Sample records for forest ecosystem dynamics

  1. The 1990 forest ecosystem dynamics multisensor aircraft campaign

    NASA Technical Reports Server (NTRS)

    Williams, Darrel L.; Ranson, K. Jon

    1991-01-01

    The overall objective of the Forest Ecosystem Dynamics (FED) research activity is to develop a better understanding of the dynamics of forest ecosystem evolution over a variety of temporal and spatial scales. Primary emphasis is being placed on assessing the ecosystem dynamics associated with the transition zone between northern hardwood forests in eastern North America and the predominantly coniferous forests of the more northerly boreal biome. The approach is to combine ground-based, airborne, and satellite observations with an integrated forest pattern and process model which is being developed to link together existing models of forest growth and development, soil processes, and radiative transfer.

  2. Available fuel dynamics in nine contrasting forest ecosystems in North America

    Treesearch

    Soung-Ryoul Ryu; Jiquan Chen; Thomas R. Crow; Sari C. Saunders

    2004-01-01

    Available fuel and its dynamics, both of which affect fire behavior in forest ecosystems, are direct products of ecosystem production, decomposition, and disturbances. Using published ecosystem models and equations, we developed a simulation model to evaluate the effects of dynamics of aboveground net primary production (ANPP), carbon allocation, residual slash,...

  3. A dynamic organic soil biogeochemical model for simulating the effects of wildfire on soil environmental conditions and carbon dynamics of black spruce forests

    Treesearch

    Shuhua Yi; A. David McGuire; Eric Kasischke; Jennifer Harden; Kristen Manies; Michelle Mack; Merritt Turetsky

    2010-01-01

    Ecosystem models have not comprehensively considered how interactions among fire disturbance, soil environmental conditions, and biogeochemical processes affect ecosystem dynamics in boreal forest ecosystems. In this study, we implemented a dynamic organic soil structure in the Terrestrial Ecosystem Model (DOS-TEM) to investigate the effects of fire on soil temperature...

  4. Long-term stream discharge and chemistry observations reveal unexpected ecosystem dynamics: Coweeta Watershed 7 clearcut manipulation

    NASA Astrophysics Data System (ADS)

    Jackson, C. R.; Webster, J. R.; Knoepp, J. D.; Elliott, K.; Emanuel, R. E.; Miniat, C.

    2017-12-01

    In the 1970s, the Coweeta Hydrologic Laboratory Watershed 7 was clearcut from ridge to ridge to observe how far the perturbation would move the ecosystem and how quickly the ecosystem would return to its pre-disturbance state. Nearly 40 years of observations of streamflow and DIN export demonstrate that this view of ecosystem resistance and resilience was too simplistic. Forest disturbance triggered a chain of ecological dynamics that are still evolving. For the first 12 years following watershed road building, forest harvest, and forest regeneration, streamflows and DIN concentrations temporarily increased and then appeared to return to pre-harvest behavior. Thereupon the ecosystem trajectory diverged from expectations. Unexpected successional changes in forest composition interacted with drought cycles, climate change effects, and forest changes due to pests and diseases to push the biogeochemical system into an alternate state featuring persistently high DIN concentrations and hydrological rather than biological control of DIN exports. Thirty years after harvest, these forest changes also increased evapotranspiration and reduced water yields. These ecosystem dynamics were only revealed because of long-term monitoring, and they inspired new research to elucidate mechanisms behind these dynamics. We conclude that long-term approaches are critical for understanding ecosystem dynamics and responses to disturbances.

  5. Northern Forest Ecosystem Dynamics Using Coupled Models and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Sun, G.; Knox, R. G.; Levine, E. R.; Weishampel, J. F.; Fifer, S. T.

    1999-01-01

    Forest ecosystem dynamics modeling, remote sensing data analysis, and a geographical information system (GIS) were used together to determine the possible growth and development of a northern forest in Maine, USA. Field measurements and airborne synthetic aperture radar (SAR) data were used to produce maps of forest cover type and above ground biomass. These forest attribute maps, along with a conventional soils map, were used to identify the initial conditions for forest ecosystem model simulations. Using this information along with ecosystem model results enabled the development of predictive maps of forest development. The results obtained were consistent with observed forest conditions and expected successional trajectories. The study demonstrated that ecosystem models might be used in a spatial context when parameterized and used with georeferenced data sets.

  6. An individual-based process model to simulate landscape-scale forest ecosystem dynamics

    Treesearch

    Rupert Seidl; Werner Rammer; Robert M. Scheller; Thomas Spies

    2012-01-01

    Forest ecosystem dynamics emerges from nonlinear interactions between adaptive biotic agents (i.e., individual trees) and their relationship with a spatially and temporally heterogeneous abiotic environment. Understanding and predicting the dynamics resulting from these complex interactions is crucial for the sustainable stewardship of ecosystems, particularly in the...

  7. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems

    Treesearch

    Aaron M. Ellison; Michael S. Bank; Barton D. Clinton; Elizabeth A. Colburn; Katherine Elliott; Chelcy Rae Ford; David R. Foster; Brian D. Kloeppel; Jennifer D. Knoepp; Gary M. Lovett; Jacqueline Mohan; David A. Orwig; Nicholas L. Rodenhouse; William V. Sobczak; Kristina A. Stinson; Jeffrey K. Stone; Christopher M. Swan; Jill Thompson; Betsy Von Holle; Jackson R. Webster

    2005-01-01

    In many forested ecosystems, the architecture and functional ecology of certain tree species define forest structure and their species-specific traits control ecosystem dynamics. Such foundation tree species are declining throughout the world due to introductions and outbreaks of pests and pathogens, selective removal of individual taxa, and over-harvesting. Through a...

  8. Ponderosa pine forest structure and northern goshawk reproduction: Response to Beier et al

    Treesearch

    Richard T. Reynolds; Douglas A. Boyce; Russell T. Graham

    2012-01-01

    Ecosystem-based forest management requires long planning horizons to incorporate forest dynamics - changes resulting from vegetation growth and succession and the periodic resetting of these by natural and anthropogenic disturbances such as fire, wind, insects, and timber harvests. Given these dynamics, ecosystem-based forest management plans should specify desired...

  9. Disturbance dynamics of forested ecosystems

    Treesearch

    John A. Stanturf

    2004-01-01

    Forested ecosystems are dynamic, subject to natural developmental processes as well as natural and anthropogenic stresses and disturbances. Degradation is a related term. for lowered productive capacity from changes to forest structure of function (FAO. 2001). Degradation is not synonymous with disturbance, however; disturbance becomes degradation when natural...

  10. Water and the Ecosystems of the Luquillo Experimental Forest

    Treesearch

    Ariel E. Lugo

    1986-01-01

    Water dynamics, water balance, and water requirements of the ecosystems and aquatic organisms of the Luquillo Experimental Forest (aka Caribbean National Forest) are reviewed. Objective is to draw attention to research needs and to highlight importance of freshwater allocations to natural ecosystems.

  11. Temporal dynamics of phosphorus during aquatic and terrestrial litter decomposition in an alpine forest.

    PubMed

    Peng, Yan; Yang, Wanqin; Yue, Kai; Tan, Bo; Huang, Chunping; Xu, Zhenfeng; Ni, Xiangyin; Zhang, Li; Wu, Fuzhong

    2018-06-17

    Plant litter decomposition in forested soil and watershed is an important source of phosphorus (P) for plants in forest ecosystems. Understanding P dynamics during litter decomposition in forested aquatic and terrestrial ecosystems will be of great importance for better understanding nutrient cycling across forest landscape. However, despite massive studies addressing litter decomposition have been carried out, generalizations across aquatic and terrestrial ecosystems regarding the temporal dynamics of P loss during litter decomposition remain elusive. We conducted a two-year field experiment using litterbag method in both aquatic (streams and riparian zones) and terrestrial (forest floors) ecosystems in an alpine forest on the eastern Tibetan Plateau. By using multigroup comparisons of structural equation modeling (SEM) method with different litter mass-loss intervals, we explicitly assessed the direct and indirect effects of several biotic and abiotic drivers on P loss across different decomposition stages. The results suggested that (1) P concentration in decomposing litter showed similar patterns of early increase and later decrease across different species and ecosystems types; (2) P loss shared a common hierarchy of drivers across different ecosystems types, with litter chemical dynamics mainly having direct effects but environment and initial litter quality having both direct and indirect effects; (3) when assessing at the temporal scale, the effects of initial litter quality appeared to increase in late decomposition stages, while litter chemical dynamics showed consistent significant effects almost in all decomposition stages across aquatic and terrestrial ecosystems; (4) microbial diversity showed significant effects on P loss, but its effects were lower compared with other drivers. Our results highlight the importance of including spatiotemporal variations and indicate the possibility of integrating aquatic and terrestrial decomposition into a common framework for future construction of models that account for the temporal dynamics of P in decomposing litter. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Disturbance dynamics and ecosystem-based forest management

    Treesearch

    Kalev Jogiste; W. Keith Moser; Malle Mandre

    2005-01-01

    Ecosystem-based management is intended to balance ecological, social and economic values of sustainable resource management. The desired future state of forest ecosystem is usually defined through productivity, biodiversity, stability or other terms. However, ecosystem-based management may produce an unbalanced emphasis on different components. Although ecosystem-based...

  13. Landscape context and long-term tree influences shape the dynamics of forest-meadow ecotones in mountain ecosystems

    Treesearch

    R.E. Haugo; C.B. Halpern; J.D. Bakker

    2011-01-01

    Forest-meadow ecotones are prominent and dynamic features of mountain ecosystems. Understanding how vegetation changes are shaped by long-term interactions with trees and are mediated by the physical environment is critical to predicting future trends in biological diversity across these landscapes. We examined 26 yr of vegetation change (1983-2009) across 20 forest-...

  14. Decadal-Scale Reduction in Forest Net Ecosystem Production Following Insect Defoliation Contrasts with Short-Term Impacts of Prescribed Fires

    Treesearch

    Kenneth L. Clark; Heidi J. Renninger; Nicholas Skowronski; Michael Gallagher; Karina V.R.  Schäfer

    2018-01-01

    Understanding processes underlying forest carbon dynamics is essential for accurately predicting the outcomes of non-stand-replacing disturbance in intermediate-age forests. We quantified net ecosystem production (NEP), aboveground net primary production (ANPP), and the dynamics of major carbon (C) pools before and during the decade following invasive insect...

  15. Using DCOM to support interoperability in forest ecosystem management decision support systems

    Treesearch

    W.D. Potter; S. Liu; X. Deng; H.M. Rauscher

    2000-01-01

    Forest ecosystems exhibit complex dynamics over time and space. Management of forest ecosystems involves the need to forecast future states of complex systems that are often undergoing structural changes. This in turn requires integration of quantitative science and engineering components with sociopolitical, regulatory, and economic considerations. The amount of data...

  16. Dynamics of ecosystem services provided by subtropical ...

    EPA Pesticide Factsheets

    The trends in the provision of ecosystem services during restoration and succession of subtropical forests and plantations were quantified, in terms of both receiver and donor values, based on a case study of a 3-step secondary succession series that included a 400-year-old subtropical forest and a 23-year history of growth on 3 subtropical forest plantations in Southeastern China. The ‘People's Republic of China Forestry Standard: Forest Ecosystem Service Valuation Norms’ was revised and applied to quantify the receiver values of ecosystem services, which were then compared with the emergy-based, donor values of the services. The results revealed that the efficiencies of subtropical forests and plantations in providing ecosystem services were 2 orders of magnitude higher than similar services provided by the current China economic system, and these efficiencieskept increasing over the course of succession. As a result, we conclude that afforestation is an efficient way to accelerate both the ability and efficiency of subtropical forests to provide ecosystem services. This paper is significant because it examines the dynamics of the provision of ecosystem services by forests over a succession series that spans 400 years. The paper also examines the rate of increase of services during forest restoration over a period of 23 years. The emergy used in ecosystem services provision is compared to the provision of similar services by economic means in the Chinese e

  17. A walk on the wild side: Disturbance dynamics and the conservation and management of European mountain forest ecosystems.

    PubMed

    Kulakowski, Dominik; Seidl, Rupert; Holeksa, Jan; Kuuluvainen, Timo; Nagel, Thomas A; Panayotov, Momchil; Svoboda, Miroslav; Thorn, Simon; Vacchiano, Giorgio; Whitlock, Cathy; Wohlgemuth, Thomas; Bebi, Peter

    2017-03-15

    Mountain forests are among the most important ecosystems in Europe as they support numerous ecological, hydrological, climatic, social, and economic functions. They are unique relatively natural ecosystems consisting of long-lived species in an otherwise densely populated human landscape. Despite this, centuries of intensive forest management in many of these forests have eclipsed evidence of natural processes, especially the role of disturbances in long-term forest dynamics. Recent trends of land abandonment and establishment of protected forests have coincided with a growing interest in managing forests in more natural states. At the same time, the importance of past disturbances highlighted in an emerging body of literature, and recent increasing disturbances due to climate change are challenging long-held views of dynamics in these ecosystems. Here, we synthesize aspects of this Special Issue on the ecology of mountain forest ecosystems in Europe in the context of broader discussions in the field, to present a new perspective on these ecosystems and their natural disturbance regimes. Most mountain forests in Europe, for which long-term data are available, show a strong and long-term effect of not only human land use but also of natural disturbances that vary by orders of magnitude in size and frequency. Although these disturbances may kill many trees, the forests themselves have not been threatened. The relative importance of natural disturbances, land use, and climate change for ecosystem dynamics varies across space and time. Across the continent, changing climate and land use are altering forest cover, forest structure, tree demography, and natural disturbances, including fires, insect outbreaks, avalanches, and wind disturbances. Projected continued increases in forest area and biomass along with continued warming are likely to further promote forest disturbances. Episodic disturbances may foster ecosystem adaptation to the effects of ongoing and future climatic change. Increasing disturbances, along with trends of less intense land use, will promote further increases in coarse woody debris, with cascading positive effects on biodiversity, edaphic conditions, biogeochemical cycles, and increased heterogeneity across a range of spatial scales. Together, this may translate to disturbance-mediated resilience of forest landscapes and increased biodiversity, as long as climate and disturbance regimes remain within the tolerance of relevant species. Understanding ecological variability, even imperfectly, is integral to anticipating vulnerabilities and promoting ecological resilience, especially under growing uncertainty. Allowing some forests to be shaped by natural processes may be congruent with multiple goals of forest management, even in densely settled and developed countries.

  18. The encyclopedia of southern Appalachian forest ecosystems: A prototype of an online scientific knowledge management system

    Treesearch

    Deborah K. Kennard; H. Michael Rauscher; Patricia A. Flebbe; Daniel L. Schmoldt; William G. Hubbard; J. Bryan Jordin; William Milnor

    2003-01-01

    The Encyclopedia of Southern Appalachian Forest Ecosystems (ESAFE), a hyperdocument-based encyclopedia system available on the Internet, provides an organized synthesis of existing research on the management and ecology of Southern Appalachian forests ecosystems. The encyclopedia is dynamic, so that new or revised content can be submitted directly through the Internet...

  19. Soil water storage and daily dynamics of typical ecosystems in Heihe Watershed, China

    NASA Astrophysics Data System (ADS)

    Huang, Y.

    2017-12-01

    Soil water plays a key role in terrestrial ecosystems by controlling exchange processes among soil, vegetation, and atmosphere. The spatiotemporal distribution and dynamics of soil water storage (SWS) may provide information on the exchange of soil moisture among landscapes and between groundwater and surface water. The Heihe River Watershed (HRW) is a typical inland river basin located in the arid region of Northwestern China. Based on the soil water data automatically recorded every 30 min in 18 sites during the Heihe Water Allied Telemetry Experimental Research, the soil water dynamic of six typical ecosystems, i.e., alpine meadow, mountain coniferous forest, mountain steppe, temperate desert, riparian forest, and cropland, were analyzed. The 2m-depth soil water storage of cropland in growing season was highest, followed by riparian forest, alpine meadow, mountain coniferous forest, and mountain steppe, and that of temperate desert was the lowest. For alpine meadow, mountain coniferous forest, and desert ecosystems, the seasonal fluctuation of soil water content was obvious in 0-100cm depth but not in 100-200cm depth. For mountain steppe, cropland, and riparian forest ecosystems, there were obviously seasonal fluctuation in soil water content in all 0-200cm depth. In addition, the frequency distributions of 30-min soil water contents of the six ecosystems were different greatly. Together with rainfall, the soil water content was greatly affected by irrigation and seasonal frozen.

  20. The impact of human-environment interactions on the stability of forest-grassland mosaic ecosystems

    PubMed Central

    Innes, Clinton; Anand, Madhur; Bauch, Chris T.

    2013-01-01

    Forest-grassland mosaic ecosystems can exhibit alternative stables states, whereby under the same environmental conditions, the ecosystem could equally well reside either in one state or another, depending on the initial conditions. We develop a mathematical model that couples a simplified forest-grassland mosaic model to a dynamic model of opinions about conservation priorities in a population, based on perceptions of ecosystem rarity. Weak human influence increases the region of parameter space where alternative stable states are possible. However, strong human influence precludes bistability, such that forest and grassland either co-exist at a single, stable equilibrium, or their relative abundance oscillates. Moreover, a perturbation can shift the system from a stable state to an oscillatory state. We conclude that human-environment interactions can qualitatively alter the composition of forest-grassland mosaic ecosystems. The human role in such systems should be viewed as dynamic, responsive element rather than as a fixed, unchanging entity. PMID:24048359

  1. A walk on the wild side: Disturbance dynamics and the conservation and management of European mountain forest ecosystems☆

    PubMed Central

    Kulakowski, Dominik; Seidl, Rupert; Holeksa, Jan; Kuuluvainen, Timo; Nagel, Thomas A.; Panayotov, Momchil; Svoboda, Miroslav; Thorn, Simon; Vacchiano, Giorgio; Whitlock, Cathy; Wohlgemuth, Thomas; Bebi, Peter

    2017-01-01

    Mountain forests are among the most important ecosystems in Europe as they support numerous ecological, hydrological, climatic, social, and economic functions. They are unique relatively natural ecosystems consisting of long-lived species in an otherwise densely populated human landscape. Despite this, centuries of intensive forest management in many of these forests have eclipsed evidence of natural processes, especially the role of disturbances in long-term forest dynamics. Recent trends of land abandonment and establishment of protected forests have coincided with a growing interest in managing forests in more natural states. At the same time, the importance of past disturbances highlighted in an emerging body of literature, and recent increasing disturbances due to climate change are challenging long-held views of dynamics in these ecosystems. Here, we synthesize aspects of this Special Issue on the ecology of mountain forest ecosystems in Europe in the context of broader discussions in the field, to present a new perspective on these ecosystems and their natural disturbance regimes. Most mountain forests in Europe, for which long-term data are available, show a strong and long-term effect of not only human land use but also of natural disturbances that vary by orders of magnitude in size and frequency. Although these disturbances may kill many trees, the forests themselves have not been threatened. The relative importance of natural disturbances, land use, and climate change for ecosystem dynamics varies across space and time. Across the continent, changing climate and land use are altering forest cover, forest structure, tree demography, and natural disturbances, including fires, insect outbreaks, avalanches, and wind disturbances. Projected continued increases in forest area and biomass along with continued warming are likely to further promote forest disturbances. Episodic disturbances may foster ecosystem adaptation to the effects of ongoing and future climatic change. Increasing disturbances, along with trends of less intense land use, will promote further increases in coarse woody debris, with cascading positive effects on biodiversity, edaphic conditions, biogeochemical cycles, and increased heterogeneity across a range of spatial scales. Together, this may translate to disturbance-mediated resilience of forest landscapes and increased biodiversity, as long as climate and disturbance regimes remain within the tolerance of relevant species. Understanding ecological variability, even imperfectly, is integral to anticipating vulnerabilities and promoting ecological resilience, especially under growing uncertainty. Allowing some forests to be shaped by natural processes may be congruent with multiple goals of forest management, even in densely settled and developed countries. PMID:28860677

  2. Managing ecosystems for forest health: An approach and the effects on uses and values

    Treesearch

    Chadwick D. Oliver; Dennis E. Ferguson; Alan E. Harvey; Herbert S. Malany; John M. Mandzak; Robert W. Mutch

    1994-01-01

    Forest health is most appropriately based on the scientific paradigm of dynamic, constantly changing forest ecosystems. Many forests in the Inland West now support high levels of insect infestations, disease epidemics, fire susceptibilities, and imbalances in stand structures and habitats because of natural processes and past management practices. Impending,...

  3. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Smith, B.; Wårlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S.

    2013-11-01

    The LPJ-GUESS dynamic vegetation model uniquely combines an individual- and patch-based representation of vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. We present an updated version that includes plant and soil N dynamics, analysing the implications of accounting for C-N interactions on predictions and performance of the model. Stand structural dynamics and allometric scaling of tree growth suggested by global databases of forest stand structure and development were well-reproduced by the model in comparison to an earlier multi-model study. Accounting for N cycle dynamics improved the goodness-of-fit for broadleaved forests. N limitation associated with low N mineralisation rates reduces productivity of cold-climate and dry-climate ecosystems relative to mesic temperate and tropical ecosystems. In a model experiment emulating free-air CO2 enrichment (FACE) treatment for forests globally, N-limitation associated with low N mineralisation rates of colder soils reduces CO2-enhancement of NPP for boreal forests, while some temperate and tropical forests exhibit increased NPP enhancement. Under a business-as-usual future climate and emissions scenario, ecosystem C storage globally was projected to increase by c. 10%; additional N requirements to match this increasing ecosystem C were within the high N supply limit estimated on stoichiometric grounds in an earlier study. Our results highlight the importance of accounting for C-N interactions not only in studies of global terrestrial C cycling, but to understand underlying mechanisms on local scales and in different regional contexts.

  4. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Smith, B.; Wårlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S.

    2014-04-01

    The LPJ-GUESS dynamic vegetation model uniquely combines an individual- and patch-based representation of vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. We present an updated version that includes plant and soil N dynamics, analysing the implications of accounting for C-N interactions on predictions and performance of the model. Stand structural dynamics and allometric scaling of tree growth suggested by global databases of forest stand structure and development were well reproduced by the model in comparison to an earlier multi-model study. Accounting for N cycle dynamics improved the goodness of fit for broadleaved forests. N limitation associated with low N-mineralisation rates reduces productivity of cold-climate and dry-climate ecosystems relative to mesic temperate and tropical ecosystems. In a model experiment emulating free-air CO2 enrichment (FACE) treatment for forests globally, N limitation associated with low N-mineralisation rates of colder soils reduces CO2 enhancement of net primary production (NPP) for boreal forests, while some temperate and tropical forests exhibit increased NPP enhancement. Under a business-as-usual future climate and emissions scenario, ecosystem C storage globally was projected to increase by ca. 10%; additional N requirements to match this increasing ecosystem C were within the high N supply limit estimated on stoichiometric grounds in an earlier study. Our results highlight the importance of accounting for C-N interactions in studies of global terrestrial N cycling, and as a basis for understanding mechanisms on local scales and in different regional contexts.

  5. Temporal carbon dynamics of forests in Washington, US: implications for ecological theory and carbon management

    Treesearch

    Crystal L. Raymond; Donald McKenzie

    2014-01-01

    We quantified carbon (C) dynamics of forests in Washington, US using theoretical models of C dynamics as a function of forest age. We fit empirical models to chronosequences of forest inventory data at two scales: a coarse-scale ecosystem classification (ecosections) and forest types (potential vegetation) within ecosections. We hypothesized that analysis at the finer...

  6. Past and future effects of atmospheric deposition on the forest ecosystem at the Hubbard Brook Experimental Forest: simulations with the dynamic model ForSAFE

    Treesearch

    Salim Belyazid; Scott Bailey; Harald Sverdrup

    2010-01-01

    The Hubbard Brook Ecosystem Study presents a unique opportunity for studying long-term ecosystem responses to changes in anthropogenic factors. Following industrialisation and the intensification of agriculture, the Hubbard Brook Experimental Forest (HBEF) has been subject to increased loads of atmospheric deposition, particularly sulfur and nitrogen. The deposition of...

  7. Observations and assessment of forest carbon dynamics following disturbance in North America

    Treesearch

    S. J. Goetz; B. Bond-Lamberty; B. E. Law; J. A. Hicke; C. Huang; R. A. Houghton; S. McNulty; T. O’Halloran; M. Harmon; A. J. H. Meddens; E. M. Pfeifer; D. Mildrexler; E. S. Kasischke

    2012-01-01

    Disturbance processes of various types substantially modify ecosystem carbon dynamics both temporally and spatially, and constitute a fundamental part of larger landscape-level dynamics. Forests typically lose carbon for several years to several decades following severe disturbance, but our understanding of the duration and dynamics of post-disturbance forest carbon...

  8. Fine Root Productivity and Dynamics on a Forested Floodplain in South Carolina

    Treesearch

    Terrell T. Baker; William Conner; H. B. Graeme Lockaby; John A. Stanturf

    2001-01-01

    The highly dynamic, fine root component of forested wetland ecosystems fine root dynamics is a challenging endeavor in any system, but the difficulties are particularly evident in forested floodplains where frequent hydrologic fluctuations directly influence fine root dynamics. Fine root (53 mm) biomass, production, and turnover were estimated for three soils...

  9. Integrating a process-based ecosystem model with Landsat imagery to assess impacts of forest disturbance on terrestrial carbon dynamics: Case studies in Alabama and Mississippi

    USDA-ARS?s Scientific Manuscript database

    Forest ecosystems in the southern United States are dramatically altered by three major 26 disturbances: timber harvesting, hurricane, and permanent land conversion. Understanding and quantifying effects of disturbance on forest carbon, nitrogen, and water cycles is critical for sustainable forest m...

  10. Ecosystem and decomposer effects on litter dynamics along an old field to old-growth forest successional gradient

    NASA Astrophysics Data System (ADS)

    Mayer, Paul M.

    2008-03-01

    Identifying the biotic (e.g. decomposers, vegetation) and abiotic (e.g. temperature, moisture) mechanisms controlling litter decomposition is key to understanding ecosystem function, especially where variation in ecosystem structure due to successional processes may alter the strength of these mechanisms. To identify these controls and feedbacks, I measured mass loss and N flux in herbaceous, leaf, and wood litter along a successional gradient of ecosystem types (old field, transition forest, old-growth forest) while manipulating detritivore access to litter. Ecosystem type, litter type, and decomposers contributed directly and interactively to decomposition. Litter mass loss and N accumulation was higher while litter C:N remained lower in old-growth forests than in either old fields or transition forest. Old-growth forests influenced litter dynamics via microclimate (coolest and wettest) but also, apparently, through a decomposer community adapted to consuming the large standing stocks of leaf litter, as indicated by rapid leaf litter loss. In all ecosystem types, mass loss of herbaceous litter was greater than leaf litter which, in turn was greater than wood. However, net N loss from wood litter was faster than expected, suggesting localized N flux effects of wood litter. Restricting detritivore access to litter reduced litter mass loss and slowed the accumulation of N in litter, suggesting that macro-detritivores affect both physical and chemical characteristics of litter through selective grazing. These data suggest that the distinctive litter loss rates and efficient N cycling observed in old-growth forest ecosystems are not likely to be realized soon after old fields are restored to forested ecosystems.

  11. DRAINMOD-FOREST: Integrated modeling of hydrology, soil carbon and nitrogen dynamics, and plant growth for drained forests

    Treesearch

    Shiying Tian; Mohamed A. Youssef; R. Wayne Skaggs; Devendra M. Amatya; G.M. Chescheir

    2012-01-01

    We present a hybrid and stand-level forest ecosystem model, DRAINMOD-FOREST, for simulating the hydrology, carbon (C) and nitrogen (N) dynamics, and tree growth for drained forest lands under common silvicultural practices. The model was developed by linking DRAINMOD, the hydrological model, and DRAINMOD-N II, the soil C and N dynamics model, to a forest growth model,...

  12. Dynamics of novel forests of Castilla elastica in Puerto Rico: from species to ecosystems

    Treesearch

    Jessica Fonseca da Silva

    2015-01-01

    Novel forests (NFs)—forests that contain a combination of introduced and native species—are a consequence of intense anthropogenic disturbances and the natural resilience of disturbed ecosystems. The extent to which NFs have similar forest function as comparable native secondary forests is a matter of debate in the scientific community. Little is known about the...

  13. Dynamics of Ecosystem Services during Forest Transitions in Reventazón, Costa Rica.

    PubMed

    Vallet, Améline; Locatelli, Bruno; Levrel, Harold; Brenes Pérez, Christian; Imbach, Pablo; Estrada Carmona, Natalia; Manlay, Raphaël; Oszwald, Johan

    2016-01-01

    The forest transition framework describes the temporal changes of forest areas with economic development. A first phase of forest contraction is followed by a second phase of expansion once a turning point is reached. This framework does not differentiate forest types or ecosystem services, and describes forests regardless of their contribution to human well-being. For several decades, deforestation in many tropical regions has degraded ecosystem services, such as watershed regulation, while increasing provisioning services from agriculture, for example, food. Forest transitions and expansion have been observed in some countries, but their consequences for ecosystem services are often unclear. We analyzed the implications of forest cover change on ecosystem services in Costa Rica, where a forest transition has been suggested. A review of literature and secondary data on forest and ecosystem services in Costa Rica indicated that forest transition might have led to an ecosystem services transition. We modeled and mapped the changes of selected ecosystem services in the upper part of the Reventazón watershed and analyzed how supply changed over time in order to identify possible transitions in ecosystem services. The modeled changes of ecosystem services is similar to the second phase of a forest transition but no turning point was identified, probably because of the limited temporal scope of the analysis. Trends of provisioning and regulating services and their tradeoffs were opposite in different spatial subunits of our study area, which highlights the importance of scale in the analysis of ecosystem services and forest transitions. The ecosystem services transition framework proposed in this study is useful for analyzing the temporal changes of ecosystem services and linking socio-economic drivers to ecosystem services demand at different scales.

  14. Dynamics of Ecosystem Services during Forest Transitions in Reventazón, Costa Rica

    PubMed Central

    Vallet, Améline; Locatelli, Bruno; Levrel, Harold; Brenes Pérez, Christian; Imbach, Pablo; Estrada Carmona, Natalia; Manlay, Raphaël; Oszwald, Johan

    2016-01-01

    The forest transition framework describes the temporal changes of forest areas with economic development. A first phase of forest contraction is followed by a second phase of expansion once a turning point is reached. This framework does not differentiate forest types or ecosystem services, and describes forests regardless of their contribution to human well-being. For several decades, deforestation in many tropical regions has degraded ecosystem services, such as watershed regulation, while increasing provisioning services from agriculture, for example, food. Forest transitions and expansion have been observed in some countries, but their consequences for ecosystem services are often unclear. We analyzed the implications of forest cover change on ecosystem services in Costa Rica, where a forest transition has been suggested. A review of literature and secondary data on forest and ecosystem services in Costa Rica indicated that forest transition might have led to an ecosystem services transition. We modeled and mapped the changes of selected ecosystem services in the upper part of the Reventazón watershed and analyzed how supply changed over time in order to identify possible transitions in ecosystem services. The modeled changes of ecosystem services is similar to the second phase of a forest transition but no turning point was identified, probably because of the limited temporal scope of the analysis. Trends of provisioning and regulating services and their tradeoffs were opposite in different spatial subunits of our study area, which highlights the importance of scale in the analysis of ecosystem services and forest transitions. The ecosystem services transition framework proposed in this study is useful for analyzing the temporal changes of ecosystem services and linking socio-economic drivers to ecosystem services demand at different scales. PMID:27390869

  15. Preserving nature in forested wilderness areas and national parks

    Treesearch

    Miron L. Heinselman

    1971-01-01

    The natural forest ecosystems of some of our national parks and wilderness areas are endangered by subtle ecological changes primarily because we have failed to understand the dynamic nature of these ecosystems and because protection programs frequently have excluded the very factors that produce natural plant and animal communities. Maintaining natural ecosystems...

  16. Emerald ash borer aftermath forests: the future of ash ecosystems

    Treesearch

    Kathleen S. Knight; Daniel A. Herms; John Cardina; Robert Long; Kamal J.K. Gandhi; Catharine P. Herms

    2011-01-01

    The effects of emerald ash borer (EAB) (Agrilus planipennis) on forest ecosystems are being studied through a collaborative research program between the U.S. Forest Service and The Ohio State University. We are monitoring ash demographics, understory light availability, EAB population dynamics, native and non-native plants, and effects of ash...

  17. Preface to spatial and temporal reflections of disturbances in boreal and temperate forests

    Treesearch

    Kalev Jogiste; Timo Kuuluvainen; W. Keith Moser

    2009-01-01

    Disturbances are a natural part of all ecosystems and they are important for the maintenance of biodiversity in forest ecosystems (Attiwill 1994). Periodicity and intensity of disturbances shape the structural characteristics and dynamics of forest landscape mosaics (Turner et al. 2001). Natural disturbances increase habitat availability and diversity, particularly for...

  18. Regional processes in mangrove ecosystems: Spatial scaling relationships, biomass, and turnover rates following catastrophic disturbance

    USGS Publications Warehouse

    Ward, G.A.; Smith, T. J.; Whelan, K.R.T.; Doyle, T.W.

    2006-01-01

    Physiological processes and local-scale structural dynamics of mangroves are relatively well studied. Regional-scale processes, however, are not as well understood. Here we provide long-term data on trends in structure and forest turnover at a large scale, following hurricane damage in mangrove ecosystems of South Florida, U.S.A. Twelve mangrove vegetation plots were monitored at periodic intervals, between October 1992 and March 2005. Mangrove forests of this region are defined by a -1.5 scaling relationship between mean stem diameter and stem density, mirroring self-thinning theory for mono-specific stands. This relationship is reflected in tree size frequency scaling exponents which, through time, have exhibited trends toward a community average that is indicative of full spatial resource utilization. These trends, together with an asymptotic standing biomass accumulation, indicate that coastal mangrove ecosystems do adhere to size-structured organizing principles as described for upland tree communities. Regenerative dynamics are different between areas inside and outside of the primary wind-path of Hurricane Andrew which occurred in 1992. Forest dynamic turnover rates, however, are steady through time. This suggests that ecological, more-so than structural factors, control forest productivity. In agreement, the relative mean rate of biomass growth exhibits an inverse relationship with the seasonal range of porewater salinities. The ecosystem average in forest scaling relationships may provide a useful investigative tool of mangrove community biomass relationships, as well as offer a robust indicator of general ecosystem health for use in mangrove forest ecosystem management and restoration. ?? Springer 2006.

  19. Modelling carbon fluxes of forest and grassland ecosystems in Western Europe using the CARAIB dynamic vegetation model: evaluation against eddy covariance data.

    NASA Astrophysics Data System (ADS)

    Henrot, Alexandra-Jane; François, Louis; Dury, Marie; Hambuckers, Alain; Jacquemin, Ingrid; Minet, Julien; Tychon, Bernard; Heinesch, Bernard; Horemans, Joanna; Deckmyn, Gaby

    2015-04-01

    Eddy covariance measurements are an essential resource to understand how ecosystem carbon fluxes react in response to climate change, and to help to evaluate and validate the performance of land surface and vegetation models at regional and global scale. In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), vegetation dynamics and carbon fluxes of forest and grassland ecosystems simulated by the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) are evaluated and validated by comparison of the model predictions with eddy covariance data. Here carbon fluxes (e.g. net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RECO)) and evapotranspiration (ET) simulated with the CARAIB model are compared with the fluxes measured at several eddy covariance flux tower sites in Belgium and Western Europe, chosen from the FLUXNET global network (http://fluxnet.ornl.gov/). CARAIB is forced either with surface atmospheric variables derived from the global CRU climatology, or with in situ meteorological data. Several tree (e.g. Pinus sylvestris, Fagus sylvatica, Picea abies) and grass species (e.g. Poaceae, Asteraceae) are simulated, depending on the species encountered on the studied sites. The aim of our work is to assess the model ability to reproduce the daily, seasonal and interannual variablility of carbon fluxes and the carbon dynamics of forest and grassland ecosystems in Belgium and Western Europe.

  20. Increased topsoil carbon stock across China's forests.

    PubMed

    Yang, Yuanhe; Li, Pin; Ding, Jinzhi; Zhao, Xia; Ma, Wenhong; Ji, Chengjun; Fang, Jingyun

    2014-08-01

    Biomass carbon accumulation in forest ecosystems is a widespread phenomenon at both regional and global scales. However, as coupled carbon-climate models predicted, a positive feedback could be triggered if accelerated soil carbon decomposition offsets enhanced vegetation growth under a warming climate. It is thus crucial to reveal whether and how soil carbon stock in forest ecosystems has changed over recent decades. However, large-scale changes in soil carbon stock across forest ecosystems have not yet been carefully examined at both regional and global scales, which have been widely perceived as a big bottleneck in untangling carbon-climate feedback. Using newly developed database and sophisticated data mining approach, here we evaluated temporal changes in topsoil carbon stock across major forest ecosystem in China and analysed potential drivers in soil carbon dynamics over broad geographical scale. Our results indicated that topsoil carbon stock increased significantly within all of five major forest types during the period of 1980s-2000s, with an overall rate of 20.0 g C m(-2) yr(-1) (95% confidence interval, 14.1-25.5). The magnitude of soil carbon accumulation across coniferous forests and coniferous/broadleaved mixed forests exhibited meaningful increases with both mean annual temperature and precipitation. Moreover, soil carbon dynamics across these forest ecosystems were positively associated with clay content, with a larger amount of SOC accumulation occurring in fine-textured soils. In contrast, changes in soil carbon stock across broadleaved forests were insensitive to either climatic or edaphic variables. Overall, these results suggest that soil carbon accumulation does not counteract vegetation carbon sequestration across China's forest ecosystems. The combination of soil carbon accumulation and vegetation carbon sequestration triggers a negative feedback to climate warming, rather than a positive feedback predicted by coupled carbon-climate models. © 2014 John Wiley & Sons Ltd.

  1. Integrating a process-based ecosystem model with Landsat imagery to assess impacts of forest disturbance on terrestrial carbon dynamics: Case studies in Alabama and Mississippi

    DOE PAGES

    Chen, Guangsheng; Tian, Hanqin; Huang, Chengquan; ...

    2013-07-01

    Forest ecosystems in the southern United States are dramatically altered by three major disturbances: timber harvesting, hurricane, and permanent land conversion. Understanding and quantifying effects of disturbance on forest carbon, nitrogen, and water cycles is critical for sustainable forest management in this region. In this study, we introduced a process-based ecosystem model for simulating forest disturbance impacts on ecosystem carbon, nitrogen, and water cycles. Based on forest mortality data classified from Landsat TM/ETM + images, this model was then applied to estimate changes in carbon storage using Mississippi and Alabama as a case study. Mean annual forest mortality rate formore » these states was 2.37%. Due to frequent disturbance, over 50% of the forest land in the study region was less than 30 years old. Forest disturbance events caused a large carbon source (138.92 Tg C, 6.04 Tg C yr -1; 1 Tg = 10 12 g) for both states during 1984–2007, accounting for 2.89% (4.81% if disregard carbon storage changes in wood products) of the total forest carbon storage in this region. Large decreases and slow recovery of forest biomass were the main causes for carbon release. Forest disturbance could result in a carbon sink in few areas if wood product carbon was considered as a local carbon pool, indicating the importance of accounting for wood product carbon when assessing forest disturbance effects. The legacy effects of forest disturbance on ecosystem carbon storage could last over 50 years. Lastly, this study implies that understanding forest disturbance impacts on carbon dynamics is of critical importance for assessing regional carbon budgets.« less

  2. Interannual variation of carbon fluxes from three contrasting evergreen forests: the role of forest dynamics and climate.

    PubMed

    Sierra, Carlos A; Loescher, Henry W; Harmon, Mark E; Richardson, Andrew D; Hollinger, David Y; Perakis, Steven S

    2009-10-01

    Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed approximately 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data.

  3. Disturbance in forest ecosystems caused by pathogens and insects

    Treesearch

    Philip M. Wargo; Philip M. Wargo

    1995-01-01

    Pathogens and insects are major driving forces of processes in forested ecosystems. Disturbances caused by them are as intimately involved in ecosystem dynamics as the more sudden and obvious abiotic disturbances, for example, those caused by wind or fire. However, because pathogens and insects are selective and may affect only one or several related species of...

  4. A decade of belowground reorganization following multiple disturbances in a subtropical wet forest

    Treesearch

    Y.A. Teh; W.L. Silver; F.N. Scatena

    2009-01-01

    Humid tropical forests are dynamic ecosystems that experience multiple and overlapping disturbance events that vary in frequency, intensity, and spatial extent. Here we report the results of a 10-year study investigating the effects of forest clearing and multiple hurricanes on ecosystem carbon reservoirs, nutrient pools and vegetation. The aboveground plant community...

  5. Analyzing the ecosystem carbon and hydrologic characteristics of forested wetland using a biogeochemical process model

    Treesearch

    Jianbo Cui; Changsheng Li; Carl Trettin

    2005-01-01

    A comprehensive biogeochemical model, Wetland-DNDC, was applied to analyze the carbon and hydrologic characteristics of forested wetland ecosystem at Minnesota (MN) and Florida (FL) sites. The model simulates the flows of carbon, energy, and water in forested wetlands. Modeled carbon dynamics depends on physiological plant factors, the size of plant pools,...

  6. Predicted spatio-temporal dynamics of radiocesium deposited onto forests following the Fukushima nuclear accident

    PubMed Central

    Hashimoto, Shoji; Matsuura, Toshiya; Nanko, Kazuki; Linkov, Igor; Shaw, George; Kaneko, Shinji

    2013-01-01

    The majority of the area contaminated by the Fukushima Dai-ichi nuclear power plant accident is covered by forest. To facilitate effective countermeasure strategies to mitigate forest contamination, we simulated the spatio-temporal dynamics of radiocesium deposited into Japanese forest ecosystems in 2011 using a model that was developed after the Chernobyl accident in 1986. The simulation revealed that the radiocesium inventories in tree and soil surface organic layer components drop rapidly during the first two years after the fallout. Over a period of one to two years, the radiocesium is predicted to move from the tree and surface organic soil to the mineral soil, which eventually becomes the largest radiocesium reservoir within forest ecosystems. Although the uncertainty of our simulations should be considered, the results provide a basis for understanding and anticipating the future dynamics of radiocesium in Japanese forests following the Fukushima accident. PMID:23995073

  7. Successional dynamics drive tropical forest nutrient limitation

    NASA Astrophysics Data System (ADS)

    Chou, C.; Hedin, L. O. O.

    2017-12-01

    It is increasingly recognized that nutrients such as N and P may significantly constrain the land carbon sink. However, we currently lack a complete understanding of these nutrient cycles in forest ecosystems and how to incorporate them into Earth System Models. We have developed a framework of dynamic forest nutrient limitation, focusing on the role of secondary forest succession and canopy gap disturbances as bottlenecks of high plant nutrient demand and limitation. We used succession biomass data to parameterize a simple ecosystem model and examined the dynamics of nutrient limitation throughout tropical secondary forest succession. Due to the patterns of biomass recovery in secondary tropical forests, we found high nutrient demand from rapid biomass accumulation in the earliest years of succession. Depending on previous land use scenarios, soil nutrient availability may also be low in this time period. Coupled together, this is evidence that there may be high biomass nutrient limitation early in succession, which is partially met by abundant symbiotic nitrogen fixation from certain tree species. We predict a switch from nitrogen limitation in early succession to one of three conditions: (i) phosphorus only, (ii) phosphorus plus nitrogen, or (iii) phosphorus, nitrogen, plus light co-limitation. We will discuss the mechanisms that govern the exact trajectory of limitation as forests build biomass. In addition, we used our model to explore scenarios of tropical secondary forest impermanence and the impacts of these dynamics on ecosystem nutrient limitation. We found that secondary forest impermanence exacerbates nutrient limitation and the need for nitrogen fixation early in succession. Together, these results indicate that biomass recovery dynamics early in succession as well as their connection to nutrient demand and limitation are fundamental for understanding and modeling nutrient limitation of the tropical forest carbon sink.

  8. Devil's in the details: Using archaeological and historical data to refine ecosystem models at the local level

    Treesearch

    Don Hann

    2006-01-01

    The United States Forest Service is charged with managing extensive and varied ecosystems throughout the country. Under the rubric of “ecosystem management” the goal has been to provide goods and services from Forest Service lands while maintaining ecological integrity. Recognizing that ecosystems are dynamic in nature, the concept of Historical Range of Variability (...

  9. Effects of disturbance and climate change on ecosystem performance in the Yukon River Basin boreal forest

    USGS Publications Warehouse

    Wylie, Bruce K.; Rigge, Matthew B.; Brisco, Brian; Mrnaghan, Kevin; Rover, Jennifer R.; Long, Jordan

    2014-01-01

    A warming climate influences boreal forest productivity, dynamics, and disturbance regimes. We used ecosystem models and 250 m satellite Normalized Difference Vegetation Index (NDVI) data averaged over the growing season (GSN) to model current, and estimate future, ecosystem performance. We modeled Expected Ecosystem Performance (EEP), or anticipated productivity, in undisturbed stands over the 2000–2008 period from a variety of abiotic data sources, using a rule-based piecewise regression tree. The EEP model was applied to a future climate ensemble A1B projection to quantify expected changes to mature boreal forest performance. Ecosystem Performance Anomalies (EPA), were identified as the residuals of the EEP and GSN relationship and represent performance departures from expected performance conditions. These performance data were used to monitor successional events following fire. Results suggested that maximum EPA occurs 30–40 years following fire, and deciduous stands generally have higher EPA than coniferous stands. Mean undisturbed EEP is projected to increase 5.6% by 2040 and 8.7% by 2070, suggesting an increased deciduous component in boreal forests. Our results contribute to the understanding of boreal forest successional dynamics and its response to climate change. This information enables informed decisions to prepare for, and adapt to, climate change in the Yukon River Basin forest.

  10. Integrating remotely sensed land cover observations and a biogeochemical model for estimating forest ecosystem carbon dynamics

    USGS Publications Warehouse

    Liu, J.; Liu, S.; Loveland, Thomas R.; Tieszen, L.L.

    2008-01-01

    Land cover change is one of the key driving forces for ecosystem carbon (C) dynamics. We present an approach for using sequential remotely sensed land cover observations and a biogeochemical model to estimate contemporary and future ecosystem carbon trends. We applied the General Ensemble Biogeochemical Modelling System (GEMS) for the Laurentian Plains and Hills ecoregion in the northeastern United States for the period of 1975-2025. The land cover changes, especially forest stand-replacing events, were detected on 30 randomly located 10-km by 10-km sample blocks, and were assimilated by GEMS for biogeochemical simulations. In GEMS, each unique combination of major controlling variables (including land cover change history) forms a geo-referenced simulation unit. For a forest simulation unit, a Monte Carlo process is used to determine forest type, forest age, forest biomass, and soil C, based on the Forest Inventory and Analysis (FIA) data and the U.S. General Soil Map (STATSGO) data. Ensemble simulations are performed for each simulation unit to incorporate input data uncertainty. Results show that on average forests of the Laurentian Plains and Hills ecoregion have been sequestrating 4.2 Tg C (1 teragram = 1012 gram) per year, including 1.9 Tg C removed from the ecosystem as the consequences of land cover change. ?? 2008 Elsevier B.V.

  11. The synergistic use of models and observations: understanding the mechanisms behind observed biomass dynamics at 14 Amazonian field sites and the implications for future biomass change

    NASA Astrophysics Data System (ADS)

    Levine, N. M.; Galbraith, D.; Christoffersen, B. J.; Imbuzeiro, H. A.; Restrepo-Coupe, N.; Malhi, Y.; Saleska, S. R.; Costa, M. H.; Phillips, O.; Andrade, A.; Moorcroft, P. R.

    2011-12-01

    The Amazonian rainforests play a vital role in global water, energy and carbon cycling. The sensitivity of this system to natural and anthropogenic disturbances therefore has important implications for the global climate. Some global models have predicted large-scale forest dieback and the savannization of Amazonia over the next century [Meehl et al., 2007]. While several studies have demonstrated the sensitivity of dynamic global vegetation models to changes in temperature, precipitation, and dry season length [e.g. Galbraith et al., 2010; Good et al., 2011], the ability of these models to accurately reproduce ecosystem dynamics of present-day transitional or low biomass tropical forests has not been demonstrated. A model-data intercomparison was conducted with four state-of-the-art terrestrial ecosystem models to evaluate the ability of these models to accurately represent structure, function, and long-term biomass dynamics over a range of Amazonian ecosystems. Each modeling group conducted a series of simulations for 14 sites including mature forest, transitional forest, savannah, and agricultural/pasture sites. All models were run using standard physical parameters and the same initialization procedure. Model results were compared against forest inventory and dendrometer data in addition to flux tower measurements. While the models compared well against field observations for the mature forest sites, significant differences were observed between predicted and measured ecosystem structure and dynamics for the transitional forest and savannah sites. The length of the dry season and soil sand content were good predictors of model performance. In addition, for the big leaf models, model performance was highest for sites dominated by late successional trees and lowest for sites with predominantly early and mid-successional trees. This study provides insight into tropical forest function and sensitivity to environmental conditions that will aid in predictions of the response of the Amazonian rainforest to future anthropogenically induced changes.

  12. Decadal responses in soil N dynamics at the Bear Brook Watershed in Maine, USA

    Treesearch

    Sultana Jefts; Ivan J. Fernandez; Lindwey E. Rustad; D. Bryan Dail

    2004-01-01

    Atmospheric nitrogen deposition to forested ecosystems is a concern because of both geochemical and biological consequences for ecosystem integrity. High levels of prolonged N deposition can lead to "N saturation" of the ecosystem. The Bear Brook Watershed in Maine is a long-term, paired forested watershed experiment with over a decade of experimental N...

  13. Catchment hydrological responses to forest harvest amount and spatial pattern - 2011

    EPA Science Inventory

    We used an ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest location and amount on ecosystem carbon (C) and nitrogen (N) dynamics in an intensively studied headwater catchment (WS10) in western Oregon,...

  14. Using a Forest Health Index as an Outreach Tool for Improving Public Understanding of Ecosystem Dynamics and Research-Based Management

    NASA Astrophysics Data System (ADS)

    Osenga, E. C.; Cundiff, J.; Arnott, J. C.; Katzenberger, J.; Taylor, J. R.; Jack-Scott, E.

    2015-12-01

    An interactive tool called the Forest Health Index (FHI) has been developed for the Roaring Fork watershed of Colorado, with the purpose of improving public understanding of local forest management and ecosystem dynamics. The watershed contains large areas of White River National Forest, which plays a significant role in the local economy, particularly for recreation and tourism. Local interest in healthy forests is therefore strong, but public understanding of forest ecosystems is often simplified. This can pose challenges for land managers and researchers seeking a scientifically informed approach to forest restoration, management, and planning. Now in its second iteration, the FHI is a tool designed to help bridge that gap. The FHI uses a suite of indicators to create a numeric rating of forest functionality and change, based on the desired forest state in relation to four categories: Ecological Integrity, Public Health and Safety, Ecosystem Services, and Sustainable Use and Management. The rating is based on data derived from several sources including local weather stations, stream gauge data, SNOTEL sites, and National Forest Service archives. In addition to offering local outreach and education, this project offers broader insight into effective communication methods, as well as into the challenges of using quantitative analysis to rate ecosystem health. Goals of the FHI include its use in schools as a means of using local data and place-based learning to teach basic math and science concepts, improved public understanding of ecological complexity and need for ongoing forest management, and, in the future, its use as a model for outreach tools in other forested communities in the Intermountain West.

  15. Fir sawyer beetle-Siberian fir interaction modeling: resistance of fir stands to insect outbreaks

    Treesearch

    Tamara M. Ovtchinnikova; Victor V. Kiselev

    1991-01-01

    Entomological monitoring is part of a total ecological monitoring system. Its purpose is the identification, prognosis, and estimation of forest ecosystem impacts induced by insects. The entomological monitoring of a forest is based on a clear understanding of the role played by insects in forest ecosystems. The patterns of insect population dynamics in space and time...

  16. Forest dynamics following eastern hemlock mortality in the southern Appalachians

    Treesearch

    Chelcy R. Ford; Katherine J. Elliott; Barton D. Clinton; Brian D. Kloeppel; James M. Vose

    2011-01-01

    Understanding changes in community composition caused by invasive species is critical for predicting effects on ecosystem function, particularly when the invasive threatens a foundation species. Here we focus on dynamics of forest structure, composition and microclimate, and how these interact in southern Appalachian riparian forests following invasion by hemlock...

  17. Nitrogen dynamics in managed boreal forests: Recent advances and future research directions.

    PubMed

    Sponseller, Ryan A; Gundale, Michael J; Futter, Martyn; Ring, Eva; Nordin, Annika; Näsholm, Torgny; Laudon, Hjalmar

    2016-02-01

    Nitrogen (N) availability plays multiple roles in the boreal landscape, as a limiting nutrient to forest growth, determinant of terrestrial biodiversity, and agent of eutrophication in aquatic ecosystems. We review existing research on forest N dynamics in northern landscapes and address the effects of management and environmental change on internal cycling and export. Current research foci include resolving the nutritional importance of different N forms to trees and establishing how tree-mycorrhizal relationships influence N limitation. In addition, understanding how forest responses to external N inputs are mediated by above- and belowground ecosystem compartments remains an important challenge. Finally, forestry generates a mosaic of successional patches in managed forest landscapes, with differing levels of N input, biological demand, and hydrological loss. The balance among these processes influences the temporal patterns of stream water chemistry and the long-term viability of forest growth. Ultimately, managing forests to keep pace with increasing demands for biomass production, while minimizing environmental degradation, will require multi-scale and interdisciplinary perspectives on landscape N dynamics.

  18. Long-term boreal forest dynamics and disturbances: a multi-proxy approach

    NASA Astrophysics Data System (ADS)

    Stivrins, Normunds; Aakala, Tuomas; Kuuluvainen, Timo; Pasanen, Leena; Ilvonen, Liisa; Holmström, Lasse; Seppä, Heikki

    2017-04-01

    The boreal forest provides a variety of ecosystem services that are threatened under the ongoing climate warming. Along with the climate, there are several factors (fire, human-impact, pathogens), which influence boreal forest dynamics. Combination of short and long-term studies allowing complex assessment of forest response to natural abiotic and biotic stress factors is necessary for sustainable management of the boreal forest now and in the future. The ongoing EBOR (Ecological history and long-term dynamics of the boreal forest ecosystem) project integrates forest ecological and palaeoecological approaches to study boreal forest dynamics and disturbances. Using pollen, non-pollen palynomorphs, micro- and macrocharcoal, tree rings and fire scars, we analysed forest dynamics at stand-scale by sampling small forest hollows (small paludified depressions) and the surrounding forest stands in Finland and western Russia. Using charcoal data, we estimated a fire return interval of 320 years for the Russian sites, and, based on the fungi Neurospora that can grow on charred tree bark after a low-intensity fire, we were able to distinguish low- and high-intensity fire-events. In addition to the influence of fire events and/or fire regime changes, we further assessed potential relationships between tree species and herbivore presence and pathogens. As an example of such a relationship, our preliminary findings indicated a negative relationship between Picea and fungi Lasiosphaeria (caudata), which occurred during times of Picea decline.

  19. Final report for DOE Award # DE- SC0010039*: Carbon dynamics of forest recovery under a changing climate: Forcings, feedbacks, and implications for earth system modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson-Teixeira, Kristina J.; DeLucia, Evan H.; Duval, Benjamin D.

    2015-10-29

    To advance understanding of C dynamics of forests globally, we compiled a new database, the Forest C database (ForC-db), which contains data on ground-based measurements of ecosystem-level C stocks and annual fluxes along with disturbance history. This database currently contains 18,791 records from 2009 sites, making it the largest and most comprehensive database of C stocks and flows in forest ecosystems globally. The tropical component of the database will be published in conjunction with a manuscript that is currently under review (Anderson-Teixeira et al., in review). Database development continues, and we hope to maintain a dynamic instance of the entiremore » (global) database.« less

  20. Carbon fluxes in tropical forest ecosystems: the value of Eddy-covariance data for individual-based dynamic forest gap models

    NASA Astrophysics Data System (ADS)

    Roedig, Edna; Cuntz, Matthias; Huth, Andreas

    2015-04-01

    The effects of climatic inter-annual fluctuations and human activities on the global carbon cycle are uncertain and currently a major issue in global vegetation models. Individual-based forest gap models, on the other hand, model vegetation structure and dynamics on a small spatial (<100 ha) and large temporal scale (>1000 years). They are well-established tools to reproduce successions of highly-diverse forest ecosystems and investigate disturbances as logging or fire events. However, the parameterizations of the relationships between short-term climate variability and forest model processes are often uncertain in these models (e.g. daily variable temperature and gross primary production (GPP)) and cannot be constrained from forest inventories. We addressed this uncertainty and linked high-resolution Eddy-covariance (EC) data with an individual-based forest gap model. The forest model FORMIND was applied to three diverse tropical forest sites in the Amazonian rainforest. Species diversity was categorized into three plant functional types. The parametrizations for the steady-state of biomass and forest structure were calibrated and validated with different forest inventories. The parameterizations of relationships between short-term climate variability and forest model processes were evaluated with EC-data on a daily time step. The validations of the steady-state showed that the forest model could reproduce biomass and forest structures from forest inventories. The daily estimations of carbon fluxes showed that the forest model reproduces GPP as observed by the EC-method. Daily fluctuations of GPP were clearly reflected as a response to daily climate variability. Ecosystem respiration remains a challenge on a daily time step due to a simplified soil respiration approach. In the long-term, however, the dynamic forest model is expected to estimate carbon budgets for highly-diverse tropical forests where EC-measurements are rare.

  1. Forests and Their Canopies: Achievements and Horizons in Canopy Science.

    PubMed

    Nakamura, Akihiro; Kitching, Roger L; Cao, Min; Creedy, Thomas J; Fayle, Tom M; Freiberg, Martin; Hewitt, C N; Itioka, Takao; Koh, Lian Pin; Ma, Keping; Malhi, Yadvinder; Mitchell, Andrew; Novotny, Vojtech; Ozanne, Claire M P; Song, Liang; Wang, Han; Ashton, Louise A

    2017-06-01

    Forest canopies are dynamic interfaces between organisms and atmosphere, providing buffered microclimates and complex microhabitats. Canopies form vertically stratified ecosystems interconnected with other strata. Some forest biodiversity patterns and food webs have been documented and measurements of ecophysiology and biogeochemical cycling have allowed analyses of large-scale transfer of CO 2 , water, and trace gases between forests and the atmosphere. However, many knowledge gaps remain. With global research networks and databases, and new technologies and infrastructure, we envisage rapid advances in our understanding of the mechanisms that drive the spatial and temporal dynamics of forests and their canopies. Such understanding is vital for the successful management and conservation of global forests and the ecosystem services they provide to the world. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Modeling forest development after fire disturbance: Climate, soil organic layer, and nitrogen jointly affect forest canopy species and long-term ecosystem carbon accumulation in the North American boreal forest

    NASA Astrophysics Data System (ADS)

    Trugman, A. T.; Fenton, N.; Bergeron, Y.; Xu, X.; Welp, L.; Medvigy, D.

    2015-12-01

    Soil organic layer dynamics strongly affect boreal forest development after fire. Field studies show that soil organic layer thickness exerts a species-specific control on propagule establishment in the North American boreal forest. On organic soils thicker than a few centimeters, all propagules are less able to recruit, but broadleaf trees recruit less effectively than needleleaf trees. In turn, forest growth controls organic layer accumulation through modulating litter input and litter quality. These dynamics have not been fully incorporated into models, but may be essential for accurate projections of ecosystem carbon storage. Here, we develop a data-constrained model for understanding boreal forest development after fire. We update the ED2 model to include new aspen and black spruce species-types, species-specific propagule survivorship dependent on soil organic layer depth, species-specific litter decay rates, dynamically accumulating moss and soil organic layers, and nitrogen fixation by cyanobacteria associated with moss. The model is validated against diverse observations ranging from monthly to centennial timescales and spanning a climate gradient in Alaska, central Canada, and Quebec. We then quantify differences in forest development that result from changes in organic layer accumulation, temperature, and nitrogen. We find that (1) the model accurately reproduces a range of observations throughout the North American boreal forest; (2) the presence of a thick organic layer results in decreased decomposition and decreased aboveground productivity, effects that can increase or decrease ecosystem carbon uptake depending on location-specific attributes; (3) with a mean warming of 4°C, some forests switch from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing ecosystem accumulation by ~30% after 300 years; (4) the availability of nitrogen regulates successional dynamics such than broadleaf species are less able to compete with needleleaf trees under low nitrogen regimes. We conclude that a joint regulation between the soil organic layer, temperature, and nitrogen will likely play an important role in influencing boreal forests development after fire in future climates, and should be represented in models.

  3. ʻŌhiʻa Lehua rainforest: born among Hawaiian volcanoes, evolved in isolation: the story of a dynamic ecosystem with relevance to forests worldwide

    USGS Publications Warehouse

    Mueller-Dombois, Dieter; Jacobi, James D.; Boehmer, Hans Juergen; Price, Jonathan P.

    2013-01-01

    In the early 1970s, a multidisciplinary team of forest biologists began a study of Hawaiian ecosystems under the International Biological Program (IBP). Research focus was on the intact native ecosystems in and around Hawai'i Volcanoes National Park, in particular the ʻŌhiʻa Lehua rainforest. Patches of dead ʻŌhiʻa stands had been reported from the windward slopes of Mauna Loa and Mauna Kea. Subsequent air photo analyses by a team of US and Hawai'i State foresters discovered rapidly spreading ʻŌhiʻa dieback, also called ʻŌhiʻa forest decline. A killer disease was suspected to destroy the Hawaiian rain forest in the next 15-25 years. Ecological research continued with a focus on the dynamics of the Hawaiian rainforest. This book explains what really happened and why the ʻŌhiʻa rainforest survived in tact as everyone can witness today.

  4. Interannual variation of carbon fluxes from three contrasting evergreen forests: The role of forest dynamics and climate

    USGS Publications Warehouse

    Sierra, C.A.; Loescher, H.W.; Harmon, M.E.; Richardson, A.D.; Hollinger, D.Y.; Perakis, S.S.

    2009-01-01

    Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed ?? 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data. ?? 2009 by the Ecological Society of America.

  5. A review of malaria transmission dynamics in forest ecosystems

    PubMed Central

    2014-01-01

    Malaria continues to be a major health problem in more than 100 endemic countries located primarily in tropical and sub-tropical regions around the world. Malaria transmission is a dynamic process and involves many interlinked factors, from uncontrollable natural environmental conditions to man-made disturbances to nature. Almost half of the population at risk of malaria lives in forest areas. Forests are hot beds of malaria transmission as they provide conditions such as vegetation cover, temperature, rainfall and humidity conditions that are conducive to distribution and survival of malaria vectors. Forests often lack infrastructure and harbor tribes with distinct genetic traits, socio-cultural beliefs and practices that greatly influence malaria transmission dynamics. Here we summarize the various topographical, entomological, parasitological, human ecological and socio-economic factors, which are crucial and shape malaria transmission in forested areas. An in-depth understanding and synthesis of the intricate relationship of these parameters in achieving better malaria control in various types of forest ecosystems is emphasized. PMID:24912923

  6. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change

    Treesearch

    Kristina J. Anderson-Teixeira; Stuart J. Davies; Amy C. Bennett; Erika B. Gonzalez-Akre; Helene C. Muller-Landau; S. Joseph Wright; Kamariah Abu Salim; Angélica M. Almeyda Zambrano; Alfonso Alonso; Jennifer L. Baltzer; Yves Basset; Norman A. Bourg; Eben N. Broadbent; Warren Y. Brockelman; Sarayudh Bunyavejchewin; David F. R. P. Burslem; Nathalie Butt; Min Cao; Dairon Cardenas; George B. Chuyong; Keith Clay; Susan Cordell; Handanakere S. Dattaraja; Xiaobao Deng; Matteo Detto; Xiaojun Du; Alvaro Duque; David L. Erikson; Corneille E.N. Ewango; Gunter A. Fischer; Christine Fletcher; Robin B. Foster; Christian P. Giardina; Gregory S. Gilbert; Nimal Gunatilleke; Savitri Gunatilleke; Zhanqing Hao; William W. Hargrove; Terese B. Hart; Billy C.H. Hau; Fangliang He; Forrest M. Hoffman; Robert W. Howe; Stephen P. Hubbell; Faith M. Inman-Narahari; Patrick A. Jansen; Mingxi Jiang; Daniel J. Johnson; Mamoru Kanzaki; Abdul Rahman Kassim; David Kenfack; Staline Kibet; Margaret F. Kinnaird; Lisa Korte; Kamil Kral; Jitendra Kumar; Andrew J. Larson; Yide Li; Xiankun Li; Shirong Liu; Shawn K.Y. Lum; James A. Lutz; Keping Ma; Damian M. Maddalena; Jean-Remy Makana; Yadvinder Malhi; Toby Marthews; Rafizah Mat Serudin; Sean M. McMahon; William J. McShea; Hervé R. Memiaghe; Xiangcheng Mi; Takashi Mizuno; Michael Morecroft; Jonathan A. Myers; Vojtech Novotny; Alexandre A. de Oliveira; Perry S. Ong; David A. Orwig; Rebecca Ostertag; Jan den Ouden; Geoffrey G. Parker; Richard P. Phillips; Lawren Sack; Moses N. Sainge; Weiguo Sang; Kriangsak Sri-ngernyuang; Raman Sukumar; I-Fang Sun; Witchaphart Sungpalee; Hebbalalu Sathyanarayana Suresh; Sylvester Tan; Sean C. Thomas; Duncan W. Thomas; Jill Thompson; Benjamin L. Turner; Maria Uriarte; Renato Valencia; Marta I. Vallejo; Alberto Vicentini; Tomáš Vrška; Xihua Wang; Xugao Wang; George Weiblen; Amy Wolf; Han Xu; Sandra Yap; Jess Zimmerman

    2014-01-01

    Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses...

