along a small woodland stream and in the adjacent floodplain forest (Oglethorpe Co., GA, USA). We captured a total of 1,477 ground beetles representing 41 species. Twenty-two species were exclusive to sandbars, while eight were found only in the forested habitat. Ground beetles were captured in significantly...

  9. Land application of hydrofracturing fluids damages a deciduous forest stand in West Virginia

    Treesearch

    Mary Beth Adams

    2011-01-01

    In June 2008, 303,000 L of hydrofracturing fluid from a natural gas well were applied to a 0.20-ha area of mixed hardwood forest on the Fernow Experimental Forest, West Virginia. During application, severe damage and mortality of ground vegetation was observed, followed about 10 d later by premature leaf drop by the overstory trees. Two years after fluid application,...

  10. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America.

    PubMed

    Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia

    2014-10-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period - a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI - high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments. © 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  11. Carbohydrate storage and light requirements of tropical moist and dry forest tree species.

    PubMed

    Poorter, Lourens; Kitajima, Kaoru

    2007-04-01

    In many plant communities, there is a negative interspecific correlation between relative growth rates and survival of juveniles. This negative correlation is most likely caused by a trade-off between carbon allocation to growth vs. allocation to defense and storage. Nonstructural carbohydrates (NSC) stored in stems allow plants to overcome periods of stress and should enhance survival. In order to assess how species differ in carbohydrate storage in relation to juvenile light requirements, growth, and survival, we quantified NSC concentrations and pool sizes in sapling stems of 85 woody species in moist semi-evergreen and dry deciduous tropical forests in the rainy season in Bolivia. Moist forest species averaged higher NSC concentrations than dry forest species. Carbohydrate concentrations and pool sizes decreased with the light requirements of juveniles of the species in the moist forest but not in the dry forest. Combined, these results suggest that storage is especially important for species that regenerate in persistently shady habitats, as in the understory of moist evergreen forests. For moist forest species, sapling survival rates increased with NSC concentrations and pool sizes while growth rates declined with the NSC concentrations and pool sizes. No relationships were found for dry forest species. Carbon allocation to storage contributes to the growth-survival trade-off through its positive effect on survival. And, a continuum in carbon storage strategies contributes to a continuum in light requirements among species. The link between storage and light requirements is especially strong in moist evergreen forest where species sort out along a light gradient, but disappears in dry deciduous forest where light is a less limiting resource and species sort out along drought and fire gradients.

  12. Low volume undiluted Btk application against heavy gypsy moth population densities in southern Corsica

    Treesearch

    Robert A. Fusco; Jean-Claude Martin

    2003-01-01

    Low volume undiluted applications of Bacillus thuringiensis are common and efficacious against coniferous forest pests such as pine processionary moth and spruce budworm, but have not been common practice against deciduous forest pests due to coverage issues.

  13. Forest Surface Energy Balance and Evapotranspiration Estimated From Four Eddy Covariance Towers

    NASA Astrophysics Data System (ADS)

    Rabbani, G. A.; Adam, J. C.; Elliot, W. J.; Liu, H.

    2016-12-01

    Evapotranspiration (ET), which refers to the combined effect of surface water evaporation and plant transpiration, is one of the vital elements of the global water balance. It is also an important process for plants, providing water, nutrient, and cooling needs, and helping to regulate carbon dioxide entry through open/closure of the plant's stomata. Quantifying ET in forested environments is an ongoing research area. Complex physiological responses with climatic variation, combined with difficulty in making wide-spread measurements, makes ET one of the least understood components of a forest water balance. The objective of this study is to estimate ET and energy balance closure by using flux net data from eddy covariance towers. ET is estimated for different forest types with multiple age classes during the years of 2011, 2012 and 2013. We studied two coniferous forests (F1, F2), one deciduous forest (F3) and one mixed forest (F4) in Washington, Wyoming, Wisconsin and New Jersey, respectively. Label 2 (Data checked and formatted by Carbon Dioxide Information Analysis Center) gap filled flux data were collected from the AmeriFlux database (ameriflux.ornl.gov). Discrepancies between turbulent fluxes and available energy are investigated. Among the studied forests, the highest and lowest average monthly ET are exhibited by the mixed forest (F4) and coniferous forest (F1) in 2012 which are 2,692 and 633 mm/month, respectively. Difference in average monthly ET can be an implication of substantial age difference between these two types of forest. The regression analysis showed significant correlation between turbulent fluxes and available energy (R2=0.91) for mixed forest where the discrepancy varied from 5-11%. Conversely, for coniferous and deciduous forests, the discrepancy varied from 46-49% and 28%, respectively, with almost similar correlation between the fluxes (0.86 and 0.84, respectively). This study will facilitate an improved understanding of how forest type and age pose differences in ET and surface energy components.

  14. Fall fertilization enhanced nitrogen storage and translocation in Larix olgensis seedlings

    Treesearch

    Y. Zhu; R. K. Dumroese; G. L. Li; J. R. Pinto; Y. Liu

    2013-01-01

    Fall nutrient loading of deciduous forest nursery seedlings is of special interest because of foliage abscission and varied translocation patterns. For non-deciduous seedlings in the nursery, fall fertilization typically can reverse nutrient dilution and possibly increase nutrient reserves; however, this technique has received little attention with deciduous conifer...

  15. Post-deposition early-phase migration and retention behavior of radiocesium in a litter-mineral soil system in a Japanese deciduous forest affected by the Fukushima nuclear accident.

    PubMed

    Koarashi, Jun; Nishimura, Syusaku; Nakanishi, Takahiro; Atarashi-Andoh, Mariko; Takeuchi, Erina; Muto, Kotomi

    2016-12-01

    The fate of radiocesium ( 137 Cs) derived from the Fukushima nuclear accident and associated radiation risks are largely dependent on its migration and retention behavior in the litter-soil system of Japanese forest ecosystems. However, this behavior has not been well quantified. We established field lysimeters in a Japanese deciduous broad-leaved forest soon after the Fukushima nuclear accident to continuously monitor the downward transfer of 137 Cs at three depths: the litter-mineral soil boundary and depths of 5 cm and 10 cm in the mineral soil. Observations were conducted at two sites within the forest from May 2011 to May 2015. Results revealed similar temporal and depth-wise variations in 137 Cs downward fluxes for both sites. The 137 Cs downward fluxes generally decreased year by year at all depths, indicating that 137 Cs was rapidly leached from the forest-floor litter layer and was then immobilized in the upper (0-5 cm) mineral soil layer through its interaction with clay minerals. The 137 Cs fluxes also showed seasonal variation, which was in accordance with variations in the throughfall and soil temperature at the sites. There was no detectable 137 Cs flux at a depth of 10 cm in the mineral soil in the third and fourth years after the accident. The decreased inventory of mobile (or bioavailable) 137 Cs observed during early stages after deposition indicates that the litter-soil system in the Japanese deciduous forest provides only a temporary source for 137 Cs recycling in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Short dry spells in the wet season increase mortality of tropical pioneer seedlings.

    PubMed

    Engelbrecht, Bettina M J; Dalling, James W; Pearson, Timothy R H; Wolf, Robert L; Gálvez, David A; Koehler, Tobias; Tyree, Melvin T; Kursar, Thomas A

    2006-06-01

    Variation in plant species performance in response to water availability offers a potential axis for temporal and spatial habitat partitioning and may therefore affect community composition in tropical forests. We hypothesized that short dry spells during the wet season are a significant source of mortality for the newly emerging seedlings of pioneer species that recruit in treefall gaps in tropical forests. An analysis of a 49-year rainfall record for three forests across a rainfall gradient in central Panama confirmed that dry spells of > or = 10 days during the wet season occur on average once a year in a deciduous forest, and once every other year in a semi-deciduous moist and an evergreen wet forest. The effect of wet season dry spells on the recruitment of pioneers was investigated by comparing seedling survival in rain-protected dry plots and irrigated control plots in four large artificially created treefall gaps in a semi-deciduous tropical forest. In rain-protected plots surface soil layers dried rapidly, leading to a strong gradient in water potential within the upper 10 cm of soil. Seedling survival for six pioneer species was significantly lower in rain-protected than in irrigated control plots after only 4 days. The strength of the irrigation effect differed among species, and first became apparent 3-10 days after treatments started. Root allocation patterns were significantly, or marginally significantly, different between species and between two groups of larger and smaller seeded species. However, they were not correlated with seedling drought sensitivity, suggesting allocation is not a key trait for drought sensitivity in pioneer seedlings. Our data provide strong evidence that short dry spells in the wet season differentially affect seedling survivorship of pioneer species, and may therefore have important implications to seedling demography and community dynamics.

  17. Space Radar Image of Raco, Michigan

    NASA Image and Video Library

    1999-05-01

    These are two false-color composites of Raco, Michigan, located at the eastern end of Michigan upper peninsula, west of Sault Ste. Marie and south of Whitefish Bay on Lake Superior. The two images (centered at 46.39 degrees north latitude, 84.88 degrees west longitude) show significant seasonal changes in the mid-latitude region of mixed deciduous and coniferous forests. The images were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the shuttle Endeavour on the sixth orbit of each mission. In these images, red is L-band (23 cm) with horizontal/vertical polarization; green is C-band (6 cm) with horizontal/vertical polarization; blue is C-band with horizontal/horizontal polarization. The region shown is largely forested and includes a large portion of Hiawatha National Forest, as well as an agricultural region near the bottom of each image. In early April, the area was snow-covered with up to 50 centimeters (19.5 inches) of snow in forest clearings and agricultural fields. Buds had not yet broken on deciduous trees, but the trees were not frozen and sap was generally flowing. Lake Superior, in the upper right, and the small inland lakes were frozen and snow-covered on April 9, 1994. By the end of September, deciduous trees were just beginning to change color after a relatively wet period. Leaf loss was estimated at about 30 percent, depending on the species, and the soil was moist to wet after a heavy rainfall on September 28, 1994. Most agricultural fields were covered with grasses of up to 60 centimeters (23 inches) in height. In the two images the colors are related to the types of land cover (i.e. vegetation type) and the brightness is related to the amount of plant material and its relative moisture content. Significant seasonal changes between early spring and early fall are illustrated by this pair of images. For the agricultural region near the bottom of the images, the change from snow-cover to moist soil with short vegetation cover is shown by the color change from blue to green and blue. The green color corresponds to significant increases in vegetation cover and field-to-field differences in blue are the result of differences in surface roughness and soil moisture. In the forested areas, many of the conifer forests appear similar in both images (red pine forests appear red in both images). However, there is more blue and green in the September 30, 1994 image as a consequence of greater foliage and more moisture in the forest crowns. Lowland conifer forests (spruce and northern white cedars) appear as bright green in both images. Deciduous forests produce very strong radar returns at these frequencies and polarization combinations, resulting in a nearly white appearance on the images (the specific color mix is related to the local species mix). In the September 30, 1994 image, the areas of deciduous forest appear darker than in the April image because of the weaker radar signal from the foliage in the crown layer. The clear-cut areas (shown in April by the irregularly shaped dark areas in the center) change dramatically in appearance due to loss of snow cover and increases in soil moisture and vegetation cover by the end of September. http://photojournal.jpl.nasa.gov/catalog/PIA01730

  18. Polarimetric SAR Interferometry based modeling for tree height and aboveground biomass retrieval in a tropical deciduous forest

    NASA Astrophysics Data System (ADS)

    Kumar, Shashi; Khati, Unmesh G.; Chandola, Shreya; Agrawal, Shefali; Kushwaha, Satya P. S.

    2017-08-01

    The regulation of the carbon cycle is a critical ecosystem service provided by forests globally. It is, therefore, necessary to have robust techniques for speedy assessment of forest biophysical parameters at the landscape level. It is arduous and time taking to monitor the status of vast forest landscapes using traditional field methods. Remote sensing and GIS techniques are efficient tools that can monitor the health of forests regularly. Biomass estimation is a key parameter in the assessment of forest health. Polarimetric SAR (PolSAR) remote sensing has already shown its potential for forest biophysical parameter retrieval. The current research work focuses on the retrieval of forest biophysical parameters of tropical deciduous forest, using fully polarimetric spaceborne C-band data with Polarimetric SAR Interferometry (PolInSAR) techniques. PolSAR based Interferometric Water Cloud Model (IWCM) has been used to estimate aboveground biomass (AGB). Input parameters to the IWCM have been extracted from the decomposition modeling of SAR data as well as PolInSAR coherence estimation. The technique of forest tree height retrieval utilized PolInSAR coherence based modeling approach. Two techniques - Coherence Amplitude Inversion (CAI) and Three Stage Inversion (TSI) - for forest height estimation are discussed, compared and validated. These techniques allow estimation of forest stand height and true ground topography. The accuracy of the forest height estimated is assessed using ground-based measurements. PolInSAR based forest height models showed enervation in the identification of forest vegetation and as a result height values were obtained in river channels and plain areas. Overestimation in forest height was also noticed at several patches of the forest. To overcome this problem, coherence and backscatter based threshold technique is introduced for forest area identification and accurate height estimation in non-forested regions. IWCM based modeling for forest AGB retrieval showed R2 value of 0.5, RMSE of 62.73 (t ha-1) and a percent accuracy of 51%. TSI based PolInSAR inversion modeling showed the most accurate result for forest height estimation. The correlation between the field measured forest height and the estimated tree height using TSI technique is 62% with an average accuracy of 91.56% and RMSE of 2.28 m. The study suggested that PolInSAR coherence based modeling approach has significant potential for retrieval of forest biophysical parameters.

  19. Fallout volume and litter type affect 137Cs concentration difference in litter between forest and stream environments.

    PubMed

    Sakai, Masaru; Gomi, Takashi; Negishi, Junjiro N

    2016-11-01

    It is important to understand the changes in the 137 Cs concentration in litter through leaching when considering that 137 Cs is transferred from basal food resources to animals in forested streams. We found that the difference of 137 Cs activity concentration in litter between forest and stream was associated with both litter type and 137 Cs fallout volume around Fukushima, Japan. The 137 Cs activity concentrations in the litter of evergreen conifers tended to be greater than those in the litter of broad-leaved deciduous trees because of the absence of deciduous leaves during the fallout period in March 2011. Moreover, 137 Cs activity concentrations in forest litter were greater with respect to the 137 Cs fallout volume. The 137 Cs activity concentrations in stream litter were much lower than those in forest litter when those in forest litter were higher. The 137 Cs leaching patterns indicated that the differences in 137 Cs activity concentration between forest and stream litter could change with changes in both fallout volume and litter type. Because litter is an important basal food resource in the food webs of both forests and streams, the 137 Cs concentration gradient reflects to possible 137 Cs transfer from lower to higher trophic animals. Our findings will improve our understanding of the spatial heterogeneity and variability of 137 Cs concentrations in animals resident to the contaminated landscape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effects of mercury deposition and coniferous forests on the mercury contamination of fish in the south central United States

    USGS Publications Warehouse

    Drenner, Ray W.; Chumchal, Matthew M.; Jones, Christina M.; Lehmann, Christopher M.B.; Gay, David A.; Donato, David I.

    2013-01-01

    Mercury (Hg) is a toxic metal that is found in aquatic food webs and is hazardous to human and wildlife health. We examined the relationship between Hg deposition, land coverage by coniferous and deciduous forests, and average Hg concentrations in largemouth bass (Micropterus salmoides)-equivalent fish (LMBE) in 14 ecoregions located within all or part of six states in the South Central U.S. In 11 ecoregions, the average Hg concentrations in 35.6-cm total length LMBE were above 300 ng/g, the threshold concentration of Hg recommended by the U.S. Environmental Protection Agency for the issuance of fish consumption advisories. Percent land coverage by coniferous forests within ecoregions had a significant linear relationship with average Hg concentrations in LMBE while percent land coverage by deciduous forests did not. Eighty percent of the variance in average Hg concentrations in LMBE between ecoregions could be accounted for by estimated Hg deposition after adjusting for the effects of coniferous forests. Here we show for the first time that fish from ecoregions with high atmospheric Hg pollution and coniferous forest coverage pose a significant hazard to human health. Our study suggests that models that use Hg deposition to predict Hg concentrations in fish could be improved by including the effects of coniferous forests on Hg deposition.

  1. Identification of Armillaria Species in the Chequamegon-Nicolet National Forest

    Treesearch

    Kathryn W. Kromroy

    2004-01-01

    Armillaria species were isolated from coniferous and deciduous overstory species in 17 of 22 stands in the Chequamenon are of the Chequamegon-Nicolet National Forest. Armillaria calvescens and A. sinapina were identified once each, and the remainder of isolates were A. ostoyae. These...

  2. Interspecific variation in leaf pigments and nutrients of five tree species from a subtropical forest in southern Brazil.

    PubMed

    Bündchen, Márcia; Boeger, Maria Regina T; Reissmann, Carlos B; Geronazzo, Kelly M

    2016-01-01

    The purpose of this study was to analyze the seasonal variation in the nutrient and pigment content of leaves from five tree species - of which three are perennial (Cupania vernalis, Matayba elaeagnoides and Nectandra lanceolata) and two are deciduous (Cedrela fissilis and Jacaranda micrantha) - in an ecotone between a Deciduous Seasonal Forest and a Mixed Ombrophilous Forest in the state of Santa Catarina, Brazil. Leaf samples were collected in the four seasons of the year to determine the content of macronutrients (N, K, P, Mg, Ca, S) and photosynthetic pigments (Chla, Chlb, Chltot, Cartot, Chla:Chlb and Cartot:Chltot). The principal component analysis showed that leaf pigments contributed to the formation of the first axis, which explains most of the data variance for all species, while leaf nutrient contribution showed strong interspecific variation. These results demonstrate that the studied species have different strategies for acquisition and use of mineral resources and acclimation to light, which are determinant for them to coexist in the forest environment.

  3. Forest discrimination with multipolarization imaging radar

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Wickland, D. E.

    1985-01-01

    The use of radar polarization diversity for discriminating forest canopy variables on airborne synthetic-aperture radar (SAR) images is evaluated. SAR images were acquired at L-Band (24.6 cm) simultaneously in four linear polarization states (HH, HV, VH, and VV) in South Carolina on March 1, 1984. In order to relate the polarization signatures to biophysical properties, false-color composite images were compared to maps of forest stands in the timber compartment. In decreasing order, the most useful correlative forest data are stand basal area, forest age, site condition index, and forest management type. It is found that multipolarization images discriminate variation in tree density and difference in the amount of understory, but do not discriminate between evergreen and deciduous forest types.

  4. AmeriFlux US-MMS Morgan Monroe State Forest

    DOE Data Explorer

    Philip, Rich [Indiana Univ., Bloomington, IN (United States); Novick, Kim [Indiana Univ., Bloomington, IN (United States)

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-MMS Morgan Monroe State Forest. Site Description - Owned by the Indiana Department of Natural Resources (IDNR), the Morgan Monroe State Forest, the site's namesake, is operated thanks to the long-term agreement between Indiana University and IDNR. The first settlers cleared the surrounding ridges for farming, but were largely unsuccessful. The state of Indiana purchased the land in 1929, creating the Morgan Monroe State Forest. Many of the trees in the tower footprint are 60-80 years old, surviving selective logging that ended over the past 10 years. Today, the forest is a secondary successional broadleaf forest within the maple-beech to oak hickory transition zone of the eastern deciduous forest.

  5. Two decades of compositional and structural change in deciduous old-growth forests of Indiana, USA

    Treesearch

    Christy A. Lowney; Bradley D. Graham; Martin A. Spetich; Stephen R. Shifley; Michael R. Saunders; Michael A. Jenkins

    2015-01-01

    AimsUsing a network of permanent plots, we determined how multiple old-growth forests changed over an 18–19-year period at a statewide scale. This examination of change allowed us to assess how the compositional and structural stability of each forest varied with site characteristics (topography, physiography and productivity)...

  6. Effects of disturbance and climate change on ecosystem performance in the Yukon River Basin boreal forest

    USGS Publications Warehouse

    Wylie, Bruce K.; Rigge, Matthew B.; Brisco, Brian; Mrnaghan, Kevin; Rover, Jennifer R.; Long, Jordan

    2014-01-01

    A warming climate influences boreal forest productivity, dynamics, and disturbance regimes. We used ecosystem models and 250 m satellite Normalized Difference Vegetation Index (NDVI) data averaged over the growing season (GSN) to model current, and estimate future, ecosystem performance. We modeled Expected Ecosystem Performance (EEP), or anticipated productivity, in undisturbed stands over the 2000–2008 period from a variety of abiotic data sources, using a rule-based piecewise regression tree. The EEP model was applied to a future climate ensemble A1B projection to quantify expected changes to mature boreal forest performance. Ecosystem Performance Anomalies (EPA), were identified as the residuals of the EEP and GSN relationship and represent performance departures from expected performance conditions. These performance data were used to monitor successional events following fire. Results suggested that maximum EPA occurs 30–40 years following fire, and deciduous stands generally have higher EPA than coniferous stands. Mean undisturbed EEP is projected to increase 5.6% by 2040 and 8.7% by 2070, suggesting an increased deciduous component in boreal forests. Our results contribute to the understanding of boreal forest successional dynamics and its response to climate change. This information enables informed decisions to prepare for, and adapt to, climate change in the Yukon River Basin forest.

  7. Monitoring Spring Recovery of Photosynthesis and Spectral Reflectance in Temperate Evergreen and Mixed Deciduous Forests

    NASA Astrophysics Data System (ADS)

    Wong, C. Y.; Arain, M. A.; Ensminger, I.

    2015-12-01

    Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which characterizes their photosynthetic activity with high activity in the growing season and downregulation during the winter season. Monitoring the timing of the transitions in evergreens is difficult since it's a largely invisible process, unlike deciduous trees that have a visible budding and senescence sequence. Spectral reflectance and the photochemical reflectance index (PRI), often used as a proxy for photosynthetic light-use efficiency, provides a promising tool to track the transition of evergreens between inactive and active photosynthetic states. To better understand the relationship between PRI and photosynthetic activity and to contrast this relationship between plant functional types, the spring recovery of an evergreen forest and mixed deciduous forest was monitored using spectral reflectance, chlorophyll fluorescence and gas exchange. All metrics indicate photosynthetic recovery during the spring season. These findings indicate that PRI can be used to observe the spring recovery of photosynthesis in evergreen conifers but may not be best suited for deciduous trees. These findings have implications for remote sensing, which provides a promising long-term monitoring system of whole ecosystems, which is important since their roles in the carbon cycle may shift in response to climate change.

  8. A Long Term View of Forest Response to Environmental Change: 25 Years of Studying Harvard Forest

    NASA Astrophysics Data System (ADS)

    Munger, J. W.; Wofsy, S. C.; Lindaas, J.; David, F.; David, O.

    2014-12-01

    Forests influence the budgets of greenhouse gases, and understanding how they will respond to environmental change is critical to accurately predicting future GHG trends. The time scale for climate change is long and forest growth is slow, thus very long measurement periods are required to observe meaningful forest response. We established an eddy flux tower within a mixed forest stand dominated by red oak and red maple at the Harvard Forest LTER site in 1989 where CO2, H2O and energy fluxes together with meteorological observations have been measured continuously. An array of plots for biometric measurements was established in 1993. Flux measurement at an adjacent hemlock stand began in 2000. Records of land use and disturbance and vegetation plot data extend back to 1907. The combined suite of measurements merges observations of instantaneous ecosystem responses to environmental forcing with details of vegetation dynamics and forest growth that represent the emergent properties relevant to long-term ecosystem change. Both the deciduous stand and hemlock stand are accumulating biomass. Each has added over 20 Mg-C ha-1 as woody biomass in trees >10cm dbh since 1990, even though the hemlock stand is older. Net carbon exchange shows enhanced uptake in early spring and late fall months in response to warmer temperatures and likely an increase in evergreen foliage at the deciduous site. Net carbon uptake efficiency at the deciduous stand has increased over time as well as indicated by peak NEE under optimum light conditions. The trend is only partly explained by variation in mean leaf area index and cannot be directly attributed to climate response. The combination of longer growing season and increased uptake efficiency yields a general trend of increasing annual NEE (Fig. 1). However, significant excursions in the trend highlight the sensitivity of forest carbon stocks. The pulse of high annual carbon uptake (peak 6 Mg-C ha-1y-1 in 2008) from 2000-2008 is only partially matched by carbon stored in woody biomass, leaving a large fraction of carbon to have accumulated in litter and fine roots in the forest floor, which has as much carbon as the above-ground woody biomass, but shorter turnover time. Invasion by Hemlock wooly adelgid, an insect that kills hemlock trees portends a major shift in NEE for the hemlock stand in the next decade.

  9. Regional Distribution of Forest Height and Biomass from Multisensor Data Fusion

    NASA Technical Reports Server (NTRS)

    Yu, Yifan; Saatchi, Sassan; Heath, Linda S.; LaPoint, Elizabeth; Myneni, Ranga; Knyazikhin, Yuri

    2010-01-01

    Elevation data acquired from radar interferometry at C-band from SRTM are used in data fusion techniques to estimate regional scale forest height and aboveground live biomass (AGLB) over the state of Maine. Two fusion techniques have been developed to perform post-processing and parameter estimations from four data sets: 1 arc sec National Elevation Data (NED), SRTM derived elevation (30 m), Landsat Enhanced Thematic Mapper (ETM) bands (30 m), derived vegetation index (VI) and NLCD2001 land cover map. The first fusion algorithm corrects for missing or erroneous NED data using an iterative interpolation approach and produces distribution of scattering phase centers from SRTM-NED in three dominant forest types of evergreen conifers, deciduous, and mixed stands. The second fusion technique integrates the USDA Forest Service, Forest Inventory and Analysis (FIA) ground-based plot data to develop an algorithm to transform the scattering phase centers into mean forest height and aboveground biomass. Height estimates over evergreen (R2 = 0.86, P < 0.001; RMSE = 1.1 m) and mixed forests (R2 = 0.93, P < 0.001, RMSE = 0.8 m) produced the best results. Estimates over deciduous forests were less accurate because of the winter acquisition of SRTM data and loss of scattering phase center from tree ]surface interaction. We used two methods to estimate AGLB; algorithms based on direct estimation from the scattering phase center produced higher precision (R2 = 0.79, RMSE = 25 Mg/ha) than those estimated from forest height (R2 = 0.25, RMSE = 66 Mg/ha). We discuss sources of uncertainty and implications of the results in the context of mapping regional and continental scale forest biomass distribution.

  10. The effect of interspecific variation in photosynthetic plasticity on 4-year growth rate and 8-year survival of understorey tree seedlings in response to gap formations in a cool-temperate deciduous forest.

    PubMed

    Oguchi, Riichi; Hiura, Tsutom; Hikosaka, Kouki

    2017-08-01

    Gap formation increases the light intensity in the forest understorey. The growth responses of seedlings to the increase in light availability show interspecific variation, which is considered to promote biodiversity in forests. At the leaf level, some species increase their photosynthetic capacity in response to gap formation, whereas others do not. Here we address the question of whether the interspecific difference in the photosynthetic response results in the interspecific variation in the growth response. If so, the interspecific difference in photosynthetic response would also contribute to species coexistence in forests. We also address the further relevant question of why some species do not increase their photosynthetic capacity. We assumed that some cost of photosynthetic plasticity may constrain acquisition of the plasticity in some species, and hypothesized that species with larger photosynthetic plasticity exhibit better growth after gap formation and lower survivorship in the shade understorey of a cool-temperate deciduous forest. We created gaps by felling canopy trees and studied the relationship between the photosynthetic response and the subsequent growth rate of seedlings. Naturally growing seedlings of six deciduous woody species were used and their mortality was examined for 8 years. The light-saturated rate of photosynthesis (Pmax) and the relative growth rate (RGR) of the seedlings of all study species increased at gap plots. The extent of these increases varied among the species. The stimulation of RGR over 4 years after gap formation was strongly correlated with change in photosynthetic capacity of newly expanded leaves. The increase in RGR and Pmax correlated with the 8-year mortality at control plots. These results suggest a trade-off between photosynthetic plasticity and the understorey shade tolerance. Gap-demanding species may acquire photosynthetic plasticity, sacrificing shade tolerances, whereas gap-independent species may acquire shade tolerances, sacrificing photosynthetic plasticity. This strategic difference among species would contribute to species coexistence in cool-temperate deciduous forests. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. BIOGENIC HYDROCARBON EMISSION INVENTORY FOR THE U.S. USING A SIMPLE FOREST CANOPY MODEL

    EPA Science Inventory

    A biogenic hydrocarbon emission inventory system, developed for acid deposition and regional oxidant modeling, is described, and results for a U.S. emission inventory are presented. or deciduous and coniferous forests, scaling relationships are used to account for canopy effects ...

  12. Making Rainforests Relevant.

    ERIC Educational Resources Information Center

    Lustbader, Sara

    1995-01-01

    Describes a program for teaching about tropical rainforests in a concrete way using what's outside the door. This activity uses an eastern deciduous hardwood forest as an example. Step-by-step instructions include introductory activities, plus descriptions of stations in the forest to be visited. Resources include books, audio-visual materials,…

  13. Vertical stratification of beetles (Coleoptera) and flies (Diptera) in temperate forest canopies.

    PubMed

    Maguire, Dorothy Y; Robert, Katleen; Brochu, Kristen; Larrivée, Maxim; Buddle, Christopher M; Wheeler, Terry A

    2014-02-01

    Forest canopies support high arthropod biodiversity, but in temperate canopies, little is known about the spatial distribution of these arthropods. This is an important first step toward understanding ecological roles of insects in temperate canopies. The objective of this study was to assess differences in the species composition of two dominant and diverse taxa (Diptera and Coleoptera) along a vertical gradient in temperate deciduous forest canopies. Five sugar maple trees from each of three deciduous forest sites in southern Quebec were sampled using a combination of window and trunk traps placed in three vertical strata (understory, mid-canopy, and upper-canopy) for three sampling periods throughout the summer. Coleoptera species richness and abundance did not differ between canopy heights, but more specimens and species of Diptera were collected in the upper-canopy. Community composition of Coleoptera and Diptera varied significantly by trap height. Window traps collected more specimens and species of Coleoptera than trunk traps, although both trap types should be used to maximize representation of the entire Coleoptera community. There were no differences in abundance, diversity, or composition of Diptera collected between trap types. Our data confirm the relevance of sampling all strata in a forest when studying canopy arthropod biodiversity.

  14. Consequences of forest clear-cuts for native and nonindigenous ants (Hymenoptera: Formicidae)

    USGS Publications Warehouse

    Zettler, J.A.; Taylor, M.D.; Allen, Craig R.; Spira, T.P.

    2004-01-01

    Currently, the southern United States produces more timber than any other region in the world. Entire timber stands are removed through a harvesting method called clear-cutting. This common forestry practice may lead to the replacement of native ant communities with invasive, nonindigenous species. In four deciduous forest sites in South Carolina, we monitored the change in ant species richness, diversity, and abundance immediately after forest clearing for a period of 15 mo to 2 yr and determined the incidence of colonization of the red imported fire ant Solenopsis invicta into these four newly disturbed sites. Each site consisted of an uncut, forested plot and a logged, pine-planted plot. Fire ants were collected in clear-cuts as early as 3 mo postcutting, and by the end of the experiment, they were found in all four treatment sites. Our study is the first to document, through a controlled experiment, that clear-cutting alters ant species assemblages by increasing S. invicta and Pheidole spp. populations and significantly reducing native ant numbers. Long-term studies are needed to assess how replacing native deciduous forests with pine monocultures affects ant assemblages. ?? 2004 Entomological Society of America.

  15. Comparison of forest edge effects on throughfall deposition in different forest types.

    PubMed

    Wuyts, Karen; De Schrijver, An; Staelens, Jeroen; Gielis, Leen; Vandenbruwane, Jeroen; Verheyen, Kris

    2008-12-01

    This study examined the influence of distance to the forest edge, forest type, and time on Cl-, SO4(2-), NO3(-), and NH4+ throughfall deposition in forest edges. The forests were dominated by pedunculate oak, silver birch, or Corsican/Austrian pine, and were situated in two regions of Flanders (Belgium). Along transects, throughfall deposition was monitored at distances of 0-128 m from the forest edge. A repeated-measures analysis demonstrated that time, forest type, and distance to the forest edge significantly influenced throughfall deposition of the ions studied. The effect of distance to the forest edge depended significantly on forest type in the deposition of Cl-, SO4(2-), and NO3(-): the edge effect was significantly greater in pine stands than in deciduous birch and oak stands. This finding supports the possibility of converting pine plantations into oak or birch forests in order to mitigate the input of nitrogen and potentially acidifying deposition.

  16. Monitoring phenology of photosynthesis in temperate evergreen and mixed deciduous forests using the normalized difference vegetation index (NDVI) and the photochemical reflectance index (PRI) at leaf and canopy scales

    NASA Astrophysics Data System (ADS)

    Wong, C. Y.; Arain, M. A.; Ensminger, I.

    2016-12-01

    Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which determines their phenology of high photosynthetic activity in the growing season and downregulation during the winter. Monitoring the timing of the transition between summer activity and winter downregulation in evergreens is difficult since this is a largely invisible process, unlike in deciduous trees that have a visible budding and a sequence of leaf unfolding in the spring and leaf abscission in the fall. The light-use efficiency (LUE) model estimates gross primary productivity (GPP) and may be parameterized using remotely sensed vegetation indices. Using spectral reflectance data, we derived the normalized difference vegetation index (NDVI), a measure of leaf "greenness", and the photochemical reflectance index (PRI), a proxy for chlorophyll:carotenoid ratios which is related to photosynthetic activity. To better understand the relationship between these vegetation indices and photosynthetic activity and to contrast this relationship between plant functional types, the phenology of NDVI, PRI and photosynthesis was monitored in an evergreen forest and a mixed deciduous forest at the leaf and canopy scale. Our data indicates that the LUE model can be parameterized by NDVI and PRI to track forest phenology. Differences in the sensitivity of PRI and NDVI will be discussed. These findings have implications to address the phenology of evergreen conifers by using PRI to complement NDVI in the LUE model, potentially improving model productivity estimates in northern hemisphere forests, that are dominated by conifers.

  17. Long-term soil warming and Carbon Cycle Feedbacks to the Climate System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melillo, Jerry M.

    2014-04-30

    The primary objective of the proposed research was to quantify and explain the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem. The research was done at an established soil warming experiment at the Harvard Forest in central Massachusetts – Barre Woods site established in 2001. In the field, a series of plant and soil measurements were made to quantify changes in C storage in the ecosystem and to provide insights into the possible relationships between C-storage changes and nitrogen (N) cycling changes in the warmed plots. Fieldmore » measurements included: 1) annual woody increment; 2) litterfall; 3) carbon dioxide (CO2) efflux from the soil surface; 4) root biomass and respiration; 5) microbial biomass; and 6) net N mineralization and net nitrification rates. This research was designed to increase our understanding of how global warming will affect the capacity of temperate forest ecosystems to store C. The work explored how soil warming changes the interactions between the C and N cycles, and how these changes affect land-atmosphere feedbacks. This core research question framed the project – What are the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem? A second critical question was addressed in this research – What are the effects of a sustained in situ 5{degrees}C soil temperature increase on nitrogen (N) cycling in a northeastern deciduous forest ecosystem?« less

  18. Analysis of AIS data of the Bonanza Creek Experimental Forest, Alaska

    NASA Technical Reports Server (NTRS)

    Spanner, M. A.; Peterson, D. L.

    1986-01-01

    Airborne Imaging Spectrometer (AIS) data were acquired in 1985 over the Bonanza Creek Experimental Forest, Alaska for the analysis of canopy characteristics including biochemistry. Concurrent with AIS overflights, foliage from fifteen coniferous and deciduous forest stands were analyzed for a variety of biochemical constituents including nitrogen, lignin, protein, and chlorophyll. Preliminary analysis of AIS spectra indicates that the wavelength region between 1450 to 1800 namometers (nm) displays distinct differences in spectral response for some of the forest stands. A flat field subtraction (forest stand spectra - flat field spectra) of the AIS spectra assisted in the interpretation of features of the spectra that are related to biology.

  19. Soil respiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone

    Treesearch

    Kurt Pregitzer; Wendy Loya; Mark Kubiske; Donald Zak

    2006-01-01

    The aspen free-air CO2 and O3 enrichment (FACTS II-FACE) study in Rhinelander, Wisconsin, USA, is designed to understand the mechanisms by which young northern deciduous forest ecosystems respond to elevated atmospheric carbon dioxide (CO2) and elevated tropospheric ozone (O3)...

  20. Invasibility of mature and 15-year-old deciduous forests by exotic plants

    Treesearch

    Cynthia D. Huebner; Patrick C. Tobin

    2006-01-01

    High species richness, resource availability and disturbance are community characteristics associated with forest invasibility. We categorized commonly measured community variables, including species composition, topography, and landscape features, within both mature and 15-year-old clearcuts in West Virginia, USA. We evaluated the importance of each variable for...

  1. VOLATILE ORGANIC COMPOUNDS AND ISOPRENE OXIDATION PRODUCTS AT A TEMPERATE DECIDUOUS FOREST SITE

    EPA Science Inventory

    Biogenic volatile compounds (BVOCs) and their role in atmospheric oxidant formation were investigated at a forest site near Oak Ridge, Tennessee, as part of the Nashville Southern Oxidants Study (SOS) in July 1995. Of 98 VOCs detected, a major fraction were anthropogenic VOCs suc...

  2. Fire history in a southern Appalachian deciduous forest

    Treesearch

    Norman L., Jr. Christensen; Kurt Fesenmeyer

    2012-01-01

    Because there are few long-term dendrochronological and lake sediment data for the southern Appalachians, little is known regarding the history of fire in this region's forests through the Holocene. Radio-carbon ages for 82 soil charcoal samples collected from local depositional sites along a topographic gradient from mixed hardwood (Liriodendron...

  3. Environmental factors affecting understory diversity in second-growth deciduous forests

    Treesearch

    Cynthia D. Huebner; J.C. Randolph; G.R. Parker

    1995-01-01

    The purpose of this study was to determine the most important nonanthropogenic factors affecting understory (herbs, shrubs and low-growing vines) diversity in forested landscapes of southern Indiana. Fourteen environmental variables were measured for 46 sites. Multiple regression analysis showed significant positive correlation between understory diversity and tree...

  4. SEASONAL COURSE OF ISOPRENE EMISSIONS FROM A MIDLATITUDE DECIDUOUS FOREST

    EPA Science Inventory

    Continuous measurements of whole canopy isoprene emissions over an entire growing season are reported from Harvard Forest (42E32'N, 72E11'W). Emissions were calculated from the ratio of observed CO2 flux and gradient multiplied by the observed hydrocarbon gradients. In summer 199...

  5. Chronic over browsing and biodiversity collapse in a forest understory in Pennsylvania: Results from a 60 year-old deer exclusion plot

    Treesearch

    Chandra Goetsch; Jennifer Wigg; Alejandro A. Royo; Todd Ristau; Walter P. Carson

    2011-01-01

    We evaluated the impact of chronic deer over browsing on the diversity and abundance of understory forbs and shrubs within a forest stand in the Allegheny High Plateau Region of Pennsylvania by comparing vegetation inside a 60-year-old exclosure to vegetation within an adjacent reference site. This is the oldest known exclosure in the Eastern Deciduous Forest. Browsing...

  6. Distribution of biomass in an Indiana old-growth forest from 1926 to 1992

    Treesearch

    Martin A. Spetich; George R. Parker

    1998-01-01

    We examined the structural and spatial distribution of woody biomass in relationship to disturbance in an Indiana old-growth deciduous forest over a 66-year period. Analysis was done on the core 7.92 ha of a 20.6 ha forest in which every tree 10 cm dbh and over has been tagged and mapped since 1926. Five years are compared - 1926, 1976, 1981, 1986 and 1992....

  7. Long-term variability and environmental control of the carbon cycle in an oak-dominated temperate forest

    Treesearch

    Jing Xie; Jiquan Chen; Ge Sun; Housen Chu; Asko Noormets; Zutao Ouyang; Ranjeet John; Shiqiang Wan; Wenbin Guan

    2014-01-01

    Our understanding of the long-term carbon (C) cycle of temperate deciduous forests and its sensitivity to climate variability is limited due to the large temporal dynamics of C fluxes. The goal of the study was to quantify the effects of environmental variables on the C balance in a 70-year-old mixed-oak woodland forest over a 7-year period in northwest Ohio, USA. The...

  8. CO2 flux studies of different hemiboreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Krasnova, Alisa; Krasnov, Dmitrii; Noe, Steffen M.; Uri, Veiko; Mander, Ülo; Niinemets, Ülo; Soosaar, Kaido

    2017-04-01

    Hemiboreal zone is a transition between boreal and temperate zones characterized by the combination of climatic and edaphic conditions inherent in both zones. Hemiboreal forests are typically presented by mixed forests types with different ratios of deciduous and conifer tree species. Dominating tree species composition affects the functioning of forest ecosystem and its influence on biogeochemical cycles. We present the result of ecosystem scale CO2 eddy-covariance fluxes research conducted in 4 ecosystems (3 forests sites and 1 clear-cut area) of hemiboreal zone in Estonia. All 4 sites were developing under similar climatic conditions, but different forest management practices resulted in different composition of dominating tree species: pine forest with spruce trees as a second layer (Soontaga site); spruce/birch forest with single alder trees (Liispõllu site); forest presented by sectors of pine, spruce, birch and clearcut areas (SMEAR Estonia site); 5-years old clearcut area (Kõnnu site).

  9. Retrieval of seasonal dynamics of forest understory reflectance over a set of boreal, sub-boreal and temperate forests using MODIS BRDF data

    NASA Astrophysics Data System (ADS)

    Pisek, J.; Lang, M.; Kuusk, J.; Kobayashi, H.; Suzuki, R.; Rautiainen, M.; Schaepman, M. E.; Nikopensius, M.; Raabe, K.

    2013-12-01

    Since ground vegetation (understory) has an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal and temperate forests, its reflectance spectra are urgently needed in various forest reflectance modelling efforts. However, systematic reflectance data covering different site types are almost missing. Measurement of understory reflectance is a real challenge because of extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum and its variable nature. Understory consists of several sub-layers (tree regeneration, shrub, grasses or dwarf shrub, mosses or lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional problems are introduced by patchiness of ground vegetation, ground surface roughness and understory-overstory relations. Due to this variability, remote sensing might be the only technology to provide consistent data at the required spatially extensive scales. Here we follow on our previous effort at mapping understory reflectance dynamics using multi-angle remote sensing observations (Pisek et al. (2012). Retrieval of seasonal dynamics of forest understory reflectance in a Northern European boreal forest from MODIS BRDF data. Remote Sensing of Environment, 117, 464-468). This presentation will focus on the validation of this approach against an extended collection of different types of forest sites with available in-situ understory reflectance measurements distributed along a wide latitudinal gradient: a sparse black spruce forest in Alaska (Poker range; 65.12 N), a northern European boreal forest (Hyytiala; 61.85 N), hemiboreal needleleaf and deciduous stands in Estonia (Jarvselja; 58.27 N), a temperate deciduous forest in Switzerland (Laegeren; 47.48 N), and a dense black spruce forest in Canada (Sudbury; 47.16 N). Our results are pertinent to the ultimate goal of production of circumpolar maps of seasonal dynamics of forest understory over boreal forests using the MODIS BRDF data, starting from 2000. This will allow us to assess the changes in seasonal dynamics of boreal forest understory over the full decade.

  10. Drought Stress Response of Dry Forest Trees of the Brazilian Caatinga

    NASA Astrophysics Data System (ADS)

    Menezes, R.; Worbes, M.