  7. An Automated Chamber Network for Evaluation the Long-term Response and Feedback of Soil Carbon Dynamics to Global Change

    NASA Astrophysics Data System (ADS)

    Liang, N.; Kim, S.; Shimoyama, K.; Kim, Y.; Hirano, T.; Takagi, K.; Fujinuma, Y.; Mukai, H.; Takahashi, Y.; Kakubari, Y.; Wang, Q.; Nakane, K.

    2007-12-01

    Regional networks for measuring carbon sequestration or loss by terrestrial ecosystems on a year round basis have been in operation since the mid-1990s. However, continuous measurements of soil CO2 efflux, the largest component of ecosystem respiration have only been reported over similar time scales at a few of the sites. We have developed a multichannel automated chamber system that can be used for continuous measuring soil CO2 efflux. The system equips 8 to 24 large automated chambers (90*90*50 cm, L*W*H). Since 1997, we have installed the chamber systems in the tundra in west Siberia, boreal forest in Alaska, cool- temperate and temperate forests in Japan, Korea and China, tropical seasonal forest in Thailand, and tropical rainforest in Malaysia. Annual soil CO2 effluxes were estimated to be about 5-6 tC ha-1 y-1 in the boreal and cool-temperate forests, 10 tC ha-1 y-1 in the temperate forests, and 30 tC ha-1 y-1 in the tropical rainforests. Efflux showed significant seasonality in the boreal and temperate forest that corresponding with the seasonal soil temperature. However, the wavelike efflux rates in the tropical forests were correlated with the seasonality of soil moisture. From 2007, a big project that funded by Ministry of the Environment of Japan (MOE) has launched to evaluate the response and feedback of soil carbon dynamics of Japanese forest ecosystems to global change. We are installing another 6 chamber systems at the six of Japanese typical forests to conduct the soil warming experiments. For scaling-up the chamber experiments and understanding the mechanisms of soil organic matter (SOM) dynamics to global change, soil samples from about 100 forest ecosystems will be incubated for modeling development. Furthermore, the environmental (temperature and CO2) controlled large open-top chambers have been employed to investigate the balance of SOM (the input from litter falls and loss due to the decomposition) of forest ecosystems with global change.

  8. Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China’s forest ecosystems

    Treesearch

    Wei Ren; Hanqin Tian; Bo Tao; Art Chappelka; Ge Sun; et al

    2011-01-01

    Aim We investigated how ozone pollution and climate change/variability have interactively affected net primary productivity (NPP) and net carbon exchange (NCE) across China’s forest ecosystem in the past half century. Location Continental China. Methods Using the dynamic land ecosystem model (DLEM) in conjunction with 10-km-resolution gridded historical data sets (...

  9. Guidelines and sample protocol for sampling forest gaps.

    Treesearch

    J.R. Runkle

    1992-01-01

    A protocol for sampling forest canopy gaps is presented. Methods used in published gap studies are reviewed. The sample protocol will be useful in developing a broader understanding of forest structure and dynamics through comparative studies across different forest ecosystems.

  10. Tracking downed dead wood in forests over time: Development of a piece matching algorithm for line intercept sampling

    Treesearch

    C.W. Woodall; B.F. Walters; J.A. Westfall

    2012-01-01

    Emerging questions from bioenergy policy debates have highlighted knowledge gaps regarding the carbon and biomass dynamics of individual pieces of coarse woody debris (CWD) across the diverse forest ecosystems of the US. Although there is a lack of long-term measurements of CWD across the diverse forest ecosystems of the US, there is an abundance of line intersect...

  11. Forest forming process and dynamic vegetation models under global change

    Treesearch

    A. Shvidenko; E. Gustafson

    2009-01-01

    The paper analyzes mathematical models that are used to project the dynamics of forest ecosystems on different spatial and temporal scales. Landscape disturbance and succession models (LDSMs) are of a particular interest for studying the forest forming process in Northern Eurasia. They have a solid empirical background and are able to model ecological processes under...

  12. Evaluating the remote sensing and inventory-based estimation of biomass in the western Carpathians

    Treesearch

    Magdalena Main-Knorn; Gretchen G. Moisen; Sean P. Healey; William S. Keeton; Elizabeth A. Freeman; Patrick Hostert

    2011-01-01

    Understanding the potential of forest ecosystems as global carbon sinks requires a thorough knowledge of forest carbon dynamics, including both sequestration and fluxes among multiple pools. The accurate quantification of biomass is important to better understand forest productivity and carbon cycling dynamics. Stand-based inventories (SBIs) are widely used for...

  13. Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function.

    PubMed

    Antonarakis, Alexander S; Saatchi, Sassan S; Chazdon, Robin L; Moorcroft, Paul R

    2011-06-01

    Insights into vegetation and aboveground biomass dynamics within terrestrial ecosystems have come almost exclusively from ground-based forest inventories that are limited in their spatial extent. Lidar and synthetic-aperture Radar are promising remote-sensing-based techniques for obtaining comprehensive measurements of forest structure at regional to global scales. In this study we investigate how Lidar-derived forest heights and Radar-derived aboveground biomass can be used to constrain the dynamics of the ED2 terrestrial biosphere model. Four-year simulations initialized with Lidar and Radar structure variables were compared against simulations initialized from forest-inventory data and output from a long-term potential-vegtation simulation. Both height and biomass initializations from Lidar and Radar measurements significantly improved the representation of forest structure within the model, eliminating the bias of too many large trees that arose in the potential-vegtation-initialized simulation. The Lidar and Radar initializations decreased the proportion of larger trees estimated by the potential vegetation by approximately 20-30%, matching the forest inventory. This resulted in improved predictions of ecosystem-scale carbon fluxes and structural dynamics compared to predictions from the potential-vegtation simulation. The Radar initialization produced biomass values that were 75% closer to the forest inventory, with Lidar initializations producing canopy height values closest to the forest inventory. Net primary production values for the Radar and Lidar initializations were around 6-8% closer to the forest inventory. Correcting the Lidar and Radar initializations for forest composition resulted in improved biomass and basal-area dynamics as well as leaf-area index. Correcting the Lidar and Radar initializations for forest composition and fine-scale structure by combining the remote-sensing measurements with ground-based inventory data further improved predictions, suggesting that further improvements of structural and carbon-flux metrics will also depend on obtaining reliable estimates of forest composition and accurate representation of the fine-scale vertical and horizontal structure of plant canopies.

  14. Proceedings of the Missouri Ozark Forest Ecosystem Project Symposium: an experimental approach to landscape research

    Treesearch

    Brian L. Brookshire; Stephen R., eds. Shifley

    1997-01-01

    Describes the Missouri Ozark Forest Ecosystem Projects (MOFEP) that was initiated in 1991 in southeastern Missouri. Describes in detail the coordinated research studies examining vegetation dynamics, down wood, fungi, birds, small mammals, herpetofauna, invertebrates, and genetics. Soils, geolandforms, ecological landtypes, and climate at the sites are described....

  15. Understory vegetation mediates permafrost active layer dynamics and carbon dioxide fluxes in open-canopy larch forests of northeastern Siberia.

    PubMed

    Loranty, Michael M; Berner, Logan T; Taber, Eric D; Kropp, Heather; Natali, Susan M; Alexander, Heather D; Davydov, Sergey P; Zimov, Nikita S

    2018-01-01

    Arctic ecosystems are characterized by a broad range of plant functional types that are highly heterogeneous at small (~1-2 m) spatial scales. Climatic changes can impact vegetation distribution directly, and also indirectly via impacts on disturbance regimes. Consequent changes in vegetation structure and function have implications for surface energy dynamics that may alter permafrost thermal dynamics, and are therefore of interest in the context of permafrost related climate feedbacks. In this study we examine small-scale heterogeneity in soil thermal properties and ecosystem carbon and water fluxes associated with varying understory vegetation in open-canopy larch forests in northeastern Siberia. We found that lichen mats comprise 16% of understory vegetation cover on average in open canopy larch forests, and lichen abundance was inversely related to canopy cover. Relative to adjacent areas dominated by shrubs and moss, lichen mats had 2-3 times deeper permafrost thaw depths and surface soils warmer by 1-2°C in summer and less than 1°C in autumn. Despite deeper thaw depths, ecosystem respiration did not differ across vegetation types, indicating that autotrophic respiration likely dominates areas with shrubs and moss. Summertime net ecosystem exchange of CO2 was negative (i.e. net uptake) in areas with high shrub cover, while positive (i.e. net loss) in lichen mats and areas with less shrub cover. Our results highlight relationships between vegetation and soil thermal dynamics in permafrost ecosystems, and underscore the necessity of considering both vegetation and permafrost dynamics in shaping carbon cycling in permafrost ecosystems.

  16. Climate-based models for pulsed resources improve predictability of consumer population dynamics: outbreaks of house mice in forest ecosystems.

    PubMed

    Holland, E Penelope; James, Alex; Ruscoe, Wendy A; Pech, Roger P; Byrom, Andrea E

    2015-01-01

    Accurate predictions of the timing and magnitude of consumer responses to episodic seeding events (masts) are important for understanding ecosystem dynamics and for managing outbreaks of invasive species generated by masts. While models relating consumer populations to resource fluctuations have been developed successfully for a range of natural and modified ecosystems, a critical gap that needs addressing is better prediction of resource pulses. A recent model used change in summer temperature from one year to the next (ΔT) for predicting masts for forest and grassland plants in New Zealand. We extend this climate-based method in the framework of a model for consumer-resource dynamics to predict invasive house mouse (Mus musculus) outbreaks in forest ecosystems. Compared with previous mast models based on absolute temperature, the ΔT method for predicting masts resulted in an improved model for mouse population dynamics. There was also a threshold effect of ΔT on the likelihood of an outbreak occurring. The improved climate-based method for predicting resource pulses and consumer responses provides a straightforward rule of thumb for determining, with one year's advance warning, whether management intervention might be required in invaded ecosystems. The approach could be applied to consumer-resource systems worldwide where climatic variables are used to model the size and duration of resource pulses, and may have particular relevance for ecosystems where global change scenarios predict increased variability in climatic events.

  17. Ground Monitoring Neotropical Dry Forests: A Sensor Network for Forest and Microclimate Dynamics in Semi-Arid Environments (Enviro-Net°)

    NASA Astrophysics Data System (ADS)

    Rankine, C. J.; Sánchez-Azofeifa, G.

    2011-12-01

    In the face of unprecedented global change driven by anthropogenic pressure on natural systems it has become imperative to monitor and better understand potential shifts in ecosystem functioning and services from local to global scales. The utilization of automated sensors technologies offers numerous advantages over traditional on-site ecosystem surveying techniques and, as a result, sensor networks are becoming a powerful tool in environmental monitoring programs. Tropical forests, renowned for their biodiversity, are important regulators of land-atmosphere fluxes yet the seasonally dry tropical forests, which account for 40% of forested ecosystems in the American tropics, have been severely degraded over the past several decades and not much is known of their capacity to recover. With less than 1% of these forests protected, our ability to monitor the dynamics and quantify changes in the remaining primary and recovering secondary tropical dry forests is vital to understanding mechanisms of ecosystem stress responses and climate feedback with respect to annual productivity and desertification processes in the tropics. The remote sensing component of the Tropi-Dry: Human and Biophysical Dimensions of Tropical Dry Forests in the Americas research network supports a network of long-term tropical ecosystem monitoring platforms which focus on the dynamics of seasonally dry tropical forests in the Americas. With over 25 sensor station deployments operating across a latitudinal gradient in Mexico, Costa Rica, Brazil, and Argentina continuously collecting hyper-temporal sensory input based on standardized deployment parameters, this monitoring system is unique among tropical environments. Technologies used in the network include optical canopy phenology towers, understory wireless sensing networks, above and below ground microclimate stations, and digital cameras. Sensory data streams are uploaded to a cyber-infrastructure initiative, denominated Enviro-Net°, for data storage, management, visualization, and retrieval for further analysis. The use of tower and ground-based optical sensor networks and meteorological monitoring instrumentation has proven effective in capturing seasonal growth patterns in primary and secondary forest stands. Furthermore, the observed trends in above and below ground microclimate variables are shown to closely correlate with in-situ vegetative indices (NDVI and EVI) across study sites. These long-term environmental sensory data streams provide valuable insights as to how these threatened semi-arid ecosystems regenerate after disturbances and how they respond to environmental stress such as climate change in the tropical and sub-tropical latitudes.

  18. A sensor fusion field experiment in forest ecosystem dynamics

    NASA Technical Reports Server (NTRS)

    Smith, James A.; Ranson, K. Jon; Williams, Darrel L.; Levine, Elissa R.; Goltz, Stewart M.

    1990-01-01

    The background of the Forest Ecosystem Dynamics field campaign is presented, a progress report on the analysis of the collected data and related modeling activities is provided, and plans for future experiments at different points in the phenological cycle are outlined. The ecological overview of the study site is presented, and attention is focused on forest stands, needles, and atmospheric measurements. Sensor deployment and thermal and microwave observations are discussed, along with two examples of the optical radiation measurements obtained during the experiment in support of radiative transfer modeling. Future activities pertaining to an archival system, synthetic aperture radar, carbon acquisition modeling, and upcoming field experiments are considered.

  19. Can the functional stability of forest ecosystems be evaluated from the spatial analysis of stands? A case study from the Bialowieza Primeval Forest (Poland)

    Treesearch

    Andrzej Bobiec

    2000-01-01

    Variability of external and internal factors entails specific spatial patterns and functional dynamics of communities. The study of the oak-lime-hornbeam (Quercus robur-Tilia cordata-Carpimus) forest in the Bialowieza Primeval Forest supports the concept of silvatic unit, determining the minimal structural area. To find out if the dynamics of a stand...

  20. Bartlett Experimental Forest

    Treesearch

    Jane Gamal-Eldin

    1998-01-01

    The Bartlett Experimental Forest is a field laboratory for research on the ecology and management of northern forest ecosystems. Research on the Bartlett includes: 1) extensive investigations on structure and dynamics of forests at several levels, and developing management alternatives to reflect an array of values and benefits sought by users of forest lands, 2) a...

  1. Transient traceability analysis of land carbon storage dynamics: procedures and its application to two forest ecosystems

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Shi, Z.; Xia, J.; Liang, J.; Lu, X.; Wang, Y.; Luo, Y.

    2017-12-01

    Uptake of anthropogenically emitted carbon (C) dioxide by terrestrial ecosystem is critical for determining future climate. However, Earth system models project large uncertainties in future C storage. To help identify sources of uncertainties in model predictions, this study develops a transient traceability framework to trace components of C storage dynamics. Transient C storage (X) can be decomposed into two components, C storage capacity (Xc) and C storage potential (Xp). Xc is the maximum C amount that an ecosystem can potentially store and Xp represents the internal capacity of an ecosystem to equilibrate C input and output for a network of pools. Xc is co-determined by net primary production (NPP) and residence time (𝜏N), with the latter being determined by allocation coefficients, transfer coefficients, environmental scalar, and exit rate. Xp is the product of redistribution matrix (𝜏ch) and net ecosystem exchange. We applied this framework to two contrasting ecosystems, Duke Forest and Harvard Forest with an ecosystem model. This framework helps identify the mechanisms underlying the responses of carbon cycling in the two forests to climate change. The temporal trajectories of X are similar between the two ecosystems. Using this framework, we found that two different mechanisms leading to the similar trajectory. This framework has potential to reveal mechanisms behind transient C storage in response to various global change factors. It can also identify sources of uncertainties in predicted transient C storage across models and can therefore be useful for model intercomparison.

  2. Modelling effects of forest disturbance history on carbon balance: a deep learning approach using Landsat-time series.

    NASA Astrophysics Data System (ADS)

    Besnard, S.; Carvalhais, N.; Clevers, J.; Dutrieux, L.; Gans, F.; Herold, M.; Reichstein, M.; Jung, M.

    2017-12-01

    Forests play a crucial role in the global carbon (C) cycle, covering about 30% of the planet's terrestrial surface, accounting for 50% of plant productivity, and storing 45% of all terrestrial C. As such, forest disturbances affect the balance of terrestrial C dioxide (CO 2 ) exchange, with the potential of releasing large amounts of C into the atmosphere. Understanding and quantifying the effect of forest disturbance on terrestrial C metabolism is critical for improving forest C balance estimates and predictions. Here we combine remote sensing, climate, and eddy-covariance (EC) data to study forest land surface-atmosphere C fluxes at more than 180 sites globally. We aim to enhance understanding of C balance in forest ecosystems by capturing the ecological carry-over effect of disturbance historyon C fluxes. Our objectives are to (1) characterize forest disturbance history through the full temporal depth of the Landsat time series (LTS); and (2) to investigate lag and carry-over effects of forest dynamics and climate on ecosystem C fluxes using a data-driven recurrent neural network(RNN). The resulting data-driven model integrates carry-over effects of the system, using LTS, ecosystem productivity, and several abiotic factors. In this study, we show that our RNN algorithm is able to effectively calculate realistic seasonal, interannual, and across-site C flux variabilities based on EC, LTS, and climate data. In addition, our results demonstrate that a deep learning approach with embedded dynamic memory effects offorest dynamics is able to better capture lag and carry-over effects due to soil-vegetation feedback compared to a classic approach considering only the current condition of the ecosystem. Our study paves the way to produce accurate, high resolution carbon fluxes maps, providing morecomprehensive monitoring, mapping, and reporting of the carbon consequences of forest change globally.

  3. A dynamic ecosystem growth model for forests at high complexity structure

    NASA Astrophysics Data System (ADS)

    Collalti, A.; Perugini, L.; Chiti, T.; Matteucci, G.; Oriani, A.; Santini, M.; Papale, D.; Valentini, R.

    2012-04-01

    Forests ecosystem play an important role in carbon cycle, biodiversity conservation and for other ecosystem services and changes in their structure and status perturb a delicate equilibrium that involves not only vegetation components but also biogeochemical cycles and global climate. The approaches to determine the magnitude of these effects are nowadays various and one of those include the use of models able to simulate structural changes and the variations in forests yield The present work shows the development of a forest dynamic model, on ecosystem spatial scale using the well known light use efficiency to determine Gross Primary Production. The model is predictive and permits to simulate processes that determine forest growth, its dynamic and the effects of forest management using eco-physiological parameters easy to be assessed and to be measured. The model has been designed to consider a tri-dimensional cell structure composed by different vertical layers depending on the forest type that has to be simulated. These features enable the model to work on multi-layer and multi-species forest types, typical of Mediterranean environment, at the resolution of one hectare and at monthly time-step. The model simulates, for each layer, a value of available Photosynthetic Active Radiation (PAR) through Leaf Area Index, Light Extinction Coefficient and cell coverage, the transpiration rate that is closely linked to the intercepted light and the evaporation from soil. Using this model it is possible to evaluate the possible impacts of climate change on forests that may result in decrease or increase of productivity as well as the feedback of one or more dominated layers in terms of CO2 uptake in a forest stand and the effects of forest management activities during the forest harvesting cycle. The model has been parameterised, validated and applied in a multi-layer, multi-age and multi-species Italian turkey oak forest (Q. cerris L., C. betulus L. and C. avellana L.) where the medium-term (10 years) development of forest parameters were simulated. The results obtained for net primary production and for stem, root and foliage compartments as well as for forest structure i.e. Diameter at Breast Height, height and canopy cover are in good accordance with field data (R2>0.95). These results show how the model is able to predict forest yield as well as forest dynamic with good accuracy and encourage testing the model capability on other sites with a more complex forest structure and for long-time period with an higher spatial resolution.

  4. Alternative stable states and the sustainability of forests, grasslands, and agriculture.

    PubMed

    Henderson, Kirsten A; Bauch, Chris T; Anand, Madhur

    2016-12-20

    Endangered forest-grassland mosaics interspersed with expanding agriculture and silviculture occur across many parts of the world, including the southern Brazilian highlands. This natural mosaic ecosystem is thought to reflect alternative stable states driven by threshold responses of recruitment to fire and moisture regimes. The role of adaptive human behavior in such systems remains understudied, despite its pervasiveness and the fact that such ecosystems can exhibit complex dynamics. We develop a nonlinear mathematical model of coupled human-environment dynamics in mosaic systems and social processes regarding conservation and economic land valuation. Our objective is to better understand how the coupled dynamics respond to changes in ecological and social conditions. The model is parameterized with southern Brazilian data on mosaic ecology, land-use profits, and questionnaire results concerning landowner preferences and conservation values. We find that the mosaic presently resides at a crucial juncture where relatively small changes in social conditions can generate a wide variety of possible outcomes, including complete loss of mosaics; large-amplitude, long-term oscillations between land states that preclude ecosystem stability; and conservation of the mosaic even to the exclusion of agriculture/silviculture. In general, increasing the time horizon used for conservation decision making is more likely to maintain mosaic stability. In contrast, increasing the inherent conservation value of either forests or grasslands is more likely to induce large oscillations-especially for forests-due to feedback from rarity-based conservation decisions. Given the potential for complex dynamics, empirically grounded nonlinear dynamical models should play a larger role in policy formulation for human-environment mosaic ecosystems.

  5. Determining the Ecosystem Services Important for Urban Landscapes

    EPA Science Inventory

    Urban ecosystems present special considerations and challenges in researching and evaluating ecosystem functions and services. A case study of nitrate retention and loss in forested, urban wetlands illustrates these challenges. Water table dynamics, in situ nitrogen cy...

  6. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson-Teixeira, Kristina J.; Davies, Stuart J.; Bennett, Amy C.

    2014-09-25

    Global change is impacting forests worldwide, threatening biodiversity and ecosystem services, including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamic research sites useful for characterizing forest responses to global change. The broad suite of measurements made at the CTFS-ForestGEO sites make it possible to investigate the complex ways in which global change is impacting forest dynamics. ongoing research across the network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forestmore » diversity and dynamics in a era of global change« less

  7. Modeling of larch forest dynamics under a changing climate in eastern Siberia

    NASA Astrophysics Data System (ADS)

    Nakai, T.; Kumagai, T.; Iijima, Y.; Ohta, T.; Kotani, A.; Maximov, T. C.; Hiyama, T.

    2017-12-01

    According to the projection by an earth system model under RCP8.5 scenario, boreal forest in eastern Siberia (near Yakutsk) is predicted to experience significant changes in climate, in which the mean annual air temperature is projected to be positive and the annual precipitation will be doubled by the end of 21st century. Since the forest in this region is underlain by continuous permafrost, both increasing temperature and precipitation can affect the dynamics of forest through the soil water processes. To investigate such effects, we adopted a newly developed terrestrial ecosystem dynamics model named S-TEDy (SEIB-DGVM-originated Terrestrial Ecosystem Dynamics model), which mechanistically simulates "the way of life" of each individual tree and resulting tree mortality under the future climate conditions. This model was first developed for the simulation of the dynamics of a tropical rainforest in the Borneo Island, and successfully reproduced higher mortality of large trees due to a prolonged drought induced by ENSO event of 1997-1998. To apply this model to a larch forest in eastern Siberia, we are developing a soil submodel to consider the effect of thawing-freezing processes. We will present a simulation results using the future climate projection.

  8. Integrating ecophysiology and forest landscape models to improve projections of drought effects under climate change

    Treesearch

    Eric J. Gustafson; Arjan M.G. De Bruijn; Robert E. Pangle; Jean-Marc Limousin; Nate G. McDowell; William T. Pockman; Brian R. Sturtevant; Jordan D. Muss; Mark E. Kubiske

    2015-01-01

    Fundamental drivers of ecosystem processes such as temperature and precipitation are rapidly changing and creating novel environmental conditions. Forest landscape models (FLM) are used by managers and policy-makers to make projections of future ecosystem dynamics under alternative management or policy options, but the links between the fundamental drivers and...

  9. Divergent phenological response to hydroclimate variability in forested mountain watersheds

    Treesearch

    Taehee Hwang; Lawrence E. Band; Chelcy F. Miniat; Conghe Song; Paul V . Bolstad; James M. Vose; Jason P. Love

    2014-01-01

    Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep...

  10. Modeling landscape net ecosystem productivity (LandNEP) under alternative management regimes

    Treesearch

    Eugenie S. Euskirchen; Jiquan Chen; Harbin Li; Eric J. Gustafson; Thomas R. Crow

    2002-01-01

    Forests have been considered as a major carbon sink within the global carbon budget. However, a fragmented forest landscape varies significantly in its composition and age structure, and the amount of carbon sequestered at this level remains generally unknown to the scientific community. More precisely, the temporal dynamics and spatial distribution of net ecosystem...

  11. Dynamics of ecosystem services provided by subtropical forests in Southeast China during succession as measured by donor and receiver value

    EPA Science Inventory

    The trends in the provision of ecosystem services during restoration and succession of subtropical forests and plantations were quantified, in terms of both receiver and donor values, based on a case study of a 3-step secondary succession series that included a 400-year-old subtr...

  12. Temporal Dynamics in Soil Oxygen and Greenhouse Gases in Two Humid Tropical Forests

    Treesearch

    Daniel Liptzin; Whendee L. Silver; Matteo Detto

    2011-01-01

    Soil redox plays a key role in regulating biogeochemical transformations in terrestrial ecosystems, but the temporal and spatial patterns in redox and associated controls within and across ecosystems are poorly understood. Upland humid tropical forest soils may be particularly prone to fluctuating redox as abundant rainfall limits oxygen (O2) diffusion through finely...

  13. Some ecological, economic, and social consequences of bark beetle infestations

    Treesearch

    Robert A. Progar; Adris Eglitis; John E. Lundquist

    2009-01-01

    Bark beetles are powerful agents of change in dynamic forest ecosystems. Most assessments of the effects of bark beetle outbreaks have been based on negative impacts on timber production. The positive effects of bark beetle activities are much less well understood. Bark beetles perform vital functions at all levels of scale in forest ecosystems. At the landscape...

  14. Recent trends, drivers, and projections of carbon cycle processes in forests and grasslands of North America

    NASA Astrophysics Data System (ADS)

    Domke, G. M.; Williams, C. A.; Birdsey, R.; Pendall, E.

    2017-12-01

    In North America forest and grassland ecosystems play a major role in the carbon cycle. Here we present the latest trends and projections of United States and North American carbon cycle processes, stocks, and flows in the context of interactions with global scale budgets and climate change impacts in managed and unmanaged grassland and forest ecosystems. We describe recent trends in natural and anthropogenic disturbances in these ecosystems as well as the carbon dynamics associated with land use and land cover change. We also highlight carbon management science and tools for informing decisions and opportunities for improving carbon measurements, observations, and projections in forests and grasslands.

  15. Decomposition and nitrogen dynamics of 15N-labeled leaf, root, and twig litter in temperate coniferous forests

    Treesearch

    T.L. van Huysen; M.E. Harmon; S.S. Perakis; H. Chen

    2013-01-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled...

  16. A PROBABILITY SURVEY OF SUCCESSIONAL FOREST COMPOSITION AND CONDITION IN A GREAT RIVER FLOODPLAIN LANDSCAPE

    EPA Science Inventory

    Floodplains within the Great River Ecosystems (GREs) of the central U.S. are composed of dynamic mosaics of successional habitat that (when unmodified) are typically dominated by cottonwood forest (Populus ssp.). GRE riparian habitat condition and successional dynamics are linked...

  17. Echohydrological implications of drought for forests in the United States

    Treesearch

    James M. Vose; Chelcy Ford Miniat; Charles H. Luce; Heidi Asbjornsen; Peter V. Caldwell; John L. Campbell; Gordon E. Grant; Daniel J. Isaak; Steven P. Loheide; Ge Sun

    2016-01-01

    The relationships among drought, surface water flow, and groundwater recharge are not straightforward for most forest ecosystems due to the strong role that vegetation plays in the forest water balance. Hydrologic responses to drought can be either mitigated or exacerbated by forest vegetation depending upon vegetation water use and how forest population dynamics...

  18. Assessing forest fragmentation metrics from forest inventory cluster samples

    Treesearch

    Christoph Kleinn

    2000-01-01

    Fragmentation of forest area plays an important role in the ongoing discussion of forest dynamics and biological and ecosystem diversity. Among its contributing factors are size, shape, number, and spatial arrangement of forest patches. Several metrics and indexes are in use, predominantly in quantitative landscape ecology. An important area of interest is the...

  19. The effects of prescribed fire and silvicultural thinning on the aboveground carbon stocks and net primary production of overstory trees in an oak-hickory ecosystem in southern Ohio

    Treesearch

    Jyh-Min Chiang; Ryan W. McEwan; Daniel A. Yaussy; Kim J. Brown

    2008-01-01

    More than 70 years of fire suppression has influenced forest dynamics and led to the accumulation of fuels in many forests of the United States. To address these changes, forest managers increasingly seek to restore historical ecosystem structure and function through the reintroduction of fire and disturbance processes that mimic fire such as silvicultural thinning. In...

  20. Forest Ecosystem Services and Eco-Compensation Mechanisms in China

    NASA Astrophysics Data System (ADS)

    Deng, Hongbing; Zheng, Peng; Liu, Tianxing; Liu, Xin

    2011-12-01

    Forests are a major terrestrial ecosystem providing multiple ecosystem services. However, the importance of forests is frequently underestimated from an economic perspective because of the externalities and public good properties of these services. Forest eco-compensation is a transfer mechanism that serves to internalize the externalities of forest ecosystem services by compensating individuals or companies for the losses or costs resulting from the provision of these services. China's current forest eco-compensation system is centered mainly on noncommercial forest. The primary measures associated with ecosystem services are (1) a charge on destructive activities, such as indiscriminate logging, and (2) compensation for individual or local activities and investments in forest conservation. The Compensation Fund System for Forest Ecological Benefits was first listed in the Forest Law of the People's Republic of China in 1998. In 2004, the Central Government Financial Compensation Fund, an important source for the Compensation Fund for Forest Ecological Benefits, was formally established. To improve the forest eco-compensation system, it is crucial to design and establish compensation criteria for noncommercial forests. These criteria should take both theoretical and practical concerns into account, and they should be based on the quantitative valuation of ecosystem services. Although some initial headway has been made on this task, the implementation of an effective forest eco-compensation system in China still has deficiencies and still faces problems. Implementing classification-based and dynamic management for key noncommercial forests and establishing an eco-compensation mechanism with multiple funding sources in the market economy are the key measures needed to conquer these problems and improve the forest eco-compensation system and China's forestry development in sequence.

  1. The role of ungulates in nowadays temperate forests. A response to Fløjgaard et al. (DOI:10.1111/gcb.14029).

    PubMed

    Boulanger, Vincent; Dupouey, Jean-Luc; Archaux, Frédéric; Badeau, Vincent; Baltzinger, Christophe; Chevalier, Richard; Corcket, Emmanuel; Dumas, Yann; Forgeard, Françoise; Mårell, Anders; Montpied, Pierre; Paillet, Yoan; Saïd, Sonia; Ulrich, Erwin

    2018-06-01

    In Boulanger et al. (2018), we investigated the effects of ungulates on forest plant diversity. By suggesting a revisit of our conclusions regarding ecosystem dynamics since the late Pleistocene, Fløjgaard et al. (2018) came to the conclusion that moderate grazing in forest should be a conservation target. Since major points of our paper were mis- or over- interpreted, we put the record straight on our study system and on the scope of our conclusions. Finally, we advocate for an assessment of the conservation issues of ungulates in forests not only regarding hypothetical and still debated states of past ecosystems but also considering timely challenges for forest ecosystems. © 2018 John Wiley & Sons Ltd.

  2. Chapter 5. Dynamics of ponderosa and Jeffrey pine forests

    Treesearch

    Penelope Morgan

    1994-01-01

    Ponderosa (Pinus ponderosa) and Jeffrey pine (Pinus jefferyi) forests are ecologically diverse ecosystems. The communities and landscapes in which these trees dominate are variable and often complex. Because of the economic value of resources, people have used these forests extensively.

  3. Environmental drivers of deadwood dynamics in woodlands and forests

    Treesearch

    M. Garbarino; R. Marzano; John Shaw; J. N. Long

    2015-01-01

    Deadwood dynamics play a key role in many forest ecosystems. Understanding the mechanisms involved in the accumulation and depletion of deadwood can enhance our understanding of fundamental processes such as carbon sequestration and disturbance regimes, allowing better predictions of future changes related to alternative management and climate scenarios. A...

  4. Effects of harvest on carbon and nitrogen dynamics in a Pacific Northwest forest catchment

    EPA Science Inventory

    We used a new ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest on catchment carbon and nitrogen dynamics. We applied the model to a 10 ha headwater catchment in the western Oregon Cascade Range where t...

  5. An overview of the fire and fuels extension to the forest vegetation simulator

    Treesearch

    Sarah J. Beukema; Elizabeth D. Reinhardt; Werner A. Kurz; Nicholas L. Crookston

    2000-01-01

    The Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) has been developed to assess the risk, behavior, and impact of fire in forest ecosystems. This extension to the widely-used stand-dynamics model FVS simulates the dynamics of snags and surface fuels as they are affected by stand management (of trees or fuels), live tree growth and mortality,...

  6. An assessment of coarse woody debris dynamics in an urban forest

    Treesearch

    Michael K. Crosby; Helen Petre; Justin Sims; Rachel Butler

    2016-01-01

    Determining the amount of coarse woody debris (CWD) in an urban forest is essential to developing management strategies to maintain ecosystem function while minimizing hazards to local residents. It is also an essential variable used for the assessment and monitoring of carbon dynamics and fire fuel loads in forests. Plots were established and CWD measured in Marshall...

  7. Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics

    Treesearch

    A.D. Jayakaran; T.M. Williams; H. Ssegane; D.M. Amatya; B. Song; C.C. Trettin

    2014-01-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes in the southeastern Atlantic and Gulf coasts. Every southeastern forested wetland has the potential to be struck by a tropical cyclone. We examined the impact of Hurricane Hugo on two paired coastal South Carolina watersheds in terms of streamflow and vegetation dynamics, both before and after...

  8. Assessing economic tradeoffs in forest management.

    Treesearch

    Ernie Niemi; Ed. Whitelaw

    1999-01-01

    Method is described for assessing the competing demands for forest resources in a forest management plan by addressing economics values, economic impacts, and perceptions of fairness around each demand. Economics trends and forces that shape the dynamic ecosystem-economy relation are developed. The method is demonstrated through an illustrative analysis of a forest-...

  9. The structure, distribution, and biomass of the world's forests

    Treesearch

    Yude Pan; Richard A. Birdsey; Oliver L. Phillips; Robert B. Jackson

    2013-01-01

    Forests are the dominant terrestrial ecosystem on Earth. We review the environmental factors controlling their structure and global distribution and evaluate their current and future trajectory. Adaptations of trees to climate and resource gradients, coupled with disturbances and forest dynamics, create complex geographical patterns in forest assemblages and structures...

  10. Forest structure in low diversity tropical forests: a study of Hawaiian wet and dry forests

    Treesearch

    R. Ostertag; F. Inman-Narahari; S. Cordell; C.P. Giardina; L. Sack

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai‘i Island. We compared the species...

  11. Secondary forest regeneration benefits old-growth specialist bats in a fragmented tropical landscape.

    PubMed

    Rocha, Ricardo; Ovaskainen, Otso; López-Baucells, Adrià; Farneda, Fábio Z; Sampaio, Erica M; Bobrowiec, Paulo E D; Cabeza, Mar; Palmeirim, Jorge M; Meyer, Christoph F J

    2018-02-28

    Tropical forest loss and fragmentation are due to increase in coming decades. Understanding how matrix dynamics, especially secondary forest regrowth, can lessen fragmentation impacts is key to understanding species persistence in modified landscapes. Here, we use a whole-ecosystem fragmentation experiment to investigate how bat assemblages are influenced by the regeneration of the secondary forest matrix. We surveyed bats in continuous forest, forest fragments and secondary forest matrix habitats, ~15 and ~30 years after forest clearance, to investigate temporal changes in the occupancy and abundance of old-growth specialist and habitat generalist species. The regeneration of the second growth matrix had overall positive effects on the occupancy and abundance of specialists across all sampled habitats. Conversely, effects on generalist species were negligible for forest fragments and negative for secondary forest. Our results show that the conservation potential of secondary forests for reverting faunal declines in fragmented tropical landscapes increases with secondary forest age and that old-growth specialists, which are often of most conservation concern, are the greatest beneficiaries of secondary forest maturation. Our findings emphasize that the transposition of patterns of biodiversity persistence in island ecosystems to fragmented terrestrial settings can be hampered by the dynamic nature of human-dominated landscapes.

  12. Multi-aged Forest: an Optimal Management Strategy for Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Yao, L.; Tang, X.; Ma, M.

    2017-12-01

    Disturbances and climatic changes significantly affect forest ecosystem productivity, water use efficiency (WUE) and carbon (C) flux dynamics. A deep understanding of terrestrial feedbacks to such effects and recovery mechanisms in forests across contrasting climatic regimes is essential to predict future regional/global C and water budgets, which are also closely related to the potential forest management decisions. However, the resilience of multi-aged and even-aged forests to disturbances has been debated for more than 60 years because of technical measurement constraints. Here we evaluated 62 site-years of eddy covariance measurements of net ecosystem production (NEP), evapotranspiration (ET), the estimates of gross primary productivity (GPP), ecosystem respiration (Re) and ecosystem-level WUE, as well as the relationships with environmental controls in three chronosequences of multi- and even-aged coniferous forests covering the Mediterranean, temperate and boreal regions. Age-specific dynamics in multi-year mean annual NEP and WUE revealed that forest age is a key variable that determines the sign and magnitude of recovering forest C source-sink strength from disturbances. However, the trends of annual NEP and WUE across succession stages between two stand structures differed substantially. The successional patterns of NEP exhibited an inverted-U trend with age at the two even-aged chronosequences, whereas NEP of the multi-aged chronosequence increased steadily through time. Meanwhile, site-level WUE of even-aged forests decreased gradually from young to mature, whereas an apparent increase occurred for the same forest age in multi-aged stands. Compared with even-aged forests, multi-aged forests sequestered more CO2 with forest age and maintained a relatively higher WUE in the later succession periods. With regard to the available flux measurements in this study, these behaviors are independent of tree species, stand ages and climate conditions . We also found that distinctly different environmental factors controlled forest C and water fluxes under three climatic regimes.These findings will provide important implications for forest management strategies to mitigate global climate change.

  13. Strong spatial variability in trace gas dynamics following experimental drought in a humid tropical forest

    Treesearch

    Tana Wood; W. L. Silver

    2012-01-01

    [1] Soil moisture is a key driver of biogeochemical processes in terrestrial ecosystems, strongly affecting carbon (C) and nutrient availability as well as trace gas production and consumption in soils. Models predict increasing drought frequency in tropical forest ecosystems, which could feed back on future climate change directly via effects on trace gasdynamics and...

  14. Predictors of Drought Recovery across Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Anderegg, W.

    2016-12-01

    The impacts of climate extremes on terrestrial ecosystems are poorly understood but central for predicting carbon cycle feedbacks to climate change. Coupled climate-carbon cycle models typically assume that vegetation recovery from extreme drought is immediate and complete, which conflicts with basic plant physiological understanding. Here, we discuss what we have learned about forest ecosystem recovery from extreme drought across spatial and temporal scales, drawing on inference from tree rings, eddy covariance data, large scale gross primary productivity products, and ecosystem models. In tree rings, we find pervasive and substantial "legacy effects" of reduced growth and incomplete recovery for 1-4 years after severe drought, and that legacy effects are most prevalent in dry ecosystems, Pinaceae, and species with low hydraulic safety margins. At larger scales, we see relatively rapid recovery of ecosystem fluxes, with strong influences of ecosystem productivity and diversity and longer recovery periods in high latidue forests. In contrast, no or limited legacy effects are simulated in current climate-vegetation models after drought, and we highlight some of the key missing mechanisms in dynamic vegetation models. Our results reveal hysteresis in forest ecosystem carbon cycling and delayed recovery from climate extremes and help advance a predictive understanding of ecosystem recovery.

  15. Simulating Forest Dynamics of Lowland Rainforests in Eastern Madagascar

    NASA Technical Reports Server (NTRS)

    Armstrong, Amanda; Fischer, Rico; Huth, Andreas; Shugart, Herman; Fatoyinbo, Temilola

    2018-01-01

    Ecological modeling and forecasting are essential tools for the understanding of complex vegetation dynamics. The parametric demands of some of these models are often lacking or scant for threatened ecosystems, particularly in diverse tropical ecosystems. One such ecosystem and also one of the world's biodiversity hotspots, Madagascar's lowland rainforests, have disappeared at an alarming rate. The processes that drive tree species growth and distribution remain as poorly understood as the species themselves. We investigated the application of the process-based individual-based FORMIND model to successfully simulate a Madagascar lowland rainforest using previously collected multi-year forest inventory plot data. We inspected the model's ability to characterize growth and species abundance distributions over the study site, and then validated the model with an independently collected forest-inventory dataset from another lowland rainforest in eastern Madagascar. Following a comparative analysis using inventory data from the two study sites, we found that FORMIND accurately captures the structure and biomass of the study forest, with r(squared) values of 0.976, 0.895, and 0.995 for 1:1 lines comparing observed and simulated values across all plant functional types for aboveground biomass (tonnes/ha), stem numbers, and basal area (m(squared)/ha), respectively. Further, in validation with a second study forest site, FORMIND also compared well, only slightly over-estimating shade-intermediate species as compared to the study site, and slightly under-representing shade-tolerant species in percentage of total aboveground biomass. As an important application of the FORMIND model, we measured the net ecosystem exchange (NEE, in tons of carbon per hectare per year) for 50 ha of simulated forest over a 1000-year run from bare ground. We found that NEE values ranged between 1 and -1 t Cha(exp -1)year(exp -1), consequently the study forest can be considered as a net neutral or a very slight carbon sink ecosystem, after the initial 130 years of growth. Our study found that FORMIND represents a valuable tool toward simulating forest dynamics in the immensely diverse Madagascar rainforests.

  16. Allelochemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waller, G.R.

    1987-01-01

    This book contains 51 selections. Some of the titles are: Allelopathy: A potential cause of forest regeneration failure; Allelopathic effects on mycorrhizae: Influence on structure and dynamics of forest ecosystems; Allelopathic interference with regeneration of the allegheny hardwood forest; and Studies on the fulvic and humic acids of Minnesota peat.

  17. Effects of contemporary land-use and land-cover change on the carbon balance of terrestrial ecosystems in the United States

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Liu, Jinxun; Daniel, Colin; Rayfield, Bronwyn; Sherba, Jason; Hawbaker, Todd J.; Zhu, Zhiliang; Selmants, Paul; Loveland, Thomas R.

    2018-01-01

    Changes in land use and land cover (LULC) can have profound effects on terrestrial carbon dynamics, yet their effects on the global carbon budget remain uncertain. While land change impacts on ecosystem carbon dynamics have been the focus of numerous studies, few efforts have been based on observational data incorporating multiple ecosystem types spanning large geographic areas over long time horizons. In this study we use a variety of synoptic-scale remote sensing data to estimate the effect of LULC changes associated with urbanization, agricultural expansion and contraction, forest harvest, and wildfire on the carbon balance of terrestrial ecosystems (forest, grasslands, shrublands, and agriculture) in the conterminous United States (i.e. excluding Alaska and Hawaii) between 1973 and 2010. We estimate large net declines in the area of agriculture and forest, along with relatively small increases in grasslands and shrublands. The largest net change in any class was an estimated gain of 114 865 km2 of developed lands, an average rate of 3282 km2 yr−1. On average, US ecosystems sequestered carbon at an annual rate of 254 Tg C yr−1. In forest lands, the net sink declined by 35% over the study period, largely a result of land-use legacy, increasing disturbances, and reductions in forest area due to land use conversion. Uncertainty in LULC change data contributed to a ~16% margin of error in the annual carbon sink estimate prior to 1985 (approximately ±40 Tg C yr−1). Improvements in LULC and disturbance mapping starting in the mid-1980s reduced this uncertainty by ~50% after 1985. We conclude that changes in LULC are a critical component to understanding ecosystem carbon dynamics, and continued improvements in detection, quantification, and attribution of change have the potential to significantly reduce current uncertainties.

  18. Effects of contemporary land-use and land-cover change on the carbon balance of terrestrial ecosystems in the United States

    NASA Astrophysics Data System (ADS)

    Sleeter, Benjamin M.; Liu, Jinxun; Daniel, Colin; Rayfield, Bronwyn; Sherba, Jason; Hawbaker, Todd J.; Zhu, Zhiliang; Selmants, Paul C.; Loveland, Thomas R.

    2018-04-01

    Changes in land use and land cover (LULC) can have profound effects on terrestrial carbon dynamics, yet their effects on the global carbon budget remain uncertain. While land change impacts on ecosystem carbon dynamics have been the focus of numerous studies, few efforts have been based on observational data incorporating multiple ecosystem types spanning large geographic areas over long time horizons. In this study we use a variety of synoptic-scale remote sensing data to estimate the effect of LULC changes associated with urbanization, agricultural expansion and contraction, forest harvest, and wildfire on the carbon balance of terrestrial ecosystems (forest, grasslands, shrublands, and agriculture) in the conterminous United States (i.e. excluding Alaska and Hawaii) between 1973 and 2010. We estimate large net declines in the area of agriculture and forest, along with relatively small increases in grasslands and shrublands. The largest net change in any class was an estimated gain of 114 865 km2 of developed lands, an average rate of 3282 km2 yr‑1. On average, US ecosystems sequestered carbon at an annual rate of 254 Tg C yr‑1. In forest lands, the net sink declined by 35% over the study period, largely a result of land-use legacy, increasing disturbances, and reductions in forest area due to land use conversion. Uncertainty in LULC change data contributed to a ~16% margin of error in the annual carbon sink estimate prior to 1985 (approximately ±40 Tg C yr‑1). Improvements in LULC and disturbance mapping starting in the mid-1980s reduced this uncertainty by ~50% after 1985. We conclude that changes in LULC are a critical component to understanding ecosystem carbon dynamics, and continued improvements in detection, quantification, and attribution of change have the potential to significantly reduce current uncertainties.

  19. Correlations among stand ages and forest strata in mixed-oak forests of southeastern Ohio

    Treesearch

    P. Charles Goebel; David M. Hix

    1997-01-01

    Many models of landscape ecosystem development, as well as of forest stand dynamics, are based upon spatial and temporal changes in the species composition and structure of various forest strata. However, few document the interrelationships among forest strata, or the response of different strata to alterations of natural disturbance regimes. To examine how...

  20. Application of molecular genetic tools to studies of forest pathosystems [Chapter 2

    Treesearch

    Mee-Sook Kim; Ned B. Klopfenstein; Richard C. Hamelin

    2005-01-01

    The use of molecular genetics in forest pathology has greatly increased over the past 10 years. For the most part, molecular genetic tools were initially developed to focus on individual components (e.g., pathogen, host) of forest pathosystems. As part of broader forest ecosystem complexes, forest pathosystems involve dynamic interactions among living components (e.g...

  1. Exploring tropical forest vegetation dynamics using the FATES model

    NASA Astrophysics Data System (ADS)

    Koven, C. D.; Fisher, R.; Knox, R. G.; Chambers, J.; Kueppers, L. M.; Christoffersen, B. O.; Davies, S. J.; Dietze, M.; Holm, J.; Massoud, E. C.; Muller-Landau, H. C.; Powell, T.; Serbin, S.; Shuman, J. K.; Walker, A. P.; Wright, S. J.; Xu, C.

    2017-12-01

    Tropical forest vegetation dynamics represent a critical climate feedback in the Earth system, which is poorly represented in current global modeling approaches. We discuss recent progress on exploring these dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a demographic vegetation model for the CESM and ACME ESMs. We will discuss benchmarks of FATES predictions for forest structure against inventory sites, sensitivity of FATES predictions of size and age structure to model parameter uncertainty, and experiments using the FATES model to explore PFT competitive dynamics and the dynamics of size and age distributions in responses to changing climate and CO2.

  2. Management Impacts on Carbon Dynamics in a Sierra Nevada Mixed Conifer Forest

    PubMed Central

    Dore, Sabina; Fry, Danny L.; Collins, Brandon M.; Vargas, Rodrigo; York, Robert A.; Stephens, Scott L.

    2016-01-01

    Forest ecosystems can act as sinks of carbon and thus mitigate anthropogenic carbon emissions. When forests are actively managed, treatments can alter forests carbon dynamics, reducing their sink strength and switching them from sinks to sources of carbon. These effects are generally characterized by fast temporal dynamics. Hence this study monitored for over a decade the impacts of management practices commonly used to reduce fire hazards on the carbon dynamics of mixed-conifer forests in the Sierra Nevada, California, USA. Soil CO2 efflux, carbon pools (i.e. soil carbon, litter, fine roots, tree biomass), and radial tree growth were compared among un-manipulated controls, prescribed fire, thinning, thinning followed by fire, and two clear-cut harvested sites. Soil CO2 efflux was reduced by both fire and harvesting (ca. 15%). Soil carbon content (upper 15 cm) was not significantly changed by harvest or fire treatments. Fine root biomass was reduced by clear-cut harvest (60–70%) but not by fire, and the litter layer was reduced 80% by clear-cut harvest and 40% by fire. Thinning effects on tree growth and biomass were concentrated in the first year after treatments, whereas fire effects persisted over the seven-year post-treatment period. Over this period, tree radial growth was increased (25%) by thinning and reduced (12%) by fire. After seven years, tree biomass returned to pre-treatment levels in both fire and thinning treatments; however, biomass and productivity decreased 30%-40% compared to controls when thinning was combined with fire. The clear-cut treatment had the strongest impact, reducing ecosystem carbon stocks and delaying the capacity for carbon uptake. We conclude that post-treatment carbon dynamics and ecosystem recovery time varied with intensity and type of treatments. Consequently, management practices can be selected to minimize ecosystem carbon losses while increasing future carbon uptake, resilience to high severity fire, and climate related stresses. PMID:26918460

  3. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil.

    PubMed

    Santalahti, Minna; Sun, Hui; Jumpponen, Ari; Pennanen, Taina; Heinonsalo, Jussi

    2016-11-01

    Fungal communities are important for carbon (C) transformations in boreal forests that are one of the largest C pools in terrestrial ecosystems, warranting thus further investigation of fungal community dynamics in time and space. We investigated fungal diversity and community composition seasonally and across defined soil horizons in boreal Scots pine forest in Finland using 454 pyrosequencing. We collected a total of 120 samples from five vertical soil horizons monthly from March to October; in March, under snow. Boreal forest soil generally harbored diverse fungal communities across soil horizons. The communities shifted drastically and rapidly over time. In late winter, saprotrophs dominated the community and were replaced by ectomycorrhizal fungi during the growing season. Our studies are among the first to dissect the spatial and temporal dynamics in boreal forest ecosystems and highlights the ecological importance of vertically distinct communities and their rapid seasonal dynamics. As climate change is predicted to result in warmer and longer snow-free winter seasons, as well as increase the rooting depth of trees in boreal forest, the seasonal and vertical distribution of fungal communities may change. These changes are likely to affect the organic matter decomposition by the soil-inhabiting fungi and thus alter organic C pools. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change.

    PubMed

    Levine, Naomi M; Zhang, Ke; Longo, Marcos; Baccini, Alessandro; Phillips, Oliver L; Lewis, Simon L; Alvarez-Dávila, Esteban; Segalin de Andrade, Ana Cristina; Brienen, Roel J W; Erwin, Terry L; Feldpausch, Ted R; Monteagudo Mendoza, Abel Lorenzo; Nuñez Vargas, Percy; Prieto, Adriana; Silva-Espejo, Javier Eduardo; Malhi, Yadvinder; Moorcroft, Paul R

    2016-01-19

    Amazon forests, which store ∼ 50% of tropical forest carbon and play a vital role in global water, energy, and carbon cycling, are predicted to experience both longer and more intense dry seasons by the end of the 21st century. However, the climate sensitivity of this ecosystem remains uncertain: several studies have predicted large-scale die-back of the Amazon, whereas several more recent studies predict that the biome will remain largely intact. Combining remote-sensing and ground-based observations with a size- and age-structured terrestrial ecosystem model, we explore the sensitivity and ecological resilience of these forests to changes in climate. We demonstrate that water stress operating at the scale of individual plants, combined with spatial variation in soil texture, explains observed patterns of variation in ecosystem biomass, composition, and dynamics across the region, and strongly influences the ecosystem's resilience to changes in dry season length. Specifically, our analysis suggests that in contrast to existing predictions of either stability or catastrophic biomass loss, the Amazon forest's response to a drying regional climate is likely to be an immediate, graded, heterogeneous transition from high-biomass moist forests to transitional dry forests and woody savannah-like states. Fire, logging, and other anthropogenic disturbances may, however, exacerbate these climate change-induced ecosystem transitions.

  5. Influence of climate change factors on carbon dynamics in northern forested peatlands

    Treesearch

    C.C Trettin; R. Laiho; K. Minkkinen; J. Laine

    2005-01-01

    Peatlands are carbon-accumulating wetland ecosystems, developed through an imbalance among organic matter production and decomposition processes. Soil saturation is the principal cause of anoxic conditions that constrain organic matter decay. Accordingly, changes in the hydrologic regime will affect the carbon (C) dynamics in forested peatlands. Our objective is to...

  6. Population dynamics of an invasive forest insect and associated natural enemies in the aftermath of invasion: implications for biological control

    USDA-ARS?s Scientific Manuscript database

    Understanding the population dynamics of exotic pests and associated natural enemies is important in developing sound management strategies in invaded forest ecosystems. The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an invasive phloem-feeding beetle that h...

  7. United States forest disturbance trends observed with landsat time series

    Treesearch

    Jeffrey G. Masek; Samuel N. Goward; Robert E. Kennedy; Warren B. Cohen; Gretchen G. Moisen; Karen Schleweiss; Chengquan Huang

    2013-01-01

    Disturbance events strongly affect the composition, structure, and function of forest ecosystems; however, existing US land management inventories were not designed to monitor disturbance. To begin addressing this gap, the North American Forest Dynamics (NAFD) project has examined a geographic sample of 50 Landsat satellite image time series to assess trends in forest...

  8. Southern Forest Resource Assessment - Summary of Findings

    Treesearch

    David N. Wear; John G. Greis

    2002-01-01

    The Southern Forest Resource Assessment (SFRA) was initiated in spring 1999 to address broad questions concerning the status, trends, and likely future of southern forests. A descriptive assessment such as SFRA can be used to highlight the major dynamics and uncertainties at play within a region's forested ecosystems, thereby focusing public discourse. Because...

  9. Editorial. Introduction to the regional assessments: Climate change, wildfire, and forest ecosystem services in the USA

    Treesearch

    Monique E. Rocca; Chelcy Ford Miniat; Robert J. Mitchell

    2014-01-01

    Fires have influenced and shaped vegetation ever since the climate evolved to provide both ignition sources and oxygen (Bowman et al., 2009). Fire has been one of the most frequent and impactful disturbances to ecosystems globally, and thus one of the major regulators of forest composition, function and dynamics (Spurr and Barnes, 1973 and Bond and Keeley, 2005). Any...

  10. Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests

    Treesearch

    Daniela F. Cusack; Whendee L. Silver; Margaret S. Torn; William H. McDowell

    2011-01-01

    Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and...

  11. Beyond CO2 - Tackling the full greenhouse gas budget of a sub-alpine forest ecosystem

    NASA Astrophysics Data System (ADS)

    Burri, Susanne; Merbold, Lutz; Meier, Philip; Eugster, Werner; Hörtnagl, Lukas; Buchmann, Nina

    2017-04-01

    In order to tackle the full greenhouse gas (GHG) budgets of forest ecosystems, it is desirable but challenging to quantify the three major GHGs, i.e. CO2, CH4 and N2O simultaneously in-situ. At the long-term forest research site Davos (Candidate Class I Ecosystem Station within the Integrated Carbon Observation System - ICOS), we have recently installed a state-of-the-art measuring system simultaneously to observe the three GHGs on a high temporal resolution and both within and above the forest canopy. Thereby, we combine above-canopy eddy covariance flux measurements and forest floor chamber flux measurements (using five custom-made fully automated chambers). Both systems are connected to a quantum cascade laser absorption spectrometer (QCL, Aerodyne) and measurements are switched between three hours of above-canopy and one hour of forest floor GHG flux measurements. Using this approach, we will be able to study the full GHG budget as well as the dynamics of the individual fluxes on two vertical levels within the forest using a single instrument. The first results presented here will highlight the suitability of this promising tool for quantifying the full GHG budget of forest ecosystems.

  12. Forest Ecosystem Dynamics Assessment and Predictive Modelling in Eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Kushwaha, S. P. S.; Nandy, S.; Ahmad, M.; Agarwal, R.

    2011-09-01

    This study focused on the forest ecosystem dynamics assessment and predictive modelling deforestation and forest cover prediction in a part of north-eastern India i.e. forest areas along West Bengal, Bhutan, Arunachal Pradesh and Assam border in Eastern Himalaya using temporal satellite imagery of 1975, 1990 and 2009 and predicted forest cover for the period 2028 using Cellular Automata Markov Modedel (CAMM). The exercise highlighted large-scale deforestation in the study area during 1975-1990 as well as 1990-2009 forest cover vectors. A net loss of 2,334.28 km2 forest cover was noticed between 1975 and 2009, and with current rate of deforestation, a forest area of 4,563.34 km2 will be lost by 2028. The annual rate of deforestation worked out to be 0.35 and 0.78% during 1975-1990 and 1990-2009 respectively. Bamboo forest increased by 24.98% between 1975 and 2009 due to opening up of the forests. Forests in Kokrajhar, Barpeta, Darrang, Sonitpur, and Dhemaji districts in Assam were noticed to be worst-affected while Lower Subansiri, West and East Siang, Dibang Valley, Lohit and Changlang in Arunachal Pradesh were severely affected. Among different forest types, the maximum loss was seen in case of sal forest (37.97%) between 1975 and 2009 and is expected to deplete further to 60.39% by 2028. The tropical moist deciduous forest was the next category, which decreased from 5,208.11 km2 to 3,447.28 (33.81%) during same period with further chances of depletion to 2,288.81 km2 (56.05%) by 2028. It noted progressive loss of forests in the study area between 1975 and 2009 through 1990 and predicted that, unless checked, the area is in for further depletion of the invaluable climax forests in the region, especially sal and moist deciduous forests. The exercise demonstrated high potential of remote sensing and geographic information system for forest ecosystem dynamics assessment and the efficacy of CAMM to predict the forest cover change.

  13. Long-term impacts of recurrent logging and fire in Amazon forests: a modeling study using the Ecosystem Demography Model (ED2)

    NASA Astrophysics Data System (ADS)

    Longo, M.; Keller, M.; Scaranello, M. A., Sr.; dos-Santos, M. N.; Xu, Y.; Huang, M.; Morton, D. C.

    2017-12-01

    Logging and understory fires are major drivers of tropical forest degradation, reducing carbon stocks and changing forest structure, composition, and dynamics. In contrast to deforested areas, sites that are disturbed by logging and fires retain some, albeit severely altered, forest structure and function. In this study we simulated selective logging using the Ecosystem Demography Model (ED-2) to investigate the impact of a broad range of logging techniques, harvest intensities, and recurrence cycles on the long-term dynamics of Amazon forests, including the magnitude and duration of changes in forest flammability following timber extraction. Model results were evaluated using eddy covariance towers at logged sites at the Tapajos National Forest in Brazil and data on long-term dynamics reported in the literature. ED-2 is able to reproduce both the fast (< 5yr) recovery of water, energy fluxes compared to flux tower, and the typical, field-observed, decadal time scales for biomass recovery when no additional logging occurs. Preliminary results using the original ED-2 fire model show that canopy cover loss of forests under high-intensity, conventional logging cause sufficient drying to support more intense fires. These results indicate that under intense degradation, forests may shift to novel disturbance regimes, severely reducing carbon stocks, and inducing long-term changes in forest structure and composition from recurrent fires.

  14. More than Drought: Precipitation Variance, Excessive Wetness, Pathogens and the Future of the Western Edge of the Eastern Deciduous Forest.

    PubMed

    Hubbart, Jason A; Guyette, Richard; Muzika, Rose-Marie

    2016-10-01

    For many regions of the Earth, anthropogenic climate change is expected to result in increasingly divergent climate extremes. However, little is known about how increasing climate variance may affect ecosystem productivity. Forest ecosystems may be particularly susceptible to this problem considering the complex organizational structure of specialized species niche adaptations. Forest decline is often attributable to multiple stressors including prolonged heat, wildfire and insect outbreaks. These disturbances, often categorized as megadisturbances, can push temperate forests beyond sustainability thresholds. Absent from much of the contemporary forest health literature, however, is the discussion of excessive precipitation that may affect other disturbances synergistically or that might represent a principal stressor. Here, specific points of evidence are provided including historic climatology, variance predictions from global change modeling, Midwestern paleo climate data, local climate influences on net ecosystem exchange and productivity, and pathogen influences on oak mortality. Data sources reveal potential trends, deserving further investigation, indicating that the western edge of the Eastern Deciduous forest may be impacted by ongoing increased precipitation, precipitation variance and excessive wetness. Data presented, in conjunction with recent regional forest health concerns, suggest that climate variance including drought and excessive wetness should be equally considered for forest ecosystem resilience against increasingly dynamic climate. This communication serves as an alert to the need for studies on potential impacts of increasing climate variance and excessive wetness in forest ecosystem health and productivity in the Midwest US and similar forest ecosystems globally. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Ecosystem and decomposer effects on litter dynamics along an old field to old-growth forest successional gradient

    EPA Science Inventory

    Identifying the biotic (e.g. decomposers, vegetation) and abiotic (e.g. temperature, moisture) mechanisms controlling litter decomposition is key to understanding ecosystem function, especially where variation in ecosystem structure due to successional processes may alter the str...