    2015-12-01

    Martin Worbes and Romulo Menezes In the frame of the "Tropi-Dry" network we studied drought response strategies of six tree species in a Caatinga forest at the Fazenda Tamandua near Patos in Paraiba, NE Brazil. We selected the tree species as representatives of the different phenological ecotypes: evergreen, deciduous and stem succulent. The deciduous group comprised N-fixing as well as non N-fixing Leguminosae. Over an entire vegetation period (dry and wet-season) we monitored their phenological behaviour, photosynthesis rates, stomata conductance and water potential, measured if leaves were present and we estimated seasonal variations in stable carbon and N15 content of the leaves. The major results are: Evergreen species (e.g. Capparis) may compensate low carbon-fixing rates in the wet season with a much longer vegetation period as the deciduous species. Stem succulents (Jatropha) do not fulfill the expectations of being high productive species under drought stress conditions, while the N-fixing Mimosa performed in particular at the end and the beginning of the dry period better than the rest of the investigated species. In general the results may help to understand different strategies of tree species in respect to extended dry periods of at least six months as in our study area and their role in carbon sequestration of tropical dry forests. The variety of observed strategies may contribute to the resilience of the ecosystem tropical dry forests.

  11. Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest

    PubMed Central

    Fu, Pei-Li; Jiang, Yan-Juan; Wang, Ai-Ying; Brodribb, Tim J.; Zhang, Jiao-Lin; Zhu, Shi-Dan; Cao, Kun-Fang

    2012-01-01

    Background and Aims The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in drought tolerance between leaves and stems. Methods A comparison was made of stem hydraulic conductivity, vulnerability curves, wood anatomy, leaf life span, leaf pressure–volume characteristics and photosynthetic capacity of six evergreen and six deciduous tree species co-occurring in a tropical dry karst forest in south-west China. The correlated evolution of leaf and stem traits was examined using both traditional and phylogenetic independent contrasts correlations. Key Results It was found that the deciduous trees had higher stem hydraulic efficiency, greater hydraulically weighted vessel diameter (Dh) and higher mass-based photosynthetic rate (Am); while the evergreen species had greater xylem-cavitation resistance, lower leaf turgor-loss point water potential (π0) and higher bulk modulus of elasticity. There were evolutionary correlations between leaf life span and stem hydraulic efficiency, Am, and dry season π0. Xylem-cavitation resistance was evolutionarily correlated with stem hydraulic efficiency, Dh, as well as dry season π0. Both wood density and leaf density were closely correlated with leaf water-stress tolerance and Am. Conclusions The results reveal the clear distinctions in stem hydraulic traits and leaf water-stress tolerance between the co-occurring evergreen and deciduous angiosperm trees in an Asian dry karst forest. A novel pattern was demonstrated linking leaf longevity with stem hydraulic efficiency and leaf water-stress tolerance. The results show the correlated evolution in drought tolerance between stems and leaves. PMID:22585930

  12. [Odocoileus virginianus diet (Artiodactyla: Cervidae) in a temperate forest of Northern Oaxaca, Mexico].

    PubMed

    González, Graciela; Briones-Salas, Miguel

    2012-03-01

    The Sierra Madre de Oaxaca region, located in the Northern state of Oaxaca, Mexico, is an area of forest ecosystems subject to high exploitation rates, although in some areas its temperate forests are conserved by indigenous community initiatives that live there. We analyzed the diet of white tailed-deer (Odocoileus virginianus) in the localities of Santa Catarina Lachatao and San Miguel Amatlán from June 1998 to August 1999. Sampling was done during both the wet and dry seasons, and included the observation of browsing traces (238 observations), microhistological analysis of deer feces (28 deer pellet-groups), and two stomach content analysis. The annual diet of white-tailed deer was composed of 42 species from 23 botanical families. The most represented families in the diet of this deer were Fagaceae, Asteraceae, Ericaceae and Fabaceae. There were significant differences in the alpha diversity of the diet during the wet and dry seasons (H'=2.957 and H'=1.832, respectively). The similarity percentage between seasons was 56%. Differences in plant species frequency were significantly higher during the wet season. Herbaceous plants made up the greatest percentage of all the species consumed. The preferred species throughout the year were Senecio sp. (shrub), Sedum dendroideum (herbaceous), Arctostaphylos pungens (shrub) and Satureja macrostema (shrub). Diet species richness was found to be lower than that observed in a tropical forest (Venezuela), tropical dry forest (Mexico) and temperate deciduous and mixed forest (Mexico), but similar to the diet species richness observed in a tropical dry forest (Costa Rica) and temperate coniferous and deciduous forests (USA).

  13. Overstory structure and soil nutrients effect on plant diversity in unmanaged moist tropical forest

    NASA Astrophysics Data System (ADS)

    Gautam, Mukesh Kumar; Manhas, Rajesh Kumar; Tripathi, Ashutosh Kumar

    2016-08-01

    Forests with intensive management past are kept unmanaged to restore diversity and ecosystem functioning. Before perpetuating abandonment after protracted restitution, understanding its effect on forest vegetation is desirable. We studied plant diversity and its relation with environmental variables and stand structure in northern Indian unmanaged tropical moist deciduous forest. We hypothesized that post-abandonment species richness would have increased, and the structure of contemporary forest would be heterogeneous. Vegetation structure, composition, and diversity were recorded, in forty 0.1 ha plots selected randomly in four forest ranges. Three soil samples per 0.1 ha were assessed for physicochemistry, fine sand, and clay mineralogy. Contemporary forest had less species richness than pre-abandonment reference period. Fourteen species were recorded as either seedling or sapling, suggesting reappearance or immigration. For most species, regeneration was either absent or impaired. Ordination and multiple regression results showed that exchangeable base cations and phosphorous affected maximum tree diversity and structure variables. Significant correlations between soil moisture and temperature, and shrub layer was observed, besides tree layer correspondence with shrub richness, suggesting that dense overstory resulting from abandonment through its effect on soil conditions, is responsible for dense shrub layer. Herb layer diversity was negatively associated with tree layer and shrub overgrowth (i.e. Mallotus spp.). Protracted abandonment may not reinforce species richness and heterogeneity; perhaps result in high tree and shrub density in moist deciduous forests, which can impede immigrating or reappearing plant species establishment. This can be overcome by density/basal area reduction strategies, albeit for both tree and shrub layer.

  14. Forests regenerating after clear-cutting function as habitat for bryophyte and lichen species of conservation concern.

    PubMed

    Rudolphi, Jörgen; Gustafsson, Lena

    2011-04-07

    The majority of managed forests in Fennoscandia are younger than 70 years old but yet little is known about their potential to host rare and threatened species. In this study, we examined red-listed bryophytes and lichens in 19 young stands originating from clear-cutting (30-70 years old) in the boreal region, finding 19 red-listed species (six bryophytes and 13 lichens). We used adjoining old stands, which most likely never had been clear-cut, as reference. The old stands contained significantly more species, but when taking the amount of biological legacies (i.e., remaining deciduous trees and dead wood) from the previous forest generation into account, bryophyte species number did not differ between old and young stands, and lichen number was even higher in young stands. No dispersal effect could be detected from the old to the young stands. The amount of wetlands in the surroundings was important for bryophytes, as was the area of old forest for both lichens and bryophytes. A cardinal position of young stands to the north of old stands was beneficial to red-listed bryophytes as well as lichens. We conclude that young forest plantations may function as habitat for red-listed species, but that this depends on presence of structures from the previous forest generation, and also on qualities in the surrounding landscape. Nevertheless, at repeated clear-cuttings, a successive decrease in species populations in young production stands is likely, due to increased fragmentation and reduced substrate amounts. Retention of dead wood and deciduous trees might be efficient conservation measures. Although priority needs to be given to preservation of remnant old-growth forests, we argue that young forests rich in biological legacies and located in landscapes with high amounts of old forests may have a conservation value.

  15. Inversion analysis of estimating interannual variability and its uncertainties in biotic and abiotic parameters of a parsimonious physiologically based model after wind disturbance

    NASA Astrophysics Data System (ADS)

    Toda, M.; Yokozawa, M.; Richardson, A. D.; Kohyama, T.

    2011-12-01

    The effects of wind disturbance on interannual variability in ecosystem CO2 exchange have been assessed in two forests in northern Japan, i.e., a young, even-aged, monocultured, deciduous forest and an uneven-aged mixed forest of evergreen and deciduous trees, including some over 200 years old using eddy covariance (EC) measurements during 2004-2008. The EC measurements have indicated that photosynthetic recovery of trees after a huge typhoon occurred during early September in 2004 activated annual carbon uptake of both forests due to changes in physiological response of tree leaves during their growth stages. However, little have been resolved about what biotic and abiotic factors regulated interannual variability in heat, water and carbon exchange between an atmosphere and forests. In recent years, an inverse modeling analysis has been utilized as a powerful tool to estimate biotic and abiotic parameters that might affect heat, water and CO2 exchange between the atmosphere and forest of a parsimonious physiologically based model. We conducted the Bayesian inverse model analysis for the model with the EC measurements. The preliminary result showed that the above model-derived NEE values were consistent with observed ones on the hourly basis with optimized parameters by Baysian inversion. In the presentation, we would examine interannual variability in biotic and abiotic parameters related to heat, water and carbon exchange between the atmosphere and forests after disturbance by typhoon.

  16. Mapping of taiga forest units using AIRSAR data and/or optical data, and retrieval of forest parameters

    NASA Technical Reports Server (NTRS)

    Rignot, Eric; Williams, Cynthia; Way, Jobea; Viereck, Leslie

    1993-01-01

    A maximum a posteriori Bayesian classifier for multifrequency polarimetric SAR data is used to perform a supervised classification of forest types in the floodplains of Alaska. The image classes include white spruce, balsam poplar, black spruce, alder, non-forests, and open water. The authors investigate the effect on classification accuracy of changing environmental conditions, and of frequency and polarization of the signal. The highest classification accuracy (86 percent correctly classified forest pixels, and 91 percent overall) is obtained combining L- and C-band frequencies fully polarimetric on a date where the forest is just recovering from flooding. The forest map compares favorably with a vegetation map assembled from digitized aerial photos which took five years for completion, and address the state of the forest in 1978, ignoring subsequent fires, changes in the course of the river, clear-cutting of trees, and tree growth. HV-polarization is the most useful polarization at L- and C-band for classification. C-band VV (ERS-1 mode) and L-band HH (J-ERS-1 mode) alone or combined yield unsatisfactory classification accuracies. Additional data acquired in the winter season during thawed and frozen days yield classification accuracies respectively 20 percent and 30 percent lower due to a greater confusion between conifers and deciduous trees. Data acquired at the peak of flooding in May 1991 also yield classification accuracies 10 percent lower because of dominant trunk-ground interactions which mask out finer differences in radar backscatter between tree species. Combination of several of these dates does not improve classification accuracy. For comparison, panchromatic optical data acquired by SPOT in the summer season of 1991 are used to classify the same area. The classification accuracy (78 percent for the forest types and 90 percent if open water is included) is lower than that obtained with AIRSAR although conifers and deciduous trees are better separated due to the presence of leaves on the deciduous trees. Optical data do not separate black spruce and white spruce as well as SAR data, cannot separate alder from balsam poplar, and are of course limited by the frequent cloud cover in the polar regions. Yet, combining SPOT and AIRSAR offers better chances to identify vegetation types independent of ground truth information using a combination of NDVI indexes from SPOT, biomass numbers from AIRSAR, and a segmentation map from either one.

  17. A new seasonal-deciduous spring phenology submodel in the Community Land Model 4.5: impacts on carbon and water cycling under future climate scenarios.

    PubMed

    Chen, Min; Melaas, Eli K; Gray, Josh M; Friedl, Mark A; Richardson, Andrew D

    2016-11-01

    A spring phenology model that combines photoperiod with accumulated heating and chilling to predict spring leaf-out dates is optimized using PhenoCam observations and coupled into the Community Land Model (CLM) 4.5. In head-to-head comparison (using satellite data from 2003 to 2013 for validation) for model grid cells over the Northern Hemisphere deciduous broadleaf forests (5.5 million km 2 ), we found that the revised model substantially outperformed the standard CLM seasonal-deciduous spring phenology submodel at both coarse (0.9 × 1.25°) and fine (1 km) scales. The revised model also does a better job of representing recent (decadal) phenological trends observed globally by MODIS, as well as long-term trends (1950-2014) in the PEP725 European phenology dataset. Moreover, forward model runs suggested a stronger advancement (up to 11 days) of spring leaf-out by the end of the 21st century for the revised model. Trends toward earlier advancement are predicted for deciduous forests across the whole Northern Hemisphere boreal and temperate deciduous forest region for the revised model, whereas the standard model predicts earlier leaf-out in colder regions, but later leaf-out in warmer regions, and no trend globally. The earlier spring leaf-out predicted by the revised model resulted in enhanced gross primary production (up to 0.6 Pg C yr -1 ) and evapotranspiration (up to 24 mm yr -1 ) when results were integrated across the study region. These results suggest that the standard seasonal-deciduous submodel in CLM should be reconsidered, otherwise substantial errors in predictions of key land-atmosphere interactions and feedbacks may result. © 2016 John Wiley & Sons Ltd.

  18. Spatial dynamics of deforestation and forest fragmentation (1930-2013) in Eastern Ghats, India

    NASA Astrophysics Data System (ADS)

    Sudhakar Reddy, C.; Jha, C. S.; Dadhwal, V. K.

    2014-11-01

    The tropical forests are the most unique ecosystems for their potential economic value. Eastern Ghats, a phytogeographical region of India has rugged hilly terrain distributed in parts of five states, viz. Odisha, Andhra Pradesh, Telangana, Karnataka and Tamil Nadu. The present study is mainly aimed to analyse the trends in deforestation and its role in forest fragmentation of Eastern Ghats. The long term changes in forest cover with its spatial pattern over time has been assessed by analyzing a set of topographical maps and satellite remote sensing datasets. The multi-source and multi-date mapping has been carried out using survey of India topographical maps (1930's), Landsat MSS (1975 and 1985), IRS 1B LISS-I (1995), IRS P6 AWiFS (2005) and Resourcesat-2 AWiFS (2013) satellite images. The classified spatial data for 1930, 1975, 1985, 1995, 2005 and 2013 showed that the forest cover for the mentioned years are 102213 km2 (45.6 %), 76630 (34.2 %), 73416 km2 (32.7 %), 71730 km2 (32 %), 71305 km2 (31.8 %) and 71186 km2 (31.7 %) of the geographical area of Eastern Ghats respectively. A spatial statistical analysis of the deforestation rates and forest cover change were carried out based on distinctive time phases, i.e. 1930-1975, 1975-1985, 1985-1995, 1995-2005 and 2005-2013. The spatial analysis was carried out first by segmenting the study area into grid cells of 5 km x 5 km for time series assessment and determining spatial changes in forests. The distribution of loss and gain of forest was calculated across six classes i.e. <1 km2, 1-5 km2, 5-10 km2, 10-15 km2, 15-20 km2 and >20 km2. Landscape metrics were used to quantify spatial variability of landscape structure and composition. The results of study on net rate of deforestation was found to be 0.64 during 1935 to 1975, 0.43 during 1975-1985, 0.23 during 1985-1995, 0.06 during 1995-2005 and 0.02 during 2005-2013. The number of forest patches increased from 2688 (1930) to 13009 (2013). The largest forest patch in 1930 represents area of 41669 km2 that has reduced to 27800 km2 by 2013. Thus, it is evident that there is a substantial reduction in the size of the very large forest patches due to deforestation. According to spatial analysis, among the different land use change drivers, agriculture occupies highest area, followed by degradation to scrub and conversion to orchards. The dominant forest type was dry deciduous which comprises 37192 km2 (52.2 %) of the total forest area of Eastern Ghats, followed by moist deciduous forest (39.2 %) and semievergreen forest (4.8 %) in 2013. The change analysis showed that the large scale negative changes occurred in deciduous forests and semi-evergreen forests compared to wet evergreen forests due to high economic potential and accessibility. This study has quantified the deforestation that has taken place over the last eight decades in the Eastern Ghats. The decline in overall rate of deforestation in recent years indicates increased measures of conservation. The change analysis of deforestation and forest fragmentation provides a decisive component for conservation and helpful in long term management of forests of Eastern Ghats.

  19. Assimilating leaf area index of three typical types of subtropical forest in China from MODIS time series data based on the integrated ensemble Kalman filter and PROSAIL model

    NASA Astrophysics Data System (ADS)

    Li, Xuejian; Mao, Fangjie; Du, Huaqiang; Zhou, Guomo; Xu, Xiaojun; Han, Ning; Sun, Shaobo; Gao, Guolong; Chen, Liang

    2017-04-01

    Subtropical forest ecosystems play essential roles in the global carbon cycle and in carbon sequestration functions, which challenge the traditional understanding of the main functional areas of carbon sequestration in the temperate forests of Europe and America. The leaf area index (LAI) is an important biological parameter in the spatiotemporal simulation of the carbon cycle, and it has considerable significance in carbon cycle research. Dynamic retrieval based on remote sensing data is an important method with which to obtain large-scale high-accuracy assessments of LAI. This study developed an algorithm for assimilating LAI dynamics based on an integrated ensemble Kalman filter using MODIS LAI data, MODIS reflectance data, and canopy reflectance data modeled by PROSAIL, for three typical types of subtropical forest (Moso bamboo forest, Lei bamboo forest, and evergreen and deciduous broadleaf forest) in China during 2014-2015. There were some errors of assimilation in winter, because of the bad data quality of the MODIS product. Overall, the assimilated LAI well matched the observed LAI, with R2 of 0.82, 0.93, and 0.87, RMSE of 0.73, 0.49, and 0.42, and aBIAS of 0.50, 0.23, and 0.03 for Moso bamboo forest, Lei bamboo forest, and evergreen and deciduous broadleaf forest, respectively. The algorithm greatly decreased the uncertainty of the MODIS LAI in the growing season and it improved the accuracy of the MODIS LAI. The advantage of the algorithm is its use of biophysical parameters (e.g., measured LAI) in the LAI assimilation, which makes it possible to assimilate long-term MODIS LAI time series data, and to provide high-accuracy LAI data for the study of carbon cycle characteristics in subtropical forest ecosystems.

  20. Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest

    Treesearch

    Shawn Urbanski; C. Barford; S. Wofsy; C. Kucharik; E. Pyle; J. Budney; K. McKain; D. Fitzjarrald; M. Czikowsky; J. W. Munger

    2007-01-01

    We analyzed 13 years (1992-2004) of CO2 flux data, biometry, and meteorology from a mixed deciduous forest in central Massachusetts. Annual net uptake of CO2 ranged from 1.0 to 4.7 Mg-C ha-1yr-1, with an average of 2.5 Mg-C ha-1yr-1. Uptake rates increased systematically, nearly doubling over the period despite forest age of 75–110 years; there were...

  1. Plot size recommendations for biomass estimation in a midwestern old-growth forest

    Treesearch

    Martin A. Spetich; George R Parker

    1998-01-01

    The authors examine the relationship between disturbance regime and plot size for woody biomass estimation in a midwestern old-growth deciduous forest from 1926 to 1992. Analysis was done on the core 19.6 ac of a 50.1 ac forest in which every tree 4 in. d.b.h. and greater has been tagged and mapped since 1926. Five windows of time are compared—1926, 1976, 1981, 1986...

  2. Net Ecosystem Fluxes of Hydrocarbons from a Ponderosa Pine Forest in Colorado

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Turnipseed, A. A.; Ortega, J. V.; Smith, J. N.; Guenther, A. B.; Shen, S.; Martinez, L.; Koss, A.; Warneke, C.; De Gouw, J. A.; Deventer, M. J.

    2015-12-01

    Light (C2-C4) alkenes, light alkanes and isoprene (C5H8) are non-methane hydrocarbons that play important roles in the photochemical production of tropospheric ozone and in the formation of secondary organic aerosols. Natural terrestrial fluxes of the light hydrocarbons are poorly characterized, with global emission estimates based on limited field measurements. In 2014, net fluxes of these compounds were measured at the Manitou Experimental Forest Observatory, a semi-arid ponderosa pine forest in the Colorado Rocky Mountains and site of the prior BEACHON campaigns. Three field intensives were conducted between June 17 and August 10, 2014. Net ecosystem flux measurements utilized a relaxed eddy accumulation system coupled to an automated gas chromatograph. Summertime average emissions of ethene and propene were up to 90% larger than those observed from a temperate deciduous forest. Ethene and propene fluxes were also correlated to each other, similar to the deciduous forest study. Emissions of isoprene were small, as expected for a coniferous forest, and these fluxes were not correlated with either ethene or propene. Unexpected emissions of light alkanes were also observed, and these showed a distinct diurnal cycle. Understory flux measurements allowed for the partitioning of fluxes between the surface and the canopy. Full results from the three field intensives will be compared with environmental variables in order to parameterize the fluxes for use in modeling emissions.

  3. Mycorrhizae promote fire adaptation in oak-hickory forests in Eastern USA

    Treesearch

    Aaron D. Stottlemyer; G. Geoff Wang; Thomas A. Waldrop

    2015-01-01

    Prescribed fire is commonly used in silvicultural programs designed to promote oak (Quercus spp.) and hickory (Carya spp.) regeneration in eastern deciduous forests (Brose and others 2008). Thick bark, hypogeal germination, large root systems, repeated-prolific sprouting, and the ability to compartmentalize scars are well-known characteristics that enable oaks and...

  4. Landscape Risk Factors for Lyme Disease in the Eastern Broadleaf Forest Province of the Hudson River Valley and the Effect of Explanatory Data Classification Resolution

    EPA Science Inventory

    This study assessed how landcover classification affects associations between landscape characteristics and Lyme disease rate. Landscape variables were derived from the National Land Cover Database (NLCD), including native classes (e.g., deciduous forest, developed low intensity)...

  5. Underplanting to sustain future stocking of oak (Quercus) in temperate deciduous forests

    Treesearch

    Daniel C. Dey; Emile S. Gardiner; Callie J. Schweitzer; John M. Kabrick; Douglass F. Jacobs

    2012-01-01

    Oaks (Quercus spp.) are one of the most important tree taxa in the northern hemisphere. Although they are dominant in mixed species forests and widely distributed, there are frequent reports of regeneration failures. An adequate population of large oak advance reproduction is a critical prerequisite to successful oak regeneration, and hence...

  6. Drought during canopy development has lasting effect on annual carbon balance in a deciduous temperate forest

    Treesearch

    Asko Noormets; Steve G. McNulty; Jared L. DeForest; Ge Sun; Qinglin Li; Jiquan Chen

    2008-01-01

    Climate change projections predict an intensifying hydrologic cycle and an increasing frequency of droughts, yet quantitative understanding of the effects on ecosystem carbon exchange remains limitedHere, the effect of contrasting precipitation and soil moisture dynamics were evaluated on forest carbon exchange using 2 yr of...

  7. Surface Water and Groundwater Nitrogen Dynamics in a Well Drained Riparian Forest within a Poorly Drained Agricultural Landscape

    EPA Science Inventory

    The effectiveness of riparian zones in mitigating nutrients in ground and surface water depends on the climate, management and hydrogeomorphology of a site. The purpose of this study was to determine the efficacy of a well-drained, mixed-deciduous riparian forest to buffer a ri...

  8. The Central Hardwood Forest: its boundaries and physiographic provinces

    Treesearch

    James S. Fralish

    2003-01-01

    The Central Hardwood Forest (CHF) refers to the area where deciduous hardwood species overwhelmingly, but not exclusively, dominate the stands and cover types that occur as repeating units across the landscape. Transition zones where Central Hardwood species mix with species from adjacent regions identify boundaries of the region. These regions are the Northern...

  9. The Central Hardwood Forest: Its Boundaries and Physiographic Provinces

    Treesearch

    James S. Fralish

    2003-01-01

    The Central Hardwood Forest (CHF) refers to the area where deciduous hardwood species overwhelmingly, but not exclusively, dominate the stands and cover types that occur as repeating units across the landscape. Transition zones where Central Hardwood species mix with species from adjacent regions identify boundaries of the region. These regions are the Northern...

  10. The Fundamental Skills Training Project

    DTIC Science & Technology

    2003-08-01

    rejecting hypotheses. This ITS teaches ecology concepts in areas including biomes , abiotic factors of plant growth, biotic factors in ecosystems, human...Deserts, Temperate Deciduous Forests, Coniferous Forests, Tropical Rainforests, Polar Regions, Tundra, Fresh Water, Marine . Abiotic Factors...critical points in each workspace. Incorporating motivational features that address individual characteristics such as learning styles and interests

  11. Resilience of Alaska's boreal forest to climate change

    Treesearch

    F.S. Chapin; A.D. McGuire; R.W. Ruess; T.N. Hollingsworth; M.C. Mack; J.F. Johnstone; E.S. Kasischke; E.S. Euskirchen; J.B. Jones; M.T. Jorgenson; K. Kielland; G.P. Kofinas; M.R. Turetsky; J. Yarie; A.H. Lloyd; D.L. Taylor

    2010-01-01

    This paper assesses the resilience of Alaska's boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters...

  12. Using Airborne LIDAR Data for Assessment of Forest Fire Fuel Load Potential

    NASA Astrophysics Data System (ADS)

    İnan, M.; Bilici, E.; Akay, A. E.

    2017-11-01

    Forest fire incidences are one of the most detrimental disasters that may cause long terms effects on forest ecosystems in many parts of the world. In order to minimize environmental damages of fires on forest ecosystems, the forested areas with high fire risk should be determined so that necessary precaution measurements can be implemented in those areas. Assessment of forest fire fuel load can be used to estimate forest fire risk. In order to estimate fuel load capacity, forestry parameters such as number of trees, tree height, tree diameter, crown diameter, and tree volume should be accurately measured. In recent years, with the advancements in remote sensing technology, it is possible to use airborne LIDAR for data estimation of forestry parameters. In this study, the capabilities of using LIDAR based point cloud data for assessment of the forest fuel load potential was investigated. The research area was chosen in the Istanbul Bentler series of Bahceköy Forest Enterprise Directorate that composed of mixed deciduous forest structure.

  13. Permafrost conditions at the Upper Kuskokwim river area and its influence on local communities.

    NASA Astrophysics Data System (ADS)

    Kholodov, A. L.; Panda, S. K.; Hanson, T.

    2017-12-01

    Research area located within the zone of discontinuous permafrost distribution. Recent mean annual air temperature here is close to the 0C. It means, that taking in consideration warming influence of the snow cower during winter, mean annual temperature at the ground surface is well above freezing point. It means that presence or absence of permafrost here completely controlled by the ecological conditions. Based on remote sensing data and the surveys conducted in 2016-17 we selected 6 main ecotypes typical for this area: black spruce boreal forest, wetlands, low and tall shrubs, deciduous and mixed forest. Most of them (low shrubs, deciduous and mixed forest) represent different stages of area recovering after forest fires that was confirmed by the presence of ashy layer close to ground surface in soil pits had been dug within these landscapes. Permafrost was observed only within 2 of them: low shrubs and black spruce boreal forest. Within these types of terrain temperature at the bottom of active layer varies from -0.2/-0.5C at the areas of low shrubs, recovered after relatively recent (approximately 30-50 years old) fires to -1/-1.5 within black spruce forest. Active (seasonally thawed) layer as thick as 0.6 to 0.8 m. Warmest ecotypes for the area are tall shrubs and deciduous forest, temperature at the depth close to 1 m is about +3C. At the mixed forest temperature at the same depth consists of +1/+2C. Active (seasonally frozen) layer thickness within permafrost free areas is 1-1.5 m at the drained sites and about 0.5 within wetlands. Ice-rich permafrost underlying the active layer was noticed only within the black spruce forest. Areas which are free of permafrost are much better drained, typical moisture of mineral soil is less than 30% versus 45-50% in seasonally thawed layer. The current state of permafrost and the fact that it presence completely depends on ecosystems limits land use abilities of local inhabitants. Any changes of forest coverage or organic layer thickness will lead to permafrost degradation and initiate thermokarst process or dryness of the area that increases risk of wild fires. Also, shallow soil freezing within wetlands makes shorter the safe period of snow machines operation. Current research should help local communities make more informed decisions in adaptation of resources management and land use.

  14. Implications for local and global climate of alternative forest management strategies in Norway

    NASA Astrophysics Data System (ADS)

    Bright, Ryan M.; Antón-Fernández, Clara; Astrup, Rasmus; Cherubini, Francesco; Kvalevåg, Maria; Hammer Strømman, Anders

    2014-05-01

    We applied a mix of observation and empirical models to evaluate both local and global climate effects of three realistic alternative forest management scenarios in the boreal forests of Norway's largest logging region. The alternative management scenarios embraced strategies aimed at increasing harvest intensities and allowing harvested conifer sites to regenerate naturally with broadleaved species. Stand-level analysis was firstly executed to attribute differences in daily, seasonal, and annual mean surface temperatures to differences in surface intrinsic biophysical properties across coniferous, deciduous, and clear-cut sites. Relative to a coniferous site, we observed a slight local cooling of 0.13 °C at a deciduous site and 0.25 °C at a clear-cut site over a 6-year period which was mostly attributed to a higher albedo throughout the year. When monthly mean albedo trajectories over the entire managed forest landscape were taken into consideration, we found that strategies promoting natural regeneration of coniferous sites with native deciduous species led to substantial global direct climate cooling benefits relative to those maintaining current silviculture regimes - despite predicted long-term regional warming feedbacks and a reduced albedo in spring and autumn months. The magnitude and duration of the cooling benefit depended largely on whether management strategies simultaneously promoted an enhanced material supply over business-as-usual levels. While additional climate impact linked to changes in life-cycle emissions and to changes in the global supply and demand of timber products ought to be factored into any mitigation-oriented climate policy involving the forestry sector, our analysis demonstrates that - within the boundaries of the managed forest ecosystem - excluding important biogeophysical considerations like surface albedo change may lead to sub-optimal climate policy.

  15. How competitive is drought deciduousness in tropical forests? A combined eco-hydrological and eco-evolutionary approach

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Dralle, David; Feng, Xue; Thompson, Sally; Manzoni, Stefano

    2017-06-01

    Drought-deciduous and evergreen species are both common in tropical forests, where there is the need to cope with water shortages during periodic dry spells and over the course of the dry season. Which phenological strategy is favored depends on the long-term balance of carbon costs and gains that leaf phenology imposes as a result of the alternation of wet and dry seasons and the unpredictability of rainfall events. This study integrates a stochastic eco-hydrological framework with key plant economy traits to derive the long-term average annual net carbon gain of trees exhibiting different phenological strategies in tropical forests. The average net carbon gain is used as a measure of fitness to assess which phenological strategies are more productive and more evolutionarily stable (i.e. not prone to invasion by species with a different strategy). The evergreen strategy results in a higher net carbon gain and more evolutionarily stable communities with increasing wet season lengths. Reductions in the length of the wet season or the total rainfall, as predicted under climate change scenarios, should promote a shift towards more drought-deciduous communities, with ensuing implications for ecosystem functioning.

  16. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests.

    PubMed

    Richardson, Andrew D; Hollinger, David Y; Dail, D Bryan; Lee, John T; Munger, J William; O'keefe, John

    2009-03-01

    Spring phenology is thought to exert a major influence on the carbon (C) balance of temperate and boreal ecosystems. We investigated this hypothesis using four spring onset phenological indicators in conjunction with surface-atmosphere CO(2) exchange data from the conifer-dominated Howland Forest and deciduous-dominated Harvard Forest AmeriFlux sites. All phenological measures, including CO(2) source-sink transition dates, could be well predicted on the basis of a simple two-parameter spring warming model, indicating good potential for improving the representation of phenological transitions and their dynamic responsiveness to climate variability in land surface models. The date at which canopy-scale photosynthetic capacity reached a threshold value of 12 micromol m(-2) s(-1) was better correlated with spring and annual flux integrals than were either deciduous or coniferous bud burst dates. For all phenological indicators, earlier spring onset consistently, but not always significantly, resulted in higher gross primary productivity (GPP) and ecosystem respiration (RE) for both seasonal (spring months, April-June) and annual flux integrals. The increase in RE was less than that in GPP; depending on the phenological indicator used, a one-day advance in spring onset increased springtime net ecosystem productivity (NEP) by 2-4 g C m(-2) day(-1). In general, we could not detect significant differences between the two forest types in response to earlier spring, although the response to earlier spring was generally more pronounced for Harvard Forest than for Howland Forest, suggesting that future climate warming may favor deciduous species over coniferous species, at least in this region. The effect of earlier spring tended to be about twice as large when annual rather than springtime flux integrals were considered. This result is suggestive of both immediate and lagged effects of earlier spring onset on ecosystem C cycling, perhaps as a result of accelerated N cycling rates and cascading effects on N uptake, foliar N concentrations and photosynthetic capacity.

  17. Climate change implications of shifting forest management strategy in a boreal forest ecosystem of Norway.

    PubMed

    Bright, Ryan M; Antón-Fernández, Clara; Astrup, Rasmus; Cherubini, Francesco; Kvalevåg, Maria; Strømman, Anders H

    2014-02-01

    Empirical models alongside remotely sensed and station measured meteorological observations are employed to investigate both the local and global direct climate change impacts of alternative forest management strategies within a boreal ecosystem of eastern Norway. Stand-level analysis is firstly executed to attribute differences in daily, seasonal, and annual mean surface temperatures to differences in surface intrinsic biophysical properties across conifer, deciduous, and clear-cut sites. Relative to a conifer site, a slight local cooling of −0.13 °C at a deciduous site and −0.25 °C at a clear-cut site were observed over a 6-year period, which were mostly attributed to a higher albedo throughout the year. When monthly mean albedo trajectories over the entire managed forest landscape were taken into consideration, we found that strategies promoting natural regeneration of coniferous sites with native deciduous species led to substantial global direct climate cooling benefits relative to those maintaining current silviculture regimes – despite predicted long-term regional warming feedbacks and a reduced albedo in spring and autumn months. The magnitude and duration of the cooling benefit depended largely on whether management strategies jointly promoted an enhanced material supply over business-as-usual levels. Expressed in terms of an equivalent CO2 emission pulse at the start of the simulation, the net climate response at the end of the 21st century spanned −8 to −159 Tg-CO2-eq., depending on whether near-term harvest levels increased or followed current trends, respectively. This magnitude equates to approximately −20 to −300% of Norway's annual domestic (production) emission impact. Our analysis supports the assertion that a carbon-only focus in the design and implementation of forest management policy in boreal and other climatically similar regions can be counterproductive – and at best – suboptimal if boreal forests are to be used as a tool to mitigate global warming.

  18. Forest Resource Information System (FRIS)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The technological and economical feasibility of using multispectral digital image data as acquired from the LANDSAT satellites in an ongoing operational forest information system was evaluated. Computer compatible multispectral scanner data secured from the LANDSAT satellites were demonstrated to be a significant contributor to ongoing information systems by providing the added dimensions of synoptic and repeat coverage of the Earth's surface. Major forest cover types of conifer, deciduous, mixed conifer-deciduous and non-forest, were classified well within the bounds of the statistical accuracy of the ground sample. Further, when overlayed with existing maps, the acreage of cover type retains a high level of positional integrity. Maps were digitized by a graphics design system, overlayed and registered onto LANDSAT imagery such that the map data with associated attributes were displayed on the image. Once classified, the analysis results were converted back to map form as a cover type of information. Existing tabular information as represented by inventory is registered geographically to the map base through a vendor provided data management system. The notion of a geographical reference base (map) providing the framework to which imagery and tabular data bases are registered and where each of the three functions of imagery, maps and inventory can be accessed singly or in combination is the very essence of the forest resource information system design.

  19. A Machine Learning and Cross-Validation Approach for the Discrimination of Vegetation Physiognomic Types Using Satellite Based Multispectral and Multitemporal Data.

    PubMed

    Sharma, Ram C; Hara, Keitarou; Hirayama, Hidetake

    2017-01-01

    This paper presents the performance and evaluation of a number of machine learning classifiers for the discrimination between the vegetation physiognomic classes using the satellite based time-series of the surface reflectance data. Discrimination of six vegetation physiognomic classes, Evergreen Coniferous Forest, Evergreen Broadleaf Forest, Deciduous Coniferous Forest, Deciduous Broadleaf Forest, Shrubs, and Herbs, was dealt with in the research. Rich-feature data were prepared from time-series of the satellite data for the discrimination and cross-validation of the vegetation physiognomic types using machine learning approach. A set of machine learning experiments comprised of a number of supervised classifiers with different model parameters was conducted to assess how the discrimination of vegetation physiognomic classes varies with classifiers, input features, and ground truth data size. The performance of each experiment was evaluated by using the 10-fold cross-validation method. Experiment using the Random Forests classifier provided highest overall accuracy (0.81) and kappa coefficient (0.78). However, accuracy metrics did not vary much with experiments. Accuracy metrics were found to be very sensitive to input features and size of ground truth data. The results obtained in the research are expected to be useful for improving the vegetation physiognomic mapping in Japan.

  20. Infrasonic wind noise under a deciduous tree canopy.

    PubMed

    Webster, Jeremy; Raspet, Richard

    2015-05-01

    In a recent paper, the infrasonic wind noise measured at the floor of a pine forest was predicted from the measured wind velocity spectrum and profile within and above the trees [Raspet and Webster, J. Acoust. Soc. Am. 137, 651-659 (2015)]. This research studies the measured and predicted wind noise under a deciduous forest with and without leaves. A calculation of the turbulence-shear interaction pressures above the canopy predicts the low frequency peak in the wind noise spectrum. The calculated turbulence-turbulence interaction pressure due to the turbulence field near the ground predicts the measured wind noise spectrum in the higher frequency region. The low frequency peak displays little dependence on whether the trees have leaves or not. The high frequency contribution with leaves is approximately an order of magnitude smaller than the contribution without leaves. Wind noise levels with leaves are very similar to the wind noise levels in the pine forest. The calculated turbulence-shear contribution from the wind within the canopy is shown to be negligible in comparison to the turbulence-turbulence contribution in both cases. In addition, the effect of taller forests and smaller roughness lengths than those of the test forest on the turbulence-shear interaction is simulated based on measured meteorological parameters.

  1. Observation of organized structure in turbulent flow within and above a forest canopy

    NASA Technical Reports Server (NTRS)

    Gao, W.; Shaw, R. H.; Paw u, K. T.

    1989-01-01

    Data obtained with seven triaxial sonic anemometer/thermometers and three Lyman-alpha hygrometers at an experimental site in Ontario, Canada reveal the coherent occurrence of ramp patterns of temperature and humidity at several levels within and above the deciduous forest considered. The ramps appear most clearly in the middle and upper portion of the forest, and near the top of the forest they are composed of a weak ejecting motion transporting warm and/or moist air out of the forest, followed by strong sweeps of cool and/or dry air penetrating into the canopy. In the middle and upper parts of the canopy, the sweeps are found to conduct a large proportion of the overall transfer between the forest and the lower atmosphere, with a lesser contribution from ejections.

  2. OF BELGOROD PROVINCE].

    PubMed

    Prisniy, Yu A

    2016-01-01

    The article provides a list of 30 species of the family Tabanidae, recorded in Belgorod Province. Forest and forest-steppe species dominate (60 %), being found at edges of oak forests, deciduous and mixed forests, and in mesophytic meadows. These species are distributed over the entire area of the region. The fraction of taiga-forest species in the region is small (10 %). These species are found in western and northern areas where large forests and sphagnum bogs are present. The fraction of steppe species constitutes 13.3 %, these species are found mainly in eastern and south-eastern parts of the Province, where areas of steppe and cretaceous outcrops are found. Desert species (6.7 %) and a single Mediterranean coastal species were also recorded in the region. Mass emergence of horseflies in Belgorod Province begins in June and lasts until mid-August.

  3. Land cover and forest formation distributions for St. Kitts, Nevis, St. Eustatius, Grenada and Barbados from decision tree classification of cloud-cleared satellite imagery

    USGS Publications Warehouse

    Helmer, E.H.; Kennaway, T.A.; Pedreros, D.H.; Clark, M.L.; Marcano-Vega, H.; Tieszen, L.L.; Ruzycki, T.R.; Schill, S.R.; Carrington, C.M.S.

    2008-01-01

    Satellite image-based mapping of tropical forests is vital to conservation planning. Standard methods for automated image classification, however, limit classification detail in complex tropical landscapes. In this study, we test an approach to Landsat image interpretation on four islands of the Lesser Antilles, including Grenada and St. Kitts, Nevis and St. Eustatius, testing a more detailed classification than earlier work in the latter three islands. Secondly, we estimate the extents of land cover and protected forest by formation for five islands and ask how land cover has changed over the second half of the 20th century. The image interpretation approach combines image mosaics and ancillary geographic data, classifying the resulting set of raster data with decision tree software. Cloud-free image mosaics for one or two seasons were created by applying regression tree normalization to scene dates that could fill cloudy areas in a base scene. Such mosaics are also known as cloud-filled, cloud-minimized or cloud-cleared imagery, mosaics, or composites. The approach accurately distinguished several classes that more standard methods would confuse; the seamless mosaics aided reference data collection; and the multiseason imagery allowed us to separate drought deciduous forests and woodlands from semi-deciduous ones. Cultivated land areas declined 60 to 100 percent from about 1945 to 2000 on several islands. Meanwhile, forest cover has increased 50 to 950%. This trend will likely continue where sugar cane cultivation has dominated. Like the island of Puerto Rico, most higher-elevation forest formations are protected in formal or informal reserves. Also similarly, lowland forests, which are drier forest types on these islands, are not well represented in reserves. Former cultivated lands in lowland areas could provide lands for new reserves of drier forest types. The land-use history of these islands may provide insight for planners in countries currently considering lowland forest clearing for agriculture. Copyright 2008 College of Arts and Sciences.

  4. Deposition Velocity of PM2.5 in the Winter and Spring above Deciduous and Coniferous Forests in Beijing, China

    PubMed Central

    Sun, Fengbin; Yin, Zhe; Lun, Xiaoxiu; Zhao, Yang; Li, Renna; Shi, Fangtian; Yu, Xinxiao

    2014-01-01

    To estimate the deposition effect of PM2.5 (particle matter with aerodynamic diameter <2.5 µm) in forests in northern China, we used the gradient method to measure the deposition velocity of PM2.5 during the winter and spring above a deciduous forest in Olympic Forest Park and above a coniferous forest in Jiufeng National Forest Park. Six aerosol samplers were placed on two towers at each site at heights of 9, 12 and 15 m above the ground surface. The sample filters were exchanged every four hours at 6∶00 AM, 10∶00 AM, 2∶00 PM, 6∶00 PM, 10∶00 PM, and 2∶00 AM. The daytime and nighttime deposition velocities in Jiufeng Park and Olympic Park were compared in this study. The February deposition velocities in Jiufeng Park were 1.2±1.3 and 0.7±0.7 cm s−1 during the day and night, respectively. The May deposition velocities in Olympic Park were 0.9±0.8 and 0.4±0.5 cm s−1 during the day and night, respectively. The May deposition velocities in Jiufeng Park were 1.1±1.2 and 0.6±0.5 cm s−1 during the day and night, respectively. The deposition velocities above Jiufeng National Forest Park were higher than those above Olympic Forest Park. The measured values were smaller than the simulated values obtained by the Ruijgrok et al. (1997) and Wesely et al. (1985) models. However, the reproducibility of the Ruijgrok et al. (1997) model was better than that of the Wesely et al. (1985) model. The Hicks et al. (1977) model was used to analyze additional forest parameters to calculate the PM2.5 deposition, which could better reflect the role of the forest in PM2.5 deposition. PMID:24842850

  5. Variation of Annual ET Determined from Water Budgets Across Rural Southeastern Basins Differing in Forest Types

    NASA Astrophysics Data System (ADS)

    Younger, S. E.; Jackson, C. R.

    2017-12-01

    In the Southeastern United States, evapotranspiration (ET) typically accounts for 60-70% of precipitation. Watershed and plot scale experiments show that evergreen forests have higher ET rates than hardwood forests and pastures. However, some plot experiments indicate that certain hardwood species have higher ET than paired evergreens. The complexity of factors influencing ET in mixed land cover watersheds makes identifying the relative influences difficult. Previous watershed scale studies have relied on regression to understand the influences or low flow analysis to indicate growing season differences among watersheds. Existing studies in the southeast investigating ET rates for watersheds with multiple forest cover types have failed to identify a significant forest type effect, but these studies acknowledge small sample sizes. Trends of decreasing streamflow have been recognized in the region and are generally attributed to five key factors, 1.) influences from multiple droughts, 2.) changes in distribution of precipitation, 3.) reforestation of agricultural land, 4.) increasing consumptive uses, or 5.) a combination of these and other factors. This study attempts to address the influence of forest type on long term average annual streamflow and on stream low flows. Long term annual ET rates were calculated as ET = P-Q for 46 USGS gaged basins with daily data for the 1982 - 2014 water years, >40% forest cover, and no large reservoirs. Land cover data was regressed against ET to describe the relationship between each of the forest types in the National Land Cover Database. Regression analysis indicates evergreen land cover has a positive relationship with ET while deciduous and total forest have a negative relationship with ET. Low flow analysis indicates low flows tend to be lower in watersheds with more evergreen cover, and that low flows increase with increasing deciduous cover, although these relationships are noisy. This work suggests considering forest cover type improves understanding of watershed scale ET at annual and seasonal levels which is consistent with historic paired watershed experiments and some plot scale data.

  6. Occurrence of termites (Isoptera) on living and standing dead trees in a tropical dry forest in Mexico.

    PubMed

    Calderón-Cortés, Nancy; Escalera-Vázquez, Luis H; Oyama, Ken

    2018-01-01

    Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60-98% of standing dead trees and 23-59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057-0.066 trees/m 2 ) than in riparian forests (0.022 and 0.027 trees/m 2 ), even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01-0.09 trees/m 2 ) than in larger class sizes (0-0.02 trees/m 2 ). Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil.

  7. Modeling forest dynamics along climate gradients in Bolivia

    NASA Astrophysics Data System (ADS)

    Seiler, C.; Hutjes, R. W. A.; Kruijt, B.; Quispe, J.; Añez, S.; Arora, V. K.; Melton, J. R.; Hickler, T.; Kabat, P.

    2014-05-01

    Dynamic vegetation models have been used to assess the resilience of tropical forests to climate change, but the global application of these modeling experiments often misrepresents carbon dynamics at a regional level, limiting the validity of future projections. Here a dynamic vegetation model (Lund Potsdam Jena General Ecosystem Simulator) was adapted to simulate present-day potential vegetation as a baseline for climate change impact assessments in the evergreen and deciduous forests of Bolivia. Results were compared to biomass measurements (819 plots) and remote sensing data. Using regional parameter values for allometric relations, specific leaf area, wood density, and disturbance interval, a realistic transition from the evergreen Amazon to the deciduous dry forest was simulated. This transition coincided with threshold values for precipitation (1400 mm yr-1) and water deficit (i.e., potential evapotranspiration minus precipitation) (-830 mm yr-1), beyond which leaf abscission became a competitive advantage. Significant correlations were found between modeled and observed values of seasonal leaf abscission (R2 = 0.6, p <0.001) and vegetation carbon (R2 = 0.31, p <0.01). Modeled Gross Primary Productivity (GPP) and remotely sensed normalized difference vegetation index showed that dry forests were more sensitive to rainfall anomalies than wet forests. GPP was positively correlated to the El Niño-Southern Oscillation index in the Amazon and negatively correlated to consecutive dry days. Decreasing rainfall trends were simulated to reduce GPP in the Amazon. The current model setup provides a baseline for assessing the potential impacts of climate change in the transition zone from wet to dry tropical forests in Bolivia.

  8. Occurrence of termites (Isoptera) on living and standing dead trees in a tropical dry forest in Mexico

    PubMed Central

    Escalera-Vázquez, Luis H.; Oyama, Ken

    2018-01-01

    Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60–98% of standing dead trees and 23–59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057–0.066 trees/m2) than in riparian forests (0.022 and 0.027 trees/m2), even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01–0.09 trees/m2) than in larger class sizes (0–0.02 trees/m2). Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil. PMID:29785342

  9. Relationships between large-scale circulation patterns and carbon dioxide exchange by a deciduous forest

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyong; Wu, Lingyun; Huang, Gang; Notaro, Michael

    2011-02-01

    In this study, we focus on a deciduous forest in central Massachusetts and investigate the relationships between global climate indices and CO2 exchange using eddy-covariance flux measurements from 1992 to 2007. Results suggest that large-scale circulation patterns influence the annual CO2 exchange in the forest through their effects on the local surface climate. Annual gross ecosystem exchange (GEE) in the forest is closely associated with spring El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), previous fall Atlantic Multidecadal Oscillation (AMO), and previous winter East Pacific-North Pacific (EP-NP) pattern. Annual net ecosystem exchange (NEE) responds to previous fall AMO and PDO, while annual respiration (R) is impacted by previous fall ENSO and Pacific/North American Oscillation (PNA). Regressions based on these relationships are developed to simulate the annual GEE, NEE, and R. To avoid problems of multicollinearity, we compute a "Composite Index for GEE (CIGEE)" based on a linear combination of spring ENSO and PDO, fall AMO, and winter EP-NP and a "Composite Index for R (CIR)" based on a linear combination of fall ENSO and PNA. CIGEE, CIR, and fall AMO and PDO can explain 41, 27, and 40% of the variance of the annual GEE, R, and NEE, respectively. We further apply the methodology to two other northern midlatitude forests and find that interannual variabilities in NEE of the two forests are largely controlled by large-scale circulation patterns. This study suggests that global climate indices provide the potential for predicting CO2 exchange variability in the northern midlatitude forests.

  10. Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a mid-successional boreal forest

    USGS Publications Warehouse

    Melvin, April M.; Mack, Michelle C.; Johnstone, Jill F.; McGuire, A. David; Genet, Helene; Schuur, Edward A.G.

    2015-01-01

    In the boreal forest of Alaska, increased fire severity associated with climate change is expanding deciduous forest cover in areas previously dominated by black spruce (Picea mariana). Needle-leaf conifer and broad-leaf deciduous species are commonly associated with differences in tree growth, carbon (C) and nutrient cycling, and C accumulation in soils. Although this suggests that changes in tree species composition in Alaska could impact C and nutrient pools and fluxes, few studies have measured these linkages. We quantified C, nitrogen, phosphorus, and base cation pools and fluxes in three stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a single fire event in 1958. Paper birch consistently displayed characteristics of more rapid C and nutrient cycling, including greater aboveground net primary productivity, higher live foliage and litter nutrient concentrations, and larger ammonium and nitrate pools in the soil organic layer (SOL). Ecosystem C stocks (aboveground + SOL + 0–10 cm mineral soil) were similar for the two species; however, in black spruce, 78% of measured C was found in soil pools, primarily in the SOL, whereas aboveground biomass dominated ecosystem C pools in birch forest. Radiocarbon analysis indicated that approximately one-quarter of the black spruce SOL C accumulated prior to the 1958 fire, whereas no pre-fire C was observed in birch soils. Our findings suggest that tree species exert a strong influence over C and nutrient cycling in boreal forest and forest compositional shifts may have long-term implications for ecosystem C and nutrient dynamics.

  11. Structural Relationships Of Selected Tree Species at Several Mid-Latitude Deciduous Forest Sites in Virginia

    DTIC Science & Technology

    1999-09-01

    are included in the deciduous analyses. They are mockernut hickory { Carya tomentosa), American elm {Ulmus americana), pecan { Carya illinoensis ), and...alba, white ash (Fraxinus americana), and pecan ( Carya illinoensis ). A number of these trees have plaques indicating the dates of planting (late 1700s

  12. Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest

    Treesearch

    Dohyoung Kim; Ram Oren; A. Christopher Oishi; Cheng-I Hsieh; Nathan Phillips; Kimberly A. Novick; Paul C. Stoy

    2014-01-01

    Wind velocity (U) within and above forest canopies can alter the coupling between the vapor-saturated sub-stomatal airspace and the drier atmosphere aloft, thereby influencing transpiration rates. In practice, however, the actual increase in transpiration with increasing U depends on the aerodynamic resistance (RA) to vapor transfer compared to canopy resistance to...

  13. Fine root dynamics across a chronosequence of upland temperate deciduous forests

    Treesearch

    Travis W. Idol; Phillip E. Pope; Felix Jr. Ponder

    2000-01-01

    Following a major disturbance event in forests that removes most of the standing vegetation, patterns of fine root growth, mortality, and decomposition may be altered from the pre-disturbance conditions. The objective of this study was to describe the changes in the seasonal and spatial dynamics of fine root growth, mortality, and decomposition that occur following...

  14. Volatile organic compound emmission rates from mixed deciduous and coniferous foest in Northern Wisconsin, USA

    Treesearch

    J. G. Isebrands; A. B. Guenther; P. Harley; D. Helmig; L. Klinger; L. Vierling; P. Zimmerman; C. Geron

    1999-01-01

    Biogenic emissions of volatile organic compounds {VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regions of the world to understand regional and global impacts and to implement possible...

  15. Forest restoration in the Nordic countries

    Treesearch

    Palle Madsen; Ása Arad•ttir; Emile Gardiner; Pelle Gemmel; Kåre Lund Høie; Magnus Löf; John A. Stanturf; Peter Tigerstedt; Hardi Tullus; Sauli Valkonen; Veiko Uri

    2000-01-01

    The Nordic countries include Iceland, Norway, Sweden, Finland, and Denmark, which range from lat. 54° in southern Denmark to lat. 72° at North Cape, Norway. This region is dominated by the boreal coniferous vegetational zone.Denmark and southern Sweden are, however, located in the deciduous (nemoral) forest zone, whereas the interior part of Iceland and the high...

  16. A Long-Term View of Old-Growth Deciduous Forests

    Treesearch

    James T. Tanner; Paul B. Hamel

    2001-01-01

    Lowland old-growth forests in the Southeastern United States and Eastern Europe (Poland) survived because of accidents of history, topography, and ownership until they came under governmental protection. Such old-growth stands are the similar the world over; they have trees of many ages, patchy distribution of habitats, and a variety of microhabitats, all of which...

  17. Restoring forest herb communities through landscape-level deer herd reductions: Is recovery limited by legacy effects?

    Treesearch

    Alejandro A. Royo; Susan L. Stout; David S. deCalesta; Timothy G. Pierson

    2010-01-01

    White-tailed deer (Odocoileus virginianus) overbrowsing has altered plant species diversity throughout deciduous forest understories in eastern North America. Here we report on a landscape-level (306 km2) project in Pennsylvania, USA that tracked the herbaceous community response to deer herd reductions. From 2001 to 2007, we...

  18. Relationship between foliar chemistry and insect performance: the forest tent caterpillar

    Treesearch

    Francois Lorenzetti; Yves Mauffette; Eric Bauce

    1999-01-01

    Forest tent caterpillar (FTC) feeds on several species of deciduous trees (Stehr and Cook 1968), in northeastern North America, quaking aspen is the preferred host of this spring-feeding insect. FTC commonly defoliates several thousands of hectares of aspen stands each year in Quebec (Bordeleau 1990), although its secondary hosts seldom are attacked.

  19. Nitrogen cycling in a forest stream determined by a 15N tracer addition

    Treesearch

    Patrick J. Mullholland; Jennifer L. Tank; Diane M. Sanzone; Wilfred M. Wollheim; Bruce J. Peterson; Jackson R. Webster; Judy L. Meyer

    2000-01-01

    Nitrogen uptake and cycling was examined using a six-week tracer addition of 15N-labeled ammonium in early spring in Waer Branch, a first-order deciduous forest stream in eastern Tennessee. Prior to the 15N addition, standing stocks of N were determined for the major biomass compartments. During and after the addition,

  20. Characterizing movement of ground-dwelling arthropods with a novel mark-capture method using fluorescent powder

    Treesearch

    Kayla I. Perry; Kimberly F. Wallin; John W. Wenzel; Daniel A. Herms

    2017-01-01

    A major knowledge gap exists in understanding dispersal potential of ground-dwelling arthropods, especially in forest ecosystems. Movement of the ground-dwelling arthropod community was quantified using a novel markcapture technique in which three different colored fluorescent powders in two separate mixtures were applied to the floor of a deciduous forest in...

  1. The paleoecology of fire and oaks in eastern forests

    Treesearch

    William A. III Patterson

    2006-01-01

    Oaks (Quercus spp.) currently dominate eastern deciduous forests, but are widely perceived as declining, with regeneration inadequate to perpetuate many stands. Most stands regenerated following fire in the 19th and early 20th centuries, and a lack of recent fire is viewed as contributing to the shortage of sapling and pole-size stands. But paleoecological studies...

  2. Aerial detection of Ailanthus altissima: a cost-effective method to map an invasive tree in forested landscapes

    Treesearch

    Joanne Rebbeck; Aaron Kloss; Michael Bowden; Cheryl Coon; Todd F. Hutchinson; Louis Iverson; Greg Guess

    2015-01-01

    We present an aerial mapping method to efficiently and effectively identify seed clusters of the invasive tree, Ailanthus altissima (Mill.) Swingle across deciduous forest landscapes in the eastern United States. We found that the ideal time to conduct aerial digital surveys is early to middle winter, when Ailanthus seed...

  3. Some effects of forest preservation

    Treesearch

    William B. Leak

    1974-01-01

    Long-term preservation (no cutting) of a deciduous forest stand in New Hampshire is leading toward stable populations of beech, sugar maple, striped maple, mountain maple, and hobblebush, coupled with a decline or complete disappearance of other woody species. The humus has stabilized at a depth no greater than that of cut stands. Nitrate discharge in the streams is...

  4. Using thinning as a management tool for gypsy moth: the influence on small mammal abundance

    Treesearch

    R.M. Muzika; S.T. Grushecky; A.M. Liebhold; R.L. Smith

    2004-01-01

    Silvicultural manipulations may be used to reduce forest susceptibility or vulnerability to defoliation by the gypsy moth. The effects of this management strategy on small mammal abundance were determined by pitfall trapping small mammals 1 year before silvicultural thinnings and for 3 years following thinning in a deciduous montane forest. Sorex cinereus...

  5. Growth pf Chinese tallow in a bottomland forest in Southern Mississippi

    Treesearch

    Nana Tian; Zhaofei Fan

    2015-01-01

    Chinese tallow tree [Triadica sebifera (L.) Small, formerly Sapium sebiferum (L.) Roxb.] is a monoecious and deciduous tree, native to central and southern China. As a nonnative invasive tree species, it has aggressively invaded forestlands in southeastern United States, particularly the low- and bottom-land forests along the coastal region of the Gulf of Mexico. This...

  6. Effects of ungulate herbivory on aspen, cottonwood, and willow development under forest fuels treatment regimes

    Treesearch

    Bryan A. Endress; Michael J. Wisdom; Martin Vavra; Catherine G. Parks; Brian L. Dick; Bridgett J. Naylor; Jennifer M. Boyd

    2012-01-01

    Herbivory by domestic and wild ungulates can dramatically affect vegetation structure, composition and dynamics in nearly every terrestrial ecosystem of the world. These effects are of particular concern in forests of western North America, where intensive herbivory by native and domestic ungulates has the potential to substantially reduce or eliminate deciduous,...

  7. Drought impacts on tree growth and mortality of southern Appalachian forests

    Treesearch

    Brian D. Kloeppel; Barton D. Clinton; James M. Vose; Aaron R. Cooper

    2003-01-01

    The Coweeta LTER Program represents the eastern deciduous forests of the southem Appalachian Mountains in the United States. Coweeta Hydrologic Laboratory was established in 1934 and hence has a long record of climate measurement and vegetation response to both natural and human disturbance (Swank and Crossley 1988). The general climate of the area is classified as...

  8. Evaluating relationships among tree growth rate, shade tolerance, and browse tolerance following disturbance in an eastern deciduous forest

    Treesearch

    Lisa M. Krueger; Chris J. Peterson; Alejandro Royo; Walter P. Carson

    2009-01-01

    Interspecific differences in shade tolerance among woody species are considered a primary driving force underlying forest succession. However, variation in shade tolerance may be only one of many interspecific differences that cause species turnover. For example, tree species may differ in their sensitivity to herbivory. Nonetheless,...

  9. Influences of the vegetation mosaic on riparian and stream environments in a mixed forest-grassland landscape in "Mediterranean" northwestern California

    Treesearch

    Hartwell H Welsh Jr; Garth R. Hodgson; Nancy E. Karraker

    2005-01-01

    We examined differences in riparian and aquatic environments within the three dominant vegetation patch types of the Mattole River watershed, a 789-km2 mixed conifer-deciduous (hardwood) forest and grassland-dominated landscape in northwestern California, USA. Riparian and aquatic environments, and particularly microclimates therein, influence...

  10. Xylobios: patterns, roles and determinants of saproxylic diversity in Belgian deciduous forests

    Treesearch

    Philippe Fayt; Etienne Branquart; Marc Dufrene; Jean-Marc Henin; Christophe Pontegnie; Veerle Versteirt

    2003-01-01

    The XYLOBIOS project aims to study patterns, roles and determinants of saproxylic diversity (i.e., species richness and abundance of organisms which are dependent upon the dead or dying wood of moribund or dead trees, or upon the presence of other saproxylics) found in Belgian beech Fagus sylvatica and oak Quercus spp. forests. The...

  11. 137Cs dynamics in the forest of Fukushima after the nuclear power plant accident in March 2011

    NASA Astrophysics Data System (ADS)

    Endo, I.; Ohte, N.; Iseda, K.; Kobayashi, N.; Hirose, A.; Tanoi, K.

    2013-12-01

    The accident of Fukushima Daiichi nuclear power plant after the earthquake and Tsunami in March 11th 2011, caused large amount of radioactive Cesium (137Cs) emission into the environment. In the region of Fukushima Prefecture, forest dominates more than 70 % of the land area. River water from the forest area is used for food production and also for drinking water. Thus, it is important to understand the dynamics of 137Cs deposited in the forest to predict how the radioactive Cs diffuse and discharge from the forest catchments. We measured 137Cs concentration of the tree body, litter fall, throughfall, and stemflow, in order to clarify how 137Cs deposited on the above ground biomass of the forest are transported to the forest floor. We set forest site at the upstream part of Kami-Oguni River catchment, northern part of Fukushima Prefecture. Three plots (2 deciduous stands and 1 Japanese cedar (Cryptomeria japonica) plantation stand) were set in the forest site. Quercus serrata and C. japonica, which are representative tree species, were chosen at each plot and concentration of 137Cs on the bark, sapwood and heartwood were measured every 2 m from the ground to tree top. From each plot, 137Cs concentration of leaf litter was measured among species. Water samples of throughfall and stemflow were filtered and 137Cs concentration in suspended matter was measured. 137Cs was deposited on the bark of Q. serrata at high concentration (9-18 kBq/kg) but there were no clear relationship between tree height and concentration. 137Cs concentration of the sapwood (41 Bq/kg) was relatively higher than that of the heartwood (5 Bq/kg). It was suggested that 137Cs may be absorbed from bark and/or root. The concentration of 137Cs deposited in leaf litter varied from non-detected level to above 30 kBq/kg. The concentration was higher at evergreen tree than deciduous tree. It is considered that the litter of evergreen tree was derived from leaves on the tree canopy at the time of the accident. Also, though the leaves of deciduous trees had not been emerged at the time of the accident, significant levels of 137Cs on those leaves suggest that 137Cs may have translocated from some part of tree body. The concentration of 137Cs in rain water was below detection level. However, both throughfall and stemflow contained 137Cs at every plot. From these results, it is suggested that 137Cs deposited on the above ground biomass of the forest continues to move to the forest floor by litter fall and rain event.

  12. Scaling wood volume estimates from inventory plots to landscapes with airborne LiDAR in temperate deciduous forest.

    PubMed

    Levick, Shaun R; Hessenmöller, Dominik; Schulze, E-Detlef

    2016-12-01

    Monitoring and managing carbon stocks in forested ecosystems requires accurate and repeatable quantification of the spatial distribution of wood volume at landscape to regional scales. Grid-based forest inventory networks have provided valuable records of forest structure and dynamics at individual plot scales, but in isolation they may not represent the carbon dynamics of heterogeneous landscapes encompassing diverse land-management strategies and site conditions. Airborne LiDAR has greatly enhanced forest structural characterisation and, in conjunction with field-based inventories, it provides avenues for monitoring carbon over broader spatial scales. Here we aim to enhance the integration of airborne LiDAR surveying with field-based inventories by exploring the effect of inventory plot size and number on the relationship between field-estimated and LiDAR-predicted wood volume in deciduous broad-leafed forest in central Germany. Estimation of wood volume from airborne LiDAR was most robust (R 2  = 0.92, RMSE = 50.57 m 3 ha -1  ~14.13 Mg C ha -1 ) when trained and tested with 1 ha experimental plot data (n = 50). Predictions based on a more extensive (n = 1100) plot network with considerably smaller (0.05 ha) plots were inferior (R 2  = 0.68, RMSE = 101.01 ~28.09 Mg C ha -1 ). Differences between the 1 and 0.05 ha volume models from LiDAR were negligible however at the scale of individual land-management units. Sample size permutation tests showed that increasing the number of inventory plots above 350 for the 0.05 ha plots returned no improvement in R 2 and RMSE variability of the LiDAR-predicted wood volume model. Our results from this study confirm the utility of LiDAR for estimating wood volume in deciduous broad-leafed forest, but highlight the challenges associated with field plot size and number in establishing robust relationships between airborne LiDAR and field derived wood volume. We are moving into a forest management era where field-inventory and airborne LiDAR are inextricably linked, and we encourage field inventory campaigns to strive for increased plot size and give greater attention to precise stem geolocation for better integration with remote sensing strategies.

  13. Effects of Warming on Tree Species’ Recruitment in Deciduous Forests of the Eastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melillo, Jerry M.; Clark, James S.; Mohan, Jacqueline

    Climate change is restructuring forests of the United States, although the details of this restructuring are currently uncertain. Rising temperatures of 2 to 8oC and associated changes in soil moisture will shift the competitive balance between species that compete for light and water, and so change their abilities to produce seed, germinate, grow, and survive. We have used large-scale experiments to determine the effects of warming on the most sensitive stage of species distributions, i.e., recruitment, in mixed deciduous forests in southern New England and in the Piedmont region of North Carolina. Two questions organized our research: (1) Might temperatemore » tree species near the “warm” end of their range in the eastern United States decline in abundance during the coming century due to projected warming? and (2) Might trees near the “cool” end of their range in the eastern United States increase in abundance, or extend their range, during the coming 100 years because of projected warming? To explore these questions, we exposed seedlings to air and soil warming experiments in two eastern deciduous forest sites; one at the Harvard Forest (HF) in central Massachusetts, and the other at the Duke Forest (DF) in the Piedmont region of North Carolina. We focused on tree species common to both Harvard and Duke Forests (such as red, black, and white oaks), those near northern range limits (black oak, flowing dogwood, tulip poplar), and those near southern range limits (yellow birch, sugar maple, Virginia pine). At each site, we planted seeds and seedlings in common gardens established in temperature-controlled, open-top chambers. The experimental design was replicated and fully factorial and involved three temperature regimes (ambient, +3oC and +5oC) and two light regimes (closed forest canopy (low light) and gap conditions (high light)). Measured variables included Winter/Spring responses to temperature and mid-Summer responses to low soil moisture. This research will advance our understanding of how the abundances and geographic distributions of several important eastern tree species near the cool and warm ends of their ranges will change during the century because of projected warming. Warming-induced changes in eastern tree abundances and distributions have the potential to affect both the quality and quantity of goods and services provided by eastern forests, and will therefore be of importance to society.« less

  14. Leaf Area Influence on Surface Layer in a Deciduous Forest. Part 2; Detecting Leaf Area and Surface Resistance During Transition Seasons

    NASA Technical Reports Server (NTRS)

    Sakai, Ricardo K.; Fitzjarrald, David R.; Moore, Kathleen E.; Sicker, John W.; Munger, Willian J.; Goulden, Michael L.; Wofsy, Steven C.

    1996-01-01

    Temperate deciduous forest exhibit dramatic seasonal changes in surface exchange properties following on the seasonal changes in leaf area index. The canopy resistance to water vapor transport r(sub c) decreased abruptly at leaf emergence in each year but then also continued to decrease slowly during the remaining growing season due to slowly increasing LAI. Canopy resistance and PAR-albedo (albedo from photosynthetically active radiation) began to increase about one month before leaf fall with the diminishment of CO2 gradient above the canopy as well. At this time evaporation begun to be controlled as if the canopy were leafless.

  15. Contrasting patterns of litterfall seasonality and seasonal changes in litter decomposability in a tropical rainforest region

    NASA Astrophysics Data System (ADS)

    Parsons, S. A.; Valdez-Ramirez, V.; Congdon, R. A.; Williams, S. E.

    2014-06-01

    The seasonality of litter inputs in forests has important implications for understanding ecosystem processes and biogeochemical cycles. We quantified the drivers of seasonality in litterfall and leaf decomposability, using plots throughout the Australian wet tropical region. Litter fell mostly in the summer (wet, warm) months in the region, but other peaks occurred throughout the year. Litterfall seasonality was modelled well with the level of deciduousness of the site (plots with more deciduous species had lower seasonality than evergreen plots), temperature (higher seasonality in the uplands), disturbance (lower seasonality with more early secondary species) and soil fertility (higher seasonality with higher N : P/P limitation) (SL total litterfall model 1 = deciduousness + soil N : P + early secondary sp: r2 = 0.63, n = 30 plots; model 2 = temperature + early secondary sp. + soil N : P: r2 = 0.54, n = 30; SL leaf = temperature + early secondary sp. + rainfall seasonality: r2 = 0.39, n = 30). Leaf litter decomposability was lower in the dry season than in the wet season, driven by higher phenolic concentrations in the dry, with the difference exacerbated particularly by lower dry season moisture. Our results are contrary to the global trend for tropical rainforests; in that seasonality of litterfall inputs were generally higher in wetter, cooler, evergreen forests, compared to generally drier, warmer, semi-deciduous sites that had more uniform monthly inputs. We consider this due to more diverse litter shedding patterns in semi-deciduous and raingreen rainforest sites, and an important consideration for ecosystem modellers. Seasonal changes in litter quality are likely to have impacts on decomposition and biogeochemical cycles in these forests due to the litter that falls in the dry being more recalcitrant to decay.

  16. Contrasting patterns of litterfall seasonality and seasonal changes in litter decomposability in a tropical rainforest region

    NASA Astrophysics Data System (ADS)

    Parsons, S. A.; Valdez-Ramirez, V.; Congdon, R. A.; Williams, S. E.

    2014-09-01

    The seasonality of litter inputs in forests has important implications for understanding ecosystem processes and biogeochemical cycles. We quantified the drivers of seasonality in litterfall and leaf decomposability using plots throughout the Australian wet tropical region. Litter fell mostly in the summer (wet, warm) months in the region, but other peaks occurred throughout the year. Litterfall seasonality was modelled well with the level of deciduousness of the site (plots with more deciduous species had lower seasonality than evergreen plots), temperature (higher seasonality in the uplands), disturbance (lower seasonality with more early secondary species) and soil fertility (higher seasonality with higher N : P/P limitation) (SL total litterfall model 1 = deciduousness + soil N : P + early secondary sp.: r2 = 0.63, n = 30; model 2 = temperature + early secondary sp. + soil N : P: r2 = 0.54, n = 30; SL leaf = temperature + early secondary sp. + rainfall seasonality: r2 = 0.39, n = 30). Leaf litter decomposability was lower in the dry season than in the wet season, driven by higher phenolic concentrations in the dry, with the difference exacerbated particularly by lower dry season moisture. Our results are contrary to the global trend for tropical rainforests; in that seasonality of litterfall input was generally higher in wetter, cooler, evergreen forests, compared to generally drier, warmer, semi-deciduous sites that had more uniform monthly inputs. We consider this due to more diverse litter shedding patterns in semi-deciduous and raingreen rainforest sites, and an important consideration for ecosystem modellers. Seasonal changes in litter quality are likely to have impacts on decomposition and biogeochemical cycles in these forests due to the litter that falls in the dry season being more recalcitrant to decay.

  17. Forests Regenerating after Clear-Cutting Function as Habitat for Bryophyte and Lichen Species of Conservation Concern

    PubMed Central

    Rudolphi, Jörgen; Gustafsson, Lena

    2011-01-01

    The majority of managed forests in Fennoscandia are younger than 70 years old but yet little is known about their potential to host rare and threatened species. In this study, we examined red-listed bryophytes and lichens in 19 young stands originating from clear-cutting (30–70 years old) in the boreal region, finding 19 red-listed species (six bryophytes and 13 lichens). We used adjoining old stands, which most likely never had been clear-cut, as reference. The old stands contained significantly more species, but when taking the amount of biological legacies (i.e., remaining deciduous trees and dead wood) from the previous forest generation into account, bryophyte species number did not differ between old and young stands, and lichen number was even higher in young stands. No dispersal effect could be detected from the old to the young stands. The amount of wetlands in the surroundings was important for bryophytes, as was the area of old forest for both lichens and bryophytes. A cardinal position of young stands to the north of old stands was beneficial to red-listed bryophytes as well as lichens. We conclude that young forest plantations may function as habitat for red-listed species, but that this depends on presence of structures from the previous forest generation, and also on qualities in the surrounding landscape. Nevertheless, at repeated clear-cuttings, a successive decrease in species populations in young production stands is likely, due to increased fragmentation and reduced substrate amounts. Retention of dead wood and deciduous trees might be efficient conservation measures. Although priority needs to be given to preservation of remnant old-growth forests, we argue that young forests rich in biological legacies and located in landscapes with high amounts of old forests may have a conservation value. PMID:21490926

  18. Development of Forest Drought Index and Forest Water Use Prediction in Gyeonggi Province, Korea Using High-Resolution Weather Research and Forecast Data and Localized JULES Land Surface Model

    NASA Astrophysics Data System (ADS)

    Lee, H.; Park, J.; Cho, S.; Lee, S. J.; Kim, H. S.

    2017-12-01

    Forest determines the amount of water available to low land ecosystems, which use the rest of water after evapotranspiration by forests. Substantial increase of drought, especially for seasonal drought, has occurred in Korea due to climate change, recently. To cope with this increasing crisis, it is necessary to predict the water use of forest. In our study, forest water use in the Gyeonggi Province in Korea was estimated using high-resolution (spatial and temporal) meteorological forecast data and localized Joint UK Land Environment Simulator (JULES) which is one of the widely used land surface models. The modeled estimation was used for developing forest drought index. The localization of the model was conducted by 1) refining the existing two tree plant functional types (coniferous and deciduous trees) into five (Quercus spp., other deciduous tree spp., Pinus spp., Larix spp., and other coniferous spp.), 2) correcting moderate resolution imaging spectroradiometer (MODIS) leaf area index (LAI) through data assimilation with in situ measured LAI, and 3) optimizing the unmeasured plant physiological parameters (e.g. leaf nitrogen contents, nitrogen distribution within canopy, light use efficiency) based on sensitivity analysis of model output values. The high-resolution (hourly and 810 × 810 m) National Center for AgroMeteorology-Land-Atmosphere Modeling Package (NCAM-LAMP) data were employed as meteorological input data in JULES. The plant functional types and soil texture of each grid cell in the same resolution with that of NCAM-LAMP was also used. The performance of the localized model in estimating forest water use was verified by comparison with the multi-year sapflow measurements and Eddy covariance data of Taehwa Mountain site. Our result can be used as referential information to estimate the forest water use change by the climate change. Moreover, the drought index can be used to foresee the drought condition and prepare to it.

  19. Silvicultural treatments to improve pondberry stem length growth

    Treesearch

    Brian Roy Lockhart

    2016-01-01

    Pondberry (Lindera melissifolia (Walter) Blume) is a deciduous woody shrub in the Lauraceae that is endemic to low-lying forests in seven southeastern states. In the Mississippi Alluvial Valley, pondberry occurs in the understory of bottomland hardwood forests. This rare shrub was listed as an endangered species in 1986. The U.S. Fish and Wildlife...

  20. Browse use by deer in an east Texas forest

    Treesearch

    Lowell K. Halls

    1975-01-01

    In an east Texas pine-hardwood forest moderately stocked wllh white-tailed deer, average utilization of 73 recorded species of browse was 18 percent. Fifteen to 20 species furnished most of the browse diet. On the average, laurel greenbrier waos grazed most heavily. Although most deciduous species received heaviest use in spring and sumnmer, many of them were also...

  1. The indirect impact of long-term overbrowsing on insects in the Allegheny National Forest region of Pennsylvania

    Treesearch

    Michael J. Chips; Ellen H. Yerger; Arpad Hervanek; Tim Nuttle; Alex Royo; Jonathan N. Pruitt; Terrence P. McGlynn; Cynthia L. Riggall; Walter P. Carson

    2015-01-01

    Overbrowsing has created depauperate plant communities throughout the eastern deciduous forest. We hypothesized these low-diversity plant communities are associated with lower insect diversity. We compared insects inside and outside a 60-year-old fenced deer exclosure where plant species richness is 5x higher inside versus outside. We sampled aboveground and litter...

  2. The demographics and regeneration dynamic of hickory in second-growth temperate forest

    Treesearch

    Aaron B. Lefland; Marlyse C. Duguid; Randall S. Morin; Mark S. Ashton

    2018-01-01

    Hickory (Carya spp.) is an economically and ecologically important genus to the eastern deciduous forest of North America. Yet, much of our knowledge about the genus comes from observational and anecdotal studies that examine the genus as a whole, or from research that examines only one species, in only one part of its range. Here, we use data sets...

  3. History of fire in a southern Ohio second-growth mixed-oak forest

    Treesearch

    Elaine Kennedy Sutherland

    1997-01-01

    The role of fire in shaping the composition and structure of Quercus (oak)-dominated communities in the deciduous forests of eastern North America is becoming clearer but fire regimes are less well known. I analyzed the fire-scar patterns in 14 oak cross sections from a mixed-oak stand in Vinton County, southeastern Ohio, to determine the frequency...

  4. Evaluating the potential for ruffed grouse restoration in east-central Missouri by linking habitat suitability and population viability

    Treesearch

    J.L. Isabelle; Frank R. Thompson; W.D. Dijak

    2016-01-01

    Ruffed grouse Bonasa umbellus (hereafter, grouse) are early-successional forest habitat (ESFH) specialists that prefer regenerating deciduous forests < 25 years-of-age for cover. Despite being historically present through-out much of Missouri, USA, grouse numbers declined rapidly during the early 1900s due to habitat loss and over-harvest....

  5. Aboveground and belowground mammalian herbivores regulate the demography of deciduous woody species in conifer forests

    Treesearch

    Bryan A. Endress; Bridgett J. Naylor; Burak K. Pekin; Michael J. Wisdom

    2016-01-01

    Mammalian herbivory can have profound impacts on plant population and community dynamics. However, our understanding of specific herbivore effects remains limited, even in regions with high densities of domestic and wild herbivores, such as the semiarid conifer forests of western North America. We conducted a seven-year manipulative experiment to evaluate the effects...

  6. Competition among surface roots in a selectively-logged, semi-deciduous forest in southeastern Mexico - effects on seedlings of two species of contrasting shade tolerance

    Treesearch

    Matthew Dickinson; D.F. Wigham

    2013-01-01

    Experimental manipulations of root competition on naturally established seedlings were conducted across canopy openness and soil depth gradients in a selectively-logged, semideciduous forest on limestone-derived soils in southeastern Mexico. We studied the relatively shade intolerant mahogany (Swietenia macrophylla, Meliaceae) and shade tolerant...

  7. Comprehensive national database of tree effects on air quality and human health in the United States

    Treesearch

    Satoshi Hirabayashi; David J. Nowak

    2016-01-01

    Trees remove air pollutants through dry deposition processes depending upon forest structure, meteorology, and air quality that vary across space and time. Employing nationally available forest, weather, air pollution and human population data for 2010, computer simulations were performed for deciduous and evergreen trees with varying leaf area index for rural and...

  8. Frequency of sprout-origin trees in pre-European settlement forests of the southern Appalachian Mountains

    Treesearch

    Carolyn A. Copenheaver; Tara L. Keyser

    2016-01-01

    We hypothesized that tree form, recorded in historical public land surveys, would provide a valuable proxy record of regeneration patterns during early-European settlement of North America's eastern deciduous forest. To test this hypothesis, we tallied stem form from witness trees used in land survey records in the southern Appalachian Mountains from 13 counties...

  9. Acidity of tree bark as a bioindicator of forest pollution in southern Poland

    Treesearch

    Dr. K. Grodzinska

    1976-01-01

    PH values and buffering capacity were determined for bark samples of 5 deciduous trees (oak, alder, hornbeam, ash, linden), one shrub (hazel) and one coniferous tree (Scots pine) in the Cracow Industrial Region (Southern Poland) and for comparison in the Bialowieza Forest (North-Eastern Poland). The correlation was found between acidification of tree bark and air...

  10. Leaf Quality and the Host Preferences of Gypsy Moth in the Northern Deciduous Forest

    Treesearch

    Martin J.  Lechowicz

    1983-01-01

    Both gypsy morh host preferences and the foliage characteristics thaL have been implicated as factors in host selection were monitored from 1979 to 1982 in a Quercus-Acer-Ostrya forest near Montreal, Quebec. The preliminary analyses of these data suggest the hypothesis that gypsy moth larvae preferentially attack trees that have high sugar:tannin...

  11. Effects of fire severity on plant nutrient uptake reinforce alternate pathways of succession in boreal forests

    Treesearch

    A. Shenoy; K. Kielland; J.F. Johnstone

    2013-01-01

    Fire activity in the North American boreal region is projected to increase under a warming climate and trigger changes in vegetation composition. In black spruce forests of interior Alaska, fire severity impacts residual organic layer depth which is strongly linked to the relative dominance of deciduous versus coniferous trees in early succession. These alternate...

  12. Development, succession, and stand dynamics of upland oak forests in the Wisconsin Driftless Area: Implications for oak regeneration and management

    Treesearch

    Megan L. Buchanan; Kurt F. Kipfmueller; Anthony W. D' Amato

    2017-01-01

    Throughout the deciduous forests of the eastern United States, oak (Quercus) regeneration has declined in stands historically dominated by oak species. In the Wisconsin Driftless Area, the level of decline in oak regeneration is variable and influenced by stand structural development, historical disturbance regime, abiotic site characteristics, and...

  13. Effects of logging and recruitment on community phylogenetic structure in 32 permanent forest plots of Kampong Thom, Cambodia

    PubMed Central

    Toyama, Hironori; Kajisa, Tsuyoshi; Tagane, Shuichiro; Mase, Keiko; Chhang, Phourin; Samreth, Vanna; Ma, Vuthy; Sokh, Heng; Ichihashi, Ryuji; Onoda, Yusuke; Mizoue, Nobuya; Yahara, Tetsukazu

    2015-01-01

    Ecological communities including tropical rainforest are rapidly changing under various disturbances caused by increasing human activities. Recently in Cambodia, illegal logging and clear-felling for agriculture have been increasing. Here, we study the effects of logging, mortality and recruitment of plot trees on phylogenetic community structure in 32 plots in Kampong Thom, Cambodia. Each plot was 0.25 ha; 28 plots were established in primary evergreen forests and four were established in secondary dry deciduous forests. Measurements were made in 1998, 2000, 2004 and 2010, and logging, recruitment and mortality of each tree were recorded. We estimated phylogeny using rbcL and matK gene sequences and quantified phylogenetic α and β diversity. Within communities, logging decreased phylogenetic diversity, and increased overall phylogenetic clustering and terminal phylogenetic evenness. Between communities, logging increased phylogenetic similarity between evergreen and deciduous plots. On the other hand, recruitment had opposite effects both within and between communities. The observed patterns can be explained by environmental homogenization under logging. Logging is biased to particular species and larger diameter at breast height, and forest patrol has been effective in decreasing logging. PMID:25561669

  14. Late-Quaternary vegetation history at White Pond on the inner Coastal Plain of South Carolina*1

    NASA Astrophysics Data System (ADS)

    Watts, W. A.

    1980-03-01

    At White Pond near Columbia, South Carolina, a pollen assemblage of Pinus banksiana (jack pine), Picea (spruce), and herbs is dated between 19,100 and 12,800 14C yr B.P. Plants of sandhill habitats are more prominent than at other sites of similar age, and pollen of deciduous trees is infrequent. The vegetation was probably a mosaic of pine and spruce stands with prairies and sand-dune vegetation. The climate may have been like that of the eastern boreal forest today. 14C dates of 12,800 and 9500 yr B.P. bracket a time when Quercus (oak), Carya (hickory), Fagus (beech), and Ostrya-Carpinus (ironwood) dominated the vegetation. It is estimated that beech and hickory made up at least 25% of the forest trees. Conifers were rare or absent. The environment is interpreted as hickory-rich mesic deciduous forest with a climate similar to but slightly warmer than that of the northern hardwoods region of western New York State. After 9500 yr B.P. oak and pine forest dominated the landscape, with pine becoming the most important tree genus in the later Holocene.

  15. Effects of logging and recruitment on community phylogenetic structure in 32 permanent forest plots of Kampong Thom, Cambodia.

    PubMed

    Toyama, Hironori; Kajisa, Tsuyoshi; Tagane, Shuichiro; Mase, Keiko; Chhang, Phourin; Samreth, Vanna; Ma, Vuthy; Sokh, Heng; Ichihashi, Ryuji; Onoda, Yusuke; Mizoue, Nobuya; Yahara, Tetsukazu

    2015-02-19

    Ecological communities including tropical rainforest are rapidly changing under various disturbances caused by increasing human activities. Recently in Cambodia, illegal logging and clear-felling for agriculture have been increasing. Here, we study the effects of logging, mortality and recruitment of plot trees on phylogenetic community structure in 32 plots in Kampong Thom, Cambodia. Each plot was 0.25 ha; 28 plots were established in primary evergreen forests and four were established in secondary dry deciduous forests. Measurements were made in 1998, 2000, 2004 and 2010, and logging, recruitment and mortality of each tree were recorded. We estimated phylogeny using rbcL and matK gene sequences and quantified phylogenetic α and β diversity. Within communities, logging decreased phylogenetic diversity, and increased overall phylogenetic clustering and terminal phylogenetic evenness. Between communities, logging increased phylogenetic similarity between evergreen and deciduous plots. On the other hand, recruitment had opposite effects both within and between communities. The observed patterns can be explained by environmental homogenization under logging. Logging is biased to particular species and larger diameter at breast height, and forest patrol has been effective in decreasing logging. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Nymphal survival and habitat distribution of Ixodes scapularis and Amblyomma americanum ticks (Acari:Ixodidae) on Fire Island, New York

    USGS Publications Warehouse

    Ginsberg, H.S.; Zhioua, E.

    1996-01-01

    The distribution and survival of Ixodes scapularis and Amblyomma americanum were studied in deciduous and coniferous wooded habitats and in open habitats on Fire Island, New York, USA. The survival of nymphal I. scapularis in field enclosures was greater in forests than in open habitats, suggesting that greater survival contributes to the higher tick population in the woods. The nymphs of each species were more common in deciduous thickets (predominantly Aronia arbutifolia and Vaccinium corynbosum) than in coniferous woods (mostly Pinus rigida) in most but not all years. Larval I. scapularis were more common in coniferous sites in 1994, while the same ticks, as nymphs, were more common in deciduous sites in 1995. The survival of the nymphs was not consistently greater in either the deciduous or coniferous woods. Therefore, factors other than nymphal survival (e.g. larval overwintering survival and tick movement on hosts) probably influenced the relative nymph abundance in different forest types. Overall, the survival of A. americanum was far higher than that of I. scapularis.

  17. Effects of a windthrow disturbance on the carbon balance of a broadleaf deciduous forest in Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Yamanoi, K.; Mizoguchi, Y.; Utsugi, H.