  16. Study of the radiocesium dynamics in the Fukushima forest ecosystems

    NASA Astrophysics Data System (ADS)

    Yoschenko, Vasyl; Konoplev, Alexei; Takase, Tsugiko; Nanba, Kenji; Onda, Yuichi; Zheleznyak, Mark; Kivva, Sergii

    2016-04-01

    Accident at Fukushima Dai-ichi NPP on March 11, 2011, has resulted in release into the environment of large amounts of radiocesium (134Cs and 137Cs) and in radioactive contamination of terrestrial and aquatic ecosystems. Up to 2/3 of the most contaminated territory in Fukushima prefecture is covered with forests, and efforts aimed at revitalization of this territory should include, therefore, elaboration of the forestry strategy. In particular, understanding of the radiocesium dynamics in the ecosystem compartments is necessary for the reliable long-term prognosis. Numerous studies revealed and quantified the key processes governing radiocesium redistribution in Fukushima forests at the early stage after the accident, when initially intercepted radiocesium was gradually transported from the trees' crowns to the soil surface and profile with precipitations and litterfall, and the general trend was a decrease of the radiocesium total inventory in the forest biomass. However, at the later stage, the radiocesium activities in the biomass compartments can increase due to its root uptake from the soil profile; the two major processes, radionuclide root uptake and its return to soil, will determine the future radiocesium levels in the forest compartments. Objectives of our study were characterization of the radiocesium distribution at the beginning of the late stage, revealing its dynamics and parameterization of the above-mentioned fluxes for prognosis of the radiocesium long-term redistribution in the typical Fukushima forest ecosystems. The study started at one experimental site (Yamakiya district, Kawamata town, Fukushima Prefecture) in the spring of 2014; to the moment, it has been continuing at several experimental sites in the Fukushima zone characterized by different species composition and soil-landscape conditions. For the typical Japanese cedar (Cryptomeria japonica) and Japanese red pine (Pinus Densiflora) forests, we determined distributions of radiocesium in the ecosystems and in the aboveground biomass compartments by the end of 2014 or 2015. At the best studied Yamakiya site the radiocesium distributions were determined for the two consequent years. In 2014, about 74% of the total radiocesium inventory at this site was localized in soil, 20% was in the litter, and only 6% was associated with the aboveground biomass. Within the tree compartments, the largest radiocesium activity fraction, about 46%, was observed in old foliage. The aggregate soil-to-wood transfer factor was 0.0011 m2/kg d.w. Based on the radiocesium activities measured in the biomass compartments of the studied ecosystems, we derived the estimates of its main fluxes and compared to the apparent dynamics of its inventories in biomass at the Yamakiya site.

  17. Forest influences on snow accumulation and snowmelt at the Hubbard Brook Experimental Forest, New Hampshire, USA

    Treesearch

    Colin A. Penn; Beverley C. Wemple; John L. Campbell

    2012-01-01

    Many factors influence snow depth, water content and duration in forest ecosystems. The effects of forest cover and canopy gap geometry on snow accumulation has been well documented in coniferous forests of western North America and other regions; however, few studies have evaluated these effects on snowpack dynamics in mixed deciduous forests of the northeastern USA....

  18. Changing disturbance regimes, ecological memory, and forest resilience

    USGS Publications Warehouse

    Johnstone, Jill F.; Allen, Craig D.; Franklin, Jerry F.; Frelich, Lee E.; Harvey, Brian J.; Higuera, Philip E.; Mack, Michelle C.; Meentemeyer, Ross K.; Metz, Margaret R.; Perry, George LW; Schoennagel, Tania; Turner, Monica G.

    2016-01-01

    Ecological memory is central to how ecosystems respond to disturbance and is maintained by two types of legacies – information and material. Species life-history traits represent an adaptive response to disturbance and are an information legacy; in contrast, the abiotic and biotic structures (such as seeds or nutrients) produced by single disturbance events are material legacies. Disturbance characteristics that support or maintain these legacies enhance ecological resilience and maintain a “safe operating space” for ecosystem recovery. However, legacies can be lost or diminished as disturbance regimes and environmental conditions change, generating a “resilience debt” that manifests only after the system is disturbed. Strong effects of ecological memory on post-disturbance dynamics imply that contingencies (effects that cannot be predicted with certainty) of individual disturbances, interactions among disturbances, and climate variability combine to affect ecosystem resilience. We illustrate these concepts and introduce a novel ecosystem resilience framework with examples of forest disturbances, primarily from North America. Identifying legacies that support resilience in a particular ecosystem can help scientists and resource managers anticipate when disturbances may trigger abrupt shifts in forest ecosystems, and when forests are likely to be resilient.

  19. Assessing tropical rainforest growth traits: Data - Model fusion in the Congo basin and beyond.

    NASA Astrophysics Data System (ADS)

    Pietsch, S.

    2016-12-01

    Virgin forest ecosystems resemble the key reference level for natural tree growth dynamics. The mosaic cycle concept describes such dynamics as local disequilibria driven by patch level succession cycles of breakdown, regeneration, juvenescence and old growth. These cycles, however, may involve different traits of light demanding and shade tolerant species assemblies. In this work a data model fusion concept will be introduced to assess the differences in growth dynamics of the mosaic cycle of the Western Congolian Lowland Rainforest ecosystem. Field data from 34 forest patches located in an ice age forest refuge, recently pinpointed to the ground and still devoid of direct human impact up to today - resemble the data base. A 3D error assessment procedure versus BGC model simulations for the 34 patches revealed two different growth dynamics, consistent with observed growth traits of pioneer and late succession species assemblies of the Western Congolian Lowland rainforest. An application of the same procedure to Central American Pacific rainforests confirms the strength of the 3D error field data model fusion concept to assess different growth traits of the mosaic cycle of natural forest dynamics.

  20. Proceedings of the California Forest Soils Council Conference on Forest Soils Biology and Forest Management

    Treesearch

    Robert F. Powers; Donald L. Hauxwell; Gary M. Nakamura

    2000-01-01

    Biotic properties of forest soil are the linkages connecting forest vegetation with an inert rooting medium to create a dynamic, functioning ecosystem. But despite the significance of these properties, managers have little awareness of the biotic world beneath their feet. Much of our working knowledge of soil biology seems anchored in myth and misunderstanding. To...

  1. Evaluating climate variability and management impacts on carbon dynamics of a temperate forest using a variety of techniques

    NASA Astrophysics Data System (ADS)

    Arain, M. A.

    2015-12-01

    Climate variability, extreme weather events, forest age and management history impacts carbon sequestration in forest ecosystems. A variety of measurement techniques such as eddy covariance, dendrochronology, automatic soil CO2 chambers and remote sensing are employed fully understand forest carbon dynamics. Here, we present carbon flux measurements from 2003-2014 in a 76-year old managed temperate pine ((-Pinus strobus L.) forest, near Lake Erie in southern Ontario, Canada. Forest was partially thinned (30% tree harvested) in 1983 and 2012. The thinning in 2012 did not significantly impact carbon fluxes as post-thinning fluxes were within the range of inter-annual variability. Mean annual post-thinning (2012-2104) gross ecosystem productivity (GEP) measure by the eddy covariance technique was 1518 ± 78 g C m-2 year-1 as compared to pre-thinning (2003-2011) GEP of 1384 ± 121 g C m-2·year-1. Over the same period, mean post-thinning net ecosystem productivity (NEP) was 185 ± 75 g C m-2 year-1 as compared to post-thinning NEP of 180 ± 70 g C m-2 year-1, indicating that pre-thinning NEP was not significantly different than post-thinning NEP. Only post-thinning mean annual ecosystem respiration (Re; 1322 ± 54 g C m-2 year-1) was higher than pre-thinning Re (1195 ± 101 g C m-2 year-1). Soil CO2 efflux measurements showed similar trends. We also evaluated the impacts of climate variability and management regime on the full life cycle of the forest using annual radial tree-ring growths from 15 trees and compared them with historical climate (temperature and precipitation) data. While the annual growth rates displayed weak correlation with long-term climatic records, the growth was generally reduced during years with extreme drought (-36% of mean annual precipitation) and extreme temperature variability (±0.6 - 1.0°C). Overall, forest was more sensitive to management regime than climate variability. It showed higher growth stress during low light condition after crown closure. When partial thinning was introduced in 1983, it responded slowly and took about 5 to 7 years to show measureable increase in its growth, despite favorable climatic conditions. This study will help to advance our understanding of carbon dynamic of forest ecosystems.

  2. Disturbance processes and ecosystem management

    Treesearch

    Robert D. Averill; Louise Larson; Jim Saveland; Philip Wargo; Jerry Williams; Melvin Bellinger

    1994-01-01

    This paper is intended to broaden awareness and help develop consensus among USDA Forest Service scientists and resource managers about the role and significance of disturbance in ecosystem dynamics and, hence, resource management. To have an effective ecosystem management policy, resource managers and the public must understand the nature of ecological resiliency and...

  3. Temporal-Spatial Pattern of Carbon Stocks in Forest Ecosystems in Shaanxi, Northwest China

    PubMed Central

    Cui, Gaoyang; Chen, Yunming; Cao, Yang

    2015-01-01

    The precise and accurate quantitative evaluation of the temporal and spatial pattern of carbon (C) storage in forest ecosystems is critical for understanding the role of forests in the global terrestrial C cycle and is essential for formulating forest management policies to combat climate change. In this study, we examined the C dynamics of forest ecosystems in Shaanxi, northwest China, based on four forest inventories (1989–1993, 1994–1998, 1999–2003, and 2004–2008) and field-sampling measurements (2012). The results indicate that the total C storage of forest ecosystems in Shaanxi increased by approximately 29.3%, from 611.72 Tg in 1993 to 790.75 Tg in 2008, partially as a result of ecological restoration projects. The spatial pattern of C storage in forest ecosystems mainly exhibited a latitude-zonal distribution across the province, increasing from north (high latitude) to south (low latitude) generally, which signifies the effect of environmental conditions, chiefly water and heat related factors, on forest growth and C sequestration. In addition, different data sources and estimation methods had a significant effect on the results obtained, with the C stocks in 2008 being considerably overestimated (864.55 Tg) and slightly underestimated (778.07 Tg) when measured using the mean C density method and integrated method, respectively. Overall, our results demonstrated that the forest ecosystem in Shaanxi acted as a C sink over the last few decades. However, further studies should be carried out with a focus on adaption of plants to environmental factors along with forest management for vegetation restoration to maximize the C sequestration potential and to better cope with climate change. PMID:26353011

  4. The radiocesium dynamics in the Fukushima forests at the late stage after deposition

    NASA Astrophysics Data System (ADS)

    Yoschenko, Vasyl; Takase, Tsugiko; Nanba, Kenji; Konoplev, Alexei; Onda, Yuichi

    2017-04-01

    Forests cover about 2/3 of the territory of Areas 2 and 3 in the Fukushima prefecture. This territory was heavily contaminated with radiocesium released from the Fukushima Dai-Ichi Nuclear Power Plant in March 2011. The extensive decontamination measures aimed to prepare the return of population have been scheduled and are being implemented at the agricultural and residential lands at this territory. However, these measures will be not applied in the large scale in the Fukushima forests. The current radiocesium levels in wood at this territory exceed the Japanese standards for wood; thus, after return of population, the Fukushima forests may remain excluded from the economical use. Understanding of the further dynamics of radiocesium in the forest ecosystems is necessary for elaboration of the strategy concerning the radioactive contaminated Fukushima forests. In March 2011 radiocesium was intercepted by the tree canopies and then, at the early stage after the accident, was effectively transported to the soil surface with precipitation and litterfall, and partly translocated to wood forming the current levels. The general trend was the decrease of the radiocesium inventory in the aboveground forest biomass. After redistribution in the root-inhabited soil layer radiocesium became available for uptake into the trees through the roots. From the Chernobyl experience, the further levels of radiocesium in the forest ecosystem compartments at the late stage may increase or decrease depending on the intensities of the root uptake and removal fluxes. In the Fukushima forests, the stage of the root uptake has begun recently, and the parameters of the root uptake have not been studied well for the varieties of species, forest types and soil conditions. Our study is aimed to monitoring and modelling of the radiocesium redistribution in the Fukushima forests after the removal of its initial deposition from the tree canopies. The study has been performed since May 2014 at several experimental sites in the typical Fukushima forests (Japanese cedar, Japanese red pine). We observe the dynamics of the radiocesium concentrations and total inventories in the ecosystem compartments and quantify the biogenic fluxes of radiocesium which will determine its further redistribution between the biomass, soil and litter. Our study also includes characterization of the stable cesium distributions in the forest ecosystems and development of the methods for non-destructive monitoring of the radiocesium concentration in wood. We present the observation results for the period of 2014-2016 (annual and seasonal changes in the aboveground biomass, leaching from the forest litter, downward migration in soil), as well as the estimates of the radiocesium fluxes which will be used later for the modelling of its long-term dynamics in the Fukushima forests.

  5. Spatial configuration and distribution of forest patches in Champaign County, Illinois: 1940 to 1993

    Treesearch

    J. Danilo Chinea

    1997-01-01

    Spatial configuration and distribution of landscape elements have implications for the dynamics of forest ecosystems, and, therefore, for the management of these resources. The forest cover of Champaign County, in east-central Illinois, was mapped from 1940 and 1993 aerial photography and entered in a geographical information system database. In 1940, 208 forest...

  6. Measuring moisture dynamics to predict fire severity in longleaf pine forests.

    Treesearch

    Sue A. Ferguson; Julia E. Ruthford; Steven J. McKay; David Wright; Clint Wright; Roger Ottmar

    2002-01-01

    To understand the combustion limit of biomass fuels in a longleaf pine (Pinus palustris) forest, an experiment was conducted to monitor the moisture content of potentially flammable forest floor materials (litter and duff) at Eglin Air Force Base in the Florida Panhandle. While longleaf pine forests are fire dependent ecosystems, a long history of...

  7. Soil nitrogen levels are linked to decomposition enzyme activities along an urban-remote tropical forest gradient

    Treesearch

    D. F. Cusack

    2013-01-01

    Urban areas in tropical regions are expanding rapidly, with significant potential to affect local ecosystem dynamics. In particular, nitrogen (N) availability may increase in urban-proximate forests because of atmospheric N deposition. Unlike temperate forests, many tropical forests on highly weathered soils have high background N availability, so plant growth is...

  8. What can forest managers learn from research on fossil insects? Linking forest ecological history, biodiversity and management

    Treesearch

    Nicki J. Whitehouse

    2006-01-01

    This paper outlines the usefulness of using fossil insects, particularly Coleoptera (beetles), preserved in waterlogged palaeoenvironmental and archaeological deposits in understanding the changing nature of forest ecosystems and their associated insect population dynamics over the last 10,000 years. Research in Europe has highlighted the complex nature of early forest...

  9. Model for multi-stand management based on structural attributes of individual stands

    Treesearch

    G.W. Miller; J. Sullivan

    1997-01-01

    A growing interest in managing forest ecosystems calls for decision models that take into account attribute goals for large forest areas while continuing to recognize the individual stand as a basic unit of forest management. A dynamic, nonlinear forest management model is described that schedules silvicultural treatments for individual stands that are linked by multi-...

  10. Fire risk in east-side forests.

    Treesearch

    Valerie. Rapp

    2002-01-01

    Wildfire was a natural part of ecosystems in east-side Oregon and Washington before the 20th century. The fire regimes, or characteristic patterns of fire—how often, how hot, how big, what time of year—helped create and maintain various types of forests.Forests are dynamic, and fire interacts with other ecological processes. Fires, forests...

  11. The forest ecosystems observatory in Guadeloupe (FWI)

    Treesearch

    G. Van Laere; Y. Gall; A. Rousteau

    2016-01-01

    Between 2010 and 2012, Parc National de la Guadeloupe, Office National des Forêts, and Université des Antilles et de la Guyane established 9 permanent 1-ha plots in tropical rain forest of Basse-Terre Island (Guadeloupe). These plots comprise the Guadeloupian Forest Observatory, and are specifically designed for long-term tree growth measurements and forest-dynamics...

  12. Fine root dynamics and trace gas fluxes in two lowland tropical forest soils.

    Treesearch

    WHENDEE L. SILVER; ANDREW W. THOMPSON; MEGAN E . MCGRODDY; RUTH K. VARNER; JADSON D. DIAS; HUDSON SILVA; CRILL PATRICK M.; MICHAEL KELLER

    2005-01-01

    Fine root dynamics have the potential to contribute significantly to ecosystem-scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root...

  13. Composition, structure, and dynamics of the Illinois Ozark Hills Forest

    Treesearch

    Lisa M. Helmig; James S. Fralish

    2011-01-01

    In the mature oak-hickory ecosystem of the Illinois Ozark Hills, forest community composition, dynamics, and structure were studied to examine the extent of conversion to mesophytic species and eventually predict the broad threshold time of complete conversion. Tree, sapling, and seedling data were collected from 87 plots distributed throughout the region. Data for the...

  14. Toward a social-ecological theory of forest macrosystems for improved ecosystem management

    USGS Publications Warehouse

    Kleindl, William J.; Stoy, Paul C.; Binford, Michael W.; Desai, Ankur R.; Dietze, Michael C.; Schultz, Courtney A.; Starr, Gregory; Staudhammer, Christina; Wood, David J. A.

    2018-01-01

    The implications of cumulative land-use decisions and shifting climate on forests, require us to integrate our understanding of ecosystems, markets, policy, and resource management into a social-ecological system. Humans play a central role in macrosystem dynamics, which complicates ecological theories that do not explicitly include human interactions. These dynamics also impact ecological services and related markets, which challenges economic theory. Here, we use two forest macroscale management initiatives to develop a theoretical understanding of how management interacts with ecological functions and services at these scales and how the multiple large-scale management goals work either in consort or conflict with other forest functions and services. We suggest that calling upon theories developed for organismal ecology, ecosystem ecology, and ecological economics adds to our understanding of social-ecological macrosystems. To initiate progress, we propose future research questions to add rigor to macrosystem-scale studies: (1) What are the ecosystem functions that operate at macroscales, their necessary structural components, and how do we observe them? (2) How do systems at one scale respond if altered at another scale? (3) How do we both effectively measure these components and interactions, and communicate that information in a meaningful manner for policy and management across different scales?

  15. Forest Carbon Uptake and the Fundamental Theorem of Calculus

    ERIC Educational Resources Information Center

    Zobitz, John

    2013-01-01

    Using the fundamental theorem of calculus and numerical integration, we investigate carbon absorption of ecosystems with measurements from a global database. The results illustrate the dynamic nature of ecosystems and their ability to absorb atmospheric carbon.

  16. The 2008 South China Freeze and its Impact on the Forests

    NASA Astrophysics Data System (ADS)

    Zhou, B.; Ai, C.; Wang, Y.; Li, Z.; Cao, Y.; Wang, X.

    2008-12-01

    An unprecedented calamity caused by snow and freezing rain occurred in South China in 2008. This freeze was closely related to the La Nina phenomenon according to a report from the World Meteorological Organization. The freeze stroke 19 provinces in China, and damaged forests of 19.33 million ha with a standing volume loss of 371 million m3. It is estimated that the direct economic loss in the form of destroyed forests is over $8 billion. The indirect loss in the form of impaired ecological functions, such as water and soil conservation, water resources conservancy, biodiversity and forest carbon pool etc is enormous. The calamity of snow and freezing rain affected the structure and function of forest ecosystems. The snow load and freezing rain caused mechanical damage to the trees, with the species of Pinus massoniana, Cunninghamia lanceolata, Pinus elliottii and Phyllostachys pubescens etc. being the most seriously affected. The cold weather could also cause the physiological hurt to the trees. The change of the biotic components leads to the change of abiotic components in the ecosystems. The sunlight under the canopy was intensified due to the opening up of the canopy. The air temperature in the forest, the nutrient and microorganism in soil, the litterfall dynamic were also affected. The alteration of the forest ecosystem structure brought in the alteration of its functions. The damage of the ecosystem structure weakened the capacity of the water and soil conservation, water resources conservancy and reduced the biodiversity in forest ecosystems. Forest gaps allow more sunlight into the freeze-damaged ecosystem, inducing the invasion of more masculine species. The direction and progress of the community succession was therefore altered. At the same time, the freeze made a great impact on the stability and health of the forest ecosystem, increasing the potential risk of outbreak of forest fire and plant diseases/insect pests. Some suggestions on the rebuilding and recovery of damaged forest were given in this paper.

  17. Testing resiliency of hydrologic dynamics of a paired forested watershed after a hurricane in Atlantic coastal plain using long-term data

    Treesearch

    Devendra Amatya; Herbert Ssegane; Charles Andy Harrison; Carl Trettin

    2016-01-01

    Hurricanes are infrequent but influential disruptors of ecosystem processes, including streamflow and evapotranspiration dynamics in the southeastern Atlantic and Gulf coasts. However, literature on hurricane effects on long-term streamflow dynamics is lacking in this highly urbanizing region characterized by a poorly drained low-gradient forested landscape.

  18. An appraisal of the classic forest succession paradigm with the shade tolerance index.

    PubMed

    Lienard, Jean; Florescu, Ionut; Strigul, Nikolay

    2015-01-01

    In this paper we revisit the classic theory of forest succession that relates shade tolerance and species replacement and assess its validity to understand patch-mosaic patterns of forested ecosystems of the USA. We introduce a macroscopic parameter called the "shade tolerance index" and compare it to the classic continuum index in southern Wisconsin forests. We exemplify shade tolerance driven succession in White Pine-Eastern Hemlock forests using computer simulations and analyzing approximated chronosequence data from the USDA FIA forest inventory. We describe this parameter across the last 50 years in the ecoregions of mainland USA, and demonstrate that it does not correlate with the usual macroscopic characteristics of stand age, biomass, basal area, and biodiversity measures. We characterize the dynamics of shade tolerance index using transition matrices and delimit geographical areas based on the relevance of shade tolerance to explain forest succession. We conclude that shade tolerance driven succession is linked to climatic variables and can be considered as a primary driving factor of forest dynamics mostly in central-north and northeastern areas in the USA. Overall, the shade tolerance index constitutes a new quantitative approach that can be used to understand and predict succession of forested ecosystems and biogeographic patterns.

  19. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change.

    PubMed

    Anderson-Teixeira, Kristina J; Davies, Stuart J; Bennett, Amy C; Gonzalez-Akre, Erika B; Muller-Landau, Helene C; Wright, S Joseph; Abu Salim, Kamariah; Almeyda Zambrano, Angélica M; Alonso, Alfonso; Baltzer, Jennifer L; Basset, Yves; Bourg, Norman A; Broadbent, Eben N; Brockelman, Warren Y; Bunyavejchewin, Sarayudh; Burslem, David F R P; Butt, Nathalie; Cao, Min; Cardenas, Dairon; Chuyong, George B; Clay, Keith; Cordell, Susan; Dattaraja, Handanakere S; Deng, Xiaobao; Detto, Matteo; Du, Xiaojun; Duque, Alvaro; Erikson, David L; Ewango, Corneille E N; Fischer, Gunter A; Fletcher, Christine; Foster, Robin B; Giardina, Christian P; Gilbert, Gregory S; Gunatilleke, Nimal; Gunatilleke, Savitri; Hao, Zhanqing; Hargrove, William W; Hart, Terese B; Hau, Billy C H; He, Fangliang; Hoffman, Forrest M; Howe, Robert W; Hubbell, Stephen P; Inman-Narahari, Faith M; Jansen, Patrick A; Jiang, Mingxi; Johnson, Daniel J; Kanzaki, Mamoru; Kassim, Abdul Rahman; Kenfack, David; Kibet, Staline; Kinnaird, Margaret F; Korte, Lisa; Kral, Kamil; Kumar, Jitendra; Larson, Andrew J; Li, Yide; Li, Xiankun; Liu, Shirong; Lum, Shawn K Y; Lutz, James A; Ma, Keping; Maddalena, Damian M; Makana, Jean-Remy; Malhi, Yadvinder; Marthews, Toby; Mat Serudin, Rafizah; McMahon, Sean M; McShea, William J; Memiaghe, Hervé R; Mi, Xiangcheng; Mizuno, Takashi; Morecroft, Michael; Myers, Jonathan A; Novotny, Vojtech; de Oliveira, Alexandre A; Ong, Perry S; Orwig, David A; Ostertag, Rebecca; den Ouden, Jan; Parker, Geoffrey G; Phillips, Richard P; Sack, Lawren; Sainge, Moses N; Sang, Weiguo; Sri-Ngernyuang, Kriangsak; Sukumar, Raman; Sun, I-Fang; Sungpalee, Witchaphart; Suresh, Hebbalalu Sathyanarayana; Tan, Sylvester; Thomas, Sean C; Thomas, Duncan W; Thompson, Jill; Turner, Benjamin L; Uriarte, Maria; Valencia, Renato; Vallejo, Marta I; Vicentini, Alberto; Vrška, Tomáš; Wang, Xihua; Wang, Xugao; Weiblen, George; Wolf, Amy; Xu, Han; Yap, Sandra; Zimmerman, Jess

    2015-02-01

    Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥ 1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25 °S-61 °N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 °C), changes in precipitation (up to ± 30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g N m(-2) yr(-1) and 3.1 g S m(-2) yr(-1)), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5 km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change. © 2014 John Wiley & Sons Ltd.

  20. Disturbance Distance: Using a process based ecosystem model to estimate and map potential thresholds in disturbance rates that would give rise to fundamentally altered ecosystems

    NASA Astrophysics Data System (ADS)

    Dolan, K. A.; Hurtt, G. C.; Fisk, J.; Flanagan, S.; LePage, Y.; Sahajpal, R.

    2014-12-01

    Disturbance plays a critical role in shaping the structure and function of forested ecosystems as well as the ecosystem services they provide, including but not limited to: carbon storage, biodiversity habitat, water quality and flow, and land atmosphere exchanges of energy and water. As recent studies highlight novel disturbance regimes resulting from pollution, invasive pests and climate change, there is a need to include these alterations in predictions of future forest function and structure. The Ecosystem Demography (ED) model is a mechanistic model of forest ecosystem dynamics in which individual-based forest dynamics can be efficiently implemented over regional to global scales due to advanced scaling methods. We utilize ED to characterize the sensitivity of potential vegetation structure and function to changes in rates of density independent mortality. Disturbance rate within ED can either be altered directly or through the development of sub-models. Disturbance sub-models in ED currently include fire, land use and hurricanes. We use a tiered approach to understand the sensitivity of North American ecosystems to changes in background density independent mortality. Our first analyses were conducted at half-degree spatial resolution with a constant rate of disturbance in space and time, which was altered between runs. Annual climate was held constant at the site level and the land use and fire sub-models were turned off. Results showed an ~ 30% increase in non-forest area across the US when disturbance rates were changed from 0.6% a year to 1.2% a year and a more than 3.5 fold increase in non-forest area when disturbance rates doubled again from 1.2% to 2.4%. Continued runs altered natural background disturbance rates with the existing fire and hurricane sub models turned on as well as historic and future land use. By quantify differences between model outputs that characterize ecosystem structure and function related to the carbon cycle across the US, we are identifying areas and characteristics that display higher sensitivities to change in disturbance rates.

  1. Growing up with stress - carbon sequestration and allocation dynamics of a broadleaf evergreen forest

    NASA Astrophysics Data System (ADS)

    Griebel, Anne; Bennett, Lauren T.; Arndt, Stefan K.

    2016-04-01

    Evergreen forests have the potential to sequester carbon year-round due to the presence of leaves with a multi-year lifespan. Eucalypt forests occur in warmer climates where temperature and radiation are not imposing a strong seasonality. Thus, unlike deciduous or many coniferous trees, many eucalypts grow opportunistically as conditions allow. As such, many eucalypts do not produce distinct growth rings, which present challenges to the implementation of standard methods and data interpretation approaches for monitoring and explaining carbon allocation dynamics in response to climatic stress. As a consequence, there is a lack of detailed understanding of seasonal growth dynamics of evergreen forests as a whole, and, in particular, of the influence of climatic drivers on carbon allocation to the various biomass pools. We used a multi-instrument approach in a mixed species eucalypt forest to investigate the influence of climatic drivers on the seasonal growth dynamics of a predominantly temperate and moisture-regulated environment in south-eastern Australia. Ecosystem scale observations of net ecosystem exchange (NEE) from a flux tower in the Wombat forest near Melbourne indicated that the ecosystem is a year-round carbon sink, but that intra-annual variations in temperature and moisture along with prolonged heat waves and dry spells resulted in a wide range of annual sums over the past three years (NEE ranging from ~4 to 12 t C ha-1 yr-1). Dendrometers were used to monitor stem increments of the three dominant eucalypt species. Stem expansion was generally opportunistic with the greatest increments under warm but moist conditions (often in spring and autumn), and the strongest indicators of stem growth dynamics being radiation, vapour pressure deficit and a combined heat-moisture index. Differences in the seasonality of stem increments between species were largely due to differences in the canopy position of sampled individuals. The greatest stem increments were recorded in the years with highest NEE, but NEE was not a strong seasonal driver of stem increment. Recently developed terrestrial lidar scanners (VEGNET) monitored the daily changes in canopy dynamics with a comparable temporal resolution to dendrometer and eddy covariance measurements. Growth of each canopy stratum was distinctly seasonal, and we detected contrasting responses to climatic stress along the canopy height gradient. Leaf turnover was predominantly in summer and was initiated by prolonged heat stress and isolated storm events. Leaf shedding and replacement happened concurrently, with leaves being mainly discarded from the middle stratum and replaced in the top stratum. Due to our novel multi-instrument approach and the high temporal resolution of tree to ecosystem-scale growth dynamics we were able to demonstrate that above ground carbon allocation to stem and crown pools followed separate seasonal dynamics that did not necessarily follow the same seasonality as ecosystem scale carbon sequestration. Our findings will ultimately improve our understanding of the effects of short- and long-term variability in temperature and moisture stress on carbon allocation dynamics to the above ground biomass pools for broadleaf evergreen ecosystems.

  2. Quantifying legacies of clearcut on carbon fluxes and biomass carbon stock in northern temperate forests

    Treesearch

    W. Wang; J. Xiao; S. V. Ollinger; J. Chen; A. Noormets

    2014-01-01

    Stand-replacing disturbances including harvests have substantial impacts on forest carbon (C) fluxes and stocks. The quantification and simulation of these effects is essential for better understanding forest C dynamics and informing forest management 5 in the context of global change. We evaluated the process-based forest ecosystem model, PnET-CN, for how well and by...

  3. Holocene Vegetation and Fire Dynamics for Ecosystem Management in the Spruce-Moss Domain in Northwestern Québec

    NASA Astrophysics Data System (ADS)

    Andy, H.; Blarquez, O.; Grondin, P.

    2017-12-01

    Facing the depletion of the wood resource in Québec and possible threats such as climate change, actors of the forest sector urge the need for a scientific frame to the forest management. A set of reference conditions has been developed for defining management targets that will help to keep forests within their natural range of variability according to the preindustrial period (XIX-XX centuries). Those reference conditions are based on the stands age-class distribution under a given fire regime that enable to define the percentage of old-growth forest (>100 years) to be maintained in a landscape. For the western spruce-moss domain in Québec, the fire return interval (FRI) is equal to 150 years resulting in a target of 48% of old-growth forests. Yet, this target supposes that the environment and the ecosystem processes are homogeneous for an entire bioclimatic domain of 175 000 km2. By using a Redundancy Analysis (RDA) on modern inventories data on natural and human disturbances; climate and physical variables and forest composition, we were able to distinguish 5 main zones where interactions between stands and their environment are homogeneous and where local management targets could be developed. We then used 10 published sedimentary pollens and charcoal series in order to reconstruct the holocene fire and vegetation dynamics for those zones. Vegetation deduced from the analysis of the pollen diagrams showed that the long-term vegetation dynamics are zone specific indicating that the modern forest composition is a result of the Holocene trajectories occurring within each zone. Charcoals series were statistically analyzed for past fire detection and long-term FRI reconstruction. They suggest that for the entire territory the holocene FRI range from 174 to 265 years resulting in old-growth forests percentage within 44 and 65% depending on the zone. Hence, we conclude that current management targets should be revised to fit more with local forests ecosystem variability at the landscape scale and that reference condition should be supplemented with data on the long-term fire dynamics and forest composition variability.

  4. Insects, Fires, and Climate Change: Implications for Snow Cover, Water Resources and Ecosystem Recovery in Western North America

    NASA Astrophysics Data System (ADS)

    Brooks, P. D.; Harpold, A. A.; Biederman, J. A.; Litvak, M. E.; Broxton, P. D.; Gochis, D.; Molotch, N. P.; Troch, P. A.; Ewers, B. E.

    2012-12-01

    Unprecedented levels of insect induced tree mortality and massive wildfires both have spread through the forests of Western North America over the last decade. Warming temperatures and increased drought stress have been implicated as major factors in the increasing spatial extent and frequency of these forest disturbances, but it is unclear how simultaneous changes in forest structure and climate will interact to affect either downstream water resources or the regeneration and recovery of forested ecosystems. Because both streamflow and ecosystem productivity depend on seasonal snowmelt, a critical knowledge gap exists in how these disturbances will interact with a changing climate to control to the amount, timing, and the partitioning of seasonal snow cover This presentation will address this knowledge gap by synthesizing recent work on snowpack dynamics and ecosystem productivity from seasonally snow-covered forests along a gradient of snow depth and duration from Arizona to Montana. These include undisturbed sites, recently burned forests, and areas of extensive insect-induced forest mortality. Both before-after and control-impacted studies of forest disturbance on snow accumulation and ablation suggest that the spatial scale of snow distribution increases following disturbance, but net snow water input likely will not increase under a warming climate. While forest disturbance changes spatial scale of snowpack partitioning, the amount and especially the timing of snow cover accumulation and ablation are strongly related to interannual variability in ecosystem productivity with both earlier snowmelt and later snow accumulation associated with decreased carbon uptake. These observations suggest that the ecosystem services of water provision and carbon storage may be very different in the forests that regenerate after disturbance.

  5. An inventory-based analysis of Canada's managed forest carbon dynamics, 1990 to 2008

    PubMed Central

    Stinson, G; Kurz, W A; Smyth, C E; Neilson, E T; Dymond, C C; Metsaranta, J M; Boisvenue, C; Rampley, G J; Li, Q; White, T M; Blain, D

    2011-01-01

    Canada's forests play an important role in the global carbon (C) cycle because of their large and dynamic C stocks. Detailed monitoring of C exchange between forests and the atmosphere and improved understanding of the processes that affect the net ecosystem exchange of C are needed to improve our understanding of the terrestrial C budget. We estimated the C budget of Canada's 2.3 × 106 km2 managed forests from 1990 to 2008 using an empirical modelling approach driven by detailed forestry datasets. We estimated that average net primary production (NPP) during this period was 809 ± 5 Tg C yr−1 (352 g C m−2 yr−1) and net ecosystem production (NEP) was 71 ± 9 Tg C yr−1 (31 g C m−2 yr−1). Harvesting transferred 45 ± 4 Tg C yr−1 out of the ecosystem and 45 ± 4 Tg C yr−1 within the ecosystem (from living biomass to dead organic matter pools). Fires released 23 ± 16 Tg C yr−1 directly to the atmosphere, and fires, insects and other natural disturbances transferred 52 ± 41 Tg C yr−1 from biomass to dead organic matter pools, from where C will gradually be released through decomposition. Net biome production (NBP) was only 2 ± 20 Tg C yr−1 (1 g C m−2 yr−1); the low C sequestration ratio (NBP/NPP=0.3%) is attributed to the high average age of Canada's managed forests and the impact of natural disturbances. Although net losses of ecosystem C occurred during several years due to large fires and widespread bark beetle outbreak, Canada's managed forests were a sink for atmospheric CO2 in all years, with an uptake of 50 ± 18 Tg C yr−1 [net ecosystem exchange (NEE) of CO2=−22 g C m−2 yr−1].

  6. Unconventional gas development and its effect on forested ecosystems in the Northern Appalachians, USA

    NASA Astrophysics Data System (ADS)

    Drohan, Patrick; Brittingham, Margaret; Mortensen, David; Barlow, Kathryn; Langlois, Lillie

    2017-04-01

    Worldwide unconventional shale-gas development has the potential to cause substantial landscape disturbance. The northeastern U.S.A. Appalachian Mountains across the states of Pennsylvania, West Virginia, Ohio, and Kentucky, are experiencing rapid landscape change as unconventional gas development occurs. We highlight several years of our research from this region in order to demonstrate the unique effect unconventional development has had on forested ecosystems. Infrastructure development has had a wide-reaching and varied effect on forested ecosystems and their services, which has resulted in temporary disturbances and long-lasting ones altering habitats and their viability. Corridor disturbances, such as pipelines, are the most spatially extensive disturbance and have substantially fragmented forest cover. Core forest disturbance, especially, in upper watershed positions, has resulted in disproportionate disturbances to forested ecosystems and their wildlife, and suggests a need for adaptive land management strategies to minimize and mitigate the effects of gas development. Soil and water resources are most affected by surface disturbances; however, soil protection and restoration strategies are evolving as the gas play changes economically. Dynamic soil properties related to soil organic matter and water availability respond uniquely to unconventional gas development and new, flexible restoration strategies are required to support long-term ecosystem stability. While the focus of management and research to date has been on acute disturbances to forested ecosystems, unconventional gas development is clearly a greater chronic, long-term disturbance factor in the Appalachian Mountains. Effectively managing ecosystems where unconventional gas development is occurring is a complicated interplay between public, private and corporate interests.

  7. [Assessment on the changing conditions of ecosystems in key ecological function zones in China].

    PubMed

    Huang, Lin; Cao, Wei; Wu, Dan; Gong, Guo-li; Zhao, Guo-song

    2015-09-01

    In this paper, the dynamics of ecosystem macrostructure, qualities and core services during 2000 and 2010 were analyzed for the key ecological function zones of China, which were classified into four types of water conservation, soil conservation, wind prevention and sand fixation, and biodiversity maintenance. In the water conservation ecological function zones, the areas of forest and grassland ecosystems were decreased whereas water bodies and wetland were increased in the past 11 years, and the water conservation volume of forest, grassland and wetland ecosystems increased by 2.9%. This region needs to reverse the decreasing trends of forest and grassland ecosystems. In the soil conservation ecological function zones, the area of farmland ecosystem was decreased, and the areas of forest, grassland, water bodies and wetland ecosystems were increased. The total amount of the soil erosion was reduced by 28.2%, however, the soil conservation amount of ecosystems increased by 38.1%. In the wind prevention and sand fixation ecological function zones, the areas of grassland, water bodies and wetland ecosystems were decreased, but forest and farmland ecosystems were increased. The unit amount of the soil. wind erosion was reduced and the sand fixation amount of ecosystems increased lightly. In this kind of region that is located in arid and semiarid areas, ecological conservation needs to reduce farmland area and give priority to the protection of the original ecological system. In the biodiversity maintenance ecological function zones, the areas of grassland and desert ecosystems were decreased and other types were increased. The human disturbances showed a weakly upward trend and needs to be reduced. The key ecological function zones should be aimed at the core services and the protecting objects, to assess quantitatively on the effectiveness of ecosystem conservation and improvement.

  8. Plant hydraulic controls over ecosystem responses to climate-enhanced disturbances

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Ewers, B. E.; Reed, D. E.; Pendall, E.; McDowell, N. G.

    2012-12-01

    Climate-enhanced disturbances such as drought and insect infestation range in severity, contributing minor to severe stress to forests including forest mortality. While neither form of disturbance has been unambiguously implicated as a mechanism of mortality, both induce changes in water, carbon, and nutrient cycling that are key to understanding forest ecosystem response to, and recovery from, disturbance. Each disturbance type has different biophysical, ecohydrological, and biogeochemical signatures that potentially complicate interpretation and development of theory. Plant hydraulic function is arguably a unifying control over these responses to disturbance because it regulates stomatal conductance, leaf biochemistry, carbon (C) uptake and utilization, and nutrient cycling. We demonstrated this idea by focusing on water and C, including non-structural (NSC), resources, and nitrogen (N) uptake across a spectrum of forest ecosystems (e.g., northern temperate mixed forests, lodgepole pine forests in the Rocky Mountains, and pinon pine - juniper woodlands in New Mexico) using the Terrestrial Regional Ecosystem Exchange Simulator (TREES). TREES is grounded in the biophysics of water movement through soil and plants, respectively via hydraulic conductivity of the soil and cavitation of xylem. It combines this dynamic plant hydraulic conductance with canopy biochemical controls over photosynthesis, and the dynamics of structural and non-structural carbon through a carbon budget that responds to plant hydraulic status. As such, the model can be used to develop testable hypotheses on a multitude of disturbance and recovery responses including xylem dysfunction, stomatal and non-stomatal controls on photosynthesis and carbon allocation, respiration, and allocation to defense compounds. For each of the ecosystems we constrained and evaluated the model with allometry, sap flux and/or eddy covariance data, leaf gas exchange measurements, and vulnerability to cavitation data. Disturbances included declining water tables and canopy defoliators (northern temperature forests), bark beetles and associated blue-stain fungi (coniferous forests), and prolonged drought with bark beetles (semi-arid woodland). We show that C dynamics in trees that experience water-limitation, insect attack, or a combination of both disturbance types cannot be explained solely from hydraulic status or NSC, but are better explained by a combination of both in conjunction with N uptake. Results show that the use of plant hydraulics can yield parsimonious explanations of biophysical, ecohydrological, and biogeochemical responses to disturbance.

  9. Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska

    Treesearch

    Q. Zhuang; A. D. McGuire; K. P. O' Neill; J. W. Harden; V. E. Romanovsky; J. Yarie

    2003-01-01

    In this study, the dynamics of soil thermal, hydrologic, and ecosystem processes were coupled to project how the carbon budgets of boreal forests will respond to changes in atmospheric CO2, climate, and fire disturbance. The ability of the model to simulate gross primary production and ecosystem respiration was verified for a mature black spruce...

  10. PICUS v1.6 - enhancing the water cycle within a hybrid ecosystem model to assess the provision of drinking water in a changing climate

    NASA Astrophysics Data System (ADS)

    Schimmel, A.; Rammer, W.; Lexer, M. J.

    2012-04-01

    The PICUS model is a hybrid ecosystem model which is based on a 3D patch model and a physiological stand level production model. The model includes, among others, a submodel of bark beetle disturbances in Norway spruce and a management module allowing any silvicultural treatment to be mimicked realistically. It has been tested intensively for its ability to realistically reproduce tree growth and stand dynamics in complex structured mixed and mono-species temperate forest ecosystems. In several applications the models capacity to generate relevant forest related attributes which were subsequently fed into indicator systems to assess sustainable forest management under current and future climatic conditions has been proven. However, the relatively coarse monthly temporal resolution of the driving climate data as well as the process resolution of the major water relations within the simulated ecosystem hampered the inclusion of more detailed physiologically based assessments of drought conditions and water provisioning ecosystem services. In this contribution we present the improved model version PICUS v1.6 focusing on the newly implemented logic for the water cycle calculations. Transpiration, evaporation from leave surfaces and the forest floor, snow cover and snow melt as well as soil water dynamics in several soil horizons are covered. In enhancing the model overarching goal was to retain the large-scale applicability by keeping the input requirements to a minimum while improving the physiological foundation of water related ecosystem processes. The new model version is tested against empirical time series data. Future model applications are outlined.

  11. Drought resistance across California ecosystems: Evaluating changes in carbon dynamics using satellite imagery

    Treesearch

    Sparkle L. Malone; Mirela G. Tulbure; Antonio J. Perez-Luque; Timothy J. Assal; Leah L. Bremer; Debora P. Drucker; Vicken Hillis; Sara Varela; Michael L. Goulden

    2016-01-01

    Drought is a global issue that is exacerbated by climate change and increasing anthropogenic water demands. The recent occurrence of drought in California provides an important opportunity to examine drought response across ecosystem classes (forests, shrublands, grasslands, and wetlands), which is essential to understand how climate influences ecosystem structure and...

  12. Vegetation management and protection research: Disturbance processes and ecosystem management

    Treesearch

    Robert D. Averill; Louise Larson; Jim Saveland; Philip Wargo; Jerry Williams; Melvin Bellinger

    1994-01-01

    This paper is intended to broaden awareness and help develop consensus among USDA Forest Service scientists and resource managers about the role and significance of disturbance in ecosystem dynamics and, hence, resource management. To have an effective ecosystem management policy, resource managers and the public must understand the nature of ecological resiliency and...

  13. Normalized algorithm for mapping and dating forest disturbances and regrowth for the United States

    Treesearch

    Liming He; Jing M. Chen; Shaoliang Zhang; Gustavo Gomez; Yude Pan; Kevin McCullough; Richard Birdsey; Jeffrey G. Masek

    2011-01-01

    Forest disturbances such as harvesting, wildfire and insect infestation are critical ecosystem processes affecting the carbon cycle. Because carbon dynamics are related to time since disturbance, forest stand age that can be used as a surrogate for major clear-cut/fire disturbance information has recently been recognized as an important input to forest carbon cycle...

  14. Wisdom from the little folk: the forest tales of birds, squirrels, and fungi.

    Treesearch

    Sally Duncan

    1999-01-01

    Ecosystem function—the internal dynamics of a forest—is now recognized as a crucial component to forest health and biological diversity.Pacific Northwest Research Station scientist Andy Carey and others propose that the presence of small critters can be a measure of a forest's health. His research also shows that thinning, rather than...

  15. Bird Responses to burns and clear cuts in the boreal forest of Canada

    Treesearch

    Susan J. Hannon; Pierre Drapeau

    2005-01-01

    Unlike many other ecosystems in North America, the boreal forest in Canada still retains a natural fire regime. However, increasing industrial forestry, primarily clear cutting, could alter natural fire dynamics and adversely affect some species. A possible solution to this, promoted by many forest managers, is to cut the forest in a way that emulates natural fire...

  16. Wildland fire emissions, carbon, and climate: Seeing the forest and the trees - A cross-scale assessment of wildfire and carbon dynamics in fire-prone, forested ecosystems

    Treesearch

    Rachel A. Loehman; Elizabeth Reinhardt; Karin L. Riley

    2014-01-01

    Wildfires are an important component of the terrestrial carbon cycle and one of the main pathways for movement of carbon from the land surface to the atmosphere. Fires have received much attention in recent years as potential catalysts for shifting landscapes from carbon sinks to carbon sources. Unless structural or functional ecosystem shifts occur, net carbon balance...

  17. Assessment of boreal forest historical C dynamics in the Yukon River Basin: relative roles of warming and fire regime change.

    PubMed

    Yuan, F M; Yi, S H; McGuire, A D; Johnson, K D; Liang, J; Harden, J W; Kasischke, E S; Kurz, W A

    2012-12-01

    Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites and evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at -0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.

  18. Assessment of boreal forest historical C dynamics in Yukon River Basin: relative roles of warming and fire regime change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Fengming; Yi, Shuhua; McGuire, A. David

    2012-01-01

    Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites andmore » evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at ;0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.« less

  19. Assessment of boreal forest historical C dynamics in the Yukon River Basin: relative roles of warming and fire regime change

    USGS Publications Warehouse

    Yuan, F.M.; Yi, S.H.; McGuire, A.D.; Johnson, K.D.; Liang, J.; Harden, J.W.; Kasischke, E.S.; Kurz, W.A.

    2012-01-01

    Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites and evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at ∼0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.

  20. Simulated impacts of insect defoliation on forest carbon dynamics

    Treesearch

    D. Medvigy; K.L. Clark; N.S. Skowronski; K.V.R. Schäfer

    2012-01-01

    Many temperate and boreal forests are subject to insect epidemics. In the eastern US, over 41 million meters squared of tree basal area are thought to be at risk of gypsy moth defoliation. However, the decadal-to-century scale implications of defoliation events for ecosystem carbon dynamics are not well understood. In this study, the effects of defoliation intensity,...

  1. Population dynamics of an invasive forest insect and associated natural enemies in the aftermath of invasion: implications for biological control

    Treesearch

    Jian J. Duan; Leah S. Bauer; Kristopher J. Abell; Michael D. Ulyshen; Roy G. Van Driesche

    2015-01-01

    1. Understanding the population dynamics of exotic pests and associated natural enemies is important in developing sound management strategies in invaded forest ecosystems. The emerald ash borer (EAB) Agrilus planipennis Fairmaire is an invasive phloem-feeding beetle that has killed tens of millions of ash Fraxinus trees in North...

  2. Differential effects of canopy trimming and litter deposition on litterfall and nutrient dynamics in a wet subtropical forest

    Treesearch

    W.L. Silver; S.J. Hall; Grizelle Gonzalez

    2014-01-01

    Humid tropical forests have the highest rates of litterfall production globally, which fuels rapid nutrient recycling and high net ecosystem production. Severe storm events significantly alter patterns in litterfall mass and nutrient dynamics through a combination of canopy disturbance and litter deposition. In this study, we used a large-scale long-term manipulation...

  3. Time series analysis of forest carbon dynamics: recovery of Pinus palustris physiology following a prescribed fire

    Treesearch

    G. Starr; C. L. Staudhammer; H. W. Loescher; R. Mitchell; A. Whelan; J. K. Hiers; J. J. O’Brien

    2015-01-01

    Frequency and intensity of fire determines the structure and regulates the function of savanna ecosystems worldwide, yet our understanding of prescribed fire impacts on carbon in these systems is rudimentary. We combined eddy covariance (EC) techniques and fuel consumption plots to examine the short-term response of longleaf pine forest carbon dynamics to one...

  4. Evaluating the responses of forest ecosystems to climate change and CO2 using dynamic global vegetation models.

    PubMed

    Song, Xiang; Zeng, Xiaodong

    2017-02-01

    The climate has important influences on the distribution and structure of forest ecosystems, which may lead to vital feedback to climate change. However, much of the existing work focuses on the changes in carbon fluxes or water cycles due to climate change and/or atmospheric CO 2 , and few studies have considered how and to what extent climate change and CO 2 influence the ecosystem structure (e.g., fractional coverage change) and the changes in the responses of ecosystems with different characteristics. In this work, two dynamic global vegetation models (DGVMs): IAP-DGVM coupled with CLM3 and CLM4-CNDV, were used to investigate the response of the forest ecosystem structure to changes in climate (temperature and precipitation) and CO 2 concentration. In the temperature sensitivity tests, warming reduced the global area-averaged ecosystem gross primary production in the two models, which decreased global forest area. Furthermore, the changes in tree fractional coverage (Δ F tree ; %) from the two models were sensitive to the regional temperature and ecosystem structure, i.e., the mean annual temperature (MAT; °C) largely determined whether Δ F tree was positive or negative, while the tree fractional coverage ( F tree ; %) played a decisive role in the amplitude of Δ F tree around the globe, and the dependence was more remarkable in IAP-DGVM. In cases with precipitation change, F tree had a uniformly positive relationship with precipitation, especially in the transition zones of forests (30% <  F tree  < 60%) for IAP-DGVM and in semiarid and arid regions for CLM4-CNDV. Moreover, Δ F tree had a stronger dependence on F tree than on the mean annual precipitation (MAP; mm/year). It was also demonstrated that both models captured the fertilization effects of the CO 2 concentration.

  5. The population dynamics of goldenseal by habitat type on the Hoosier National Forest

    Treesearch

    S. P. Meyer; G. R. Parker

    2003-01-01

    Goldenseal (Hydrastis canadensis L.) is an herbaceous species found throughout the central hardwood forest ecosystem that is harvested from the wild for the medicinal herb trade. A total of 147 goldenseal populations were classified according to the Ecological Classification Guide developed for the Hoosier National Forest, and change in population...

  6. Gainesville's urban forest canopy cover

    Treesearch

    Francisco Escobedo; Jennifer A. Seitz; Wayne Zipperer

    2009-01-01

    Ecosystem benefits from trees are linked directly to the amount of healthy urban forest canopy cover. Urban forest cover is dynamic and changes over time due to factors such as urban development, windstorms, tree removals, and growth. The amount of a city's canopy cover depends on its land use, climate, and people's preferences. This fact sheet examines how...

  7. Public acceptance of disturbance-based forest management: factors influencing support

    Treesearch

    Christine S. Olsen; Angela L. Mallon; Bruce A. Shindler

    2012-01-01

    Growing emphasis on ecosystem and landscape-level forest management across North America has spurred an examination of alternative management strategies which focus on emulating dynamic natural disturbance processes, particularly those associated with forest fire regimes. This topic is the cornerstone of research in the Blue River Landscape Study (BRLS) on the...

  8. Assimilation of repeated woody biomass observations constrains decadal ecosystem carbon cycle uncertainty in aggrading forests

    NASA Astrophysics Data System (ADS)

    Smallman, T. L.; Exbrayat, J.-F.; Mencuccini, M.; Bloom, A. A.; Williams, M.

    2017-03-01

    Forest carbon sink strengths are governed by plant growth, mineralization of dead organic matter, and disturbance. Across landscapes, remote sensing can provide information about aboveground states of forests and this information can be linked to models to estimate carbon cycling in forests close to steady state. For aggrading forests this approach is more challenging and has not been demonstrated. Here we apply a Bayesian approach, linking a simple model to a range of data, to evaluate their information content, for two aggrading forests. We compare high information content analyses using local observations with retrievals using progressively sparser remotely sensed information (repeated, single, and no woody biomass observations). The net biome productivity of both forests is constrained to be a net sink with <2 Mg C ha-1 yr-1 variation across the range of inputs. However, the sequestration of particular carbon pool(s) varies with assimilated biomass information. Assimilation of repeated biomass observations reduces uncertainty and/or bias in all ecosystem C pools not just wood, compared to analyses using single or no stock information. As verification, our repeated biomass analysis explains 78-86% of variation in litter dynamics at one forest, while at the second forest total dead organic matter estimates are within observational uncertainty. The uncertainty of retrieved ecosystem traits in the repeated biomass analysis is reduced by up to 50% compared to analyses with less biomass information. This study quantifies the importance of repeated woody observations in constraining the dynamics of both wood and dead organic matter, highlighting the benefit of proposed remote sensing missions.

  9. Increasing soil temperature in a northern hardwood forest: effects on elemental dynamics and primary productivity

    Treesearch

    Patrick J. McHale; Myron J. Mitchell; Dudley J. Raynal; Francis P. Bowles

    1996-01-01

    To investigate the effects of elevated soil temperatures on a forest ecosystem, heating cables were buried at a depth of 5 cm within the forest floor of a northern hardwood forest at the Huntington Wildlife Forest (Adirondack Mountains, New York). Temperature was elevated 2.5, 5.0 and 7.5?C above ambient, during May - September in both 1993 and 1994. Various aspects of...

  10. Chapter 3: Old growth, disturbance, forest succession, and management in the area of the Northwest Forest Plan

    Treesearch

    Thomas A. Spies; Paul F. Hessburg; Carl N. Skinner; Klaus J. Puettmann; Matthew J. Reilly; Raymond J. Davis; Jane A. Kertis; Jonathan W. Long; David C. . Shaw

    2018-01-01

    In this chapter, we examine the scientific basis of the assumptions, management strategies, and goals of the Northwest Forest Plan (NWFP, or Plan) relative to the ecology of old-growth forests, forest successional dynamics, and disturbance processes. Our emphasis is on “coarse-filter” approaches to conservation (i.e., those that are concerned with entire ecosystems,...

  11. Assessing tropical rainforest growth traits: Data - Model fusion in the Congo basin and beyond

    NASA Astrophysics Data System (ADS)

    Pietsch, Stephan

    2017-04-01

    Virgin forest ecosystems resemble the key reference level for natural tree growth dynamics. The mosaic cycle concept describes such dynamics as local disequilibria driven by patch level succession cycles of breakdown, regeneration, juvenescence and old growth. These cycles, however, may involve different traits of light demanding and shade tolerant species assemblies. In this work a data model fusion concept will be introduced to assess the differences in growth dynamics of the mosaic cycle of the Western Congolian Lowland Rainforest ecosystem. Field data from 34 forest patches located in an ice age forest refuge, recently pinpointed to the ground and still devoid of direct human impact up to today - resemble the data base. A 3D error assessment procedure versus BGC model simulations for the 34 patches revealed two different growth dynamics, consistent with observed growth traits of pioneer and late succession species assemblies of the Western Congolian Lowland rainforest. An application of the same procedure to Central American Pacific rainforests confirms the strength of the 3D error field data model fusion concept to Central American Pacific rainforests confirms the strength of the 3D error field data model fusion concept to assess different growth traits of the mosaic cycle of natural forest dynamics.

  12. Long-term disturbance dynamics and resilience of tropical peat swamp forests

    PubMed Central

    Cole, Lydia E S; Bhagwat, Shonil A; Willis, Katherine J

    2015-01-01

    1. The coastal peat swamp forests of Sarawak, Malaysian Borneo, are undergoing rapid conversion, predominantly into oil palm plantations. This wetland ecosystem is assumed to have experienced insignificant disturbance in the past, persisting under a single ecologically-stable regime. However, there is limited knowledge of the past disturbance regime, long-term functioning and fundamentally the resilience of this ecosystem to changing natural and anthropogenic perturbations through time. 2. In this study, long-term ecological data sets from three degraded peatlands in Sarawak were collected to shed light on peat swamp forest dynamics. Fossil pollen and charcoal were counted in each sedimentary sequence to reconstruct vegetation and investigate responses to past environmental disturbance, both natural and anthropogenic. 3. Results demonstrate that peat swamp forest taxa have dominated these vegetation profiles throughout the last c. 2000-year period despite the presence of various drivers of disturbance. Evidence for episodes of climatic variability, predominantly linked to ENSO events, and wildfires is present throughout. However, in the last c. 500 years, burning and indicators of human disturbance have elevated beyond past levels at these sites, concurrent with a reduction in peat swamp forest pollen. 4. Two key insights have been gained through this palaeoecological analysis: (i) peat swamp forest vegetation has demonstrated resilience to disturbance caused by burning and climatic variability in Sarawak in the late Holocene, however (ii) coincident with increased fire combined with human impact c. 500 years ago, these communities started to decline. 5. Synthesis. Sarawak's coastal peat swamps have demonstrated resilience to past natural disturbances, with forest vegetation persisting through episodes of fire and climatic variability. However, palaeoecological data presented here suggest that recent, anthropogenic disturbances are of a greater magnitude, causing the observed decline in the peat swamp forest communities in the last c. 500 years and challenging the ecosystem's persistence. This study greatly extends our knowledge of the ecological functioning of these understudied ecosystems, providing baseline information on the past vegetation and its response to disturbance. This understanding is central to developing management strategies that foster resilience in the remaining peat swamp forests and ensure continued provision of services, namely carbon storage, from this globally important ecosystem. PMID:26120202

  13. Long-term disturbance dynamics and resilience of tropical peat swamp forests.

    PubMed

    Cole, Lydia E S; Bhagwat, Shonil A; Willis, Katherine J

    2015-01-01

    1. The coastal peat swamp forests of Sarawak, Malaysian Borneo, are undergoing rapid conversion, predominantly into oil palm plantations. This wetland ecosystem is assumed to have experienced insignificant disturbance in the past, persisting under a single ecologically-stable regime. However, there is limited knowledge of the past disturbance regime, long-term functioning and fundamentally the resilience of this ecosystem to changing natural and anthropogenic perturbations through time. 2. In this study, long-term ecological data sets from three degraded peatlands in Sarawak were collected to shed light on peat swamp forest dynamics. Fossil pollen and charcoal were counted in each sedimentary sequence to reconstruct vegetation and investigate responses to past environmental disturbance, both natural and anthropogenic. 3. Results demonstrate that peat swamp forest taxa have dominated these vegetation profiles throughout the last c . 2000-year period despite the presence of various drivers of disturbance. Evidence for episodes of climatic variability, predominantly linked to ENSO events, and wildfires is present throughout. However, in the last c . 500 years, burning and indicators of human disturbance have elevated beyond past levels at these sites, concurrent with a reduction in peat swamp forest pollen. 4. Two key insights have been gained through this palaeoecological analysis: (i) peat swamp forest vegetation has demonstrated resilience to disturbance caused by burning and climatic variability in Sarawak in the late Holocene, however (ii) coincident with increased fire combined with human impact c . 500 years ago, these communities started to decline. 5. Synthesis . Sarawak's coastal peat swamps have demonstrated resilience to past natural disturbances, with forest vegetation persisting through episodes of fire and climatic variability. However, palaeoecological data presented here suggest that recent, anthropogenic disturbances are of a greater magnitude, causing the observed decline in the peat swamp forest communities in the last c . 500 years and challenging the ecosystem's persistence. This study greatly extends our knowledge of the ecological functioning of these understudied ecosystems, providing baseline information on the past vegetation and its response to disturbance. This understanding is central to developing management strategies that foster resilience in the remaining peat swamp forests and ensure continued provision of services, namely carbon storage, from this globally important ecosystem.

  14. Effects of Construction of the Digital Multipurpose Range Complex (DMPRC) on Riparian and Stream Ecosystems at Fort Benning, Georgia. Addendum

    DTIC Science & Technology

    2009-06-01

    root dynamics in riparian forests. Soil Science Society of America 69(3):729-737. Houser, J. N., P. J. Mulholland, and K. O. Maloney. 2006. Upland...Forested Wetlands, D. M. Amatya and J. Nettles (eds). New Bern, NC. American Society of Agricultural and Biological Engineers, St. Joseph, MI...primary productivity, vegetation composition, structure, and fine root dynamics in riparian forests. Kelly O. Maloney, Ph.D. in Biological Sciences

  15. Characterization of Canopy Layering in Forested Ecosystems Using Full Waveform Lidar

    NASA Technical Reports Server (NTRS)

    Whitehurst, Amanda S.; Swatantran, Anu; Blair, J. Bryan; Hofton, Michelle A.; Dubayah, Ralph

    2013-01-01

    Canopy structure, the vertical distribution of canopy material, is an important element of forest ecosystem dynamics and habitat preference. Although vertical stratification, or "canopy layering," is a basic characterization of canopy structure for research and forest management, it is difficult to quantify at landscape scales. In this paper we describe canopy structure and develop methodologies to map forest vertical stratification in a mixed temperate forest using full-waveform lidar. Two definitions-one categorical and one continuous-are used to map canopy layering over Hubbard Brook Experimental Forest, New Hampshire with lidar data collected in 2009 by NASA's Laser Vegetation Imaging Sensor (LVIS). The two resulting canopy layering datasets describe variation of canopy layering throughout the forest and show that layering varies with terrain elevation and canopy height. This information should provide increased understanding of vertical structure variability and aid habitat characterization and other forest management activities.

  16. A comparative analysis of forest cover and catchment water yield relationships in northern China

    Treesearch

    Shuai Wang; Bo-Jie Fu; Chan-Sheng He; Ge Sun; Guang-Yao Gao

    2011-01-01

    During the past few decades, China has implemented several large-scale forestation programs that have increased forest cover from 16.0% in the 1980s to 20.4% in 2009. In northern China, water is the most sensitive and limiting ecological factor. Understanding the dynamic interactions between forest ecosystems and water in different regions is essential for maximizing...

  17. Coarse woody type: A new method for analyzing coarse woody debris and forest change

    Treesearch

    C. W. Woodall; L. M. Nagel

    2006-01-01

    The species composition of both standing live and down dead trees has been used separately to determine forest stand dynamics in large-scale forest ecosystem assessments. The species composition of standing live trees has been used to indicate forest stand diversity while the species composition of down dead trees has been used to indicate wildlife habitat. To assess...

  18. Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db).

    PubMed

    Anderson-Teixeira, Kristina J; Wang, Maria M H; McGarvey, Jennifer C; LeBauer, David S

    2016-05-01

    Tropical forests play a critical role in the global carbon (C) cycle, storing ~45% of terrestrial C and constituting the largest component of the terrestrial C sink. Despite their central importance to the global C cycle, their ecosystem-level C cycles are not as well-characterized as those of extra-tropical forests, and knowledge gaps hamper efforts to quantify C budgets across the tropics and to model tropical forest-climate interactions. To advance understanding of C dynamics of pantropical forests, we compiled a new database, the Tropical Forest C database (TropForC-db), which contains data on ground-based measurements of ecosystem-level C stocks and annual fluxes along with disturbance history. This database currently contains 3568 records from 845 plots in 178 geographically distinct areas, making it the largest and most comprehensive database of its type. Using TropForC-db, we characterized C stocks and fluxes for young, intermediate-aged, and mature forests. Relative to existing C budgets of extra-tropical forests, mature tropical broadleaf evergreen forests had substantially higher gross primary productivity (GPP) and ecosystem respiration (Reco), their autotropic respiration (Ra) consumed a larger proportion (~67%) of GPP, and their woody stem growth (ANPPstem) represented a smaller proportion of net primary productivity (NPP, ~32%) or GPP (~9%). In regrowth stands, aboveground biomass increased rapidly during the first 20 years following stand-clearing disturbance, with slower accumulation following agriculture and in deciduous forests, and continued to accumulate at a slower pace in forests aged 20-100 years. Most other C stocks likewise increased with stand age, while potential to describe age trends in C fluxes was generally data-limited. We expect that TropForC-db will prove useful for model evaluation and for quantifying the contribution of forests to the global C cycle. The database version associated with this publication is archived in Dryad (DOI: 10.5061/dryad.t516f) and a dynamic version is maintained at https://github.com/forc-db. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  19. Ecosystem functional assessment based on the "optical type" concept and self-similarity patterns: An application using MODIS-NDVI time series autocorrelation

    NASA Astrophysics Data System (ADS)

    Huesca, Margarita; Merino-de-Miguel, Silvia; Eklundh, Lars; Litago, Javier; Cicuéndez, Victor; Rodríguez-Rastrero, Manuel; Ustin, Susan L.; Palacios-Orueta, Alicia

    2015-12-01

    Remote sensing (RS) time series are an excellent operative source for information about the land surface across several scales and different levels of landscape heterogeneity. Ustin and Gamon (2010) proposed the new concept of "optical types" (OT), meaning "optically distinguishable functional types", as a way to better understand remote sensing signals related to the actual functional behavior of species that share common physiognomic forms but differ in functionality. Whereas the OT approach seems to be promising and consistent with ecological theory as a way to monitor vegetation derived from RS, it received little implementation. This work presents a method for implementing the OT concept for efficient monitoring of ecosystems based on RS time series. We propose relying on an ecosystem's repetitive pattern in the temporal domain (self-similarity) to assess its dynamics. Based on this approach, our main hypothesis is that distinct dynamics are intrinsic to a specific OT. Self-similarity level in the temporal domain within a broadleaf forest class was quantitatively assessed using the auto-correlation function (ACF), from statistical time series analysis. A vector comparison classification method, spectral angle mapper, and principal component analysis were used to identify general patterns related to forest dynamics. Phenological metrics derived from MODIS NDVI time series using the TIMESAT software, together with information from the National Forest Map were used to explain the different dynamics found. Results showed significant and highly stable self-similarity patterns in OTs that corresponded to forests under non-moisture-limited environments with an adaptation strategy based on a strong phenological synchrony with climate seasonality. These forests are characterized by dense closed canopy deciduous forests associated with high productivity and low biodiversity in terms of dominant species. Forests in transitional areas were associated with patterns of less temporal stability probably due to mixtures of different adaptation strategies (i.e., deciduous, marcescent and evergreen species) and higher functional diversity related to climate variability at long and short terms. A less distinct seasonality and even a double season appear in the OT of the broadleaf Mediterranean forest characterized by an open canopy dominated by evergreen-sclerophyllous formations. Within this forest, understory and overstory dynamics maximize functional diversity resulting in contrasting traits adapted to summer drought, winter frosts, and high precipitation variability.