    2015-12-01

    Forests play an important role in the terrestrial carbon balance, with most being in a carbon sequestration stage. The net carbon releases that occur result from forest disturbance, and windthrow is a typical disturbance event affecting the forest carbon balance in eastern Asia. The CO2 flux has been measured using the eddy covariance method in a deciduous broadleaf forest (Japanese white birch, Japanese oak, and castor aralia) in Hokkaido, where incidental damage by the strong Typhoon Songda in 2004 occurred. We also used the biometrical method to demonstrate the CO2 flux within the forest in detail. Damaged trees amounted to 40 % of all trees, and they remained on site where they were not extracted by forest management. Gross primary production (GPP), ecosystem respiration (Re), and net ecosystem production were 1350, 975, and 375 g C m-2 yr-1 before the disturbance and 1262, 1359, and -97 g C m-2 yr-1 2 years after the disturbance, respectively. Before the disturbance, the forest was an evident carbon sink, and it subsequently transformed into a net carbon source. Because of increased light intensity at the forest floor, the leaf area index and biomass of the undergrowth (Sasa kurilensis and S. senanensis) increased by factors of 2.4 and 1.7, respectively, in 3 years subsequent to the disturbance. The photosynthesis of Sasa increased rapidly and contributed to the total GPP after the disturbance. The annual GPP only decreased by 6 % just after the disturbance. On the other hand, the annual Re increased by 39 % mainly because of the decomposition of residual coarse-wood debris. The carbon balance after the disturbance was controlled by the new growth and the decomposition of residues. The forest management, which resulted in the dead trees remaining at the study site, strongly affected the carbon balance over the years. When comparing the carbon uptake efficiency at the study site with that at others, including those with various kinds of disturbances, we emphasized the importance of forest management as well as disturbance type in the carbon balance.

  18. Evaluation of land surface model representation of phenology: an analysis of model runs submitted to the NACP Interim Site Synthesis

    NASA Astrophysics Data System (ADS)

    Richardson, A. D.; Nacp Interim Site Synthesis Participants

    2010-12-01

    Phenology represents a critical intersection point between organisms and their growth environment. It is for this reason that phenology is a sensitive and robust integrator of the biological impacts of year-to-year climate variability and longer-term climate change on natural systems. However, it is perhaps equally important that phenology, by controlling the seasonal activity of vegetation on the land surface, plays a fundamental role in regulating ecosystem processes, competitive interactions, and feedbacks to the climate system. Unfortunately, the phenological sub-models implemented in most state-of-the-art ecosystem models and land surface schemes are overly simplified. We quantified model errors in the representation of the seasonal cycles of leaf area index (LAI), gross ecosystem photosynthesis (GEP), and net ecosystem exchange of CO2. Our analysis was based on site-level model runs (14 different models) submitted to the North American Carbon Program (NACP) Interim Synthesis, and long-term measurements from 10 forested (5 evergreen conifer, 5 deciduous broadleaf) sites within the AmeriFlux and Fluxnet-Canada networks. Model predictions of the seasonality of LAI and GEP were unacceptable, particularly in spring, and especially for deciduous forests. This is despite an historical emphasis on deciduous forest phenology, and the perception that controls on spring phenology are better understood than autumn phenology. Errors of up to 25 days in predicting “spring onset” transition dates were common, and errors of up to 50 days were observed. For deciduous sites, virtually every model was biased towards spring onset being too early, and autumn senescence being too late. Thus, models predicted growing seasons that were far too long for deciduous forests. For most models, errors in the seasonal representation of deciduous forest LAI were highly correlated with errors in the seasonality of both GPP and NEE, indicating the importance of getting the underlying canopy dynamics correct. Most of the models in this comparison were unable to successfully predict the observed interannual variability in either spring or autumn transition dates. And, perhaps surprisingly, the seasonal cycles of models using phenology prescribed by remote sensing observations was, in general, no better than that that predicted by models with prognostic phenology. Reasons for the poor performance of both approaches will be discussed. These results highlight the need for improved understanding of the environmental controls on vegetation phenology. Existing models are unlikely to accurately predict future responses of phenology to climate change, and therefore will misrepresent the seasonality of key biosphere-atmosphere feedbacks and interactions in coupled model runs. New data sets, as for example from webcam-based monitoring networks (e.g. PhenoCam) or citizen science efforts (USA National Phenology Network) should prove valuable in this regard.

  19. [The role of the floodplain gradient in structuring of testate amoebae communities in the Ilych River].

    PubMed

    Mazeĭ, Iu A; Malysheva, E A; Lapteva, E M; Komarov, A A; Taskaeva, A A

    2012-01-01

    Forty-two testate amoebae taxa were identified in alluvial soils of floodplain islands in the Ilych River. Among the pedo- and eurybionts, there were aquatic rhizopods. Along the floodplain transect (willow --> meadow --> deciduous forest --> coniferous forest), the testate amoebae community changed directly. There are spatially homogeneous (low beta-diversity) testacean communities but species rich on the local level (high alpha-diversity) within forests. Within willows and meadows, communities are characterized by low alpha-diversity and high heterogeneity that leads to high gamma-diversity.

  20. Remote sensing of forest canopy and leaf biochemical contents

    NASA Technical Reports Server (NTRS)

    Peterson, David L.; Matson, Pamela A.; Card, Don H.; Aber, John D.; Wessman, Carol; Swanberg, Nancy; Spanner, Michael

    1988-01-01

    Recent research on the remote sensing of forest leaf and canopy biochemical contents suggests that the shortwave IR region contains this information; laboratory analyses of dry ground leaves have yielded reliable predictive relationships between both leaf nitrogen and lignin with near-IR spectra. Attention is given to the application of these laboratory techniques to a limited set of spectra from fresh, whole leaves of conifer species. The analysis of Airborne Imaging Spectrometer data reveals that total water content variations in deciduous forest canopies appear as overall shifts in the brightness of raw spectra.

  1. Basic forest cover mapping using digitized remote sensor data and automated data processing techniques

    NASA Technical Reports Server (NTRS)

    Coggeshall, M. E.; Hoffer, R. M.

    1973-01-01

    Remote sensing equipment and automatic data processing techniques were employed as aids in the institution of improved forest resource management methods. On the basis of automatically calculated statistics derived from manually selected training samples, the feature selection processor of LARSYS selected, upon consideration of various groups of the four available spectral regions, a series of channel combinations whose automatic classification performances (for six cover types, including both deciduous and coniferous forest) were tested, analyzed, and further compared with automatic classification results obtained from digitized color infrared photography.

  2. Vegetation survey in Amazonia using LANDSAT data. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Shimabukuro, Y. E.; Dossantos, J. R.; Deaquino, L. C. S.

    1982-01-01

    Automatic Image-100 analysis of LANDSAT data was performed using the MAXVER classification algorithm. In the pilot area, four vegetation units were mapped automatically in addition to the areas occupied for agricultural activities. The Image-100 classified results together with a soil map and information from RADAR images, permitted the establishment of the final legend with six classes: semi-deciduous tropical forest; low land evergreen tropical forest; secondary vegetation; tropical forest of humid areas, predominant pastureland and flood plains. Two water types were identified based on their sediments indicating different geological and geomorphological aspects.

  3. Late Cretaceous- Cenozoic history of deciduousness and the terminal Cretaceous event.

    USGS Publications Warehouse

    Wolfe, J.A.

    1987-01-01

    Deciduousness in mesic, broad-leaved plants occurred in disturbed, middle-latitude environments during the Late Cretaceous. Only in polar environments in the Late Cretaceous was the deciduous element dominant, although of low diversity. The terminal Cretaceous event resulted in wide-spread selection for plants of deciduous habit and diversification of deciduous taxa, thus leaving a lasting imprint on Northern Hemisphere vegetation. Various environmental factors have played important roles in subsequent diversification of mesic, broad-leaved deciduous taxa and in origination and decline of broad-leaved deciduous forests. Low diversity and rarity of mesic deciduous plants in the post-Cretaceous of the Southern Hemisphere indicate that the inferred 'impact winter' of the terminal Cretaceous event had little effect on Southern Hemisphere vegetation and climate. -Author

  4. Depression of belowground respiration rates at simulated high moose population densities in boreal forests.

    PubMed

    Persson, Inga-Lill; Nilsson, Mats B; Pastor, John; Eriksson, Tobias; Bergström, Roger; Danell, Kjell

    2009-10-01

    Large herbivores can affect the carbon cycle in boreal forests by changing productivity and plant species composition, which in turn could ultimately alter litter production, nutrient cycling, and the partitioning between aboveground and belowground allocation of carbon. Here we experimentally tested how moose (Alces alces) at different simulated population densities affected belowground respiration rates (estimated as CO2 flux) in young boreal forest stands situated along a site productivity gradient. At high simulated population density, moose browsing considerably depressed belowground respiration rates (24-56% below that of no-moose controls) except during June, where the difference only was 10%. Moose browsing depressed belowground respiration the most on low-productivity sites. Soil moisture and temperature did not affect respiration rates. Impact of moose on belowground respiration was closely linked to litter production and followed Michaelis-Menten dynamics. The main mechanism by which moose decrease belowground respiration rates is likely their effect on photosynthetic biomass (especially decreased productivity of deciduous trees) and total litter production. An increased productivity of deciduous trees along the site productivity gradient causes an unequal effect of moose along the same gradient. The rapid growth of deciduous trees may offer higher resilience against negative effects of moose browsing on litter production and photosynthate allocation to roots.

  5. Elevated native terrestrial snail abundance and diversity in association with an invasive understory shrub, Berberis thunbergii, in a North American deciduous forest

    NASA Astrophysics Data System (ADS)

    Utz, Ryan M.; Pearce, Timothy A.; Lewis, Danielle L.; Mannino, Joseph C.

    2018-01-01

    Invasive terrestrial plants often substantially reshape environments, yet how such invasions affect terrestrial snail assemblages remains understudied. We investigated how snail assemblages in deciduous forest soils with dense Berberis thunbergii (Japanese barberry), an invasive shrub in eastern North America, differ from forest areas lacking the shrub. Leaf litter and soil samples were collected from forest patches with dense B. thunbergii understories and adjacent control areas within two exurban forest tracts in western Pennsylvania, U.S.A. Snails were identified to species and quantified by standard diversity metrics. Contrary to our expectations, snails were significantly more abundant and diverse in B. thunbergii-invaded areas. Despite differences in abundance, the snail community composition did not differ between invaded and control habitats. The terrestrial snail assemblage we observed, which was composed entirely of native species, appears to respond favorably to B. thunbergii invasion and therefore may not be negatively impacted by physicochemical changes to soils typically observed in association with the plant. Such findings could reflect the fact that B. thunbergii likely creates more favorable habitat for snails by creating cooler, more humid, and more alkaline soil environments. However, the snail assemblages we retrieved may consist mostly of species with high tolerance to environmental degradation due to a legacy of land use change and acid deposition in the region.

  6. Elevated CO2 induces changes in the ecohydrological functions of forests - from mechanisms to models

    NASA Astrophysics Data System (ADS)

    Pötzelsberger, Elisabeth; Warren, Jeffrey M.; Wullschleger, Stan D.; Thornton, Peter E.; Norby, Richard J.; Hasenauer, Hubert

    2010-05-01

    Forests are known to considerably influence ecosystem water balance as a result of the many dynamic interactions between the plant physiology, morphology, phenology and other biophysical properties and environmental conditions. A changing climate will exert a new environmental setting for the forests and the biological feedbacks will be considerable. With the mechanistic ecosystem model Biome-BGC the dense net of cause-response relationships among carbon, nitrogen, water and energy cycles at a free-air CO2 enrichment (FACE) site in a North American deciduous broadleaved forest can be represented. At the Oak Ridge National Laboratory (ORNL) closed canopy sweetgum plantation elevated CO2 caused a decrease in stomatal conductance, and concurrent changes in daily transpiration were observed. This is in agreement with data from other FACE experiments. At the ORNL FACE site average transpiration reduction in a growing season was 10-16%, with 7-16% during mid summer, depending on the year. After parameterization of the model for this ecosystem the observed transpiration patterns could be well represented. Most importantly, the complete water budget at the site could be described and increased outflow could be observed (~15%). This yields crucial information for broader scale future water budget simulations. Changes in the water balance of deciduous forests will affect a wide range of ecosystem functions, from decomposition, over carbon and nutrient cycling to plant-plant competition and species composition.

  7. Interannual variability in ozone removal by a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Clifton, O. E.; Fiore, A. M.; Munger, J. W.; Malyshev, S.; Horowitz, L. W.; Shevliakova, E.; Paulot, F.; Murray, L. T.; Griffin, K. L.

    2017-01-01

    The ozone (O3) dry depositional sink and its contribution to observed variability in tropospheric O3 are both poorly understood. Distinguishing O3 uptake through plant stomata versus other pathways is relevant for quantifying the O3 influence on carbon and water cycles. We use a decade of O3, carbon, and energy eddy covariance (EC) fluxes at Harvard Forest to investigate interannual variability (IAV) in O3 deposition velocities (vd,O3). In each month, monthly mean vd,O3 for the highest year is twice that for the lowest. Two independent stomatal conductance estimates, based on either water vapor EC or gross primary productivity, vary little from year to year relative to canopy conductance. We conclude that nonstomatal deposition controls the substantial observed IAV in summertime vd,O3 during the 1990s over this deciduous forest. The absence of obvious relationships between meteorology and vd,O3 implies a need for additional long-term, high-quality measurements and further investigation of nonstomatal mechanisms.

  8. Retrieval of seasonal dynamics of forest understory reflectance from semi-arid to boreal forests using MODIS BRDF data

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; Chen, Jing; Kobayashi, Hideki; Rautiainen, Miina; Schaepman, Michael; Karnieli, Arnon; Sprintsin, Michael; Ryu, Youngryel; Nikopensius, Maris; Raabe, Kairi

    2016-04-01

    Ground vegetation (understory) provides an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal, and temperate forests. Accurate knowledge about forest understory reflectance is urgently needed in various forest reflectance modelling efforts. However, systematic collections of understory reflectance data covering different sites and ecosystems are almost missing. Measurement of understory reflectance is a real challenge because of an extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum, spectral separability issues of over- and understory and its variable nature. Understory can consist of several sub-layers (regenerated tree, shrub, grasses or dwarf shrub, mosses, lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional challenges are introduced by patchiness of ground vegetation, ground surface roughness, and understory-overstory relations. Due to this variability, remote sensing might be the only means to provide consistent data at spatially relevant scales. In this presentation, we report on retrieving seasonal courses of understory Normalized Difference Vegetation Index (NDVI) from multi-angular MODIS BRDF/Albedo data. We compared satellite-based seasonal courses of understory NDVI against an extended collection of different types of forest sites with available in-situ understory reflectance measurements. These sites are distributed along a wide latitudinal gradient on the Northern hemisphere: a sparse and dense black spruce forests in Alaska and Canada, a northern European boreal forest in Finland, hemiboreal needleleaf and deciduous stands in Estonia, a mixed temperate forest in Switzerland, a cool temperate deciduous broadleaf forest in Korea, and a semi-arid pine plantation in Israel. Our results indicated the retrieval method performs well particularly over open forests of different types. We also demonstrated the limitations of the method for closed canopies, where the understory signal retrieval is much attenuated. The retrieval of understory signal can be used e.g. to improve the estimates of leaf area index (LAI), fAPAR in sparsely vegetated areas, and also to study the phenology of understory layer. Our results are particularly useful to producing Northern hemisphere maps of seasonal dynamics of forests, allowing to separately retrieve understory variability, being a main contributor to spring emergence and fall senescence uncertainty. The inclusion of understory variability in ecological models will ultimately improve prediction and forecast horizons of vegetation dynamics.

  9. Variations in evapotranspiration and climate for an Amazonian semi-deciduous forest over seasonal, annual, and El Niño cycles.

    PubMed

    Vourlitis, George L; de Souza Nogueira, José; de Almeida Lobo, Francisco; Pinto, Osvaldo Borges

    2015-02-01

    Tropical forests exchange large amounts of water and energy with the atmosphere and are important in controlling regional and global climate; however, climate and evaportranspiration (E) vary significantly across multiple time scales. To better understand temporal patterns in E and climate, we measured the energy balance and meteorology of a semi-deciduous forest in the rainforest-savanna ecotone of northern Mato Grosso, Brazil, over a 7-year period and analyzed regional climate patterns over a 16-year period. Spectral analysis revealed that E and local climate exhibited consistent cycles over annual, seasonal, and weekly time scales. Annual and seasonal cycles were also apparent in the regional monthly rainfall and humidity time series, and a cycle on the order of 3-5.5 years was also apparent in the regional air temperature time series, which is coincident with the average return interval of El Niño. Annual rates of E were significantly affected by the 2002 El Niño. Prior to this event, annual E was on average 1,011 mm/year and accounted for 52% of the annual rainfall, while after, annual E was 931 mm/year and accounted for 42% of the annual rainfall. Our data also suggest that E declined significantly over the 7-year study period while air temperature significantly increased, which was coincident with a long-term, regional warming and drying trend. These results suggest that drought and warming induced by El Niño and/or climate change cause declines in E for semi-deciduous forests of the southeast Amazon Basin.

  10. Variations in evapotranspiration and climate for an Amazonian semi-deciduous forest over seasonal, annual, and El Niño cycles

    NASA Astrophysics Data System (ADS)

    Vourlitis, George L.; de Souza Nogueira, José; de Almeida Lobo, Francisco; Pinto, Osvaldo Borges

    2015-02-01

    Tropical forests exchange large amounts of water and energy with the atmosphere and are important in controlling regional and global climate; however, climate and evaportranspiration ( E) vary significantly across multiple time scales. To better understand temporal patterns in E and climate, we measured the energy balance and meteorology of a semi-deciduous forest in the rainforest-savanna ecotone of northern Mato Grosso, Brazil, over a 7-year period and analyzed regional climate patterns over a 16-year period. Spectral analysis revealed that E and local climate exhibited consistent cycles over annual, seasonal, and weekly time scales. Annual and seasonal cycles were also apparent in the regional monthly rainfall and humidity time series, and a cycle on the order of 3-5.5 years was also apparent in the regional air temperature time series, which is coincident with the average return interval of El Niño. Annual rates of E were significantly affected by the 2002 El Niño. Prior to this event, annual E was on average 1,011 mm/year and accounted for 52 % of the annual rainfall, while after, annual E was 931 mm/year and accounted for 42 % of the annual rainfall. Our data also suggest that E declined significantly over the 7-year study period while air temperature significantly increased, which was coincident with a long-term, regional warming and drying trend. These results suggest that drought and warming induced by El Niño and/or climate change cause declines in E for semi-deciduous forests of the southeast Amazon Basin.

  11. Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of Sathanur reserve forest, Eastern Ghats, India.

    PubMed

    Gandhi, Durai Sanjay; Sundarapandian, Somaiah

    2017-04-01

    Tropical dry forests are one of the most widely distributed ecosystems in tropics, which remain neglected in research, especially in the Eastern Ghats. Therefore, the present study was aimed to quantify the carbon storage in woody vegetation (trees and lianas) on large scale (30, 1 ha plots) in the dry deciduous forest of Sathanur reserve forest of Eastern Ghats. Biomass of adult (≥10 cm DBH) trees was estimated by species-specific allometric equations using diameter and wood density of species whereas in juvenile tree population and lianas, their respective general allometric equations were used to estimate the biomass. The fractional value 0.4453 was used to convert dry biomass into carbon in woody vegetation of tropical dry forest. The mean aboveground biomass value of juvenile tree population was 1.86 Mg/ha. The aboveground biomass of adult trees ranged from 64.81 to 624.96 Mg/ha with a mean of 245.90 Mg/ha. The mean aboveground biomass value of lianas was 7.98 Mg/ha. The total biomass of woody vegetation (adult trees + juvenile population of trees + lianas) ranged from 85.02 to 723.46 Mg/ha, with a mean value of 295.04 Mg/ha. Total carbon accumulated in woody vegetation in tropical dry deciduous forest ranged from 37.86 to 322.16 Mg/ha with a mean value of 131.38 Mg/ha. Adult trees accumulated 94.81% of woody biomass carbon followed by lianas (3.99%) and juvenile population of trees (1.20%). Albizia amara has the greatest biomass and carbon stock (58.31%) among trees except for two plots (24 and 25) where Chloroxylon swietenia contributed more to biomass and carbon stock. Similarly, Albizia amara (52.4%) showed greater carbon storage in juvenile population of trees followed by Chloroxylon swietenia (21.9%). Pterolobium hexapetalum (38.86%) showed a greater accumulation of carbon in liana species followed by Combretum albidum (33.04%). Even though, all the study plots are located within 10 km radius, they show a significant spatial variation among them in terms of biomass and carbon stocks which could be attributed to variation in anthropogenic pressures among the plots as well as to changes in tree density across landscapes. Total basal area of woody vegetation showed a significant positive (R 2  = 0.978; P = 0.000) relationship with carbon storage while juvenile tree basal area showed the negative relationship (R 2  = 0.4804; P = 0.000) with woody carbon storage. The present study generates a large-scale baseline data of dry deciduous forest carbon stock, which would facilitate carbon stock assessment at a national level as well as to understand its contribution on a global scale.

  12. Assessing satellite-derived start-of-season measures in the conterminous USA

    USGS Publications Warehouse

    Schwartz, Mark D.; Reed, Bradley C.; White, Michael A.

    2002-01-01

    National Oceanic and Atmospheric Administration (NOAA)-series satellites, carrying advanced very high-resolution radiometer (AVHRR) sensors, have allowed moderate resolution (1 km) measurements of the normalized difference vegetation index (NDVI) to be collected from the Earth's land surfaces for over 20 years. Across the conterminous USA, a readily accessible and decade-long data set is now available to study many aspects of vegetation activity in this region. One feature, the onset of deciduous plant growth at the start of the spring season (SOS) is of special interest, as it appears to be crucial for accurate computation of several important biospheric processes, and a sensitive measure of the impacts of global change. In this study, satellite-derived SOS dates produced by the delayed moving average (DMA) and seasonal midpoint NDVI (SMN) methods, and modelled surface phenology (spring indices, SI) were compared at widespread deciduous forest and mixed woodland sites during 1990–93 and 1995–99, and these three measures were also matched to native species bud-break data collected at the Harvard Forest (Massachusetts) over the same time period. The results show that both SOS methods are doing a modestly accurate job of tracking the general pattern of surface phenology, but highlight the temporal limitations of biweekly satellite data. Specifically, at deciduous forest sites: (1) SMN SOS dates are close in time to SI first bloom dates (average bias of +0.74 days), whereas DMA SOS dates are considerably earlier (average bias of −41.24 days) and also systematically earlier in late spring than in early spring; (2) SMN SOS tracks overall yearly trends in deciduous forests somewhat better than DMA SOS, but with larger average error (MAEs 8.64 days and 7.37 days respectively); and (3) error in both SOS techniques varies considerably by year. Copyright © 2002 Royal Meteorological Society.

  13. Influence of physiological phenology on the seasonal pattern of ecosystem respiration in deciduous forests.

    PubMed

    Migliavacca, Mirco; Reichstein, Markus; Richardson, Andrew D; Mahecha, Miguel D; Cremonese, Edoardo; Delpierre, Nicolas; Galvagno, Marta; Law, Beverly E; Wohlfahrt, Georg; Black, T Andrew; Carvalhais, Nuno; Ceccherini, Guido; Chen, Jiquan; Gobron, Nadine; Koffi, Ernest; Munger, J William; Perez-Priego, Oscar; Robustelli, Monica; Tomelleri, Enrico; Cescatti, Alessandro

    2015-01-01

    Understanding the environmental and biotic drivers of respiration at the ecosystem level is a prerequisite to further improve scenarios of the global carbon cycle. In this study we investigated the relevance of physiological phenology, defined as seasonal changes in plant physiological properties, for explaining the temporal dynamics of ecosystem respiration (RECO) in deciduous forests. Previous studies showed that empirical RECO models can be substantially improved by considering the biotic dependency of RECO on the short-term productivity (e.g., daily gross primary production, GPP) in addition to the well-known environmental controls of temperature and water availability. Here, we use a model-data integration approach to investigate the added value of physiological phenology, represented by the first temporal derivative of GPP, or alternatively of the fraction of absorbed photosynthetically active radiation, for modeling RECO at 19 deciduous broadleaved forests in the FLUXNET La Thuile database. The new data-oriented semiempirical model leads to an 8% decrease in root mean square error (RMSE) and a 6% increase in the modeling efficiency (EF) of modeled RECO when compared to a version of the model that does not consider the physiological phenology. The reduction of the model-observation bias occurred mainly at the monthly time scale, and in spring and summer, while a smaller reduction was observed at the annual time scale. The proposed approach did not improve the model performance at several sites, and we identified as potential causes the plant canopy heterogeneity and the use of air temperature as a driver of ecosystem respiration instead of soil temperature. However, in the majority of sites the model-error remained unchanged regardless of the driving temperature. Overall, our results point toward the potential for improving current approaches for modeling RECO in deciduous forests by including the phenological cycle of the canopy. © 2014 John Wiley & Sons Ltd.

  14. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance.

    PubMed

    Wang, Shaoqiang; Zhou, Lei; Chen, Jingming; Ju, Weimin; Feng, Xianfeng; Wu, Weixing

    2011-06-01

    Affected by natural and anthropogenic disturbances such as forest fires, insect-induced mortality and harvesting, forest stand age plays an important role in determining the distribution of carbon pools and fluxes in a variety of forest ecosystems. An improved understanding of the relationship between net primary productivity (NPP) and stand age (i.e., age-related increase and decline in forest productivity) is essential for the simulation and prediction of the global carbon cycle at annual, decadal, centurial, or even longer temporal scales. In this paper, we developed functions describing the relationship between national mean NPP and stand age using stand age information derived from forest inventory data and NPP simulated by the BEPS (Boreal Ecosystem Productivity Simulator) model in 2001. Due to differences in ecobiophysical characteristics of different forest types, NPP-age equations were developed for five typical forest ecosystems in China (deciduous needleleaf forest (DNF), evergreen needleleaf forest in tropic and subtropical zones (ENF-S), deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), and mixed broadleaf forest (MBF)). For DNF, ENF-S, EBF, and MBF, changes in NPP with age were well fitted with a common non-linear function, with R(2) values equal to 0.90, 0.75, 0.66, and 0.67, respectively. In contrast, a second order polynomial was best suitable for simulating the change of NPP for DBF, with an R(2) value of 0.79. The timing and magnitude of the maximum NPP varied with forest types. DNF, EBF, and MBF reached the peak NPP at the age of 54, 40, and 32 years, respectively, while the NPP of ENF-S maximizes at the age of 13 years. The highest NPP of DBF appeared at 122 years. NPP was generally lower in older stands with the exception of DBF, and this particular finding runs counter to the paradigm of age-related decline in forest growth. Evaluation based on measurements of NPP and stand age at the plot-level demonstrates the reliability and applicability of the fitted NPP-age relationships. These relationships were used to replace the normalized NPP-age relationship used in the original InTEC (Integrated Terrestrial Ecosystem Carbon) model, to improve the accuracy of estimated carbon balance for China's forest ecosystems. With the revised NPP-age relationship, the InTEC model simulated a larger carbon source from 1950-1980 and a larger carbon sink from 1985-2001 for China's forests than the original InTEC model did because of the modification to the age-related carbon dynamics in forests. This finding confirms the importance of considering the dynamics of NPP related to forest age in estimating regional and global terrestrial carbon budgets. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Successional changes in functional composition contrast for dry and wet tropical forest.

    PubMed

    Lohbeck, Madelon; Poorter, Lourens; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Paz, Horacio; Pérez-García, Eduardo A; Romero-Pérez, I Eunice; Tauro, Alejandra; Bongers, Frans

    2013-06-01

    We tested whether and how functional composition changes with succession in dry deciduous and wet evergreen forests of Mexico. We hypothesized that compositional changes during succession in dry forest were mainly determined by increasing water availability leading to community functional changes from conservative to acquisitive strategies, and in wet forest by decreasing light availability leading to changes from acquisitive to conservative strategies. Research was carried out in 15 dry secondary forest plots (5-63 years after abandonment) and 17 wet secondary forest plots (< 1-25 years after abandonment). Community-level functional traits were represented by community-weighted means based on 11 functional traits measured on 132 species. Successional changes in functional composition are more marked in dry forest than in wet forest and largely characterized by different traits. During dry forest succession, conservative traits related to drought tolerance and drought avoidance decreased, as predicted. Unexpectedly acquisitive leaf traits also decreased, whereas seed size and dependence on biotic dispersal increased. In wet forest succession, functional composition changed from acquisitive to conservative leaf traits, suggesting light availability as the main driver of changes. Distinct suites of traits shape functional composition changes in dry and wet forest succession, responding to different environmental filters.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munger, J. William; Foster, David R.; Richardson, Andrew D.

    This report summarizes work to improve quantitative understanding of the terrestrial ecosystem processes that control carbon sequestration in unmanaged forests It builds upon the comprehensive long-term observations of CO2 fluxes, climate and forest structure and function at the Harvard Forest in Petersham, MA. This record includes the longest CO2 flux time series in the world. The site is a keystone for the AmeriFlux network. Project Description The project synthesizes observations made at the Harvard Forest HFEMS and Hemlock towers, which represent the dominant mixed deciduous and coniferous forest types in the northeastern United States. The 20+ year record of carbonmore » uptake at Harvard Forest and the associated comprehensive meteorological and biometric data, comprise one of the best data sets to challenge ecosystem models on time scales spanning hourly, daily, monthly, interannual and multi-decadal intervals, as needed to understand ecosystem change and climate feedbacks.« less

  17. Multidecadal Changes and Interannual Variation in Springtime Phenology of North American Temperate and Boreal Deciduous Forests

    NASA Astrophysics Data System (ADS)

    Melaas, Eli K.; Sulla-Menashe, Damien; Friedl, Mark A.

    2018-03-01

    The timing of leaf emergence is an important diagnostic of climate change impacts on ecosystems. Here we present the first continental-scale analysis of multidecadal changes in the timing of spring onset across North American temperate and boreal forests based on Landsat imagery. Our results show that leaf emergence in Eastern Temperate Forests has consistently trended earlier, with a median change of about 1 week over the 30 year study period. Changes in leaf emergence dates in boreal forests were more heterogeneous, with some sites showing trends toward later dates. Interannual variability in leaf emergence dates was strongly sensitive to springtime accumulated growing degree days across all sites, and geographic patterns of changes in onset dates were highly correlated with changes in regional springtime temperatures. These results provide a refined characterization of recent changes in springtime forest phenology and improve understanding regarding the sensitivity of North American forests to climate change.

  18. Short-term stem mortality of 10 deciduous broadleaved species following prescribed burning in upland forests of the southern US

    Treesearch

    Tara L. Keyser; Virginia L. McDaniel; Robert N. Klein; Dan G. Drees; Jesse A. Burton; Melissa M. Forder

    2018-01-01

    In upland forests of the southern US, management is increasingly focussed on the restoration and maintenance of resilient structures and species compositions, with prescribed burning being the primary tool used to achieve these goals and objectives. In this study, we utilised an extensive dataset comprising 91 burn units and 210 plots across 13 National Park Service...

  19. A long-term study of tree seedling recruitment in Southern Appalachian forests: the effects of canopy gaps and shrub understories

    Treesearch

    Brian Beckage; James S. Clark; Barton D. Clinton; Bruce L. Haines

    2000-01-01

    We examined the importance of intermediate-sized gaps and a dense shrub layer on tree seedling recruitment in a Southern Appalachian deciduous forest. We created 12 canopy gaps under two contrasting understory conditions: 6 gaps were dominated by the dense, shade-producing shrub, Rhododendron maximum L., while the remaining gaps were relatively open...

  20. Interspecific divergence in foliar nutrient dynamics and stem growth in a temperate forest in response to chronic nitrogen inputs

    Treesearch

    Jeffrey D. May; Sarah Beth Burdette; Frank S. Gilliam; Mary Beth Adams

    2005-01-01

    We studied the effects of excessive nitrogen (N) fertilization on foliar nutrient dynamics and stem growth in three important tree species in a mixed-deciduous forest. Stem diameter growth, foliar N concentrations, nitrogen-phosphorus (NIP) ratios, and nutrient resorption were determined for Acer rubrum L. (ACRU), Liriodendron tulipifera L. (LITU), and Prunas serotina...

  1. An application of LANDSAT digital technology to forest fire fuel type mapping

    NASA Technical Reports Server (NTRS)

    Kourtz, P. H.

    1977-01-01

    The role of digital classifications suitable as fuel maps was examined. A Taylor enhancement was produced for an 8 million hectare fire control region showing water, muskeg, coniferous, deciduous and mixed stands, clearcut logging, burned areas, regeneration areas, nonforested areas and large forest roads. Use of the map by fire control personnel demonstrated its usefulness for initial attack decision making.

  2. Litter Species Composition and Topographic Effects on Fuels and Modeled Fire Behavior in an Oak-Hickory Forest in the Eastern USA

    Treesearch

    Matthew B. Dickinson; Todd F. Hutchinson; Mark Dietenberger; Frederick Matt; Matthew P. Peters; Jian Yang

    2016-01-01

    Mesophytic species (esp. Acer rubrum) are increasingly replacing oaks (Quercus spp.) in fire-suppressed, deciduous oak-hickory forests of the eastern US. A pivotal hypothesis is that fuel beds derived from mesophytic litter are less likely than beds derived from oak litter to carry a fire and, if they do, are more likely to...

  3. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    PubMed Central

    Young-Robertson, Jessica M.; Bolton, W. Robert; Bhatt, Uma S.; Cristóbal, Jordi; Thoman, Richard

    2016-01-01

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds. PMID:27404274

  4. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    USGS Publications Warehouse

    Young, Jessica; Bolton, W. Robert; Bhatt, Uma; Cristobal, Jordi; Thoman, Richard

    2016-01-01

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.

  5. Biophysical relationship between leaf-level optical properties and phenology of canopy spectral reflectance in a cool-temperate deciduous broadleaf forest at Takayama, central Japan

    NASA Astrophysics Data System (ADS)

    Noda, H. M.; Nasahara, K. N.; Muraoka, H.

    2016-12-01

    Growing requirements to observe the spatial and temporal changes of forest canopy structure and functions under climate change expect advancement of ecophysiological interpretation of satellite remote sensing data. To achieve this we need mechanistic and quantitative understanding on the consequence between leaf-level traits and canopy-level spectral reflectance by coupling in-situ observation and analytical modeling. Deciduous forest is characterized by remarkable changes in canopy morphological and physiological structure through leaf expansion in spring to leaf fall in autumn. In addition, optical properties (spectral reflectance, absorption and transmittance of radiation) of leaves also change because they reflect leaf biochemical components such as pigments and water, and anatomical and surface structures. In this study we studied such consequence in a cool-temperate deciduous broadleaf forest, namely "Takayama site", on the northwestern slope of Mt. Norikura in central Japan. The forest canopy is dominated by Quercus crispula Blume and Betula ermanii Cham. In this forest, we measured the leaf optical properties of Q. crispula and B. ermanii during the growing season, from budburst in mid-May to senescence at beginning of November in 2004, 2005, 2006 and 2010. The measurement was conducted for both adaxial and abaxial side of the leaves.In the near infrared band, the leaf reflectance increased and the transmittance decreased during development period. Those changed very little in senescence period. The leaf reflectance in visible region changes small during the development period, the transmittance dropped remarkably. The abaxial side reflectance was about twice higher than adaxial side in the visible region. Those changes in the growing period fitted well to the development model base on air temperature. To validate the model, we simulate the canopy reflectance by using radiative transfer model SAIL. As our leaf spectral data and canopy spectral model have high flexibility to estimate the reflectance of target spectra according to the specificity of optical sensors on satellite, thus constructed mechanistic model would be applied to interpret many kinds of optical data observed by satellites.

  6. Estimating leaf area and leaf biomass of open-grown deciduous urban trees

    Treesearch

    David J. Nowak

    1996-01-01

    Logarithmic regression equations were developed to predict leaf area and leaf biomass for open-grown deciduous urban trees based on stem diameter and crown parameters. Equations based on crown parameters produced more reliable estimates. The equations can be used to help quantify forest structure and functions, particularly in urbanizing and urban/suburban areas.

  7. Forest canopy temperatures: dynamics, controls, and relationships with ecosystem fluxes

    NASA Astrophysics Data System (ADS)

    Still, C. J.; Griffith, D.; Kim, Y.; Law, B. E.; Hanson, C. V.; Kwon, H.; Schulze, M.; Detto, M.; Pau, S.

    2017-12-01

    Temperature strongly affects enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with the environment, and can be used to examine forest responses to stresses like droughts and heat waves. Thermal infrared (TIR) imaging allows for extensive temporal and spatial sampling of canopy temperatures, particularly compared to spot measurements using thermocouples. We present results of TIR imaging of forest canopies at eddy covariance flux tower sites in the US Pacific Northwest and in Panama. These forests range from an old-growth temperate rainforest to a second growth semi-arid pine forest to a semi-deciduous tropical forest. Canopy temperature regimes at these sites are highly variable. Canopy temperatures at all forest sites displayed frequent departures from air temperature, particularly during clear sky conditions, with elevated canopy temperatures during the day and depressed canopy temperatures at night compared to air temperature. Comparison of canopy temperatures to fluxes of carbon dioxide, water vapor, and energy reveals stronger relationships than those found with air temperature. Daytime growing season net ecosystem exchange at the pine forest site is better explained by canopy temperature (r2 = 0.61) than air temperature (r2 = 0.52). At the semi-deciduous tropical forest, canopy photosynthesis is highly correlated with canopy temperature (r2 = 0.51), with a distinct optimum temperature for photosynthesis ( 31 °C) that agrees with leaf-level measurements. During the peak of one heat wave at an old-growth temperate rainforest, hourly averaged air temperature exceeded 35 °C, 10 °C above average. Peak hourly canopy temperature approached 40 °C, and leaf-to-air vapor pressure deficit exceeded 6 kPa. These extreme conditions had a dramatic effect on forest carbon and energy exchanges: the canopy switched from daytime net carbon uptake prior to the heatwave to net carbon release during and immediately after the heat wave. The latent heat flux from evapotranspiration increased during the heat wave, while sensible heat fluxes were lower.

  8. Carbon dioxide fluxes dynamics comparison in Moscow urban forest and adjacent urban areas

    NASA Astrophysics Data System (ADS)

    Yaroslavtsev, Alexis; Meshalkina, Joulia; Mazirov, Ilya; Vasenev, Ivan

    2017-04-01

    In the beginning of the 2014 in northern district of Moscow was installed eddy covariance tower on the edge of Timiryazevskiy urban forest and Timiryazevskiy district of Moscow. Tower 34m high was constructed inside the territory of LOD (Lesnaya Opytnaya Dacha) experimental station in the south-eastern part of the forest. Main tree species of urban forest and neighboring urban areas are Acer Plantanoides, Tilia cordata, Betula pendula, Quercus robur, Pinus sylvestris. Forest itself is mixed with some small plots dominated only by deciduous or coniferous species, whether trees in urban areas was mainly deciduous. Mean canopy height is about 30m. in both forest and urban areas. The soil cover of the studied sections is represented by sod-podzolic soils with different degree of development of the humus horizon. All soils have well-developed profile of sod-podzolic soil with low power litter (only in forest area) and developed humus-accumulative horizon with high humus content (3,24%) Carbon dioxide daily fluxes from investigated area was calculated for six months of 2014 (from April till October) utilizing eddy covariance method. Most (90%) of fluxes footprints was no longer than 500m for all wind directions during the time of monitoring. Forest in 500m radius around tower is a zone of active recreation with several roads and wide path network. On the other hand closest to tower urban area characterized by a low-rise buildings (in most cases no more than 5 floors) which are mainly administration ones and have wide green areas around them very few roads and low traffic. As a result difference in calculated fluxes was not so dramatic, as it was expected. Diurnal carbon dioxide fluxes dynamics was pretty the same for all months except August, due to long period without precipitation and higher soil moisture under the forest canopy. Estimated daily fluxes values was higher in forest areas for the whole period of investigation, except August, and ranged from -2 to 8 g C CO2 d-1 m-2 with mean about 2,5 g C CO2 d-1 m-2 .

  9. Increasing fire severity, alternate successional trajectories, and the carbon balance of Alaskan boreal forests

    NASA Astrophysics Data System (ADS)

    Mack, M. C.; Alexander, H. D.; Jean, M.; Melvin, A. M.; Johnstone, J. F.

    2016-12-01

    Climate-sensitive disturbances, such as wildfire, can feed back positively to climate warming via the carbon (C) cycle if C released by disturbance is not replaced over post-fire succession. In boreal forests, burning of carbon in deep organic soils is not only an important determinate of ecosystem element balance over the disturbance cycle, but also sets the conditions that control plant recruitment, species dominance and successional trajectory. Species dominance, in turn, has the potential to exert strong control over the plant-soil-microbial feedbacks that determine C and nutrient coupling, C storage, and ultimately, replacement of combusted C. We examined the consequences of increasing fire severity for C balance and C and nitrogen (N) coupling in Alaskan boreal forests. We estimated combustion losses in 90 black spruce (conifer) stands that burned in 2004. Over the next decade, we followed natural tree seedling establishment in these stands and used seedling species dominance identify conifer versus deciduous successional trajectories. We assembled data from 120 stands that varied in time after fire and successional trajectory, and estimated C and N dynamics across 150 years of post-fire succession for each trajectory. Conifer stands that burned with high severity transitioned to deciduous tree dominance after fire. These stands had smaller ecosystem pools of C and N before fire, lost a larger proportion of these pools during the fire, and began succession with smaller residual pools than stands that returned to conifer dominance after fire. Over secondary succession, deciduous stands accumulated about 10 times more carbon in aboveground biomass than conifer stands. Belowground biomass and soil carbon accumulation, by contrast, was about three times higher in the black spruce stands than in deciduous stands. As a result, net ecosystem C accumulation over the 100 year inter-fire interval was three times higher in deciduous stands than in coniferous stands. Nitrogen accumulation did not differ between the trajectories; high C:N ratio biomass accumulation in deciduous stands balanced low C:N ratio soil organic matter accumulation in conifer stands. The timing of N accumulation, however, differed substantially, supporting the idea that deciduous stands mine N from degrading permafrost after fire.

  10. Later springs green-up faster: the relation between onset and completion of green-up in deciduous forests of North America

    NASA Astrophysics Data System (ADS)

    Klosterman, Stephen; Hufkens, Koen; Richardson, Andrew D.

    2018-05-01

    In deciduous forests, spring leaf phenology controls the onset of numerous ecosystem functions. While most studies have focused on a single annual spring event, such as budburst, ecosystem functions like photosynthesis and transpiration increase gradually after budburst, as leaves grow to their mature size. Here, we examine the "velocity of green-up," or duration between budburst and leaf maturity, in deciduous forest ecosystems of eastern North America. We use a diverse data set that includes 301 site-years of phenocam data across a range of sites, as well as 22 years of direct ground observations of individual trees and 3 years of fine-scale high-frequency aerial photography, both from Harvard Forest. We find a significant association between later start of spring and faster green-up: - 0.47 ± 0.04 (slope ± 1 SE) days change in length of green-up for every day later start of spring within phenocam sites, - 0.31 ± 0.06 days/day for trees under direct observation, and - 1.61 ± 0.08 days/day spatially across fine-scale landscape units. To explore the climatic drivers of spring leaf development, we fit degree-day models to the observational data from Harvard Forest. We find that the default phenology parameters of the ecosystem model PnET make biased predictions of leaf initiation (39 days early) and maturity (13 days late) for red oak, while the optimized model has biases of 1 day or less. Springtime productivity predictions using optimized parameters are closer to results driven by observational data (within 1%) than those of the default parameterization (17% difference). Our study advances empirical understanding of the link between early and late spring phenophases and demonstrates that accurately modeling these transitions is important for simulating seasonal variation in ecosystem productivity.

  11. Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data

    NASA Astrophysics Data System (ADS)

    Liu, J.; Chen, J. M.; Cihlar, J.; Chen, W.