  20. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem.

    PubMed

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-03-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models.

  1. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem

    PubMed Central

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-01-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871

  2. An Appraisal of the Classic Forest Succession Paradigm with the Shade Tolerance Index

    PubMed Central

    Lienard, Jean; Florescu, Ionut; Strigul, Nikolay

    2015-01-01

    In this paper we revisit the classic theory of forest succession that relates shade tolerance and species replacement and assess its validity to understand patch-mosaic patterns of forested ecosystems of the USA. We introduce a macroscopic parameter called the “shade tolerance index” and compare it to the classic continuum index in southern Wisconsin forests. We exemplify shade tolerance driven succession in White Pine-Eastern Hemlock forests using computer simulations and analyzing approximated chronosequence data from the USDA FIA forest inventory. We describe this parameter across the last 50 years in the ecoregions of mainland USA, and demonstrate that it does not correlate with the usual macroscopic characteristics of stand age, biomass, basal area, and biodiversity measures. We characterize the dynamics of shade tolerance index using transition matrices and delimit geographical areas based on the relevance of shade tolerance to explain forest succession. We conclude that shade tolerance driven succession is linked to climatic variables and can be considered as a primary driving factor of forest dynamics mostly in central-north and northeastern areas in the USA. Overall, the shade tolerance index constitutes a new quantitative approach that can be used to understand and predict succession of forested ecosystems and biogeographic patterns. PMID:25658092

  3. Effects of harvest on carbon and nitrogen dynamics in a Pacific Northwest forest catchment

    Treesearch

    Alex Abdelnour; Robert B. McKane; Marc Stieglitz; Feifei Pan; Yiwei Cheng

    2013-01-01

    We used a new ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest on catchment carbon and nitrogen dynamics. We applied the model to a 10 ha headwater catchment in the western Oregon Cascade Range where two major disturbance events have occurred during the past 500 years: a stand-replacing fire...

  4. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.

    2013-04-01

    Stand-replacing fires are the dominant fire type in North American boreal forest and leave a historical legacy of a mosaic landscape of different aged forest cohorts. To accurately quantify the role of fire in historical and current regional forest carbon balance using models, one needs to explicitly simulate the new forest cohort that is established after fire. The present study adapted the global process-based vegetation model ORCHIDEE to simulate boreal forest fire CO2 emissions and follow-up recovery after a stand-replacing fire, with representation of postfire new cohort establishment, forest stand structure and the following self-thinning process. Simulation results are evaluated against three clusters of postfire forest chronosequence observations in Canada and Alaska. Evaluation variables for simulated postfire carbon dynamics include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index (LAI), and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). The model simulation results, when forced by local climate and the atmospheric CO2 history on each chronosequence site, generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that current postfire forest carbon sink on evaluation sites observed by chronosequence methods is mainly driven by historical atmospheric CO2 increase when forests recover from fire disturbance. Historical climate generally exerts a negative effect, probably due to increasing water stress caused by significant temperature increase without sufficient increase in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon stocks evolution after fire, making it suitable for regional simulations in boreal regions where fire regimes play a key role on ecosystem carbon balance.

  5. How do disturbances and climate effects on carbon and water fluxes differ between multi-aged and even-aged coniferous forests?

    PubMed

    Tang, Xuguang; Li, Hengpeng; Ma, Mingguo; Yao, Li; Peichl, Matthias; Arain, Altaf; Xu, Xibao; Goulden, Michael

    2017-12-01

    Disturbances and climatic changes significantly affect forest ecosystem productivity, water use efficiency (WUE) and carbon (C) flux dynamics. A deep understanding of terrestrial feedbacks to such effects and recovery mechanisms in forests across contrasting climatic regimes is essential to predict future regional/global C and water budgets, which are also closely related to the potential forest management decisions. However, the resilience of multi-aged and even-aged forests to disturbances has been debated for >60years because of technical measurement constraints. Here we evaluated 62site-years of eddy covariance measurements of net ecosystem production (NEP), evapotranspiration (ET), the estimates of gross primary productivity (GPP), ecosystem respiration (R e ) and ecosystem-level WUE, as well as the relationships with environmental controls in three chronosequences of multi- and even-aged coniferous forests covering the Mediterranean, temperate and boreal regions. Age-specific dynamics in multi-year mean annual NEP and WUE revealed that forest age is a key variable that determines the sign and magnitude of recovering forest C source-sink strength from disturbances. However, the trends of annual NEP and WUE across succession stages between two stand structures differed substantially. The successional patterns of NEP exhibited an inverted-U trend with age at the two even-aged chronosequences, whereas NEP of the multi-aged chronosequence increased steadily through time. Meanwhile, site-level WUE of even-aged forests decreased gradually from young to mature, whereas an apparent increase occurred for the same forest age in multi-aged stands. Compared with even-aged forests, multi-aged forests sequestered more CO 2 with forest age and maintained a relatively higher WUE in the later succession periods. With regard to the available flux measurements in this study, these behaviors are independent of tree species, stand ages and climate conditions. We also found that distinctly different environmental factors controlled forest C and water fluxes under three climatic regimes. Typical weather events such as temperature anomalies or drying-wetting cycles severely affected forest functions. Particularly, a summer drought in the boreal forest resulted in an increased NEP owing to a considerable decrease in R e , but at the cost of greater water loss from deeper groundwater resources. These findings will provide important implications for forest management strategies to mitigate global climate change. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Catchment hydrological responses to forest harvest amount and spatial pattern

    EPA Science Inventory

    Forest harvest effects on streamflow dynamics have been well described experimentally, but a clear understanding of process-level hydrological controls can be difficult to ascertain from data alone. We apply a new model, Visualizing Ecosystems for Land Management Assessments (VE...

  7. Reducing the uncertainty of parameters controlling seasonal carbon and water fluxes in Chinese forests and its implication for simulated climate sensitivities

    NASA Astrophysics Data System (ADS)

    Li, Yue; Yang, Hui; Wang, Tao; MacBean, Natasha; Bacour, Cédric; Ciais, Philippe; Zhang, Yiping; Zhou, Guangsheng; Piao, Shilong

    2017-08-01

    Reducing parameter uncertainty of process-based terrestrial ecosystem models (TEMs) is one of the primary targets for accurately estimating carbon budgets and predicting ecosystem responses to climate change. However, parameters in TEMs are rarely constrained by observations from Chinese forest ecosystems, which are important carbon sink over the northern hemispheric land. In this study, eddy covariance data from six forest sites in China are used to optimize parameters of the ORganizing Carbon and Hydrology In Dynamics EcosystEms TEM. The model-data assimilation through parameter optimization largely reduces the prior model errors and improves the simulated seasonal cycle and summer diurnal cycle of net ecosystem exchange, latent heat fluxes, and gross primary production and ecosystem respiration. Climate change experiments based on the optimized model are deployed to indicate that forest net primary production (NPP) is suppressed in response to warming in the southern China but stimulated in the northeastern China. Altered precipitation has an asymmetric impact on forest NPP at sites in water-limited regions, with the optimization-induced reduction in response of NPP to precipitation decline being as large as 61% at a deciduous broadleaf forest site. We find that seasonal optimization alters forest carbon cycle responses to environmental change, with the parameter optimization consistently reducing the simulated positive response of heterotrophic respiration to warming. Evaluations from independent observations suggest that improving model structure still matters most for long-term carbon stock and its changes, in particular, nutrient- and age-related changes of photosynthetic rates, carbon allocation, and tree mortality.

  8. Climate-FVS Version 2: Content, users guide, applications, and behavior

    Treesearch

    Nicholas L. Crookston

    2014-01-01

    Climate change in the 21st Century is projected to cause widespread changes in forest ecosystems. Climate-FVS is a modification to the Forest Vegetation Simulator designed to take climate change into account when predicting forest dynamics at decadal to century time scales. Individual tree climate viability scores measure the likelihood that the climate at a given...

  9. Trends in snag populations in drought-stressed mixed-conifer and ponderosa pine forests (1997-2007)

    Treesearch

    Joseph L. Ganey; Scott C. Vojta

    2012-01-01

    Snags provide important biological legacies, resources for numerous species of native wildlife, and contribute to decay dynamics and ecological processes in forested ecosystems. We monitored trends in snag populations from 1997 to 2007 in drought-stressed mixed-conifer and ponderosa pine (Pinus ponderosa Dougl. ex Laws) forests, northern Arizona. Median snag density...

  10. A dynamic invasive species research vision: Opportunities and priorities 2009-29

    Treesearch

    2010-01-01

    Invasive species significantly impact U.S. ecosystems and are one of the greatest threats to forest, rangeland, and urban forest health. They have contributed to increases in fire frequency and intensity; reduced water resources, forest growth, and timber; and negatively affected native species and their habitats throughout the United States. Global trade, climate...

  11. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qichun; Zhang, Xuesong

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio_E), large leaf to biomass fraction (Bio_LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWATmore » model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT’s performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests.« less

  12. The role of a peri-urban forest on air quality improvement in the Mexico City megalopolis.

    PubMed

    Baumgardner, Darrel; Varela, Sebastian; Escobedo, Francisco J; Chacalo, Alicia; Ochoa, Carlos

    2012-04-01

    Air quality improvement by a forested, peri-urban national park was quantified by combining the Urban Forest Effects (UFORE) and the Weather Research and Forecasting coupled with Chemistry (WRF-Chem) models. We estimated the ecosystem-level annual pollution removal function of the park's trees, shrub and grasses using pollution concentration data for carbon monoxide (CO), ozone (O(3)), and particulate matter less than 10 microns in diameter (PM(10)), modeled meteorological and pollution variables, and measured forest structure data. Ecosystem-level O(3) and CO removal and formation were also analyzed for a representative month. Total annual air quality improvement of the park's vegetation was approximately 0.02% for CO, 1% for O(3,) and 2% for PM(10), of the annual concentrations for these three pollutants. Results can be used to understand the air quality regulation ecosystem services of peri-urban forests and regional dynamics of air pollution emissions from major urban areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Disturbance, complexity, and succession of net ecosystem production in North America’s temperate deciduous forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gough, Christopher; Curtis, Peter; Hardiman, Brady

    Century-old forests in the U.S. upper Midwest and Northeast power much of North Amer- ica’s terrestrial carbon (C) sink, but these forests’ production and C sequestration capacity are expected to soon decline as fast-growing early successional species die and are replaced by slower growing late successional species. But will this really happen? Here we marshal empirical data and ecological theory to argue that substantial declines in net ecosystem production (NEP) owing to reduced forest growth, or net primary production (NPP), are not imminent in regrown temperate deciduous forests over the next several decades. Forest age and production data for temperatemore » deciduous forests, synthesized from published literature, suggest slight declines in NEP and increasing or stable NPP during middle successional stages. We revisit long-held hypotheses by EP Odum and others that suggest low-severity, high-frequency disturbances occurring in the region’s aging forests will, against intuition, maintain NEP at higher-than- expected rates by increasing ecosystem complexity, sustaining or enhancing NPP to a level that largely o sets rising C losses as heterotrophic respiration increases. This theoretical model is also supported by biological evidence and observations from the Forest Accelerated Succession Experiment in Michigan, USA. Ecosystems that experience high-severity disturbances that simplify ecosystem complexity can exhibit substantial declines in production during middle stages of succession. However, observations from these ecosystems have exerted a disproportionate in uence on assumptions regarding the trajectory and magnitude of age-related declines in forest production. We conclude that there is a wide ecological space for forests to maintain NPP and, in doing so, lessens the declines in NEP, with signi cant implications for the future of the North American carbon sink. Our intellectual frameworks for understanding forest C cycle dynamics and resilience need to catch up to our more complex and nuanced understanding of ecological succession.« less

  14. Parameterisation of Biome BGC to assess forest ecosystems in Africa

    NASA Astrophysics Data System (ADS)

    Gautam, Sishir; Pietsch, Stephan A.

    2010-05-01

    African forest ecosystems are an important environmental and economic resource. Several studies show that tropical forests are critical to society as economic, environmental and societal resources. Tropical forests are carbon dense and thus play a key role in climate change mitigation. Unfortunately, the response of tropical forests to environmental change is largely unknown owing to insufficient spatially extensive observations. Developing regions like Africa where records of forest management for long periods are unavailable the process-based ecosystem simulation model - BIOME BGC could be a suitable tool to explain forest ecosystem dynamics. This ecosystem simulation model uses descriptive input parameters to establish the physiology, biochemistry, structure, and allocation patterns within vegetation functional types, or biomes. Undocumented parameters for larger-resolution simulations are currently the major limitations to regional modelling in African forest ecosystems. This study was conducted to document input parameters for BIOME-BGC for major natural tropical forests in the Congo basin. Based on available literature and field measurements updated values for turnover and mortality, allometry, carbon to nitrogen ratios, allocation of plant material to labile, cellulose, and lignin pools, tree morphology and other relevant factors were assigned. Daily climate input data for the model applications were generated using the statistical weather generator MarkSim. The forest was inventoried at various sites and soil samples of corresponding stands across Gabon were collected. Carbon and nitrogen in the collected soil samples were determined from soil analysis. The observed tree volume, soil carbon and soil nitrogen were then compared with the simulated model outputs to evaluate the model performance. Furthermore, the simulation using Congo Basin specific parameters and generalised BIOME BGC parameters for tropical evergreen broadleaved tree species were also executed and the simulated results compared. Once the model was optimised for forests in the Congo basin it was validated against observed tree volume, soil carbon and soil nitrogen from a set of independent plots.

  15. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance.

    PubMed

    Wang, Shaoqiang; Zhou, Lei; Chen, Jingming; Ju, Weimin; Feng, Xianfeng; Wu, Weixing

    2011-06-01

    Affected by natural and anthropogenic disturbances such as forest fires, insect-induced mortality and harvesting, forest stand age plays an important role in determining the distribution of carbon pools and fluxes in a variety of forest ecosystems. An improved understanding of the relationship between net primary productivity (NPP) and stand age (i.e., age-related increase and decline in forest productivity) is essential for the simulation and prediction of the global carbon cycle at annual, decadal, centurial, or even longer temporal scales. In this paper, we developed functions describing the relationship between national mean NPP and stand age using stand age information derived from forest inventory data and NPP simulated by the BEPS (Boreal Ecosystem Productivity Simulator) model in 2001. Due to differences in ecobiophysical characteristics of different forest types, NPP-age equations were developed for five typical forest ecosystems in China (deciduous needleleaf forest (DNF), evergreen needleleaf forest in tropic and subtropical zones (ENF-S), deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), and mixed broadleaf forest (MBF)). For DNF, ENF-S, EBF, and MBF, changes in NPP with age were well fitted with a common non-linear function, with R(2) values equal to 0.90, 0.75, 0.66, and 0.67, respectively. In contrast, a second order polynomial was best suitable for simulating the change of NPP for DBF, with an R(2) value of 0.79. The timing and magnitude of the maximum NPP varied with forest types. DNF, EBF, and MBF reached the peak NPP at the age of 54, 40, and 32 years, respectively, while the NPP of ENF-S maximizes at the age of 13 years. The highest NPP of DBF appeared at 122 years. NPP was generally lower in older stands with the exception of DBF, and this particular finding runs counter to the paradigm of age-related decline in forest growth. Evaluation based on measurements of NPP and stand age at the plot-level demonstrates the reliability and applicability of the fitted NPP-age relationships. These relationships were used to replace the normalized NPP-age relationship used in the original InTEC (Integrated Terrestrial Ecosystem Carbon) model, to improve the accuracy of estimated carbon balance for China's forest ecosystems. With the revised NPP-age relationship, the InTEC model simulated a larger carbon source from 1950-1980 and a larger carbon sink from 1985-2001 for China's forests than the original InTEC model did because of the modification to the age-related carbon dynamics in forests. This finding confirms the importance of considering the dynamics of NPP related to forest age in estimating regional and global terrestrial carbon budgets. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change

    PubMed Central

    Longo, Marcos; Baccini, Alessandro; Phillips, Oliver L.; Lewis, Simon L.; Alvarez-Dávila, Esteban; Segalin de Andrade, Ana Cristina; Brienen, Roel J. W.; Erwin, Terry L.; Feldpausch, Ted R.; Monteagudo Mendoza, Abel Lorenzo; Nuñez Vargas, Percy; Prieto, Adriana; Silva-Espejo, Javier Eduardo; Malhi, Yadvinder; Moorcroft, Paul R.

    2016-01-01

    Amazon forests, which store ∼50% of tropical forest carbon and play a vital role in global water, energy, and carbon cycling, are predicted to experience both longer and more intense dry seasons by the end of the 21st century. However, the climate sensitivity of this ecosystem remains uncertain: several studies have predicted large-scale die-back of the Amazon, whereas several more recent studies predict that the biome will remain largely intact. Combining remote-sensing and ground-based observations with a size- and age-structured terrestrial ecosystem model, we explore the sensitivity and ecological resilience of these forests to changes in climate. We demonstrate that water stress operating at the scale of individual plants, combined with spatial variation in soil texture, explains observed patterns of variation in ecosystem biomass, composition, and dynamics across the region, and strongly influences the ecosystem’s resilience to changes in dry season length. Specifically, our analysis suggests that in contrast to existing predictions of either stability or catastrophic biomass loss, the Amazon forest’s response to a drying regional climate is likely to be an immediate, graded, heterogeneous transition from high-biomass moist forests to transitional dry forests and woody savannah-like states. Fire, logging, and other anthropogenic disturbances may, however, exacerbate these climate change-induced ecosystem transitions. PMID:26711984

  17. Climatically induced interannual variability in aboveground production in forest-tundra and northern taiga of central Siberia.

    PubMed

    Knorre, Anastasia A; Kirdyanov, Alexander V; Vaganov, Eugene A

    2006-02-01

    To investigate the variability of primary production of boreal forest ecosystems under the current climatic changes, we compared the dynamics of annual increments and productivity of the main components of plant community (trees, shrubs, mosses) at three sites in the north of Siberia (Russia). Annual radial growth of trees and shrubs was mostly defined by summer temperature regime (positive correlation), but climatic response of woody plants was species specific and depends on local conditions. Dynamics of annual increments of mosses were opposite to tree growth. The difference in climatic response of the different vegetation components of the forest ecosystems indicates that these components seem to be adapted to use climatic conditions during the short and severe northern summer, and decreasing in annual production of one component is usually combined with the increase of other component productivity. Average productivity in the northern forest ecosystems varies from 0.05 to 0.14 t ha(-1) year(-1) for trees, from 0.05 to 0.18 t ha(-1) year(-1) for shrubs and from 0.54 to 0.66 t ha(-1) year(-1) for mosses. Higher values of tree productivity combined with lower annual moss productivity were found in sites in northern taiga in comparison with forest-tundra. Different tendencies in the productivity of the dominant species from each vegetation level (trees, shrubs, mosses) were indicated for the last 10 years studied (1990-1999): while productivity of mosses is increasing, productivity of trees is decreasing, but there is no obvious trend in the productivity of shrubs. Our results show that in the long term, the main contribution to changes in annual biomass productivity in forest-tundra and northern taiga ecosystems under the predicted climatic changes will be determined by living ground cover.

  18. Post-clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment.

    PubMed

    Williams, Christopher A; Vanderhoof, Melanie K; Khomik, Myroslava; Ghimire, Bardan

    2014-03-01

    Clearcutting and other forest disturbances perturb carbon, water, and energy balances in significant ways, with corresponding influences on Earth's climate system through biogeochemical and biogeophysical effects. Observations are needed to quantify the precise changes in these balances as they vary across diverse disturbances of different types, severities, and in various climate and ecosystem type settings. This study combines eddy covariance and micrometeorological measurements of surface-atmosphere exchanges with vegetation inventories and chamber-based estimates of soil respiration to quantify how carbon, water, and energy fluxes changed during the first 3 years following forest clearing in a temperate forest environment of the northeastern US. We observed rapid recovery with sustained increases in gross ecosystem productivity (GEP) over the first three growing seasons post-clearing, coincident with large and relatively stable net emission of CO2 because of overwhelmingly large ecosystem respiration. The rise in GEP was attributed to vegetation changes not environmental conditions (e.g., weather), but attribution to the expansion of leaf area vs. changes in vegetation composition remains unclear. Soil respiration was estimated to contribute 44% of total ecosystem respiration during summer months and coarse woody debris accounted for another 18%. Evapotranspiration also recovered rapidly and continued to rise across years with a corresponding decrease in sensible heat flux. Gross short-wave and long-wave radiative fluxes were stable across years except for strong wintertime dependence on snow covered conditions and corresponding variation in albedo. Overall, these findings underscore the highly dynamic nature of carbon and water exchanges and vegetation composition during the regrowth following a severe forest disturbance, and sheds light on both the magnitude of such changes and the underlying mechanisms with a unique example from a temperate, deciduous broadleaf forest. © 2013 John Wiley & Sons Ltd.

  19. Root hydraulic vulnerability regulation of whole-plant conductance along hillslope gradients within subalpine and montane forests

    NASA Astrophysics Data System (ADS)

    Beverly, D.; Speckman, H. N.; Ewers, B. E.

    2017-12-01

    Ecosystem-scale models often rely on root vulnerability or whole-plant conductance for simulating seasonal evapotranspiration declines via constraints of water uptake and vegetation mortality. Further, many of these ecosystem models rely on single, unvarying, hydraulic parameter estimates for modeling large areas. Ring-porous species have shown seasonal variability in root vulnerability (percent loss of conductivity; PLC) and whole-plant conductance (Kw) but simulations of coniferous forest typically rely on point measurements. This assumption for coniferous forest is not likely true because of seasonal variability caused by phenology and environmental stresses and the potential for cavitation fatigue is not considered. Moreover, many of these dynamics have only been considered for stems even though roots are often the most vulnerable segments of the pathway for conifers. We hypothesized that seasonally dynamic whole-plant conductance along hillslope gradients in coniferous forests are regulated by cavitation fatigue within the roots resulting in seasonal increases in vulnerability. To test the hypothesis, a subalpine mixed forest (3000 m.a.s.l) and montane forest (2550 m.a.s.l.) were monitored between 2015-2017 to quantify PLC and Kw along the hillslope gradients of 300 m and 50 m, respectively. Forest plots were instrumented with 35 Granier-type sapflow sensors. Seasonal sampling campaigns occurred to quantify PLC through centrifuge techniques and Kw through Darcy's law approximations with pre-dawn and diurnal leaf water potentials. Downslope roots exhibit a 33% decrease in maximal conductivity corresponding to the approximately 50% decrease in whole-plant conductance suggesting seasonal soil dry-down limitations within the downslope stands. Upslope stands had no to little change in root vulnerability or decrease in whole-plant conductance as soil water limitations occur immediately following snowmelt, thus limiting hydraulic conductance throughout the growing season. Integrating temporal and topographical variation for dynamic root vulnerability and whole-plant conductance estimates into ecosystem-scale models can decrease the uncertainty of evapotranspiration estimates in seasonally varying forests.

  20. Decadal-scale ecosystem memory reveals interactive effects of drought and insect defoliation on boreal forest productivity

    NASA Astrophysics Data System (ADS)

    Itter, M.; D'Orangeville, L.; Dawson, A.; Kneeshaw, D.; Finley, A. O.

    2017-12-01

    Drought and insect defoliation have lasting impacts on the dynamics of the boreal forest. Impacts are expected to worsen under global climate change as hotter, drier conditions forecast for much of the boreal increase the frequency and severity of drought and defoliation events. Contemporary ecological theory predicts physiological feedbacks in tree responses to drought and defoliation amplify impacts potentially causing large-scale productivity losses and forest mortality. Quantifying the interactive impacts of drought and insect defoliation on regional forest health is difficult given delayed and persistent responses to disturbance events. We developed a Bayesian hierarchical model to estimate forest growth responses to interactions between drought and insect defoliation by species and size class. Delayed and persistent responses to past drought and defoliation were quantified using empirical memory functions allowing for improved detection of interactions. The model was applied to tree-ring data from stands in Western (Alberta) and Eastern (Québec) regions of the Canadian boreal forest with different species compositions, disturbance regimes, and regional climates. Western stands experience chronic water deficit and forest tent caterpillar (FTC) defoliation; Eastern stands experience irregular water deficit and spruce budworm (SBW) defoliation. Ecosystem memory to past water deficit peaked in the year previous to growth and decayed to zero within 5 (West) to 8 (East) years; memory to past defoliation ranged from 8 (West) to 12 (East) years. The drier regional climate and faster FTC defoliation dynamics (compared to SBW) likely contribute to shorter ecosystem memory in the West. Drought and defoliation had the largest negative impact on large-diameter, host tree growth. Surprisingly, a positive interaction was observed between drought and defoliation for large-diameter, non-host trees likely due to reduced stand-level competition for water. Results highlight the temporal persistence of drought and defoliation stress on boreal forest growth dynamics and provide an empirical estimate of their interactive effects with explicit uncertainty.

  1. Tree cover bimodality in savannas and forests emerging from the switching between two fire dynamics.

    PubMed

    De Michele, Carlo; Accatino, Francesco

    2014-01-01

    Moist savannas and tropical forests share the same climatic conditions and occur side by side. Experimental evidences show that the tree cover of these ecosystems exhibits a bimodal frequency distribution. This is considered as a proof of savanna-forest bistability, predicted by dynamic vegetation models based on non-linear differential equations. Here, we propose a change of perspective about the bimodality of tree cover distribution. We show, using a simple matrix model of tree dynamics, how the bimodality of tree cover can emerge from the switching between two linear dynamics of trees, one in presence and one in absence of fire, with a feedback between fire and trees. As consequence, we find that the transitions between moist savannas and tropical forests, if sharp, are not necessarily catastrophic.

  2. Simulating forest landscape disturbances as coupled human and natural systems

    USGS Publications Warehouse

    Wimberly, Michael; Sohl, Terry L.; Liu, Zhihua; Lamsal, Aashis

    2015-01-01

    Anthropogenic disturbances resulting from human land use affect forest landscapes over a range of spatial and temporal scales, with diverse influences on vegetation patterns and dynamics. These processes fall within the scope of the coupled human and natural systems (CHANS) concept, which has emerged as an important framework for understanding the reciprocal interactions and feedbacks that connect human activities and ecosystem responses. Spatial simulation modeling of forest landscape change is an important technique for exploring the dynamics of CHANS over large areas and long time periods. Landscape models for simulating interactions between human activities and forest landscape dynamics can be grouped into two main categories. Forest landscape models (FLMs) focus on landscapes where forests are the dominant land cover and simulate succession and natural disturbances along with forest management activities. In contrast, land change models (LCMs) simulate mosaics of different land cover and land use classes that include forests in addition to other land uses such as developed areas and agricultural lands. There are also several examples of coupled models that combine elements of FLMs and LCMs. These integrated models are particularly useful for simulating human–natural interactions in landscapes where human settlement and agriculture are expanding into forested areas. Despite important differences in spatial scale and disciplinary scope, FLMs and LCMs have many commonalities in conceptual design and technical implementation that can facilitate continued integration. The ultimate goal will be to implement forest landscape disturbance modeling in a CHANS framework that recognizes the contextual effects of regional land use and other human activities on the forest ecosystem while capturing the reciprocal influences of forests and their disturbances on the broader land use mosaic.

  3. Cross-continental comparison of the functional composition and carbon allocation of two altitudinal forest transects in Ecuador and Rwanda.

    NASA Astrophysics Data System (ADS)

    Bauters, Marijn; Bruneel, Stijn; Demol, Miro; Taveirne, Cys; Van Der Heyden, Dries; Boeckx, Pascal; Kearsley, Elizabeth; Cizungu, Landry; Verbeeck, Hans

    2016-04-01

    Tropical forests are key actors in the global carbon cycle. Predicting future responses of these forests to global change is challenging, but important for global climate models. However, our current understanding of such responses is limited, due to the complexity of forest ecosystems and the slow dynamics that inherently form these systems. Our understanding of ecosystem ecology and functioning could greatly benefit from experimental setups including strong environmental gradients in the tropics, as found on altitudinal transects. We setup two such transects in both South-America and Africa, focussing on shifts in carbon allocation, forest structure and functional composition. By a cross-continental comparison of both transects, we will gain insight in how different or alike both tropical forests biomes are in their responses, and how universal the observed adaption mechanisms are.

  4. Successional forest dynamics 30 years following clearcutting

    Treesearch

    Lindsay R. Boring; Katherine J. Elliott; Wayne T. Swank

    2014-01-01

    For the past several decades, clearcuts on experimental watersheds have provided an opportunity to examine how these large-scale forest disturbances influence various ecosystem processes, including stream hydrology, soil eriosion, nutrient cycling, and vegetation diversity and successional patterns. For the investigation of vegetation diversity and successional...

  5. Why Do the Boreal Forest Ecosystems of Northwestern Europe Differ from Those of Western North America?

    PubMed Central

    Boonstra, Rudy; Andreassen, Harry P.; Boutin, Stan; Hušek, Jan; Ims, Rolf A.; Krebs, Charles J.; Skarpe, Christina; Wabakken, Petter

    2016-01-01

    Abstract The boreal forest is one of the largest terrestrial biomes on Earth. Conifers normally dominate the tree layer across the biome, but other aspects of ecosystem structure and dynamics vary geographically. The cause of the conspicuous differences in the understory vegetation and the herbivore–predator cycles between northwestern Europe and western North America presents an enigma. Ericaceous dwarf shrubs and 3– to 4-year vole–mustelid cycles characterize the European boreal forests, whereas tall deciduous shrubs and 10-year snowshoe hare–lynx cycles characterize the North American ones. We discuss plausible explanations for this difference and conclude that it is bottom-up: Winter climate is the key determinant of the dominant understory vegetation that then determines the herbivore–predator food-web interactions. The crucial unknown for the twenty-first century is how climate change and increasing instability will affect these forests, both with respect to the dynamics of individual plant and animal species and to their community interactions. PMID:28533563

  6. Why Do the Boreal Forest Ecosystems of Northwestern Europe Differ from Those of Western North America?

    PubMed

    Boonstra, Rudy; Andreassen, Harry P; Boutin, Stan; Hušek, Jan; Ims, Rolf A; Krebs, Charles J; Skarpe, Christina; Wabakken, Petter

    2016-09-01

    The boreal forest is one of the largest terrestrial biomes on Earth. Conifers normally dominate the tree layer across the biome, but other aspects of ecosystem structure and dynamics vary geographically. The cause of the conspicuous differences in the understory vegetation and the herbivore-predator cycles between northwestern Europe and western North America presents an enigma. Ericaceous dwarf shrubs and 3- to 4-year vole-mustelid cycles characterize the European boreal forests, whereas tall deciduous shrubs and 10-year snowshoe hare-lynx cycles characterize the North American ones. We discuss plausible explanations for this difference and conclude that it is bottom-up: Winter climate is the key determinant of the dominant understory vegetation that then determines the herbivore-predator food-web interactions. The crucial unknown for the twenty-first century is how climate change and increasing instability will affect these forests, both with respect to the dynamics of individual plant and animal species and to their community interactions.

  7. Modeling Forest Structure and Vascular Plant Diversity in Piedmont Forests

    NASA Astrophysics Data System (ADS)

    Hakkenberg, C.

    2014-12-01

    When the interacting stressors of climate change and land cover/land use change (LCLUC) overwhelm ecosystem resilience to environmental and climatic variability, forest ecosystems are at increased risk of regime shifts and hyperdynamism in process rates. To meet the growing range of novel biotic and environmental stressors on human-impacted ecosystems, the maintenance of taxonomic diversity and functional redundancy in metacommunities has been proposed as a risk spreading measure ensuring that species critical to landscape ecosystem functioning are available for recruitment as local systems respond to novel conditions. This research is the first in a multi-part study to establish a dynamic, predictive model of the spatio-temporal dynamics of vascular plant diversity in North Carolina Piedmont mixed forests using remotely sensed data inputs. While remote sensing technologies are optimally suited to monitor LCLUC over large areas, direct approaches to the remote measurement of plant diversity remain a challenge. This study tests the efficacy of predicting indices of vascular plant diversity using remotely derived measures of forest structural heterogeneity from aerial LiDAR and high spatial resolution broadband optical imagery in addition to derived topo-environmental variables. Diversity distribution modelling of this sort is predicated upon the idea that environmental filtering of dispersing species help define fine-scale (permeable) environmental envelopes within which biotic structural and compositional factors drive competitive interactions that, in addition to background stochasticity, determine fine-scale alpha diversity. Results reveal that over a range of Piedmont forest communities, increasing structural complexity is positively correlated with measures of plant diversity, though the nature of this relationship varies by environmental conditions and community type. The diversity distribution model is parameterized and cross-validated using three high quality vegetation survey datasets, including Duke Forest Korstian permanent plots, Forest Inventory Analysis (FIA), and the scale transgressive, nested module Carolina Vegetation Survey (CVS).

  8. Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe.

    PubMed

    Senf, Cornelius; Pflugmacher, Dirk; Hostert, Patrick; Seidl, Rupert

    2017-08-01

    Remote sensing is a key information source for improving the spatiotemporal understanding of forest ecosystem dynamics. Yet, the mapping and attribution of forest change remains challenging, particularly in areas where a number of interacting disturbance agents simultaneously affect forest development. The forest ecosystems of Central Europe are coupled human and natural systems, with natural and human disturbances affecting forests both individually and in combination. To better understand the complex forest disturbance dynamics in such systems, we utilize 32-year Landsat time series to map forest disturbances in five sites across Austria, the Czech Republic, Germany, Poland, and Slovakia. All sites consisted of a National Park and the surrounding forests, reflecting three management zones of different levels of human influence (managed, protected, strictly protected). This allowed for a comparison of spectral, temporal, and spatial disturbance patterns across a gradient from natural to coupled human and natural disturbances. Disturbance maps achieved overall accuracies ranging from 81% to 93%. Disturbance patches were generally small, with 95% of the disturbances being smaller than 10 ha. Disturbance rates ranged from 0.29% yr -1 to 0.95% yr -1 , and differed substantially among management zones and study sites. Natural disturbances in strictly protected areas were longer in duration (median of 8 years) and slightly less variable in magnitude compared to human-dominated disturbances in managed forests (median duration of 1 year). However, temporal dynamics between natural and human-dominated disturbances showed strong synchrony, suggesting that disturbance peaks are driven by natural events affecting managed and unmanaged areas simultaneously. Our study demonstrates the potential of remote sensing for mapping forest disturbances in coupled human and natural systems, such as the forests of Central Europe. Yet, we also highlight the complexity of such systems in terms of agent attribution, as many natural disturbances are modified by management responding to them outside protected areas.

  9. Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe

    NASA Astrophysics Data System (ADS)

    Senf, Cornelius; Pflugmacher, Dirk; Hostert, Patrick; Seidl, Rupert

    2017-08-01

    Remote sensing is a key information source for improving the spatiotemporal understanding of forest ecosystem dynamics. Yet, the mapping and attribution of forest change remains challenging, particularly in areas where a number of interacting disturbance agents simultaneously affect forest development. The forest ecosystems of Central Europe are coupled human and natural systems, with natural and human disturbances affecting forests both individually and in combination. To better understand the complex forest disturbance dynamics in such systems, we utilize 32-year Landsat time series to map forest disturbances in five sites across Austria, the Czech Republic, Germany, Poland, and Slovakia. All sites consisted of a National Park and the surrounding forests, reflecting three management zones of different levels of human influence (managed, protected, strictly protected). This allowed for a comparison of spectral, temporal, and spatial disturbance patterns across a gradient from natural to coupled human and natural disturbances. Disturbance maps achieved overall accuracies ranging from 81% to 93%. Disturbance patches were generally small, with 95% of the disturbances being smaller than 10 ha. Disturbance rates ranged from 0.29% yr-1 to 0.95% yr-1, and differed substantially among management zones and study sites. Natural disturbances in strictly protected areas were longer in duration (median of 8 years) and slightly less variable in magnitude compared to human-dominated disturbances in managed forests (median duration of 1 year). However, temporal dynamics between natural and human-dominated disturbances showed strong synchrony, suggesting that disturbance peaks are driven by natural events affecting managed and unmanaged areas simultaneously. Our study demonstrates the potential of remote sensing for mapping forest disturbances in coupled human and natural systems, such as the forests of Central Europe. Yet, we also highlight the complexity of such systems in terms of agent attribution, as many natural disturbances are modified by management responding to them outside protected areas.

  10. Main dynamics and drivers of boreal forests fire regimes during the Holocene

    NASA Astrophysics Data System (ADS)

    Molinari, Chiara; Lehsten, Veiko; Blarquez, Olivier; Clear, Jennifer; Carcaillet, Christopher; Bradshaw, Richard HW

    2015-04-01

    Forest fire is one of the most critical ecosystem processes in the boreal megabiome, and it is likely that its frequency, size and severity have had a primary role in vegetation dynamics since the Last Ice Age (Kasischke & Stocks 2000). Fire not only organizes the physical and biological attributes of boreal forests, but also affects biogeochemical cycling, particularly the carbon balance (Balshi et al. 2007). Due to their location at climatically sensitive northern latitudes, boreal forests are likely to be significantly affected by global warming with a consequent increase in biomass burning (Soja et al. 2007), a variation in vegetation structure and composition (Johnstone et al. 2004) and a rise in atmospheric carbon dioxide concentration (Bond-Lamberty et al. 2007). Even if the ecological role of wildfire in boreal forest is widely recognized, a clearer understanding of the environmental factors controlling fire dynamics and how variations in fire regimes impact forest ecosystems is essential in order to place modern fire processes in a meaningful context for projecting ecosystem behaviour in a changing environment (Kelly et al. 2013). Because fire return intervals and successional cycles in boreal forests occur over decadal to centennial timescales (Hu et al. 2006), palaeoecological research seems to be one of the most promising tool for elucidating ecosystem changes over a broad range of environmental conditions and temporal scales. Within this context, our first aim is to reconstruct spatial and temporal patterns of boreal forests fire dynamics during the Holocene based on sedimentary charcoal records. As a second step, trends in biomass burning will be statistically analysed in order to disentangle between regional and local drivers. The use of European and north-American sites will give us the unique possibility to perform a large scale analysis on one of the broadest biome in the world and to underline the different patterns of fire in these two continents. Balshi MS, McGuire AD, Zhuang Q et al. (2007) The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis. J. Geophys. Res. 112:G2. Bond-Lamberty B, Peckham SD, Ahl DE et al. (2007) Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450: 89-92. Hu FS, Brubaker LB, Gavin DG et al. (2006) How climate and vegetation influence the fire regime of the Alaskan boreal biome: the Holocene perspective. Mitigation Adapt. Strateg. Glob. Chang. 11: 829-846. Johnstone JF, Chapin III FS, Foote J et al. (2004) Decadal observations of tree regeneration following fire in boreal forests. Can. J. For. Res. 34: 267-273. Kasischke ES & Stocks BJ (2000) Fire, Climate Change and Carbon Cycling in the Boreal Forest. Ecological Studies 138, Springer-Verlag, New York. Kelly RF, Chipman ML, Higuera PE et al. (2013) Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc. Natl. Acad. Sci. U.S.A. 110: 13055-13060. Soja AJ, Tchebakova NM, French NHF et al. (2007) Climate-induced boreal forest change: predictions versus current observations. Glob. Planet. Chang. 56: 274-296.

  11. Global ecosystem dynamics investigation (GEDI) LiDAR sampling strategy

    Treesearch

    Paul L. Patterson; Sean Healey

    2015-01-01

    Global Ecosystem Dynamics Investigation (GEDI) Lidar was selected by NASA for funding under its Earth Venture Instrument-2 program. A full-waveform lidar instrument will be attached to the International Space Station (ISS) and will provide unprecedented detail about the structure of the world’s forest between 52°S and 52°N (the area covered by the ISS ground track)....

  12. Influences of climate, fire, and topography on contemporary age structure patterns of Douglas-fir at 205 old forest sites in western Oregon

    Treesearch

    Nathan J. Poage; Peter J. Weisberg; Peter C. Impara; John C. Tappeiner; Thomas S. Sensenig

    2009-01-01

    Knowledge of forest development is basic to understanding the ecology, dynamics, and management of forest ecosystems. We hypothesized that the age structure patterns of Douglas-fir at 205 old forest sites in western Oregon are extremely variable with long and (or) multiple establishment periods common, and that these patterns reflect variation in regional-scale climate...

  13. Land use context and natural soil controls on plant community and soil nitrogen and carbon dynamics in urban and rural forests

    Treesearch

    Peter M. Groffman; Richard V. Pouyat; Mary L. Cadenasso; Wayne C. Zipperer; Katalin Szlavecz; Ian D. Yesilonis; Lawrence E. Band; Grace S. Brush

    2006-01-01

    Forests embedded in an urban matrix are a useful venue for investigating the effects of multiple factors such as climate change, altered disturbance regimes and species invasions on forest ecosystems. Urban forests also represent a significant land area, with potentially important effects on landscape and regional scale nitrogen (N) and carbon (C) storage and flux. We...

  14. Emerging themes in the ecology and management of North American forests

    USGS Publications Warehouse

    Sharik, Terry L.; Adair, William; Baker, Fred A.; Battaglia, Michael; Comfort, Emily J.; D'Amato, Anthony W.; Delong, Craig; DeRose, R. Justin; Ducey, Mark J.; Harmon, Mark; Levy, Louise; Logan, Jesse A.; O'Brien, Joseph; Palik, Brian J.; Roberts, Scott D.; Rogers, Paul C.; Shinneman, Douglas J.; Spies, Thomas; Taylor, Sarah L.; Woodall, Christopher; Youngblood, Andrew

    2010-01-01

    The 7th North American Forest Ecology Workshop, consisting of 149 presentations in 16 oral sessions and a poster session, reflected a broad range of topical areas currently under investigation in forest ecology and management. There was an overarching emphasis on the role of disturbance, both natural and anthropogenic, in the dynamics of forest ecosystems, and the recognition that legacies from past disturbances strongly influence future trajectories. Climate was invoked as a major driver of ecosystem change. An emphasis was placed on application of research findings for predicting system responses to changing forest management initiatives. Several “needs” emerged from the discussions regarding approaches to the study of forest ecosystems, including (1) consideration of variable spatial and temporal scales, (2) long-term monitoring, (3) development of universal databases more encompassing of time and space to facilitate meta-analyses, (4) combining field studies and modeling approaches, (5) standardizing methods of measurement and assessment, (6) guarding against oversimplification or overgeneralization from limited site-specific results, (7) greater emphasis on plant-animal interactions, and (8) better alignment of needs and communication of results between researchers and managers.

  15. Ectomycorrhizal-dominated boreal and tropical forests have distinct fungal communities, but analogous spatial patterns across soil horizons.

    PubMed

    McGuire, Krista L; Allison, Steven D; Fierer, Noah; Treseder, Kathleen K

    2013-01-01

    Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0-20 cm) using 454 pyrosequencing and clone library sequencing. In both forests, we found significant clustering of fungal communities by site and soil horizons with analogous patterns detected by both sequencing technologies. Free-living saprotrophic fungi dominated the recently-shed leaf litter and ectomycorrhizal fungi dominated the underlying soil horizons. This vertical pattern of fungal segregation has also been found in temperate and European boreal forests, suggesting that these results apply broadly to ectomycorrhizal-dominated systems, including tropical rain forests. Since ectomycorrhizal and free-living saprotrophic fungi have different influences on soil carbon and nitrogen dynamics, information on the spatial distribution of these functional groups will improve our understanding of forest nutrient cycling.

  16. Sensitivity to low-temperature events: Implications for CO2 dynamics in subtropical coastal ecosystems

    Treesearch

    Sparkle L. Malone; Jordan Barr; Jose D. Fuentes; Steven F. Oberbauer; Christina L. Staudhammer; Evelyn E. Gaiser; Gregory Starr

    2016-01-01

    We analyzed the ecosystem effects of low-temperature events (<5 °C) over 4 years (2009-2012) in subtropical short and long hydroperiod freshwater marsh and mangrove forests within Everglades National Park. To evaluate changes in ecosystem productivity, we measured temporal patterns of CO2 and the normalized difference vegetation index over the study period. Both...

  17. Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake

    NASA Astrophysics Data System (ADS)

    Yang, X.; Richardson, T. K.; Jain, A. K.

    2010-10-01

    We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM) to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades. This study indicates the significance of secondary forests to terrestrial carbon sinks, the importance of nitrogen dynamics to the magnitude of secondary forests carbon uptake, and therefore the need to include both primary and secondary forests and nitrogen dynamics in terrestrial ecosystem models.

  18. Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake

    NASA Astrophysics Data System (ADS)

    Yang, X.; Richardson, T. K.; Jain, A. K.

    2010-04-01

    We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM) to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades. This study indicates the significance of secondary forests to terrestrial carbon sinks, the importance of nitrogen dynamics to the magnitude of secondary forests carbon uptake, and therefore the need to include both primary and secondary forests and nitrogen dynamics in terrestrial ecosystem models.

  19. Development of simplified ecosystem models for applications in Earth system studies: The Century experience

    NASA Technical Reports Server (NTRS)

    Parton, William J.; Ojima, Dennis S.; Schimel, David S.; Kittel, Timothy G. F.

    1992-01-01

    During the past decade, a growing need to conduct regional assessments of long-term trends of ecosystem behavior and the technology to meet this need have converged. The Century model is the product of research efforts initially intended to develop a general model of plant-soil ecosystem dynamics for the North American central grasslands. This model is now being used to simulate plant production, nutrient cycling, and soil organic matter dynamics for grassland, crop, forest, and shrub ecosystems in various regions of the world, including temperate and tropical ecosystems. This paper will focus on the philosophical approach used to develop the structure of Century. The steps included were model simplification, parameterization, and testing. In addition, the importance of acquiring regional data bases for model testing and the present regional application of Century in the Great Plains, which focus on regional ecosystem dynamics and the effect of altering environmental conditions, are discussed.

  20. Emergence of nutrient limitation in tropical dry forests: hypotheses from simulation models

    NASA Astrophysics Data System (ADS)

    Medvigy, D.; Waring, B. G.; Xu, X.; Trierweiler, A.; Werden, L. K.; Wang, G.; Zhu, Q.; Powers, J. S.

    2017-12-01

    It is unclear to what extent tropical dry forest productivity may be limited by nutrients. Direct assessment of nutrient limitation through fertilization experiments has been rare, and paradigms pertaining to other ecosystems may not extend to tropical dry forests. For example, because dry tropical forests have a lower water supply than moist tropical forests, dry forests can have lower decomposition rates, higher soil carbon and nitrogen concentrations, and a more open nitrogen cycle than moist forests. We used a mechanistic, numerical model to generate hypotheses about nutrient limitation in tropical dry forests. The model dynamically couples ED2 (vegetation dynamics), MEND (biogeochemistry), and N-COM (plant-microbe competition for nutrients). Here, the MEND-component of the model has been extended to include nitrogen (N) and phosphorus (P) cycles. We focus on simulation of sixteen 25m x 25m plots in Costa Rica where a fertilization experiment has been underway since 2015. Baseline simulations are characterized by both nitrogen and phosphorus limitation of vegetation. Fertilization with N and P increased vegetation biomass, with N fertilization having a somewhat stronger effect. Nutrient limitation was also sensitive to climate and was more pronounced during drought periods. Overflow respiration was identified as a key process that mitigated nutrient limitation. These results suggest that, despite often having richer soils than tropical moist forests, tropical dry forests can also become nutrient-limited. If the climate becomes drier in the next century, as is expected for Central America, drier soils may decrease microbial activity and exacerbate nutrient limitation. The importance of overflow respiration underscores the need for appropriate treatment of microbial dynamics in ecosystem models. Ongoing and new nutrient fertilization experiments will present opportunities for testing whether, and how, nutrient limitation may indeed be emerging in tropical dry forests.

  1. Emerald ash borer aftermath forests: The dynamics of ash mortality and the responses of other plant species

    Treesearch

    Kathleen S. Knight; Daniel A. Herms; John Cardina; Robert Long; Joanne Rebbeck; Kamal J.K. Gandhi; Annemarie Smith; Wendy S. Klooster; Catherine P. Herms; Alejandro A. Royo

    2010-01-01

    The effects of emerald ash borer (EAB) (Agrilus planipennis) on forest ecosystems are being studied through a collaborative research program involving the U.S. Forest Service's Northern Research Station and The Ohio State University. We are monitoring the decline and mortality of >4,500 ash trees and saplings, EAB population density, changes...

  2. Spatial variability in soil nitrogen dynamics after prescribed burning in Ohio mixed-oak forests

    Treesearch

    Ralph E. J. Boerner; Sherri Jeakins Morris; Elaine Kennedy Sutherland; Todd F. Hutchinson

    2000-01-01

    This study describes the results of the application of a single dormant season prescribed fire to two southern Ohio forest sites for the purposes of restoring the ecosystem functional properties that existed in these sites prior to major human intervention (clearcutting, fire suppression, and atmospheric deposition). Each forest site was composed of three contiguous...

  3. Recognizing the ‘sparsely settled forest’: Multi-decade socioecological change dynamics and community exemplars

    Treesearch

    Derek B. Van Berkel; Bronwyn Rayfield; Sebastián Martinuzzi; Martin J. Lechowicz; Eric White; Kathleen P. Bell; Chris R. Colocousis; Kent F. Kovacs; Anita T. Morzillo; Darla K. Munroe; Benoit Parmentier; Volker C. Radeloff; Brian J. McGill

    2018-01-01

    Sparsely settled forests (SSF) are poorly studied, coupled natural and human systems involving rural communities in forest ecosystems that are neither largely uninhabited wildland nor forests on the edges of urban areas. We developed and applied a multidisciplinary approach to define, map, and examine changes in the spatial extent and structure of both the landscapes...

  4. On the road to national mapping and attribution of the processes underlying U.S

    Treesearch

    Karen Schleeweis; Gretchen G. Moisen; Todd A. Schroeder; Chris Toney; Elizabeth A. Freeman

    2015-01-01

    Questions regarding the impact of natural and anthropogenic forest change events (temporary and persisting) on energy, water and nutrient cycling, forest sustainability and resilience, and ecosystem services call for a full suite of information on the spatial and temporal trends of forest dynamics. Temporal and spatial patterns of change along with their magnitude and...

  5. When a tree falls: Controls on wood decay predict standing dead tree fall and new risks in changing forests

    Treesearch

    Brad Oberle; Kiona Ogle; Amy E. Zanne; Christopher W. Woodall

    2018-01-01

    When standing dead trees (snags) fall, they have major impacts on forest ecosystems. Snag fall can redistribute wildlife habitat and impact public safety, while governing important carbon (C) cycle consequences of tree mortality because ground contact accelerates C emissions during deadwood decay. Managing the consequences of altered snag dynamics in changing forests...

  6. Tropical Tree Trait Diversity Enhances Forest Biomass Resilience in a Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Sakschewski, B.; Kirsten, T.; von Bloh, W.; Poorter, L.; Pena-Claros, M.; Boit, A.

    2016-12-01

    Functional diversity of ecosystems has been found to increase ecosystem functions and therefore enhance ecosystem resilience against environmental stressors. However, global carbon-cycle and biosphere models still classify the global vegetation into a relatively small number of distinct plant functional types (PFT) with constant features over space and time. Therefore, those models might underestimate the resilience and adaptive capacity of natural vegetation under climate change by ignoring positive effects that functional diversity might bring about. We diversified a set a of selected tree traits in a dynamic global vegetation model (LPJmL). In the new subversion, called LPJmL-FIT, Amazon region biomass stocks and forest structure appear significantly more resilient against climate change. Enhanced tree trait diversity enables the simulated rainforests to adjust to new environmental conditions via ecological sorting. These results may stimulate a new debate on the value of biodiversity for climate change mitigation.

  7. Interaction between gypsy moth (Lymantria dispar L.) and some competitive defoliators

    Treesearch

    Milka M. Glavendeki& #263; ; Ljubodrag S. Mihajlovi& #263

    2007-01-01

    Insect defoliators liable to frequent or occasional outbreaks can endanger forestry production and disturb the stability of forest ecosystems. There were studied life cycles, parasitoids, predators and population dynamics of leaf rollers, the winter moths, noctuids and gypsy moth, which occur in oak forests.

  8. Dynamically incorporating late-successional forest in sustainable landscapes

    Treesearch

    Ann E. Camp; Paul F. Hessburg; Richard L. Everett

    1996-01-01

    Ecosystems and landscapes change over time as a function of vegetation characteristics and disturbance regimes, including fire. Interactions between disturbance events and forest development (succession) create patterns of vegetation across landscapes. These patterns result from, and change with respect to, species compositions and structures that arise from...

  9. Late Quaternary vegetation, biodiversity and fire dynamics on the southern Brazilian highland and their implication for conservation and management of modern Araucaria forest and grassland ecosystems.

    PubMed

    Behling, Hermann; Pillar, Valério DePatta

    2007-02-28

    Palaeoecological background information is needed for management and conservation of the highly diverse mosaic of Araucaria forest and Campos (grassland) in southern Brazil. Questions on the origin of Araucaria forest and grasslands; its development, dynamic and stability; its response to environmental change such as climate; and the role of human impact are essential. Further questions on its natural stage of vegetation or its alteration by pre- and post-Columbian anthropogenic activity are also important. To answer these questions, palaeoecological and palaeoenvironmental data based on pollen, charcoal and multivariate data analysis of radiocarbon dated sedimentary archives from southern Brazil are used to provide an insight into past vegetation changes, which allows us to improve our understanding of the modern vegetation and to develop conservation and management strategies for the strongly affected ecosystems in southern Brazil.

  10. Sustainable forest management and impacts on forest responses to a changing climate

    NASA Astrophysics Data System (ADS)

    Stover, D. B.; Parker, G.; Riutta, T.; Capretz, R.; Murthy, I.; Haibao, R.; Bebber, D.

    2009-12-01

    Impacts from human activities at varying scales and intensities have a profound influence on forest carbon dynamics in addition to interactions with climate. As such, forest carbon stocks and fluxes are among the least well-defined elements of the global carbon cycle, and great uncertainty remains in predicting the effect of climate change on forest dynamics. In some cases, these management-climate interactions are well known, but often represent a fundamental gap in our understanding of ecosystem responses and are likely to be important in improving modeling of climate change, and in valuing forest carbon. To improve understanding of human induced forest management-climate interactions, a network of permanent study plots has been established in five sites around the world - in the US, UK, Brazil, India and China. The sites are near larger global monitoring (Smithsonian CTFS) plots to facilitate comparisons. At each site, a series of 1-ha plots have been placed in forest stands with differing management regimes and histories. Utilizing citizen scientists from HSBC bank, all trees >5 cm dbh are tagged, mapped, identified to species, and diameter is recorded within each plot. A subset of trees have dendrometer bands attached, to record seasonal growth. Dead wood and litterfall samples are taken, and microclimate is recorded with automatic sensors. Serial measurements will allow correlation of forest dynamics with weather. Although the studies are at an early stage current results indicate above-ground biomass estimates are 102-288 Mg ha-1 for intermediate and mature Liriodendron tulipifera-dominated stands in the US, respectively. In India, mature semi-natural evergreen forests biomass estimates are 192-235 Mg ha-1 while plantation and semi-natural core forests in the UK are estimated at 211-292 Mg ha-1. Successional Atlantic forests in Brazil are estimated to contain 192-235 Mg ha-1. In the US, initial results have demonstrated dramatic differences in microclimate (soil and air temperature and penetrance of phosynthetically active radiation) and canopy structure (the vertical distribution of surfaces) between the intact and selectively logged stands. These variables will be used as indicators of the strength and speed of ecosystem recovery to logging. In the UK, plantations had greater biomass than the semi-natural plots, due to differences in age structure; however, trees above 50 cm dbh comprised 3% of total stems but almost 50% of the biomass in the semi-natural plots. Comparisons will be made among the various modes of forest disturbance to determine how these could influence ecosystem responses to climate change. Increasing human and climatic pressures on the world's forests will necessitate further long-term studies and cross-ecosystem comparisons of this nature which lends itself to application of an intensive citizen science program.

  11. Gross primary production dynamics assessment of a mediterranean holm oak forest by remote sensing time series analysis

    NASA Astrophysics Data System (ADS)

    Cicuéndez, Víctor; Huesca, Margarita; Rodriguez-Rastrero, Manuel; Litago, Javier; Recuero, Laura; Merino de Miguel, Silvia; Palacios Orueta, Alicia

    2014-05-01

    Agroforestry ecosystems have a significant social, economic and environmental impact on the development of many regions of the world. In the Iberian Peninsula the agroforestry oak forest called "Dehesa" or "Montado" is considered as the extreme case of transformation of a Mediterranean forest by the management of human to provide a wide range of natural resources. The high variability of the Mediterranean climate and the different extensive management practices which human realized on the Dehesa result in a high spatial and temporal dynamics of the ecosystem. This leads to a complex pattern in CO2 exchange between the atmosphere and the ecosystem, i.e. in ecosystem's production. Thus, it is essential to assess Dehesa's carbon cycle to reach maximum economic benefits ensuring environmental sustainability. In this sense, the availability of high frequency Remote Sensing (RS) time series allows the assessment of ecosystem evolution at different temporal and spatial scales. Extensive research has been conducted to estimate production from RS data in different ecosystems. However, there are few studies on the Dehesa type ecosystems, probably due to their complexity in terms of spatial arrangement and temporal dynamics. In this study our overall objective is to assess the Gross Primary Production (GPP) dynamics of a Dehesa ecosystem situated in Central Spain by analyzing time series (2004-2008) of two models: (1) GPP provided by Remote Sensing Images of sensor MODIS (MOD17A2 product) and (2) GPP estimated by the implementation of a Site Specific Light Use Efficiency model based as MODIS model on Monteith equation (1972), but taking into account local ecological and meteorological parameters. Both models have been compared with the Production provided by an Eddy Covariance (EC) flux Tower that is located in our study area. In addition, dynamic relationships between models of GPP with Precipitation and Soil Water Content have been investigated by means of cross-correlations and Granger causality tests. Results have indicated that both models of GPP have shown a typical dynamic of the Dehesa in a Mediterranean climate in which there are primarily two layers, the arboreal and the herbaceous strata. However, MODIS underestimates the production of the Dehesa while our Site specific model has given more similar values and dynamics to those from the EC tower. Additionally, the analysis of the dynamic relationships has corroborated the strong dynamic link between GPP and available water for plant growth. In conclusion, we have managed to avoid the main sources of underestimation that has MODIS model with the implementation of a Site specific model. Thus, it seems that the different ecological and meteorological parameters used in MODIS model are the principally responsible for this underestimation. Finally, the Granger causality tests indicate that the prediction of GPP can improve if Precipitation or Soil Water is included in the models. References Monteith, J.L., 1972. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 9, 747-766.

  12. The impact of logging on biodiversity and carbon sequestration in tropical forests

    NASA Astrophysics Data System (ADS)

    Cazzolla Gatti, R.

    2012-04-01

    Tropical deforestation is one of the most relevant environmental issues at planetary scale. Forest clearcutting has dramatic effect on local biodiversity, on the terrestrial carbon sink and atmospheric GHGs balance. In terms of protection of tropical forests selective logging is, instead, often regarded as a minor or even positive management practice for the ecosystem and it is supported by international certifications. However, few studies are available on changes in the structure, biodiversity and ecosystem services due to the selective logging of African forests. This paper presents the results of a survey on tropical forests of West and Central Africa, with a comparison of long-term dynamics, structure, biodiversity and ecosystem services (such as the carbon sequestration) of different types of forests, from virgin primary to selectively logged and secondary forest. Our study suggests that there is a persistent effect of selective logging on biodiversity and carbon stock losses in the long term (up to 30 years since logging) and after repeated logging. These effects, in terms of species richness and biomass, are greater than the expected losses from commercial harvesting, implying that selective logging in West and Central Africa is impairing long term (at least until 30 years) ecosystem structure and services. A longer selective logging cycle (>30 years) should be considered by logging companies although there is not yet enough information to consider this practice sustainable.

  13. A monitoring protocol for the ecohydrological effects of land use changes in tropical mountain ecosystems

    NASA Astrophysics Data System (ADS)

    Flórez, C. P.; León, J. D.; Villegas, J. C.; Betancur, T.; Suescún, D.; García-Leoz, V.; Cardona, A. I.; Martin, Á. M.

    2014-12-01

    In tropical mountain regions, the societal demands for ecosystem services has led to pressure over ecosystems that, in ocassions, may threaten the capacity of ecosystems to provide services. More specifically, global-change processes such as land use change and climate dynamics may lead to uncertainties about the stability of ecosystem functions on which services rely on. Of particular interest are the effects of land cover changes on the hydrological dynamics of the soil, that support multiple regulation and provision services, critical for a large portion of the population settled in mountain regions of the world. In this work, we present a protocol for the combined monitoring of ecohydrological, biogeochemical and sediment dynamics in a group of instrumented plots representing a typical gradient of human intervention in a tropical mountain ecosystem. Land cover categories include: a mature forest, secondary forest, early successional stage, recently abandoned agricultural field, a cattle pasture, permanent cropland, a high rotation cropland. On each plot, water fluxes from the top of the canopy to 1.5 m below soil surface are measured using a diverse array of instruments, along with measurements of sediment load in runoff waters and nutrient loads for all hydrologic compartments (measurements include Ca, Mg, K, P, NH4, NO3, Mn, Fe). Our preliminary results indicate that although rainfall does not vary significantly among plots, runoff generation does, with higher values ocurring in the pasture. Conversely, infiltration rates are highest in both types of forests, particularly for shallower layers of the soil. Chemical analysis indicate higher nutrient loads in runoff generating from croplands, highlighting the potential loss of soil fertility and potentially leading to eutrophication in water bodies downstream. After completion, our results will provide land managers tools to assess larger-scale effects of land use changes on the capacity of ecosystems to provide services to society.

  14. Temporal bird community dynamics are strongly affected by landscape fragmentation in a Central American tropical forest region

    USGS Publications Warehouse

    Blandón, A.C.; Perelman, S.B.; Ramírez, M.; López, A.; Javier, O.; Robbins, Chandler S.