    1999-11-01

    The purpose of this paper is to upscale tower measurements of net primary productivity (NPP) to the Boreal Ecosystem-Atmosphere Study (BOREAS) study region by means of remote sensing and modeling. The Boreal Ecosystem Productivity Simulator (BEPS) with a new daily canopy photosynthesis model was first tested in one coniferous and one deciduous site. The simultaneous CO2 flux measurements above and below the tree canopy made it possible to isolate daily net primary productivity of the tree canopy for model validation. Soil water holding capacity and gridded daily meteorological data for the region were used as inputs to BEPS, in addition to 1 km resolution land cover and leaf area index (LAI) maps derived from the advanced very high resolution radiometer (AVHRR) data. NPP statistics for the various cover types in the BOREAS region and in the southern study area (SSA) and the northern study area (NSA) are presented. Strong dependence of NPP on LAI was found for the three major cover types: coniferous forest, deciduous forest and cropland. Since BEPS can compute total photosynthetically active radiation absorbed by the canopy in each pixel, light use efficiencies for NPP and gross primary productivity could also be analyzed. From the model results, the following area-averaged statistics were obtained for 1994: (1) mean NPP for the BOREAS region of 217 g C m-2 yr-1; (2) mean NPP of forests (excluding burnt areas in the region) equal to 234 g C m-2 yr-1; (3) mean NPP for the SSA and the NSA of 297 and 238 g C m-2 yr-1, respectively; and (4) mean light use efficiency for NPP equal to 0.40, 0.20, and 0.33 g C (MJ APAR)-1 for deciduous forest, coniferous forest, and crops, respectively.

  12. Reassessment of the use of fire as a management tool in deciduous forests of eastern North America.

    PubMed

    Matlack, Glenn R

    2013-10-01

    Prescribed burning is increasingly being used in the deciduous forests of eastern North America. Recent work suggests that historical fire frequency has been overestimated east of the prairie-woodland transition zone, and its introduction could potentially reduce forest herb and shrub diversity. Fire-history recreations derived from sedimentary charcoal, tree fire scars, and estimates of Native American burning suggest point-return times ranging from 5-10 years to centuries and millennia. Actual return times were probably longer because such records suffer from selective sampling, small sample sizes, and a probable publication bias toward frequent fire. Archeological evidence shows the environmental effect of fire could be severe in the immediate neighborhood of a Native American village. Population density appears to have been low through most of the Holocene, however, and villages were strongly clustered at a regional scale. Thus, it appears that the majority of forests of the eastern United States were little affected by burning before European settlement. Use of prescribed burning assumes that most forest species are tolerant of fire and that burning will have only a minimal effect on diversity. However, common adaptations such as serotiny, epicormic sprouting, resprouting from rhizomes, and smoke-cued germination are unknown across most of the deciduous region. Experimental studies of burning show vegetation responses similar to other forms of disturbance that remove stems and litter and do not necessarily imply adaptation to fire. The general lack of adaptation could potentially cause a reduction in diversity if burning were introduced. These observations suggest a need for a fine-grained examination of fire history with systematic sampling in which all subregions, landscape positions, and community types are represented. Responses to burning need to be examined in noncommercial and nonwoody species in rigorous manipulative experiments. Until such information is available, it seems prudent to limit the use of prescribed burning east of the prairie-woodland transition zone. © 2013 Society for Conservation Biology.

  13. Relating the temporal change observed by AIRSAR to surface and canopy properties of mixed conifer and hardwood forests of northern Michigan

    NASA Technical Reports Server (NTRS)

    Dobson, M. Craig; Mcdonald, Kyle; Ulaby, Fawwaz T.; Sharik, Terry

    1991-01-01

    The mixed hardwood and conifer forests of northern Michigan were overflown by a 3-frequency airborne imaging radar in Apr. and Jul. 1990. A set of 10 x 10 km test sites near the University of Michigan Biological Station at Douglas Lake and within the Hiawatha National Forest in the upper peninsula of Michigan contained training stands representing the various forest species typical of forest communities across the ecotone between the coniferous boreal forest and mid-latitude hardwood and coniferous forests. The polarimetric radar data were externally calibrated to allow interdate comparisons. The Apr. flight was prior to bud-break of deciduous species and patchy snowcover was present. The Jul. flights occurred during and 2 days after heavy rain showers, and provide a unique opportunity to examine the differences in radar backscatter attributable to intercepted precipitation. Analyses show that there are significant changes in backscattering between biophysically dissimilar forest stands on any given date and also between dates for a given forest stand. These differences in backscattering can be related to moisture properties of the forest floor and the overlying canopy and also to the quantity and organizational structure of the above-ground biomass.

  14. Analyzing the edge effects in a Brazilian seasonally dry tropical forest.

    PubMed

    Arruda, D M; Eisenlohr, P V

    2016-02-01

    Due to the deciduous nature of dry forests (widely known as seasonally dry tropical forests) they are subject to microclimatic conditions not experienced in other forest formations. Close examinations of the theory of edge effects in dry forests are still rare and a number of questions arise in terms of this topic. In light of this situation we examined a fragment of the dry forest to respond to the following questions: (I) Are there differences in canopy cover along the edge-interior gradient during the dry season? (II) How does the microclimate (air temperature, soil temperature, and relative humidity) vary along that gradient? (III) How does the microclimate influence tree species richness, evenness and abundance along that gradient? (IV) Are certain tree species more dominant closer to the forest edges? Regressions were performed to address these questions. Their coefficients did not significantly vary from zero. Apparently, the uniform openness of the forest canopy caused a homogeneous internal microclimate, without significant differentiation in habitats that would allow modifications in biotic variables tested. We conclude that the processes of edge effect commonly seen in humid forests, not was shared with the dry forest assessed.

  15. Atmospheric deposition to forests in the eastern USA

    USGS Publications Warehouse

    Risch, Martin R.; DeWild, John F.; Gay, David A.; Zhang, Leiming; Boyer, Elizabeth W.; Krabbenhoft, David P.

    2017-01-01

    Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007–2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m2/yr) and ranged from 2.2 to 23.4 μg/m2/yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007–2009 than in 2012–2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can accumulate in the prey of songbirds, bats, and raptors.

  16. Multiresolution quantification of deciduousness in West-Central African forests

    NASA Astrophysics Data System (ADS)

    Viennois, G.; Barbier, N.; Fabre, I.; Couteron, P.

    2013-11-01

    The characterization of leaf phenology in tropical forests is of major importance for forest typology as well as to improve our understanding of earth-atmosphere-climate interactions or biogeochemical cycles. The availability of satellite optical data with a high temporal resolution has permitted the identification of unexpected phenological cycles, particularly over the Amazon region. A primary issue in these studies is the relationship between the optical reflectance of pixels of 1 km or more in size and ground information of limited spatial extent. In this paper, we demonstrate that optical data with high to very-high spatial resolution can help bridge this scale gap by providing snapshots of the canopy that allow discernment of the leaf-phenological stage of trees and the proportions of leaved crowns within the canopy. We also propose applications for broad-scale forest characterization and mapping in West-Central Africa over an area of 141 000 km2. Eleven years of the Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) data were averaged over the wet and dry seasons to provide a data set of optimal radiometric quality at a spatial resolution of 250 m. Sample areas covered at a very-high (GeoEye) and high (SPOT-5) spatial resolution were used to identify forest types and to quantify the proportion of leaved trees in the canopy. The dry-season EVI was positively correlated with the proportion of leaved trees in the canopy. This relationship allowed the conversion of EVI into canopy deciduousness at the regional level. On this basis, ecologically important forest types could be mapped, including young secondary, open Marantaceae, Gilbertiodendron dewevrei and swamp forests. We show that in West-Central African forests, a large share of the variability in canopy reflectance, as captured by the EVI, is due to variation in the proportion of leaved trees in the upper canopy, thereby opening new perspectives for biodiversity and carbon-cycle applications.

  17. Atmospheric mercury deposition to forests in the eastern USA.

    PubMed

    Risch, Martin R; DeWild, John F; Gay, David A; Zhang, Leiming; Boyer, Elizabeth W; Krabbenhoft, David P

    2017-09-01

    Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007-2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m 2 /yr) and ranged from 2.2 to 23.4 μg/m 2 /yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007-2009 than in 2012-2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can accumulate in the prey of songbirds, bats, and raptors. Published by Elsevier Ltd.

  18. Relative contributions of set-asides and tree retention to the long-term availability of key forest biodiversity structures at the landscape scale.

    PubMed

    Roberge, Jean-Michel; Lämås, Tomas; Lundmark, Tomas; Ranius, Thomas; Felton, Adam; Nordin, Annika

    2015-05-01

    Over previous decades new environmental measures have been implemented in forestry. In Fennoscandia, forest management practices were modified to set aside conservation areas and to retain trees at final felling. In this study we simulated the long-term effects of set-aside establishment and tree retention practices on the future availability of large trees and dead wood, two forest structures of documented importance to biodiversity conservation. Using a forest decision support system (Heureka), we projected the amounts of these structures over 200 years in two managed north Swedish landscapes, under management scenarios with and without set-asides and tree retention. In line with common best practice, we simulated set-asides covering 5% of the productive area with priority to older stands, as well as ∼5% green-tree retention (solitary trees and forest patches) including high-stump creation at final felling. We found that only tree retention contributed to substantial increases in the future density of large (DBH ≥35 cm) deciduous trees, while both measures made significant contributions to the availability of large conifers. It took more than half a century to observe stronger increases in the densities of large deciduous trees as an effect of tree retention. The mean landscape-scale volumes of hard dead wood fluctuated widely, but the conservation measures yielded values which were, on average over the entire simulation period, about 2.5 times as high as for scenarios without these measures. While the density of large conifers increased with time in the landscape initially dominated by younger forest, best practice conservation measures did not avert a long-term decrease in large conifer density in the landscape initially comprised of more old forest. Our results highlight the needs to adopt a long temporal perspective and to consider initial landscape conditions when evaluating the large-scale effects of conservation measures on forest biodiversity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. [Changes of Forest Canopy Spectral Reflectance with Seasons in Lang Ya Mountains].

    PubMed

    Li, Wei-tao; Peng, Dao-li; Zhang, Yan; Wu, Jian; Chen, Tai-sheng

    2015-08-01

    The physiological mechanism and ecological structure of forest trees can change with the changes of years. In a certain extent, the changes were expressed through the canopy spectral features. The mastery of changing rules about spectral characteristics of trees over the years is benefit to remote sensing interpretation and provide scientific basis for the classification of different trees. The study adopted high-resolution spectrometer to measure the canopy spectral characteristics for seven major deciduous trees and seven evergreen trees to gain the spectrum curve of four different ages and calculate the first derivative curve. The analysis of changing rules about spectral characteristics of different deciduous trees and evergreen trees and the comparison of changes about spectrum of various trees in the visible and infrared band could find the best year and best band for identification of trees. The results showed that the canopy spectral reflectance of deciduous and evergreen trees increases with the increase of age. And the spectral changes of two species were most obvious in the near infrared band.

  20. Molecular characterization of organic matter in converted forests in Western Europe; disentangling the effects of edaphic factors and input differences on SOM composition

    NASA Astrophysics Data System (ADS)

    Brock, Olaf; Kooijman, Annemieke; Vancampenhout, Karen; Muys, Bart; Jansen, Boris

    2017-04-01

    By storing carbon in the soil, forests can play an important role in climate mitigation. We studied how the SOM composition was affected by conversion of deciduous stands to mono-culture spruce plantations in the Mullerthal in Luxembourg and the Gaume in south-east Belgium. Both regions have a known and similar vegetation history on different lithologies, ranging from carcareous marls to decalcified sands. Lignin and cutin/suberin biomarkers were identified by using thermally assisted hydrolysis and methylation (THM) with unlabelled tetra methyl ammonium hydroxide (TMAH). Lignin was used to distinguish deciduous and coniferous litter sources, whereas cutin and suberin indicated the respective input of above- and belowground litter input. A twinplot setup was used to be able to independently evaluate the effect of edaphic factors versus input differences on SOM composition. pH values and SOC stocks reflected the lithological gradients in both study areas. The difference was more subtle in the Gaume where the gradient is much narrower. The existence of pedogenic thresholds explains why significant differences in lignin yield and SOC stocks between plots with different lithology were also found along the subtle gradient in the Gaume. Secondly, we observed differences in molecular composition and also in decomposition state of lignin that were caused solely by input differences between adjacent deciduous and coniferous forest plots. Furthermore, we found a legacy effect, a signal of former deciduous forest in the deeper soil layers (15-20 cm) under the current spruce plantations, in the loamy substrate plots of the Gaume, which was not observed in the Mullerthal, despite the similar vegetation history of both regions. This can be explained by differences in environmental conditions between both areas. Higher pH values resulting in a higher biological activity could explain the absence of a legacy effect in the Mullerthal plots. Therefore, an important conclusion of this work is that the presence of a legacy effect depends on local soil conditions and soil process domains. Lignin decomposition was found to be higher under more acid conditions, as present in spruce soils compared with the soils under deciduous trees. Moreover, the observance that in the Mullerthal the amount of lignin relative to TOC decreased with increasing depth from the surface, indicates preferential decomposition of lignin with depth. This is in line with the new paradigm that the (soil) environment rather than molecular composition is in many situations a dominant factor in determining the lignin turnover rate. Lastly, in both study areas within most twin plots SOC stocks were similar for both forest types, while SOC stocks were higher on a marl or limestone substrate than on a sandy substrate. We therefore argue that edapthic factors are of vital importance when considering forests to effectively mitigate climate change and that litter quality,and therefore the molecular composition of the organic matter, cannot be ignored when discussing organic matter persistence and carbon sequestration.

  1. Community patterns of tropical tree phenology derived from Unmanned Aerial Vehicle images: intra- and interspecific variation, association with species plant traits, and response to interannual climate variation

    NASA Astrophysics Data System (ADS)

    Bohlman, Stephanie; Rifai, Sami; Park, John; Dandois, Jonathan; Muller-Landau, Helene

    2017-04-01

    Phenology is a key life history trait of plant species and critical driver of ecosystem processes. There is strong evidence that phenology is shifting in temperate ecosystems in response to climate change, but tropical forest phenology remains poorly quantified and understood. A key challenge is that tropical forests contain hundreds of plant species with a wide variety of phenological patterns, which makes it difficult to collect sufficient ground-based field data to characterize individual tropical tree species phenologies. Satellite-based observations, an important source of phenology data in northern latitudes, are hindered by frequent cloud cover in the tropics. To quantify phenology over a large number of individuals and species, we collected bi-weekly images from unmanned aerial vehicles (UAVs) in the well-studied 50-ha forest inventory plot on Barro Colorado Island, Panama. The objective of this study is to quantify inter- and intra-specific responses of tropical tree leaf phenology to environmental variation over large spatial scales and identify key environmental variables and physiological mechanisms underpinning phenological variation. Between October 2014 and December 2015 and again in May 2015, we collected a total of 35 sets of UAV images, each with continuous coverage of the 50-ha plot, where every tree ≥ 1 cm DBH is mapped. UAV imagery was corrected for exposure, orthorectified, and then processed to extract spectral, texture, and image information for individual tree crowns, which was then used as inputs for a machine learning algorithm that successfully predicted the percentages of leaf, branch, and flower cover for each tree crown (r2=0.76 between observed and predicted percent branch cover for individual tree crowns). We then quantified cumulative annual deciduousness for each crown by fitting a non-parametric curve of flexible shape to its predicted percent branch time series and calculated the area under the curve. We obtained the species identities of 2000 crowns in the images by linking the crowns to stem tags in the field, thus producing a time series of cumulative annual deciduousness for 65 species. Deciduousness showed continuous variation among species rather than distinct phenological categories (ie evergreen and deciduous) that are commonly used in physiological, ecosystem and modeling studies. Some species labelled as evergreen by expert-based classification had annual deciduousness higher than those labelled as deciduous. We found significant, positive relationships between species mean deciduousness and species' leaf phosphorous, photosynthetic capacity and adult relative growth rate, suggesting that higher deciduousness is associated with greater resource acquisition. Comparing May 2015 (during an El Nino drought) and May 2014 (an non El Nino year with normal rainfall), mean deciduousness values for nearly all species was greater in 2015 but with differing levels of intraspecific variation. We discuss how the variation in deciduousness among species, its relationship with plant traits and response to the drought might be incorporated into terrestrial biosphere models of tropical forests to more accurately represent phenology and understand the consequences of community-level variation in phenology for ecosystem processes.

  2. Analysis of nitrogen cycling in a forest stream during autumn using a 15N-tracer addition

    Treesearch

    Jennifer L. Tank; Judy L. Meyer; Diane M. Sanzone; Patrick J. Mulholland; Jackson R. Webster; Bruce J. Peterson; Wilfred M. Wollheim; Norman E. Leonard

    2000-01-01

    We added l5NH4Cl over 6 weeks to Upper Ball Creek, a second-order deciduous forest stream in the Appalachian Mountains, to follow the uptake, spiraling, and fate of nitrogen in a stream food web during autumn. A priori predictions of N flow and retention were made using a simple food web mass balance model. Values of ...

  3. Unmanned aerial survey of fallen trees in a deciduous broadleaved forest in eastern Japan.

    PubMed

    Inoue, Tomoharu; Nagai, Shin; Yamashita, Satoshi; Fadaei, Hadi; Ishii, Reiichiro; Okabe, Kimiko; Taki, Hisatomo; Honda, Yoshiaki; Kajiwara, Koji; Suzuki, Rikie

    2014-01-01

    Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5-1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost.

  4. Contrasting growth phenology of native and invasive forest shrubs mediated by genome size.

    PubMed

    Fridley, Jason D; Craddock, Alaä

    2015-08-01

    Examination of the significance of genome size to plant invasions has been largely restricted to its association with growth rate. We investigated the novel hypothesis that genome size is related to forest invasions through its association with growth phenology, as a result of the ability of large-genome species to grow more effectively through cell expansion at cool temperatures. We monitored the spring leaf phenology of 54 species of eastern USA deciduous forests, including native and invasive shrubs of six common genera. We used new measurements of genome size to evaluate its association with spring budbreak, cell size, summer leaf production rate, and photosynthetic capacity. In a phylogenetic hierarchical model that differentiated native and invasive species as a function of summer growth rate and spring budbreak timing, species with smaller genomes exhibited both faster growth and delayed budbreak compared with those with larger nuclear DNA content. Growth rate, but not budbreak timing, was associated with whether a species was native or invasive. Our results support genome size as a broad indicator of the growth behavior of woody species. Surprisingly, invaders of deciduous forests show the same small-genome tendencies of invaders of more open habitats, supporting genome size as a robust indicator of invasiveness. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Genetic structure and breeding system of a rare understory herb, Dysosma versipellis (Berberidaceae), from temperate deciduous forests in China.

    PubMed

    Guan, Bi-Cai; Fu, Cheng-Xing; Qiu, Ying-Xiong; Zhou, Shi-Liang; Comes, Hans Peter

    2010-01-01

    To evaluate the role of Quaternary refugial isolation in allopatric (incipient) speciation of East Asian temperate forest biotas, we analyzed amplified fragment length polymorphisms (AFLPs) and the breeding system in Dysosma versipellis. The study revealed that D. versipellis is mostly self-incompatible, genetically highly subdivided and depauperate at the population level (e.g., Φ(ST) = 0.572/H(E) = 0.083), and characterized by a low pollen-to-seed migration ratio (r ≈ 4.0). The latter outcome likely reflects limited pollen flow in a low-seed disperser whose hypothesized "sapromyophilous" flowers undergo scarce, inefficient, and likely specialized cross-pollination by small Anoplodera beetles, rather than carrion flies as assumed previously. In consequence, fruit set in D. versipellis was strongly pollen-limited. Our AFLP data support the hypothesis of a long-standing cessation of gene flow between western and central eastern populations, consistent with previous chloroplast DNA data. This phylogeographic pattern supports the role of the Sichuan Basin as a floristic boundary separating the Sino-Himalayan vs. Sino-Japanese Forest subkingdoms. Our genetic data of D. versipellis also imply that temperate deciduous forest elements to the west and the east of this basin responded differently to Quaternary climate change, which may have triggered or is leading to allopatric (incipient) speciation.

  6. Inter- and intra-annual variations of clumping index derived from the MODIS BRDF product

    NASA Astrophysics Data System (ADS)

    He, Liming; Liu, Jane; Chen, Jing M.; Croft, Holly; Wang, Rong; Sprintsin, Michael; Zheng, Ting; Ryu, Youngryel; Pisek, Jan; Gonsamo, Alemu; Deng, Feng; Zhang, Yongqin

    2016-02-01

    Clumping index quantifies the level of foliage aggregation, relative to a random distribution, and is a key structural parameter of plant canopies and is widely used in ecological and meteorological models. In this study, the inter- and intra-annual variations in clumping index values, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF product, are investigated at six forest sites, including conifer forests, a mixed deciduous forest and an oak-savanna system. We find that the clumping index displays large seasonal variation, particularly for the deciduous sites, with the magnitude in clumping index values at each site comparable on an intra-annual basis, and the seasonality of clumping index well captured after noise removal. For broadleaved and mixed forest sites, minimum clumping index values are usually found during the season when leaf area index is at its maximum. The magnitude of MODIS clumping index is validated by ground data collected from 17 sites. Validation shows that the MODIS clumping index can explain 75% of variance in measured values (bias = 0.03 and rmse = 0.08), although with a narrower amplitude in variation. This study suggests that the MODIS BRDF product has the potential to produce good seasonal trajectories of clumping index values, but with an improved estimation of background reflectance.

  7. Semiquantitative color profiling of soils over a land degradation gradient in Sakaerat, Thailand.

    PubMed

    Doi, Ryoichi; Wachrinrat, Chongrak; Teejuntuk, Sakhan; Sakurai, Katsutoshi; Sahunalu, Pongsak

    2010-11-01

    In this study, we attempted multivariate color profiling of soils over a land degradation gradient represented by dry evergreen forest (original vegetation), dry deciduous forest (moderately disturbed by fire), and bare ground (severely degraded) in Sakaerat, Thailand. The soils were sampled in a dry-to-wet seasonal transition. Values of the red-green-blue (RGB), cyan-magenta-yellow-key black (CMYK), L*a*b*, and hue-intensity-saturation (HIS) color models were determined using the digital software Adobe Photoshop. Land degradation produced significant variations (p<0.05) in R, C, Y, L*, a*, b*, S, and I values (p<0.05). The seasonal transition produced significant variations (p<0.05) in R, G, B, C, M, K, L*, b*, and I values. In discriminating the soils, the color models did not differ in discriminatory power, while discriminatory power was affected by seasonal changes. Most color variation patterns had nonlinear relationships with the intensity of the land degradation gradient, due to effects of fire that darkened the deciduous forest soil, masking the nature of the soil as the intermediate between the evergreen forest and the bare ground soils. Taking these findings into account, the utilization of color profiling of soils in land conservation and rehabilitation is discussed.

  8. Unmanned Aerial Survey of Fallen Trees in a Deciduous Broadleaved Forest in Eastern Japan

    PubMed Central

    Inoue, Tomoharu; Nagai, Shin; Yamashita, Satoshi; Fadaei, Hadi; Ishii, Reiichiro; Okabe, Kimiko; Taki, Hisatomo; Honda, Yoshiaki; Kajiwara, Koji; Suzuki, Rikie

    2014-01-01

    Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5–1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost. PMID:25279817

  9. More of the same? In situ leaf and root decomposition rates do not vary between 80 native and nonnative deciduous forest species.

    PubMed

    Jo, Insu; Fridley, Jason D; Frank, Douglas A

    2016-01-01

    Invaders often have greater rates of production and produce more labile litter than natives. The increased litter quantity and quality of invaders should increase nutrient cycling through faster litter decomposition. However, the limited number of invasive species that have been included in decomposition studies has hindered the ability to generalize their impacts on decomposition rates. Further, previous decomposition studies have neglected roots. We measured litter traits and decomposition rates of leaves for 42 native and 36 nonnative woody species, and those of fine roots for 23 native and 25 nonnative species that occur in temperate deciduous forests throughout the Eastern USA. Among the leaf and root traits that differed between native and invasive species, only leaf nitrogen was significantly associated with decomposition rate. However, native and nonnative species did not differ systematically in leaf and root decomposition rates. We found that among the parameters measured, litter decomposer activity was driven by litter chemical quality rather than tissue density and structure. Our results indicate that litter decomposition rate per se is not a pathway by which forest woody invasive species affect North American temperate forest soil carbon and nutrient processes. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Ecological effects of pipeline construction through deciduous forested wetlands, Midland County, Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zellmer, S.D.; Rastorfer, J.R.; Van Dyke, G.D.

    Implementation of recent federal and state regulations promulgated to protect wetlands makes information on effects of gas pipeline rights-of-way (ROWs) in wetlands essential to the gas pipeline industry. This study is designed to record vegetational changes induced by the construction of a large-diameter gas pipeline through deciduous forested wetlands. Two second-growth forested wetland sites mapped as Lenawee soils, one mature and one subjected to recent selective logging, were selected in Midland County, Michigan. Changes in the adjacent forest and successional development on the ROW are being documented. Cover-class estimates are being made for understory and ROW plant species using 1more » {times}1-m quadrats. Counts are also being made for all woody species with stems < 2 cm in diameter at breast height (dbh) in the same plots used for cover-class estimates. Individual stem diameters and species counts are being recorded for all woody understory and overstory plants with stems {ge}2 cm dbh in 10 {times} 10-m plots. Although analyses of the data have not been completed, preliminary analyses indicate that some destruction of vegetation at the ROW forest edge may have been avoidable during pipeline construction. Rapid regrowth of many native wetland plant species on the ROW occurred because remnants of native vegetation and soil-bearing propagules of existing species survived on the ROW after pipeline construction and seeding operations. 91 refs., 11 figs., 3 tabs.« less

  11. Bee (Hymenoptera: Apoidea) Diversity and Sampling Methodology in a Midwestern USA Deciduous Forest.

    PubMed

    McCravy, Kenneth W; Ruholl, Jared D

    2017-08-04

    Forests provide potentially important bee habitat, but little research has been done on forest bee diversity and the relative effectiveness of bee sampling methods in this environment. Bee diversity and sampling methodology were studied in an Illinois, USA upland oak-hickory forest using elevated and ground-level pan traps, malaise traps, and vane traps. 854 bees and 55 bee species were collected. Elevated pan traps collected the greatest number of bees (473), but ground-level pan traps collected greater species diversity (based on Simpson's diversity index) than did elevated pan traps. Elevated and ground-level pan traps collected the greatest bee species richness, with 43 and 39 species, respectively. An estimated sample size increase of over 18-fold would be required to approach minimum asymptotic richness using ground-level pan traps. Among pan trap colors/elevations, elevated yellow pan traps collected the greatest number of bees (266) but the lowest diversity. Malaise traps were relatively ineffective, collecting only 17 bees. Vane traps collected relatively low species richness (14 species), and Chao1 and abundance coverage estimators suggested that minimum asymptotic species richness was approached for that method. Bee species composition differed significantly between elevated pan traps, ground-level pan traps, and vane traps. Indicator species were significantly associated with each of these trap types, as well as with particular pan trap colors/elevations. These results indicate that Midwestern deciduous forests provide important bee habitat, and that the performance of common bee sampling methods varies substantially in this environment.

  12. Natural Variation in the Carbon Oxidation State and Oxidative Ratio of a Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.; Calligan, L. J.; Gallagher, M. E.; Hockaday, W. C.; Robertson, G. P.

    2007-12-01

    Here we report natural variability in the oxidative ratio (OR) and carbon oxidation state (Cox) of a temperate, deciduous forest measured on an annual basis via elemental analysis of leaf litter. The OR of the terrestrial biosphere is a key component in O2 -based calculations of the biosphere's uptake of fossil fuel CO2 (eg [ Keeling, et al., 1996]). Ecosystem OR has been assumed to be invariant; however, small OR variations may cause significant shifts in the calculated size of the terrestrial biospheric C sink [ Randerson, et al., 2006]. Accurate measurements of OR are necessary for the accurate apportionment of fossil fuel CO2 between the atmosphere, oceans, and terrestrial biosphere. Ecosystem OR is linearly related to Cox, a parameter which can be easily measured via elemental analysis, calorimetry, or solid state nuclear magnetic resonance [ Masiello, et al., 2007]. We are measuring Cox and OR at the three deciduous forest sites within the Kellogg Biological Station NSF LTER (lter.kbs.msu.edu). We report OR from litter collected from three forest sites from 1998-2003, a time series which covers periods of both normal and low precipitation. We also report error introduced in the Cox to OR conversion via a range of plausible assumptions about ecosystem N cycling. Keeling, R. F., et al. (1996), Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration, Nature, 381, 218-221. Masiello, C.A. et al. (in review 2007) Two new approaches for measuring ecosystem carbon oxidation state and oxidative ratio. J.G.R. Biogeosciences. Randerson, J. T., et al. (2006), Is carbon within the global terrestrial biosphere becoming more oxidized? Implications for trends in atmospheric O2, Global Change Biology, 12, 260-271.

  13. Impacts of experimentally applied mountain biking and hiking on vegetation and soil of a deciduous forest.

    PubMed

    Thurston, E; Reader, R J

    2001-03-01

    Many recent trail degradation problems have been attributed to mountain biking because of its alleged capacity to do more damage than other activities, particularly hiking. This study compared the effects of experimentally applied mountain biking and hiking on the understory vegetation and soil of a deciduous forest. Five different intensities of biking and hiking (i.e., 0, 25, 75, 200 and 500 passes) were applied to 4-m-long x 1-m-wide lanes in Boyne Valley Provincial Park, Ontario, Canada. Measurements of plant stem density, species richness, and soil exposure were made before treatment, two weeks after treatment, and again one year after treatment. Biking and hiking generally had similar effects on vegetation and soil. Two weeks after treatment, stem density and species richness were reduced by up to 100% of pretreatment values. In addition, the amount of soil exposed increased by up to 54%. One year later, these treatment effects were no longer detectable. These results indicate that at a similar intensity of activity, the short-term impacts of mountain biking and hiking may not differ greatly in the undisturbed area of a deciduous forest habitat. The immediate impacts of both activities can be severe but rapid recovery should be expected when the activities are not allowed to continue. Implications of these results for trail recreation are discussed.

  14. Differential response of vegetation in Hulun Lake region at the northern margin of Asian summer monsoon to extreme cold events of the last deglaciation

    NASA Astrophysics Data System (ADS)

    Zhang, Shengrui; Xiao, Jule; Xu, Qinghai; Wen, Ruilin; Fan, Jiawei; Huang, Yun; Yamagata, Hideki

    2018-06-01

    The response of vegetation to extreme cold events during the last deglaciation is important for assessing the impact of possible extreme climatic events on terrestrial ecosystems under future global warming scenarios. Here, we present a detailed record of the development of regional vegetation in the northern margin of Asian summer monsoon during the last deglaciation (16,500-11,000 cal yr BP) based on a radiocarbon-dated high-resolution pollen record from Hulun Lake, northeast China. The results show that the regional vegetation changed from subalpine meadow-desert steppe to mixed coniferous and deciduous forest-typical steppe during the last deglaciation. However, its responses to the Heinrich event 1 (H1) and the Younger Dryas event (YD) were significantly different: during the H1 event, scattered sparse forest was present in the surrounding mountains, while within the lake catchment the vegetation cover was poor and was dominated by desert steppe. In contrast, during the YD event, deciduous forest developed and the proportion of coniferous forest increased in the mountains, the lake catchment was occupied by typical steppe. We suggest that changes in Northern Hemisphere summer insolation and land surface conditions (ice sheets and sea level) caused temperature and monsoonal precipitation variations that contributed to the contrasting vegetation response during the two cold events. We conclude that under future global warming scenarios, extreme climatic events may cause a deterioration of the ecological environment of the Hulun Lake region, resulting in increased coniferous forest and decreased total forest cover in the surrounding mountains, and a reduction in typical steppe in the lake catchment.

  15. Drivers of Macrofungi Community Structure Differ between Soil and Rotten-Wood Substrates in a Temperate Mountain Forest in China

    PubMed Central

    Chen, Yun; Svenning, Jens-Christian; Wang, Xueying; Cao, Ruofan; Yuan, Zhiliang; Ye, Yongzhong

    2018-01-01

    The effects of environmental and dispersal processes on macrofungi community assembly remain unclear. Further, it is not well understood if community assembly differs for different functional guilds of macrofungi, e.g., soil and rotten-wood macrofungi. In this study, using 2433 macrofungi sporocarps belonging to 217 species located within a forest dynamics plot in temperate mountain forest (China), we examined the explanatory power of topography, spatial eigenvectors (representing unknown spatial processes, e.g., dispersal), plant community, and light availability for local spatial variation in the macrofungi community through variance partitioning and partial least squares path modeling. We found spatial eigenvectors and light as the most important factors for explaining species richness and composition of macrofungi. Light was negatively correlated with species richness of macrofungi. Furthermore, species richness and composition of soil macrofungi were best explained by light, and species richness and composition of rotten-wood macrofungi were best explained by spatial eigenvectors. Woody plant community structure was not an important factor for species richness and composition of macrofungi. Our findings suggest that spatial processes, perhaps dispersal limitation, and light availability were the most important factors affecting macrofungi community in temperate deciduous broad-leaved forest. Major differences in influencing factors between soil and rotten-wood macrofungi were observed, with light as the major driver for soil macrofungi and unknown spatial processes as the major driver for rotten-wood macrofungi. These findings shed new light to the processes shaping community assembly in macrofungi in temperate deciduous broad-leaved forest and point to the potential importance of both intrinsic dynamics, such as dispersal, and external forcing, such as forest dynamics, via its effect on light availability. PMID:29410660

  16. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada.

    PubMed

    Steele, Sarah J.; Gower, Stith T.; Vogel, Jason G.; Norman, John M.

    1997-01-01

    Root biomass, net primary production and turnover were studied in aspen, jack pine and black spruce forests in two contrasting climates. The climate of the Southern Study Area (SSA) near Prince Albert, Saskatchewan is warmer and drier in the summer and milder in the winter than the Northern Study Area (NSA) near Thompson, Manitoba, Canada. Ingrowth soil cores and minirhizotrons were used to quantify fine root net primary production (NPPFR). Average daily fine root growth (m m(-2) day(-1)) was positively correlated with soil temperature at 10-cm depth (r(2) = 0.83-0.93) for all three species, with black spruce showing the strongest temperature effect. At both study areas, fine root biomass (measured from soil cores) and fine root length (measured from minirhizotrons) were less for jack pine than for the other two species. Except for the aspen stands, estimates of NPPFR from minirhizotrons were significantly greater than estimates from ingrowth cores. The core method underestimated NPPFR because it does not account for simultaneous fine root growth and mortality. Minirhizotron NPPFR estimates ranged from 59 g m(-2) year(-1) for aspen stands at SSA to 235 g m(-2) year(-1) for black spruce at NSA. The ratio of NPPFR to total detritus production (aboveground litterfall + NPPFR) was greater for evergreen forests than for deciduous forests, suggesting that carbon allocation patterns differ between boreal evergreen and deciduous forests. In all stands, NPPFR consistently exceeded annual fine root turnover and the differences were larger for stands in the NSA than for stands in the SSA, whereas the difference between study areas was only significant for black spruce. The imbalance between NPPFR and fine root turnover is sufficient to explain the net accumulation of carbon in boreal forest soils.

  17. Post-clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment.

    PubMed

    Williams, Christopher A; Vanderhoof, Melanie K; Khomik, Myroslava; Ghimire, Bardan

    2014-03-01

    Clearcutting and other forest disturbances perturb carbon, water, and energy balances in significant ways, with corresponding influences on Earth's climate system through biogeochemical and biogeophysical effects. Observations are needed to quantify the precise changes in these balances as they vary across diverse disturbances of different types, severities, and in various climate and ecosystem type settings. This study combines eddy covariance and micrometeorological measurements of surface-atmosphere exchanges with vegetation inventories and chamber-based estimates of soil respiration to quantify how carbon, water, and energy fluxes changed during the first 3 years following forest clearing in a temperate forest environment of the northeastern US. We observed rapid recovery with sustained increases in gross ecosystem productivity (GEP) over the first three growing seasons post-clearing, coincident with large and relatively stable net emission of CO2 because of overwhelmingly large ecosystem respiration. The rise in GEP was attributed to vegetation changes not environmental conditions (e.g., weather), but attribution to the expansion of leaf area vs. changes in vegetation composition remains unclear. Soil respiration was estimated to contribute 44% of total ecosystem respiration during summer months and coarse woody debris accounted for another 18%. Evapotranspiration also recovered rapidly and continued to rise across years with a corresponding decrease in sensible heat flux. Gross short-wave and long-wave radiative fluxes were stable across years except for strong wintertime dependence on snow covered conditions and corresponding variation in albedo. Overall, these findings underscore the highly dynamic nature of carbon and water exchanges and vegetation composition during the regrowth following a severe forest disturbance, and sheds light on both the magnitude of such changes and the underlying mechanisms with a unique example from a temperate, deciduous broadleaf forest. © 2013 John Wiley & Sons Ltd.

  18. Atmospheric deposition in coniferous and deciduous tree stands in Poland

    NASA Astrophysics Data System (ADS)

    Kowalska, Anna; Astel, Aleksander; Boczoń, Andrzej; Polkowska, Żaneta

    2016-05-01

    The objective of this study was to assess the transformation of precipitation in terms of quantity and chemical composition following contact with the crown layer in tree stands with varied species composition, to investigate the effect of four predominant forest-forming species (pine, spruce, beech, and oak) on the amount and composition of precipitation reaching forest soils, and to determine the sources of pollution in atmospheric precipitation in forest areas in Poland. The amount and chemical composition (pH, electric conductivity, alkalinity, and chloride, nitrate, sulfate, phosphate, ammonium, calcium, magnesium, sodium, potassium, iron aluminum, manganese, zinc, copper, total nitrogen, and dissolved organic carbon contents) of atmospheric (bulk, BP) and throughfall (TF) precipitation were studied from January to December 2010 on twelve forest monitoring plots representative of Polish conditions. The study results provided the basis for the determination of the fluxes of pollutants in the forest areas of Poland and allowed the comparison of such fluxes with values provided in the literature for European forest areas. The transformation of precipitation in the canopy was compared for different tree stands. The fluxes of substances in an open field and under canopy were influenced by the location of the plot, including the regional meteorological conditions (precipitation amounts), vicinity of the sea (effect of marine aerosols), and local level of anthropogenic pollution. Differences between the plots were higher in TF than in BP. The impact of the vegetation cover on the chemical composition of precipitation depended on the region of the country and dominant species in a given tree stand. Coniferous species tended to cause acidification of precipitation, whereas deciduous species increased the pH of TF. Pine and oak stands enriched precipitation with components that leached from the canopy (potassium, manganese, magnesium) to a higher degree than spruce and beech stands.

  19. Patch occupancy and dispersal of spruce grouse on the edge of its range in Maine

    USGS Publications Warehouse

    Whitcomb, S.A.; Servello, F.A.; O'Connell, A.F.

    1996-01-01

    We surveyed 18 habitat patches (black spruce (Picea marinana) - tamarack (Larix larcina) wetlands) for spruce grouse (Dendragapus canadensis canadensis) on Mount Desert Island, Maine, during April-May in 1992 and 1993 to determine patch occupancy relative to patch area. We also equipped nine juvenile grouse with radio transmitters to determine movement and habitat use outside of patches during autumn dispersal. The 2 large patches (77 and 269 ha), 5 of 6 medium-sized (11-26 ha) patches, and 1 of 10 small (4-8 ha) patches were occupied. Spruce grouse occupied smaller habitat patches than previously reported, and occupied patches were closer (P < 0.05) to the nearest occupied patch (x = 1.2 km) than were unoccupied patches (x = 2.5 km). Eight of nine juvenile grouse left their natal habitat patch during autumn dispersal, and net dispersal distance (x = 2.3 km) was greater than that reported for grouse in areas with more contiguous habitat. Dispersing juveniles used all major forest types and 33 % of relocations were in deciduous forest. Thus, deciduous forest was not an absolute dispersal barrier.

  20. Diet of Wilson's warblers and distribution of arthropod prey in the understory of Douglas-fir forests

    USGS Publications Warehouse

    Hagar, Joan C.; Dugger, Kate; Starkey, Edward E.

    2007-01-01

    Availability of food resources is an important factor in avian habitat selection. Food resources for terrestrial birds often are closely related to vegetation structure and composition. Identification of plant species important in supporting food resources may facilitate vegetation management to achieve objectives for providing bird habitat. We used fecal analysis to describe the diet of adult Wilson's Warblers (Wilsonia pusilla) that foraged in the understory of Douglas-fir (Pseudotsuga menziesii) forests in western Oregon during the breeding season. We sampled arthropods at the same sites where diet data were collected, and compared abundance and biomass of prey among seven common shrub species. Wilson's Warblers ate more caterpillars (Lepidoptera larvae), flies (Diptera), beetles (Coleoptera), and Homoptera than expected based on availability. Deciduous shrubs supported higher abundances of arthropod taxa and size classes used as prey by Wilson's Warblers than did evergreen shrubs. The development and maintenance of deciduous understory vegetation in conifer forests of the Pacific Northwest may be fundamental for conservation of food webs that support breeding Wilson's Warblers and other shrub-associated, insectivorous songbirds.

  1. Arthropod prey of Wilson's Warblers in the understory of Douglas-fir forests

    USGS Publications Warehouse

    Hagar, J.C.; Dugger, K.M.; Starkey, E.E.

    2007-01-01

    Availability of food resources is an important factor in avian habitat selection. Food resources for terrestrial birds often are closely related to vegetation structure and composition. Identification of plant species important in supporting food resources may facilitate vegetation management to achieve objectives for providing bird habitat. We used fecal analysis to describe the diet of adult Wilson's Warblers (Wilsonia pusilla) that foraged in the understory of Douglas-fir (Pseudotsuga menziesii) forests in western Oregon during the breeding season. We sampled arthropods at the same sites where diet data were collected, and compared abundance and biomass of prey among seven common shrub species. Wilson's Warblers ate more caterpillars (Lepidoptera larvae), flies (Diptera), beetles (Coleoptera), and Homoptera than expected based on availability. Deciduous shrubs supported higher abundances of arthropod taxa and size classes used as prey by Wilson's Warblers than did evergreen shrubs. The development and maintenance of deciduous understory vegetation in conifer forests of the Pacific Northwest may be fundamental for conservation of food webs that support breeding Wilson's Warblers and other shrub-associated, insectivorous songbirds.

  2. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    DOE PAGES

    Young-Robertson, Jessica M.; Bolton, W. Robert; Bhatt, Uma S.; ...

    2016-07-12

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m 3 of snowmelt water, which is equivalent to 8.7–10.2% of themore » Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m 3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m 3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m 3 of snowmelt water removed from the soil per year. Furthermore, this study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.« less

  3. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young-Robertson, Jessica M.; Bolton, W. Robert; Bhatt, Uma S.

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m 3 of snowmelt water, which is equivalent to 8.7–10.2% of themore » Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m 3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m 3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m 3 of snowmelt water removed from the soil per year. Furthermore, this study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.« less

  4. N : P stoichiometry in a forested runoff during storm events: comparisons with regions and vegetation types.

    PubMed

    Guo, Lanlan; Chen, Yi; Zhang, Zhao; Fukushima, Takehiko

    2012-01-01

    Nitrogen and phosphorus are considered the most important limiting elements in terrestrial and aquatic ecosystems. however, very few studies have focused on which is from forested streams, a bridge between these two systems. To fill this gap, we examined the concentrations of dissolved N and P in storm waters from forested watersheds of five regions in Japan, to characterize nutrient limitation and its potential controlling factors. First, dissolved N and P concentrations and the N : P ratio on forested streams were higher during storm events relative to baseflow conditions. Second, significantly higher dissolved inorganic N concentrations were found in storm waters from evergreen coniferous forest streams than those from deciduous broadleaf forest streams in Aichi, Kochi, Mie, Nagano, and with the exception of Tokyo. Finally, almost all the N : P ratios in the storm water were generally higher than 34, implying that the storm water should be P-limited, especially for Tokyo.

  5. N : P Stoichiometry in a Forested Runoff during Storm Events: Comparisons with Regions and Vegetation Types

    PubMed Central

    Guo, Lanlan; Chen, Yi; Zhang, Zhao; Fukushima, Takehiko

    2012-01-01

    Nitrogen and phosphorus are considered the most important limiting elements in terrestrial and aquatic ecosystems. however, very few studies have focused on which is from forested streams, a bridge between these two systems. To fill this gap, we examined the concentrations of dissolved N and P in storm waters from forested watersheds of five regions in Japan, to characterize nutrient limitation and its potential controlling factors. First, dissolved N and P concentrations and the N : P ratio on forested streams were higher during storm events relative to baseflow conditions. Second, significantly higher dissolved inorganic N concentrations were found in storm waters from evergreen coniferous forest streams than those from deciduous broadleaf forest streams in Aichi, Kochi, Mie, Nagano, and with the exception of Tokyo. Finally, almost all the N : P ratios in the storm water were generally higher than 34, implying that the storm water should be P-limited, especially for Tokyo. PMID:22547978

  6. AmeriFlux US-Ha2 Harvard Forest Hemlock Site

    DOE Data Explorer

    Munger, William [Harvard University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ha2 Harvard Forest Hemlock Site. Site Description - The forest surrounding the Hemlock site has remained pristine with two exceptions. In the early to mid-1700s, European settlers cleared the majority of the forest for agricultural purposes. Selective harvesting of hemlock and chestnut trees occurred up until the early 1900s, when the chestnut blight killed all of the chestnut trees. In the current forest, about 83% of the total basal area of trees is hemlock. The remainder is equally divided between eastern white pine (Pinus strobus L.) and deciduous species, including red maple (Acer rubrum), red oak (Quercus rubra) and black birch (Betula lenta). A very thick organic layer (10-20 cm or more) covers the soil surface, and highly decayed coarse woody debris is abundant.

  7. Artificial Intelligence Procedures for Tree Taper Estimation within a Complex Vegetation Mosaic in Brazil

    PubMed Central

    Nunes, Matheus Henrique

    2016-01-01

    Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects. PMID:27187074

  8. Electromagnetic wave extinction within a forested canopy

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1989-01-01

    A forested canopy is modeled by a collection of randomly oriented finite-length cylinders shaded by randomly oriented and distributed disk- or needle-shaped leaves. For a plane wave exciting the forested canopy, the extinction coefficient is formulated in terms of the extinction cross sections (ECSs) in the local frame of each forest component and the Eulerian angles of orientation (used to describe the orientation of each component). The ECSs in the local frame for the finite-length cylinders used to model the branches are obtained by using the forward-scattering theorem. ECSs in the local frame for the disk- and needle-shaped leaves are obtained by the summation of the absorption and scattering cross-sections. The behavior of the extinction coefficients with the incidence angle is investigated numerically for both deciduous and coniferous forest. The dependencies of the extinction coefficients on the orientation of the leaves are illustrated numerically.

  9. Management guidelines for enhancing Cerulean Warbler breeding habitat in Appalachian hardwood forests

    USGS Publications Warehouse

    Wood, Petra; Sheehan, James; Keyser, Patrick D.; Buehler, David A.; Larkin, Jeff; Rodewald, Amanda D.; Stoleson, Scott H.; Wigley, T. Bently; Mizel, Jeremy; Boves, Than J.; George, Greg; Bakermans, Marja H.; Beachy, Tiffany A.; Evans, Andrea; McDermott, Molly E.; Newell, Felicity L.; Perkins, Kelly A.; White, Matt

    2013-01-01

    The Cerulean Warbler (Setophaga cerulea) is a migratory songbird that breeds in mature deciduous forests of eastern North America. Cerulean Warblers (hereafter, ceruleans) require heavily forested landscapes for nesting and, within Appalachian forests, primarily occur on ridge tops and steep, upper slopes. They are generally associated with oakdominated (Quercus spp.) stands that contain gaps in the forest canopy, that have large diameter trees (>16 inches diameter breast height (dbh)), and that have well-developed understory-and upper-canopy layers. Ceruleans primarily use the midand upper-canopy where they glean insects from the surface of leaves and conceal their open cup nests. Because they are severely declining across much of their range (Fig. 1), habitat management is a high priority. Management for this species can also improve conditions for a number of other wildlife species that depend on the same structure.

  10. Artificial Intelligence Procedures for Tree Taper Estimation within a Complex Vegetation Mosaic in Brazil.

    PubMed

    Nunes, Matheus Henrique; Görgens, Eric Bastos

    2016-01-01

    Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects.

  11. AmeriFlux US-PFa Park Falls/WLEF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Ankur

    This is the AmeriFlux version of the carbon flux data for the site US-PFa Park Falls/WLEF. Site Description - The flux footprint encompasses a highly heterogeneous landscape of upland forests and wetlands (forested and nonforested). The forests are mainly deciduous but also include substantial coniferous coverage. The upland/lowland variability occurs on spatial scales of a few hundred meters. This heterogeneous landscape is further complicated by a nonuniform, small scale mosaic of thinning and clearcutting of the forest. At larger scales (1 km or greater) the forest cover mosaic is quite homogeneous for many kilometers. The site was chosen not formore » study of a simple stand, but for upscaling experiments. The daytime fetch of flux measurements from the 396m level is on the order of 5-10 km, yielding a flux footprint roughly 100x the area of a typical stand-level flux tower. AC power (tower is a TV transmitter).« less

  12. The Chameleon Concept: Modeling Quaternary Geomorphic Surfaces Using Laboratory, Field, and Imaging Spectrometry in the Lower Colorado Sonoran Desert

    DTIC Science & Technology

    2005-11-01

    Oblique aerial photographs of dry deciduous tropical forest at the STRI Tropical Research Crane at the Parque Natural Metropolitano, Republic of Panama...Research Crane at the Parque Natural Metropolitano, Republic of Panama. ......................... 134 58. Original (a) and synthetic (b and c) tropical... Parque Natural Metropolitano, Republic of Panama. 133 b. Double canopy tropical forest diversity as seen from the can- opy crane gondola

  13. An isoline separating relatively warm from relatively cool wintertime forest surface temperatures for the southeastern United States

    NASA Astrophysics Data System (ADS)

    Wickham, J.; Wade, T. G.; Riitters, K. H.

    2014-09-01

    Forest-oriented climate mitigation policies promote forestation as a means to increase uptake of atmospheric carbon to counteract global warming. Some have pointed out that a carbon-centric forest policy may be overstated because it discounts biophysical aspects of the influence of forests on climate. In extra-tropical regions, many climate models have shown that forests tend to be warmer than grasslands and croplands because forest albedos tend to be lower than non-forest albedos. A lower forest albedo results in higher absorption of solar radiation and increased sensible warming that is not offset by the cooling effects of carbon uptake in extra-tropical regions. However, comparison of forest warming potential in the context of climate models is based on a coarse classification system of tropical, temperate, and boreal. There is considerable variation in climate within the broad latitudinal zonation of tropical, temperate, and boreal, and the relationship between biophysical (albedo) and biogeochemical (carbon uptake) mechanisms may not be constant within these broad zones. We compared wintertime forest and non-forest surface temperatures for the southeastern United States and found that forest surface temperatures shifted from being warmer than non-forest surface temperatures north of approximately 36°N to cooler south of 36°N. Our results suggest that the biophysical aspects of forests' influence on climate reinforce the biogeochemical aspects of forests' influence on climate south of 36°N. South of 36°N, both biophysical and biogeochemical properties of forests appear to support forestation as a climate mitigation policy. We also provide some quantitative evidence that evergreen forests tend to have cooler wintertime surface temperatures than deciduous forests that may be attributable to greater evapotranspiration rates.

  14. Diverse patterns of stored water use among saplings in seasonally dry tropical forests.

    PubMed

    Wolfe, Brett T; Kursar, Thomas A

    2015-12-01

    Tree species in seasonally dry tropical forests likely vary in their drought-survival mechanisms. Drought-deciduousness, which reduces water loss, and low wood density, which may permit dependence on stored water, are considered key traits. For saplings of six species at two distinct sites, we studied these and two associated traits: the seasonal amount of water released per stem volume ("water released") and the hydraulic capacitance of the stem (C). Two deciduous species with low stem density, Cavanillesia platanifolia and Bursera simaruba, had high C and high dry-season stem water potential (Ψ(stem)), but differed in dry-season water released. C. platanifolia did not use stored water during the dry season whereas B. simaruba, in a drier forest, released stored water. In both, water released was highest while flushing leaves, suggesting that stored water supports leaf flushing. In contrast, two deciduous species with intermediate stem density, Annona hayesii and Genipa americana, had intermediate C, low dry-season Ψ(stem), and high seasonal change in water released. Meanwhile, two evergreen species with intermediate stem density, Cojoba rufescens and Astronium graveolens, had relatively low C, low dry-season Ψ(stem), and intermediate seasonal change in water released. Thus, at least three, distinct stored-water-use strategies were observed. Additionally, bark relative water content (RWC) decreased along with Ψ(stem) during the dry season while xylem RWC did not change, suggesting that bark-stored water buffers Ψ(stem) seasonally. Together these results suggest that seasonal use of stored water and change in Ψ(stem) are associated with functional groups that are characterized by combinations of deciduousness and stem density.

  15. Multiresolution quantification of deciduousness in West Central African forests

    NASA Astrophysics Data System (ADS)

    Viennois, G.; Barbier, N.; Fabre, I.; Couteron, P.

    2013-04-01

    The characterization of leaf phenology in tropical forests is of major importance and improves our understanding of earth-atmosphere-climate interactions. The availability of satellite optical data with a high temporal resolution has permitted the identification of unexpected phenological cycles, particularly over the Amazon region. A primary issue in these studies is the relationship between the optical reflectance of pixels of 1 km or more in size and ground information of limited spatial extent. In this paper, we demonstrate that optical data with high to very-high spatial resolution can help bridge this scale gap by providing snapshots of the canopy that allow discernment of the leaf-phenological stage of trees and the proportions of leaved crowns within the canopy. We also propose applications for broad-scale forest characterization and mapping in West Central Africa over an area of 141 000 km2. Eleven years of the Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) data were averaged over the wet and dry seasons to provide a dataset of optimal radiometric quality at a spatial resolution of 250 m. Sample areas covered at a very-high (GeoEye) and high (SPOT-5) spatial resolution were used to identify forest types and to quantify the proportion of leaved trees in the canopy. The dry season EVI was positively correlated with the proportion of leaved trees in the canopy. This relationship allowed the conversion of EVI into canopy deciduousness at the regional level. On this basis, ecologically important forest types could be mapped, including young secondary, open Marantaceae, Gilbertiodendron dewevrei and swamp forests. We show that in west central African forests, a large share of the variability in canopy reflectance, as captured by the EVI, is due to variation in the proportion of leaved trees in the upper canopy, thereby opening new perspectives for biodiversity and carbon-cycle applications.

  16. Landsat analysis of tropical forest succession employing a terrain model

    NASA Technical Reports Server (NTRS)

    Barringer, T. H.; Robinson, V. B.; Coiner, J. C.; Bruce, R. C.

    1980-01-01

    Landsat multispectral scanner (MSS) data have yielded a dual classification of rain forest and shadow in an analysis of a semi-deciduous forest on Mindonoro Island, Philippines. Both a spatial terrain model, using a fifth side polynomial trend surface analysis for quantitatively estimating the general spatial variation in the data set, and a spectral terrain model, based on the MSS data, have been set up. A discriminant analysis, using both sets of data, has suggested that shadowing effects may be due primarily to local variations in the spectral regions and can therefore be compensated for through the decomposition of the spatial variation in both elevation and MSS data.

  17. Snowy backgrounds enhance the absorption of visible light in forest canopies

    NASA Astrophysics Data System (ADS)

    Pinty, B.; Widlowski, J.-L.; Verstraete, M. M.; Andredakis, I.; Arino, O.; Clerici, M.; Kaminski, T.; Taberner, M.

    2011-03-01

    The fraction of radiation absorbed in the canopy depends on the amount and angular distribution of the solar irradiance reaching the top of the canopy as well as the fraction of this irradiance that is transmitted through the canopy gaps and reflected back to the vegetation by the background. This contribution shows that the presence of snow on forest floors enhances the fraction of absorbed Photosynthetically Active Radiation (PAR). A global analysis of satellite-derived products reveals that this enhancement affects evergreen and deciduous forests of the boreal zone. This snow-related effect may usefully contribute to the photosynthesis process in evergreen forests especially during spring time when radiation conditions are marginal but other physiological constraints (such as temperature) permit the necessary biochemical functions to take place.

  18. Modelled and field measurements of biogenic hydrocarbon emissions from a Canadian deciduous forest

    NASA Astrophysics Data System (ADS)

    Fuentes, J. D.; Wang, D.; Den Hartog, G.; Neumann, H. H.; Dann, T. F.; Puckett, K. J.

    The Biogenic Emission Inventory System (BEIS) used by the United States Environmental Protection Agency (Lamb et al., 1993, Atmospheric Environment21, 1695-1705; Pierce and Waldruff, 1991, J. Air Waste Man. Ass.41, 937-941) was tested for its ability to provide realistic microclimate descriptions within a deciduous forest in Canada. The microclimate description within plant canopies is required because isoprene emission rates from plants are strongly influenced by foliage temperature and photosynthetically active radiation impinging on leaves while monoterpene emissions depend primarily on leaf temperature. Model microclimate results combined with plant emission rates and local biomass distribution were used to derive isoprene and α-pinene emissions from the deciduous forest canopy. In addition, modelled isoprene emission estimates were compared to measured emission rates at the leaf level. The current model formulation provides realistic microclimatic conditions for the forest crown where modelled and measured air and foliage temperature are within 3°C. However, the model provides inadequate microclimate characterizations in the lower canopy where estimated and measured foliage temperatures differ by as much as 10°C. This poor agreement may be partly due to improper model characterization of relative humidity and ambient temperature within the canopy. These uncertainties in estimated foliage temperature can lead to underestimates of hydrocarbon emission estimates of two-fold. Moreover, the model overestimates hydrocarbon emissions during the early part of the growing season and underestimates emissions during the middle and latter part of the growing season. These emission uncertainties arise because of the assumed constant biomass distribution of the forest and constant hydrocarbon emission rates throughout the season. The BEIS model, which is presently used in Canada to estimate inventories of hydrocarbon emissions from vegetation, underestimates emission rates by at least two-fold compared to emissions derived from field measurements. The isoprene emission algorithm proposed by Guenther et al. (1993), applied at the leaf level, provides relatively good agreement compared to measurements. Field measurements indicate that isoprene emissions change with leaf ontogeny and differ amongst tree species. Emission rates defined as function of foliage development stage and plant species need to be introduced in the hydrocarbon emission algorithms. Extensive model evaluation and more hydrocarbon emission measurement;: from different plant species are required to fully assess the appropriateness of this emission calculation approach for Canadian forests.

  19. MODIS Based Estimation of Forest Aboveground Biomass in China.

    PubMed

    Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  20. MODIS Based Estimation of Forest Aboveground Biomass in China

    PubMed Central

    Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests. PMID:26115195

  1. Forest resilience to drought varies across biomes.

    PubMed

    Gazol, Antonio; Camarero, Jesus Julio; Vicente-Serrano, Sergio M; Sánchez-Salguero, Raúl; Gutiérrez, Emilia; de Luis, Martin; Sangüesa-Barreda, Gabriel; Novak, Klemen; Rozas, Vicente; Tíscar, Pedro A; Linares, Juan C; Martín-Hernández, Natalia; Martínez Del Castillo, Edurne; Ribas, Montse; García-González, Ignacio; Silla, Fernando; Camisón, Alvaro; Génova, Mar; Olano, José M; Longares, Luis A; Hevia, Andrea; Tomás-Burguera, Miquel; Galván, J Diego

    2018-05-01

    Forecasted increase drought frequency and severity may drive worldwide declines in forest productivity. Species-level responses to a drier world are likely to be influenced by their functional traits. Here, we analyse forest resilience to drought using an extensive network of tree-ring width data and satellite imagery. We compiled proxies of forest growth and productivity (TRWi, absolutely dated ring-width indices; NDVI, Normalized Difference Vegetation Index) for 11 tree species and 502 forests in Spain corresponding to Mediterranean, temperate, and continental biomes. Four different components of forest resilience to drought were calculated based on TRWi and NDVI data before, during, and after four major droughts (1986, 1994-1995, 1999, and 2005), and pointed out that TRWi data were more sensitive metrics of forest resilience to drought than NDVI data. Resilience was related to both drought severity and forest composition. Evergreen gymnosperms dominating semi-arid Mediterranean forests showed the lowest resistance to drought, but higher recovery than deciduous angiosperms dominating humid temperate forests. Moreover, semi-arid gymnosperm forests presented a negative temporal trend in the resistance to drought, but this pattern was absent in continental and temperate forests. Although gymnosperms in dry Mediterranean forests showed a faster recovery after drought, their recovery potential could be constrained if droughts become more frequent. Conversely, angiosperms and gymnosperms inhabiting temperate and continental sites might have problems to recover after more intense droughts since they resist drought but are less able to recover afterwards. © 2018 John Wiley & Sons Ltd.

  2. Stemflow Acid Neutralization Capacity in a Broadleaved Deciduous Forest: The Role of Edge Effects

    NASA Astrophysics Data System (ADS)

    Levia, D. F., Jr.; Shiklomanov, A.

    2014-12-01

    The fragmentation of forests is occurring at an accelerated rate in parts of the United States. Forest fragmentation creates edge habitat that affects the biogeochemistry of forests. Atmospheric deposition is known to increase at the forest edge in comparison to the forest interior. Past research has demonstrated the critical role of edge effects on throughfall chemistry but no known work has examined the relationship between stemflow chemistry and edge effects. To fill this data gap, we quantified the stemflow acid neutralization capacity (ANC) of nineteen Liriodendron tulipifera L. (yellow poplar) trees between forest edge and interior locations in the Piedmont of the mid-Atlantic USA. ANC was measured directly by potentiometric titration. Both stemflow pH and ANC were higher for L. tulipifera trees on the forest edge as opposed to those in interior locations (p < 0.01), although marked variability was observed among individual trees. It is critical to note that the ANC of stemflow of edge trees is almost certainly contextual, depending on geographic locality. This is to say that stemflow from edge trees may neutralize acid inputs in some locations (as in our case) but lead to enhanced acidification of aqueous inputs to forest soils in other locales where the dry deposition of acid anions is high. The experimental results have ramifications for forest management schema seeking to increase or decrease the extent of edge habitat in forest fragments.

  3. Leaf economics of evergreen and deciduous tree species along an elevational gradient in a subtropical mountain.

    PubMed

    Bai, Kundong; He, Chengxin; Wan, Xianchong; Jiang, Debing

    2015-06-08

    The ecophysiological mechanisms underlying the pattern of bimodal elevational distribution of evergreen tree species remain incompletely understood. Here we used leaf economics spectrum (LES) theory to explain such patterns. We measured leaf economic traits and constructed an LES for the co-existing 19 evergreen and 15 deciduous species growing in evergreen broad-leaved forest at low elevation, beech-mixed forest at middle elevation and hemlock-mixed forest at high elevation in Mao'er Mountain, Guangxi, Southern China (25°50'N, 110°49'E). Leaf economic traits presented low but significant phylogenetic signal, suggesting trait similarity between closely related species. After considering the effects of phylogenetic history, deciduous species in general showed a more acquisitive leaf strategy with a higher ratio of leaf water to dry mass, higher leaf nitrogen and phosphorous contents, higher photosynthetic and respiratory rates and greater photosynthetic nitrogen-use efficiency. In contrast, evergreen species exhibited a more conservative leaf strategy with higher leaf mass per area, greater construction costs and longer leaf life span. With the elevation-induced decreases of temperature and soil fertility, both evergreen and deciduous species showed greater resource conservation, suggesting the increasing importance of environmental filtering to community assembly with increasing elevation. We found close inter-specific correlations between leaf economic traits, suggesting that there are strong genetic constraints limiting the independent evolution of LES traits. Phylogenetic signal increased with decreasing evolutionary rate across leaf economic traits, suggesting that genetic constraints are important for the process of trait evolution. We found a significantly positive relationship between primary axis species score (PASS) distance and phylogenetic distance across species pairs and an increasing average PASS distance between evergreen and deciduous species with increasing elevation, implying that the frequency of distantly related evergreen and deciduous pairs with wide spreading of leaf economic values increases with increasing elevation. Our findings thus suggest that elevation acts as an environmental filter to both select the locally adapted evergreen and deciduous species with sufficient phylogenetic variation and regulate their distribution along the elevational gradient based on their coordinated spreading of phylogenetic divergence and leaf economic variation. Published by Oxford University Press on behalf of the Annals of Botany Company.

  4. [Spatial pattern of forest biomass and its influencing factors in the Great Xing'an Mountains, Heilongjiang Province, China].

    PubMed

    Wang, Xiao-Li; Chang, Yu; Chen, Hong-Wei; Hu, Yuan-Man; Jiao, Lin-Lin; Feng, Yu-Ting; Wu, Wen; Wu, Hai-Feng

    2014-04-01

    Based on field inventory data and vegetation index EVI (enhanced vegetation index), the spatial pattern of the forest biomass in the Great Xing'an Mountains, Heilongjiang Province was quantitatively analyzed. Using the spatial analysis and statistics tools in ArcGIS software, the impacts of climatic zone, elevation, slope, aspect and vegetation type on the spatial pattern of forest biomass were explored. The results showed that the forest biomass in the Great Xing'an Mountains was 350 Tg and spatially aggregated with great increasing potentials. Forest biomass density in the cold temperate humid zone (64.02 t x hm(-2)) was higher than that in the temperate humid zone (60.26 t x hm(-2)). The biomass density of each vegetation type was in the order of mixed coniferous forest (65.13 t x hm(-2)) > spruce-fir forest (63.92 t x hm(-2)) > Pinus pumila-Larix gmelinii forest (63.79 t x hm(-2)) > Pinus sylvestris var. mongolica forest (61.97 t x hm(-2)) > Larix gmelinii forest (61.40 t x hm(-2)) > deciduous broadleaf forest (58.96 t x hm(-2)). With the increasing elevation and slope, the forest biomass density first decreased and then increased. The forest biomass density in the shady slopes was greater than that in the sunny slopes. The spatial pattern of forest biomass in the Great Xing' an Mountains exhibited a heterogeneous pattern due to the variation of climatic zone, vegetation type and topographical factor. This spatial heterogeneity needs to be accounted when evaluating forest biomass at regional scales.

  5. Remote Sensing Protocols for Parameterizing an Individual, Tree-Based, Forest Growth and Yield Model

    DTIC Science & Technology

    2014-09-01

    Leaf-Off Tree Crowns in Small Footprint, High Sampling Density LIDAR Data from Eastern Deciduous Forests in North America.” Remote Sensing of...William A. 2003. “Crown-Diameter Prediction Models for 87 Species of Stand- Grown Trees in the Eastern United States.” Southern Journal of Applied...ER D C/ CE RL T R- 14 -1 8 Base Facilities Environmental Quality Remote Sensing Protocols for Parameterizing an Individual, Tree -Based

  6. Hydrological and biogeochemical variation of stemflow from live, stressed, and dead codominant deciduous canopy trees

    NASA Astrophysics Data System (ADS)

    Frost, E. E.; Levia, D. F.

    2011-12-01

    Stemflow, a critical localized point source of both water and nutrients in forested ecosystems, was examined as a function of species and mortality in a mid-Atlantic deciduous forest. Thirty trees across two species, Fagus grandifolia [American beech] and Liriodendron tulipifera [yellow poplar], and three mortality classes, live, stressed, and dead, were sampled and analyzed on an event basis for one year. Significant interspecific differences in volume and nutrient content of stemflow were found that were attributable to differences in canopy structure between the species. Funneling ratios across all three mortality classes were significantly different for F. grandifolia and between dead and live/stressed classes for L. tulipifera. Stemflow volumes from the dead trees of both species were a fraction of that from live and stressed trees. This was attributable to increased relative water storage capacities, canopy crown position, and the lack of surface area contributing to stemflow generation in upper canopy. Concentrations of nutrients in stemflow from dead trees were significantly higher than those found in both live and stressed stems for most nutrients analyzed. Enrichment ratios from dead stems were generally lower given the reduced volumes observed. Given the multi-decadal impact of standing dead trees in forest ecosystems and the uncertainty of changes in morality patterns in forests, additional research is warranted to further quantify the hydrobiochemical impact of stemflow from dying stems over their entire lifecycle.

  7. Scale-dependent effects of nonnative plant invasion on host-seeking tick abundance

    PubMed Central

    Adalsteinsson, Solny A.; D’Amico, Vincent; Shriver, W. Gregory; Brisson, Dustin; Buler, Jeffrey J.

    2016-01-01

    Nonnative, invasive shrubs can affect human disease risk through direct and indirect effects on vector populations. Multiflora rose (Rosa multiflora) is a common invader within eastern deciduous forests where tick-borne disease (e.g. Lyme disease) rates are high. We tested whether R. multiflora invasion affects blacklegged tick (Ixodes scapularis) abundance, and at what scale. We sampled host-seeking ticks at two spatial scales: fine-scale, within R. multiflora-invaded forest fragments; and patch scale, among R. multiflora-invaded and R. multiflora-free forest fragments. At a fine scale, we trapped 2.3 times more ticks under R. multiflora compared to paired traps 25 m away from R. multiflora. At the patch scale, we trapped 3.2 times as many ticks in R. multiflora-free forests compared to R. multiflora-invaded forests. Thus, ticks are concentrated beneath R. multiflora within invaded forests, but uninvaded forests support significantly more ticks. Among all covariates tested, leaf litter volume was the best predictor of tick abundance; at the patch scale, R. multiflora-invaded forests had less leaf litter than uninvaded forests. We suggest that leaf litter availability at the patch-scale plays a greater role in constraining tick abundance than the fine-scale, positive effect of invasive shrubs. PMID:27088044

  8. Simulation of Longwave Enhancement beneath Montane and Boreal Forests in CLM4.5

    NASA Astrophysics Data System (ADS)

    Todt, M.; Rutter, N.; Fletcher, C. G.; Wake, L. M.; Loranty, M. M.

    2017-12-01

    CMIP5 models have been shown to underestimate both trend and variability in northern hemisphere spring snow cover extent. A substantial fraction of this area is covered by boreal forests, in which the snow energy balance is dominated by radiation. Forest coverage impacts the surface radiation budget by shading the ground and enhancing longwave radiation. Longwave enhancement in boreal forests is a potential mechanism that contributes to uncertainty in snowmelt modelling, however, its impact on snowmelt in global land models has not been analysed yet. This study assesses the simulation of sub-canopy longwave radiation and longwave enhancement by CLM4.5, the land component of the NCAR Community Earth System Model, in which boreal forests are represented by three plant functional types (PFT): evergreen needleleaf trees (ENT), deciduous needleleaf trees (DNT), and deciduous broadleaf trees (DBT). Simulation of sub-canopy longwave enhancement is evaluated at boreal forest sites covering the three boreal PFT in CLM4.5 to assess the dependence of simulation errors on meteorological forcing, vegetation type and vegetation density. ENT are evaluated over a total of six snowmelt seasons in Swiss alpine and subalpine forests, as well as a single season at a Finnish arctic site with varying vegetation density. A Swedish artic site features varying vegetation density for DBT for a single winter, and two sites in Eastern Siberia are included covering a total of four snowmelt seasons in DNT forests. CLM4.5 overestimates the diurnal range of sub-canopy longwave radiation and consequently longwave enhancement, overestimating daytime values and underestimating nighttime values. Simulation errors result mainly from clear sky conditions, due to high absorption of shortwave radiation during daytime and radiative cooling during nighttime. Using recent improvements to the canopy parameterisations of SNOWPACK as a guideline, CLM4.5 simulations of sub-canopy longwave radiation improved through the implementation of a heat mass parameterisation, i.e. including thermal inertia due to biomass. However, this improvement does not substantially reduce the amplitude of the diurnal cycle, a result also found during the development of SNOWPACK.

  9. Assessment and monitoring of long-term forest cover changes in Odisha, India using remote sensing and GIS.

    PubMed

    Reddy, C Sudhakar; Jha, C S; Dadhwal, V K

    2013-05-01

    Deforestation and fragmentation are important concerns in managing and conserving tropical forests and have global significance. In the Indian context, in the last one century, the forests have undergone significant changes due to several policies undertaken by government as well as increased population pressure. The present study has brought out spatiotemporal changes in forest cover and variation in forest type in the state of Odisha (Orissa), India, during the last 75 years period. The mapping for the period of 1924-1935, 1975, 1985, 1995 and 2010 indicates that the forest cover accounts for 81,785.6 km(2) (52.5 %), 56,661.1 km(2) (36.4 %), 51,642.3 km(2) (33.2 %), 49,773 km(2) (32 %) and 48,669.4 km(2) (31.3 %) of the study area, respectively. The study found the net forest cover decline as 40.5 % of the total forest and mean annual rate of deforestation as 0.69 % year(-1) during 1935 to 2010. There is a decline in annual rate of deforestation during 1995 to 2010 which was estimated as 0.15 %. Forest type-wise quantitative loss of forest cover reveals large scale deforestation of dry deciduous forests. The landscape analysis shows that the number of forest patches (per 1,000) are 2.463 in 1935, 10.390 in 1975, 11.899 in 1985, 12.193 in 1995 and 15.102 in 2010, which indicates high anthropogenic pressure on the forests. The mean patch size (km(2)) of forest decreased from 33.2 in 1935 to 5.5 in 1975 and reached to 3.2 by 2010. The study demonstrated that monitoring of long term forest changes, quantitative loss of forest types and landscape metrics provides critical inputs for management of forest resources.

  10. The effects of phenoseason and storm characteristics on throughfall solute washoff and leaching dynamics from a temperate deciduous forest canopy.

    PubMed

    Van Stan, John T; Levia, Delphis F; Inamdar, Shreeram P; Lepori-Bui, Michelle; Mitchell, Myron J

    2012-07-15

    Seasonal variations in the washoff and leaching dynamics of throughfall ionic fluxes represent a significant process affecting the biogeochemical cycling of forested ecosystems-particularly for temperate deciduous forests with distinct phenological seasons (or "phenoseasons"). Most studies on temperate deciduous forests aggregate seasonal throughfall fluxes to the leafed (growing) and leafless (dormant) periods, yet the phenological conditions controlling seasonality demand finer-scale demarcations that include the transitional phenoseasons (leaf senescence and emergence). To fill these gaps our study examines the washoff and leaching dynamics of Na(+), Mg(2+), K(+), Ca(2+), Cl(-), SO(4)(2-), and NO(3)(-) throughfall derived from bulk and sequentially sampled rain events across leafed, leafless and both transitional phenoseasons over a 3-year period (2008-2010). As throughfall washoff and leached solute fluxes are also closely-coupled to rainfall conditions, we further examine the effects of storm characteristics on phenoseasonal washoff-dominated (Na(+) and Cl(-)) and leaching-dominated (K(+), Ca(2+), Mg(2+)) fluxes through intrastorm event comparison plots and factorial MANOVA. Highly significant differences in leached and washoff solute fluxes were found across meteorological conditions (p<0.001) nested within phenoseasonal divisions (p<0.00001). Phenoseasonal washoff Na(+) and Cl(-) fluxes seemed to be more closely related to leaf area; whereas, leaching flux and canopy exchange of all solutes to correspond more with major phenological changes (when the canopies tend to be most metabolically active). The greatest differences in leached Mg(2+), K(+), Ca(2+), and SO(4)(2-) fluxes were not between the full leafed and leafless phenoseasons (33-80% difference), but between the transitional periods (80 to 200 fold greater during leaf senescence than leaf emergence). Intrastorm average canopy NO(3)(-) leaching, however, ranged from low losses (1 μmol(c)m(-2)h(-1)) to canopy uptake (-2 μmol(c)m(-2)h(-1)) during both transitional phenoseasons. K(+), Ca(2+), Mg(2+) were all markedly more exchangeable during senescence, with Ca(2+) and Mg(2+) being more tightly held by the canopy. Leaching rates and fluxes for all measured solutes were negligible to negative during emergence, except for K(+) and SO(4)(2-). Our results indicate that much of the variance in timing and magnitude of throughfall solute fluxes to forest soils within temperate deciduous ecosystems may be ascribed to phenologically-delineated seasons and storm conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology.

    PubMed

    Choat, Brendan; Ball, Marilyn C; Luly, Jon G; Donnelly, Christine F; Holtum, Joseph A M

    2006-05-01

    Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.

  12. Detailed forest formation mapping in the land cover map series for the Caribbean islands

    NASA Astrophysics Data System (ADS)

    Helmer, E. H.; Schill, S.; Pedreros, D. H.; Tieszen, L. L.; Kennaway, T.; Cushing, M.; Ruzycki, T.

    2006-12-01

    Forest formation and land cover maps for several Caribbean islands were developed from Landsat ETM+ imagery as part of a multi-organizational project. The spatially explicit data on forest formation types will permit more refined estimates of some forest attributes. The woody vegetation classification scheme relates closely to that of Areces-Malea et al. (1), who classify Caribbean vegetation according to standards of the US Federal Geographic Data Committee (FGDC, 1997), with modifications similar to those in Helmer et al. (2). For several of the islands, we developed image mosaics that filled cloudy parts of scenes with data from other scene dates after using regression tree normalization (3). The regression tree procedure permitted us to develop mosaics for wet and drought seasons for a few of the islands. The resulting multiseason imagery facilitated separation between classes such as seasonal evergreen forest, semi-deciduous forest (including semi-evergreen forest), and drought deciduous forest or woodland formations. We used decision tree classification methods to classify the Landsat image mosaics to detailed forest formations and land cover for Puerto Rico (4), St. Kitts and Nevis, St. Lucia, St. Vincent and the Grenadines and Grenada. The decision trees classified a stack of raster layers for each mapping area that included the Landsat image bands and various ancillary raster data layers. For Puerto Rico, for example, the ancillary data included climate parameters (5). For some islands, the ancillary data included topographic derivatives such as aspect, slope and slope position, SRTM (6) or other topographic data. Mapping forest formations with decision tree classifiers, ancillary geospatial data, and cloud-free image mosaics, accurately distinguished spectrally similar forest formations, without the aid of ecological zone maps, on the islands where the approach was used. The approach resulted in maps of forest formations with comparable or better detail than when IKONOS or Landsat imagery was hand-digitized, as it was for the Dominican Republic (7) and Barbados. 1. T. Kennaway, E. H. Helmer. (Intl Inst of Tropical Forestry, USDA Forest Service, Río Piedras, Puerto Rico, 2006). 2. A. Areces-Mallea et al. (The Nature Conservancy, 1999). 3. E. H. Helmer, O. Ramos, T. Lopez, M. Quiñones, W. Diaz, Carib J Sci 38, 165-183 (2002). 4. C. Daly, E. H. Helmer, M. Quiñones, Int J Climatology 23, 1359-1381 (2003). 5. T. G. Farr, M. Kobrick, Eos Transactions 81, 583-585 (2000). 6. E. H. Helmer, B. Ruefenacht, Photogrammetric Eng Rem Sens 71, 1079-1089 (2005). 7. S. Hernández, M. Pérez. (Secretaría de Estado de Medio Ambiente y Recursos Naturales de la República Dominicana, Santo Domingo, Dominican Republic, 2005).

  13. Impact of a drier Early-Mid-Holocene climate upon Amazonian forests.

    PubMed

    Mayle, Francis E; Power, Mitchell J

    2008-05-27

    This paper uses a palaeoecological approach to examine the impact of drier climatic conditions of the Early-Mid-Holocene (ca 8000-4000 years ago) upon Amazonia's forests and their fire regimes. Palaeovegetation (pollen data) and palaeofire (charcoal) records are synthesized from 20 sites within the present tropical forest biome, and the underlying causes of any emergent patterns or changes are explored by reference to independent palaeoclimate data and present-day patterns of precipitation, forest cover and fire activity across Amazonia. During the Early-Mid-Holocene, Andean cloud forest taxa were replaced by lowland tree taxa as the cloud base rose while lowland ecotonal areas, which are presently covered by evergreen rainforest, were instead dominated by savannahs and/or semi-deciduous dry forests. Elsewhere in the Amazon Basin there is considerable spatial and temporal variation in patterns of vegetation disturbance and fire, which probably reflects the complex heterogeneous patterns in precipitation and seasonality across the basin, and the interactions between climate change, drought- and fire susceptibility of the forests, and Palaeo-Indian land use. Our analysis shows that the forest biome in most parts of Amazonia appears to have been remarkably resilient to climatic conditions significantly drier than those of today, despite widespread evidence of forest burning. Only in ecotonal areas is there evidence of biome replacement in the Holocene. From this palaeoecological perspective, we argue against the Amazon forest 'dieback' scenario simulated for the future.

  14. Rendering Future Vegetation Change across Large Regions of the US

    NASA Astrophysics Data System (ADS)

    Sant'Anna Dias, Felipe; Gu, Yuting; Agarwalla, Yashika; Cheng, Yiwei; Patil, Sopan; Stieglitz, Marc; Turk, Greg

    2015-04-01

    We use two Machine Learning techniques, Decision Trees (DT) and Neural Networks (NN), to provide classified images and photorealistic renderings of future vegetation cover at three large regions in the US. The training data used to generate current vegetation cover include Landsat surface reflectance images, USGS Land Cover maps, 50 years of mean annual temperature and precipitation for the period 1950 - 2000, elevation, aspect and slope data. Present vegetation cover was generated on a 100m grid. Future vegetation cover for the period 2061- 2080 was predicted using the 1 km resolution bias corrected data from the NASA Goddard Institute for Space Studies Global Climate Model E simulation. The three test regions encompass a wide range of climatic gradients, topographic variation, and vegetation cover. The central Oregon site covers 19,182 square km and includes the Ochoco and Malheur National Forest. Vegetation cover is 50% evergreen forest and 50% shrubs and scrubland. The northwest Washington site covers 14,182 square km. Vegetation cover is 60% evergreen forest, 14% scrubs, 7% grassland, and 7% barren land. The remainder of the area includes deciduous forest, perennial snow cover, and wetlands. The third site, the Jemez mountain region of north central New Mexico, covers 5,500 square km. Vegetation cover is 47% evergreen forest, 31% shrubs, 13% grasses, and 3% deciduous forest. The remainder of the area includes developed and cultivated areas and wetlands. Using the above mentioned data sets we first trained our DT and NN models to reproduce current vegetation. The land cover classified images were compared directly to the USGS land cover data. The photorealistic generated vegetation images were compared directly to the remotely sensed surface reflectance maps. For all three sites, similarity between generated and observed vegetation cover was quite remarkable. The three trained models were then used to explore what the equilibrium vegetation would look like for the period 2061 - 2080. The predicted mean annual air temperature change for the three sites ranged from + 1.8°C to + 2.3°C. Precipitation for the three sites changed little. In Oregon, this resulted in a 37% shift of forested areas to shrub vegetation. In New Mexico, shrubs and evergreen vegetation increased by 18% and 5%, respectively. Deciduous and grassland vegetation decreased by 90% and 52%, respectively. In Washington, evergreen vegetation cover decreased by 4.5%. Deciduous vegetation increase by 25%. Shrubs and grasslands increased by 15% and 7%, respectively. Perennial snow cover on mountain tops fell by 46%. Beyond rendering a view of future vegetation cover, we also extracted information regarding the relative controls that climate and topography exert over local vegetation. The three most dominant controls are elevation (most dominant), temperature, and precipitation. In summary, we demonstrate a framework for rendering potential future vegetation in a visually realistic way. Moreover, these machine learning techniques provide a computationally fast framework for exploring the effects of climate change over large-areas and at high-spatial resolution that cannot be accomplished through simulation alone.

  15. Ecosystem functional assessment based on the "optical type" concept and self-similarity patterns: An application using MODIS-NDVI time series autocorrelation

    NASA Astrophysics Data System (ADS)

    Huesca, Margarita; Merino-de-Miguel, Silvia; Eklundh, Lars; Litago, Javier; Cicuéndez, Victor; Rodríguez-Rastrero, Manuel; Ustin, Susan L.; Palacios-Orueta, Alicia

    2015-12-01

    Remote sensing (RS) time series are an excellent operative source for information about the land surface across several scales and different levels of landscape heterogeneity. Ustin and Gamon (2010) proposed the new concept of "optical types" (OT), meaning "optically distinguishable functional types", as a way to better understand remote sensing signals related to the actual functional behavior of species that share common physiognomic forms but differ in functionality. Whereas the OT approach seems to be promising and consistent with ecological theory as a way to monitor vegetation derived from RS, it received little implementation. This work presents a method for implementing the OT concept for efficient monitoring of ecosystems based on RS time series. We propose relying on an ecosystem's repetitive pattern in the temporal domain (self-similarity) to assess its dynamics. Based on this approach, our main hypothesis is that distinct dynamics are intrinsic to a specific OT. Self-similarity level in the temporal domain within a broadleaf forest class was quantitatively assessed using the auto-correlation function (ACF), from statistical time series analysis. A vector comparison classification method, spectral angle mapper, and principal component analysis were used to identify general patterns related to forest dynamics. Phenological metrics derived from MODIS NDVI time series using the TIMESAT software, together with information from the National Forest Map were used to explain the different dynamics found. Results showed significant and highly stable self-similarity patterns in OTs that corresponded to forests under non-moisture-limited environments with an adaptation strategy based on a strong phenological synchrony with climate seasonality. These forests are characterized by dense closed canopy deciduous forests associated with high productivity and low biodiversity in terms of dominant species. Forests in transitional areas were associated with patterns of less temporal stability probably due to mixtures of different adaptation strategies (i.e., deciduous, marcescent and evergreen species) and higher functional diversity related to climate variability at long and short terms. A less distinct seasonality and even a double season appear in the OT of the broadleaf Mediterranean forest characterized by an open canopy dominated by evergreen-sclerophyllous formations. Within this forest, understory and overstory dynamics maximize functional diversity resulting in contrasting traits adapted to summer drought, winter frosts, and high precipitation variability.

  16. Alpine forest-tundra ecotone response to temperature change,Sayan Mountains, Siberia

    NASA Technical Reports Server (NTRS)

    Ranson, K Jon; Kharuk, Vyetcheslav I.

    2007-01-01

    Models of climate change predict shifts of vegetation zones. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. There is evidence of vegetation change on the northern treeline However, observations on alpine tree line response are controversial. In this NEESPI related study we show that during the past three decades in the forest-tundra ecotone of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure, regeneration propagation into the alpine tundra, and transformation of prostrate Siberian pine and fir into arboreal forms. We found that these changes occurred since the mid 1980s, and strongly correlates with positive temperature (and to a lesser extent, precipitation) trends. Improving climate for forest growth( i.e., warmer temperatures and increased precipitation) provides competitive advantages to Siberian pine in the alpine forest-tundra ecotone, as well as in areas typically dominated by larch, where it has been found to be forming a secondary canopy layer. Substitution of deciduous conifer, larch, for evergreen conifers, decreases albedo and provides positive feedback for temperature increase.

  17. Woody Species Diversity in Forest Plantations in a Mountainous Region of Beijing, China: Effects of Sampling Scale and Species Selection

    PubMed Central

    Zhang, Yuxin; Zhang, Shuang; Ma, Keming; Fu, Bojie; Anand, Madhur

    2014-01-01

    The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr.), planted larch (Larix principis-rupprechtii Mayr.), and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer), while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation. PMID:25545860

  18. Forests of opportunities and mischief: disentangling the interactions between forests, parasites and immune responses.