    2016-01-01

    Habitat loss and fragmentation are considered the main causes of species extinctions, particularly in tropical ecosystems. The objective of this work was to evaluate the temporal dynamics of tropical bird communities in landscapes with different levels of fragmentation in eastern Guatemala. We evaluated five bird community dynamic parameters for forest specialists and generalists: (1) species extinction, (2) species turnover, (3) number of colonizing species, (4) relative species richness, and (5) a homogeneity index. For each of 24 landscapes, community dynamic parameters were estimated from bird point count data, for the 1998–1999 and 2008–2009 periods, accounting for species’ detection probability. Forest specialists had higher extinction rates and a smaller number of colonizing species in landscapes with higher fragmentation, thus having lower species richness in both time periods. Alternatively, forest generalists elicited a completely different pattern, showing a curvilinear association to forest fragmentation for most parameters. Thus, greater community dynamism for forest generalists was shown in landscapes with intermediate levels of fragmentation. Our study supports general theory regarding the expected negative effects of habitat loss and fragmentation on the temporal dynamics of biotic communities, particularly for forest specialists, providing strong evidence from understudied tropical bird communities.

  15. The costs of climate change: ecosystem services and wildland fires

    EPA Science Inventory

    In this paper we use Habitat Equivalency Analysis (HEA) to monetize the avoided ecosystem services losses due to climate change-induced wildland fires in the U.S. Specifically, we use the U.S. Forest Service’s MC1 dynamic global vegetation model to forecast changes in wildland fi...

  16. RESPONSE OF SOIL MICROBIAL BIOMASS AND COMMUNITY COMPOSITION TO CHRONIC NITROGEN ADDITIONS AT HARVARD FOREST

    EPA Science Inventory

    Soil microbial communities may respond to anthropogenic increases in ecosystem nitrogen (N) availability, and their response may ultimately feedback on ecosystem carbon and N dynamics. We examined the long-term effects of chronic N additions on soil microbes by measuring soil mi...

  17. Global variation of carbon use efficiency in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolu; Carvalhais, Nuno; Moura, Catarina; Reichstein, Markus

    2017-04-01

    Carbon use efficiency (CUE), defined as the ratio between net primary production (NPP) and gross primary production (GPP), is an emergent property of vegetation that describes its effectiveness in storing carbon (C) and is of significance for understanding C biosphere-atmosphere exchange dynamics. A constant CUE value of 0.5 has been widely used in terrestrial C-cycle models, such as the Carnegie-Ames-Stanford-Approach model, or the Marine Biological Laboratory/Soil Plant-Atmosphere Canopy Model, for regional or global modeling purposes. However, increasing evidence argues that CUE is not constant, but varies with ecosystem types, site fertility, climate, site management and forest age. Hence, the assumption of a constant CUE of 0.5 can produce great uncertainty in estimating global carbon dynamics between terrestrial ecosystems and the atmosphere. Here, in order to analyze the global variations in CUE and understand how CUE varies with environmental variables, a global database was constructed based on published data for crops, forests, grasslands, wetlands and tundra ecosystems. In addition to CUE data, were also collected: GPP and NPP; site variables (e.g. climate zone, site management and plant function type); climate variables (e.g. temperature and precipitation); additional carbon fluxes (e.g. soil respiration, autotrophic respiration and heterotrophic respiration); and carbon pools (e.g. stem, leaf and root biomass). Different climate metrics were derived to diagnose seasonal temperature (mean annual temperature, MAT, and maximum temperature, Tmax) and water availability proxies (mean annual precipitation, MAP, and Palmer Drought Severity Index), in order to improve the local representation of environmental variables. Additionally were also included vegetation phenology dynamics as observed by different vegetation indices from the MODIS satellite. The mean CUE of all terrestrial ecosystems was 0.45, 10% lower than the previous assumed constant CUE of 0.50. CUE varied significantly between sites - from 0.13 to 0.93 - and between ecosystem types, ranging between 0.41 and 0.60, decreasing from wetlands, to tundra, to croplands, to grasslands until the lower CUE found on average for forested ecosystems. Our analysis shows that ecosystem type was the most important predictor of CUE in terrestrial ecosystems, immediately followed by Tmax; MAT and management practices. For crop, forest and wetland ecosystems CUE varied with climate zones and a strong linear negative correlation was found between CUE and MAT and MAP for grassland ecosystems. Overall, the interaction between different environmental variables showed significant effects on CUE for all ecosystem types. Our results challenge the consideration of a constant value of 0.5 for modeling global purposes, and argue for a deeper understanding of environmental controls on CUE for different ecosystem types.

  18. Carbon dynamics after forest harvest in Central Siberia: the ZOTTO footprint area

    NASA Astrophysics Data System (ADS)

    Panov, Alexey; Zrazhevskaya, Galina; Shibistova, Olga; Onuchin, Alexander; Heimann, Martin

    2013-04-01

    Temperate and boreal forests of the Northern Hemisphere have been recognized as important carbon sinks. Accurate calculation of forest carbon budget and estimation of the temporal variations of forest net carbon fluxes are important topics to elucidate the ''missing sink'' question and follow up the changing carbon dynamics in forests. In the frame of the ongoing Russian-German partner project the Zotino Tall Tower Observatory (ZOTTO; www.zottoproject.org) a unique international research platform for large-scale climatic observations is operational about 20 km west of the Yenisei river (60.8°N; 89.35°E). The data of the ongoing greenhouse gas and aerosol measurements at the tall tower are used in atmospheric inversions studies to infer the distribution of carbon sinks and sources over the whole Northern Eurasia. The tall tower footprint area estimates of carbon stocks and fluxes are highly demanded for bottom-up validation of inversion estimates. The ZOTTO site lies in a vast region of forests and wetlands, still relatively undisturbed by anthropogenic influences, but a moderate human impact on vegetation, represented mainly by logging activities, becomes essential. Therefore, accurate estimates of carbon pools in vegetation and soil following harvesting are essential to inversion studies for ZOTTO and critical to predictions of both local ecosystem sustainability and global C exchange with the atmosphere. We present our investigation of carbon dynamics after forest harvest in the tall tower footprint area (~1000 km2). The changes in C pools and annual sequestration were quantified among several clear-cut lichen pine (Pinus sylvestris Lamb.) stands representing various stages of secondary succession with a "space-for-time substitution" technique. When viewed as a chronosequence, these stands represent snapshots showing how the effects of logging may propagate through time. The study concluded that ecosystems during the first 15 yrs after forest harvest become C sources to the atmosphere which is attributed to increases in decomposition rates and decreases in litter inputs due to the ecosystem disturbed. Pine stands nearly 15-20-year-old after harvesting have been recognized as weak carbon sinks, and the ecosystem of 25-40-year-old represents a relatively strong C uptake. The work was supported financially by ISTC Project # 2757p "Biogeochemical Responses to Rapid Climate Changes in Eurasia".

  19. Radioactive and stable cesium isotope distributions and dynamics in Japanese cedar forests.

    PubMed

    Yoschenko, Vasyl; Takase, Tsugiko; Hinton, Thomas G; Nanba, Kenji; Onda, Yuichi; Konoplev, Alexei; Goto, Azusa; Yokoyama, Aya; Keitoku, Koji

    2018-06-01

    Dynamics of the Fukushima-derived radiocesium and distribution of the natural stable isotope 133 Cs in Japanese cedar (Cryptomeria japonica D. Don) forest ecosystems were studied during 2014-2016. For the experimental site in Yamakiya, Fukushima Prefecture, we present the redistribution of radiocesium among ecosystem compartments during the entire observation period, while the results obtained at another two experimental site were used to demonstrate similarity of the main trends in the Japanese forest ecosystems. Our observations at the Yamakiya site revealed significant redistribution of radiocesium between the ecosystem compartments during 2014-2016. During this same period radionuclide inventories in the aboveground tree biomass were relatively stable, however, radiocesium in forest litter decreased from 20 ± 11% of the total deposition in 2014 to 4.6 ± 2.7% in 2016. Radiocesium in the soil profile accumulated in the 5-cm topsoil layers. In 2016, more than 80% of the total radionuclide deposition in the ecosystem resided in the 5-cm topsoil layer. The radiocesium distribution between the aboveground biomass compartments at Yamakiya during 2014-2016 was gradually approaching a quasi-equilibrium distribution with stable cesium. Strong correlations of radioactive and stable cesium isotope concentrations in all compartments of the ecosystem have not been reached yet. However, in some compartments the correlation is already strong. An increase of radiocesium concentrations in young foliage in 2016, compared to 2015, and an increase in 2015-2016 of the 137 Cs/ 133 Cs concentration ratio in the biomass compartments with strong correlations indicate an increase in root uptake of radiocesium from the soil profile. Mass balance of the radionuclide inventories, and accounting for radiocesium fluxes in litterfall, throughfall and stemflow, enabled a rough estimate of the annual radiocesium root uptake flux as 2 ± 1% of the total inventory in the ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Seasonality of temperate forest photosynthesis and daytime respiration.

    PubMed

    Wehr, R; Munger, J W; McManus, J B; Nelson, D D; Zahniser, M S; Davidson, E A; Wofsy, S C; Saleska, S R

    2016-06-30

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night-the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.

  1. Forest-management modelling

    Treesearch

    Mark J. Twery; Aaron R. Weiskittel

    2013-01-01

    Forests are complex and dynamic ecosystems comprising individual trees that can vary in both size and species. In comparison to other organisms, trees are relatively long lived (40-2000 years), quite plastic in terms of their morphology and ecological niche, and adapted to a wide variety of habitats, which can make predicting their behaviour exceedingly difficult....

  2. Concluding remarks

    Treesearch

    Stephen F. Arno; Michael G. Harrington

    1999-01-01

    The 88-year photo sequences, descriptions of historical changes, and the initial results from ecosystembased management treatments at Lick Creek portray a dynamic, ever-changing forest. The goals of ecosystem- based management at Lick Creek are to continuously maintain an open forest containing old growth as well as younger age classes of ponderosa pine. Half a century...

  3. Net ecosystem carbon exchange of a dry temperate eucalypt forest

    NASA Astrophysics Data System (ADS)

    Hinko-Najera, Nina; Isaac, Peter; Beringer, Jason; van Gorsel, Eva; Ewenz, Cacilia; McHugh, Ian; Exbrayat, Jean-François; Livesley, Stephen J.; Arndt, Stefan K.

    2017-08-01

    Forest ecosystems play a crucial role in the global carbon cycle by sequestering a considerable fraction of anthropogenic CO2, thereby contributing to climate change mitigation. However, there is a gap in our understanding about the carbon dynamics of eucalypt (broadleaf evergreen) forests in temperate climates, which might differ from temperate evergreen coniferous or deciduous broadleaved forests given their fundamental differences in physiology, phenology and growth dynamics. To address this gap we undertook a 3-year study (2010-2012) of eddy covariance measurements in a dry temperate eucalypt forest in southeastern Australia. We determined the annual net carbon balance and investigated the temporal (seasonal and inter-annual) variability in and environmental controls of net ecosystem carbon exchange (NEE), gross primary productivity (GPP) and ecosystem respiration (ER). The forest was a large and constant carbon sink throughout the study period, even in winter, with an overall mean NEE of -1234 ± 109 (SE) g C m-2 yr-1. Estimated annual ER was similar for 2010 and 2011 but decreased in 2012 ranging from 1603 to 1346 g C m-2 yr-1, whereas GPP showed no significant inter-annual variability, with a mean annual estimate of 2728 ± 39 g C m-2 yr-1. All ecosystem carbon fluxes had a pronounced seasonality, with GPP being greatest during spring and summer and ER being highest during summer, whereas peaks in NEE occurred in early spring and again in summer. High NEE in spring was likely caused by a delayed increase in ER due to low temperatures. A strong seasonal pattern in environmental controls of daytime and night-time NEE was revealed. Daytime NEE was equally explained by incoming solar radiation and air temperature, whereas air temperature was the main environmental driver of night-time NEE. The forest experienced unusual above-average annual rainfall during the first 2 years of this 3-year period so that soil water content remained relatively high and the forest was not water limited. Our results show the potential of temperate eucalypt forests to sequester large amounts of carbon when not water limited. However, further studies using bottom-up approaches are needed to validate measurements from the eddy covariance flux tower and to account for a possible underestimation in ER due to advection fluxes.

  4. A coarse wood dynamics model for the Western Cascades.

    Treesearch

    K. Mellen; A. Ager

    2002-01-01

    The Coarse Wood Dynamics Model (CWDM) analyzes the dynamics (fall, fragmentation, and decomposition) of Douglas-fir (Pseudotsuga menziesii) and western hemlock (Tsuga heterophylla) snags and down logs in forested ecosystems of the western Cascades of Oregon and Washington. The model predicts snag fall, height loss and decay,...

  5. Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2

    Treesearch

    Heather R. McCarthy; Ram Oren; Adrien C. Finzi; David S. Ellsworth; Hyun-Seok Kim; Kurt H. Johnsen; Bonnie Millar

    2007-01-01

    Increased canopy leaf area (L) may lead to higher forest productivity and alter processes such as species dynamics and ecosystem mass and energy fluxes. Few CO2enrichment studies have been conducted in closed canopy forests and none have shown a sustained enhancement of L. We reconstructed 8 years (1996–2003) of L at Duke’s Free Air CO...

  6. Dynamic Shade and Irradiance Simulation of Aquatic Landscapes and Watersheds

    EPA Science Inventory

    Penumbra is a landscape shade and irradiance simulation model that simulates how solar energy spatially and temporally interacts within dynamic ecosystems such as riparian zones, forests, and other terrain that cast topological shadows. Direct and indirect solar energy accumulate...

  7. Northern Forest DroughtNet: A New Framework to Understand Impacts of Precipitation Change on the Northern Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Asbjornsen, H.; Rustad, L.; Templer, P. H.; Jennings, K.; Phillips, R.; Smith, M.

    2014-12-01

    Recent trends and projections for future change for the U.S. northern forests suggest that the region's climate is becoming warmer, wetter, and, ironically, drier, with more precipitation occurring as large events, separated by longer periods with no precipitation. However, to date, precipitation manipulation experiments conducted in forest ecosystems represent only ~5% of all such experiments worldwide, and our understanding of how the mesic-adapted northern forest will respond to greater frequency and intensity of drought in the future is especially poor. Several important challenges have hampered previous research efforts to conduct forest drought experiments and draw robust conclusions, including difficulties in reducing water uptake by deep and lateral tree roots, logistical and financial constraints to establishing and maintaining large-scale field experiments, and the lack of standardized approaches for determining the appropriate precipitation manipulation treatment (e.g., amount and timing of throughfall displacement), designing and constructing the throughfall displacement infrastructure, identifying key response variables, and collecting and analyzing the field data. The overarching goal of this project is to establish a regional research coordination network - Northern Forest DroughtNet - to investigate the impacts of changes in the amount and distribution of precipitation on the hydrology, biogeochemistry, and carbon (C) cycling dynamics of northern temperate forests. Specific objectives include the development of a standard prototype for conducting precipitation manipulation studies in forest ecosystems (in collaboration with the international DroughtNet-RCN) and the implementation of this prototype drought experiment at the Hubbard Brook Experimental Forest. Here, we present the advances made thus far towards achieving the objectives of Northern Forest DroughtNet, plans for future work, and an invitation to the larger scientific community interested in precipitation manipulation experiments in forest ecosystems to participate in the network.

  8. Climate, soil organic layer, and nitrogen jointly drive forest development after fire in the North American boreal zone

    NASA Astrophysics Data System (ADS)

    Trugman, A. T.; Fenton, N. J.; Bergeron, Y.; Xu, X.; Welp, L. R.; Medvigy, D.

    2016-09-01

    Previous empirical work has shown that feedbacks between fire severity, soil organic layer thickness, tree recruitment, and forest growth are important factors controlling carbon accumulation after fire disturbance. However, current boreal forest models inadequately simulate this feedback. We address this deficiency by updating the ED2 model to include a dynamic feedback between soil organic layer thickness, tree recruitment, and forest growth. The model is validated against observations spanning monthly to centennial time scales and ranging from Alaska to Quebec. We then quantify differences in forest development after fire disturbance resulting from changes in soil organic layer accumulation, temperature, nitrogen availability, and atmospheric CO2. First, we find that ED2 accurately reproduces observations when a dynamic soil organic layer is included. Second, simulations indicate that the presence of a thick soil organic layer after a mild fire disturbance decreases decomposition and productivity. The combination of the biological and physical effects increases or decreases total ecosystem carbon depending on local conditions. Third, with a 4°C temperature increase, some forests transition from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing total ecosystem carbon by ˜40% after 300 years. However, the presence of a thick soil organic layer due to a persistently mild fire regime can prevent this transition and mediate carbon losses even under warmer temperatures. Fourth, nitrogen availability regulates successional dynamics; broadleaf species are less competitive with needleleaf trees under low nitrogen regimes. Fifth, the boreal forest shows additional short-term capacity for carbon sequestration as atmospheric CO2 increases.

  9. Postfire management in forested public lands of the western USA

    USGS Publications Warehouse

    Beschta, R.L.; Rhodes, J.J.; Kauffman, J.B.; Gresswell, Robert E.; Minshall, G.W.; Frissell, C.A.; Perry, D.A.; Hauer, R.

    2004-01-01

    Forest ecosystems in the western United States evolved over many millennia in response to disturbances such as wildfires. Land use and management practices have altered these ecosystems, however, including fire regimes in some areas. Forest ecosystems are especially vulnerable to postfire management practices because such practices may influence forest dynamics and aquatic systems for decades to centuries. Thus, there is an increasing need to evaluate the effect of postfire treatments from the perspective of ecosystem recovery. We examined, via the published literature and our collective experience, the ecological effects of some common postfire treatments. Based on this examination, promising postfire restoration measures include retention of large trees, rehabilitation of firelines and roads, and, in some cases, planting of native species. The following practices are generally inconsistent with efforts to restore ecosystem functions after fire: seeding exotic species, livestock grazing, placement of physical structures in and near stream channels, ground-based postfire logging, removal of large trees, and road construction. Practices that adversely affect soil integrity, persistence or recovery of native species, riparian functions, or water quality generally impede ecological recovery after fire. Although research provides a basis for evaluating the efficacy of postfire treatments, there is a continuing need to increase our understanding of the effects of such treatments within the context of societal and ecological goals for forested public lands of the western United States.

  10. Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America.

    PubMed

    Medvigy, David; Moorcroft, Paul R

    2012-01-19

    Terrestrial biosphere models are important tools for diagnosing both the current state of the terrestrial carbon cycle and forecasting terrestrial ecosystem responses to global change. While there are a number of ongoing assessments of the short-term predictive capabilities of terrestrial biosphere models using flux-tower measurements, to date there have been relatively few assessments of their ability to predict longer term, decadal-scale biomass dynamics. Here, we present the results of a regional-scale evaluation of the Ecosystem Demography version 2 (ED2)-structured terrestrial biosphere model, evaluating the model's predictions against forest inventory measurements for the northeast USA and Quebec from 1985 to 1995. Simulations were conducted using a default parametrization, which used parameter values from the literature, and a constrained model parametrization, which had been developed by constraining the model's predictions against 2 years of measurements from a single site, Harvard Forest (42.5° N, 72.1° W). The analysis shows that the constrained model parametrization offered marked improvements over the default model formulation, capturing large-scale variation in patterns of biomass dynamics despite marked differences in climate forcing, land-use history and species-composition across the region. These results imply that data-constrained parametrizations of structured biosphere models such as ED2 can be successfully used for regional-scale ecosystem prediction and forecasting. We also assess the model's ability to capture sub-grid scale heterogeneity in the dynamics of biomass growth and mortality of different sizes and types of trees, and then discuss the implications of these analyses for further reducing the remaining biases in the model's predictions.

  11. Fine Root Growth Phenology, Production, and Turnover in a Northern Hardwood Forest Ecosystem

    Treesearch

    Dudley J. Raynal

    1994-01-01

    A large part of the nutrient flux in deciduous forests is through fine root turnover, yet this process is seldom measured. As part of a nutrient cycling study, fine root dynamics were studied for two years at Huntington Forest in the Adirondack Mountain region of New York, USA. Root growth phenology was characterized using field rhizotrons, three methods were used to...

  12. Chapter 10 - Wildfire and fire severity effects on post-fire carbon and nitrogen cycling in forest soil (Project NC-EM-F-14-1)

    Treesearch

    Jessica R. Miesel; Randy Kolka; Phil Townsend

    2018-01-01

    Fire is a key ecological driver in determining vegetation composition, biomass, and ecosystem dynamics in coniferous forests of the Laurentian Mixed Forest in the Great Lakes region (Cleland and others 2004, Frelich 1995). Regional projections of future climate conditions indicate warmer temperatures, more variable precipitation patterns, and greater moisture stress (...

  13. Forest Dynamics at the Missouri Ozark Forest Ecosystem Project viewed through stocking diagrams

    Treesearch

    David R. Larsen; John M. Kabrick; Stephen R. Shifley; Randy G. Jensen

    2017-01-01

    Stocking diagrams come in two forms, the Gingrich diagram and the density management diagram. While they both present the same information about a forest stand, they each provide a different perspective on the data being displayed. Density management diagrams have been around since the 1930s and the Gingrich diagram has been around since the 1960s, but applications of...

  14. Assessing the protection function of Alpine forest ecosystems using BGC modelling theory

    NASA Astrophysics Data System (ADS)

    Pötzelsberger, E.; Hasenauer, H.; Petritsch, R.; Pietsch, S. A.

    2009-04-01

    The purpose of this study was to assess the protection function of forests in Alpine areas by modelling the flux dynamics (water, carbon, nutrients) within a watershed as they may depend on the vegetation pattern and forest management impacts. The application case for this study was the catchment Schmittenbach, located in the province of Salzburg. Data available covered the hydrology (rainfall measurements from 1981 to 1998 and runoff measurements at the river Schmittenbach from 1981 to 2005), vegetation dynamics (currently 69% forest, predominantly Norway Spruce). The method of simulating the forest growth and water outflow was validated. For simulations of the key ecosystem processes (e.g. photosynthesis, carbon and nitrogen allocation in the different plant parts, litter fall, mineralisation, tree water uptake, transpiration, rainfall interception, evaporation, snow accumulation and snow melt, outflow of spare water) the biogeochemical ecosystem model Biome-BGC was applied. Relevant model extensions were the tree species specific parameter sets and the improved thinning regime. The model is sensitive to site characteristics and needs daily weather data and information on the atmospheric composition, which makes it sensitive to higher CO2-levels and climate change. For model validation 53 plots were selected covering the full range of site quality and stand age. Tree volume and soil was measured and compared with the respective model results. The outflow for the watershed was predicted by combining the simulated forest-outflow (derived from plot-outflow) with the outflow from the non-forest area (calculated with a fixed outflow/rainfall coefficient (OC)). The analysis of production and water related model outputs indicated that mechanistic modelling can be used as a tool to assess the performance of Alpine protection forests. The Water Use Efficiency (WUE), the ratio of Net primary production (NPP) and Transpiration, was found the highest for juvenile stands (≤20yr). The WUE was also found directly proportional to the elevation. A positive correlation between annual outflow and the WUE could be shown. Yearly outflow predictions for the whole catchment for the years 1981-2005 showed no significant difference from the measurements. Key words: protection forests, outflow, flux dynamics, BGC-Modelling

  15. NASA 1990 Multisensor Airborne Campaigns (MACs) for ecosystem and watershed studies

    NASA Technical Reports Server (NTRS)

    Wickland, Diane E.; Asrar, Ghassem; Murphy, Robert E.

    1991-01-01

    The Multisensor Airborne Campaign (MAC) focus within NASA's former Land Processes research program was conceived to achieve the following objectives: to acquire relatively complete, multisensor data sets for well-studied field sites, to add a strong remote sensing science component to ecology-, hydrology-, and geology-oriented field projects, to create a research environment that promotes strong interactions among scientists within the program, and to more efficiently utilize and compete for the NASA fleet of remote sensing aircraft. Four new MAC's were conducted in 1990: the Oregon Transect Ecosystem Research (OTTER) project along an east-west transect through central Oregon, the Forest Ecosystem Dynamics (FED) project at the Northern Experimental Forest in Howland, Maine, the MACHYDRO project in the Mahantango Creek watershed in central Pennsylvania, and the Walnut Gulch project near Tombstone, Arizona. The OTTER project is testing a model that estimates the major fluxes of carbon, nitrogen, and water through temperate coniferous forest ecosystems. The focus in the project is on short time-scale (days-year) variations in ecosystem function. The FED project is concerned with modeling vegetation changes of forest ecosystems using remotely sensed observations to extract biophysical properties of forest canopies. The focus in this project is on long time-scale (decades to millenia) changes in ecosystem structure. The MACHYDRO project is studying the role of soil moisture and its regulating effects on hydrologic processes. The focus of the study is to delineate soil moisture differences within a basin and their changes with respect to evapotranspiration, rainfall, and streamflow. The Walnut Gulch project is focused on the effects of soil moisture in the energy and water balance of arid and semiarid ecosystems and their feedbacks to the atmosphere via thermal forcing.

  16. The role of organic soil layer on the fate of Siberian larch forest and near-surface permafrost under changing climate: A simulation study

    NASA Astrophysics Data System (ADS)

    SATO, H.; Iwahana, G.; Ohta, T.

    2013-12-01

    Siberian larch forest is the largest coniferous forest region in the world. In this vast region, larch often forms nearly pure stands, regenerated by recurrent fire. This region is characterized by a short and dry growing season; the annual mean precipitation for Yakutsk was only about 240 mm. To maintain forest ecosystem under such small precipitation, underlying permafrost and seasonal soil freezing-thawing-cycle have been supposed to play important roles; (1) frozen ground inhibits percolation of soil water into deep soil layers, and (2) excess soil water at the end of growing season can be carried over until the next growing season as ice, and larch trees can use the melt water. As a proof for this explanation, geographical distribution of Siberian larch region highly coincides with continuous and discontinuous permafrost zone. Recent observations and simulation studies suggests that existences of larch forest and permafrost in subsurface layer are co-dependent; permafrost maintains the larch forest by enhancing water use efficiency of trees, while larch forest maintains permafrost by inhibiting solar radiation and preventing heat exchanges between soil and atmosphere. Owing to such complexity and absence of enough ecosystem data available, current-generation Earth System Models significantly diverse in their prediction of structure and key ecosystem functions in Siberian larch forest under changing climate. Such uncertainty should in turn expand uncertainty over predictions of climate, because Siberian larch forest should have major role in the global carbon balance with its huge area and vast potential carbon pool within the biomass and soil, and changes in boreal forest albedo can have a considerable effect on Northern Hemisphere climate. In this study, we developed an integrated ecosystem model, which treats interactions between plant-dynamics and freeze-thaw cycles. This integrated model contains a dynamic global vegetation model SEIB-DGVM, which simulates plant and carbon dynamics. It also contains a one-dimensional land surface model NOAH 2.7.1, which simulates soil moisture (both liquid and frozen), soil temperature, snowpack depth and density, canopy water content, and the energy and water fluxes. This integrated model quantitatively reconstructs post-fire development of forest structure (i.e. LAI and biomass) and organic soil layer, which dampens heat exchanges between soil and atmosphere. With the post-fire development of LAI and the soil organic layer, the integrated model also quantitatively reconstructs changes in seasonal maximum of active layer depth. The integrated model is then driven by the IPCC A1B scenario of rising atmospheric CO2, and by climate changes during the twenty-first century resulting from the change in CO2. This simulation suggests that forecasted global warming would causes decay of Siberian larch ecosystem, but such responses could be delayed by "memory effect" of the soil organic layer for hundreds of years.

  17. Long-Term Post-Disturbance Forest Recovery in the Greater Yellowstone Ecosystem Analyzed Using Landsat Time Series Stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Feng R.; Meng, Ran; Huang, Chengquan

    Forest recovery from past disturbance is an integral process of ecosystem carbon cycles, and remote sensing provides an effective tool for tracking forest disturbance and recovery over large areas. Although the disturbance products (tracking the conversion from forest to non-forest type) derived using the Landsat Time Series Stack-Vegetation Change Tracker (LTSS-VCT) algorithm have been validated extensively for mapping forest disturbances across the United States, the ability of this approach to characterize long-term post-disturbance recovery (the conversion from non-forest to forest) has yet to be assessed. Here in this study, the LTSS-VCT approach was applied to examine long-term (up to 24more » years) post-disturbance forest spectral recovery following stand-clearing disturbances (fire and harvests) in the Greater Yellowstone Ecosystem (GYE). Using high spatial resolution images from Google Earth, we validated the detectable forest recovery status mapped by VCT by year 2011. Validation results show that the VCT was able to map long-term post-disturbance forest recovery with overall accuracy of ~80% for different disturbance types and forest types in the GYE. Harvested areas in the GYE have higher percentages of forest recovery than burned areas by year 2011, and National Forests land generally has higher recovery rates compared with National Parks. The results also indicate that forest recovery is highly related with forest type, elevation and environmental variables such as soil type. Findings from this study can provide valuable insights for ecosystem modeling that aim to predict future carbon dynamics by integrating fine scale forest recovery conditions in GYE, in the face of climate change. Lastly, with the availability of the VCT product nationwide, this approach can also be applied to examine long-term post-disturbance forest recovery in other study regions across the U.S.« less

  18. Long-Term Post-Disturbance Forest Recovery in the Greater Yellowstone Ecosystem Analyzed Using Landsat Time Series Stack

    DOE PAGES

    Zhao, Feng R.; Meng, Ran; Huang, Chengquan; ...

    2016-10-29

    Forest recovery from past disturbance is an integral process of ecosystem carbon cycles, and remote sensing provides an effective tool for tracking forest disturbance and recovery over large areas. Although the disturbance products (tracking the conversion from forest to non-forest type) derived using the Landsat Time Series Stack-Vegetation Change Tracker (LTSS-VCT) algorithm have been validated extensively for mapping forest disturbances across the United States, the ability of this approach to characterize long-term post-disturbance recovery (the conversion from non-forest to forest) has yet to be assessed. Here in this study, the LTSS-VCT approach was applied to examine long-term (up to 24more » years) post-disturbance forest spectral recovery following stand-clearing disturbances (fire and harvests) in the Greater Yellowstone Ecosystem (GYE). Using high spatial resolution images from Google Earth, we validated the detectable forest recovery status mapped by VCT by year 2011. Validation results show that the VCT was able to map long-term post-disturbance forest recovery with overall accuracy of ~80% for different disturbance types and forest types in the GYE. Harvested areas in the GYE have higher percentages of forest recovery than burned areas by year 2011, and National Forests land generally has higher recovery rates compared with National Parks. The results also indicate that forest recovery is highly related with forest type, elevation and environmental variables such as soil type. Findings from this study can provide valuable insights for ecosystem modeling that aim to predict future carbon dynamics by integrating fine scale forest recovery conditions in GYE, in the face of climate change. Lastly, with the availability of the VCT product nationwide, this approach can also be applied to examine long-term post-disturbance forest recovery in other study regions across the U.S.« less

  19. The Importance of Uncertainty and Sensitivity Analysis in Process-based Models of Carbon and Nitrogen Cycling in Terrestrial Ecosystems with Particular Emphasis on Forest Ecosystems — Selected Papers from a Workshop Organized by the International Society for Ecological Modelling (ISEM) at the Third Biennal Meeting of the International Environmental Modelling and Software Society (IEMSS) in Burlington, Vermont, USA, August 9-13, 2006

    USGS Publications Warehouse

    Larocque, Guy R.; Bhatti, Jagtar S.; Liu, Jinxun; Ascough, James C.; Gordon, Andrew M.

    2008-01-01

    Many process-based models of carbon (C) and nitrogen (N) cycles have been developed for terrestrial ecosystems, including forest ecosystems. They address many basic issues of ecosystems structure and functioning, such as the role of internal feedback in ecosystem dynamics. The critical factor in these phenomena is scale, as these processes operate at scales from the minute (e.g. particulate pollution impacts on trees and other organisms) to the global (e.g. climate change). Research efforts remain important to improve the capability of such models to better represent the dynamics of terrestrial ecosystems, including the C, nutrient, (e.g. N) and water cycles. Existing models are sufficiently well advanced to help decision makers develop sustainable management policies and planning of terrestrial ecosystems, as they make realistic predictions when used appropriately. However, decision makers must be aware of their limitations by having the opportunity to evaluate the uncertainty associated with process-based models (Smith and Heath, 2001 and Allen et al., 2004). The variation in scale of issues currently being addressed by modelling efforts makes the evaluation of uncertainty a daunting task.

  20. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning

    PubMed Central

    Seidl, Rupert; Rammer, Werner; Spies, Thomas A.

    2015-01-01

    Disturbances are key drivers of forest ecosystem dynamics, and forests are well adapted to their natural disturbance regimes. However, as a result of climate change, disturbance frequency is expected to increase in the future in many regions. It is not yet clear how such changes might affect forest ecosystems, and which mechanisms contribute to (current and future) disturbance resilience. We studied a 6364-ha landscape in the western Cascades of Oregon, USA, to investigate how patches of remnant old-growth trees (as one important class of biological legacies) affect the resilience of forest ecosystems to disturbance. Using the spatially explicit, individual-based, forest landscape model iLand, we analyzed the effect of three different levels of remnant patches (0%, 12%, and 24% of the landscape) on 500-year recovery trajectories after a large, high-severity wildfire. In addition, we evaluated how three different levels of fire frequency modulate the effects of initial legacies. We found that remnant live trees enhanced the recovery of total ecosystem carbon (TEC) stocks after disturbance, increased structural complexity of forest canopies, and facilitated the recolonization of late-seral species (LSS). Legacy effects were most persistent for indicators of species composition (still significant 500 years after disturbance), while TEC (i.e., a measure of ecosystem functioning) was least affected, with no significant differences among legacy scenarios after 236 years. Compounding disturbances were found to dampen legacy effects on all indicators, and higher initial legacy levels resulted in elevated fire severity in the second half of the study period. Overall, disturbance frequency had a stronger effect on ecosystem properties than the initial level of remnant old-growth trees. A doubling of the historically observed fire frequency to a mean fire return interval of 131 years reduced TEC by 10.5% and lowered the presence of LSS on the landscape by 18.1% on average, demonstrating that an increase in disturbance frequency (a potential climate change effect) may considerably alter the structure, composition, and functioning of forest landscapes. Our results indicate that live tree legacies are an important component of disturbance resilience, underlining the potential of retention forestry to address challenges in ecosystem management. PMID:27053913

  1. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    USGS Publications Warehouse

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m−2 yr−1, for biomass carbon ~1000 g C m−2 and for soil carbon ~2000 g C m−2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon-stock evolution after fire. This makes the model suitable for regional simulations in boreal regions where fire regimes play a key role in the ecosystem carbon balance.

  2. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.

    2013-12-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon-stock evolution after fire. This makes the model suitable for regional simulations in boreal regions where fire regimes play a key role in the ecosystem carbon balance.

  3. Non-linear Feedbacks Between Forest Mortality and Climate Change: Implications for Snow Cover, Water Resources, and Ecosystem Recovery in Western North America (Invited)

    NASA Astrophysics Data System (ADS)

    Brooks, P. D.; Harpold, A. A.; Biederman, J. A.; Gochis, D. J.; Litvak, M. E.; Ewers, B. E.; Broxton, P. D.; Reed, D. E.

    2013-12-01

    Unprecedented levels of tree mortality from insect infestation and wildfire are dramatically altering forest structure and composition in Western North America. Warming temperatures and increased drought stress have been implicated as major factors in the increasing spatial extent and frequency of these forest disturbances, but it is unclear how these changes in forest structure will interact with ongoing climate change to affect snowmelt water resources either for society or for ecosystem recovery following mortality. Because surface discharge, groundwater recharge, and ecosystem productivity all depend on seasonal snowmelt, a critical knowledge gap exists not only in predicting discharge, but in quantifying spatial and temporal variability in the partitioning of snowfall into abiotic vapor loss, plant available water, recharge, and streamflow within the complex mosaic of forest disturbance and topography that characterizes western mountain catchments. This presentation will address this knowledge gap by synthesizing recent work on snowpack dynamics and ecosystem productivity from seasonally snow-covered forests along a climate gradient from Arizona to Wyoming; including undisturbed sites, recently burned forests, and areas of extensive insect-induced forest mortality. Both before-after and control-impacted studies of forest disturbance on snow accumulation and ablation suggest that the spatial scale of snow distribution increases following disturbance, but net snow water input in a warming climate will increase only in topographically sheltered areas. While forest disturbance changes spatial scale of snowpack partitioning, the amount and especially the timing of snow cover accumulation and ablation are strongly related to interannual variability in ecosystem productivity with both earlier snowmelt and later snow accumulation associated with decreased carbon uptake. Empirical analyses and modeling are being developed to identify landscapes most sensitive to climate change as well as to develop management alternatives that minimize the effects of disturbance on high elevation forests and the services of water provision and carbon storage they provide.

  4. Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy

    PubMed Central

    Asner, Gregory P.; Nepstad, Daniel; Cardinot, Gina; Ray, David

    2004-01-01

    Amazônia contains vast stores of carbon in high-diversity ecosystems, yet this region undergoes major changes in precipitation affecting land use, carbon dynamics, and climate. The extent and structural complexity of Amazon forests impedes ground studies of ecosystem functions such as net primary production (NPP), water cycling, and carbon sequestration. Traditional modeling and remote-sensing approaches are not well suited to tropical forest studies, because (i) biophysical mechanisms determining drought effects on canopy water and carbon dynamics are poorly known, and (ii) remote-sensing metrics of canopy greenness may be insensitive to small changes in leaf area accompanying drought. New spaceborne imaging spectroscopy may detect drought stress in tropical forests, helping to monitor forest physiology and constrain carbon models. We combined a forest drought experiment in Amazônia with spaceborne imaging spectrometer measurements of this area. With field data on rainfall, soil water, and leaf and canopy responses, we tested whether spaceborne hyperspectral observations quantify differences in canopy water and NPP resulting from drought stress. We found that hyperspectral metrics of canopy water content and light-use efficiency are highly sensitive to drought. Using these observations, forest NPP was estimated with greater sensitivity to drought conditions than with traditional combinations of modeling, remote-sensing, and field measurements. Spaceborne imaging spectroscopy will increase the accuracy of ecological studies in humid tropical forests. PMID:15071182

  5. Inter-annual variability of carbon fluxes in temperate forest ecosystems: effects of biotic and abiotic factors

    NASA Astrophysics Data System (ADS)

    Chen, M.; Keenan, T. F.; Hufkens, K.; Munger, J. W.; Bohrer, G.; Brzostek, E. R.; Richardson, A. D.

    2014-12-01

    Carbon dynamics in terrestrial ecosystems are influenced by both abiotic and biotic factors. Abiotic factors, such as variation in meteorological conditions, directly drive biophysical and biogeochemical processes; biotic factors, referring to the inherent properties of the ecosystem components, reflect the internal regulating effects including temporal dynamics and memory. The magnitude of the effect of abiotic and biotic factors on forest ecosystem carbon exchange has been suggested to vary at different time scales. In this study, we design and conduct a model-data fusion experiment to investigate the role and relative importance of the biotic and abiotic factors for inter-annual variability of the net ecosystem CO2 exchange (NEE) of temperate deciduous forest ecosystems in the Northeastern US. A process-based model (FöBAAR) is parameterized at four eddy-covariance sites using all available flux and biometric measurements. We conducted a "transplant" modeling experiment, that is, cross- site and parameter simulations with different combinations of site meteorology and parameters. Using wavelet analysis and variance partitioning techniques, analysis of model predictions identifies both spatial variant and spatially invariant parameters. Variability of NEE was primarily modulated by gross primary productivity (GPP), with relative contributions varying from hourly to yearly time scales. The inter-annual variability of GPP and NEE is more regulated by meteorological forcing, but spatial variability in certain model parameters (biotic response) has more substantial effects on the inter-annual variability of ecosystem respiration (Reco) through the effects on carbon pools. Both the biotic and abiotic factors play significant roles in modulating the spatial and temporal variability in terrestrial carbon cycling in the region. Together, our study quantifies the relative importance of both, and calls for better understanding of them to better predict regional CO2 exchanges.

  6. Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth.

    PubMed

    Tang, Jianwu; Luyssaert, Sebastiaan; Richardson, Andrew D; Kutsch, Werner; Janssens, Ivan A

    2014-06-17

    The traditional view of forest dynamics originated by Kira and Shidei [Kira T, Shidei T (1967) Jap J Ecol 17:70-87] and Odum [Odum EP (1969) Science 164(3877):262-270] suggests a decline in net primary productivity (NPP) in aging forests due to stabilized gross primary productivity (GPP) and continuously increased autotrophic respiration (Ra). The validity of these trends in GPP and Ra is, however, very difficult to test because of the lack of long-term ecosystem-scale field observations of both GPP and Ra. Ryan and colleagues [Ryan MG, Binkley D, Fownes JH (1997) Ad Ecol Res 27:213-262] have proposed an alternative hypothesis drawn from site-specific results that aboveground respiration and belowground allocation decreased in aging forests. Here, we analyzed data from a recently assembled global database of carbon fluxes and show that the classical view of the mechanisms underlying the age-driven decline in forest NPP is incorrect and thus support Ryan's alternative hypothesis. Our results substantiate the age-driven decline in NPP, but in contrast to the traditional view, both GPP and Ra decline in aging boreal and temperate forests. We find that the decline in NPP in aging forests is primarily driven by GPP, which decreases more rapidly with increasing age than Ra does, but the ratio of NPP/GPP remains approximately constant within a biome. Our analytical models describing forest succession suggest that dynamic forest ecosystem models that follow the traditional paradigm need to be revisited.

  7. Rising Mean Annual Temperature Increases Carbon Flux and Alters Partitioning, but Does Not Change Ecosystem Carbon Storage in Hawaiian Tropical Montane Wet Forest

    NASA Astrophysics Data System (ADS)

    Litton, C. M.; Giardina, C. P.; Selmants, P.

    2014-12-01

    Terrestrial ecosystem carbon (C) storage exceeds that in the atmosphere by a factor of four, and represents a dynamic balance among C input, allocation, and loss. This balance is likely being altered by climate change, but the response of terrestrial C cycling to warming remains poorly quantified, particularly in tropical forests which play a disproportionately large role in the global C cycle. Over the past five years, we have quantified above- and belowground C pools and fluxes in nine permanent plots spanning a 5.2°C mean annual temperature (MAT) gradient (13-18.2°C) in Hawaiian tropical montane wet forest. This elevation gradient is unique in that substrate type and age, soil type, soil water balance, canopy vegetation, and disturbance history are constant, allowing us to isolate the impact of long-term, whole ecosystem warming on C input, allocation, loss and storage. Across the gradient, soil respiration, litterfall, litter decomposition, total belowground C flux, aboveground net primary productivity, and estimates of gross primary production (GPP) all increase linearly and positively with MAT. Carbon partitioning is dynamic, shifting from below- to aboveground with warming, likely in response to a warming-induced increase in the cycling and availability of soil nutrients. In contrast to observed patterns in C flux, live biomass C, soil C, and total ecosystem C pools remained remarkably constant with MAT. There was also no difference in soil bacterial taxon richness, phylogenetic diversity, or community composition with MAT. Taken together these results indicate that in tropical montane wet forests, increased temperatures in the absence of water limitation or disturbance will accelerate C cycling, will not alter ecosystem C storage, and will shift the products of photosynthesis from below- to aboveground. These results agree with an increasing number of studies, and collectively provide a unique insight into anticipated warming-induced changes in tropical forest C cycling.

  8. Shrubland ecosystems: Importance, distinguishing characteristics, and dynamics

    Treesearch

    E. Durant McArthur; Stanley G. Kitchen

    2007-01-01

    The importance of shrub species and shrubland ecosystems gained considerable impetus about 30 years ago with the establishment of the USDA Forest Service Shrub Sciences Laboratory and a series of workshops and symposia that preceded and accompanied the establishment of the Laboratory. Since that time, the Shrub Research Consortium and other forums have addressed...

  9. Physical Processes Dictate Early Biogeochemical Dynamics of Soil Pyrogenic Organic Matter in a Subtropical Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Stuart, Jason M.; Anderson, Russell; Lazzarino, Patrick; Kuehn, Kevin A.; Harvey, Omar R.

    2018-05-01

    Quantifying links between pyOM dynamics, environmental factors and processes is central to predicting ecosystem function and response to future perturbations. In this study, changes in carbon (TC), nitrogen (TN) , pH and relative recalcitrance (R50) for pine- and cordgrass-derived pyOM were measured at 3-6 weeks intervals throughout the first year of burial in the soil. Objectives were to 1) identify key environmental factors and processes driving early-stage pyOM dynamics, and 2) develop quantitative relationships between environmental factors and changes in pyOM properties. The study was conducted in sandy soils of a forested ecosystem in the Longleaf pine range, US with a focus on links between changes in pyOM properties, fire history (FH), cumulative precipitation (Pcum), average temperature (Tavg) and soil residence time (SRT). Pcum, SRT and Tavg were the main factors controlling TC and TN accounting for 77-91% and 64-96% of their respective variability. Fire history, along with Pcum, SRT and Tavg, exhibited significant controlling effects on pyOM, pH and R50 - accounting for 48-91% and 88-93% of respective variability. Volatilization of volatiles and leaching of water-soluble components (in summer) and the sorption of exogenous organic matter (fall through spring) were most plausibly controlling pyOM dynamics in this study. Overall, our results point to climatic and land management factors and physicochemical process as the main drivers of pyOM dynamics in the pine ecosystems of the Southeastern US.

  10. Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services

    PubMed Central

    Birch, Jennifer C.; Newton, Adrian C.; Aquino, Claudia Alvarez; Cantarello, Elena; Echeverría, Cristian; Kitzberger, Thomas; Schiappacasse, Ignacio; Garavito, Natalia Tejedor

    2010-01-01

    Although ecological restoration is widely used to combat environmental degradation, very few studies have evaluated the cost-effectiveness of this approach. We examine the potential impact of forest restoration on the value of multiple ecosystem services across four dryland areas in Latin America, by estimating the net value of ecosystem service benefits under different reforestation scenarios. The values of selected ecosystem services were mapped under each scenario, supported by the use of a spatially explicit model of forest dynamics. We explored the economic potential of a change in land use from livestock grazing to restored native forest using different discount rates and performed a cost–benefit analysis of three restoration scenarios. Results show that passive restoration is cost-effective for all study areas on the basis of the services analyzed, whereas the benefits from active restoration are generally outweighed by the relatively high costs involved. These findings were found to be relatively insensitive to discount rate but were sensitive to the market value of carbon. Substantial variation in values was recorded between study areas, demonstrating that ecosystem service values are strongly context specific. However, spatial analysis enabled localized areas of net benefits to be identified, indicating the value of this approach for identifying the relative costs and benefits of restoration interventions across a landscape. PMID:21106761

  11. Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services.

    PubMed

    Birch, Jennifer C; Newton, Adrian C; Aquino, Claudia Alvarez; Cantarello, Elena; Echeverría, Cristian; Kitzberger, Thomas; Schiappacasse, Ignacio; Garavito, Natalia Tejedor

    2010-12-14

    Although ecological restoration is widely used to combat environmental degradation, very few studies have evaluated the cost-effectiveness of this approach. We examine the potential impact of forest restoration on the value of multiple ecosystem services across four dryland areas in Latin America, by estimating the net value of ecosystem service benefits under different reforestation scenarios. The values of selected ecosystem services were mapped under each scenario, supported by the use of a spatially explicit model of forest dynamics. We explored the economic potential of a change in land use from livestock grazing to restored native forest using different discount rates and performed a cost-benefit analysis of three restoration scenarios. Results show that passive restoration is cost-effective for all study areas on the basis of the services analyzed, whereas the benefits from active restoration are generally outweighed by the relatively high costs involved. These findings were found to be relatively insensitive to discount rate but were sensitive to the market value of carbon. Substantial variation in values was recorded between study areas, demonstrating that ecosystem service values are strongly context specific. However, spatial analysis enabled localized areas of net benefits to be identified, indicating the value of this approach for identifying the relative costs and benefits of restoration interventions across a landscape.

  12. [Responses of Pinus tabulaeformis forest ecosystem in North China to climate change and elevated CO2: a simulation based on BIOME-BGC model and tree-ring data].

    PubMed

    He, Jun-Jie; Peng, Xing-Yuan; Chen, Zhen-Ju; Cui, Ming-Xing; Zhang, Xian-Liang; Zhou, Chang-Hong

    2012-07-01

    Based on BIOME-BGC model and tree-ring data, a modeling study was conducted to estimate the dynamic changes of the net primary productivity (NPP) of Pinus tabulaeformis forest ecosystem in North China in 1952-2008, and explore the responses of the radial growth and NPP to regional climate warming as well as the dynamics of the NPP in the future climate change scenarios. The simulation results indicated the annual NPP of the P. tabulaeformis ecosystem in 1952-2008 fluctuated from 244.12 to 645.31 g C x m(-2) x a(-1), with a mean value of 418.6 g C x m(-2) x a(-1) The mean air temperature in May-June and the precipitation from previous August to current July were the main factors limiting the radial growth of P. tabulaeformis and the NPP of P. tabulaeformis ecosystem. In the study period, both the radial growth and the NPP presented a decreasing trend due to the regional warming and drying climate condition. In the future climate scenarios, the NPP would have positive responses to the increase of air temperature, precipitation, and their combination. The elevated CO2 would benefit the increase of the NPP, and the increment would be about 16.1% due to the CO2 fertilization. At both ecosystem and regional scales, the tree-ring data would be an ideal proxy to predict the ecosystem dynamic change, and could be used to validate and calibrate the process-based ecosystem models including BIOME-BGC.

  13. Piecing together the fragments: Elucidating edge effects on forest carbon dynamics

    NASA Astrophysics Data System (ADS)

    Hutyra, L.; Smith, I. A.; Reinmann, A.; Marrs, J.; Thompson, J.

    2017-12-01

    Forest fragmentation is pervasive throughout the world's forests, impacting growing conditions and carbon dynamics through edge effects that produce gradients in microclimate, biogeochemistry, and stand structure. Despite the majority of the world's forests being <1km from an edge, our understanding of forest carbon dynamics is largely derived from intact forest systems. In the northeastern USA, we find that over 23% of the current forest area is just 30m from an agricultural or developed edge. Edge effects on the carbon cycle vary in their magnitude by biome, but current forest carbon accounting methods and ecosystem models largely do not include edge effects, highlighting an important gap in our understanding of the terrestrial carbon cycle. Characterizing the role of forest fragmentation in regional and global biogeochemical cycles necessitates advancing our understanding of how shifts in microenvironment at the forest edge interact with local prevailing drivers of global change and limitations to microbial activity and forest growth. This study synthesizes the literature related to edge effects and the carbon cycle, considering how fragmentation affects the growing conditions of the world's remaining forests based on risks and opportunities for forests near the edge.

  14. Sudden oak death effects on the dynamics of dead wood

    Treesearch

    Richard C. Cobb; Jo& atilde; o Filipe A.N.; Margaret R. Metz; Ross K. Meentemeyer; David M. Rizzo

    2013-01-01

    Sudden oak death has impacted forests notable for high-fire risk and contiguous host communities in California and Oregon coastal forest ecosystems. The disease continues to emerge in stands and landscapes with a large biomass of tanoak (Notholithocarpus densiflorus (Hook.&Arn.) Manos, Cannon & S.H.Oh), and we show that woody debris also...

  15. Sampling and modeling riparian forest structure and riparian microclimate

    Treesearch

    Bianca N.I. Eskelson; Paul D. Anderson; Hailemariam Temesgen

    2013-01-01

    Riparian areas are extremely variable and dynamic, and represent some of the most complex terrestrial ecosystems in the world. The high variability within and among riparian areas poses challenges in developing efficient sampling and modeling approaches that accurately quantify riparian forest structure and riparian microclimate. Data from eight stream reaches that are...

  16. Drought during canopy development has lasting effect on annual carbon balance in a deciduous temperate forest

    Treesearch

    Asko Noormets; Steve G. McNulty; Jared L. DeForest; Ge Sun; Qinglin Li; Jiquan Chen

    2008-01-01

    Climate change projections predict an intensifying hydrologic cycle and an increasing frequency of droughts, yet quantitative understanding of the effects on ecosystem carbon exchange remains limitedHere, the effect of contrasting precipitation and soil moisture dynamics were evaluated on forest carbon exchange using 2 yr of...

  17. A free-air system for long-term stable carbon isotope labeling of adult forest trees

    EPA Science Inventory

    Stable carbon (C) isotopes, in particular employed in labeling experiments, are an ideal tool to broaden our understanding of C dynamics in trees and forest ecosystems. Here, we present a free-air exposure system, named isoFACE, designed for long-term stable C isotope labeling in...

  18. CARBON EXCHANGE DYNAMICS AND MINERAL WEATHERING IN A TEMPERATE FORESTED WATERSHED (NORTHERN MICHIGAN): LINKS BETWEEN FOREST ECOSYSTEMS AND GROUNDWATERS (R824979)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. Conservation assessment for the northern goshawk in southeast Alaska.

    Treesearch

    George C. Iverson; Gregory D. Hayward; Kimberly Titus; Eugene DeGayner; Richard E. Lowell; D. Coleman Crocker-Bedford; Philip F. Schempf; John Lindell

    1996-01-01

    The conservation status of northern goshawks in southeast Alaska is examined through developing an understanding of goshawk ecology in relation to past, present, and potential future habitat conditions in the region under the current Tongass land management plan. Forest ecosystem dynamics are described, and a history of forest and goshawk management in the Tongass...

  20. Assessing Structure and Condition of Temperate And Tropical Forests: Fusion of Terrestrial Lidar and Airborne Multi-Angle and Lidar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Saenz, Edward J.

    Forests provide vital ecosystem functions and services that maintain the integrity of our natural and human environment. Understanding the structural components of forests (extent, tree density, heights of multi-story canopies, biomass, etc.) provides necessary information to preserve ecosystem services. Increasingly, remote sensing resources have been used to map and monitor forests globally. However, traditional satellite and airborne multi-angle imagery only provide information about the top of the canopy and little about the forest structure and understory. In this research, we investigative the use of rapidly evolving lidar technology, and how the fusion of aerial and terrestrial lidar data can be utilized to better characterize forest stand information. We further apply a novel terrestrial lidar methodology to characterize a Hemlock Woolly Adelgid infestation in Harvard Forest, Massachusetts, and adapt a dynamic terrestrial lidar sampling scheme to identify key structural vegetation profiles of tropical rainforests in La Selva, Costa Rica.

  1. Landscape dynamics of mountain pine beetles

    Treesearch

    John E. Lundquist; Robin M. Reich

    2014-01-01

    The magnitude and urgency of current mountain pine beetle outbreaks in the western United States and Canada have resulted in numerous studies of the dynamics and impacts of these insects in forested ecosystems. This paper reviews some of the aspects of the spatial dynamics and landscape ecology of this bark beetle. Landscape heterogeneity influences dispersal patterns...

  2. Effect of tree line advance on carbon storage in NW Alaska

    USGS Publications Warehouse

    Wilmking, M.; Harden, J.; Tape, K.

    2006-01-01

    We investigated the size, distribution, and temporal dynamics of ecosystem carbon (C) pools in an area of recent tree line advance, northwest Alaska. Repeat aerial photographs show forest cover increased ???10% in our study area since 1949. We sampled C pools of four principal ecosystem types, tussock tundra, shrub tundra, woodland, and forest, all located on a 600-800 year old river terrace. Significant differences between ecosystem C pools, both above ground and below ground existed. Tundra sites store >22.2 kg C/m2, shrub tundra sites and woodland sites store 9.7 kg C/m2 and 14.3 kg C/m2, respectively, and forest sites store 14.4 kg C/m2. Landscape variation of total ecosystem C was primarily due to organic soil C and was secondarily due to C stored in trees. Soil C/N profiles of shrub tundra sites and woodland sites showed similarities with forest site soils at surface and tundra site soils at depth. We hypothesize that tundra systems transformed to forest systems in this area under a progression of permafrost degradation and enhanced drainage. On the basis of C pool estimates for the different ecosystem types, conversion of tundra sites to forest may have resulted in a net loss of > 7.8 kg C/m2, since aboveground C gains were more than offset by belowground C losses to decomposition in the tundra sites. Tree line advance therefore might not increase C storage in high-latitude ecosystems and thus might not, as previously suggested, act as a negative feedback to warming. Key to this hypothesis and to its projection to future climate response is the fate of soil carbon upon warming and permafrost drainage. Copyright 2006 by the American Geophysical Union.

  3. Priming effects in boreal black spruce forest soils: quantitative evaluation and sensitivity analysis.

    PubMed

    Fan, Zhaosheng; Jastrow, Julie D; Liang, Chao; Matamala, Roser; Miller, Raymond Michael

    2013-01-01

    Laboratory studies show that introduction of fresh and easily decomposable organic carbon (OC) into soil-water systems can stimulate the decomposition of soil OC (SOC) via priming effects in temperate forests, shrublands, grasslands, and agro-ecosystems. However, priming effects are still not well understood in the field setting for temperate ecosystems and virtually nothing is known about priming effects (e.g., existence, frequency, and magnitude) in boreal ecosystems. In this study, a coupled dissolved OC (DOC) transport and microbial biomass dynamics model was developed to simultaneously simulate co-occurring hydrological, physical, and biological processes and their interactions in soil pore-water systems. The developed model was then used to examine the importance of priming effects in two black spruce forest soils, with and without underlying permafrost. Our simulations showed that priming effects were strongly controlled by the frequency and intensity of DOC input, with greater priming effects associated with greater DOC inputs. Sensitivity analyses indicated that priming effects were most sensitive to variations in the quality of SOC, followed by variations in microbial biomass dynamics (i.e., microbial death and maintenance respiration), highlighting the urgent need to better discern these key parameters in future experiments and to consider these dynamics in existing ecosystem models. Water movement carries DOC to deep soil layers that have high SOC stocks in boreal soils. Thus, greater priming effects were predicted for the site with favorable water movement than for the site with limited water flow, suggesting that priming effects might be accelerated for sites where permafrost degradation leads to the formation of dry thermokarst.

  4. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions

    PubMed Central

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2016-01-01

    The rates of anthropogenic climate change substantially exceed those at which forest ecosystems – dominated by immobile, long-lived organisms – are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest-dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate-induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate-induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process-based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid- to low-elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous adaptation need to be considered more explicitly in the ongoing efforts to safeguard biodiversity and ecosystem services provisioning. PMID:27633953

  5. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions.

    PubMed

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2017-01-01

    The rates of anthropogenic climate change substantially exceed those at which forest ecosystems - dominated by immobile, long-lived organisms - are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest-dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate-induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate-induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process-based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid- to low-elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous adaptation need to be considered more explicitly in the ongoing efforts to safeguard biodiversity and ecosystem services provisioning. © 2016 John Wiley & Sons Ltd.

  6. Soil dynamics and carbon stocks 10 years after restoration of degraded land using Atlantic Forest tree species

    Treesearch

    Lauro R. Nogueira; José Leonardo M. Goncalves; Vera L. Engel; John A. Parrotta

    2011-01-01

    Brazil’s Atlantic Forest ecosystem has been greatly affected by land use changes, with only 11.26% of its original vegetation cover remaining. Currently, Atlantic Forest restoration is receiving increasing attention because of its potential for carbon sequestration and the important role of soil carbon in the global carbon balance. Soil organic matter is also essential...

  7. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxin; Miller, Paul A.; Smith, Benjamin; Wania, Rita; Koenigk, Torben; Döscher, Ralf

    2013-09-01

    One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model-downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961-1990) agreed well with a composite map of actual arctic vegetation. In the future (2051-2080), a poleward advance of the forest-tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH4, may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux.

  8. Ecosystem disturbances in Central European spruce forests: a multi-proxy integration of dendroecology and sedimentary records

    NASA Astrophysics Data System (ADS)

    Clear, Jennifer; Chiverrell, Richard; Kunes, Petr; Svoboda, Miroslav; Boyle, John

    2016-04-01

    Disturbance dynamics in forest ecosystems shows signs of perturbation in the light of changing climate regimes with the frequency and intensity of events (e.g. pathogens in North America and Central Europe) amplified, becoming more frequent and severe. The montane Norway spruce (Picea abies) dominated forests of Central Europe are a niche habitat and environment; situated outside their natural boreal distribution (e.g. Fenno-Scandinavia). These communities are at or near their ecological limits and are vulnerable to both short term disturbances (e.g. fire, windstorm and pathogens) and longer-term environmental change (e.g. climate induced stress and changing disturbance patterns). Researches have linked negative impacts on spruce forest with both wind disturbance (wind-throw) and outbreaks of spruce bark beetle (Ips typographus), and there is growing evidence for co-association with wind damage enhancing pathogenic outbreaks. Examples include: in the Bohemian Forest (Czech Republic) the mid-1990s spruce bark beetle outbreak and the 2007 windstorm and subsequent bark beetle outbreak. In the High Tatra Mountains (Slovakia) there is a further co-association of forest disturbance with windstorms (2004 and 2014) and an ongoing bark beetle outbreak. The scale and severity of these recent outbreaks of spruce bark beetle are unprecedented in the historical forest records. Here, findings from ongoing research developing and integrating data from dendroecological, sedimentary palaeoecological and geochemical time series to develop a longer-term perspective on forest dynamics in these regions. Tree-ring series from plots or forest stands (>500) are used alongside lake (5) and forest hollow (3) sediments from the Czech and Slovak Republics to explore the local, regional and biogeographical scale of forest disturbances. Dendroecological data showing tree-ring gap recruitment and post-suppression growth release highlight frequent disturbance events focused on tree or forest stand spatial scales, but are patchy in terms of reoccurrence. However they highlight levels of disturbance in the late 19th Century. Sediment records from lakes and forest hollows record variable pollen influx (beetle host / non-host ratios) and a stratigraphy that includes mineral in-wash events. μXRF scanning of lakes in the region with varying catchments and catchment-to-lake area ratios show spikes in K, Zr, Ti concentrations reflecting frequent erosive episodes throughout the Holocene. Linking across the temporal scales inherent in dendroecological (0 to 250 years) and sedimentary (0 to 11,500 years) is enhancing our understanding of disturbance dynamics. The identified recent and ongoing forest disturbances coupled with well-evidenced events in the 19th century highlight the need for the longer sedimentary perspective to assess whether contemporary climate warming has and continues to stretch the resilience of these fragile ecosystems. Our data are informative to the ongoing land-management conflict between active forest management (harvesting valuable timber and salvage logging) and forest conservation agenda encouraging forest dynamics and disturbance recovery.

  9. Habitat-Mediated Variation in the Importance of Ecosystem Engineers for Secondary Cavity Nesters in a Nest Web

    PubMed Central

    Robles, Hugo; Martin, Kathy

    2014-01-01

    Through physical state changes in biotic or abiotic materials, ecosystem engineers modulate resource availability to other organisms and are major drivers of evolutionary and ecological dynamics. Understanding whether and how ecosystem engineers are interchangeable for resource users in different habitats is a largely neglected topic in ecosystem engineering research that can improve our understanding of the structure of communities. We addressed this issue in a cavity-nest web (1999–2011). In aspen groves, the presence of mountain bluebird (Sialia currucoides) and tree swallow (Tachycineta bicolour) nests was positively related to the density of cavities supplied by northern flickers (Colaptes auratus), which provided the most abundant cavities (1.61 cavities/ha). Flickers in aspen groves provided numerous nesting cavities to bluebirds (66%) and swallows (46%), despite previous research showing that flicker cavities are avoided by swallows. In continuous mixed forests, however, the presence of nesting swallows was mainly related to cavity density of red-naped sapsuckers (Sphyrapicus nuchalis), which provided the most abundant cavities (0.52 cavities/ha), and to cavity density of hairy woodpeckers (Picoides villosus), which provided few (0.14 cavities/ha) but high-quality cavities. Overall, sapsuckers and hairy woodpeckers provided 86% of nesting cavities to swallows in continuous forests. In contrast, the presence of nesting bluebirds in continuous forests was associated with the density of cavities supplied by all the ecosystem engineers. These results suggest that (i) habitat type may mediate the associations between ecosystem engineers and resource users, and (ii) different ecosystem engineers may be interchangeable for resource users depending on the quantity and quality of resources that each engineer supplies in each habitat type. We, therefore, urge the incorporation of the variation in the quantity and quality of resources provided by ecosystem engineers across habitats into models that assess community dynamics to improve our understanding of the importance of ecosystem engineers in shaping ecological communities. PMID:24587211

  10. Habitat-mediated variation in the importance of ecosystem engineers for secondary cavity nesters in a nest web.

    PubMed

    Robles, Hugo; Martin, Kathy

    2014-01-01

    Through physical state changes in biotic or abiotic materials, ecosystem engineers modulate resource availability to other organisms and are major drivers of evolutionary and ecological dynamics. Understanding whether and how ecosystem engineers are interchangeable for resource users in different habitats is a largely neglected topic in ecosystem engineering research that can improve our understanding of the structure of communities. We addressed this issue in a cavity-nest web (1999-2011). In aspen groves, the presence of mountain bluebird (Sialia currucoides) and tree swallow (Tachycineta bicolour) nests was positively related to the density of cavities supplied by northern flickers (Colaptes auratus), which provided the most abundant cavities (1.61 cavities/ha). Flickers in aspen groves provided numerous nesting cavities to bluebirds (66%) and swallows (46%), despite previous research showing that flicker cavities are avoided by swallows. In continuous mixed forests, however, the presence of nesting swallows was mainly related to cavity density of red-naped sapsuckers (Sphyrapicus nuchalis), which provided the most abundant cavities (0.52 cavities/ha), and to cavity density of hairy woodpeckers (Picoides villosus), which provided few (0.14 cavities/ha) but high-quality cavities. Overall, sapsuckers and hairy woodpeckers provided 86% of nesting cavities to swallows in continuous forests. In contrast, the presence of nesting bluebirds in continuous forests was associated with the density of cavities supplied by all the ecosystem engineers. These results suggest that (i) habitat type may mediate the associations between ecosystem engineers and resource users, and (ii) different ecosystem engineers may be interchangeable for resource users depending on the quantity and quality of resources that each engineer supplies in each habitat type. We, therefore, urge the incorporation of the variation in the quantity and quality of resources provided by ecosystem engineers across habitats into models that assess community dynamics to improve our understanding of the importance of ecosystem engineers in shaping ecological communities.

  11. δ15N constraints on long-term nitrogen balances in temperate forests

    USGS Publications Warehouse

    Perakis, S.S.; Sinkhorn, E.R.; Compton, J.E.

    2011-01-01

    Biogeochemical theory emphasizes nitrogen (N) limitation and the many factors that can restrict N accumulation in temperate forests, yet lacks a working model of conditions that can promote naturally high N accumulation. We used a dynamic simulation model of ecosystem N and δ15N to evaluate which combination of N input and loss pathways could produce a range of high ecosystem N contents characteristic of forests in the Oregon Coast Range. Total ecosystem N at nine study sites ranged from 8,788 to 22,667 kg ha−1 and carbon (C) ranged from 188 to 460 Mg ha−1, with highest values near the coast. Ecosystem δ15N displayed a curvilinear relationship with ecosystem N content, and largely reflected mineral soil, which accounted for 96–98% of total ecosystem N. Model simulations of ecosystem N balances parameterized with field rates of N leaching required long-term average N inputs that exceed atmospheric deposition and asymbiotic and epiphytic N2-fixation, and that were consistent with cycles of post-fire N2-fixation by early-successional red alder. Soil water δ15NO3 − patterns suggested a shift in relative N losses from denitrification to nitrate leaching as N accumulated, and simulations identified nitrate leaching as the primary N loss pathway that constrains maximum N accumulation. Whereas current theory emphasizes constraints on biological N2-fixation and disturbance-mediated N losses as factors that limit N accumulation in temperate forests, our results suggest that wildfire can foster substantial long-term N accumulation in ecosystems that are colonized by symbiotic N2-fixing vegetation.

  12. FOREST-BGC, A general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets.

    PubMed

    Running, Steven W.; Gower, Stith T.

    1991-01-01

    A new version of the ecosystem process model FOREST-BGC is presented that uses stand water and nitrogen limitations to alter the leaf/root/stem carbon allocation fraction dynamically at each annual iteration. Water deficit is defined by integrating a daily soil water deficit fraction annually. Current nitrogen limitation is defined relative to a hypothetical optimum foliar N pool, computed as maximum leaf area index multiplied by maximum leaf nitrogen concentration. Decreasing availability of water or nitrogen, or both, reduces the leaf/root carbon partitioning ratio. Leaf and root N concentrations, and maximum leaf photosynthetic capacity are also redefined annually as functions of nitrogen availability. Test simulations for hypothetical coniferous forests were performed for Madison, WI and Missoula, MT, and showed simulated leaf area index ranging from 4.5 for a control stand at Missoula, to 11 for a fertilized stand at Madison, with Year 50 stem carbon biomasses of 31 and 128 Mg ha(-1), respectively. Total nitrogen incorporated into new tissue ranged from 34 kg ha(-1) year(-1) for the unfertilized Missoula stand, to 109 kg ha(-1) year(-1) for the fertilized Madison stand. The model successfully showed dynamic annual carbon partitioning controlled by water and nitrogen limitations.

  13. Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning.

    PubMed

    Dore, S; Kolb, T E; Montes-Helu, M; Eckert, S E; Sullivan, B W; Hungate, B A; Kaye, J P; Hart, S C; Koch, G W; Finkral, A

    2010-04-01

    Disturbances alter ecosystem carbon dynamics, often by reducing carbon uptake and stocks. We compared the impact of two types of disturbances that represent the most likely future conditions of currently dense ponderosa pine forests of the southwestern United States: (1) high-intensity fire and (2) thinning, designed to reduce fire intensity. High-severity fire had a larger impact on ecosystem carbon uptake and storage than thinning. Total ecosystem carbon was 42% lower at the intensely burned site, 10 years after burning, than at the undisturbed site. Eddy covariance measurements over two years showed that the burned site was a net annual source of carbon to the atmosphere whereas the undisturbed site was a sink. Net primary production (NPP), evapotranspiration (ET), and water use efficiency were lower at the burned site than at the undisturbed site. In contrast, thinning decreased total ecosystem carbon by 18%, and changed the site from a carbon sink to a source in the first posttreatment year. Thinning also decreased ET, reduced the limitation of drought on carbon uptake during summer, and did not change water use efficiency. Both disturbances reduced ecosystem carbon uptake by decreasing gross primary production (55% by burning, 30% by thinning) more than total ecosystem respiration (TER; 33-47% by burning, 18% by thinning), and increased the contribution of soil carbon dioxide efflux to TER. The relationship between TER and temperature was not affected by either disturbance. Efforts to accurately estimate regional carbon budgets should consider impacts on carbon dynamics of both large disturbances, such as high-intensity fire, and the partial disturbance of thinning that is often used to prevent intense burning. Our results show that thinned forests of ponderosa pine in the southwestern United States are a desirable alternative to intensively burned forests to maintain carbon stocks and primary production.

  14. Medium-long term soil resilience against different disturbances: wildfires, silvicultural treatments and climate change

    NASA Astrophysics Data System (ADS)

    Hedo de Santiago, Javier; Borja, Manuel Esteban Lucas; de las Heras, Jorge

    2016-04-01

    Soils of semiarid Mediterranean forest ecosystems are very fragile and sensitive to changes due to different anthropogenic and natural disturbances. The increasing vulnerability of semiarid lands within this world framework has generated growing awareness in the field of research, with highly intensified study into soils properties. One of the main problems of Mediterranean forests is wildfire disturbance. Fire should be considered more an ecological factor but, in contrast to the role of fire, it is now a closely related factor to human action. On the other hand, to improve the recovery of forest communities after fire, silvicultural treatments are needed and, for that matter, another disturbance is added to the ecosystem. By last, climate change is also affecting the fire regime increasing fire frequency and burned area, enhancing the destructiveness to Mediterranean ecosystems. After all of these three disturbances, changes in vegetation dynamics and soil properties are expected to occur due to the plant-soil feedback. Soil plays an essential role in the forest ecosystem's fertility and stability and specifically soil microorganisms, which accomplish reactions to release soil nutrients for vegetation development, for that is essential to enlarge knowledge about soil properties resilience in semiarid forest ecosystems. Physico-chemical and microbiological soil properties, and enzyme activities have been studied in two Aleppo pine forest stands that have suffered three disturbances: 1) a wildfire event, 2) silvicultural treatments (thinning) and 3) an artificial drought (simulating climate change) and results showed that soil recovered after 15 years. Final results showed that soils have been recovered from the three disturbances at the medium-long term.

  15. Applications of the BIOPHYS Algorithm for Physically-Based Retrieval of Biophysical, Structural and Forest Disturbance Information

    NASA Technical Reports Server (NTRS)

    Peddle, Derek R.; Huemmrich, K. Fred; Hall, Forrest G.; Masek, Jeffrey G.; Soenen, Scott A.; Jackson, Chris D.

    2011-01-01

    Canopy reflectance model inversion using look-up table approaches provides powerful and flexible options for deriving improved forest biophysical structural information (BSI) compared with traditional statistical empirical methods. The BIOPHYS algorithm is an improved, physically-based inversion approach for deriving BSI for independent use and validation and for monitoring, inventory and quantifying forest disturbance as well as input to ecosystem, climate and carbon models. Based on the multiple-forward mode (MFM) inversion approach, BIOPHYS results were summarized from different studies (Minnesota/NASA COVER; Virginia/LEDAPS; Saskatchewan/BOREAS), sensors (airborne MMR; Landsat; MODIS) and models (GeoSail; GOMS). Applications output included forest density, height, crown dimension, branch and green leaf area, canopy cover, disturbance estimates based on multi-temporal chronosequences, and structural change following recovery from forest fires over the last century. Good correspondences with validation field data were obtained. Integrated analyses of multiple solar and view angle imagery further improved retrievals compared with single pass data. Quantifying ecosystem dynamics such as the area and percent of forest disturbance, early regrowth and succession provide essential inputs to process-driven models of carbon flux. BIOPHYS is well suited for large-area, multi-temporal applications involving multiple image sets and mosaics for assessing vegetation disturbance and quantifying biophysical structural dynamics and change. It is also suitable for integration with forest inventory, monitoring, updating, and other programs.

  16. Coupled ecological-social dynamics in a forested landscape: spatial interactions and information flow.

    PubMed

    Satake, Akiko; Leslie, Heather M; Iwasa, Yoh; Levin, Simon A

    2007-06-21

    We develop an agent-based model for forest harvesting to study how interactions between neighboring land parcels and the degree of information flow among landowners influence harvesting patterns. We assume a forest is composed of a number of land parcels that are individually managed. Each parcel is either mature forested, just-harvested, or immature forested. The state transition of each parcel is described by a Markov chain that incorporates the successional dynamics of the forest ecosystem and landowners' decisions about harvesting. Landowners decide to cut trees based on the expected discounted utility of forested vs. harvested land. One landowner's decision to cut trees is assumed to cause the degradation of ecosystem services on the downstream forested parcels. We investigated two different scenarios: in a strongly-connected society, landowners are familiar with each other and have full information regarding the behavior of other landowners. In a weakly-connected society, landowners do not communicate and therefore need to make subjective predictions about the behavior of others without adequate information. Regardless of the type of society, we observed that the spatial interaction between management units caused a chain reaction of tree harvesting in the neighborhood even when healthy forested land provided greater utility than harvested land. The harvest rate was higher in a weakly-connected society than that in a strongly-connected society. If landowners employed a long-term perspective, the harvest rate declined, and a more robust forested landscape emerged. Our results highlight the importance of institutional arrangements that encourage a long-term perspective and increased information flow among landowners in order to achieve successful forest management.

  17. Local disease-ecosystem-livelihood dynamics: reflections from comparative case studies in Africa.

    PubMed

    Leach, Melissa; Bett, Bernard; Said, M; Bukachi, Salome; Sang, Rosemary; Anderson, Neil; Machila, Noreen; Kuleszo, Joanna; Schaten, Kathryn; Dzingirai, Vupenyu; Mangwanya, Lindiwe; Ntiamoa-Baidu, Yaa; Lawson, Elaine; Amponsah-Mensah, Kofi; Moses, Lina M; Wilkinson, Annie; Grant, Donald S; Koninga, James

    2017-07-19

    This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human-ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples' interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform 'One Health' approaches towards managing ecosystems in ways that reduce disease risks and burdens.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.

  18. A dynamical model for bark beetle outbreaks

    Treesearch

    Vlastimil Krivan; Mark Lewis; Barbara J. Bentz; Sharon Bewick; Suzanne M. Lenhart; Andrew Liebhold

    2016-01-01

    Tree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The role of environmental conditions on driving beetle outbreaks is becoming increasingly important as global climatic change alters environmental factors, such as drought stress, that, in turn, govern tree resistance. Furthermore, dynamics between beetles and trees...

  19. Methodology to explore emergent behaviours of the interactions between water resources and ecosystem under a pluralistic approach

    NASA Astrophysics Data System (ADS)

    García-Santos, Glenda; Madruga de Brito, Mariana; Höllermann, Britta; Taft, Linda; Almoradie, Adrian; Evers, Mariele

    2018-06-01

    Understanding the interactions between water resources and its social dimensions is crucial for an effective and sustainable water management. The identification of sensitive control variables and feedback loops of a specific human-hydro-scape can enhance the knowledge about the potential factors and/or agents leading to the current water resources and ecosystems situation, which in turn supports the decision-making process of desirable futures. Our study presents the utility of a system dynamics modeling approach for water management and decision-making for the case of a forest ecosystem under risk of wildfires. We use the pluralistic water research concept to explore different scenarios and simulate the emergent behaviour of water interception and net precipitation after a wildfire in a forest ecosystem. Through a case study, we illustrate the applicability of this new methodology.

  20. Can we reliably estimate managed forest carbon dynamics using remotely sensed data?

    NASA Astrophysics Data System (ADS)

    Smallman, Thomas Luke; Exbrayat, Jean-Francois; Bloom, A. Anthony; Williams, Mathew

    2015-04-01

    Forests are an important part of the global carbon cycle, serving as both a large store of carbon and currently as a net sink of CO2. Forest biomass varies significantly in time and space, linked to climate, soils, natural disturbance and human impacts. This variation means that the global distribution of forest biomass and their dynamics are poorly quantified. Terrestrial ecosystem models (TEMs) are rarely evaluated for their predictions of forest carbon stocks and dynamics, due to a lack of knowledge on site specific factors such as disturbance dates and / or managed interventions. In this regard, managed forests present a valuable opportunity for model calibration and improvement. Spatially explicit datasets of planting dates, species and yield classification, in combination with remote sensing data and an appropriate data assimilation (DA) framework can reduce prediction uncertainty and error. We use a Baysian approach to calibrate the data assimilation linked ecosystem carbon (DALEC) model using a Metropolis Hastings-Markov Chain Monte Carlo (MH-MCMC) framework. Forest management information is incorporated into the data assimilation framework as part of ecological and dynamic constraints (EDCs). The key advantage here is that DALEC simulates a full carbon balance, not just the living biomass, and that both parameter and prediction uncertainties are estimated as part of the DA analysis. DALEC has been calibrated at two managed forests, in the USA (Pinus taeda; Duke Forest) and UK (Picea sitchensis; Griffin Forest). At each site DALEC is calibrated twice (exp1 & exp2). Both calibrations (exp1 & exp2) assimilated MODIS LAI and HWSD estimates of soil carbon stored in soil organic matter, in addition to common management information and prior knowledge included in parameter priors and the EDCs. Calibration exp1 also utilises multiple site level estimates of carbon storage in multiple pools. By comparing simulations we determine the impact of site-level observations on uncertainty and error on predictions, and which observations are key to constraining ecosystem processes. Preliminary simulations indicate that DALEC calibration exp1 accurately simulated the assimilated observations for forest and soil carbon stock estimates including, critically for forestry, standing wood stocks (R2 = 0.92, bias = -4.46 MgC ha-1, RMSE = 5.80 MgC ha-1). The results from exp1 indicate the model is able to find parameters that are both consistent with EDC and observations. In the absence of site-level stock observations (exp2) DALEC accurately estimates foliage and fine root pools, while the median estimate of above ground litter and wood stocks (R2 = 0.92, bias = -48.30 MgC ha-1, RMSE = 50.30 MgC ha-1) are over- and underestimated respectively, site-level observations are within model uncertainty. These results indicate that we can estimate managed forests dynamics using remotely sensed data, particularly as remotely sensed above ground biomass maps become available to provide constraint to correct biases in woody accumulation.

  1. Tree harvest in an experimental sand ecosystem: plant effects on nutrient dynamics and solute generation.

    Treesearch

    C. K. Keller; R. O' Brien; J. R. Havig; J. L. Smith; B. T. Bormann; D. Wang

    2006-01-01

    The hydrochemical signatures of forested ecosystems are known to be determined by a time-variant combination of physical-hydrologic, geochemical, and biologic processes. We studied subsurface potassium (K), calcium (Ca), and nitrate (NO3) in an experimental red-pine mesocosm to determine how trees affect the behavior of these nutrients in soil...

  2. Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition

    USGS Publications Warehouse

    Blackwood, C.B.; Waldrop, M.P.; Zak, D.R.; Sinsabaugh, R. L.

    2007-01-01

    The fungal community of the forest floor was examined as the cause of previously reported increases in soil organic matter due to experimental N deposition in ecosystems producing predominantly high-lignin litter, and the opposite response in ecosystems producing low-lignin litter. The mechanism proposed to explain this phenomenon was that white-rot basidiomycetes are more important in the degradation of high-lignin litter than of low-lignin litter, and that their activity is suppressed by N deposition. We found that forest floor mass in the low-lignin sugar-maple dominated system decreased in October due to experimental N deposition, whereas forest floor mass of high-lignin oak-dominated ecosystems was unaffected by N deposition. Increased relative abundance of basidiomycetes in high-lignin forest floor was confirmed by denaturing gradient gel electrophoresis (DGGE) and sequencing. Abundance of basidiomycete laccase genes, encoding an enzyme used by white-rot basidiomycetes in the degradation of lignin, was 5-10 times greater in high-lignin forest floor than in low-lignin forest floor. While the differences between the fungal communities in different ecosystems were consistent with the proposed mechanism, no significant effects of N deposition were detected on DGGE profiles, laccase gene abundance, laccase length heterogeneity profiles, or phenol oxidase activity. Our observations indicate that the previously detected accumulation of soil organic matter in the high-lignin system may be driven by effects of N deposition on organisms in the mineral soil, rather than on organisms residing in the forest floor. However, studies of in situ gene expression and temporal and spatial variability within forest floor communities will be necessary to further relate the ecosystem dynamics of organic carbon to microbial communities and atmospheric N deposition. ?? 2007 The Authors; Journal compilation ?? 2007 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. Vegetation response to stand structure and prescribed fire in an interior ponderosa pine ecosystem

    Treesearch

    Jianwei Zhang; Martin W. Ritchie; William W. Oliver

    2008-01-01

    A large-scale interior ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) study was conducted at the Blacks Mountain Experimental Forest in northeastern California. The primary purpose of the study was to determine the influence of structural diversity on the dynamics of interior pine forests at the landscape scale. High structural...

  4. Impacts of natural disturbance on soil carbon dynamics in forest ecosystems

    Treesearch

    Steven T. Overby; Stephen C. Hart; Daniel G. Neary

    2002-01-01

    Forest soils are entities within themselves, self-organized and highly resilient over time. The transfer of energy bound in carbon (C) molecules drives the organization and functions of this biological system (Fisher and Binkley, 2000; Paul and Clark, 1996). Photosynthetic organisms reduce atmospheric C and store energy from solar radiation in the formation of complex...

  5. Initial riparian down wood dynamics in relation to thinning and buffer width

    Treesearch

    Paul D. Anderson; Deanna H. Olson; Adrian Ares

    2013-01-01

    Down wood plays many functional roles in aquatic and riparian ecosystems. Simplifi cation of forest structure and low abundance of down wood in stream channels and riparian areas is a common legacy of historical management in headwater forests west of the Cascade Range in the US northwest. Contemporary management practices emphasize the implementation of vegetation...

  6. Understory plant response to site preparation and fertilization of loblolly and shortleaf pine forests

    Treesearch

    Dale G. Brockway; Gale L. Wolters; H.A. Pearson; Ronald E. Thill; V. Clark Baldwin; A. Martin

    1998-01-01

    In developing an improved understanding of the dynamics of understory plant composition and productivity in Coastal Plaii forest ecosystems, we examined theiniluenceof site preparation and phosphorus fertilization on the successional trends of shrubs and herbaceous plants growing on lands of widely ranging subsoil texture in Arkansas, Louisiana, and Texas which are...

  7. Survival, Growth, and Ecosystem Dynamics of Displaced Bromeliads in a Montane Tropical Forest.

    Treesearch

    Jennifer Pett-Ridge; Whendee L. Silver

    2002-01-01

    Epiphytes generally occupy arboreal perches, which are inherently unstable environments due to periodic windstorms, branch falls, and treefalls. During high wind events, arboreal bromeliads are often knocked from the canopy and deposited on the forest floor. In this study, we used a common epiphytic tank bromeliad, Guzmania berteroniana (R. & S.) Mez, to determine...

  8. Fire Process Research Natural Areas: Managing research and restoration of dynamic ecosystem processes

    Treesearch

    Timothy Ingalsbee

    2001-01-01

    Since 1992 a collaborative group of fire scientists, forest conservationists, and Federal resource specialists have been developing proposals for a Research Natural Area (RNA) in the Warner Creek Fire area on the Willamette National Forest in Oregon. Inspired by these proposals, the Oregon Natural Heritage Plan created the new category of "Fire Process RNAs"...

  9. Effects of ungulate herbivory on aspen, cottonwood, and willow development under forest fuels treatment regimes

    Treesearch

    Bryan A. Endress; Michael J. Wisdom; Martin Vavra; Catherine G. Parks; Brian L. Dick; Bridgett J. Naylor; Jennifer M. Boyd

    2012-01-01

    Herbivory by domestic and wild ungulates can dramatically affect vegetation structure, composition and dynamics in nearly every terrestrial ecosystem of the world. These effects are of particular concern in forests of western North America, where intensive herbivory by native and domestic ungulates has the potential to substantially reduce or eliminate deciduous,...

  10. Comparing modern and presettlement forest dynamics of a subboreal wilderness: Does spruce budworm enhance fire risk?

    Treesearch

    Brian R Sturtevant; Brian R Miranda; Douglas J Shinneman; Eric J Gustafson; Peter T. Wolter

    2012-01-01

    Insect disturbance is often thought to increase fire risk through enhanced fuel loadings, particularly in coniferous forest ecosystems. Yet insect disturbances also affect successional pathways and landscape structure that interact with fire disturbances (and vice-versa) over longer time scales. We applied a landscape succession and disturbance model (LANDIS-II) to...

  11. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat

    Treesearch

    Colleen M. Iversen; Joanne Childs; Richard J. Norby; Todd A. Ontl; Randall K. Kolka; Deanne J. Brice; Karis J. McFarlane; Paul J. Hanson

    2017-01-01

    Background and aims. Fine roots contribute to ecosystem carbon, water, and nutrient fluxes through resource acquisition, respiration, exudation, and turnover, but are understudied in peatlands. We aimed to determine how the amount and timing of fine-root growth in a forested, ombrotrophic bog varied across gradients of vegetation density, peat...

  12. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests

    Treesearch

    Jorge Durán; Jennifer L. Morse; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer

    2014-01-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity...

  13. Leaf ontogeny and demography explain photosynthetic seasonality in Amazon evergreen forests

    NASA Astrophysics Data System (ADS)

    Wu, J.; Albert, L.; Lopes, A. P.; Restrepo-Coupe, N.; Hayek, M.; Wiedemann, K. T.; Guan, K.; Stark, S. C.; Prohaska, N.; Tavares, J. V.; Marostica, S. F.; Kobayashi, H.; Ferreira, M. L.; Campos, K.; Silva, R. D.; Brando, P. M.; Dye, D. G.; Huxman, T. E.; Huete, A. R.; Nelson, B. W.; Saleska, S. R.

    2015-12-01

    Photosynthetic seasonality couples the evolutionary ecology of plant leaves to large-scale rhythms of carbon and water exchanges that are important feedbacks to climate. However, the extent, magnitude, and controls on photosynthetic seasonality of carbon-rich tropical forests are poorly resolved, controversial in the remote sensing literature, and inadequately represented in most earth system models. Here we show that ecosystem-scale phenology (measured by photosynthetic capacity), rather than environmental seasonality, is the primary driver of photosynthetic seasonality at four Amazon evergreen forests spanning gradients in rainfall seasonality, forest composition, and flux seasonality. We further demonstrate that leaf ontogeny and demography explain most of this ecosystem phenology at two central Amazon evergreen forests, using a simple leaf-cohort canopy model that integrates eddy covariance-derived CO2 fluxes, novel near-surface camera-detected leaf phenology, and ground observations of litterfall and leaf physiology. The coordination of new leaf growth and old leaf divestment (litterfall) during the dry season shifts canopy composition towards younger leaves with higher photosynthetic efficiency, driving large seasonal increases (~27%) in ecosystem photosynthetic capacity. Leaf ontogeny and demography thus reconciles disparate observations of forest seasonality from leaves to eddy flux towers to satellites. Strategic incorporation of such whole-plant coordination processes as phenology and ontogeny will improve ecological, evolutionary and earth system theories describing tropical forests structure and function, allowing more accurate representation of forest dynamics and feedbacks to climate in earth system models.

  14. Linking models and data on vegetation structure

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Fisk, J.; Thomas, R. Q.; Dubayah, R.; Moorcroft, P. R.; Shugart, H. H.

    2010-06-01

    For more than a century, scientists have recognized the importance of vegetation structure in understanding forest dynamics. Now future satellite missions such as Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI) hold the potential to provide unprecedented global data on vegetation structure needed to reduce uncertainties in terrestrial carbon dynamics. Here, we briefly review the uses of data on vegetation structure in ecosystem models, develop and analyze theoretical models to quantify model-data requirements, and describe recent progress using a mechanistic modeling approach utilizing a formal scaling method and data on vegetation structure to improve model predictions. Generally, both limited sampling and coarse resolution averaging lead to model initialization error, which in turn is propagated in subsequent model prediction uncertainty and error. In cases with representative sampling, sufficient resolution, and linear dynamics, errors in initialization tend to compensate at larger spatial scales. However, with inadequate sampling, overly coarse resolution data or models, and nonlinear dynamics, errors in initialization lead to prediction error. A robust model-data framework will require both models and data on vegetation structure sufficient to resolve important environmental gradients and tree-level heterogeneity in forest structure globally.

  15. Ecosystem services capacity across heterogeneous forest types: understanding the interactions and suggesting pathways for sustaining multiple ecosystem services.

    PubMed

    Alamgir, Mohammed; Turton, Stephen M; Macgregor, Colin J; Pert, Petina L

    2016-10-01

    As ecosystem services supply from tropical forests is declining due to deforestation and forest degradation, much effort is essential to sustain ecosystem services supply from tropical forested landscapes, because tropical forests provide the largest flow of multiple ecosystem services among the terrestrial ecosystems. In order to sustain multiple ecosystem services, understanding ecosystem services capacity across heterogeneous forest types and identifying certain ecosystem services that could be managed to leverage positive effects across the wider bundle of ecosystem services are required. We sampled three forest types, tropical rainforests, sclerophyll forests, and rehabilitated plantation forests, over an area of 32,000m(2) from Wet Tropics bioregion, Australia, aiming to compare supply and evaluate interactions and patterns of eight ecosystem services (global climate regulation, air quality regulation, erosion regulation, nutrient regulation, cyclone protection, habitat provision, energy provision, and timber provision). On average, multiple ecosystem services were highest in the rainforests, lowest in sclerophyll forests, and intermediate in rehabilitated plantation forests. However, a wide variation was apparent among the plots across the three forest types. Global climate regulation service had a synergistic impact on the supply of multiple ecosystem services, while nutrient regulation service was found to have a trade-off impact. Considering multiple ecosystem services, most of the rehabilitated plantation forest plots shared the same ordination space with rainforest plots in the ordination analysis, indicating that rehabilitated plantation forests may supply certain ecosystem services nearly equivalent to rainforests. Two synergy groups and one trade-off group were identified. Apart from conserving rainforests and sclerophyll forests, our findings suggest two additional integrated pathways to sustain the supply of multiple ecosystem services from a heterogeneous tropical forest landscape: (i) rehabilitation of degraded forests aiming to provide global climate regulation and habitat provision ecosystem services and (ii) management intervention to sustain global climate regulation and habitat provision ecosystem services. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Ecosystem Resilience and Limitations Revealed by Soil Bacterial Community Dynamics in a Bark Beetle-Impacted Forest

    DOE PAGES

    Mikkelson, Kristin M.; Brouillard, Brent M.; Bokman, Chelsea M.; ...

    2017-12-05

    ABSTRACT Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert withmore » surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH 4 + concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions. IMPORTANCE Forests around the world are succumbing to insect infestation with repercussions for local soil biogeochemistry and downstream water quality and quantity. This study utilized microbial community dynamics to address why we are observing watershed scale biogeochemical impacts from forest mortality in some impacted areas but not others. Through a unique “tree-centric” approach, we were able to delineate plots with various tree mortality levels within the same watershed to see if surviving surrounding vegetation altered microbial and biogeochemical responses. Our results suggest that forests with lower overall tree mortality levels are able to maintain “normal” ecosystem function, as the bacterial community appears resistant to tree death. However, surrounding tree mortality influences this mitigating effect with various linear and threshold responses whereupon the bacterial community and its function are altered. Our study lends insight into how microscale responses propagate upward into larger-scale observations, which may be useful for future predictions during analogous disruptions.« less

  17. Ecosystem Resilience and Limitations Revealed by Soil Bacterial Community Dynamics in a Bark Beetle-Impacted Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikkelson, Kristin M.; Brouillard, Brent M.; Bokman, Chelsea M.

    ABSTRACT Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert withmore » surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH 4 + concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions. IMPORTANCE Forests around the world are succumbing to insect infestation with repercussions for local soil biogeochemistry and downstream water quality and quantity. This study utilized microbial community dynamics to address why we are observing watershed scale biogeochemical impacts from forest mortality in some impacted areas but not others. Through a unique “tree-centric” approach, we were able to delineate plots with various tree mortality levels within the same watershed to see if surviving surrounding vegetation altered microbial and biogeochemical responses. Our results suggest that forests with lower overall tree mortality levels are able to maintain “normal” ecosystem function, as the bacterial community appears resistant to tree death. However, surrounding tree mortality influences this mitigating effect with various linear and threshold responses whereupon the bacterial community and its function are altered. Our study lends insight into how microscale responses propagate upward into larger-scale observations, which may be useful for future predictions during analogous disruptions.« less

  18. Ecosystem Resilience and Limitations Revealed by Soil Bacterial Community Dynamics in a Bark Beetle-Impacted Forest.

    PubMed

    Mikkelson, Kristin M; Brouillard, Brent M; Bokman, Chelsea M; Sharp, Jonathan O

    2017-12-05

    Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert with surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH 4 + concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions. IMPORTANCE Forests around the world are succumbing to insect infestation with repercussions for local soil biogeochemistry and downstream water quality and quantity. This study utilized microbial community dynamics to address why we are observing watershed scale biogeochemical impacts from forest mortality in some impacted areas but not others. Through a unique "tree-centric" approach, we were able to delineate plots with various tree mortality levels within the same watershed to see if surviving surrounding vegetation altered microbial and biogeochemical responses. Our results suggest that forests with lower overall tree mortality levels are able to maintain "normal" ecosystem function, as the bacterial community appears resistant to tree death. However, surrounding tree mortality influences this mitigating effect with various linear and threshold responses whereupon the bacterial community and its function are altered. Our study lends insight into how microscale responses propagate upward into larger-scale observations, which may be useful for future predictions during analogous disruptions. Copyright © 2017 Mikkelson et al.

  19. A study on the relationship between carbon budget and ecosystem service in urban areas according to urbanization

    NASA Astrophysics Data System (ADS)

    Lee, S. J.; Lee, W. K.

    2017-12-01

    The study on the analysis of carbon storage capacity of urban green spaces with increasing urban forest. Modern cities have experienced rapid economic development since Industrial Revolution in the 18th century. The rapid economic growth caused an exponential concentration of population to the cities and decrease of green spaces due to the conversion of forest and agricultural lands to build-up areas with rapid urbanization. As green areas including forests, grasslands, and wetlands provide diverse economic, environmental, and cultural benefits, the decrease of green areas might be a huge loss. Also, the process of urbanization caused pressure on the urban environment more than its natural capacity, which accelerates global climate change. This study tries to see the relations between carbon budget and ecosystem services according to the urbanization. For calculating carbon dynamics, this study used VISIT(Vegetation Integrated Simulator for trace gases) model. And the value that ecosystem provides is explained with the concept of ecosystem service and calculated by InVEST model. Study sites are urban and peri-urban areas in Northeast Asia. From the result of the study, the effect of the urbanization can be understood in regard to carbon storage and ecosystem services.

  20. Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services

    PubMed Central

    Seidl, Rupert; Spies, Thomas A.; Peterson, David L.; Stephens, Scott L.; Hicke, Jeffrey A.

    2016-01-01

    Summary 1. The provisioning of ecosystem services to society is increasingly under pressure from global change. Changing disturbance regimes are of particular concern in this context due to their high potential impact on ecosystem structure, function and composition. Resilience-based stewardship is advocated to address these changes in ecosystem management, but its operational implementation has remained challenging. 2. We review observed and expected changes in disturbance regimes and their potential impacts on provisioning, regulating, cultural and supporting ecosystem services, concentrating on temperate and boreal forests. Subsequently, we focus on resilience as a powerful concept to quantify and address these changes and their impacts, and present an approach towards its operational application using established methods from disturbance ecology. 3. We suggest using the range of variability concept – characterizing and bounding the long-term behaviour of ecosystems – to locate and delineate the basins of attraction of a system. System recovery in relation to its range of variability can be used to measure resilience of ecosystems, allowing inferences on both engineering resilience (recovery rate) and monitoring for regime shifts (directionality of recovery trajectory). 4. It is important to consider the dynamic nature of these properties in ecosystem analysis and management decision-making, as both disturbance processes and mechanisms of resilience will be subject to changes in the future. Furthermore, because ecosystem services are at the interface between natural and human systems, the social dimension of resilience (social adaptive capacity and range of variability) requires consideration in responding to changing disturbance regimes in forests. 5. Synthesis and applications. Based on examples from temperate and boreal forests we synthesize principles and pathways for fostering resilience to changing disturbance regimes in ecosystem management. We conclude that future work should focus on testing and implementing these pathways in different contexts to make ecosystem services provisioning more robust to changing disturbance regimes and advance our understanding of how to cope with change and uncertainty in ecosystem management. PMID:26966320

  1. ROOT GROWTH AND TURNOVER IN DIFFERENT AGED PONDEROSA PINE STANDS IN OREGON, USA

    EPA Science Inventory

    The impacts of pollution and climate change on soil carbon dynamics are poorly understood, in part due to a lack of information regarding root production and turnover in natural ecosystems. In order to examine how root dynamics change with stand age in ponderosa pine forests (...

  2. Assessment of the sensitivity of radar backscatter to seasonal snow and vegetation thaw dynamics in a boreal ecosystem

    NASA Technical Reports Server (NTRS)

    McDonald, K. C.; Qualls, B.; Hardy, J.

    2002-01-01

    We examine the sensitivity of ERS-1 C-band synthetic aperture radar (SAR) backscatter to springtime snow and vegetation thaw dynamics for boreal forest stands within the BOREAS Southern Study Area (SSA) in Canada during the 1994 winter-spring thaw transition.

  3. Understory plant biomass dynamics of prescribed burned Pinus palustris stands

    Treesearch

    C.A. Gonzalez-Benecke; L.J. Samuelson; T.A. Stokes; W.P. Cropper Jr; T.A. Martin; K.H. Johnsen

    2015-01-01

    Longleaf pine (Pinus palustris Mill.) forests are characterized by unusually high understory plant species diversity, but models describing understory ground cover biomass, and hence fuel load dynamics, are scarce for this fire-dependent ecosystem. Only coarse scale estimates, being restricted on accuracy and geographical extrapolation,...

  4. Foreword: The dynamics of change in Alaska’s boreal forests: Resilience and vulnerability in response to climate warming

    USGS Publications Warehouse

    McGuire, A. David; Chapin, F. Stuart; Ruess, Roger W.

    2016-01-01

    Long-term research by the Bonanza Creek (BNZ) Long Term Ecological Research (LTER) program has documented natural patterns of interannual and successional variability of the boreal forest in interior Alaska against which we can detect changes in system behavior. Between 2004 and 2010 the BNZ LTER program focused on understanding the dynamics of change through studying the resilience and vulnerability of Alaska's boreal forest in response to climate warming. The overarching question in this endeavor has been “How are boreal ecosystems responding, both gradually and abruptly, to climate warming, and what new landscape patterns are emerging?”

  5. Temperate forest fragments maintain aboveground carbon stocks out to the forest edge despite changes in community composition.

    PubMed

    Ziter, Carly; Bennett, Elena M; Gonzalez, Andrew

    2014-11-01

    Edge effects are among the primary mechanisms by which forest fragmentation can influence the link between biodiversity and ecosystem processes, but relatively few studies have quantified these mechanisms in temperate regions. Carbon storage is an important ecosystem function altered by edge effects, with implications for climate change mitigation. Two opposing hypotheses suggest that aboveground carbon (AGC) stocks at the forest edge will (a) decrease due to increased tree mortality and compositional shifts towards smaller, lower wood density species (e.g., as seen in tropical systems) or, less often, (b) increase due to light/temperature-induced increases in diversity and productivity. We used field-based measurements, allometry, and mixed models to investigate the effects of proximity to the forest edge on AGC stocks, species richness, and community composition in 24 forest fragments in southern Quebec. We also asked whether fragment size or connectivity with surrounding forests altered these edge effects. AGC stocks remained constant across a 100 m edge-to-interior gradient in all fragment types, despite changes in tree community composition and stem density consistent with expectations of forest edge effects. We attribute this constancy primarily to compensatory effects of small trees at the forest edge; however, it is due in some cases to the retention of large trees at forest edges, likely a result of forest management. Our results suggest important differences between temperate and tropical fragments with respect to mechanisms linking biodiversity and AGC dynamics. Small temperate forest fragments may be valuable in conservation efforts based on maintaining biodiversity and multiple ecosystem services.

  6. Soil microbial community successional patterns during forest ecosystem restoration.

    PubMed

    Banning, Natasha C; Gleeson, Deirdre B; Grigg, Andrew H; Grant, Carl D; Andersen, Gary L; Brodie, Eoin L; Murphy, D V

    2011-09-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables.

  7. Soil Microbial Community Successional Patterns during Forest Ecosystem Restoration ▿†

    PubMed Central

    Banning, Natasha C.; Gleeson, Deirdre B.; Grigg, Andrew H.; Grant, Carl D.; Andersen, Gary L.; Brodie, Eoin L.; Murphy, D. V.

    2011-01-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables. PMID:21724890

  8. Unravelling ecosystem functions at the Amazonia-Cerrado transition: II. Carbon stocks and CO2 soil efflux in cerradão forest undergoing ecological succession

    NASA Astrophysics Data System (ADS)

    Peixoto, Karine S.; Marimon-Junior, Ben Hur; Marimon, Beatriz S.; Elias, Fernando; de Farias, Josenilton; Freitag, Renata; Mews, Henrique A.; das Neves, Eder C.; Prestes, Nayane Cristina C. S.; Malhi, Yadvinder

    2017-07-01

    The transition region between two major South American biomes, the Amazon forest and the Cerrado (Brazilian savanna), has been substantially converted into human-modified ecosystems. Nevertheless, the recovery dynamics of ecosystem functions in this important zone of (ecological) tension (ZOT) remain poorly understood. In this study, we compared two areas of cerradão (a forest-woodland of the Brazilian savanna; Portuguese augmentative of cerrado), one in secondary succession (SC) and one adjacent and well preserved (PC), to test whether the ecosystem functions lost after conversion to pasture were restored after 22 years of regeneration. We tested the hypothesis that the increase in annual aboveground biomass in the SC would be greater than that in the PC because of anticipated successional gains. We also investigated soil CO2 efflux, litter layer content, and fine root biomass in both the SC and PC. In terms of biomass recovery our hypothesis was not supported: the biomass did not increase in the successional area over the study period, which suggested limited capacity for recovery in this key ecosystem compartment. By contrast, the structure and function of the litter layer and root mat were largely reconstituted in the secondary vegetation. Overall, we provide evidence that 22 years of secondary succession were not sufficient for these short and open forests (e.g., cerradão) in the ZOT to recover ecosystem functions to the levels observed in preserved vegetation of identical physiognomy.

  9. Spatial and temporal trends in water-use efficiency across U.S. forests: integrating tree ring stable C and O isotopes with eddy covariance data

    NASA Astrophysics Data System (ADS)

    Asbjornsen, H.; Guerrieri, R.; Belmecheri, S.; Martin, M.; Lepine, L. C.; Jennings, K.; Xiao, J.; Ollinger, S. V.

    2016-12-01

    Understanding relations among forest carbon (C) uptake and water use is critical for predicting forest-climate interactions. Water use efficiency (WUE), the carbon (C) gain per unit of water (H2O) loss through transpiration, is the key physiological trait linking C and H2O cycling in forests, and allowing to monitor ecosystem productivity in response to climate change. Stable C isotope composition (δ13C) in tree rings has been extensively used to assess the changes in the tree-level intrinsic WUE (i.e., iWUE - photosynthesis, A/stomatal conductance, gs) in response to climate and anthropogenic forcing (e.g., increase in atmospheric CO2 and nitrogen deposition) over the last century for several forest ecosystems worldwide. At the forest ecosystem level, WUE (WUEe) is obtained as ratio between Gross Primary Productivity (GPP) and evapotranspiration (ET), derived from the eddy covariance measurements. Very few studies compared the two approaches, most of them to date have focused on within-site comparisons. Moreover, most studies examining the influence of climatic factors on tree-WUE have focused on water-limited ecosystems in the Southwest, while much less is known about the dynamics of WUE for mesic forests in the Eastern US. In this study, we compared the two methods across a range of eight to eleven forested Ameriflux sites and climate in the U.S. Furthermore, we examined whether species-specific physiological mechanisms facilitated a better understanding of the ecosystem fluxes. We will present 30-year δ13C (and derived iWUE) and δ18O tree-ring chronologies and foliar isotopes obtained from two dominant species at each site. Spatial (across sites) and temporal trend of tree WUE will then be compared to ecosystem WUE as obtained from eddy covariance data. Relationships between δ13C and δ18O will be explored to elucidate the species-specific physiological mechanisms underlying variation in iWUE. Moreover, drivers of the changes in WUE at the two scales (i.e., tree and ecosystem) will be evaluated and discussed in relations to findings from previous studies. Finally, we will explore the relationship between patterns of leaf internal CO2 (ci)-regulation in response to rising atmospheric CO2, which is one of the major causes of disagreement between the tree and ecosystem level approaches.

  10. Alternative stable states and the sustainability of forests, grasslands, and agriculture

    PubMed Central

    Henderson, Kirsten A.; Bauch, Chris T.; Anand, Madhur

    2016-01-01

    Endangered forest–grassland mosaics interspersed with expanding agriculture and silviculture occur across many parts of the world, including the southern Brazilian highlands. This natural mosaic ecosystem is thought to reflect alternative stable states driven by threshold responses of recruitment to fire and moisture regimes. The role of adaptive human behavior in such systems remains understudied, despite its pervasiveness and the fact that such ecosystems can exhibit complex dynamics. We develop a nonlinear mathematical model of coupled human–environment dynamics in mosaic systems and social processes regarding conservation and economic land valuation. Our objective is to better understand how the coupled dynamics respond to changes in ecological and social conditions. The model is parameterized with southern Brazilian data on mosaic ecology, land-use profits, and questionnaire results concerning landowner preferences and conservation values. We find that the mosaic presently resides at a crucial juncture where relatively small changes in social conditions can generate a wide variety of possible outcomes, including complete loss of mosaics; large-amplitude, long-term oscillations between land states that preclude ecosystem stability; and conservation of the mosaic even to the exclusion of agriculture/silviculture. In general, increasing the time horizon used for conservation decision making is more likely to maintain mosaic stability. In contrast, increasing the inherent conservation value of either forests or grasslands is more likely to induce large oscillations—especially for forests—due to feedback from rarity-based conservation decisions. Given the potential for complex dynamics, empirically grounded nonlinear dynamical models should play a larger role in policy formulation for human–environment mosaic ecosystems. PMID:27956605

  11. Criterion 3: Maintenance of forest ecosystem health and vitality

    Treesearch

    Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield

    2012-01-01

    Forest ecosystem health depends on stable forest composition and structure and on sustainable ecosystem processes. Forest disturbances that push an ecosystem beyond the range of conditions considered normal can upset the balance among processes, exacerbate forest health problems, and increase mortality beyond historical norms. Sometimes forest ecosystems respond to...

  12. Ten year change in forest succession and composition measured by remote sensing

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G.; Botkin, Daniel B.; Strebel, Donald E.; Woods, Kerry K.; Goetz, Scott J.

    1987-01-01

    Vegetation dynamics and changes in ecological patterns were measured by remote sensing over a 10 year period (1973 to 1983) for 148,406 landscape elements, covering more than 500 sq km in a protected forested wilderness. Quantitative measurements were made possible by methods to detect ecologically meaningful landscape units; these allowed measurement of ecological transition frequencies and calculation of expected recurrence times. Measured ecological transition frequencies reveal boreal forest wilderness as spatially heterogeneous and highly dynamic, with one-sixth of the area in clearings and early successional stages, consistent with recent postulates about the spatial and temporal patterns of natural ecosystems. Differences between managed forest areas and a protected wilderness allow assessment of different management regimes.

  13. Decay and nutrient dynamics of coarse woody debris in the Qinling Mountains, China

    PubMed Central

    Yuan, Jie; Hou, Lin; Wei, Xin; Shang, Zhengchun; Cheng, Fei; Zhang, Shuoxin

    2017-01-01

    As an ecological unit, coarse woody debris (CWD) plays an essential role in productivity, nutrient cycling, carbon sequestration, community regeneration and biodiversity. However, thus far, the information on quantification the decomposition and nutrient content of CWD in forest ecosystems remains considerably limited. In this study, we conducted a long-term (1996–2013) study on decay and nutrient dynamics of CWD for evaluating accurately the ecological value of CWD on the Huoditang Experimental Forest Farm in the Qinling Mountains, China. The results demonstrated that there was a strong correlation between forest biomass and CWD mass. The single exponential decay model well fit the CWD density loss at this site, and as the CWD decomposed, the CWD density decreased significantly. Annual temperature and precipitation were all significantly correlated with the annual mass decay rate. The K contents and the C/N ratio of the CWD decreased as the CWD decayed, but the C, N, P, Ca and Mg contents increased. We observed a significant CWD decay effect on the soil C, N and Mg contents, especially the soil C content. The soil N, P, K, Ca and Mg contents exhibited large fluctuations, but the variation had no obvious regularity and changed with different decay times. The results showed that CWD was a critical component of nutrient cycling in forest ecosystems. Further research is needed to determine the effect of diameter, plant tissue components, secondary wood compounds, and decomposer organisms on the CWD decay rates in the Qinling Mountains, which will be beneficial to clarifying the role of CWD in carbon cycles of forest ecosystems. PMID:28384317

  14. Local disease–ecosystem–livelihood dynamics: reflections from comparative case studies in Africa

    PubMed Central

    Bett, Bernard; Said, M.; Bukachi, Salome; Sang, Rosemary; Anderson, Neil; Machila, Noreen; Kuleszo, Joanna; Schaten, Kathryn; Mangwanya, Lindiwe; Ntiamoa-Baidu, Yaa; Lawson, Elaine; Amponsah-Mensah, Kofi; Moses, Lina M.; Grant, Donald S.; Koninga, James

    2017-01-01

    This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human–ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples’ interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform ‘One Health’ approaches towards managing ecosystems in ways that reduce disease risks and burdens. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’. PMID:28584171

  15. Elevated CO2 induces changes in the ecohydrological functions of forests - from mechanisms to models

    NASA Astrophysics Data System (ADS)

    Pötzelsberger, Elisabeth; Warren, Jeffrey M.; Wullschleger, Stan D.; Thornton, Peter E.; Norby, Richard J.; Hasenauer, Hubert

    2010-05-01

    Forests are known to considerably influence ecosystem water balance as a result of the many dynamic interactions between the plant physiology, morphology, phenology and other biophysical properties and environmental conditions. A changing climate will exert a new environmental setting for the forests and the biological feedbacks will be considerable. With the mechanistic ecosystem model Biome-BGC the dense net of cause-response relationships among carbon, nitrogen, water and energy cycles at a free-air CO2 enrichment (FACE) site in a North American deciduous broadleaved forest can be represented. At the Oak Ridge National Laboratory (ORNL) closed canopy sweetgum plantation elevated CO2 caused a decrease in stomatal conductance, and concurrent changes in daily transpiration were observed. This is in agreement with data from other FACE experiments. At the ORNL FACE site average transpiration reduction in a growing season was 10-16%, with 7-16% during mid summer, depending on the year. After parameterization of the model for this ecosystem the observed transpiration patterns could be well represented. Most importantly, the complete water budget at the site could be described and increased outflow could be observed (~15%). This yields crucial information for broader scale future water budget simulations. Changes in the water balance of deciduous forests will affect a wide range of ecosystem functions, from decomposition, over carbon and nutrient cycling to plant-plant competition and species composition.

  16. Vegetation indicators of transformation in the urban forest ecosystems of "Kuzminki-Lyublino" Park

    NASA Astrophysics Data System (ADS)

    Buyvolova, Anna; Trifonova, Tatiana; Bykova, Elena

    2017-04-01

    Forest ecosystems in the city are at the same time a component of its natural environment and part of urban developmental planning. It imposes upon urban forests a large functional load, both environmental (formation of environment, air purification, noise pollution reducing, etc.) and social (recreational, educational) which defines the special attitude to their management and study. It is not a simple task to preserve maximum accessibility to the forest ecosystems of the large metropolises with a minimum of change. The urban forest vegetates in naturally formed soil, it has all the elements of a morphological structure (canopy layers), represented by natural species of the zonal vegetation. Sometimes it is impossible for a specialist to distinguish between an urban forest and a rural one. However, the urban forests are changing, being under the threat of various negative influences of the city, of which pollution is arguably the most significant. This article presents some indicators of structural changes to the plant communities, which is a response of forest ecosystems to an anthropogenic impact. It is shown that the indicators of the transformation of natural ecosystems in the city can be a reduction of the projective cover of moss layer, until its complete absence (in the pine forest), increasing the role of Acer negundo (adventive species) in the undergrowth, high variability of floristic indicators of the ground herbaceous vegetation, and a change in the spatial arrangement of adventive species. The assessment of the impact of the urban environment on the state of vegetation in the "Kuzminki-Lyublino" Natural-Historical Park was conducted in two key areas least affected by anthropogenic impacts under different plant communities represented by complex pine and birch forests and in similar forest types in the Prioksko-Terrasny Biosphere Reserve. The selection of pine forests as a model is due to the fact that, according to some scientists, pine (Pinus Sylvestris L.), a very ductile and widespread species, is a sensitive indicator of anthropogenic burden, responding to the impact of defoliation and needles discoloration, and survives even at fairly high levels of pollution. The vegetation cover is one of the most dynamic components of the ecosystem and under the conditions of urban existence it is subject to transformation. The indicators of the transformation of natural ecosystems in the city can be a reduction of the projective cover of moss layer, until its complete absence (in the pine forest), increasing the role of Acer negundo (adventive species) in the undergrowth, high variability of floristic indicators of the ground herbaceous vegetation, and a change in the spatial arrangement of adventive species. The further study of plant communities with a view to identifying indicators of transformation in urban environmental conditions will help for the early detection of reversible changes in the ecosystems of urban forests and the development of rational urban forest care technologies.

  17. Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a mid-successional boreal forest

    USGS Publications Warehouse

    Melvin, April M.; Mack, Michelle C.; Johnstone, Jill F.; McGuire, A. David; Genet, Helene; Schuur, Edward A.G.

    2015-01-01

    In the boreal forest of Alaska, increased fire severity associated with climate change is expanding deciduous forest cover in areas previously dominated by black spruce (Picea mariana). Needle-leaf conifer and broad-leaf deciduous species are commonly associated with differences in tree growth, carbon (C) and nutrient cycling, and C accumulation in soils. Although this suggests that changes in tree species composition in Alaska could impact C and nutrient pools and fluxes, few studies have measured these linkages. We quantified C, nitrogen, phosphorus, and base cation pools and fluxes in three stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a single fire event in 1958. Paper birch consistently displayed characteristics of more rapid C and nutrient cycling, including greater aboveground net primary productivity, higher live foliage and litter nutrient concentrations, and larger ammonium and nitrate pools in the soil organic layer (SOL). Ecosystem C stocks (aboveground + SOL + 0–10 cm mineral soil) were similar for the two species; however, in black spruce, 78% of measured C was found in soil pools, primarily in the SOL, whereas aboveground biomass dominated ecosystem C pools in birch forest. Radiocarbon analysis indicated that approximately one-quarter of the black spruce SOL C accumulated prior to the 1958 fire, whereas no pre-fire C was observed in birch soils. Our findings suggest that tree species exert a strong influence over C and nutrient cycling in boreal forest and forest compositional shifts may have long-term implications for ecosystem C and nutrient dynamics.

  18. A case for using Plethodontid salamanders for monitoring biodiversity and ecosystem integrity of North American forests

    USGS Publications Warehouse

    Welsh, H.H.; Droege, S.

    2001-01-01

    Terrestrial salamanders of the family P!ethodontidae have unique attributes that make them excellent indicators of biodiversity and ecosystem integrity in forested habitats. Their longevity, small territory size, site fidelity, sensitivity to natural and anthropogenic perturbations, tendency to occur in high densities, and low sampling costs mean that counts of plethodontid salamanders provide numerous advantages over counts of other North American forest organisms for indicating environmental change. Furthermore, they are tightly linked physiologically to microclimatic and successional processes that influence the distribution and abundance of numerous other hydrophilic but difficult-to-study forest-dwelling plants and animals. Ecosystem processes such as moisture cycling, food-web dynamics, and succession, with their related structural and microclimatic variability, all affect forest biodiversity and have been shown to affect salamander populations as well. We determined the variability associated with sampling for plethodontid salamanders by estimating the coefficient of variation (CV) from available time-series data. The median coefficient of variation indicated that variation in counts of individuals among studies was much lower in plethodonticis (27%) than in lepidoptera (93%), passerine birds (57%), small mammals (69%), or other amphibians (37-46%), which means plethodontid salamanders provide an important statistical advantage over other species for monitoring long-term forest health.

  19. [Characteristics of carbon storage of Inner Mongolia forests: a review].

    PubMed

    Yang, Hao; Hu, Zhong-Min; Zhang, Lei-Ming; Li, Sheng-Gong

    2014-11-01

    Forests in Inner Mongolia account for an important part of the forests in China in terms of their large area and high living standing volume. This study reported carbon storage, carbon density, carbon sequestration rate and carbon sequestration potential of forest ecosystems in Inner Mongolia using the biomass carbon data from the related literature. Through analyzing the data of forest inventory and the generalized allometric equations between volume and biomass, previous studies had reported that biomass carbon storage of the forests in Inner Mongolia was about 920 Tg C, which was 12 percent of the national forest carbon storage, the annual average growth rate was about 1.4%, and the average of carbon density was about 43 t · hm(-2). Carbon storage and carbon density showed an increasing trend over time. Coniferous and broad-leaved mixed forest, Pinus sylvestris var. mongolica forest and Betula platyphylla forest had higher carbon sequestration capacities. Carbon storage was reduced due to human activities such as thinning and clear cutting. There were few studies on carbon storage of the forests in Inner Mongolia with focus on the soil, showing that the soil car- bon density increased with the stand age. Study on the carbon sequestration potential of forest ecosystems was still less. Further study was required to examine dynamics of carbon storage in forest ecosystems in Inner Mongolia, i. e., to assess carbon storage in the forest soils together with biomass carbon storage, to compute biomass carbon content of species organs as 45% in the allometric equations, to build more species-specific and site-specific allometric equations including root biomass for different dominant species, and to take into account the effects of climate change on carbon sequestration rate and carbon sequestration potential.

  20. Seasonality of a boreal forest: a remote sensing perspective

    NASA Astrophysics Data System (ADS)

    Rautiainen, Miina; Heiskanen, Janne; Lukes, Petr; Majasalmi, Titta; Mottus, Matti; Pisek, Jan

    2016-04-01

    Understanding the seasonal dynamics of boreal ecosystems through interpretation of satellite reflectance data is needed for efficient large-scale monitoring of northern vegetation dynamics and productivity trends. Satellite remote sensing enables continuous global monitoring of vegetation status and is not limited to single-date phenological metrics. Using remote sensing also enables gaining a wider perspective to the seasonality of vegetation dynamics. The seasonal reflectance cycles of boreal forests observed in optical satellite images are explained by changes in biochemical properties and geometrical structure of vegetation as well as seasonal variation in solar illumination. This poster provides a synthesis of a research project (2010-2015) dedicated to monitoring the seasonal cycle of boreal forests. It is based on satellite and field data collected from the Hyytiälä Forestry Field Station in Finland. The results highlight the role understory vegetation has in forming the forest reflectance measured by satellite instruments.

  1. Nitrogen dynamics post-harvest: the role of woody residues

    Treesearch

    Kathryn Piatek

    2007-01-01

    The role of woody residues in N dynamics in harvested forests has not been fully elucidated. Woody residues have been found to be an N sink, N source, and N neutral in different studies. To understand the implications of each of these scenarios, post-harvest N dynamics in high- and no- woody residue treatments were modeled for a Douglas-fir ecosystem. Nitrogen...

  2. Are nitrate exports in stream water linked to nitrogen fluxes in decomposing foliar litter?

    Treesearch

    Kathryn B. Piatek; Mary Beth Adams

    2011-01-01

    The central hardwood forest receives some of the highest rates of atmospheric nitrogen (N) deposition, which results in nitrate leaching to surface waters. Immobilization of N in foliar litter during litter decomposition represents a potential mechanism for temporal retention of atmospherically deposited N in forest ecosystems. When litter N dynamics switch to the N-...

  3. Chapter 11 - Post-hurricane fuel dynamics and implications for fire behavior (Project SO-EM-F-12-01)

    Treesearch

    Shanyue Guan; G. Geoff. Wang

    2018-01-01

    Hurricanes have long been a powerful and recurring disturbance in many coastal forest ecosystems. Intense hurricanes often produce a large amount of dead fuels in their affected forests. How the post-hurricane fuel complex changes with time, due todecomposition and management such as salvage, and its implications for fire behavior remain largely unknown....

  4. Effects of tree leaf litter, deer fecal pellets, and soil properties on growth of an introduced earthworm (Lumbricus terrestris): Implications for invasion dynamics

    Treesearch

    Kassidy N. Yatso; Erik A. Lilleskov

    2016-01-01

    Invasive earthworm communities are expanding into previously earthworm-free forests of North America, producing profound ecosystem changes. Lumbricus terrestris is an invasive anecic earthworm that consumes a large portion of the detritus on the soil surface, eliminating forest floor organic horizons and reducing soil organic matter. Two mesocosm...

  5. Response of vegetation distribution, ecosystem productivity, and fire to climate change scenarios for California

    Treesearch

    James M. Lenihan; Dominique Bachelet; Ronald P. Neilson; Raymond Drapeck

    2008-01-01

    The response of vegetation distribution, carbon, and fire to three scenarios of future climate change was simulated for California using the MC1 Dynamic General Vegetation Model. Under all three scenarios, Alpine/Subalpine Forest cover declined, and increases in the productivity of evergreen hardwoods led to the displacement of Evergreen Conifer Forest by Mixed...

  6. Holocene forest development and maintenance on different substrates in the Klamath mountains, northern California, USA

    Treesearch

    Christy E. Briles; Cathy Whitlock; Carl N. Skinner; Jerry Mohr

    2011-01-01

    The influence of substrate on long-term vegetation dynamics has received little attention, and yet nutrient-limited ecosystems have some of the highest levels of endemism in the world. The diverse geology of the Klamath Mountains of northern California (USA) allows examination of the long-term influence of edaphic constraints in subalpine forests through a comparison...

  7. A sensitive slope: estimating landscape patterns of forest resilience in a changing climate

    Treesearch

    Jill F. Johnstone; Eliot J.B. McIntire; Eric J. Pedersen; Gregory King; Michael J.F. Pisaric

    2010-01-01

    Changes in Earth's environment are expected to stimulate changes in the composition and structure of ecosystems, but it is still unclear how the dynamics of these responses will play out over time. In long-lived forest systems, communities of established individuals may be resistant to respond to directional climate change, but may be highly sensitive to climate...

  8. Long-term potential and actual evapotranspiration of two different forests on the Atlantic Coastal Plain

    Treesearch

    Devendra Amatya; S. Tian; Z. Dai; Ge Sun

    2016-01-01

    A reliable estimate of potential evapotranspiration (PET) for a forest ecosystem is critical in ecohydrologic modeling related with water supply, vegetation dynamics, and climate change and yet is a challenging task due to its complexity. Based on long-term on-site measured hydro-climatic data and predictions from earlier validated hydrologic modeling studies...

  9. Root growth studies of willow cuttings using Rhizoboxes

    NASA Astrophysics Data System (ADS)

    Omarova, Dinara; Lammeranner, Walter; Florineth, Florin

    2014-05-01

    Riparian forests (Tugay forests) in Central Asia (Kazakhstan) play a significant in soil protection. However, unadapted forest use leads to damage and loss of these fragile ecosystems. Willows have a crucial function in the ecosystem of these riparian forests. Willows facilitate the colonization with other important tree species and furthermore they protect the soil from wind and water erosion. To propagate willows and to estimate the beneficial effects of these plants it is important to know the root growth development. The research design is planned as model experiment with rhizoboxes. Rhizoboxes are non-invasive investigation methods which offer the possibility to survey the root system growth dynamics in time and space. A total of 33 rhizoboxes in size of 50cm x 75 cm x 5 cm will be constructed. The rhizoboxes will be tilted by 45 degrees using the gravitropism of the roots. The willow cuttings (Salix purpurea) will be planted in three different soil types. Each test series (growth period) will take three months. Investigated parameters will be root architecture, dynamic of root growth and above and below ground biomass allocation. Data will be drawn from photographic surveys which will be performed once a week. The contribution will present the methodology of these rhizobox investigations.

  10. CTFS/ForestGEO: A global network to monitor forest interactions with a changing climate

    NASA Astrophysics Data System (ADS)

    Anderson-Teixeira, K. J.; Muller-Landau, H.; McMahon, S.; Davies, S. J.

    2013-12-01

    Forests are an influential component of the global carbon cycle and strongly influence Earth's climate. Climate change is altering the dynamics of forests globally, which may result in significant climate feedbacks. Forest responses to climate change entail both short-term ecophysiological responses and longer-term directional shifts in community composition. These short- and long-term responses of forest communities to climate change may be better understood through long-term monitoring of large forest plots globally using standardized methodology. Here, we describe a global network of forest research plots (CTFS/ForestGEO) of utility for understanding forest responses to climate change and consequent feedbacks to the climate system. CTFS/ForestGEO is an international network consisting of 51 sites ranging in size from 2-150 ha (median size: 25 ha) and spanning from 25°S to 52°N latitude. At each site, every individual > 1cm DBH is mapped and identified, and recruitment, growth, and mortality are monitored every 5 years. Additional measurements include aboveground productivity, carbon stocks, soil nutrients, plant functional traits, arthropod and vertebrates monitoring, DNA barcoding, airborne and ground-based LiDAR, micrometeorology, and weather monitoring. Data from this network are useful for understanding how forest ecosystem structure and function respond to spatial and temporal variation in abiotic drivers, parameterizing and evaluating ecosystem and earth system models, aligning airborne and ground-based measurements, and identifying directional changes in forest productivity and composition. For instance, CTFS/ForestGEO data have revealed that solar radiation and night-time temperature are important drivers of aboveground productivity in moist tropical forests; that tropical forests are mixed in terms of productivity and biomass trends over the past couple decades; and that the composition of Panamanian forests has shifted towards more drought-tolerant species. Ongoing monitoring will be vital to understanding global forest dynamics in an era of climate change.