    PubMed

    Renner, Swen C; Lüdtke, Bruntje; Kaiser, Sonja; Kienle, Julia; Schaefer, H Martin; Segelbacher, Gernot; Tschapka, Marco; Santiago-Alarcon, Diego

    2016-08-01

    Habitat characteristics determine the presence of individuals through resource availability, but at the same time, such features also influence the occurrence of parasites. We analyzed how birds respond to changes in interior forest structures, to forest management regimes, and to the risk of haemosporidian infections. We captured and took blood samples from blackcaps (Sylvia atricapilla) and chaffinches (Fringilla coelebs) in three different forest types (beech, mixed deciduous, spruce). We measured birds' body asymmetries, detected avian haemosporidians, and counted white blood cells as an immune measure of each individual per forest type. We used, to our knowledge for the first time, continuous forest structural parameters to quantify habitat structure, and found significant effects of habitat structure on parasite prevalence that previously have been undetected. We found three times higher prevalence for blackcaps compared with chaffinches. Parasite intensity varied significantly within host species depending on forest type, being lowest in beech forests for both host species. Structurally complex habitats with a high degree of entropy had a positive effect on the likelihood of acquiring an infection, but the effect on prevalence was negative for forest sections with a south facing aspect. For blackcaps, forest gaps also had a positive effect on prevalence, but canopy height had a negative one. Our results suggest that forest types and variations in forest structure influence the likelihood of acquiring an infection, which subsequently has an influence on host health status and body condition; however, responses to some environmental factors are host-specific. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  19. Input and output budgets of radiocesium concerning the forest floor in the mountain forest of Fukushima released from the TEPCO's Fukushima Dai-ichi nuclear power plant accident.

    PubMed

    Niizato, Tadafumi; Abe, Hironobu; Mitachi, Katsuaki; Sasaki, Yoshito; Ishii, Yasuo; Watanabe, Takayoshi

    2016-09-01

    Estimations of radiocesium input and output concerning the forest floor within a mountain forest region have been conducted in the north and central part of the Abukuma Mountains of Fukushima, northeast Japan, after a 2-3 year period following the TEPCO Fukushima Dai-ichi nuclear power plant accident. The radiocesium input and output associated with surface washoff, throughfall, stemflow, and litterfall processes at experimental plots installed on the forest floor of evergreen Japanese cedars and deciduous Konara oaks have been monitored. Despite the high output potential in the mountainous forest of Fukushima, the results at both monitoring locations show the radiocesium input to be 4-50 times higher than the output during the summer monsoon in Fukushima. These results indicate that the radiocesium tends to be preserved in the forest ecosystem due to extremely low output ratios (0.05%-0.19%). Thus, the associated fluxes throughout the circulation process are key issues for the projecting the environmental fate of the radiocesium levels, along with the subsequent reconstruction of life emphasized within the setting. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Natural Forest Biomass Estimation Based on Plantation Information Using PALSAR Data

    PubMed Central

    Avtar, Ram; Suzuki, Rikie; Sawada, Haruo

    2014-01-01

    Forests play a vital role in terrestrial carbon cycling; therefore, monitoring forest biomass at local to global scales has become a challenging issue in the context of climate change. In this study, we investigated the backscattering properties of Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) data in cashew and rubber plantation areas of Cambodia. The PALSAR backscattering coefficient (σ0) had different responses in the two plantation types because of differences in biophysical parameters. The PALSAR σ0 showed a higher correlation with field-based measurements and lower saturation in cashew plants compared with rubber plants. Multiple linear regression (MLR) models based on field-based biomass of cashew (C-MLR) and rubber (R-MLR) plants with PALSAR σ0 were created. These MLR models were used to estimate natural forest biomass in Cambodia. The cashew plant-based MLR model (C-MLR) produced better results than the rubber plant-based MLR model (R-MLR). The C-MLR-estimated natural forest biomass was validated using forest inventory data for natural forests in Cambodia. The validation results showed a strong correlation (R2 = 0.64) between C-MLR-estimated natural forest biomass and field-based biomass, with RMSE  = 23.2 Mg/ha in deciduous forests. In high-biomass regions, such as dense evergreen forests, this model had a weaker correlation because of the high biomass and the multiple-story tree structure of evergreen forests, which caused saturation of the PALSAR signal. PMID:24465908

  1. Agricultural legacies in forest environments: tree communities, soil properties, and light availability.

    PubMed

    Flinn, Kathryn M; Marks, P L

    2007-03-01

    Temperate deciduous forests across much of Europe and eastern North America reflect legacies of past land use, particularly in the diversity and composition of plant communities. Intense disturbances, such as clearing forests for agriculture, may cause persistent environmental changes that continue to shape vegetation patterns as landscapes recover. We assessed the long-term consequences of agriculture for environmental conditions in central New York forests, including tree community structure and composition, soil physical and chemical properties, and light availability. To isolate the effects of agriculture, we compared 20 adjacent pairs of forests that were never cleared for agriculture (primary forests) and forests that established 85-100 years ago on plowed fields (secondary forests). Tree communities in primary and secondary forests had similar stem density, though secondary forests had 14% greater basal area. Species composition differed dramatically between the two forest types, with primary forests dominated by Acer saccharum and Fagus grandifolia and secondary forests by Acer rubrum and Pinus strobus. Primary and secondary forests showed no consistent differences in soil physical properties or in the principal gradient of soil fertility associated with soil pH. Within stands, however, soil water content and pH were more variable in primary forests. Secondary forest soils had 15% less organic matter, 16% less total carbon, and 29% less extractable phosphorus in the top 10 cm than adjacent primary stands, though the ranges of the forest types mostly overlapped. Understory light availability in primary and secondary forests was similar. These results suggest that, within 100 years, post-agricultural stands have recovered conditions comparable to less disturbed forests in many attributes, including tree size and number, soil physical properties, soil chemical properties associated with pH, and understory light availability. The principal legacies of agriculture that remain in these forests are the reduced levels of soil organic matter, carbon, and phosphorus; the spatial homogenization of soil properties; and the altered species composition of the vegetation.

  2. Assessment of vegetation change in a fire-altered forest landscape

    NASA Technical Reports Server (NTRS)

    Jakubauskas, Mark E.; Lulla, Kamlesh P.; Mausel, Paul W.

    1990-01-01

    This research focused on determining the degree to which differences in burn severity relate to postfire vegetative cover within a Michigan pine forest. Landsat MSS data from June 1973 and TM data from October 1982 were classified using an unsupervised approach to create prefire and postfire cover maps of the study area. Using a raster-based geographic information system (GIS), the maps were compared, and a map of vegetation change was created. An IR/red band ratio from a June 1980 Landsat scene was classified to create a map of three degres of burn severity, which was then compared with the vegetation change map using a GIS. Classification comparisons of pine and deciduous forest classes (1973 to 1982) revealed that the most change in vegetation occurred in areas subjected to the most intense burn. Two classes of regenerating forest comprised the majority of the change, while the remaining change was associated with shrub vegetation or another forest class.

  3. A preliminary report on the measurements of forest canopies with C-band radar scatterometer at NASA/NSTL

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1985-01-01

    This paper presents preliminary results of C-band radar scatterometer measurements of forest canopies of southeastern forests in the vicinity of NASA/NSTL. The results are as follows: (1) the radar backscattering coefficients (BSC) of deciduous forests such as oak, maple, blackgum, and cypress are higher than those of coniferous forests such as slash pine plantation and natural pine; (2) at a large incidence angle, where polarization effect is significant, and by ranging measurement, the VV polarization BSC obtain peak value at the first few meters from the canopy top and decrease rather quickly, while the HH polarization BSC obtain peak value at longer distances from the canopy top and decrease rather slowly through the canopy; and (3) using the active radar calibrator for tree canopy attenuation measurement of a dense and a sparse live oak, it is found that the tree canopies with higher attenuations have higher BSC for all three polarizations, with VV polarization containing the largest differential (2.2 dB).

  4. Forest fire in the central Himalaya: climate and recovery of trees

    NASA Astrophysics Data System (ADS)

    Sharma, Subrat; Rikhari, H. C.

    A forest fire event is influenced by climatic conditions and is supported by accumulation of fuel on forest floor. After forest fire, photosynthetically active solar radiation was reduced due to accumulation of ash and dust particles in atmosphere. Post-fire impacts on Quercus leucotrichophora, Rhododendron arboreum and Lyonia ovalifolia in a broadleaf forest were analysed after a wild fire. Bark depth damage was greatest for L. ovalifolia and least for Q. leucotrichophora. Regeneration of saplings was observed for all the tree species through sprouting. Epicormic recovery was observed for the trees of all the species. Young trees of Q. leucotrichophora (<40 cm circumference at breast height) were susceptible to fire as evident by the lack of sprouting. Under-canopy tree species have a high potential for recovery as evident by greater length and diameter of shoots and numbers of buds and leaves per shoot than canopy species. Leaf area, leaf moisture and specific leaf area were greater in the deciduous species, with few exceptions, than in evergreen species.

  5. Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India): Regolith matric storage buffers the groundwater recharge process

    NASA Astrophysics Data System (ADS)

    Ruiz, Laurent; Varma, Murari R. R.; Kumar, M. S. Mohan; Sekhar, M.; Maréchal, Jean-Christophe; Descloitres, Marc; Riotte, Jean; Kumar, Sat; Kumar, C.; Braun, Jean-Jacques

    2010-01-01

    SummaryAccurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments. In this paper, we propose to assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using a lumped conceptual model (COMFORT). The model is calibrated using a 5 year hydrological monitoring of an experimental watershed under dry deciduous forest in South India (Mule Hole watershed). The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with alternance of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm year -1 and the evapotranspiration was about 900 mm year -1 out of which 100 mm year -1 was uptake from the deep saprolite horizons. The stream flow was 100 mm year -1 while the groundwater underflow was 80 mm year -1. The simulation results suggest that (i) deciduous trees can uptake a significant amount of water from the deep regolith, (ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers and (iii) water table response to recharge is buffered due to the long vertical travel time through the deep vadose zone, which constitutes a major water reservoir. This study stresses the importance of long term observations for the understanding of hydrological processes in tropical forested ecosystems.

  6. Regional assessment of boreal forest productivity using an ecological process model and remote sensing parameter maps.

    PubMed

    Kimball, J. S.; Keyser, A. R.; Running, S. W.; Saatchi, S. S.

    2000-06-01

    An ecological process model (BIOME-BGC) was used to assess boreal forest regional net primary production (NPP) and response to short-term, year-to-year weather fluctuations based on spatially explicit, land cover and biomass maps derived by radar remote sensing, as well as soil, terrain and daily weather information. Simulations were conducted at a 30-m spatial resolution, over a 1205 km(2) portion of the BOREAS Southern Study Area of central Saskatchewan, Canada, over a 3-year period (1994-1996). Simulations of NPP for the study region were spatially and temporally complex, averaging 2.2 (+/- 0.6), 1.8 (+/- 0.5) and 1.7 (+/- 0.5) Mg C ha(-1) year(-1) for 1994, 1995 and 1996, respectively. Spatial variability of NPP was strongly controlled by the amount of aboveground biomass, particularly photosynthetic leaf area, whereas biophysical differences between broadleaf deciduous and evergreen coniferous vegetation were of secondary importance. Simulations of NPP were strongly sensitive to year-to-year variations in seasonal weather patterns, which influenced the timing of spring thaw and deciduous bud-burst. Reductions in annual NPP of approximately 17 and 22% for 1995 and 1996, respectively, were attributed to 3- and 5-week delays in spring thaw relative to 1994. Boreal forest stands with greater proportions of deciduous vegetation were more sensitive to the timing of spring thaw than evergreen coniferous stands. Similar relationships were found by comparing simulated snow depth records with 10-year records of aboveground NPP measurements obtained from biomass harvest plots within the BOREAS region. These results highlight the importance of sub-grid scale land cover complexity in controlling boreal forest regional productivity, the dynamic response of the biome to short-term interannual climate variations, and the potential implications of climate change and other large-scale disturbances.

  7. Homogeneous data-reprocessing and full synthesis of eddy-flux measurements in French terrestrial ecosytems : 1999 - 2015

    NASA Astrophysics Data System (ADS)

    Moreaux, V.; Ceschia, E.; Delpierre, N.; Dufrêne, E.; Joffre, R.; Klumpp, K.; Berveiller, D.; Loustau, D.; Limousin, J. M.; Ourcival, J. M.; Brut, A.; Darsonville, O.; Lafont, S.; Piquemal, K.; Longdoz, B.

    2017-12-01

    The attribution of the significant inter-annual variability of long lived greenhouse gas (GHG) fluxes, between edaphic, meteorological variables and ecosystem management parameters - independently or in interaction, evolving as a long term drift or as extreme events - remains uncertain. Our research aims to quantify the potential impact of climatic drifts or anthropogenic and meteorological events on ecosystem-atmosphere exchanges of French sites by analyzing the long series (at least continuous 9 years, between 1996 and 2015) of eddy covariance (EC) fluxes. We firstly performed a homogeneously repost-processing of the raw EC data across 5 sites: three forest ecosystems (deciduous broad-leaved FR-Fon, evergreen broadleaved FR-Pue, and evergreen coniferous FR-Br), one extensive grassland (FR-Lq2) and one cropland (FR-Aur). These data, in terms of net ecosystem exchanges (NEE), gross primary production (GPP) and ecosystem respiration (Reco) were put together with the corresponding climatic and edaphic data and with the carbon stock inventory for an homogeneous statistical analysis and comparative interpretations. The standard protocol, excluding any Nakai's corrections, helped to reduce the influence of the methodology and experimental design on the temporal and spatial variability. The methodology adopted finally used 35% on average of flux data for all sites. Based on the first analysis of reprocessed data from the forests, no significant long term evolution of NEE, Reco and GPP through the studied periods despite [CO2] increase and long term change observed in environmental parameters. Combining all years, a respiration limitation at high air temperature was observed on the forest sites, with a LAI dependency for deciduous ecosystems, and REW dependency for evergreen southern sites. A dominant effect of air vapor stress, compared to edaphic stress was observed on GPP response to PPFD in the deciduous northern forest, significantly decreasing with VPD increase.

  8. Application of Lidar remote sensing to the estimation of forest canopy and stand structure

    NASA Astrophysics Data System (ADS)

    Lefsky, Michael Andrew

    A new remote sensing instrument, SLICER (Scanning Lidar Imager of Canopies by Echo Recovery), has been applied to the problem of remote sensing the canopy and stand structure of two groups of deciduous forests, Tulip Poplar-Oak stands in the vicinity of Annapolis, MD. and bottomland hardwood stands near Williamston, NC. The ability of the SLICER instrument to remotely sense the vertical distribution of canopy structure (Canopy Height Profile), bulk canopy transmittance, and several indices of canopy height has been successfully validated using twelve stands with coincident field and SLICER estimates of canopy structure. Principal components analysis has been applied to canopy height profiles from both field sites, and three significant factors were identified, each closely related to the amount of foliage in a recognizable layer of the forest, either understory, midstory, or overstory. The distribution of canopy structure to these layers is significantly correlated with the size and number of stems supporting them. The same layered structure was shown to apply to both field and SLICER remotely sensed canopy height profiles, and to apply to SLICER remotely sensed canopy profiles from both the bottomland hardwood stands in the coastal plain of North Carolina, and to mesic Tulip-Poplars stands in the upland coastal plain of Maryland. Linear regressions have demonstrated that canopy and stand structure are correlated to both a statistically significant and useful degree. Stand age and stem density is more highly correlated to stand height, while stand basal area and aboveground biomass are more closely related to a new measure of canopy structure, the quadratic mean canopy height. A geometric model of canopy structure has been shown to explain the differing relationships between canopy structure and stand basal area for stands of Eastern Deciduous Forest and Douglas Fir Forest.

  9. Lemur species-specific metapopulation responses to habitat loss and fragmentation

    PubMed Central

    Lehman, Shawn M.

    2018-01-01

    Determining what factors affect species occurrence is vital to the study of primate biogeography. We investigated the metapopulation dynamics of a lemur community consisting of eight species (Avahi occidentalis, Propithecus coquereli, Microcebus murinus, Microcebus ravelobensis, Lepilemur edwardsi, Cheirogaleus medius, Eulemur mongoz, and Eulemur fulvus) within fragmented tropical dry deciduous forest habitat in Ankarafantsika National Park, Madagascar. We measured fragment size and isolation of 42 fragments of forest ranging in size from 0.23 to 117.7 ha adjacent to continuous forest. Between June and November 2011, we conducted 1218 surveys and observed six of eight lemur species (M. murinus, M. ravelobensis, C. medius, E. fulvus, P. coquereli, and L. edwardsi) in the 42 fragments. We applied among patch incidence function models (IFMs) with various measures of dispersal and a mainland-island IFM to lemur species occurrence, with the aim of answering the following questions: 1) Do lemur species in dry deciduous forest fragments form metapopulations? 2) What are the separate effects of area (extinction risk) and connectivity/isolation (colonization potential) within a lemur metapopulation? 3) Within simulated metapopulations over time, how do area and connectivity/isolation affect occurrence? and 4) What are the conservation implications of our findings? We found that M. murinus formed either a mainland-island or an among patch metapopulation, M. ravelobensis formed a mainland-island metapopulation, C. medius and E. fulvus formed among patch metapopulations, and neither P. coquereli or L. edwardsi formed a metapopulation. Metapopulation dynamics and simulations suggest that area was a more consistent positive factor determining lemur species occurrence than fragment isolation and is crucial to the maintenance of lemur populations within this fragmented landscape. Using a metapopulation approach to lemur biogeography is critical for understanding how lemur species respond to forest loss and fragmentation. PMID:29742108

  10. Response of Quercus velutina growth and water use efficiency to climate variability and nitrogen fertilization in a temperate deciduous forest in the northeastern USA.

    PubMed

    Jennings, Katie A; Guerrieri, Rossella; Vadeboncoeur, Matthew A; Asbjornsen, Heidi

    2016-04-01

    Nitrogen (N) deposition and changing climate patterns in the northeastern USA can influence forest productivity through effects on plant nutrient relations and water use. This study evaluates the combined effects of N fertilization, climate and rising atmospheric CO2on tree growth and ecophysiology in a temperate deciduous forest. Tree ring widths and stable carbon (δ(13)C) and oxygen (δ(18)O) isotopes were used to assess tree growth (basal area increment, BAI) and intrinsic water use efficiency (iWUE) ofQuercus velutinaLamb., the dominant tree species in a 20+ year N fertilization experiment at Harvard Forest (MA, USA). We found that fertilized trees exhibited a pronounced and sustained growth enhancement relative to control trees, with the low- and high-N treatments responding similarly. All treatments exhibited improved iWUE over the study period (1984-2011). Intrinsic water use efficiency trends in the control trees were primarily driven by changes in stomatal conductance, while a stimulation in photosynthesis, supported by an increase in foliar %N, contributed to enhancing iWUE in fertilized trees. All treatments were predominantly influenced by growing season vapor pressure deficit (VPD), with BAI responding most strongly to early season VPD and iWUE responding most strongly to late season VPD. Nitrogen fertilization increasedQ. velutinasensitivity to July temperature and precipitation. Combined, these results suggest that ambient N deposition in N-limited northeastern US forests has enhanced tree growth over the past 30 years, while rising ambient CO2has improved iWUE, with N fertilization and CO2having synergistic effects on iWUE. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. 21 CFR 184.1333 - Gum ghatti.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the bark of Anogeissus latifolia, a large tree found in the dry deciduous forests of India and Ceylon... percent). (3) Loss on drying. Not more than 14 percent dried at 105 °C for 5 hours. (4) Identification...

  12. On vegetation mapping in Alaska using LANDSAT imagery with primary concerns for method and purpose in satellite image-based vegetation and land-use mapping and the visual interpretation of imagery in photographic format

    NASA Technical Reports Server (NTRS)

    Anderson, J. H. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. A simulated color infrared LANDSAT image covering the western Seward Peninsula was used for identifying and mapping vegetation by direct visual examination. The 1:1,083,400 scale print used was prepared by a color additive process using positive transparencies from MSS bands 4, 5, and 7. Seven color classes were recognized. A vegetation map of 3200 sq km area just west of Fairbanks, Alaska was made. Five colors were recognized on the image and identified to vegetation types roughly equivalent to formations in the UNESCO classification: orange - broadleaf deciduous forest; gray - needleleaf evergreen forest; light violet - subarctic alpine tundra vegetation; violet - broadleaf deciduous shrub thicket; and dull violet - bog vegetation.

  13. A novel approach for individual tree crown delineation using lidar data

    NASA Astrophysics Data System (ADS)

    Liu, Tao

    Individual tree crown delineation (ITCD) is an important technique to support precision forestry. ITCD is particularly difficult for deciduous forests where the existence of multiple branches can lead to false tree top detection. This thesis focused on developing a new ITCD model, which consists of two components: (1) boundary refinement using a novel algorithm called Fishing Net Dragging (FiND), and (2) segment merging using boundary classification. The proposed ITCD model was tested in both deciduous and mixed forests, attaining an overall accuracy of 74% and 78%, respectively. This compared favorably to an ITCD method commonly cited in the literature, which attained 41% and 51% on the same plots. To facilitate comparison of research in the ITCD community, this thesis also developed a new accuracy assessment scheme for ITCD. This new accuracy assessment is easy to interpret and convenient to implement while comprehensively evaluating ITCD accuracy.

  14. Preliminary inventory of mammals from Yurubí National Park, Yaracuy, Venezuela with some comments on their natural history.

    PubMed

    García, Franger J; Delgado-Jaramillo, Mariana; Machado, Marjorie; Aular, Luis

    2012-03-01

    In Venezuela, mammals represent an important group of wildlife with high anthropogenic pressures that threaten their permanence. Focused on the need to generate baseline information that allows us to contribute to document and conserve the richness of local wildlife, we conducted a mammalogical inventory in Yurubí National Park, located in Yaracuy State in Venezuela. We carried out fieldworks in three selected vegetation types: an evergreen forest at 197m, a semi-deciduous forest ranging between 100-230m, and a cloud forest at 1 446m. We used Victor, Sherman, Havahart and pitfall traps for the capture of small non-volant mammals and mist nets for bats. In addition, we carried out interviews with local residents and direct-indirect observations for medium-large sized mammals. At least 79 species inhabit the area, representing 28% of the species recorded for the North side of the country. Chiroptera (39 spp.), Carnivora (13 spp.) and Rodentia (9 spp.) were the orders with the highest richness, as expected for the Neotropics. The evergreen forest had the greatest species richness (n=68), with a sampling effort of 128 net-hours, 32 bucket-days, 16 hours of observations, and three persons interviewed, followed by cloud forest (n=45) with 324 net-hours, 790 traps-night, 77 bucket-days, 10 hours of observations, and one person interviewed. The lowest richness value was in the semi-deciduous forest (n=41), with 591 traps-night, 15 net-hours, 10 hours of observations and three persons interviewed. Data and observations obtained in this inventory (e.g., endemism, species known as "surrogate species" threatened in Venezuela) give an important role at the Yurubí National Park in the maintenance and conservation of local ecosystems and wildlife, threatened by human pressures in the Cordillera de la Costa.

  15. Holocene vegetation and fire history of the mountains of northern Sicily (Italy)

    USGS Publications Warehouse

    Tinner, Willy; Vescovi, Elisa; Van Leeuwen, Jacqueline; Colombaroli, Daniele; Henne, Paul; Kaltenrieder, Petra; Morales-Molino, Cesar; Beffa, Giorgia; Gnaegi, Bettina; Van der Knaap, Pim W O; La Mantia, Tommaso; Pasta, Salvatore

    2016-01-01

    Knowledge about vegetation and fire history of the mountains of Northern Sicily is scanty. We analysed five sites to fill this gap and used terrestrial plant macrofossils to establish robust radiocarbon chronologies. Palynological records from Gorgo Tondo, Gorgo Lungo, Marcato Cixé, Urgo Pietra Giordano and Gorgo Pollicino show that under natural or near natural conditions, deciduous forests (Quercus pubescens, Q. cerris, Fraxinus ornus, Ulmus), that included a substantial portion of evergreen broadleaved species (Q. suber, Q. ilex, Hedera helix), prevailed in the upper meso-mediterranean belt. Mesophilous deciduous and evergreen broadleaved trees (Fagus sylvatica, Ilex aquifolium) dominated in the natural or quasi-natural forests of the oro-mediterranean belt. Forests were repeatedly opened for agricultural purposes. Fire activity was closely associated with farming, providing evidence that burning was a primary land use tool since Neolithic times. Land use and fire activity intensified during the Early Neolithic at 5000 bc, at the onset of the Bronze Age at 2500 bc and at the onset of the Iron Age at 800 bc. Our data and previous studies suggest that the large majority of open land communities in Sicily, from the coastal lowlands to the mountain areas below the thorny-cushion Astragalus belt (ca. 1,800 m a.s.l.), would rapidly develop into forests if land use ceased. Mesophilous Fagus-Ilex forests developed under warm mid Holocene conditions and were resilient to the combined impacts of humans and climate. The past ecology suggests a resilience of these summer-drought adapted communities to climate warming of about 2 °C. Hence, they may be particularly suited to provide heat and drought-adaptedFagus sylvatica ecotypes for maintaining drought-sensitive Central European beech forests under global warming conditions.

  16. Deposition of Mercury in Forests along a Montane Elevation Gradient.

    PubMed

    Blackwell, Bradley D; Driscoll, Charles T

    2015-05-05

    Atmospheric mercury (Hg) deposition varies along elevation gradients and is influenced by both orographic and biological factors. We quantified total Hg deposition over a 2 year period at 24 forest sites at Whiteface Mountain, NY, USA, that ranged from 450 to 1450 m above sea level and covered three distinct forest types: deciduous/hardwood forest (14.1 μg/m2-yr), spruce/fir forest (33.8 μg/m2-yr), and stunted growth alpine/fir forest (44.0 μg/m2-yr). Atmospheric Hg deposition increased with elevation, with the dominant deposition pathways shifting from litterfall in low-elevation hardwoods to throughfall in midelevation spruce/fir to cloudwater in high-elevation alpine forest. Soil Hg concentrations (ranging from 69 to 416 ng/g for the Oi/Oe and 72 to 598 ng/g for the Oa horizons) were correlated with total Hg deposition, but the weakness of the correlations suggests that additional factors such as climate and tree species also contribute to soil Hg accumulation. Meteorological conditions influenced Hg deposition pathways, as cloudwater Hg diminished in 2010 (dry conditions) compared to 2009 (wet conditions). However, the dry conditions in 2010 led to increased Hg dry deposition and subsequent significant increases in throughfall Hg fluxes compared to 2009. These findings suggest that elevation, forest characteristics, and meteorological conditions are all important drivers of atmospheric Hg deposition to montane forests.

  17. Orchid Bee (Apidae: Euglossini) Communities in Atlantic Forest Remnants and Restored Areas in Paraná State, Brazil.

    PubMed

    Ferronato, M C F; Giangarelli, D C; Mazzaro, D; Uemura, N; Sofia, S H

    2018-06-01

    In this study, we compare orchid bee communities surveyed in four forest remnants of the Atlantic Forest and four reforested areas characterized by seasonal semi-deciduous forest vegetation in different successional stages (mature and secondary vegetation), located in southern Brazil. The sizes of forest remnants and reforested areas varied from 32.1 to 583.9 ha and from 11.3 to 33.3 ha, respectively. All reforested areas were located near one forest remnant. During samplings, totaling nine per study area, euglossine males were attracted to eight scent baits and captured with bait trap and entomological nets. Each forest remnant and its respective reforested area were sampled simultaneously by two collectors. We collected 435 males belonging to nine species of orchid bees distributed in four genera. The number of individuals and species did not differ significantly between different areas, except for a reforested area (size 33.3 ha), which was located far from its respective forest remnant. Our findings also revealed an apparent association between an orchid bee species (Euglossa annectans Dressler 1982) and the most preserved area surveyed in our study, suggesting that this bee is a potential indicator of good habitat quality in recuperating or preserved areas. Our results suggest that reforested habitats located near forest remnants have a higher probability of having reinstated their euglossine communities.

  18. Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests

    PubMed Central

    Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A.; Badmaeva, Natalya K.; Sandanov, Denis V.

    2012-01-01

    Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies. PMID:22916142

  19. Growth decline linked to warming-induced water limitation in hemi-boreal forests.

    PubMed

    Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A; Badmaeva, Natalya K; Sandanov, Denis V

    2012-01-01

    Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies.

  20. [Vertical distribution and community diversity of butterflies in Yaoluoping National Nature Reserve, Anhui, China].

    PubMed

    Wang, Song; Bao, Fang-yin; Mei, Bai-mao; Ding, Shi-chao

    2009-09-01

    By the methods of fixed point, line intercept, and random investigation, the vertical distribution and community diversity of butterflies in Yaoluoping National Nature Reserve were investigated from 2005 to 2008. A total of 3681 specimen were collected, belonging to 111 species, 69 genera, and 10 families, among which, Nymphalidae had the higher species number, individual's number, and diversity index than the other families. The butterflies in the study area were a mixture of Oriental and Palaearetic species, with the Oriental species diminished gradually and the Palaearetic components increased gradually with increasing altitude. Among the three vertical zones ( <800 m, 800-1200 m, and >1200 m in elevation), that of 800-1200 m had the most abundant species of butterflies; and among the six habitat types (deciduous broad-leaved forest, evergreen conifer forest, conifer-broad leaf mixed forest, bush and secondary forest, farmland, and residential area), bush and secondary forest had the higher species number, individual's number, and diversity index of butterflies, while farmland had the lowest diversity index. The similarity coefficient of butterfly species between the habitats was mainly dependent on vegetation type, i.e., the more the difference of vegetation type, the lesser the species similarity coefficient between the habitats, which was the highest (0.61) between conifer-broad leaf mixed forest and bush and secondary forest, and the lowest (0. 20) between evergreen conifer forest and bush and secondary forest.

  1. Ecosystem-level water-use efficiency inferred from eddy covariance data: definitions, patterns and spatial up-scaling

    NASA Astrophysics Data System (ADS)

    Reichstein, M.; Beer, C.; Kuglitsch, F.; Papale, D.; Soussana, J. A.; Janssens, I.; Ciais, P.; Baldocchi, D.; Buchmann, N.; Verbeeck, H.; Ceulemans, R.; Moors, E.; Köstner, B.; Schulze, D.; Knohl, A.; Law, B. E.

    2007-12-01

    In this presentation we discuss ways to infer and to interpret water-use efficiency at ecosystem level (WUEe) from eddy covariance flux data and possibilities for scaling these patterns to regional and continental scale. In particular we convey the following: WUEe may be computed as a ratio of integrated fluxes or as the slope of carbon versus water fluxes offering different chances for interpretation. If computed from net ecosystem exchange and evapotranspiration on has to take of counfounding effects of respiration and soil evaporation. WUEe time-series at diurnal and seasonal scale is a valuable ecosystem physiological diagnostic for example about ecosystem-level responses to drought. Most often WUEe decreases during dry periods. The mean growing season ecosystem water-use efficiency of gross carbon uptake (WUEGPP) is highest in temperate broad-leaved deciduous forests, followed by temperate mixed forests, temperate evergreen conifers, Mediterranean broad-leaved deciduous forests, Mediterranean broad-leaved evergreen forests and Mediterranean evergreen conifers and boreal, grassland and tundra ecosystems. Water-use efficiency exhibits a temporally quite conservative relation with atmospheric water vapor pressure deficit (VPD) that is modified between sites by leaf area index (LAI) and soil quality, such that WUEe increases with LAI and soil water holding capacity which is related to texture. This property and tight coupling between carbon and water cycles is used to estimate catchment-scale water-use efficiency and primary productivity by integration of space-borne earth observation and river discharge data.

  2. MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests

    NASA Astrophysics Data System (ADS)

    Testa, S.; Soudani, K.; Boschetti, L.; Borgogno Mondino, E.

    2018-02-01

    Monitoring forest phenology allows us to study the effects of climate change on vegetated land surfaces. Daily and composite time series (TS) of several vegetation indices (VIs) from MODerate resolution Imaging Spectroradiometer (MODIS) data have been widely used in scientific works for phenological studies since the beginning of the MODIS mission. The objective of this work was to use MODIS data to find the best VI/TS combination to estimate start-of-season (SOS) and end-of-season (EOS) dates across 50 temperate deciduous forests. Our research used as inputs 2001-2012 daily reflectance from MOD09GQ/MOD09GA products and 16-day composite VIs from the MOD13Q1 dataset. The 50 pixels centered on the 50 forest plots were extracted from the above-mentioned MODIS imagery; we then generated 5 different types of TS (1 daily from MOD09 and 4 composite from MOD13Q1) and used all of them to implement 6 VIs, obtaining 30 VI/TS combinations. SOS and EOS estimates were determined for each pixel/year and each VI/TS combination. SOS/EOS estimations were then validated against ground phenological observations. Results showed that, in our test areas, composite TS, if actual acquisition date is considered, performed mostly better than daily TS. EVI, WDRVI0.20 and NDVI were more suitable to SOS estimation, while WDRVI0.05 and EVI were more convenient in estimating early and advanced EOS, respectively.

  3. Ecological Restoration of an Oak Woodland in Kansas Informed with Remote Sensing of Vegetation Dynamics

    NASA Astrophysics Data System (ADS)

    Galgamuwe Arachchige, Pabodha Galgamuwa

    Recurrent, landscape-level fires played an integral part in the development and persistence of eastern oak (Quercus spp.) forests of the United States. These periodic surface fires helped secure a competitive position for oaks in the regeneration pool by maintaining a desirable species composition and forest structure. This historical fire regime was altered with the European settlement of North America, and fire suppression within forestlands became a standard practice since 1930s. With decades of fire suppression, mature oak-dominated woodlands have widely converted to shade-tolerant tree species. Prescribed fire has successfully been used to enhance oak regeneration in eastern forests. However, oak woodland restoration within the forest-prairie ecotone of the Central plains has not been systematically studied. Fuel beds under shade-tolerant species are often less conducive to fire. Therefore, monitoring fuel loading (FL) and its changes are essential to inform management decisions in an oak regeneration project. Rapid expansion of eastern redcedar (Juniperus virginiana/ERC) is another ecological issue faced by land managers throughout North America's midcontinent forest-prairie ecotone. Hence, it is worthy to monitor ERC expansion and effects on deciduous forests, to inform oak ecosystem restoration interventions within this region. Therefore, the main objectives of this dissertation were three-fold: (1) understand the effects of prescribed burning and mechanical thinning to encourage oak regeneration; (2) investigate the initial effects of an oak regeneration effort with prescribed fire and mechanical thinning on FL; and (3) monitor the spatio-temporal dynamics of ERC expansion in the forest-prairie ecotone of Kansas, and understand its effects on deciduous forests. The first two studies were conducted on a 90-acre oak dominated woodland, north of Manhattan, Kansas. The experimental design was a 2 (burn) x 2 (thin) factorial in a repeated measures design. The design structure allowed four treatment combinations: burn only (B), thin only (T), burn and thin combined (BT), and a control (C). Burning and thinning treatments were administered in spring 2015. Changes in the FL estimates after the burn treatment revealed that the BT treatment combination consumed more fuel and burned more intensely compared to the B treatment. This observation was reflected in vegetation responses. The thinning reduced the canopy cover significantly, but under enhanced light environments, both oaks and competitive species thrived when no burn was incorporated. In contrast, burn treatments controlled the competitive vegetation. Hence, the most promising results were obtained when both fire and thinning were utilized. The remote sensing study documented the expansion of ERC in three areas of eastern Kansas over 30 years. The use of multi-seasonal layer-stacks with a Support Vector Machines (SVM) supervised classification was found to be the most effective approach to map ERC distribution. Total ERC cover increased by more than 6000 acres in all three study areas investigated in this study between 1986 and 2017. Much of the ERC expansion was into deciduous woodlands. Therefore, ERC control measures should be incorporated into oak woodland restoration efforts within the forest-prairie ecotone of Kansas.

  4. Vertical heterogeneity in predation pressure in a temperate forest canopy

    PubMed Central

    Aikens, Kathleen R.; Buddle, Christopher M.

    2013-01-01

    The forest canopy offers a vertical gradient across which variation in predation pressure implies variation in refuge quality for arthropods. Direct and indirect experimental approaches were combined to assess whether canopy strata differ in ability to offer refuge to various arthropod groups. Vertical heterogeneity in impact of avian predators was quantified using exclosure cages in the understory, lower, mid, and upper canopy of a north-temperate deciduous forest near Montreal, Quebec. Bait trials were completed in the same strata to investigate the effects of invertebrate predators. Exclusion of birds yielded higher arthropod densities across all strata, although treatment effects were small for some taxa. Observed gradients in predation pressure were similar for both birds and invertebrate predators; the highest predation pressure was observed in the understory and decreased with height. Our findings support a view of the forest canopy that is heterogeneous with respect to arthropod refuge from natural enemies. PMID:24010017

  5. Pennsylvanian coniferopsid forests in sabkha facies reveal the nature of seasonal tropical biome

    USGS Publications Warehouse

    Falcon-Lang, H. J.; Jud, N.A.; John, Nelson W.; DiMichele, W.A.; Chaney, D.S.; Lucas, S.G.

    2011-01-01

    Pennsylvanian fossil forests are known from hundreds of sites across tropical Pangea, but nearly all comprise remains of humid Coal Forests. Here we report a unique occurrence of seasonally dry vegetation, preserved in growth position along >5 km of strike, in the Pennsylvanian (early Kasimovian, Missourian) of New Mexico (United States). Analyses of stump anatomy, diameter, and spatial density, coupled with observations of vascular traces and associated megaflora, show that this was a deciduous, mixed-age, coniferopsid woodland (~100 trees per hectare) with an open canopy. The coniferopsids colonized coastal sabkha facies and show tree rings, confirming growth under seasonally dry conditions. Such woodlands probably served as the source of coniferopsids that replaced Coal Forests farther east in central Pangea during drier climate phases. Thus, the newly discovered woodland helps unravel biome-scale vegetation dynamics and allows calibration of climate models. ?? 2011 Geological Society of America.

  6. A metagenomics-based approach to the top-down effect on the detritivore food web: a salamanders influence on fungal communities within a deciduous forest.

    PubMed

    Walker, Donald M; Lawrence, Brandy R; Esterline, Dakota; Graham, Sean P; Edelbrock, Michael A; Wooten, Jessica A

    2014-11-01

    The flow of energy within an ecosystem can be considered either top-down, where predators influence consumers, or bottom-up, where producers influence consumers. Plethodon cinereus (Red-backed Salamander) is a terrestrial keystone predator who feeds on invertebrates within the ecosystem. We investigated the impact of the removal of P. cinereus on the detritivore food web in an upland deciduous forest in northwest Ohio, U.S.A. A total of eight aluminum enclosures, each containing a single P. cinereus under a small log, were constructed in the deciduous forest. On Day 1 of the experiment, four salamanders were evicted from four of the eight enclosures. Organic matter and soil were collected from the center of each enclosure at Day 1 and Day 21. From each sample, DNA was extracted, fungal-specific amplification performed, and 454 pyrosequencing was used to sequence the nuclear ribosomal internal transcribed spacer (ITS2) region and partial ribosomal large subunit (LSU). Changes in overall fungal community composition or species diversity were not statistically significant between treatments. Statistically significant shifts in the most abundant taxonomic groups of fungi were documented in presence but not absence enclosures. We concluded that P. cinereus does not affect the overall composition or diversity of fungal communities, but does have an impact on specific groups of fungi. This study used a metagenomics-based approach to investigate a missing link among a keystone predator, P. cinereus, invertebrates, and fungal communities, all of which are critical in the detritivore food web.

  7. Long-term effects of climate change on carbon storage and tree species composition in a dry deciduous forest.

    PubMed

    Fekete, István; Lajtha, Kate; Kotroczó, Zsolt; Várbíró, Gábor; Varga, Csaba; Tóth, János Attila; Demeter, Ibolya; Veperdi, Gábor; Berki, Imre

    2017-08-01

    Forest vegetation and soils have been suggested as potentially important sinks for carbon (C) with appropriate management and thus are implicated as effective tools in stabilizing climate even with increasing anthropogenic release of CO 2 . Drought, however, which is often predicted to increase in models of future climate change, may limit net primary productio (NPP) of dry forest types, with unknown effects on soil C storage. We studied C dynamics of a deciduous temperate forest of Hungary that has been subject to significant decreases in precipitation and increases in temperature in recent decades. We resampled plots that were established in 1972 and repeated the full C inventory by analyzing more than 4 decades of data on the number of living trees, biomass of trees and shrubs, and soil C content. Our analyses show that the decline in number and biomass of oaks started around the end of the 1970s with a 71% reduction in the number of sessile oak stems by 2014. Projected growth in this forest, based on the yield table's data for Hungary, was 4.6 kg C/m 2 . Although new species emerged, this new growth and small increases in oak biomass resulted in only 1.9 kg C/m 2 increase over 41 years. The death of oaks increased inputs of coarse woody debris to the surface of the soil, much of which is still identifiable, and caused an increase of 15.5%, or 2.6 kg C/m 2 , in the top 1 m of soil. Stability of this fresh organic matter input to surface soil is unknown, but is likely to be low based on the results of a colocated woody litter decomposition study. The effects of a warmer and drier climate on the C balance of forests in this region will be felt for decades to come as woody litter inputs decay, and forest growth remains impeded. © 2017 John Wiley & Sons Ltd.

  8. Assessment of water availability and its relationship with vegetation distribution over a tropical montane system

    NASA Astrophysics Data System (ADS)

    Streher, A. S.; Sobreiro, J. F. F.; Silva, T. S. F.

    2017-12-01

    Water availability is one of the main drivers of vegetation distribution, but assessing it over mountainous regions is difficult given the effects of rugged topography on hydroclimatic dynamics (orographic rainfall, soil water, and runoff). We assessed how water availability may influence the distribution of vegetation types in the Espinhaço Range, a South American tropical mountain landscape comprised of savannas, grasslands, rock outcrops, cloud forests, and semi-deciduous/deciduous forests. For precipitation, we used CHIRPS monthly and daily products (1981- 2016) and 112 rain gauge ground stations, and assessed potential evapotranspiration (PET) using the MODIS MOD16A3 (2000-2013) product. Vegetation types were classified according to the Global Ecoregions by WWF. We show that rainfall has well-defined rainy and dry seasons with a strong latitudinal pattern, there is evidence for local orographic effects. Dry forests (907 mm/yr; 8% cv) and caatinga vegetation (795 mm/yr; 7% cv) had the lowest average annual precipitation and low variance, whilst Atlantic tropical forest in the southeast (1267 mm/yr; 15% cv), cerrado savanna vegetation in the west (1086 mm/yr; 15% cv) and rupestrian grasslands above 800m (1261 mm/yr; 20% cv) received the highest annual precipitation, with the largest observed variance due to their wide latitudinal distribution. Forests and rupestrian grasslands in the windward side of the mountain had a higher frequency of intense rainfall events (> 20mm), accounting for 6% of the CHIRPS daily time series, suggesting orographic effects on precipitation. Annual average PET was highest for dry forests (2437 mm/yr) and caatinga (2461 mm/yr), intermediate for cerrado (2264 mm/yr) and lowest for Atlantic tropical forest (2083 mm/yr) and rupestrian grasslands (2136 mm/yr). All vegetation types received less rainfall than its PET capacity based on yearly data, emphasizing the need for ecophysiological adaptations to water use. Climate change threatens these ecosystems by possible alterations on the hydrological cycle and, consequently, capacity for adaptations on water use. These could lead to shifts in vegetation composition and distribution within the studied region. Further investigation of seasonal trends on water availability and edaphic factors would improve these analyses.