  11. Multiple constraint modeling of nutrient cycling stoichiometry following forest clearing and pasture abandonment in the Eastern Amazon

    NASA Astrophysics Data System (ADS)

    Davidson, Eric; Nifong, Rachel

    2017-04-01

    While deforestation has declined since its peak, land-use change continues to modify Amazonian landscapes. The responses and feedbacks of biogeochemical cycles to these changes play an important role in determining possible future trajectories of ecosystem function and for land stewardship through effects on rates of secondary forest regrowth, soil emissions of greenhouse gases, inputs of nutrients to groundwater and streamwater, and nutrient management in agroecosystems. Here we present a new synthetic analyses of data from the NASA-supported LBA-ECO project and others datasets on nutrient cycling in cattle pastures, secondary forests, and mature forests at Paragominas, Pará, Brazil. We have developed a stoichiometric model relating C-N-P interactions during original forest clearing, extensive and intensive pasture management, and secondary forest regrowth, constrained by multiple observations of ecosystem stocks and fluxes in each land use. While P is conservatively cycled in all land uses, we demonstrate that pyrolyzation of N during pasture formation and during additional burns for pasture management depletes available-N pools, consistent with observations of lower rates of N leaching and trace gas emission and consistent with secondary forest growth responses to experimental N amendments. The soils store large stocks of N and P, and our parameterization of available forms of these nutrients for steady-state dynamics in the mature forest yield reasonable estimates of net N and P mineralization available for grasses and secondary forest species at rates consistent with observed biomass accumulation and productivity in these modified ecosystems. Because grasses and forests have much different demands for N relative to P, the land use has important biogeochemical impacts. The model demonstrates the need for periodic P inputs for sustainable pasture management and for a period of significant biological N fixation for early-to-mid-successional secondary forest regrowth. The model framework illustrates the relative magnitudes of changing stocks and flows of nutrients and attendant ecosystem functions through the phases of land use change experienced in eastern Amazonia.

  12. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling.

    PubMed

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha; Thompson, Jill; Zimmerman, Jess K; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here, we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured interannual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including aboveground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate. © 2017 John Wiley & Sons Ltd.

  13. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    USGS Publications Warehouse

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha C.; Thompson, Jill; Zimmerman, Jess K.; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured inter-annual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including above-ground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.

  14. Ecosystem Resilience and Limitations Revealed by Soil Bacterial Community Dynamics in a Bark Beetle-Impacted Forest

    PubMed Central

    Brouillard, Brent M.; Bokman, Chelsea M.; Sharp, Jonathan O.

    2017-01-01

    ABSTRACT Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert with surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH4+ concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions. PMID:29208740

  15. Detection of photosynthetic responses of cool-temperate forests following extreme climate events using Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Toda, M.; Knohl, A.; Herbst, M.; Keenan, T. F.; Yokozawa, M.

    2016-12-01

    The increase in extreme climate events associated with ongoing global warming may create severe damage to terrestrial ecosystems, changing plant structure and the eco-physiological functions that regulate ecosystem carbon exchange. However, most damage is usually due to moderate, rather than catastrophic, disturbances. The nature of plant functional responses to such disturbances, and the resulting effects on the terrestrial carbon cycle, remain poorly understood. To unravel the scientific question, tower-based eddy covariance data in the cool-temperate forests were used to constrain plant eco-physiological parameters in a persimoneous ecosystem model that may have affected carbon dynamics following extreme climate events using the statistic Bayesian inversion approach. In the present study, we raised two types of extreme events relevant for cool-temperate regions, i.e. a typhoon with mechanistic foliage destraction and a heat wave with severe drought. With appropriate evaluation of parameter and predictive uncertainties, the inversion analysis shows annual trajectory of activated photosynthetic responses following climate extremes compared the pre-disturbance state in each forest. We address that forests with moderate disturbance show substantial and rapid photosynthetic recovery, enhanced productivity, and, thus, ecosystem carbon exchange, although the effect of extreme climatic events varies depending on the stand successional phase and the type, intensity, timing and legacy of the disturbance.

  16. Human impacts on soil carbon dynamics of deep-rooted Amazonian forests and effect of land use change on the carbon cycle in Amazon soils

    NASA Technical Reports Server (NTRS)

    Nepstad, Daniel; Stone, Thomas; Davidson, Eric; Trumbore, Susan E.

    1992-01-01

    The main objective of these NASA-funded projects is to improve our understanding of land-use impacts on soil carbon dynamics in the Amazon Basin. Soil contains approximately one half of tropical forest carbon stocks, yet the fate of this carbon following forest impoverishment is poorly studied. Our mechanistics approach draws on numerous techniques for measuring soil carbon outputs, inputs, and turnover time in the soils of adjacent forest and pasture ecosystems at our research site in Paragominas, state of Para, Brazil. We are scaling up from this site-specific work by analyzing Basin-wide patterns in rooting depth and rainfall seasonality, the two factors that we believe should explain much of the variation in tropical soil carbons dynamics. In this report, we summarize ongoing measurements at our Paragominas study site, progress in employing new field data to understand soil C dynamics, and some surprising results from our regional, scale-up work.

  17. CDOM Distribution and Dynamics in a Mangrove Ecosystem along the Shark River, Florida Everglades

    NASA Astrophysics Data System (ADS)

    Andrew, A. A.; del Castillo, C. E.

    2016-02-01

    Mangrove forests, a fraction of tropical forest, are in general a disproportionately important component in the global carbon cycle. Mangroves are highly productive, sequestering CO2 at rates higher than many other ecosystems, however more than half of this fixed carbon cannot be accounted for. Additionally, as they sit at the intersection of land and ocean, it's hypothesized that a large fraction of DOC transformations occur in these ecosystems and represent a major sink of terrigenous DOM. These factors highlight the importance of understanding mangrove environments in terms of DOM optical signals as well as reactivity upon light absorption. Here, we present the CDOM dynamics and distribution for a mangrove ecosystem in the Shark River, along the Southwest coast of Florida, part of the largest contiguous mangrove forest in North America. Station sampling of the study area occurred over 4 cruises, approximately one week in length: October 2014, March 2015, July 2015 and September 2015. Most of the stations were along the Shark River, with a smaller number in the vicinity of Tarpon bay and Harney River. Optical measurements of CDOM absorption and fluorescence, fluorescence quantum yields, DOC and spectral slope were obtained for over 70 stations in the study area. The spatial distribution of these optical properties are presented including their relation to salinity and tidal patterns in the study area. Additionally, we present the wavelength dependent quantum photoproduction efficiencies of DIC obtained via irradiation experiments of selective samples in the study area.

  18. Soil organic matter stability as indicated by compound-specific radiocarbon analyses

    NASA Astrophysics Data System (ADS)

    van der Voort, Tessa Sophia; Zell, Claudia; Hagedorn, Frank; McIntyre, Cameron; Eglinton, Timothy Ian

    2017-04-01

    Carbon storage in soils is increasingly recognized as a key ecosystem function, and molecular-level analyses could be a valuable potential indicator of this storage potential. In this framework, radiocarbon constitutes a powerful tool for unraveling soil carbon dynamics on both decadal as well as centennial and millennial timescales. In this study, we look at the radiocarbon signature of specific compounds (fatty acids and n-alkanes) in two forested ecosystems (temperate and pre-alpine) with the aim of attaining a better understanding of soil organic carbon stability on a molecular level. Radiocarbon dating of the fatty acids and n-alkanes has been coupled to abundance data of these compounds and additionally lignin phenols. We hypothesize that potentially, these long-chain apolar compounds could be a representative indicator of the mineral-bound soil organic carbon pool. These well-studied sites are part of the Long-Term Forest Ecosystem Research (LWF) program of the Swiss Federal Institute for Forest, Snow and Landscape research (WSL). Therefore, a wide suite of ancillary climatic and textural data is available for these sites. Initial results show a wide range of ages in the specific compounds which constitute a much larger range than the ages indicated by the density fractions done on the same samples. Overall, this study explores the use of molecular-level indicators to study soil organic matter dynamics, which could help assess the overall potential vulnerability of soil carbon in various ecosystems.

  19. High-resolution records detect human-caused changes to the boreal forest wildfire regime in interior Alaska

    USGS Publications Warehouse

    Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Wooller, Matthew J.; Finney, Bruce P.

    2016-01-01

    Stand-replacing wildfires are a keystone disturbance in the boreal forest, and they are becoming more common as the climate warms. Paleo-fire archives from the wildland–urban interface can quantify the prehistoric fire regime and assess how both human land-use and climate change impact ecosystem dynamics. Here, we use a combination of a sedimentary charcoal record preserved in varved lake sediments (annually layered) and fire scars in living trees to document changes in local fire return intervals (FRIs) and regional fire activity over the last 500 years. Ace Lake is within the boreal forest, located near the town of Fairbanks in interior Alaska, which was settled by gold miners in AD 1902. In the 400 years before settlement, fires occurred near the lake on average every 58 years. After settlement, fires became much more frequent (average every 18  years), and background charcoal flux rates rose to four times their preindustrial levels, indicating a region-wide increase in burning. Despite this surge in burning, the preindustrial boreal forest ecosystem and permafrost in the watershed have remained intact. Although fire suppression has reduced charcoal influx since the 1950s, an aging fuel load experiencing increasingly warm summers may pose management problems for this and other boreal sites that have similar land-use and fire histories. The large human-caused fire events that we identify can be used to test how increasingly common megafires may alter ecosystem dynamics in the future.

  20. Development of an establishment scheme for a DGVM

    NASA Astrophysics Data System (ADS)

    Song, Xiang; Zeng, Xiaodong; Zhu, Jiawen; Shao, Pu

    2016-07-01

    Environmental changes are expected to shift the distribution and abundance of vegetation by determining seedling establishment and success. However, most current ecosystem models only focus on the impacts of abiotic factors on biogeophysics (e.g., global distribution, etc.), ignoring their roles in the population dynamics (e.g., seedling establishment rate, mortality rate, etc.) of ecological communities. Such neglect may lead to biases in ecosystem population dynamics (such as changes in population density for woody species in forest ecosystems) and characteristics. In the present study, a new establishment scheme for introducing soil water as a function rather than a threshold was developed and validated, using version 1.0 of the IAP-DGVM as a test bed. The results showed that soil water in the establishment scheme had a remarkable influence on forest transition zones. Compared with the original scheme, the new scheme significantly improved simulations of tree population density, especially in the peripheral areas of forests and transition zones. Consequently, biases in forest fractional coverage were reduced in approximately 78.8% of the global grid cells. The global simulated areas of tree, shrub, grass and bare soil performed better, where the relative biases were reduced from 34.3% to 4.8%, from 27.6% to 13.1%, from 55.2% to 9.2%, and from 37.6% to 3.6%, respectively. Furthermore, the new scheme had more reasonable dependencies of plant functional types (PFTs) on mean annual precipitation, and described the correct dominant PFTs in the tropical rainforest peripheral areas of the Amazon and central Africa.

  1. Long term monitoring system integrated in an elevational gradient in NW Argentina

    NASA Astrophysics Data System (ADS)

    Carilla, J.; Malizia, A.; Osinaga, O.; Blundo, C.; Grau, R.; Malizia, L.; Aráoz, E.

    2013-05-01

    Ecological trends and ranges of variability are poorly known in the tropical and subtropical Andes. Long term studies are powerful tools to detect the response of vegetation dynamics, biodiversity and hydrological cycle to these trends. We present a long term monitoring system in NW Argentinean mountains, including forest permanent plots at different elevations and high elevation grasslands, encompassing more than 3.000 m elevation range. Long term studies include: 1) 66 ha of mountain forest permanent plots along the Yungas elevational gradient from c. 400 to 2500 masl , and latitudinal gradient (22-28S) with 45 plots in mature forests and 28 in secondary forests originated in grazing, agriculture and selective logging. Some of these permanent plots have achieved 20 years of monitoring and all of them are included in the "Red de Bosques Andinos" a network created recently, together with c. 10 institutions and more than 130 (c. 120 ha) forest permanent plots from Argentina to Colombia Andes. 2) Two GLORIA (Global Observation Research Initiative in Alpine Environments) sites, above 4000 masl with more than 170 species recorded, including one re-measurement. This system is included in GLORIA network (www.gloria.ac.at) and in GLORIA Andes (http://www.condesan.org/gloria), and 3) more than 15 satellite monitored high Andean lakes and a wide extension of vegas (75800 ha in Argentinean puna). A digital database is being implemented to organize and provide access to the information generated by these three systems coordinated by the Instituto de Ecología Regional (http://www.iecologia.com.ar). These monitoring data are analyzed together with instrumental and dendrochronological data to describe the dynamics of these ecosystems over an area of 20 million hectares distributed between 22 and 28°S. Some of the most significant results to date include: 1) secondary mountain forests are expanding over grasslands and agriculture lands, and tend to converge toward mature forest composition over time, despite different previous land use. Floristic changes are also reflected in structural changes, showing an increasing trend in biomass in the last 15 years for most of the plots. Exotic tree species are expanding their distribution (e.g. Ligustrum lucidum) and have a strong influence on the structure and dynamics of some secondary forests. 2) High Andean vegetation diversity decrease with altitude, while several functional groups cover increase with temperature. 3) There is a clear association between lake fluctuations, ecosystem productivity and regional climatic patterns. The long term record provided by dendrochronology showed that plant productivity of the last decades is the lowest in the last 180 years, with a consistent drying trend in the last years. We are generating longer temporal series of meteorological data and biological ecosystems measurements; this will help to differentiate between the effect of climate change, land use change and natural ecosystems variability, to understand the way vegetation and ecosystems response to these changes.

  2. Forest canopy temperatures: dynamics, controls, and relationships with ecosystem fluxes

    NASA Astrophysics Data System (ADS)

    Still, C. J.; Griffith, D.; Kim, Y.; Law, B. E.; Hanson, C. V.; Kwon, H.; Schulze, M.; Detto, M.; Pau, S.

    2017-12-01

    Temperature strongly affects enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with the environment, and can be used to examine forest responses to stresses like droughts and heat waves. Thermal infrared (TIR) imaging allows for extensive temporal and spatial sampling of canopy temperatures, particularly compared to spot measurements using thermocouples. We present results of TIR imaging of forest canopies at eddy covariance flux tower sites in the US Pacific Northwest and in Panama. These forests range from an old-growth temperate rainforest to a second growth semi-arid pine forest to a semi-deciduous tropical forest. Canopy temperature regimes at these sites are highly variable. Canopy temperatures at all forest sites displayed frequent departures from air temperature, particularly during clear sky conditions, with elevated canopy temperatures during the day and depressed canopy temperatures at night compared to air temperature. Comparison of canopy temperatures to fluxes of carbon dioxide, water vapor, and energy reveals stronger relationships than those found with air temperature. Daytime growing season net ecosystem exchange at the pine forest site is better explained by canopy temperature (r2 = 0.61) than air temperature (r2 = 0.52). At the semi-deciduous tropical forest, canopy photosynthesis is highly correlated with canopy temperature (r2 = 0.51), with a distinct optimum temperature for photosynthesis ( 31 °C) that agrees with leaf-level measurements. During the peak of one heat wave at an old-growth temperate rainforest, hourly averaged air temperature exceeded 35 °C, 10 °C above average. Peak hourly canopy temperature approached 40 °C, and leaf-to-air vapor pressure deficit exceeded 6 kPa. These extreme conditions had a dramatic effect on forest carbon and energy exchanges: the canopy switched from daytime net carbon uptake prior to the heatwave to net carbon release during and immediately after the heat wave. The latent heat flux from evapotranspiration increased during the heat wave, while sensible heat fluxes were lower.

  3. Spatial-temporal variability in GHG fluxes and their functional interpretation in RusFluxNet

    NASA Astrophysics Data System (ADS)

    Vasenev, Ivan; Meshalkina, Julia; Sarzhanov, Dmitriy; Mazirov, Ilia; Yaroslavtsev, Alex; Komarova, Tatiana; Tikhonova, Maria

    2016-04-01

    High spatial and temporal variability is mutual feature for most modern boreal landscapes in the European Territory of Russia. This variability is result of their relatively young natural and land-use age with very complicated development stories. RusFluxNet includes a functionally-zonal set of representative natural, agricultural and urban ecosystems from the Central Forest Reserve in the north till the Central Chernozemic Reserve in the south (more than 1000 km distance). Especial attention has been traditionally given to their soil cover and land-use detailed variability, morphogenetic and functional dynamics. Central Forest Biosphere Reserve (360 km to North-West from Moscow) is the principal southern-taiga one in the European territory of Russia with long history of mature spruce ecosystem structure and dynamics investigation. Our studies (in frame of RF Governmental projects #11.G34.31.0079 and #14.120.14.4266) have been concentrated on the soil carbon stocks and GHG fluxes spatial variability and dynamics due to dominated there windthrow and fallow-forest successions. In Moscow RTSAU campus gives a good possibility to develop the ecosystem and soil monitoring of GHG fluxes in the comparable sites of urban forest, field crops and lawn ecosystems taking especial attention on their meso- and micro-relief, soil cover patterns and subsoil, vegetation and land-use technologies, temperature and moisture spatial and temporal variability. In the Central Chernozemic Biosphere Reserve and adjacent areas we do the comparative analysis of GHG fluxes and balances in the virgin and mowed meadow-steppe, forest, pasture, cropland and three types of urban ecosystems with similar subsoil and relief conditions. The carried out researches have shown not only sharp (in 2-5 times) changes in GHG ecosystem and soil fluxes and balances due to seasonal and daily microclimate variation, vegetation and crop development but their essential (in 2-4 times) spatial variability due to different meso- or micro-relief forms, natural or man-made succession studies, topsoil texture or organic matter state, subsoil or perched groundwater features. Zonal, seasonal and functional subdividing the monitoring data allows essentially increase the regression links between GHG fluxes and air or soil temperature and moisture (to 0.75-0.87) that is very important for their modeling and prediction. In taiga and mix-forest zones usually there is stronger effect on GHG fluxes by air temperature than soil one due to comparatively thin (from 3 till 10 cm) layer of principal soil organic and/or humus-accumulative horizons with maximum biological activity that usually determines the total rate of GHG soil fluxes. Unfavorable seasonal conditions (dry season or low temperature) determine essential (in 1.5-2 times) decreasing not only in soil GHG fluxes but in level of their spatial variability, intraseasonal and daily dynamics too. These trends are most obvious in case of more open and sensitive to the external factors ecosystems, for example in case of industrial area lawns or at the first stages of the windthrow or fallow-forest successions. Understanding the principal regional and land-use-determined regularities of spatial and temporal changes in ecosystem and soil GHG fluxes help better modeling them in the process of spatial intra- and extrapolations, seasonal and interseasonal predictions, taking into attention basic and current principal ecological factors limiting GHG fluxes and balances. Their introduction in the ecological or agroecological models and land-use decision support systems allows improve the quality of environmental/agroecological monitoring and control not only for GHG emission but also for soil organic matter conservation, manure and nitrogen fertilizer application that is often crucially important for sustainable rural development and profitable farming.

  4. Plant hydraulic strategies and their variability at high latitudes: insights from a southern Canadian boreal forest site

    NASA Astrophysics Data System (ADS)

    Pappas, C.; Matheny, A. M.; Maillet, J.; Baltzer, J. L.; Stephens, J.; Barr, A.; Black, T. A.; Sonnentag, O.

    2016-12-01

    Boreal forests cover about one third of the world's forested area with a large part of the boreal zone located in Canada. These high-latitude ecosystems respond rapidly to environmental changes. Plant water stress and the resulting drought-induced mortality has been recently hypothesised as a major driver of forest changes in western Canada. Although boreal forests often exhibit low floristic complexity, local scale abiotic heterogeneities may lead to highly variable plant functional traits and thus to diverging plant responses to environmental changes. However, detailed measurements of plant hydraulic strategies and their inter- and intra-specific variability are still lacking for these ecosystems. Here, we quantify plant water use and hydraulic strategies of black spruce (Picea mariana) and larch (Larix laricina), that are widespread in the boreal zone, at a long-term monitoring site located in central Saskatchewan (53.99° N, 105.12° W; elevation 628.94 m a.s.l.). The site is characterized by a mature black spruce overstorey that dominates the landscape with few larch individuals. The ground cover consists mainly of mosses with some peat moss and lichens over a rich soil organic layer. Tree-level sap flux density, measured with Granier-style thermal dissipation probes (N=39), and concurrently recorded radial stem dynamics, measured with high frequency dendrometers (N=13), are used to quantify plant hydraulic functioning during the 2016 growing season. Hydrometeorological measurements, including soil moisture and micrometeorological data, are used to describe environmental constraints in plant water use. Tree-level dynamics are then integrated to the landscape and compared with ecosystem-level evapotranspiration measurements from an adjacent eddy-covariance flux tower. This experimental design allows us to quantify the main environmental drivers that shape plant hydraulic strategies in this southern boreal zone and to provide new insights into the inter- and intra-specific variability in plant hydraulic functioning in high-latitude ecosystems.

  5. Influence of Land Cover Heterogeneity, Land-Use Change and Management on the Regional Carbon Cycle in the Upper Midwest USA as Evaluated by High-Density Observations and a Dynamic Ecosystem Model

    NASA Astrophysics Data System (ADS)

    Desai, A. R.; Bolstad, P. V.; Moorcroft, P. R.; Davis, K. J.

    2005-12-01

    The interplay between land use change, forest management and land cover variability complicates the ability to characterize regional scale (10-1000 km) exchange of carbon dioxide between the land surface and atmosphere in heterogeneous landscapes. An attempt was made to observe and model these factors and their influence on the regional carbon cycle across the upper Midwest USA. A high density of eddy-covariance carbon flux, micrometeorology, carbon dioxide mixing ratio, stand-scale biometry and canopy component flux observations have been occurring in this area as part of the Chequamegon Ecosystem-Atmosphere Study. Observations limited to sampling only dominant stands and coarse-resolution biogeochemical models limited to biome-scale parameterization neither accurately capture the variability of carbon fluxes measured by the network of eddy covariance towers nor match the regional-scale carbon flux inferred from very tall tower eddy covariance measurements and multi-site upscaling. Analysis of plot level biometric data, U.S. Forest Service Forest Inventory Analysis data and high-resolution land cover data around the tall tower revealed significant variations in vegetation type, stand age, canopy stocking and structure. Wetlands, clearcuts and recent natural disturbances occur in characteristic small non-uniformly distributed patches that aggregate to form more than 30% of the landscape. The Ecosystem Demography model, a dynamic ecosystem model that incorporates vegetation heterogeneity, canopy structure, stand age, disturbance, land use change and forest management, was parameterized with regional biometric data and meteorology, historical records of land management and high-resolution satellite land cover maps. The model will be used to examine the significance of past land use change, natural disturbance history and current forest management in explaining landscape structure and regional carbon fluxes observed in the region today.

  6. Empirical Succession Mapping and Data Assimilation to Constrain Demographic Processes in an Ecosystem Model

    NASA Astrophysics Data System (ADS)

    Kelly, R.; Andrews, T.; Dietze, M.

    2015-12-01

    Shifts in ecological communities in response to environmental change have implications for biodiversity, ecosystem function, and feedbacks to global climate change. Community composition is fundamentally the product of demography, but demographic processes are simplified or missing altogether in many ecosystem, Earth system, and species distribution models. This limitation arises in part because demographic data are noisy and difficult to synthesize. As a consequence, demographic processes are challenging to formulate in models in the first place, and to verify and constrain with data thereafter. Here, we used a novel analysis of the USFS Forest Inventory Analysis to improve the representation of demography in an ecosystem model. First, we created an Empirical Succession Mapping (ESM) based on ~1 million individual tree observations from the eastern U.S. to identify broad demographic patterns related to forest succession and disturbance. We used results from this analysis to guide reformulation of the Ecosystem Demography model (ED), an existing forest simulator with explicit tree demography. Results from the ESM reveal a coherent, cyclic pattern of change in temperate forest tree size and density over the eastern U.S. The ESM captures key ecological processes including succession, self-thinning, and gap-filling, and quantifies the typical trajectory of these processes as a function of tree size and stand density. Recruitment is most rapid in early-successional stands with low density and mean diameter, but slows as stand density increases; mean diameter increases until thinning promotes recruitment of small-diameter trees. Strikingly, the upper bound of size-density space that emerges in the ESM conforms closely to the self-thinning power law often observed in ecology. The ED model obeys this same overall size-density boundary, but overestimates plot-level growth, mortality, and fecundity rates, leading to unrealistic emergent demographic patterns. In particular, the current ED formulation cannot capture steady state dynamics evident in the ESM. Ongoing efforts are aimed at reformulating ED to more closely approach overall forest dynamics evident in the ESM, and then assimilating inventory data to constrain model parameters and initial conditions.

  7. The response of vegetation distribution, ecosystem productivity, and fire in California to future climate scenarios simulated by the MC1 dynamic vegetation dynamic.

    Treesearch

    James M. Lenihan; Dominique Bachelet; Raymond Drapek; Ronald P. Neilson

    2006-01-01

    The objective of this study was to dynamically simulate the response of vegetation distribution, carbon, and fire to three scenarios of future climate change for California using the MAPSS-CENTURY (MCI) dynamic general vegetation model. Under all three scenarios, Alpine/Subalpine Forest cover declined with increased growing season length and warmth, and increases in...

  8. Forests and ozone: productivity, carbon storage, and feedbacks.

    PubMed

    Wang, Bin; Shugart, Herman H; Shuman, Jacquelyn K; Lerdau, Manuel T

    2016-02-22

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution.

  9. Dynamics of dissolved organic carbon in a stream during a quarter century of forest succession

    Treesearch

    Judy L. Meyer; Jackson Webster; Jennifer Knoepp; E.F. Benfield

    2014-01-01

    Dissolved organic carbon (DOC) is a heterogeneous mixture of compounds that makes up a large fraction of the organic matter transported in streams. It plays a significant role in many ecosystems. Riverine DOC links organic carbon cycles of continental and oceanic ecosystems. It is a significant trophic resource in stream food webs. DOC imparts color to lakes,...

  10. How livestock and flooding mediate the ecological integrity of working forests in Amazon River floodplains.

    PubMed

    Lucas, Christine M; Sheikh, Pervaze; Gagnon, Paul R; Mcgrath, David G

    2016-01-01

    The contribution of working forests to tropical conservation and development depends upon the maintenance of ecological integrity under ongoing land use. Assessment of ecological integrity requires an understanding of the structure, composition, and function and major drivers that govern their variability. Working forests in tropical river floodplains provide many goods and services, yet the data on the ecological processes that sustain these services is scant. In flooded forests of riverside Amazonian communities, we established 46 0.1-ha plots varying in flood duration, use by cattle and water buffalo, and time since agricultural abandonment (30-90 yr). We monitored three aspects of ecological integrity (stand structure, species composition, and dynamics of trees and seedlings) to evaluate the impacts of different trajectories of livestock activity (alleviation, stasis, and intensification) over nine years. Negative effects of livestock intensification were solely evident in the forest understory, and plots alleviated from past heavy disturbance increased in seedling density but had higher abundance of thorny species than plots maintaining low activity. Stand structure, dynamics, and tree species composition were strongly influenced by the natural pulse of seasonal floods, such that the defining characteristics of integrity were dependent upon flood duration (3-200 d). Forests with prolonged floods ≥ 140 d had not only lower species richness but also lower rates of recruitment and species turnover relative to forests with short floods <70 d. Overall, the combined effects of livestock intensification and prolonged flooding hindered forest regeneration, but overall forest integrity was largely related to the hydrological regime and age. Given this disjunction between factors mediating canopy and understory integrity, we present a subset of metrics for regeneration and recruitment to distinguish forest condition by livestock trajectory. Although our study design includes confounded factors that preclude a definitive assessment of the major drivers of ecological change, we provide much-needed data on the regrowth of a critical but poorly studied ecosystem. In addition to its emphasis on the dynamics of tropical wetland forests undergoing anthropogenic and environmental change, our case study is an important example for how to assess of ecological integrity in working forests of tropical ecosystems.

  11. One carbon cycle: Impacts of model integration, ecosystem process detail, model resolution, and initialization data, on projections of future climate mitigation strategies

    NASA Astrophysics Data System (ADS)

    Fisk, J.; Hurtt, G. C.; le page, Y.; Patel, P. L.; Chini, L. P.; Sahajpal, R.; Dubayah, R.; Thomson, A. M.; Edmonds, J.; Janetos, A. C.

    2013-12-01

    Integrated assessment models (IAMs) simulate the interactions between human and natural systems at a global scale, representing a broad suite of phenomena across the global economy, energy system, land-use, and carbon cycling. Most proposed climate mitigation strategies rely on maintaining or enhancing the terrestrial carbon sink as a substantial contribution to restrain the concentration of greenhouse gases in the atmosphere, however most IAMs rely on simplified regional representations of terrestrial carbon dynamics. Our research aims to reduce uncertainties associated with forest modeling within integrated assessments, and to quantify the impacts of climate change on forest growth and productivity for integrated assessments of terrestrial carbon management. We developed the new Integrated Ecosystem Demography (iED) to increase terrestrial ecosystem process detail, resolution, and the utilization of remote sensing in integrated assessments. iED brings together state-of-the-art models of human society (GCAM), spatial land-use patterns (GLM) and terrestrial ecosystems (ED) in a fully coupled framework. The major innovative feature of iED is a consistent, process-based representation of ecosystem dynamics and carbon cycle throughout the human, terrestrial, land-use, and atmospheric components. One of the most challenging aspects of ecosystem modeling is to provide accurate initialization of land surface conditions to reflect non-equilibrium conditions, i.e., the actual successional state of the forest. As all plants in ED have an explicit height, it is one of the few ecosystem models that can be initialized directly with vegetation height data. Previous work has demonstrated that ecosystem model resolution and initialization data quality have a large effect on flux predictions at continental scales. Here we use a factorial modeling experiment to quantify the impacts of model integration, process detail, model resolution, and initialization data on projections of future climate mitigation strategies. We find substantial effects on key integrated assessment projections including the magnitude of emissions to mitigate, the economic value of ecosystem carbon storage, future land-use patterns, food prices and energy technology.

  12. Environmental changes, forest history and human impact in the southern part of Valdai Hills (European Russia) during the last 7000 years

    NASA Astrophysics Data System (ADS)

    Novenko, Elena; Tsyganov, Andery; Pisarchuk, Natalia; Kozlov, Daniil

    2017-04-01

    Understanding the long-term ecological dynamics of swampy boreal forest is essential for assessment of the possible responses and feedbacks of forest ecosystems to climate change and natural disturbance. The multi-proxy record from the Central Forest State Natural Biosphere Reserve (CFSNBR), locate on the South of Valdai Hills, provides important new data on the forest history, human impact, paludification dynamics and environmental changes in the central part of the East European Plain during the Holocene. The results of peat humification, pollen, plant macrofossil, micro charcoal and testate amoeba analyses from forest pealand show that between 7000 and 4000 cal yr BP the southern part of Valdai Hills was occupied by broad-leaved forests. Spruce occurred in forest communities as small admixture and gradually increased its abundance. After 4000 cal yr BP spruce rapidly become the main forest forming species, however broad-leaved trees took place in plant cover. Despite significant climatic fluctuation, mixed broad-leaved-spruce forests persisted in vegetation until 900 cal yr BP and then were replaced by waterlogged herbal spruce forests. The extensive Sphagnum spruce forests are recent plant communities and were formed during the last 100 years that could be explain by changes in water balance of the territory due to both climate and anthropogenic factors. According to reconstruction of Mid- and Late Holocene climate changes, warm and relatively dry period of the Holocene Thermal Maximum (7000-5500 cal yr BP) was followed by climate cooling that included several relatively cold phases at about 5000, 3500, 2000, 1200 cal yr BP and warm intervals at about 2600, 1500 and 900 cal yr BP. The distinct cooling was reconstructed between 800 and 400 cal yr BP, apparently, correlated with the Little Ice Age. Climate dynamics appeared as significant changes of environmental conditions at local ecosystem. Warming phases are indicated by high peat humification and organic matter content and relatively low peat accumulation rates. Peat deposits poses sign of several fire episodes. During cool and humid phases the rate of vertical and lateral peat growth increased, while degree of peat decomposition become lower. Dramatic changes in environmental conditions in the study area and changes in trends of ecosystem dynamics occurred during the last 400-350 year. The obtained results suggest evident climate warming, significant increase in surface wetness and increase fivefold of peat accumulation rates. During the last hundred years, the local wetness in the studied localities became considerably higher that promoted the growth of Sphagnum mosses and overall transformation of forest stands to Sphagnum spruce forests. Evidences of significant human impact on the area about 300-250 cal yr BP were detected by indicator species in pollen analysis and reconstructions of woodland coverage by BMA approach. The modern vegetation of the Reserve may develop from a plant cover with mosaic pattern that included not only the mature spruce forests but also secondary birch woodlands, meadows and agricultural lands. This study was supported by the Russian Science Foundation (Grant 16-17-10045).

  13. Phosphorus Dynamics in High Latitude Soils

    NASA Astrophysics Data System (ADS)

    Vincent, A. G.; Vestergren, J.; Gröbner, G.; Wardle, D.; Schleucher, J.; Giesler, R.

    2016-12-01

    Phosphorus (P) is an important macronutrient in boreal forests and arctic and subarctic tundra, and elucidating the factors that control its bioavailability is essential to understand the function of these ecosystems, now and under global change. We tested several hypotheses about differences in soil P composition along natural gradients of temperature, ecosystem development, soil metal concentration, and fire frequency in Northern Sweden. To characterise P composition we used traditional soil P fractionation procedures as well as 1-dimensional 31P Nuclear Magnetic Resonance (NMR) and novel 2-dimensional 1H-31P NMR techniques. Here we synthesize the main patterns emerging from this work. Temperature seems to be an important driver of P bioavailability regardless of vegetation type in subarctic tundra, given a positive correlation between temperature and the concentration of bioavailable soil P along an elevational gradient. In boreal forest, stage of ecosystem development along a 7800 year old chronosequence created by glacial isostatic adjustment was associated with marked, yet not unidirectional, shifts in the composition of soil P, which suggests ongoing changes in unknown ecological processes. Naturally higher concentrations of iron and aluminium in soils due to groundwater recharge and discharge were related with higher concentrations of P compounds widely considered to be recalcitrant, such as inositol phosphates. Finally, retrogressive forest ecosystems with low productivity growing on old soils did not have a relatively higher proportion of recalcitrant organic P compounds, contrary to our expectations based on current biogeochemistry theory. Finally, one of our most enigmatic findings is the high relative abundance of labile P compounds such as RNA in soil. This would suggest that a great proportion of soil P is located within live microbial cells, and therefore that microbial dynamics are a crucial control on P bioavailability in these ecosystems.

  14. Potential Effects of Drought on Tree Dieback in Great Britain and Implications for Forest Management in Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Yu, Jianjun; Berry, Pam

    2017-04-01

    The drought and heat stress has alerted the composition, structure and biogeography of forests globally, whilst the projected severe and widespread droughts are potentially increasing. This challenges the sustainable forest management to better cope with future climate and maintain the forest ecosystem functions and services. Many studies have investigated the climate change impacts on forest ecosystem but less considered the climate extremes like drought. In this study, we implement a dynamic ecosystem model based on a version of LPJ-GUESS parameterized with European tree species and apply to Great Britain at a finer spatial resolution of 5*5 km. The model runs for the baseline from 1961 to 2011 and projects to the latter 21st century using 100 climate scenarios generated from MaRIUS project to tackle the climate model uncertainty. We will show the potential impacts of climate change on forest ecosystem and vegetation transition in Great Britain by comparing the modelled conditions in the 2030s and the 2080s relative to the baseline. In particular, by analyzing the modelled tree mortality, we will show the tree dieback patterns in response to drought for various species, and assess their drought vulnerability across Great Britain. We also use species distribution modelling to project the suitable climate space for selected tree species using the same climate scenarios. Aided by these two modelling approaches and based on the corresponding modelling results, we will discuss the implications for adaptation strategy for forest management, especially in extreme drought conditions. The gained knowledge and lessons for Great Britain are considered to be transferable in many other regions.

  15. Comparing tree foliage biomass models fitted to a multispecies, felled-tree biomass dataset for the United States

    Treesearch

    Brian J. Clough; Matthew B. Russell; Grant M. Domke; Christopher W. Woodall; Philip J. Radtke

    2016-01-01

    tEstimation of live tree biomass is an important task for both forest carbon accounting and studies of nutri-ent dynamics in forest ecosystems. In this study, we took advantage of an extensive felled-tree database(with 2885 foliage biomass observations) to compare different models and grouping schemes based onphylogenetic and geographic variation for predicting foliage...

  16. Oak savanna restoration in central Iowa: Assessing indicators of forest health for ecological monitoring (PROJECT NC-F-04-02)

    Treesearch

    Heidi Asbjornsen; Lars Brudvig

    2013-01-01

    Savanna ecosystems were once a dominant feature of the Midwestern Corn Belt Plains ecoregion, occurring within the dynamic boundary between prairies to the west and forests to the east, and maintained in the landscape by complex interactions between fire, climate, topography, and human activities (Anderson 1998). Characterized by their continuous understory layer and...

  17. Root disease can rival fire and harvest in reducing forest carbon storage

    Treesearch

    Sean P. Healey; Crystal L. Raymond; I. Blakey Lockman; Alexander J. Hernandez; Chris Garrard; Chengquan Huang

    2016-01-01

    Root diseases are known to suppress forest regeneration and reduce growth rates, and they may become more common as susceptible tree species become maladapted in parts of their historic ranges due to climate change. However, current ecosystem models do not track the effects of root disease on net productivity, and there has been little research on how the dynamics of...

  18. Forecasts of county-level land uses under three future scenarios: a technical document supporting the Forest Service 2010 RPA Assessment

    Treesearch

    David N. Wear

    2011-01-01

    Accurately forecasting future forest conditions and the implications for ecosystem services depends on understanding land use dynamics. In support of the 2010 Renewable Resources Planning Act (RPA) Assessment, we forecast changes in land uses for the coterminous United States in response to three scenarios. Our land use models forecast urbanization in response to the...

  19. Interaction of an invasive bark beetle with a native forest pathogen: Potential effect of dwarf mistletoe on range expansion of mountain pine beetle in jack pine forests

    Treesearch

    Jennifer Klutsch; Nadir Erbilgin

    2012-01-01

    In recent decades, climate change has facilitated shifts in species ranges that have the potential to significantly affect ecosystem dynamics and resilience. Mountain pine beetle (Dendroctonus ponderosae) is expanding east from British Columbia, where it has killed millions of pine trees, primarily lodgepole pine (Pinus contorta...

  20. Suspended sediment and turbidity after road construction/improvement and forest harvest in streams of the Trask River Watershed Study, Oregon

    Treesearch

    Ivan Arismendi; Jeremiah D. Groom; Maryanne Reiter; Sherri L. Johnson; Liz Dent; Mark Meleason; Alba Argerich; Arne E. Skaugset

    2017-01-01

    Transport of fine-grained sediment from unpaved forest roads into streams is a concern due to the potential negative effects of additional suspended sediment on aquatic ecosystems. Here we compared turbidity and suspended sediment concentration (SSC) dynamics in five nonfish bearing coastal Oregon streams above and below road crossings, during three consecutive time...

  1. Evaluating CO2 and CH4 dynamics of Alaskan ecosystems during the Holocene Thermal Maximum

    USGS Publications Warehouse

    He, Yujie; Jones, Miriam C.; Zhuang, Qianlai; Bochicchio, Christopher; Felzer, B. S.; Mason, Erik; Yu, Zicheng

    2014-01-01

    The Arctic has experienced much greater warming than the global average in recent decades due to polar amplification. Warming has induced ecological changes that have impacted climate carbon-cycle feedbacks, making it important to understand the climate and vegetation controls on carbon (C) dynamics. Here we used the Holocene Thermal Maximum (HTM, 11–9 ka BP, 1 ka BP = 1000 cal yr before present) in Alaska as a case study to examine how ecosystem Cdynamics responded to the past warming climate using an integrated approach of combining paleoecological reconstructions and ecosystem modeling. Our paleoecological synthesis showed expansion of deciduous broadleaf forest (dominated by Populus) into tundra and the establishment of boreal evergreen needleleaf and mixed forest during the second half of the HTM under a warmer- and wetter-than-before climate, coincident with the occurrence of the highest net primary productivity, cumulative net ecosystem productivity, soil C accumulation and CH4 emissions. These series of ecological and biogeochemical shifts mirrored the solar insolation and subsequent temperature and precipitation patterns during HTM, indicating the importance of climate controls on C dynamics. Our simulated regional estimate of CH4 emission rates from Alaska during the HTM ranged from 3.5 to 6.4 Tg CH4 yr−1 and highest annual NPP of 470 Tg C yr−1, significantly higher than previously reported modern estimates. Our results show that the differences in static vegetation distribution maps used in simulations of different time slices have greater influence on modeled C dynamics than climatic fields within each time slice, highlighting the importance of incorporating vegetation community dynamics and their responses to climatic conditions in long-term biogeochemical modeling.

  2. High-resolution data on the impact of warming on soil CO2 efflux from an Asian monsoon forest

    PubMed Central

    Liang, Naishen; Teramoto, Munemasa; Takagi, Masahiro; Zeng, Jiye

    2017-01-01

    This paper describes a project for evaluation of global warming’s impacts on soil carbon dynamics in Japanese forest ecosystems. We started a soil warming experiment in late 2008 in a 55-year-old evergreen broad-leaved forest at the boundary between the subtropical and warm-temperate biomes in southern Japan. We used infrared carbon-filament heat lamps to increase soil temperature by about 2.5 °C at a depth of 5 cm and continuously recorded CO2 emission from the soil surface using a multichannel automated chamber system. Here, we present details of the experimental processes and datasets for the CO2 emission rate, soil temperature, and soil moisture from control, trenched, and warmed trenched plots. The long term of the study and its high resolution make the datasets meaningful for use in or development of coupled climate-ecosystem models to tune their dynamic behaviour as well as to provide mean parameters for decomposition of soil organic carbon to support future predictions of soil carbon sequestration. PMID:28291228

  3. Quantifying resilience of multiple ecosystem services and biodiversity in a temperate forest landscape.

    PubMed

    Cantarello, Elena; Newton, Adrian C; Martin, Philip A; Evans, Paul M; Gosal, Arjan; Lucash, Melissa S

    2017-11-01

    Resilience is increasingly being considered as a new paradigm of forest management among scientists, practitioners, and policymakers. However, metrics of resilience to environmental change are lacking. Faced with novel disturbances, forests may be able to sustain existing ecosystem services and biodiversity by exhibiting resilience, or alternatively these attributes may undergo either a linear or nonlinear decline. Here we provide a novel quantitative approach for assessing forest resilience that focuses on three components of resilience, namely resistance, recovery, and net change, using a spatially explicit model of forest dynamics. Under the pulse set scenarios, we explored the resilience of nine ecosystem services and four biodiversity measures following a one-off disturbance applied to an increasing percentage of forest area. Under the pulse + press set scenarios, the six disturbance intensities explored during the pulse set were followed by a continuous disturbance. We detected thresholds in net change under pulse + press scenarios for the majority of the ecosystem services and biodiversity measures, which started to decline sharply when disturbance affected >40% of the landscape. Thresholds in net change were not observed under the pulse scenarios, with the exception of timber volume and ground flora species richness. Thresholds were most pronounced for aboveground biomass, timber volume with respect to the ecosystem services, and ectomycorrhizal fungi and ground flora species richness with respect to the biodiversity measures. Synthesis and applications . The approach presented here illustrates how the multidimensionality of stability research in ecology can be addressed and how forest resilience can be estimated in practice. Managers should adopt specific management actions to support each of the three components of resilience separately, as these may respond differently to disturbance. In addition, management interventions aiming to deliver resilience should incorporate an assessment of both pulse and press disturbances to ensure detection of threshold responses to disturbance, so that appropriate management interventions can be identified.

  4. Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements

    NASA Astrophysics Data System (ADS)

    Liu, Chunwei; Sun, Ge; McNulty, Steven G.; Noormets, Asko; Fang, Yuan

    2017-01-01

    The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient (Kc) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, Kc has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. This study aimed at deriving monthly Kc for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly Kc data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), Kc values had large seasonal variation across all land covers. The spatial variability of Kc was well explained by latitude, suggesting site factors are a major control on Kc. Seasonally, Kc increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly Kc in all land covers, except in EBF. During the peak growing season, forests had the highest Kc values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for Kc by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. The Kc models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.

  5. Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chunwei; Sun, Ge; McNulty, Steven G.

    The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient ( K c) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, K c has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. Thismore » study aimed at deriving monthly K c for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly K c data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), K c values had large seasonal variation across all land covers. The spatial variability of K c was well explained by latitude, suggesting site factors are a major control on K c. Seasonally, K c increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly K c in all land covers, except in EBF. During the peak growing season, forests had the highest K c values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for K c by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. Here, the K c models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.« less

  6. Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements

    DOE PAGES

    Liu, Chunwei; Sun, Ge; McNulty, Steven G.; ...

    2017-01-18

    The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient ( K c) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, K c has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. Thismore » study aimed at deriving monthly K c for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly K c data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), K c values had large seasonal variation across all land covers. The spatial variability of K c was well explained by latitude, suggesting site factors are a major control on K c. Seasonally, K c increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly K c in all land covers, except in EBF. During the peak growing season, forests had the highest K c values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for K c by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. Here, the K c models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.« less

  7. Variation in phenolic root exudates and rhizosphere carbon cycling among tree species in temperate forest ecosystems

    NASA Astrophysics Data System (ADS)

    Zwetsloot, Marie; Bauerle, Taryn; Kessler, André; Wickings, Kyle

    2017-04-01

    Temperate forest tree species composition has been highly dynamic over the past few centuries and is expected to only further change under current climate change predictions. While aboveground changes in forest biodiversity have been widely studied, the impacts on belowground processes are far more challenging to measure. In particular, root exudation - the process through which roots release organic and inorganic compounds into the rhizosphere - has received little scientific attention yet may be the key to understanding root-facilitated carbon cycling in temperate forest ecosystems. The aim of this study was to analyze the extent by which tree species' variation in phenolic root exudate profiles influences soil carbon cycling in temperate forest ecosystems. In order to answer this question, we grew six temperate forest tree species in a greenhouse including Acer saccharum, Alnus rugosa, Fagus grandifolia, Picea abies, Pinus strobus, and Quercus rubra. To collect root exudates, trees were transferred to hydroponic growing systems for one week and then exposed to cellulose acetate strips in individual 800 mL jars with a sterile solution for 24 hours. We analyzed the methanol-extracted root exudates for phenolic composition with high-performance liquid chromatography (HPLC) and determined species differences in phenolic abundance, diversity and compound classes. This information was used to design the subsequent soil incubation study in which we tested the effect of different phenolic compound classes on rhizosphere carbon cycling using potassium hydroxide (KOH) traps to capture soil CO2 emissions. Our findings show that tree species show high variation in phenolic root exudate patterns and that these differences can significantly influence soil CO2 fluxes. These results stress the importance of linking belowground plant traits to ecosystem functioning. Moreover, this study highlights the need for research on root and rhizosphere processes in order to improve terrestrial carbon cycling models and estimate forest ecosystem feedbacks to climate change.

  8. Biotic Nitrogen Enrichment Regulates Calcium Sources to Forests

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J. C.; Perakis, S. S.; Hynicka, J. D.

    2015-12-01

    Calcium is an essential nutrient in forest ecosystems that is susceptible to leaching loss and depletion. Calcium depletion can affect plant and animal productivity, soil acid buffering capacity, and fluxes of carbon and water. Excess nitrogen supply and associated soil acidification are often implicated in short-term calcium loss from soils, but the long-term role of nitrogen enrichment on calcium sources and resupply is unknown. Here we use strontium isotopes (87Sr/86Sr) as a proxy for calcium to investigate how soil nitrogen enrichment from biological nitrogen fixation interacts with bedrock calcium to regulate both short-term available supplies and the long-term sources of calcium in montane conifer forests. Our study examines 22 sites in western Oregon, spanning a 20-fold range of bedrock calcium on sedimentary and basaltic lithologies. In contrast to previous studies emphasizing abiotic control of weathering as a determinant of long-term ecosystem calcium dynamics and sources (via bedrock fertility, climate, or topographic/tectonic controls) we find instead that that biotic nitrogen enrichment of soil can strongly regulate calcium sources and supplies in forest ecosystems. For forests on calcium-rich basaltic bedrock, increasing nitrogen enrichment causes calcium sources to shift from rock-weathering to atmospheric dominance, with minimal influence from other major soil forming factors, despite regionally high rates of tectonic uplift and erosion that can rejuvenate weathering supply of soil minerals. For forests on calcium-poor sedimentary bedrock, we find that atmospheric inputs dominate regardless of degree of nitrogen enrichment. Short-term measures of soil and ecosystem calcium fertility are decoupled from calcium source sustainability, with fundamental implications for understanding nitrogen impacts, both in natural ecosystems and in the context of global change. Our finding that long-term nitrogen enrichment increases forest reliance on atmospheric calcium helps explain reports of greater ecological calcium limitation in an increasingly nitrogen-rich world.

  9. Dynamics of novel forests of Castilla elastica in Puerto Rico: from species to ecosystems.

    PubMed

    Fonseca da Silva, Jéssica

    2015-08-01

    Novel forests (NFs)-forests that contain a combination of introduced and native species-are a consequence of intense anthropogenic disturbances and the natural resilience of disturbed ecosystems. The extent to which NFs have similar forest function as comparable native secondary forests is a matter of debate in the scientific community. Little is known about the performance of individual species in those forests. This study focuses on the functional attributes of Castilla elastica NFs in Puerto Rico and on the differences between introduced and native species growing side by side in these forests. Rates of processes measured here were later compared with data from literature about NSFs. I hypothesize that juvenile plants of C. elastica in NFs have higher survival rate than those of native species and that C. elastica trees have faster biomass fluxes than native trees. To test the hypotheses, I measured survival rates of juvenile plants and tree growth and characterized the aboveground litter fluxes and storage. Although juvenile plants of native species displayed higher survival rates than those of C. elastica (53% vs. 28%), the latter was dominant in the understory (96%). Stand biomass growth rate was 2.0 ± 0.4 (average ± one standard deviation) Mg·ha(-1)·year(-1) for the whole forest, and Guarea guidonia, a native species, exhibited the highest tree growth. Total litter fall was 9.6 ± 0.5 Mg·ha(-1)·year(-1), and mean litter standing stock was 4.4 ± 0.1 Mg·ha(-1). Castilla elastica litter fall decomposed twice as fast as that of native species (5.8 ± 1.1 vs. 3.03 ± 1 k·year(-1)). Literature comparisons show that the present NFs differ in some rates of processes from NSFs. This study brings unique and detailed supporting data about the ecological dynamics under mature novel forest stands. Further comprehensive studies about NFs are important to strengthen the body of knowledge about the wide range of variation of emerging tropical ecosystems. Due to the large increase in the area covered by NFs, greater attention is needed to understand their functioning, delivery of ecological services and management requirements.

  10. Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests

    NASA Astrophysics Data System (ADS)

    He, Yujie; Yang, Jinyan; Zhuang, Qianlai; Harden, Jennifer W.; McGuire, Anthony D.; Liu, Yaling; Wang, Gangsheng; Gu, Lianhong

    2015-12-01

    Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of microbial dormancy at six temperate forest sites of different forest types. We then extrapolated the model to global temperate forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbial dormancy dynamics at different temporal-spatial scales. The dormancy model consistently produced better match with field-observed heterotrophic soil CO2 efflux (RH) than the no dormancy model. Our regional modeling results further indicated that models with dormancy were able to produce more realistic magnitude of microbial biomass (<2% of soil organic carbon) and soil RH (7.5 ± 2.4 Pg C yr-1). Spatial correlation analysis showed that soil organic carbon content was the dominating factor (correlation coefficient = 0.4-0.6) in the simulated spatial pattern of soil RH with both models. In contrast to strong temporal and local controls of soil temperature and moisture on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio (C:N) was a major regulating factor at regional scales (correlation coefficient = -0.43 to -0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our findings suggest that incorporating microbial dormancy could improve the realism of microbial-based decomposition models and enhance the integration of soil experiments and mechanistically based modeling.

  11. Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yujie; Yang, Jinyan; Zhuang, Qianlai

    Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here in this study we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of microbial dormancy at six temperate forest sites of different forest types. We then extrapolated the model to global temperate forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbialmore » dormancy dynamics at different temporal-spatial scales. The dormancy model consistently produced better match with field-observed heterotrophic soil CO 2 efflux (R H) than the no dormancy model. Our regional modeling results further indicated that models with dormancy were able to produce more realistic magnitude of microbial biomass (<2% of soil organic carbon) and soil R H (7.5 ± 2.4 PgCyr -1). Spatial correlation analysis showed that soil organic carbon content was the dominating factor (correlation coefficient = 0.4-0.6) in the simulated spatial pattern of soil R H with both models. In contrast to strong temporal and local controls of soil temperature and moisture on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio (C:N) was a major regulating factor at regional scales (correlation coefficient = -0.43 to -0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our findings suggest that incorporating microbial dormancy could improve the realism of microbial-based decomposition models and enhance the integration of soil experiments and mechanistically based modeling.« less

  12. Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests

    USGS Publications Warehouse

    He, Yujie; Yang, Jinyan; Zhuang, Qianlai; Harden, Jennifer W.; McGuire, A. David; Liu, Yaling; Wang, Gangsheng; Gu, Lianhong

    2015-01-01

    Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of microbial dormancy at six temperate forest sites of different forest types. We then extrapolated the model to global temperate forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbial dormancy dynamics at different temporal-spatial scales. The dormancy model consistently produced better match with field-observed heterotrophic soil CO2 efflux (RH) than the no dormancy model. Our regional modeling results further indicated that models with dormancy were able to produce more realistic magnitude of microbial biomass (<2% of soil organic carbon) and soil RH (7.5 ± 2.4 Pg C yr−1). Spatial correlation analysis showed that soil organic carbon content was the dominating factor (correlation coefficient = 0.4–0.6) in the simulated spatial pattern of soil RHwith both models. In contrast to strong temporal and local controls of soil temperature and moisture on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio (C:N) was a major regulating factor at regional scales (correlation coefficient = −0.43 to −0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our findings suggest that incorporating microbial dormancy could improve the realism of microbial-based decomposition models and enhance the integration of soil experiments and mechanistically based modeling.

  13. Effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate

    USGS Publications Warehouse

    Jafarov, Elchin E.; Romanovsky, Vladimir E.; Genet, Helene; McGuire, Anthony David; Marchenko, Sergey S.

    2013-01-01

    Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1) Which factors determine post-fire ground temperature dynamics in lowland and upland black spruce forests? (2) What levels of burn severity will cause irreversible permafrost degradation in these ecosystems? We evaluated these questions in a transient modeling–sensitivity analysis framework to assess the sensitivity of permafrost to climate, burn severity, soil organic layer thickness, and soil moisture content in lowland (with thick organic layers, ~80 cm) and upland (with thin organic layers, ~30 cm) black spruce ecosystems. The results indicate that climate warming accompanied by fire disturbance could significantly accelerate permafrost degradation. In upland black spruce forest, permafrost could completely degrade in an 18 m soil column within 120 years of a severe fire in an unchanging climate. In contrast, in a lowland black spruce forest, permafrost is more resilient to disturbance and can persist under a combination of moderate burn severity and climate warming.

  14. Drought and tree mortality in tropical rainforest: understanding and differentiating functional responses

    NASA Astrophysics Data System (ADS)

    Meir, P.; Rowland, L.; da Costa, A. C. L.; Mencuccini, M.; Oliveira, A.; Binks, O.; Christoffersen, B. O.; Eliane, M.; Vasconcelos, S.; Kruijt, B.; Ferreira, L.

    2014-12-01

    Our understanding of how forests respond to drought is especially constrained with respect to widespread tree mortality events. This limitation is particularly clear for tropical forests, despite the risk of drought to these ecosystems during the coming decades. We present new findings from the only current long-term 'ecosystem-scale' (1 ha) rainfall manipulation experiment in tropical rainforest, the Esecaflor experiment at Caxiuana National Forest, Para State, Brazil. Throughfall has been partially excluded from experimental forest at the Esecaflor experiment for more than a decade. We have previously demonstrated a capacity to model short-term physiological responses well, but longer term physiology and ecological dynamics remain challenging to understand and represent. In particular, high mortality and increased autotrophic respiration following extended drought are poorly understood phenomena, and their interaction with hydraulic responses and limitations needs to be characterised. We present initial data that for the first time combine carbon use and hydraulic metrics, comparing drought-vulnerable and non-vulnerable species that have experienced extended soil moisture deficit, as imposed in the experiment, also considering the response in soil respiration. We also discuss how these findings can be used to develop future empirical and modelling studies aimed at improving our capacity to predict the effects of drought on tropical forest ecosystems in Amazonia and in other tropical forest regions where species characteristics and environmental constraints may influence both short and long-term responses to drought.

  15. Where the woodland ends: How edges affect landscape structure and physiological responses of Quercus agrifolia

    NASA Astrophysics Data System (ADS)

    de Chant, Timothy Paul

    Forests and woodlands are integral parts of ecosystems across the globe, but they are threatened by a variety of factors, including urbanization and introduced forest pathogens. These two forces are fundamentally altering ecosystems, both by removing forest cover and reshaping landscapes. Comprehending how these two processes have changed forest ecosystems is an important step toward understanding how the affected systems will function in the future. I investigated the range of edge effects that result from disturbance brought about by forest pathogens and urbanization in two coastal oak woodlands in Marin County, California. Oak woodlands are a dynamic part of California's landscape, reacting to changes in their biotic and abiotic environments across a range of spatial and temporal scales. Sudden Oak Death, caused by the introduced forest pathogen Phytophthora ramorum, has led to widespread mortality of many tree species in California's oak woodlands. I investigated how the remaining trees respond to such rapid changes in canopy structure (Chapter 2), and my results revealed a forest canopy quick to respond to the new openings. Urbanization, another disturbance regime, operates on a longer time scale. Immediately following urban development, forest edges are strikingly linear, but both forest processes and homeowner actions likely work in concert to disrupt the straight edge (Chapter 3). Forest edges grew more sinuous within 14 years of the initial disturbance, and continued to do so for the remainder of the study, another 21 years. Individual Quercus agrifolia trees also respond to urban edges decades after disturbance (Chapter 4), and their reaction is reflected in declining stable carbon isotope values (delta13C). This change suggests trees may have increased their stomatal conductance in response to greater water availability, reduced their photosynthetic rate as a result of stress, or some combination of both. Edges have far reaching and long lasting effects on forest structure and function. Investigations of their impacts on multiple spatial and temporal scales are important in determining the range of effects they have on forest ecosystems. Studies that combine remote sensing, geographic information systems, and field studies may help us understand the ecological consequences of forest edges.

  16. Forest fuel reduction alters fire severity and long-term carbon storage in three Pacific Northwest ecosystems.

    PubMed

    Mitchell, Stephen R; Harmon, Mark E; O'Connell, Kari E B

    2009-04-01

    Two forest management objectives being debated in the context of federally managed landscapes in the U.S. Pacific Northwest involve a perceived trade-off between fire restoration and carbon sequestration. The former strategy would reduce fuel (and therefore C) that has accumulated through a century of fire suppression and exclusion which has led to extreme fire risk in some areas. The latter strategy would manage forests for enhanced C sequestration as a method of reducing atmospheric CO2 and associated threats from global climate change. We explored the trade-off between these two strategies by employing a forest ecosystem simulation model, STANDCARB, to examine the effects of fuel reduction on fire severity and the resulting long-term C dynamics among three Pacific Northwest ecosystems: the east Cascades ponderosa pine forests, the west Cascades western hemlock-Douglas-fir forests, and the Coast Range western hemlock-Sitka spruce forests. Our simulations indicate that fuel reduction treatments in these ecosystems consistently reduced fire severity. However, reducing the fraction by which C is lost in a wildfire requires the removal of a much greater amount of C, since most of the C stored in forest biomass (stem wood, branches, coarse woody debris) remains unconsumed even by high-severity wildfires. For this reason, all of the fuel reduction treatments simulated for the west Cascades and Coast Range ecosystems as well as most of the treatments simulated for the east Cascades resulted in a reduced mean stand C storage. One suggested method of compensating for such losses in C storage is to utilize C harvested in fuel reduction treatments as biofuels. Our analysis indicates that this will not be an effective strategy in the west Cascades and Coast Range over the next 100 years. We suggest that forest management plans aimed solely at ameliorating increases in atmospheric CO2 should forgo fuel reduction treatments in these ecosystems, with the possible exception of some east Cascades ponderosa pine stands with uncharacteristic levels of understory fuel accumulation. Balancing a demand for maximal landscape C storage with the demand for reduced wildfire severity will likely require treatments to be applied strategically throughout the landscape rather than indiscriminately treating all stands.

  17. Climate Change Impacts on Forest Succession and Future Productivity

    NASA Astrophysics Data System (ADS)

    Mohan, J. E.; Melillo, J. M.; Clark, J. S.; Schlesinger, W. H.

    2012-12-01

    Change in ecosystem carbon (C) dynamics with forest succession is a long-studied topic in ecology, and secondary forests currently comprise a significant proportion of the global land base. Although mature forests are generally more important for conserving species and habitats, early successional trees and stands typically have higher rates of productivity, including net ecosystem productivity (NEP), which represents carbon available for sequestration. Secondary forests undergoing successional development are thus major players in the current global carbon cycle, yet how forests will function in the future under warmer conditions with higher atmospheric carbon dioxide (CO2) concentrations is unknown. Future forest C dynamics will depend, in part, on future species composition. Data from "Forests of the Future" research in a number of global change experiments provide insights into how forests may look in terms of dominant species composition, and thus function, in a future world. Studies at Free-Air Carbon Dioxide (FACE) experiments at Duke Forest and other facilities, plus climate warming experiments such as those at the Harvard Forest, suggest a common underlying principle of vegetation responses to environmental manipulation: Namely, that shade-tolerant woody species associating with arbuscular mycorrhizal (AM) fungi show greater growth stimulation than ectomycorrhizal-associating (ECM) trees which are more common in temperate and boreal forests (Fig. 1 of relative growth rates standardized by pre-treatment rates). This may be due in part to the role of AM fungi in obtaining soil phosphorus and inorganic forms of nitrogen for plant associates. In combination, these results suggest a shift in future forest composition towards less-productive tree species that generally acquire atmospheric CO2 at lower annual rates, as well as a competitive advantage extended to woody vines such as poison ivy. Due to higher atmospheric CO2 and warmer temperatures, forests of the future may become less-productive than those of today.

  18. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research.

    PubMed

    Arroyo-Rodríguez, Víctor; Melo, Felipe P L; Martínez-Ramos, Miguel; Bongers, Frans; Chazdon, Robin L; Meave, Jorge A; Norden, Natalia; Santos, Bráulio A; Leal, Inara R; Tabarelli, Marcelo

    2017-02-01

    Old-growth tropical forests are being extensively deforested and fragmented worldwide. Yet forest recovery through succession has led to an expansion of secondary forests in human-modified tropical landscapes (HMTLs). Secondary forests thus emerge as a potential repository for tropical biodiversity, and also as a source of essential ecosystem functions and services in HMTLs. Such critical roles are controversial, however, as they depend on successional, landscape and socio-economic dynamics, which can vary widely within and across landscapes and regions. Understanding the main drivers of successional pathways of disturbed tropical forests is critically needed for improving management, conservation, and restoration strategies. Here, we combine emerging knowledge from tropical forest succession, forest fragmentation and landscape ecology research to identify the main driving forces shaping successional pathways at different spatial scales. We also explore causal connections between land-use dynamics and the level of predictability of successional pathways, and examine potential implications of such connections to determine the importance of secondary forests for biodiversity conservation in HMTLs. We show that secondary succession (SS) in tropical landscapes is a multifactorial phenomenon affected by a myriad of forces operating at multiple spatio-temporal scales. SS is relatively fast and more predictable in recently modified landscapes and where well-preserved biodiversity-rich native forests are still present in the landscape. Yet the increasing variation in landscape spatial configuration and matrix heterogeneity in landscapes with intermediate levels of disturbance increases the uncertainty of successional pathways. In landscapes that have suffered extensive and intensive human disturbances, however, succession can be slow or arrested, with impoverished assemblages and reduced potential to deliver ecosystem functions and services. We conclude that: (i) succession must be examined using more comprehensive explanatory models, providing information about the forces affecting not only the presence but also the persistence of species and ecological groups, particularly of those taxa expected to be extirpated from HMTLs; (ii) SS research should integrate new aspects from forest fragmentation and landscape ecology research to address accurately the potential of secondary forests to serve as biodiversity repositories; and (iii) secondary forest stands, as a dynamic component of HMTLs, must be incorporated as key elements of conservation planning; i.e. secondary forest stands must be actively managed (e.g. using assisted forest restoration) according to conservation goals at broad spatial scales. © 2015 Cambridge Philosophical Society.