  9. Did 250 years of forest management in Europe cool the climate?

    NASA Astrophysics Data System (ADS)

    Naudts, Kim; Chen, Yiying; McGrath, Matthew; Ryder, James; Valade, Aude; Otto, Juliane; Luyssaert, Sebastiaan

    2016-04-01

    Over the past two centuries European forest has evolved from being an over-exploited source of timber to a sustainably managed provider of diverse ecosystem services. Although this transition is often perceived as exemplary in resources management, the loss of unmanaged forest, the progressive shift from traditional coppice forestry to the current production-oriented management and the massive conversion of broadleaved to coniferous species are typically overlooked when assessing the impact of land-use change on climate. Here we present a study that addressed this gap by: (1) developing and reparameterizing the ORCHIDEE land surface model to simulate the biogeochemical and biophysical effects of forest management, (2) reconstructing the land-use history of Europe, accounting for changes in forest management and land cover. The model was coupled to the atmospheric model LMDz in a factorial simulation experiment to attribute climate change to global anthropogenic greenhouse gas emission and European land-use change since 1750 (i.e., afforestation, wood extraction and species conversion). We find that, despite considerable afforestation, Europe's forests failed to realize a net removal of CO2 from the atmosphere due to wood extraction. Moreover, biophysical changes due to the conversion of deciduous forest into coniferous forest have offset mitigation through the carbon cycle. Thus, two and a half centuries of forest management in Europe did not mitigate climate warming (Naudts et al., 2016). Naudts, K., Chen, Y., McGrath, M.J., Ryder, J., Valade, A., Otto, J., Luyssaert, S, Europe's forest management did not mitigate climate warming, Science, Accepted.

  10. Case study: Prioritization strategies for reforestation of minelands to benefit Cerulean Warblers

    USGS Publications Warehouse

    McDermott, Molly E.; Shumar, Matthew B.; Wood, Petra Bohall

    2013-01-01

    The central Appalachian landscape is being heavily altered by surface coal mining. The practice of Mountaintop Removal/Valley Fill (MTRVF) mining has transformed large areas of mature forest to non-forest and created much forest edge, affecting habitat quality for mature forest wildlife. The Appalachian Regional Reforestation Initiative is working to restore mined areas to native hardwood forest conditions, and strategies are needed to prioritize restoration efforts for wildlife. We present mineland reforestation guidelines for the imperiled Cerulean Warbler, considered a useful umbrella species, in its breeding range. In 2009, we surveyed forest predicted to have Cerulean Warblers near mined areas in the MTRVF region of West Virginia and Kentucky. We visited 36 transect routes and completed songbird surveys on 151 points along these routes. Cerulean Warblers were present at points with fewer large-scale canopy disturbances and more mature oak-hickory forest. We tested the accuracy of a predictive map for this species and demonstrated that it can be useful to guide reforestation efforts. We then developed a map of hot spot locations that can be used to determine potential habitat suitability. Restoration efforts would have greatest benefit for Cerulean Warblers and other mature forest birds if concentrated near a relative-abundance hot spot, on north- and east-facing ridgetops surrounded by mature deciduous forest, and prioritized to reduce edges and connect isolated forest patches. Our multi-scale approach for prioritizing restoration efforts using an umbrella species may be applied to restore habitat impacted by a variety of landscape disturbances.

  11. Reconstructing European forest management from 1600 to 2010

    NASA Astrophysics Data System (ADS)

    McGrath, M. J.; Luyssaert, S.; Meyfroidt, P.; Kaplan, J. O.; Buergi, M.; Chen, Y.; Erb, K.; Gimmi, U.; McInerney, D.; Naudts, K.; Otto, J.; Pasztor, F.; Ryder, J.; Schelhaas, M.-J.; Valade, A.

    2015-04-01

    European forest use for fuel, timber and food dates back to pre-Roman times. Century-scale ecological processes and their legacy effects require accounting for forest management when studying today's forest carbon sink. Forest management reconstructions that are used to drive land surface models are one way to quantify the impact of both historical and today's large scale application of forest management on today's forest-related carbon sink and surface climate. In this study we reconstruct European forest management from 1600 to 2010 making use of diverse approaches, data sources and assumptions. Between 1600 and 1828, a demand-supply approach was used in which wood supply was reconstructed based on estimates of historical annual wood increment and land cover reconstructions. For the same period demand estimates accounted for the fuelwood needed in households, wood used in food processing, charcoal used in metal smelting and salt production, timber for construction and population estimates. Comparing estimated demand and supply resulted in a spatially explicit reconstruction of the share of forests under coppice, high stand management and forest left unmanaged. For the reconstruction between 1829 and 2010 a supply-driven back-casting method was used. The method used age reconstructions from the years 1950 to 2010 as its starting point. Our reconstruction reproduces the most important changes in forest management between 1600 and 2010: (1) an increase of 593 000 km2 in conifers at the expense of deciduous forest (decreasing by 538 000 km2), (2) a 612 000 km2 decrease in unmanaged forest, (3) a 152 000 km2 decrease in coppice management, (4) a 818 000 km2 increase in high stand management, and (5) the rise and fall of litter raking which at its peak in 1853 removed 50 Tg dry litter per year.

  12. Impact of Footprint Diameter and Off-Nadir Pointing on the Precision of Canopy Height Estimates from Spaceborne Lidar

    NASA Technical Reports Server (NTRS)

    Pang, Yong; Lefskky, Michael; Sun, Guoqing; Ranson, Jon

    2011-01-01

    A spaceborne lidar mission could serve multiple scientific purposes including remote sensing of ecosystem structure, carbon storage, terrestrial topography and ice sheet monitoring. The measurement requirements of these different goals will require compromises in sensor design. Footprint diameters that would be larger than optimal for vegetation studies have been proposed. Some spaceborne lidar mission designs include the possibility that a lidar sensor would share a platform with another sensor, which might require off-nadir pointing at angles of up to 16 . To resolve multiple mission goals and sensor requirements, detailed knowledge of the sensitivity of sensor performance to these aspects of mission design is required. This research used a radiative transfer model to investigate the sensitivity of forest height estimates to footprint diameter, off-nadir pointing and their interaction over a range of forest canopy properties. An individual-based forest model was used to simulate stands of mixed conifer forest in the Tahoe National Forest (Northern California, USA) and stands of deciduous forests in the Bartlett Experimental Forest (New Hampshire, USA). Waveforms were simulated for stands generated by a forest succession model using footprint diameters of 20 m to 70 m. Off-nadir angles of 0 to 16 were considered for a 25 m diameter footprint diameter. Footprint diameters in the range of 25 m to 30 m were optimal for estimates of maximum forest height (R(sup 2) of 0.95 and RMSE of 3 m). As expected, the contribution of vegetation height to the vertical extent of the waveform decreased with larger footprints, while the contribution of terrain slope increased. Precision of estimates decreased with an increasing off-nadir pointing angle, but off-nadir pointing had less impact on height estimates in deciduous forests than in coniferous forests. When pointing off-nadir, the decrease in precision was dependent on local incidence angle (the angle between the off-nadir beam and a line normal to the terrain surface) which is dependent on the off-nadir pointing angle, terrain slope, and the difference between the laser pointing azimuth and terrain aspect; the effect was larger when the sensor was aligned with the terrain azimuth but when aspect and azimuth are opposed, there was virtually no effect on R2 or RMSE. A second effect of off-nadir pointing is that the laser beam will intersect individual crowns and the canopy as a whole from a different angle which had a distinct effect on the precision of lidar estimates of height, decreasing R2 and increasing RMSE, although the effect was most pronounced for coniferous crowns.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seastedt, T.R.; Mameli, L.; Gridley, K.

    Arthropods associated with cricket carcasses placed on top and within deciduous forest litter were collected for 12 months. Vespid wasps and ants quickly removed carcasses left on top of forest litter, but carcasses placed within litter persisted throughout the study. Major consumers of carcasses in litter varied seasonally; maggots dominated on fresh carcasses in summer, but fresh carcasses placed in litter in autumn were consumed by other arthropods. A gamasid mite, Hypoaspis (Laelaspis) johnieae, dominated the microarthropod fauna found on exoskeleton fragments. A method for collecting invertebrate carrion feeders and measuring carrion disappearance is presented. 15 references, 2 tables.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seastedt, T.R.; Mameli, L.; Gridley, K.

    Arthropods associated with cricket carcasses placed on top and within deciduous forest litter were collected over a 12 month interval. Vespid wasps and ants quickly removed carcasses left on top of forest litter, but carcasses placed within litter persisted throughout the study. Major consumers of carcasses in litter varied seasonally; maggots dominated on fresh carcasses in summer, but fresh carcasses placed in litter in autumn were consumed by other arthropods. A gamasid mite, Hypoaspis (Laelaspis) johnieae dominated the microarthropod fauna found on exoskeleton fragments. A method for collecting invertebrate carrion feeders and measuring carrion disappearance is presented.

  15. The ecological variations in thermal infrared emissivity of vegetation. [in Texas, Arizona, New Mexico, and Mexico

    NASA Technical Reports Server (NTRS)

    Arp, G. K.; Phinney, D. E. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Through a series of contrasts, the statistical significance of differences in emissivity was determined for vegegation in dry and humid deserts, montane and deciduous rain forests, and the temperate region. No significant differences were found between the two types of desert vegetation or among the types of nondesert vegetation. However, the rain forest vegetation was significantly different from that of the temperate region. On a community-wide level, there is some physiological adaptation in plants to their radiational environment.

  16. Transpiration by tree roots in the deep unsaturated regolith buffers the recharge process in a tropical watershed under deciduous forest (Mule Hole, India)

    NASA Astrophysics Data System (ADS)

    Ruiz, Laurent; Varma, Murari Rr; Mohan Kumar, Ms; Sekhar, Muddu; Molenat, Jerome; Marechal, Jean-Christophe; Descloitres, Marc; Riotte, Jean; Kumar, Sat; Braun, Jean-Jacques

    2010-05-01

    Accurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments where deep tree root can uptake water at considerable depth. In this presentation, we assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using the lumped conceptual model COMFORT (Ruiz et al., 2010) to simulate discharge and groundwater levels monitored during six year in an experimental watershed under dry deciduous forest (Mule Hole, South India), which is part of the project "Observatoire de Recherche en Environnement - Bassin Versant Expérimentaux Tropicaux" (http://www.ore.fr/). The model was calibrated on the first four years data, and tested on the two remaining years. The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with successions of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm.year-1 and the evapotranspiration was about 900 mm.year-1 out of which 100 mm.year-1 was uptake from the deep regolith horizons. The stream flow was 100 mm.year-1 while the groundwater underflow was 80 mm.year-1. The simulation results show that i) deciduous trees can uptake a significant amount of water from the deep regolith, ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers, iii) water table response to recharge is buffered due to the long vertical travel time through the deep vadose zone, which constitutes a major water reservoir. These results are of practical relevance as they invalidate recharge assessment methods based on steady state assumptions in this context. This study stresses the importance of long term observations for the understanding of hydrological processes in tropical forested ecosystems. Ruiz L, Varma MRR, Mohan Kumar MS, Sekhar M, Maréchal JC, Descloitres M, Riotte J, Sat Kumar, Kumar C and Braun JJ 2010 Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India) : regolith matric storage buffers the groundwater recharge process. Journal of Hydrology, 380, 460-472. http://dx.doi.org/10.1016/j.jhydrol.2009.11.020

  17. Indirect and direct recharges in a tropical forested watershed: Mule Hole, India

    NASA Astrophysics Data System (ADS)

    Maréchal, Jean-Christophe; Varma, Murari R. R.; Riotte, Jean; Vouillamoz, Jean-Michel; Kumar, M. S. Mohan; Ruiz, Laurent; Sekhar, M.; Braun, Jean-Jacques

    2009-01-01

    SummaryIt is commonly accepted that forest plays role to modify the water cycle at the watershed scale. However, the impact of forest on aquifer recharge is still discussed: some studies indicate that infiltration is facilitated under forest while other studies suggest a decrease of recharge. This paper presents an estimate of recharge rates to groundwater in a humid forested watershed of India. Recharge estimates are based on the joint use of several methods: chloride mass balance, water table fluctuation, geophysics, groundwater chemistry and flow analysis. Two components of the recharge (direct and indirect) are estimated over 3 years of monitoring (2003-2006). The direct and localized recharges resulting from rainfall over the entire watershed surface area is estimated to 45 mm/yr while the indirect recharge occurring from the stream during flood events is estimated to 30 mm/yr for a 2 km-long stream. Calculated recharge rates, rainfall and runoff measurements are then combined in a water budget to estimate yearly evapotranspiration which ranges from 80% to 90% of the rainfall, i.e. 1050 mm/y as an average. This unexpected high value for a deciduous forest is nevertheless in agreement with the forest worldwide relationship between rainfall and evapotranspiration. The large evapotranspiration from the forest cover contributes to decrease the recharge rate which leads to a lowering of the water table. This is the reason why the stream is highly ephemeral.

  18. How does forest disturbance and succession affect summer streamflow recession?

    NASA Astrophysics Data System (ADS)

    Brena, A.; Stahl, K.; Weiler, M.

    2011-12-01

    Streamflow recession is a main signature of catchment behavior during dry conditions. The storage-discharge relationship of every catchment reflects the aquifer properties and land surface processes including evapotranspiration rates. Commonly, the storage-discharge relationship in watersheds is analyzed through the recession limb of the hydrograph, which generally follows a nonlinear pattern. It is, however, unknown how forest disturbance and succession may modify the degree of nonlinearity of baseflow recession and the magnitude of baseflow. The presented study analyzes and characterizes streamflow recession during summer before and after forest disturbance using data from six experimental paired-watersheds with controlled forest disturbances across different climatic regions and ecozones of the USA. Characteristic non-linear recession parameters were fitted by a Monte Carlo resampling method. No systematic relationship was found between annual precipitation, drainage area, mean elevation, and recession characteristics. However, higher storage rates and low flows across the sites were detected following forest disturbance. Exceptions are the snow-dominated watersheds and changes appear to be stronger in watersheds with deciduous forests. The results are however dependent on the method of recession limb selection, including start level and time. Further research is needed over a wide range of forest sites and according to the type of disturbance (e.g. fire, disease), which may ultimately define the dynamics of forest succession and therefore the streamflow recession behavior.

  19. Large-Scale Mixed Temperate Forest Mapping at the Single Tree Level using Airborne Laser Scanning

    NASA Astrophysics Data System (ADS)

    Scholl, V.; Morsdorf, F.; Ginzler, C.; Schaepman, M. E.

    2017-12-01

    Monitoring vegetation on a single tree level is critical to understand and model a variety of processes, functions, and changes in forest systems. Remote sensing technologies are increasingly utilized to complement and upscale the field-based measurements of forest inventories. Airborne laser scanning (ALS) systems provide valuable information in the vertical dimension for effective vegetation structure mapping. Although many algorithms exist to extract single tree segments from forest scans, they are often tuned to perform well in homogeneous coniferous or deciduous areas and are not successful in mixed forests. Other methods are too computationally expensive to apply operationally. The aim of this study was to develop a single tree detection workflow using leaf-off ALS data for the canton of Aargau in Switzerland. Aargau covers an area of over 1,400km2 and features mixed forests with various development stages and topography. Forest type was classified using random forests to guide local parameter selection. Canopy height model-based treetop maxima were detected and maintained based on the relationship between tree height and window size, used as a proxy to crown diameter. Watershed segmentation was used to generate crown polygons surrounding each maximum. The location, height, and crown dimensions of single trees were derived from the ALS returns within each polygon. Validation was performed through comparison with field measurements and extrapolated estimates from long-term monitoring plots of the Swiss National Forest Inventory within the framework of the Swiss Federal Institute for Forest, Snow, and Landscape Research. This method shows promise for robust, large-scale single tree detection in mixed forests. The single tree data will aid ecological studies as well as forest management practices. Figure description: Height-normalized ALS point cloud data (top) and resulting single tree segments (bottom) on the Laegeren mountain in Switzerland.

  20. Estimates of phytomass and net primary productivity in terrestrial ecosystems of the former Soviet Union identified by classified Global Vegetation Index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaston, G.G.; Kolchugina, T.P.

    1995-12-01

    Forty-two regions with similar vegetation and landcover were identified in the former Soviet Union (FSU) by classifying Global Vegetation Index (GVI) images. Image classes were described in terms of vegetation and landcover. Image classes appear to provide more accurate and precise descriptions for most ecosystems when compared to general thematic maps. The area of forest lands were estimated at 1,330 Mha and the actual area of forest ecosystems at 875 Mha. Arable lands were estimated to be 211 Mha. The area of the tundra biome was estimated at 261 Mha. The areas of the forest-tundra/dwarf forest, taiga, mixed-deciduous forest andmore » forest-steppe biomes were estimated t 153, 882, 196, and 144 Mha, respectively. The areas of desert-semidesert biome and arable land with irrigated land and meadows, were estimated at 126 and 237 Mha, respectively. Vegetation and landcover types were associated with the Bazilevich database of phytomass and NPP for vegetation in the FSU. The phytomass in the FSU was estimated at 97.1 Gt C, with 86.8 in forest vegetation, 9.7 in natural non-forest and 0.6 Gt C in arable lands. The NPP was estimated at 8.6 Gt C/yr, with 3.2, 4.8, and 0.6 Gt C/yr of forest, natural non-forest, and arable ecosystems, respectively. The phytomass estimates for forests were greater than previous assessments which considered the age-class distribution of forest stands in the FSU. The NPP of natural ecosystems estimated in this study was 23% greater than previous estimates which used thematic maps to identify ecosystems. 47 refs., 4 figs., 2 tabs.« less

  1. Cause-Effect Relations with Regard to Functional and Morphological Humus Characteristics in Mixed Forest Stands

    NASA Astrophysics Data System (ADS)

    Schua, K.; Feger, K.-H.; Wagner, S.; Eisenhauer, D.-R.; Raben, G.

    2009-04-01

    A major argument brought forward when giving reasons for the admixture of deciduous tree species into coniferous forest stands is the amelioration and stabilization of biogeochemical cycles. An ecologically oriented silviculture relies on detailed knowledge about the ecosystem effects of practical measures. Thus, it focuses on the ‘amelioration potential' of a specific tree species with respect to changes of topsoil characteristics in typical monocultural situations. Up-to-now, few data is available concerning the percentages of deciduous species (degree of admixture) or type of admixture (single-tree, small or large groups) required to achieve desired effects, e.g. faster decomposition and incorporation of organic matter in the mineral soil. Thus, the objective of this study is (1) to analyze the impact of admixtures on topsoil properties and processes, and (2) to establish spatial models of such effects. The experiments are conducted in even-aged Norway spruce (Picea abies [L.] KARST.) stands with a variable admixture of Silver birch (Betula pendula Roth) in the Ore Mountains (Saxony, SE Germany). The approach starts with explanation of single-tree-effects and approves in a next step the enlargement to forest stand ("from-point-to-area-approach"). This attempt is expected to provide models with few parameters which can be used to modify the common exclusive growth models.

  2. Are endemics functionally distinct? Leaf traits of native and exotic woody species in a New Zealand forest.

    PubMed

    Heberling, J Mason; Mason, Norman W H

    2018-01-01

    Recent studies have concluded that native and invasive species share a common set of trait relationships. However, native species in isolated regions might be functionally constrained by their unique evolutionary histories such that they follow different carbon capture strategies than introduced species. We compared leaf traits relating to resource investment, carbon return, and resource-use efficiency in 16 native (endemic) and three non-native (invasive) species in a temperate forest in Canterbury, South Island, New Zealand. Trait differences were more closely associated with leaf habit than nativity. Deciduous species (including invaders) exhibited greater maximum photosynthetic rates at similar resource costs, which resulted in greater nitrogen- and energy-use efficiencies than evergreen natives. Leaf area was the only trait that differed significantly by nativity (over two-fold larger in invaders). Invaders and deciduous natives both occupied the 'fast return' end of the leaf economics spectrum in contrast to the native evergreens which had comparatively slow return on investment. Dominant woody invaders in this forest are physiologically distinct from many New Zealand endemic species, which are overwhelmingly evergreen. It remains unclear whether these trait differences translate to an ecological divergence in plant strategy, but these results suggest that ecophysiological tradeoffs are likely constrained by biogeography.

  3. Variability in runoff fluxes of dissolved and particulate carbon and nitrogen from two watersheds of different tree species during intense storm events

    NASA Astrophysics Data System (ADS)

    Lee, Mi-Hee; Payeur-Poirier, Jean-Lionel; Park, Ji-Hyung; Matzner, Egbert

    2016-09-01

    Heavy storm events may increase the amount of organic matter in runoff from forested watersheds as well as the relation of dissolved to particulate organic matter. This study evaluated the effects of monsoon storm events on the runoff fluxes and on the composition of dissolved (< 0.45 µm) and particulate (0.7 µm to 1 mm) organic carbon and nitrogen (DOC, DON, POC, PON) in a mixed coniferous/deciduous (mixed watershed) and a deciduous forested watershed (deciduous watershed) in South Korea. During storm events, DOC concentrations in runoff increased with discharge, while DON concentrations remained almost constant. DOC, DON and NO3-N fluxes in runoff increased linearly with discharge pointing to changing flow paths from deeper to upper soil layers at high discharge, whereas nonlinear responses of POC and PON fluxes were observed likely due to the origin of particulate matter from the erosion of mineral soil along the stream benches. The integrated C and N fluxes in runoff over the 2-month study period were in the order of DOC > POC and NO3-N > DON > PON. The integrated DOC fluxes in runoff during the study period were much larger at the deciduous watershed (16 kg C ha-1) than at the mixed watershed (7 kg C ha-1), while the integrated NO3-N fluxes were higher at the mixed watershed (5.2 kg N ha-1) than at the deciduous watershed (2.9 kg N ha-1). The latter suggests a larger N uptake by deciduous trees. Integrated fluxes of POC and PON were similar at both watersheds. The composition of organic matter in soils and runoff indicates that the contribution of near-surface flow to runoff was larger at the deciduous than at the mixed watershed. Our results demonstrate different responses of particulate and dissolved C and N in runoff to storm events as a combined effect of tree species composition and watershed specific flow paths.

  4. Rodent Damage to Natural and Replanted Mountain Forest Regeneration

    PubMed Central

    Heroldová, Marta; Bryja, Josef; Jánová, Eva; Suchomel, Josef; Homolka, Miloslav

    2012-01-01

    Impact of small rodents on mountain forest regeneration was studied in National Nature Reserve in the Beskydy Mountains (Czech Republic). A considerable amount of bark damage was found on young trees (20%) in spring after the peak abundance of field voles (Microtus agrestis) in combination with long winter with heavy snowfall. In contrast, little damage to young trees was noted under high densities of bank voles (Myodes glareolus) with a lower snow cover the following winter. The bark of deciduous trees was more attractive to voles (22% damaged) than conifers (8%). Young trees growing in open and grassy localities suffered more damage from voles than those under canopy of forest stands (χ 2 = 44.04, P < 0.001). Natural regeneration in Nature Reserve was less damaged compared to planted trees (χ 2 = 55.89, P < 0.001). The main factors influencing the impact of rodent species on tree regeneration were open, grassy habitat conditions, higher abundance of vole species, tree species preferences- and snow-cover condition. Under these conditions, the impact of rodents on forest regeneration can be predicted. Foresters should prefer natural regeneration to the artificial plantings. PMID:22666163

  5. Evaluation of Skylab (EREP) data for forest and rangeland surveys. [Georgia, South Dakota, Colorado, and California

    NASA Technical Reports Server (NTRS)

    Aldrich, R. C. (Principal Investigator); Dana, R. W.; Greentree, W. J.; Roberts, E. H.; Norick, N. X.; Waite, T. H.; Francis, R. E.; Driscoll, R. S.; Weber, F. P.

    1975-01-01

    The author has identified the following significant results. Four widely separated sites (near Augusta, Georgia; Lead, South Dakota; Manitou, Colorado; and Redding, California) were selected as typical sites for forest inventory, forest stress, rangeland inventory, and atmospheric and solar measurements, respectively. Results indicated that Skylab S190B color photography is good for classification of Level 1 forest and nonforest land (90 to 95 percent correct) and could be used as a data base for sampling by small and medium scale photography using regression techniques. The accuracy of Level 2 forest and nonforest classes, however, varied from fair to poor. Results of plant community classification tests indicate that both visual and microdensitometric techniques can separate deciduous, conifirous, and grassland classes to the region level in the Ecoclass hierarchical classification system. There was no consistency in classifying tree categories at the series level by visual photointerpretation. The relationship between ground measurements and large scale photo measurements of foliar cover had a correlation coefficient of greater than 0.75. Some of the relationships, however, were site dependent.

  6. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession.

    PubMed

    Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Poorter, Lourens; Bongers, Frans

    2014-01-01

    Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest succession and increasing light scarcity during wet forest succession. Although similar trait spectra were observed among dry and wet secondary forest species, the consequences for succession were different resulting from contrasting environmental filters.

  7. Predicting Impacts of Climate Change on the Aboveground Carbon Sequestration Rate of a Temperate Forest in Northeastern China

    PubMed Central

    Ma, Jun; Hu, Yuanman; Bu, Rencang; Chang, Yu; Deng, Huawei; Qin, Qin

    2014-01-01

    The aboveground carbon sequestration rate (ACSR) reflects the influence of climate change on forest dynamics. To reveal the long-term effects of climate change on forest succession and carbon sequestration, a forest landscape succession and disturbance model (LANDIS Pro7.0) was used to simulate the ACSR of a temperate forest at the community and species levels in northeastern China based on both current and predicted climatic data. On the community level, the ACSR of mixed Korean pine hardwood forests and mixed larch hardwood forests, fluctuated during the entire simulation, while a large decline of ACSR emerged in interim of simulation in spruce-fir forest and aspen-white birch forests, respectively. On the species level, the ACSR of all conifers declined greatly around 2070s except for Korean pine. The ACSR of dominant hardwoods in the Lesser Khingan Mountains area, such as Manchurian ash, Amur cork, black elm, and ribbed birch fluctuated with broad ranges, respectively. Pioneer species experienced a sharp decline around 2080s, and they would finally disappear in the simulation. The differences of the ACSR among various climates were mainly identified in mixed Korean pine hardwood forests, in all conifers, and in a few hardwoods in the last quarter of simulation. These results indicate that climate warming can influence the ACSR in the Lesser Khingan Mountains area, and the largest impact commonly emerged in the A2 scenario. The ACSR of coniferous species experienced higher impact by climate change than that of deciduous species. PMID:24763409

  8. Effects of microhabitat on palm seed predation in two forest fragments in southeast Brazil

    NASA Astrophysics Data System (ADS)

    Fleury, Marina; Galetti, Mauro

    2004-12-01

    The establishment of plants depends crucially on where seeds are deposited in the environment. Some authors suggest that in forest understory seed predation is lower than in gaps, and higher than at the forest edge. However, most studies have been carried out in large forest patches and very little is known about the effects of microhabitat conditions on seed predation in forest fragments. We evaluated the effects of three microhabitats (gaps, forest edge, and understory) on seed predation of two palm species ( Euterpe edulis and Syagrus romanzoffiana) in two semi-deciduous forest fragments (230 and 2100 ha) in southeast Brazil. Our objective was to test two hypotheses: (1) Low rodent abundance in small fragments as a result of meso-predator action levels leads to lower seed predation in small fragments. (2) Most mammal species in small fragments are generalists with respect to diet and habitat, so that seed predation is similar in different microhabitats (gaps, forest edge and understory) in the small fragment, but not in the larger one. The study community of small fragments is usually composed of generalist species (in diet and habitat aspects), so we expected the same rate of seed predation among microhabitats (gaps, forest edge and understory) in the tested smaller fragment. The experiment was carried out in the dry season (for E. edulis) and in the wet season (for S. romanzoffiana) in 1999. We conclude that post-dispersal seed predation in forest fragments can be directly connected with mammal communities, reflecting their historical and ecological aspects.

  9. Predicting impacts of climate change on the aboveground carbon sequestration rate of a temperate forest in northeastern China.

    PubMed

    Ma, Jun; Hu, Yuanman; Bu, Rencang; Chang, Yu; Deng, Huawei; Qin, Qin

    2014-01-01

    The aboveground carbon sequestration rate (ACSR) reflects the influence of climate change on forest dynamics. To reveal the long-term effects of climate change on forest succession and carbon sequestration, a forest landscape succession and disturbance model (LANDIS Pro7.0) was used to simulate the ACSR of a temperate forest at the community and species levels in northeastern China based on both current and predicted climatic data. On the community level, the ACSR of mixed Korean pine hardwood forests and mixed larch hardwood forests, fluctuated during the entire simulation, while a large decline of ACSR emerged in interim of simulation in spruce-fir forest and aspen-white birch forests, respectively. On the species level, the ACSR of all conifers declined greatly around 2070s except for Korean pine. The ACSR of dominant hardwoods in the Lesser Khingan Mountains area, such as Manchurian ash, Amur cork, black elm, and ribbed birch fluctuated with broad ranges, respectively. Pioneer species experienced a sharp decline around 2080s, and they would finally disappear in the simulation. The differences of the ACSR among various climates were mainly identified in mixed Korean pine hardwood forests, in all conifers, and in a few hardwoods in the last quarter of simulation. These results indicate that climate warming can influence the ACSR in the Lesser Khingan Mountains area, and the largest impact commonly emerged in the A2 scenario. The ACSR of coniferous species experienced higher impact by climate change than that of deciduous species.

  10. Estimation of leaf area index and foliage clumping in deciduous forests using digital photography

    NASA Astrophysics Data System (ADS)

    Chianucci, Francesco; Cutini, Andrea

    2013-04-01

    Rapid, reliable and meaningful estimates of leaf area index (LAI) are essential to the characterization of forest ecosystems. In this contribution the accuracy of both fisheye and non-fisheye digital photography for the estimation of forest leaf area in deciduous stands was evaluated. We compared digital hemispherical photography (DHP), the most widely used technique that measures the gap fraction at multiple zenith angles, with methods that measure the gap fraction at a single zenith angle, namely 57.5 degree photography and cover photography (DCP). Comparison with other different gap fraction methods used to calculate LAI such as canopy transmittance measurements from AccuPAR ceptometer and LAI- 2000 Plant Canopy Analyzer (PCA) were also performed. LAI estimated from all these indirect methods were compared with direct measurements obtained by litter traps (LAILT). We applied these methods in 10 deciduous stands of Quercus cerris, Castanea sativa and Fagus sylvatica, the most common deciduous species in Italy, where LAILT ranged from 3.9 to 7.3. DHP and DCP provided good indirect estimates of LAILT, and outperformed the other indirect methods. The DCP method provided estimates of crown porosity, crown cover, foliage cover and the clumping index at the zenith, but required assumptions about the light extinction coefficient at the zenith (k), to accurately estimate LAI. Cover photography provided good indirect estimates of LAI assuming a spherical leaf angle distribution, even though k appeared to decrease as LAI increased, thus affecting the accuracy of LAI estimates in DCP. In contrast, the accuracy of LAI estimates in DHP appeared insensitive to LAILT values, but the method was sensitive to photographic exposure, gamma-correction and was more time-consuming than DCP. Foliage clumping was estimated from all the photographic methods by analyzing either gap size distribution (DCP) or gap fraction distribution (DHP). Foliage clumping was also calculated from PCA and compared with DHP. The studied stands were characterized by fairly homogeneous canopies with higher within-crown clumping than between-crowns clumping; only the segmented analysis of gap fraction for each ring of the fisheye images was found to provide useful clumping index in such homogeneous canopies. By contrast, the 1-azimuth segment method employed in PCA poorly detected clumping in dense canopies. We conclude both fisheye and non-fisheye photographic methods are suitable for dense deciduous forests. Cover photography holds great promise as a means to quickly obtain inexpensive estimates of LAI over large areas. However, in situations where no direct reference measurements of k are available, we recommend using both DHP and DCP, in order to cross-calibrate the two methods; DCP could then be used for more routinely indirect measurement and monitoring of LAI. Keywords: digital hemispherical photography, cover photography, litter trap, AccuPAR ceptometer, LAI-2000.

  11. Charcoal Reflectance Reveals Early Holocene Boreal Deciduous Forests Burned at High Intensities

    PubMed Central

    Hudspith, Victoria A.; Belcher, Claire M.; Kelly, Ryan; Hu, Feng Sheng

    2015-01-01

    Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180μm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ∼10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks. PMID:25853712

  12. Ecological effects of pipeline construction through deciduous forested wetlands, Midland County, Michigan. Topical report, October 1990--August 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastorfer, J.R.; Van Dyke, G.D.; Zellmer, S.D.

    This study is designed to record vegetational changes induced by the construction of a large-diameter gas pipeline through deciduous forested wetlands. Two second-growth wetland sites mapped Lenawee soils were selected in Midland County, Michigan: Site 1, a younger stand subjected to recent selective logging, and Site 2, a more mature stand. The collection of ecological data to analyze plant succession on the right-of-way (ROW) and the effects of the developing ROW plant communities on adjacent forest communities was initiated in 1989. Cover class estimates were made for understory and ROW plant species on the basis of 1 {times} 1{minus}m quadrats.more » Individual stem diameters and species counts were recorded for overstory plants in 10{minus}m quadrats. Although long-term studies have not been completed, firm baseline data were established for comparative analyses with future sampling. Current data indicate that vegetation became well-established on the ROW within one year and subsequently increased in coverage. About 65% of the species were wetland indicators, and the dominants included seeded and natural invading species; nevertheless, some elements of the original flora regenerated and persist. The plants of the ecotone understories of both sites changed from their original composition as a result of the installation of the gas pipeline. Although some forest species persist at both sites, the ecotone of Site I was influenced more by the seeded species, whereas the natural invaders were more important at Site 2.« less

  13. Responses of two understory herbs, Maianthemum canadense and Eurybia macrophylla, to experimental forest warming: early emergence is the key to enhanced reproductive output.

    PubMed

    Jacques, Marie-Hélène; Lapointe, Line; Rice, Karen; Montgomery, Rebecca A; Stefanski, Artur; Reich, Peter B

    2015-10-01

    Understory herbs might be the most sensitive plant form to global warming in deciduous forests, yet they have been little studied in the context of climate change. A field experiment set up in Minnesota, United States simulated global warming in a forest setting and provided the opportunity to study the responses of Maianthemum canadense and Eurybia macrophylla in their natural environment in interaction with other components of the ecosystem. Effects of +1.7° and +3.4°C treatments on growth, reproduction, phenology, and gas exchange were evaluated along with treatment effects on light, water, and nutrient availability, potential drivers of herb responses. Overall, growth and gas exchanges of these two species were modestly affected by warming. They emerged up to 16 (E. macrophylla) to 17 d (M. canadense) earlier in the heated plots than in control plots, supporting early-season carbon gain under high light conditions before canopy closure. This additional carbon gain in spring likely supported reproduction. Eurybia macrophylla only flowered in the heated plots, and both species had some aspect of reproduction that was highest in the +1.7°C treatment. The reduced reproductive effort in the +3.4°C plots was likely due to reduced soil water availability, counteracting positive effects of warming. Global warming might improve fitness of herbaceous species in deciduous forests, mainly by advancing their spring emergence. However, other impacts of global warming such as drier soils in the summer might partly reduce the carbon gain associated with early emergence. © 2015 Botanical Society of America.

  14. Charcoal reflectance reveals early holocene boreal deciduous forests burned at high intensities.

    PubMed

    Hudspith, Victoria A; Belcher, Claire M; Kelly, Ryan; Hu, Feng Sheng

    2015-01-01

    Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180μm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ~10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks.

  15. Physiological responses of three deciduous conifers (Metasequoia glyptostroboides, Taxodium distichum and Larix laricina) to continuous light: adaptive implications for the early Tertiary polar summer.

    PubMed

    Equiza, M Alejandra; Day, Michael E; Jagels, Richard

    2006-03-01

    Polar regions were covered with extensive forests during the Cretaceous and early Tertiary, and supported trees comparable in size and productivity to those of present-day temperate forests. With a winter of total or near darkness and a summer of continuous, low-angle illumination, these temperate, high-latitude forests were characterized by a light regime without a contemporary counterpart. Although maximum irradiances were much lower than at mid-latitudes, the 24-h photoperiod provided similar integrated light flux. Taxodium, Larix and Metasequoia, three genera of deciduous conifers that occurred in paleoarctic wet forests, have extant, closely related descendents. However, the contemporary relative abundance of these genera differs greatly from that in the paleoarctic. To provide insight into attributes that favor competitive success in a continuous-light environment, we subjected saplings of these genera to a natural photoperiod or a 24-h photoperiod and measured gas exchange, chlorophyll fluorescence, non-structural carbohydrate concentrations, biomass production and carbon allocation. Exposure to continuous light significantly decreased photosynthetic capacity and quantum efficiency of photosystem II in Taxodium and Larix, but had minimal influence in Metasequoia. In midsummer, foliar starch concentration substantially increased in both Taxodium and Larix saplings grown in continuous light, which may have contributed to end-product down-regulation of photosynthetic capacity. In contrast, Metasequoia allocated photosynthate to continuous production of new foliar biomass. This difference in carbon allocation may have provided Metasequoia with a two fold advantage in the paleoarctic by minimizing depression of photosynthetic capacity and increasing photosynthetic surface.

  16. Sampling design and required sample size for evaluating contamination levels of 137Cs in Japanese fir needles in a mixed deciduous forest stand in Fukushima, Japan.

    PubMed

    Oba, Yurika; Yamada, Toshihiro

    2017-05-01

    We estimated the sample size (the number of samples) required to evaluate the concentration of radiocesium ( 137 Cs) in Japanese fir (Abies firma Sieb. & Zucc.), 5 years after the outbreak of the Fukushima Daiichi Nuclear Power Plant accident. We investigated the spatial structure of the contamination levels in this species growing in a mixed deciduous broadleaf and evergreen coniferous forest stand. We sampled 40 saplings with a tree height of 150 cm-250 cm in a Fukushima forest community. The results showed that: (1) there was no correlation between the 137 Cs concentration in needles and soil, and (2) the difference in the spatial distribution pattern of 137 Cs concentration between needles and soil suggest that the contribution of root uptake to 137 Cs in new needles of this species may be minor in the 5 years after the radionuclides were released into the atmosphere. The concentration of 137 Cs in needles showed a strong positive spatial autocorrelation in the distance class from 0 to 2.5 m, suggesting that the statistical analysis of data should consider spatial autocorrelation in the case of an assessment of the radioactive contamination of forest trees. According to our sample size analysis, a sample size of seven trees was required to determine the mean contamination level within an error in the means of no more than 10%. This required sample size may be feasible for most sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Seasonal variation of temperature response of respiration in invasive Berberis thunbergii (Japanese barberry) and two co-occurring native understory shrubs in a northeastern US deciduous forest.

    PubMed

    Xu, Cheng-Yuan; Schuster, W S F; Griffin, Kevin L

    2007-10-01

    In the understory of a closed forest, plant growth is limited by light availability, and early leafing is proposed to be an important mechanism of plant invasion by providing a spring C "subsidy" when high light is available. However, studies on respiration, another important process determining plant net C gain, are rare in understory invasive plants. In this study, leaf properties and the temperature response of leaf respiration were compared between invasive Berberis thunbergii, an early leafing understory shrub, and two native shrubs, Kalmia latifolia, a broadleaf evergreen and Vaccinium corymbosum, a late-leafing deciduous species, in an oak-dominated deciduous forest. The seasonal trend of the basal respiration rates (R(0)) and the temperature response coefficient (E(0)), were different among the three shrubs and species-specific negative correlations were observed between R(0) and E(0). All three shrubs showed significant correlation between respiration rate on an area basis (20 degrees C) and leaf N on an area basis. The relationship was attributed to the variation of both leaf N on a mass basis and leaf mass per area (LMA) in B. thunbergii, but to LMA only in K. latifolia and V. corymbosum. After modeling leaf respiration throughout 2004, B. thunbergii displayed much higher annual leaf respiration (mass based) than the two native shrubs, indicating a higher cost per unit of biomass investment. Thus, respiratory properties alone were not likely to lead to C balance advantage of B. thunbergii. Future studies on whole plant C budgets and leaf construction cost are needed to address the C balance advantage in early leafing understory shrubs like B. thunbergii.

  18. Calcium and aluminum cycling in a temperate broadleaved deciduous forest of the eastern USA: relative impacts of tree species, canopy state, and flux type.

    PubMed

    Levia, Delphis F; Shiklomanov, Alexey N; Van Stan, John T; Scheick, Carrie E; Inamdar, Shreeram P; Mitchell, Myron J; McHale, Patrick J

    2015-07-01

    Ca/Al molar ratios are commonly used to assess the extent of aluminum stress in forests. This is among the first studies to quantify Ca/Al molar ratios for stemflow. Ca/Al molar ratios in bulk precipitation, throughfall, stemflow, litter leachate, near-trunk soil solution, and soil water were quantified for a deciduous forest in northeastern MD, USA. Data were collected over a 3-year period. The Ca/Al molar ratios in this study were above the threshold for aluminum stress (<1). Fagus grandifolia Ehrh. (American beech) had a median annual stemflow Ca/Al molar ratio of 15.7, with the leafed and leafless values of 12.4 and 19.2, respectively. The corresponding Ca/Al molar ratios for Liriodendron tulipifera L. (yellow poplar) were 11.9 at the annual time scale and 11.9 and 13.6 for leafed and leafless periods, respectively. Bayesian statistical analysis showed no significant effect of canopy state (leafed, leafless) on Ca/Al molar ratios. DOC was consistently an important predictor of calcium, aluminum, and Ca/Al ratios. pH was occasionally an important predictor of calcium and aluminum concentrations, but was not a good predictor of Ca/Al ratio in any of the best-fit models (of >500 examined). This study supplies new data on Ca/Al molar ratios for stemflow from two common deciduous tree species. Future work should examine Ca/Al molar ratios in stemflow of other species and examine both inorganic and organic aluminum species to better gauge the potential for, and understand the dynamics of, aluminum toxicity in the proximal area around tree boles.

  19. Drought-related leaf phenology in tropical forests - Insights from a stochastic eco-hydrological approach

    NASA Astrophysics Data System (ADS)

    Vico, G.; Feng, X.; Dralle, D.; Thompson, S. E.; Manzoni, S.

    2016-12-01

    Drought deciduousness is a common phenological strategy to cope with water shortages during periodic dry spells or during the dry season in tropical forests. On one hand, shedding leaves allows avoiding drought stress, but implies leaf construction costs that evergreen species need to sustain less frequently. On the other hand, maintaining leaves during dry periods requires stable water sources, traits enabling leaves to remain active at low water potential, and carbon stores to sustain respiration costs in periods with little carbon uptake. Which of these strategies is the most competitive ultimately depends on the balance of carbon costs and gains in the long-term. In turn, this balance is affected by the hydro-climatic conditions, in terms of both length of the dry season and random rainfall occurrences during the wet season. To address the question as to which hydro-climatic conditions favor drought-deciduous vs. evergreen leaf habit in tropical forests, we develop a stochastic eco-hydrological framework that provides probability density functions of long-term carbon gain in tropical trees with a range of phenological strategies. From these distributions we compute the long-term mean carbon gain and use it as a measure of fitness and thus reproductive success. Finally, this measure is used to assess which phenological strategies are evolutionarily stable, providing an objective criterion to predict how likely a species with a certain phenological strategy is to invade a community dominated but another strategy. In general, we find that deciduous habit is evolutionary stable in more unpredictable climates for a given total rainfall, and in drier climates. However, a minimum annual rainfall is required for any strategy to have a positive carbon gain.

  20. The hydrology of three high-altitude forests in Central Himalaya, India: a reconnaissance study

    NASA Astrophysics Data System (ADS)

    Negi, G. C. S.; Rikhari, H. C.; Garkoti, S. C.

    1998-02-01

    In this preliminary study the partitioning of rain-water into various components of the hydrological cycle in three high-altitude forests of contrasting tree physiognomies (namely, Aesculus indica, Quercus semecarpifolia and Abies pindrow) were studied in the Nandadevi Biosphere Reserve, Central Himalaya, India. The results are compared with the hydrological characteristics of low-altitude forests of this region. The study has indicated a significant role of tree physiognomy with regard to rainfall partitioning into the various components of the hydrological cycle. It is suggested that A. pindrow (an evergreen tree) should be considered superior to A. indica (a deciduous tree) with regard to soil and water conservation in this region. This work is of relevance to land management programmes pertaining to afforestation, logging and regeneration.

Top