  19. Balancing trade-offs between ecosystem services in Germany’s forests under climate change

    NASA Astrophysics Data System (ADS)

    Gutsch, Martin; Lasch-Born, Petra; Kollas, Chris; Suckow, Felicitas; Reyer, Christopher P. O.

    2018-04-01

    Germany’s forests provide a variety of ecosystem services. Sustainable forest management aims to optimize the provision of these services at regional level. However, climate change will impact forest ecosystems and subsequently ecosystem services. The objective of this study is to quantify the effects of two alternative management scenarios and climate impacts on forest variables indicative of ecosystem services related to timber, habitat, water, and carbon. The ecosystem services are represented through nine model output variables (timber harvest, above and belowground biomass, net ecosystem production, soil carbon, percolation, nitrogen leaching, deadwood, tree dimension, broadleaf tree proportion) from the process-based forest model 4C. We simulated forest growth, carbon and water cycling until 2045 with 4C set-up for the whole German forest area based on National Forest Inventory data and driven by three management strategies (nature protection, biomass production and a baseline management) and an ensemble of regional climate scenarios (RCP2.6, RCP 4.5, RCP 8.5). We provide results as relative changes compared to the baseline management and observed climate. Forest management measures have the strongest effects on ecosystem services inducing positive or negative changes of up to 40% depending on the ecosystem service in question, whereas climate change only slightly alters ecosystem services averaged over the whole forest area. The ecosystem services ‘carbon’ and ‘timber’ benefit from climate change, while ‘water’ and ‘habitat’ lose. We detect clear trade-offs between ‘timber’ and all other ecosystem services, as well as synergies between ‘habitat’ and ‘carbon’. When evaluating all ecosystem services simultaneously, our results reveal certain interrelations between climate and management scenarios. North-eastern and western forest regions are more suitable to provide timber (while minimizing the negative impacts on remaining ecosystem services) whereas southern and central forest regions are more suitable to fulfil ‘habitat’ and ‘carbon’ services. The results provide the base for future forest management optimizations at the regional scale in order to maximize ecosystem services and forest ecosystem sustainability at the national scale.

  20. Modeling carbon dynamics in mangrove ecosystems in North America and Eastern Africa

    NASA Astrophysics Data System (ADS)

    Trettin, C.; Dai, Z.; Birdsey, R.; Frolking, S. E.

    2016-12-01

    Assessing carbon (C) dynamics in mangroves is fundamental to understand their role in mitigating climate change as well as the myriad of ecosystems derived the wetland forest. A spatially-explicit process model, MCAT (Mangrove-Carbon-Assessment-Tool), was developed to estimate (1) C dynamics in mangrove ecosystems, including biomass, burial C, dissolved inorganic and organic C (DIC and DOC), particulate organic C (POC), and CH4 and soil CO2 fluxes, and (2) impacts of disturbances, including storms, fire, insects and harvesting, on C sequestration in mangrove ecosystems. MCAT was tested using observations from eight plots in Everglades National Park (ENP) in Florida of USA and the World Heritage site in Mexican Caribbean in Quintana Roo (QR). The model was applied for assessing C dynamics in mangrove forests with different eco-environmental conditions in Northern America and Eastern Africa. The metrics from the four model evaluation statistics, determination coefficient (R2=0.99), model performance efficiency (E=0.98), percent bias (PBIAS=1.06%), and the ratio of the root mean squared error to standard deviation (RRS=0.11) showed that the model performed well for assessing mangrove C at these plots with a high model performance efficiency. The simulated biomass for ENP and QR was in good agreement with observations although there are large differences in canopy stature among those plots, ranging from tall to dwarf mangroves. The simulated aboveground net primary productivity, burial C, DIC, DOC, POC and CH4 for the plot at ENP approximated the reported values. There are substantial differences in C sequestration and fluxes in mangroves to atmosphere and water place-to-place due to differences in ecological drivers. Climate and soils are key factors that impact C dynamics in mangrove ecosystems, including temperature and salinity, such that there are differences in C sequestration rates among these mangrove sites in southeastern USA, Mexican Caribbean and Zambezi River Delta of Mozambique.

  1. Impact of fire disturbance on soil thermal and carbon dynamics in Alaskan Tundra and Boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Rastetter, E.; Shaver, G. R.; Rocha, A. V.

    2012-12-01

    In Alaska, fire disturbance is a major component influencing the soil water and energy balance in both tundra and boreal forest ecosystems. Fire-caused changes in soil environment further affect both above- and below-ground carbon cycles depending on different fire severities. Understanding the effects of fire disturbance on soil thermal change requires implicit modeling work on the post-fire soil thawing and freezing processes. In this study, we model the soil temperature profiles in multiple burned and non-burned sites using a well-developed soil thermal model which fully couples soil water and heat transport. The subsequent change in carbon dynamics is analyzed based on site level observations and simulations from the Multiple Element Limitation (MEL) model. With comparison between burned and non-burned sites, we compare and contrast fire effects on soil thermal and carbon dynamics in continuous permafrost (Anaktuvik fire in north slope), discontinuous permafrost (Erickson Creek fire at Hess Creek) and non-permafrost zone (Delta Junction fire in interior Alaska). Then we check the post-fire recovery of soil temperature profiles at sites with different fire severities in both tundra and boreal forest fire areas. We further project the future changes in soil thermal and carbon dynamics using projected climate data from Scenarios Network for Alaska & Arctic Planning (SNAP). This study provides information to improve the understanding of fire disturbance on soil thermal and carbon dynamics and the consequent response under a warming climate.

  2. Temperate forest health in an era of emerging megadisturbance

    USGS Publications Warehouse

    Millar, Constance I.; Stephenson, Nathan L.

    2015-01-01

    Although disturbances such as fire and native insects can contribute to natural dynamics of forest health, exceptional droughts, directly and in combination with other disturbance factors, are pushing some temperate forests beyond thresholds of sustainability. Interactions from increasing temperatures, drought, native insects and pathogens, and uncharacteristically severe wildfire are resulting in forest mortality beyond the levels of 20th-century experience. Additional anthropogenic stressors, such as atmospheric pollution and invasive species, further weaken trees in some regions. Although continuing climate change will likely drive many areas of temperate forest toward large-scale transformations, management actions can help ease transitions and minimize losses of socially valued ecosystem services.

  3. Stability, Bistability, and Critical Thresholds in Fire-prone Forested Landscapes: How Frequency and Intensity of Disturbance Interact and Influence Forest Cover

    NASA Astrophysics Data System (ADS)

    Miller, A. D.

    2015-12-01

    Many aspects of disturbance processes can have large impacts on the composition of plant communities, and associated changes in land cover type in turn have biogeochemical feedbacks to climate. In particular, changes to disturbance regimes can potentially change the number and stability of equilibrial states, and plant community states can differ dramatically in their carbon (C) dynamics, energy balance, and hydrology. Using the Klamath region of northern California as a model system, we present a theoretical analysis of how changes to climate and associated fire dynamics can disrupt high-carbon, long-lived conifer forests and replace them with shrub-chaparral communities that have much lower biomass and are more pyrogenic. Specifically, we develop a tractable model of plant community dynamics, structured by size class, life-history traits, lottery-type competition, and species-specific responses to disturbance. We assess the stability of different states in terms of disturbance frequency and intensity, and quantitatively partition long-term low-density population growth rates into mechanisms that influence critical transitions from stable to bistable behavior. Our findings show how different aspects of disturbance act and interact to control competitive outcomes and stable states, hence ecosystem-atmosphere C exchange. Forests tend to dominate in low frequency and intensity regimes, while shrubs dominate at high fire frequency and intensity. In other regimes, the system is bistable, and the fate of the system depends both on initial conditions and random chance. Importantly, the system can cross a critical threshold where hysteresis prevents easy return to the prior forested state. We conclude that changes in disturbance-recovery dynamics driven by projected climate change can shift this system away from forest dominated in the direction of shrub-dominated landscape. This will result in a large net C release from the landscape, and alter biophysical ecosystem-climate interactions.

  4. Multi-decadal carbon and water relations of African tropical humid forests: a tree-ring stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Hufkens, Koen; Helle, Gerd; Beeckman, Hans; de Haulleville, Thales; Kearsley, Elizabeth; Boeckx, Pascal

    2013-04-01

    Little is known about the temporal dynamics of the carbon sequestering capacity and dynamics of African tropical humid forest ecosystems in response to various environmental drivers. This lack of knowledge is mainly due to the absence of ecosystem scale flux measurements of gas exchange. However, tree growth often displays itself as alternating pattern of visible rings due to the seasonally varying growth speed of the vascular cambium. Consequently, analysis of tree growth through tree-ring analysis provides us with insights into past responses of the carbon sequestering capacity of key species to abrupt ecosystem disturbances and, while slower, a changing climate. Not only does the width and density of growth rings reflect annual growth but their isotopic composition of 13C/12C and 18O/16O isotopes also reveal the environmental conditions in which the trees were growing. In particular, stable isotope ratios in tree-rings of carbon are influenced by fractionation through carboxylation during photosynthesis and changes in leaf stomatal conductance. Similarly, fractionation of oxygen isotopes of soil water occurs at the leaf level through evapo-transipiration. As a consequence, 18O/16O (δ18O) values in wood cores will reflect both the signal of the source water as well as that of for example summer humidity. Therefore, both C and O stable isotopes might not only be valuable as proxy data for past climatic conditions but they also serve as an important tool in understanding carbon and water relations within a tropical forest ecosystems. To this end we correlate long term climate records (1961 - present) with tree ring measurement of incremental growth and high resolution analysis of tree-core stable isotope composition(δ13C , δ18O) at a tropical humid forests in the DR Congo. The Yangambi Man And Biosphere (MAB) reserve is located in the north-eastern part of DR Congo, with a distinct tropical rainforest climate. In addition to the tree-core data records and extensive meteorological records collected at both sites, observations on green leaf phenology of key species will provide us with additional information on potential carbon sequestration dynamics. Because, phenology is a first order control on plant productivity. In this unique study, using detailed tree-ring analyses together with auxiliary data, we explore the temporal dynamics of carbon and water relations and the influence on carbon sequestration of key tree species in African tropical humid forests.

  5. Common factors drive disease and coarse woody debris dynamics in forests impacted by sudden oak death

    Treesearch

    Richard C. Cobb; Maggie N. Chan; Ross K. Meentemeyer; David M. Rizzo

    2011-01-01

    Disease ecology has made important steps in describing how epidemiological processes control the impact of pathogens on populations and communities but fewer field or theoretical studies address disease effects at the ecosystem level. We demonstrate that the same epidemiological mechanisms drive disease intensity and coarse woody debris (CWD) dynamics...

  6. Assessing Ecological Impacts According to Land Use Change

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Lee, D. K.; Jeong, W.; Jeong, S. G.; Jin, Y.

    2015-12-01

    Land use patterns have changed by human activities, and it has affected the structure and dynamics of ecosystems. In particular, the conversion of forests into other land use has caused environmental degradation and loss of biodiversity. The evaluation of species and their habitat can be preferentially considered to prevent or minimize the adverse effects of land use change. The objective of study is identifying the impacts of environmental conditions on forest ecosystems by comparing ecological changes with time series spatial data. Species distribution models were developed for diverse species with presence data and time-series environmental variables, which allowed comparison of the habitat suitability and connectivity. Habitat suitability and connectivity were used to estimate impacts of forest ecosystems due to land use change. Our result suggested that the size and degree of ecological impacts are were different depending on the properties of land use change. The elements and species were greatly affected by the land use change according to the results. This study suggested that a methodology for measuring the interference of land use change in species habitat and connectivity. Furthermore, it will help to conserve and manage forest by identifying priority conservation areas with influence factor and scale.

  7. Ecological restoration of southwestern ponderosa pine ecosystems: A broad perspective

    USGS Publications Warehouse

    Allen, Craig D.; Savage, Melissa; Falk, Donald A.; Suckling, Kieran F.; Swetnam, Thomas W.; Schulke, Todd; Stacey, Peter B.; Morgan, Penelope; Hoffman, Martos; Klingel, Jon T.

    2002-01-01

    The purpose of this paper is to promote a broad and flexible perspective on ecological restoration of Southwestern (U.S.) ponderosa pine forests. Ponderosa pine forests in the region have been radically altered by Euro-American land uses, including livestock grazing, fire suppression, and logging. Dense thickets of young trees now abound, old-growth and biodiversity have declined, and human and ecological communities are increasingly vulnerable to destructive crown fires. A consensus has emerged that it is urgent to restore more natural conditions to these forests. Efforts to restore Southwestern forests will require extensive projects employing varying combinations of young-tree thinning and reintroduction of low-intensity fires. Treatments must be flexible enough to recognize and accommodate: high levels of natural heterogeneity; dynamic ecosystems; wildlife and other biodiversity considerations; scientific uncertainty; and the challenges of on-the-ground implementation. Ecological restoration should reset ecosystem trends toward an envelope of “natural variability,” including the reestablishment of natural processes. Reconstructed historic reference conditions are best used as general guides rather than rigid restoration prescriptions. In the long term, the best way to align forest conditions to track ongoing climate changes is to restore fire, which naturally correlates with current climate. Some stands need substantial structural manipulation (thinning) before fire can safely be reintroduced. In other areas, such as large wilderness and roadless areas, fire alone may suffice as the main tool of ecological restoration, recreating the natural interaction of structure and process. Impatience, overreaction to crown fire risks, extractive economics, or hubris could lead to widespread application of highly intrusive treatments that may further damage forest ecosystems. Investments in research and monitoring of restoration treatments are essential to refine restoration methods. We support the development and implementation of a diverse range of scientifically viable restoration approaches in these forests, suggest principles for ecologically sound restoration that immediately reduce crown fire risk and incrementally return natural variability and resilience to Southwestern forests, and present ecological perspectives on several forest restoration approaches.

  8. Spatial Configuration of Drought Disturbance and Forest Gap Creation across Environmental Gradients

    PubMed Central

    Andrew, Margaret E.; Ruthrof, Katinka X.; Matusick, George; Hardy, Giles E. St. J.

    2016-01-01

    Climate change is increasing the risk of drought to forested ecosystems. Although drought impacts are often anecdotally noted to occur in discrete patches of high canopy mortality, the landscape effects of drought disturbances have received virtually no study. This study characterized the landscape configuration of drought impact patches and investigated the relationships between patch characteristics, as indicators of drought impact intensity, and environmental gradients related to water availability to determine factors influencing drought vulnerability. Drought impact patches were delineated from aerial surveys following an extreme drought in 2011 in southwestern Australia, which led to patchy canopy dieback of the Northern Jarrah Forest, a Mediterranean forest ecosystem. On average, forest gaps produced by drought-induced dieback were moderate in size (6.6 ± 9.7 ha, max = 85.7 ha), compact in shape, and relatively isolated from each other at the scale of several kilometers. However, there was considerable spatial variation in the size, shape, and clustering of forest gaps. Drought impact patches were larger and more densely clustered in xeric areas, with significant relationships observed with topographic wetness index, meteorological variables, and stand height. Drought impact patch clustering was more strongly associated with the environmental factors assessed (R2 = 0.32) than was patch size (R2 = 0.21); variation in patch shape remained largely unexplained (R2 = 0.02). There is evidence that the xeric areas with more intense drought impacts are ‘chronic disturbance patches’ susceptible to recurrent drought disturbance. The spatial configuration of drought disturbances is likely to influence ecological processes including forest recovery and interacting disturbances such as fire. Regime shifts to an alternate, non-forested ecosystem may occur preferentially in areas with large or clustered drought impact patches. Improved understanding of drought impacts and their patterning in space and time will expand our knowledge of forest ecosystems and landscape processes, informing management of these dynamic systems in an uncertain future. PMID:27275744

  9. [Simulation study on the effects of climate change on aboveground biomass of plantation in southern China: Taking Moshao forest farm in Huitong Ecological Station as an example].

    PubMed

    Dai, Er Fu; Zhou, Heng; Wu, Zhuo; Wang, Xiao-Fan; Xi, Wei Min; Zhu, Jian Jia

    2016-10-01

    Global climate warming has significant effect on territorial ecosystem, especially on forest ecosystem. The increase in temperature and radiative forcing will significantly alter the structure and function of forest ecosystem. The southern plantation is an important part of forests in China, its response to climate change is getting more and more intense. In order to explore the responses of southern plantation to climate change under future climate scenarios and to reduce the losses that might be caused by climate change, we used climatic estimated data under three new emission scenarios, representative concentration pathways (RCPs) scenarios (RCP2.6 scenario, RCP4.5 scenario, and RCP8.5 scenario). We used the spatially dynamic forest landscape model LANDIS-2, coupled with a forest ecosystem process model PnET-2, to simulate the impact of climate change on aboveground net primary production (ANPP), species' establishment probability (SEP) and aboveground biomass of Moshao forest farm in Huitong Ecological Station, which located in Hunan Province during the period of 2014-2094. The results showed that there were obvious differences in SEP and ANPP among different forest types under changing climate. The degrees of response of SEP to climate change for different forest types were shown as: under RCP2.6 and RCP4.5, artificial coniferous forest>natural broadleaved forest>artificial broadleaved forest. Under RCP8.5, natural broadleaved forest>artificial broadleaved forest>artificial coniferous forest. The degrees of response of ANPP to climate change for different forest types were shown as: under RCP2.6, artificial broadleaved forest> natural broadleaved forest>artificial coniferous forest. Under RCP4.5 and RCP8.5, natural broadleaved forest>artificial broadleaved forest>artificial coniferous forest. The aboveground biomass of the artificial coniferous forest would decline at about 2050, but the natural broadleaved forest and artificial broadleaved forest showed a rising trend in general. During the period of 2014-2094, the total aboveground biomass under RCP2.6, RCP4.5 and RCP8.5 scenarios increased by 68.2%, 79.3% and 72.6%, respectively. The total aboveground biomass under various climatic scenarios sort as: RCP4.5>RCP8.5>RCP2.6. We thought that an appropriate temperature might be beneficial to the biomass accumulation in this study area. However, overextended temperature might hinder the sustainable development of forest production and ecological function.

  10. Addressing spatial scales and new mechanisms in climate impact ecosystem modeling

    NASA Astrophysics Data System (ADS)

    Poulter, B.; Joetzjer, E.; Renwick, K.; Ogunkoya, G.; Emmett, K.

    2015-12-01

    Climate change impacts on vegetation distributions are typically addressed using either an empirical approach, such as a species distribution model (SDM), or with process-based methods, for example, dynamic global vegetation models (DGVMs). Each approach has its own benefits and disadvantages. For example, an SDM is constrained by data and few parameters, but does not include adaptation or acclimation processes or other ecosystem feedbacks that may act to mitigate or enhance climate effects. Alternatively, a DGVM model includes many mechanisms relating plant growth and disturbance to climate, but simulations are costly to perform at high-spatial resolution and there remains large uncertainty on a variety of fundamental physical processes. To address these issues, here, we present two DGVM-based case studies where i) high-resolution (1 km) simulations are being performed for vegetation in the Greater Yellowstone Ecosystem using a biogeochemical, forest gap model, LPJ-GUESS, and ii) where new mechanisms for simulating tropical tree-mortality are being introduced. High-resolution DGVM model simulations require not only computing and reorganizing code but also a consideration of scaling issues on vegetation dynamics and stochasticity and also on disturbance and migration. New mechanisms for simulating forest mortality must consider hydraulic limitations and carbon reserves and their interactions on source-sink dynamics and in controlling water potentials. Improving DGVM approaches by addressing spatial scale challenges and integrating new approaches for estimating forest mortality will provide new insights more relevant for land management and possibly reduce uncertainty by physical processes more directly comparable to experimental and observational evidence.

  11. Process Network Approach to Understanding How Forest Ecosystems Adapt to Changes

    NASA Astrophysics Data System (ADS)

    Kim, J.; Yun, J.; Hong, J.; Kwon, H.; Chun, J.

    2011-12-01

    Sustainability challenges are transforming science and its role in society. Complex systems science has emerged as an inevitable field of education and research, which transcends disciplinary boundaries and focuses on understanding of the dynamics of complex social-ecological systems (SES). SES is a combined system of social and ecological components and drivers that interact and give rise to results, which could not be understood on the basis of sociological or ecological considerations alone. However, both systems may be viewed as a network of processes, and such a network hierarchy may serve as a hinge to bridge social and ecological systems. As a first step toward such effort, we attempted to delineate and interpret such process networks in forest ecosystems, which play a critical role in the cycles of carbon and water from local to global scales. These cycles and their variability, in turn, play an important role in the emergent and self-organizing interactions between forest ecosystems and their environment. Ruddell and Kumar (2009) define a process network as a network of feedback loops and the related time scales, which describe the magnitude and direction of the flow of energy, matter, and information between the different variables in a complex system. Observational evidence, based on micrometeorological eddy covariance measurements, suggests that heterogeneity and disturbances in forest ecosystems in monsoon East Asia may facilitate to build resilience for adaptation to change. Yet, the principles that characterize the role of variability in these interactions remain elusive. In this presentation, we report results from the analysis of multivariate ecohydrologic and biogeochemical time series data obtained from temperate forest ecosystems in East Asia based on information flow statistics.

  12. Historical and Projected Trends in Landscape Drivers Affecting Carbon Dynamics in Alaska

    DOE PAGES

    Pastick, Neal J.; Duffy, Paul; Genet, Hélène; ...

    2017-04-08

    Modern climate change in Alaska has resulted in widespread thawing of permafrost, increased fire activity, and extensive changes in vegetation characteristics that have significant consequences for socio-ecological systems. Despite observations of the heightened sensitivity of these systems to change, there has not been a comprehensive assessment of factors that drive ecosystem changes throughout Alaska. In this paper, we present research that improves our understanding of the main drivers of the spatiotemporal patterns of carbon dynamics using in situ observations, remote sensing data, and an array of modeling techniques. In the last 60 years, Alaska has seen a large increase inmore » mean annual air temperature (1.7 °C), with the greatest warming occurring over winter and spring. Warming trends are projected to continue throughout the 21st century and will likely result in landscape-level changes to ecosystem structure and function. Wetlands, mainly bogs and fens, which are currently estimated to cover 12.5% of the landscape, strongly influence exchange of methane between Alaska's ecosystems and the atmosphere and are expected to be affected by thawing permafrost and shifts in hydrology. Simulations suggest the current proportion of near-surface (within 1 m) and deep (within 5 m) permafrost extent will be reduced by 9–74% and 33–55% by the end of the 21st century, respectively. Since 2000, an average of 678,595 ha/yr was burned, more than twice the annual average during 1950–1999. The largest increase in fire activity is projected for the boreal forest, which could result in a reduction in late-successional spruce forest (8–44%) and an increase in early-succession deciduous forest (25–113%) that would mediate future fire activity and weaken permafrost stability in the region. Climate warming will also affect vegetation communities across arctic regions, where the coverage of deciduous forest could increase (223–620%), shrub tundra may increase (4–21%), and graminoid tundra might decrease (10–24%). Finally, this study sheds light on the sensitivity of Alaska's ecosystems to change that has the potential to significantly affect local and regional carbon balance, but more research is needed to improve estimates of land-surface and subsurface properties, and to better account for ecosystem dynamics affected by a myriad of biophysical factors and interactions.« less

  13. Historical and projected trends in landscape drivers affecting carbon dynamics in Alaska

    USGS Publications Warehouse

    Pastick, Neal J.; Duffy, Paul A.; Genet, Hélène; Rupp, T. Scott; Wylie, Bruce K.; Johnson, Kristofer; Jorgenson, M. Torre; Bliss, Norman B.; McGuire, Anthony David; Jafarov, Elchin; Knight, Joseph F.

    2017-01-01

    Modern climate change in Alaska has resulted in widespread thawing of permafrost, increased fire activity, and extensive changes in vegetation characteristics that have significant consequences for socioecological systems. Despite observations of the heightened sensitivity of these systems to change, there has not been a comprehensive assessment of factors that drive ecosystem changes throughout Alaska. Here we present research that improves our understanding of the main drivers of the spatiotemporal patterns of carbon dynamics using in situ observations, remote sensing data, and an array of modeling techniques. In the last 60 yr, Alaska has seen a large increase in mean annual air temperature (1.7°C), with the greatest warming occurring over winter and spring. Warming trends are projected to continue throughout the 21st century and will likely result in landscape-level changes to ecosystem structure and function. Wetlands, mainly bogs and fens, which are currently estimated to cover 12.5% of the landscape, strongly influence exchange of methane between Alaska's ecosystems and the atmosphere and are expected to be affected by thawing permafrost and shifts in hydrology. Simulations suggest the current proportion of near-surface (within 1 m) and deep (within 5 m) permafrost extent will be reduced by 9–74% and 33–55% by the end of the 21st century, respectively. Since 2000, an average of 678 595 ha/yr was burned, more than twice the annual average during 1950–1999. The largest increase in fire activity is projected for the boreal forest, which could result in a reduction in late-successional spruce forest (8–44%) and an increase in early-successional deciduous forest (25–113%) that would mediate future fire activity and weaken permafrost stability in the region. Climate warming will also affect vegetation communities across arctic regions, where the coverage of deciduous forest could increase (223–620%), shrub tundra may increase (4–21%), and graminoid tundra might decrease (10–24%). This study sheds light on the sensitivity of Alaska's ecosystems to change that has the potential to significantly affect local and regional carbon balance, but more research is needed to improve estimates of land-surface and subsurface properties, and to better account for ecosystem dynamics affected by a myriad of biophysical factors and interactions.

  14. Characteristics of organic soil in black spruce forests: implications for the application of land surface and ecosystem models in cold regions

    Treesearch

    Shuhua Yi; Kristen Manies; Jennifer Harden; David McGuire

    2009-01-01

    Soil organic layers (OL) play an important role in land-atmosphere exchanges of water, energy and carbon in cold environments. The proper implementation of OL in land surface and ecosystem models is important for predicting dynamic responses to climate warming. Based on the analysis of OL samples of black spruce (Picea mariana), we recommend that...

  15. Simulating the response of natural ecosystems and their fire regimes to climatic variability in Alaska.

    Treesearch

    D. Bachelet; J. Lenihan; R. Neilson; R. Drapek; T. Kittel

    2005-01-01

    The dynamic global vegetation model MC1 was used to examine climate, fire, and ecosystems interactions in Alaska under historical (1922-1996) and future (1997-2100) climate conditions. Projections show that by the end of the 21st century, 75%-90% of the area simulated as tundra in 1922 is replaced by boreal and temperate forest. From 1922 to 1996, simulation results...

  16. Great Basin insect outbreaks

    Treesearch

    Barbara Bentz; Diane Alston; Ted Evans

    2008-01-01

    Outbreaks of native and exotic insects are important drivers of ecosystem dynamics in the Great Basin. The following provides an overview of range, forest, ornamental, and agricultural insect outbreaks occurring in the Great Basin and the associated management issues and research needs.

  17. Modeling whole-tree carbon assimilation rate using observed transpiration rates and needle sugar carbon isotope ratios.

    PubMed

    Hu, Jia; Moore, David J P; Riveros-Iregui, Diego A; Burns, Sean P; Monson, Russell K

    2010-03-01

    *Understanding controls over plant-atmosphere CO(2) exchange is important for quantifying carbon budgets across a range of spatial and temporal scales. In this study, we used a simple approach to estimate whole-tree CO(2) assimilation rate (A(Tree)) in a subalpine forest ecosystem. *We analysed the carbon isotope ratio (delta(13)C) of extracted needle sugars and combined it with the daytime leaf-to-air vapor pressure deficit to estimate tree water-use efficiency (WUE). The estimated WUE was then combined with observations of tree transpiration rate (E) using sap flow techniques to estimate A(Tree). Estimates of A(Tree) for the three dominant tree species in the forest were combined with species distribution and tree size to estimate and gross primary productivity (GPP) using an ecosystem process model. *A sensitivity analysis showed that estimates of A(Tree) were more sensitive to dynamics in E than delta(13)C. At the ecosystem scale, the abundance of lodgepole pine trees influenced seasonal dynamics in GPP considerably more than Engelmann spruce and subalpine fir because of its greater sensitivity of E to seasonal climate variation. *The results provide the framework for a nondestructive method for estimating whole-tree carbon assimilation rate and ecosystem GPP over daily-to weekly time scales.

  18. The impact of climate change on ecosystem carbon dynamics at the Scandinavian mountain birch forest-tundra heath ecotone.

    PubMed

    Sjögersten, Sofie; Wookey, Philip A

    2009-02-01

    Changes in temperature and moisture resulting from climate change are likely to strongly modify the ecosystem carbon sequestration capacity in high-latitude areas, both through vegetation shifts and via direct warming effects on photosynthesis and decomposition. This paper offers a synthesis of research addressing the potential impacts of climate warming on soil processes and carbon fluxes at the forest-tundra ecotone in Scandinavia. Our results demonstrated higher rates of organic matter decomposition in mountain birch forest than in tundra heath soils, with markedly shallower organic matter horizons in the forest. Field and laboratory experiments suggest that increased temperatures are likely to increase CO2 efflux from both tundra and forest soil providing moisture availability does not become limiting for the decomposition process. Furthermore, colonization of tundra heath by mountain birch forest would increase rates of decomposition, and thus CO2 emissions, from the tundra heath soils, which currently store substantial amounts of potentially labile carbon. Mesic soils underlying both forest and tundra heath are currently weak sinks of atmospheric methane, but the strength of this sink could be increased with climate warming and/or drying.

  19. Disentangling the long-term effects of disturbance on soil biogeochemistry in a wet tropical forest ecosystem.

    PubMed

    Gutiérrez Del Arroyo, Omar; Silver, Whendee L

    2018-04-01

    Climate change is increasing the intensity of severe tropical storms and cyclones (also referred to as hurricanes or typhoons), with major implications for tropical forest structure and function. These changes in disturbance regime are likely to play an important role in regulating ecosystem carbon (C) and nutrient dynamics in tropical and subtropical forests. Canopy opening and debris deposition resulting from severe storms have complex and interacting effects on ecosystem biogeochemistry. Disentangling these complex effects will be critical to better understand the long-term implications of climate change on ecosystem C and nutrient dynamics. In this study, we used a well-replicated, long-term (10 years) canopy and debris manipulation experiment in a wet tropical forest to determine the separate and combined effects of canopy opening and debris deposition on soil C and nutrients throughout the soil profile (1 m). Debris deposition alone resulted in higher soil C and N concentrations, both at the surface (0-10 cm) and at depth (50-80 cm). Concentrations of NaOH-organic P also increased significantly in the debris deposition only treatment (20-90 cm depth), as did NaOH-total P (20-50 cm depth). Canopy opening, both with and without debris deposition, significantly increased NaOH-inorganic P concentrations from 70 to 90 cm depth. Soil iron concentrations were a strong predictor of both C and P patterns throughout the soil profile. Our results demonstrate that both surface- and subsoils have the potential to significantly increase C and nutrient storage a decade after the sudden deposition of disturbance-related organic debris. Our results also show that these effects may be partially offset by rapid decomposition and decreases in litterfall associated with canopy opening. The significant effects of debris deposition on soil C and nutrient concentrations at depth (>50 cm), suggest that deep soils are more dynamic than previously believed, and can serve as sinks of C and nutrients derived from disturbance-induced pulses of organic matter inputs. © 2017 John Wiley & Sons Ltd.

  20. Modelling a Compensation Standard for a Regional Forest Ecosystem: A Case Study in Yanqing District, Beijing, China

    PubMed Central

    Li, Tan; Zhang, Qingguo; Zhang, Ying

    2018-01-01

    The assessment of forest ecosystem services can quantify the impact of these services on human life and is the main basis for formulating a standard of compensation for these services. Moreover, the calculation of the indirect value of forest ecosystem services should not be ignored, as has been the case in some previous publications. A low compensation standard and the lack of a dynamic coordination mechanism are the main problems existing in compensation implementation. Using comparison and analysis, this paper employed accounting for both the costs and benefits of various alternatives. The analytic hierarchy process (AHP) method and the Pearl growth-curve method were used to adjust the results. This research analyzed the contribution of each service value from the aspects of forest produce services, ecology services, and society services. We also conducted separate accounting for cost and benefit, made a comparison of accounting and evaluation methods, and estimated the implementation period of the compensation standard. The main conclusions of this research include the fact that any compensation standard should be determined from the points of view of both benefit and cost in a region. The results presented here allow the range between the benefit and cost compensation to be laid out more reasonably. The practical implications of this research include the proposal that regional decision-makers should consider a dynamic compensation method to meet with the local economic level by using diversified ways to raise the compensation standard, and that compensation channels should offer a mixed mode involving both the market and government. PMID:29561789

  1. Simulating effects of fire on northern Rocky Mountain landscapes with the ecological process model FIRE-BGC.

    PubMed

    Keane, R E; Ryan, K C; Running, S W

    1996-03-01

    A mechanistic, biogeochemical succession model, FIRE-BGC, was used to investigate the role of fire on long-term landscape dynamics in northern Rocky Mountain coniferous forests of Glacier National Park, Montana, USA. FIRE-BGC is an individual-tree model-created by merging the gap-phase process-based model FIRESUM with the mechanistic ecosystem biogeochemical model FOREST-BGC-that has mixed spatial and temporal resolution in its simulation architecture. Ecological processes that act at a landscape level, such as fire and seed dispersal, are simulated annually from stand and topographic information. Stand-level processes, such as tree establishment, growth and mortality, organic matter accumulation and decomposition, and undergrowth plant dynamics are simulated both daily and annually. Tree growth is mechanistically modeled based on the ecosystem process approach of FOREST-BGC where carbon is fixed daily by forest canopy photosynthesis at the stand level. Carbon allocated to the tree stem at the end of the year generates the corresponding diameter and height growth. The model also explicitly simulates fire behavior and effects on landscape characteristics. We simulated the effects of fire on ecosystem characteristics of net primary productivity, evapotranspiration, standing crop biomass, nitrogen cycling and leaf area index over 200 years for the 50,000-ha McDonald Drainage in Glacier National Park. Results show increases in net primary productivity and available nitrogen when fires are included in the simulation. Standing crop biomass and evapotranspiration decrease under a fire regime. Shade-intolerant species dominate the landscape when fires are excluded. Model tree increment predictions compared well with field data.

  2. Modelling a Compensation Standard for a Regional Forest Ecosystem: A Case Study in Yanqing District, Beijing, China.

    PubMed

    Li, Tan; Zhang, Qingguo; Zhang, Ying

    2018-03-21

    The assessment of forest ecosystem services can quantify the impact of these services on human life and is the main basis for formulating a standard of compensation for these services. Moreover, the calculation of the indirect value of forest ecosystem services should not be ignored, as has been the case in some previous publications. A low compensation standard and the lack of a dynamic coordination mechanism are the main problems existing in compensation implementation. Using comparison and analysis, this paper employed accounting for both the costs and benefits of various alternatives. The analytic hierarchy process (AHP) method and the Pearl growth-curve method were used to adjust the results. This research analyzed the contribution of each service value from the aspects of forest produce services, ecology services, and society services. We also conducted separate accounting for cost and benefit, made a comparison of accounting and evaluation methods, and estimated the implementation period of the compensation standard. The main conclusions of this research include the fact that any compensation standard should be determined from the points of view of both benefit and cost in a region. The results presented here allow the range between the benefit and cost compensation to be laid out more reasonably. The practical implications of this research include the proposal that regional decision-makers should consider a dynamic compensation method to meet with the local economic level by using diversified ways to raise the compensation standard, and that compensation channels should offer a mixed mode involving both the market and government.

  3. Modeling forest C and N allocation responses to free-air CO2 enrichment

    NASA Astrophysics Data System (ADS)

    Luus, Kristina; De Kauwe, Martin; Walker, Anthony; Werner, Christian; Iversen, Colleen; McCarthy, Heather; Medlyn, Belinda; Norby, Richard; Oren, Ram; Zak, Donald; Zaehle, Sönke

    2015-04-01

    Vegetation allocation patterns and soil-vegetation partitioning of C and N are predicted to change in response to rising atmospheric concentrations of CO2. These allocation responses to rising CO2 have been examined at the ecosystem level through through free-air CO2 enrichment (FACE) experiments, and their global implications for the timing of progressive N limitation (PNL) and C sequestration have been predicted for ~100 years using a variety of ecosystem models. However, recent FACE model-data syntheses studies [1,2,3] have indicated that ecosystem models do not capture the 5-10 year site-level ecosystem allocation responses to elevated CO2. This may be due in part to the missing representation of the rhizosphere interactions between plants and soil biota in models. Ecosystem allocation of C and N is altered by interactions between soil and vegetation through the priming effect: as plant N availability diminishes, plants respond physiologically by altering their tissue allocation strategies so as to increase rates of root growth and rhizodeposition. In response, either soil organic material begins to accumulate, which hastens the onset of PNL, or soil microbes start to decompose C more rapidly, resulting in increased N availability for plant uptake, which delays PNL. In this study, a straightforward approach for representing rhizosphere interactions in ecosystem models was developed through which C and N allocation to roots and rhizodeposition responds dynamically to elevated CO2 conditions, modifying soil decomposition rates without pre-specification of the direction in which soil C and N accumulation should shift in response to elevated CO2. This approach was implemented in a variety of ecosystem models ranging from stand (G'DAY), to land surface (CLM 4.5, O-CN), to dynamic global vegetation (LPJ-GUESS) models. Comparisons against data from three forest FACE sites (Duke, Oak Ridge & Rhinelander) indicated that representing rhizosphere interactions allowed models to more reliably capture responses of ecosystem C and N allocation to free-air CO2 enrichment because they were able to simulate the priming effect. Insights were therefore gained into between-site differences observed in forest FACE experiments, and the underlying physiological and biogeochemical mechanisms determining ecosystem C and N allocation responses to elevated CO2. References 1. De Kauwe, M. G., et al. (2014), Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites, New Phytologist, 203, 883-899. 2. Walker, A. P., et al. (2014), Comprehensive ecosystem model-data synthesis using multiple data sets at two temperate forest free-air CO2 enrichment experiments: Model performance at ambient CO2 concentration, Journal of Geophysical Research: Biogeosciences, 119, 937-964. 3. Zaehle, S., et al. (2014), Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies, New Phytologist, 202 (3), 803-822.

  4. Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA using small-fooprint lidar data

    Treesearch

    Yunsuk Kim; Zhiqiang Yang; Warren B. Cohen; Dirk Pflugmacher; Chris L. Lauver; John L. Vankat

    2009-01-01

    Accurate estimation of live and dead biomass in forested ecosystems is important for studies of carbon dynamics, biodiversity, wildfire behavior, and for forest management. Lidar remote sensing has been used successfully to estimate live biomass, but studies focusing on dead biomass are rare. We used lidar data, in conjunction with field measurements from 58 plots to...

  5. Tropical forest response to elevated CO2: Model-experiment integration at the AmazonFACE site.

    NASA Astrophysics Data System (ADS)

    Frankenberg, C.; Berry, J. A.; Guanter, L.; Joiner, J.

    2014-12-01

    The terrestrial biosphere's response to current and future elevated atmospheric carbon dioxide (eCO2) is a large source of uncertainty in future projections of the C cycle, climate and ecosystem functioning. In particular, the sensitivity of tropical rainforest ecosystems to eCO­2 is largely unknown even though the importance of tropical forests for biodiversity, carbon storage and regional and global climate feedbacks is unambiguously recognized. The AmazonFACE (Free-Air Carbon Enrichment) project will be the first ecosystem scale eCO2 experiment undertaken in the tropics, as well as the first to be undertaken in a mature forest. AmazonFACE provides the opportunity to integrate ecosystem modeling with experimental observations right from the beginning of the experiment, harboring a two-way exchange, i.e. models provide hypotheses to be tested, and observations deliver the crucial data to test and improve ecosystem models. We present preliminary exploration of observed and expected process responses to eCO2 at the AmazonFACE site from the dynamic global vegetation model LPJ-GUESS, highlighting opportunities and pitfalls for model integration of tropical FACE experiments. The preliminary analysis provides baseline hypotheses, which are to be further developed with a follow-up multiple model inter-comparison. The analysis builds on the recently undertaken FACE-MDS (Model-Data Synthesis) project, which was applied to two temperate FACE experiments and exceeds the traditional focus on comparing modeled end-target output. The approach has proven successful in identifying well (and less well) represented processes in models, which are separated for six clusters also here; (1) Carbon fluxes, (2) Carbon pools, (3) Energy balance, (4) Hydrology, (5) Nutrient cycling, and (6) Population dynamics. Simulation performance of observed conditions at the AmazonFACE site (a.o. from Manaus K34 eddy flux tower) will highlight process-based model deficiencies, and aid the separation of uncertainties arising from general ecosystem responses and those responses related to eCO2.

  6. Tropical forest response to elevated CO2: Model-experiment integration at the AmazonFACE site.

    NASA Astrophysics Data System (ADS)

    Fleischer, K.

    2015-12-01

    The terrestrial biosphere's response to current and future elevated atmospheric carbon dioxide (eCO2) is a large source of uncertainty in future projections of the C cycle, climate and ecosystem functioning. In particular, the sensitivity of tropical rainforest ecosystems to eCO­2 is largely unknown even though the importance of tropical forests for biodiversity, carbon storage and regional and global climate feedbacks is unambiguously recognized. The AmazonFACE (Free-Air Carbon Enrichment) project will be the first ecosystem scale eCO2 experiment undertaken in the tropics, as well as the first to be undertaken in a mature forest. AmazonFACE provides the opportunity to integrate ecosystem modeling with experimental observations right from the beginning of the experiment, harboring a two-way exchange, i.e. models provide hypotheses to be tested, and observations deliver the crucial data to test and improve ecosystem models. We present preliminary exploration of observed and expected process responses to eCO2 at the AmazonFACE site from the dynamic global vegetation model LPJ-GUESS, highlighting opportunities and pitfalls for model integration of tropical FACE experiments. The preliminary analysis provides baseline hypotheses, which are to be further developed with a follow-up multiple model inter-comparison. The analysis builds on the recently undertaken FACE-MDS (Model-Data Synthesis) project, which was applied to two temperate FACE experiments and exceeds the traditional focus on comparing modeled end-target output. The approach has proven successful in identifying well (and less well) represented processes in models, which are separated for six clusters also here; (1) Carbon fluxes, (2) Carbon pools, (3) Energy balance, (4) Hydrology, (5) Nutrient cycling, and (6) Population dynamics. Simulation performance of observed conditions at the AmazonFACE site (a.o. from Manaus K34 eddy flux tower) will highlight process-based model deficiencies, and aid the separation of uncertainties arising from general ecosystem responses and those responses related to eCO2.

  7. Investigating the role of evergreen and deciduous forests in the increasing trend in atmospheric CO2 seasonal amplitude

    NASA Astrophysics Data System (ADS)

    Welp, L.; Calle, L.; Graven, H. D.; Poulter, B.

    2017-12-01

    The seasonal amplitude of Northern Hemisphere atmospheric CO2 concentrations has systematically increased over the last several decades, indicating that the timing and amplitude of net CO2 uptake and release by northern terrestrial ecosystems has changed substantially. Remote sensing, dynamic vegetation modeling, and in-situ studies have explored how changes in phenology, expansion of woody vegetation, and changes in species composition and disturbance regimes, among others, are driven by changes in climate and CO2. Despite these efforts, ecosystem models have not been able to reproduce observed atmospheric CO2 changes. Furthermore, the implications for the source/sink balance of northern ecosystems remains unclear. Changing proportions of evergreen and deciduous tree cover in response to climate change could be one of the key mechanisms that have given rise to amplified atmospheric CO2 seasonality. These two different plant functional types (PFTs) have different carbon uptake seasonal patterns and also different sensitivities to climate change, but are often lumped together as one forest type in global ecosystem models. We will demonstrate the potential that shifting distributions of evergreen and deciduous forests can have on the amplitude of atmospheric CO2. We will show phase differences in the net CO2 seasonal uptake using CO2 flux data from paired evergreen/deciduous eddy covariance towers. We will use simulations of evergreen and deciduous PFTs from the LPJ dynamic vegetation model to explore how climate change may influence the abundance and CO2 fluxes of each. Model results show that the area of deciduous forests is predicted to have increased, and the seasonal amplitude of CO2 fluxes has increased as well. The impact of surface flux seasonal variability on atmospheric CO2 amplitude is examined by transporting fluxes from each forest PFT through the TM3 transport model. The timing of the most intense CO2 uptake leads to an enhanced effect of deciduous forests on the atmospheric CO2 amplitude. These results demonstrate the potential significance of evergreen/deciduous forest PFTs on the amplitude of atmospheric CO2. In order to better understand the causes of the increasing amplitude trend, we encourage creating time-varying maps of evergreen/deciduous PFTs from remote sensing observations.

  8. Seasonal Precipitation Variability Effects on Carbon Exchange in a Tropical Dry Forest of Northwest Mexico

    NASA Astrophysics Data System (ADS)

    Verduzco, V.; Garatuza-Payan, J.; Yépez, E. A.; Watts, C. J.; Rodriguez, J. C.; Robles-Morua, A.; Vivoni, E. R.

    2015-12-01

    The Tropical Dry Forest (TDF) cover a large area in tropical and subtropical regions in the Americas and its productivity is thought to have an important contribution to the atmospheric carbon fluxes. However, due to this ecosystem complex dynamics, our understanding about the mechanisms controlling net ecosystem exchange is limited. In this study, five years of continue water and carbon fluxes measurements from eddy covariance complemented with remotely sensed vegetation greenness were used to investigate the ecosystem carbon balance of a TDF in the North American Monsoon region under different hydro climatic conditions. We identified a large CO2 efflux at the start of the summer season that is strongly related to the preceding winter precipitation and greenness. Since this CO2 efflux occurs prior to vegetation green-up, we infer a predominant heterotrophic control owed to high decomposition of accumulated labile soil organic matter from prior growing season. Overall, ecosystem respiration has an important effect on the net ecosystem production over the year, but can be overwhelmed by the strength of the primary productivity during the monsoon season. Precipitation characteristics during the monsoon have significant controls on sustaining carbon fixation in the TDF ecosystem into the fall season. A threshold of ~350 to 400 mm of summer precipitation was identify to switch the annual carbon balance in the TDF ecosystem from a net source (+102 g C/m2/yr) to a net sink (-249 g C/m2/yr). This research points at the needs for understanding the potential effects of changing seasonal precipitation patterns on ecosystem dynamics and carbon sequestration in subtropical regions.

  9. Sensitivity of the boreal forest-mire ecotone CO2, CH4, and N2O global warming potential to rainy and dry weather

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Minkkinen, Kari; Vesala, Timo; Nikinmaa, Eero

    2015-04-01

    In a mosaic of well drained forests and poorly drained mires of boreal landscape the weather events such as drought and rainy control greenhouse gas dynamics and ecosystem global warming potential (GWP). In forest-mire ecotone especially in ecosystems where CO2 sink is nearly balanced with CO2 source, it's fairly unknown whether the net warming effect of emissions of gases with strong radiative forcing (CH4 and N2O) could offset the net cooling effect of CO2 sequestration. We compared the net ecosystem CO2 exchange (NEE) estimated from the carbon sequestrations of forest stands and forest floor CO2 fluxes against CH4 and N2O fluxes of nine forest/mire site types along the soil moisture gradient in Finland. The ground water of nine sites changed between 10 m in upland forests and 0.1 m in mires, and weather during three years ranged between exceptionally wet and dry for the local climate. The NEE of upland forests was typically a sink of CO2, regardless the weather. Though, xeric pine forest was estimated to be a source of CO2 during wet and intermediate year and became a weak sink only in dry year. The NEE of forest-mire transitions ranged between a sink in dry year, while increased stand carbon sequestration could offset the reduced forest floor CO2 emission, and a source in wet year. The NEE of two sparsely forested mires strongly differed. The lawn type mire was balanced around zero and the hummock type mire was relatively strong NEE sink, regardless the weather. Generally, nearly zero N2O emission could not offset the cooling effect of net CH4 sink and net CO2 sink of upland forest and forest-mire transitions. However in sparsely forested mires, with N2O emission also nearly zero, the CH4 emission during wet and intermediate year played important role in turning the net cooling effect of NEE into a net warming. When evaluating GWP of boreal landscapes, undisturbed forest-mire transitions should be regarded as net cooling ecosystems instead of hotspots of net warming.

  10. Sinks for Inorganic Nitrogen Deposition in Forest Ecosystems with Low and High Nitrogen Deposition in China

    PubMed Central

    Sheng, Wenping; Yu, Guirui; Fang, Huajun; Jiang, Chunming; Yan, Junhua; Zhou, Mei

    2014-01-01

    We added the stable isotope 15N in the form of (15NH4)2SO4 and K15NO3 to forest ecosystems in eastern China under two different N deposition levels to study the fate of the different forms of deposited N. Prior to the addition of the 15N tracers, the natural 15N abundance ranging from −3.4‰ to +10.9‰ in the forest under heavy N deposition at Dinghushan (DHS), and from −3.92‰ to +7.25‰ in the forest under light N deposition at Daxinganling (DXAL). Four months after the tracer application, the total 15N recovery from the major ecosystem compartments ranged from 55.3% to 90.5%. The total 15N recoveries were similar under the (15NH4)2SO4 tracer treatment in both two forest ecosystems, whereas the total 15N recovery was significantly lower in the subtropical forest ecosystem at DHS than in the boreal forest ecosystem at DXAL under the K15NO3 tracer treatment. The 15N assimilated into the tree biomass represented only 8.8% to 33.7% of the 15N added to the forest ecosystems. In both of the tracer application treatments, more 15N was recovered from the tree biomass in the subtropical forest ecosystem at DHS than the boreal forest ecosystem at DXAL. The amount of 15N assimilated into tree biomass was greater under the K15NO3 tracer treatment than that of the (15NH4)2SO4 treatment in both forest ecosystems. This study suggests that, although less N was immobilized in the forest ecosystems under more intensive N deposition conditions, forest ecosystems in China strongly retain N deposition, even in areas under heavy N deposition intensity or in ecosystems undergoing spring freezing and thawing melts. Compared to ammonium deposition, deposited nitrate is released from the forest ecosystem more easily. However, nitrate deposition could be retained mostly in the plant N pool, which might lead to more C sequestration in these ecosystems. PMID:24586688

  11. Sinks for inorganic nitrogen deposition in forest ecosystems with low and high nitrogen deposition in China.

    PubMed

    Sheng, Wenping; Yu, Guirui; Fang, Huajun; Jiang, Chunming; Yan, Junhua; Zhou, Mei

    2014-01-01

    We added the stable isotope (15)N in the form of ((15)NH4)2SO4 and K(15)NO3 to forest ecosystems in eastern China under two different N deposition levels to study the fate of the different forms of deposited N. Prior to the addition of the (15)N tracers, the natural (15)N abundance ranging from -3.4‰ to +10.9‰ in the forest under heavy N deposition at Dinghushan (DHS), and from -3.92‰ to +7.25‰ in the forest under light N deposition at Daxinganling (DXAL). Four months after the tracer application, the total (15)N recovery from the major ecosystem compartments ranged from 55.3% to 90.5%. The total (15)N recoveries were similar under the ((15)NH4)2SO4 tracer treatment in both two forest ecosystems, whereas the total (15)N recovery was significantly lower in the subtropical forest ecosystem at DHS than in the boreal forest ecosystem at DXAL under the K(15)NO3 tracer treatment. The (15)N assimilated into the tree biomass represented only 8.8% to 33.7% of the (15)N added to the forest ecosystems. In both of the tracer application treatments, more (15)N was recovered from the tree biomass in the subtropical forest ecosystem at DHS than the boreal forest ecosystem at DXAL. The amount of (15)N assimilated into tree biomass was greater under the K(15)NO3 tracer treatment than that of the ((15)NH4)2SO4 treatment in both forest ecosystems. This study suggests that, although less N was immobilized in the forest ecosystems under more intensive N deposition conditions, forest ecosystems in China strongly retain N deposition, even in areas under heavy N deposition intensity or in ecosystems undergoing spring freezing and thawing melts. Compared to ammonium deposition, deposited nitrate is released from the forest ecosystem more easily. However, nitrate deposition could be retained mostly in the plant N pool, which might lead to more C sequestration in these ecosystems.

  12. Impact of rewilding, species introductions and climate change on the structure and function of the Yukon boreal forest ecosystem.

    PubMed

    Boonstra, Rudy; Boutin, Stan; Jung, Thomas S; Krebs, Charles J; Taylor, Shawn

    2018-03-01

    Community and ecosystem changes are happening in the pristine boreal forest ecosystem of the Yukon for 2 reasons. First, climate change is affecting the abiotic environment (temperature, rainfall and growing season) and driving changes in plant productivity and predator-prey interactions. Second, simultaneously change is occurring because of mammal species reintroductions and rewilding. The key ecological question is the impact these faunal changes will have on trophic dynamics. Primary productivity in the boreal forest is increasing because of climatic warming, but plant species composition is unlikely to change significantly during the next 50-100 years. The 9-10-year population cycle of snowshoe hares will persist but could be reduced in amplitude if winter weather increases predator hunting efficiency. Small rodents have increased in abundance because of increased vegetation growth. Arctic ground squirrels have disappeared from the forest because of increased predator hunting efficiency associated with shrub growth. Reintroductions have occurred for 2 reasons: human reintroductions of large ungulates and natural recolonization of mammals and birds extending their geographic ranges. The deliberate rewilding of wood bison (Bison bison) and elk (Cervus canadensis) has changed the trophic structure of this boreal ecosystem very little. The natural range expansion of mountain lions (Puma concolor), mule deer (Odocoileus hemionus) and American marten (Martes americana) should have few ecosystem effects. Understanding potential changes will require long-term monitoring studies and experiments on a scale we rarely deem possible. Ecosystems affected by climate change, species reintroductions and human alteration of habitats cannot remain stable and changes will be critically dependent on food web interactions. © 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  13. Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass

    NASA Astrophysics Data System (ADS)

    Joetzjer, E.; Pillet, M.; Ciais, P.; Barbier, N.; Chave, J.; Schlund, M.; Maignan, F.; Barichivich, J.; Luyssaert, S.; Hérault, B.; von Poncet, F.; Poulter, B.

    2017-07-01

    Despite advances in Earth observation and modeling, estimating tropical biomass remains a challenge. Recent work suggests that integrating satellite measurements of canopy height within ecosystem models is a promising approach to infer biomass. We tested the feasibility of this approach to retrieve aboveground biomass (AGB) at three tropical forest sites by assimilating remotely sensed canopy height derived from a texture analysis algorithm applied to the high-resolution Pleiades imager in the Organizing Carbon and Hydrology in Dynamic Ecosystems Canopy (ORCHIDEE-CAN) ecosystem model. While mean AGB could be estimated within 10% of AGB derived from census data in average across sites, canopy height derived from Pleiades product was spatially too smooth, thus unable to accurately resolve large height (and biomass) variations within the site considered. The error budget was evaluated in details, and systematic errors related to the ORCHIDEE-CAN structure contribute as a secondary source of error and could be overcome by using improved allometric equations.

  14. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems.

    PubMed

    Hisano, Masumi; Searle, Eric B; Chen, Han Y H

    2018-02-01

    Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. © 2017 Cambridge Philosophical Society.

  15. Aquatic biodiversity in forests: A weak link in ecosystem services resilience

    USGS Publications Warehouse

    Penaluna, Brooke E.; Olson, Deanna H.; Flitcroft, Rebecca L; Weber, Matthew A.; Bellmore, J. Ryan; Wondzell, Steven M.; Dunham, Jason B.; Johnson, Sherri L.; Reeves, Gordon H.

    2017-01-01

    The diversity of aquatic ecosystems is being quickly reduced on many continents, warranting a closer examination of the consequences for ecological integrity and ecosystem services. Here we describe intermediate and final ecosystem services derived from aquatic biodiversity in forests. We include a summary of the factors framing the assembly of aquatic biodiversity in forests in natural systems and how they change with a variety of natural disturbances and human-derived stressors. We consider forested aquatic ecosystems as a multi-state portfolio, with diverse assemblages and life-history strategies occurring at local scales as a consequence of a mosaic of habitat conditions and past disturbances and stressors. Maintaining this multi-state portfolio of assemblages requires a broad perspective of ecosystem structure, various functions, services, and management implications relative to contemporary stressors. Because aquatic biodiversity provides multiple ecosystem services to forests, activities that compromise aquatic ecosystems and biodiversity could be an issue for maintaining forest ecosystem integrity. We illustrate these concepts with examples of aquatic biodiversity and ecosystem services in forests of northwestern North America, also known as Northeast Pacific Rim. Encouraging management planning at broad as well as local spatial scales to recognize multi-state ecosystem management goals has promise for maintaining valuable ecosystem services. Ultimately, integration of information from socio-ecological ecosystems will be needed to maintain ecosystem services derived directly and indirectly from forest aquatic biota.

  16. Paying for Forest Ecosystem Services: Voluntary Versus Mandatory Payments.

    PubMed

    Roesch-McNally, Gabrielle E; Rabotyagov, Sergey S

    2016-03-01

    The emergence of new markets for forest ecosystem services can be a compelling opportunity for market diversification for private forest landowners, while increasing the provision of public goods from private lands. However, there is limited information available on the willingness-to-pay (WTP) for specific forest ecosystem services, particularly across different ecosystem market mechanisms. We utilize survey data from Oregon and Washington households to compare marginal WTP for forest ecosystem services and the total WTP for cost-effective bundles of forest ecosystem services obtained from a typical Pacific Northwest forest across two value elicitation formats representing two different ecosystem market mechanisms: an incentive-compatible choice experiment involving mandatory tax payments and a hypothetical private provision scenario modeled as eliciting contributions to the preferred forest management alternative via a provision point mechanism with a refund. A representative household's total WTP for the average forest management program was estimated at $217.59 per household/year under a mandatory tax mechanism and $160.44 per household/per year under a voluntary, crowdfunding-style, contribution mechanism; however, these estimates are not statistically different. Marginal WTP estimates were assessed for particular forest ecosystem service attributes including water quality, carbon storage, mature forest habitat, and public recreational access. This study finds that survey respondents place significant economic value on forest ecosystem services in both elicitation formats and that the distributions of the marginal WTP are not statistically significantly different.

  17. Paying for Forest Ecosystem Services: Voluntary Versus Mandatory Payments

    NASA Astrophysics Data System (ADS)

    Roesch-McNally, Gabrielle E.; Rabotyagov, Sergey S.

    2016-03-01

    The emergence of new markets for forest ecosystem services can be a compelling opportunity for market diversification for private forest landowners, while increasing the provision of public goods from private lands. However, there is limited information available on the willingness-to-pay (WTP) for specific forest ecosystem services, particularly across different ecosystem market mechanisms. We utilize survey data from Oregon and Washington households to compare marginal WTP for forest ecosystem services and the total WTP for cost-effective bundles of forest ecosystem services obtained from a typical Pacific Northwest forest across two value elicitation formats representing two different ecosystem market mechanisms: an incentive-compatible choice experiment involving mandatory tax payments and a hypothetical private provision scenario modeled as eliciting contributions to the preferred forest management alternative via a provision point mechanism with a refund. A representative household's total WTP for the average forest management program was estimated at 217.59 per household/year under a mandatory tax mechanism and 160.44 per household/per year under a voluntary, crowdfunding-style, contribution mechanism; however, these estimates are not statistically different. Marginal WTP estimates were assessed for particular forest ecosystem service attributes including water quality, carbon storage, mature forest habitat, and public recreational access. This study finds that survey respondents place significant economic value on forest ecosystem services in both elicitation formats and that the distributions of the marginal WTP are not statistically significantly different.

  18. Seasonal Course of Boreal Forest Reflectance

    NASA Astrophysics Data System (ADS)

    Rautiainen, M.; Heiskanen, J.; Mottus, M.; Eigemeier, E.; Majasalmi, T.; Vesanto, V.; Stenberg, P.

    2011-12-01

    According to the IPCC 2007 report, northern ecosystems are especially likely to be affected by climate change. Therefore, understanding the seasonal dynamics of boreal ecosystems and linking their phenological phases to satellite reflectance data is crucial for the efficient monitoring and modeling of northern hemisphere vegetation dynamics and productivity trends in the future. The seasonal reflectance course of a boreal forest is a result of the temporal cycle in optical properties of both the tree canopy and understory layers. Seasonal reflectance changes of the two layers are explained by the complex combination of changes in biochemistry and geometrical structure of different plant species as well as seasonal and diurnal variation in solar illumination. Analyzing the role of each of the contributing factors can only be achieved by linking radiative transfer modeling to empirical reflectance data sets. The aim of our project is to identify the seasonal reflectance changes and their driving factors in boreal forests from optical satellite images using new forest reflectance modeling techniques based on the spectral invariants theory. We have measured an extensive ground reference database on the seasonal changes of structural and optical properties of tree canopy and understory layers for a boreal forest site in central Finland in 2010. The database is complemented by a concurrent time series of Hyperion and SPOT satellite images. We use the empirical ground reference database as input to forest reflectance simulations and validate our simulation results using the empirical reflectance data obtained from satellite images. Based on our simulation results, we quantify 1) the driving factors influencing the seasonal reflectance courses of a boreal forest, and 2) the relative contribution of the understory and tree-level layers to forest reflectance as the growing season proceeds.

  19. Quantifying Forest Ecosystem Services Tradeoff—Coupled Ecological and Economic Models

    NASA Astrophysics Data System (ADS)

    Haff, P. K.; Ling, P. Y.

    2015-12-01

    Quantification of the effect of carbon-related forestland management activities on ecosystem services is difficult, because knowledge about the dynamics of coupled social-ecological systems is lacking. Different forestland management activities, such as various amount, timing, and methods of harvesting, and natural disturbances events, such as wind and fires, create shocks and uncertainties to the forest carbon dynamics. A spatially explicit model, Landis-ii, was used to model the forest succession for different harvest management scenarios at the Grandfather District, North Carolina. In addition to harvest, the model takes into account of the impact of natural disturbances, such as fire and insects, and species competition. The result shows the storage of carbon in standing biomass and in wood product for each species for each scenario. In this study, optimization is used to analyze the maximum profit and the number of tree species that each forest landowner can gain at different prices of carbon, roundwood, and interest rates for different harvest management scenarios. Time series of roundwood production of different types were estimated using remote sensing data. Econometric analysis is done to understand the possible interaction and relations between the production of different types of roundwood and roundwood prices, which can indicate the possible planting scheme that a forest owner may make. This study quantifies the tradeoffs between carbon sequestration, roundwood production, and forest species diversity not only from an economic perspective, but also takes into account of the forest succession mechanism in a species-diverse region. The resulting economic impact on the forest landowners is likely to influence their future planting decision, which in turn, will influence the species composition and future revenue of the landowners.

  20. Forest Management Devolution: Gap Between Technicians' Design and Villagers' Practices in Madagascar

    NASA Astrophysics Data System (ADS)

    Rives, Fanny; Carrière, Stéphanie M.; Montagne, Pierre; Aubert, Sigrid; Sibelet, Nicole

    2013-10-01

    In the 1980s, tropical forest-management principles underwent a shift toward approaches giving greater responsibilities to rural people. One argument for such a shift were the long-term relations established between rural people and their natural resources. In Madagascar, a new law was drawn up in 1996 (Gelose law), which sought to integrate rural people into forest management. A gap was observed between the changes foreseen by the projects implementing the Gelose law and the actual changes. In this article, we use the concept of the social-ecological system (SES) to analyze that gap. The differences existing between the planned changes set by the Gelose contract in the village of Ambatoloaka (northwest of Madagascar) and the practices observed in 2010 were conceptualized as a gap between two SESs. The first SES is the targeted one (i.e., a virtual one); it corresponds to the designed Gelose contract. The second SES is the observed one. It is characterized by the heterogeneity of forest users and uses, which have several impacts on forest management, and by very dynamic social and ecological systems. The observed SES has been reshaped contingent on the constraints and opportunities offered by the Gelose contract as well as on other ecological and social components. The consequences and opportunities that such an SES reshaping would offer to improve the implementation of the Gelose law are discussed. The main reasons explaining the gap between the two SESs are as follows: (1) the clash between static and homogeneous perceptions in the targeted SES and the dynamics and heterogeneity that characterize the observed SES; and (2) the focus on one specific use of forest ecosystems (i.e., charcoal-making) in the targeted SES. Forest management in the observed SES depends on several uses of forest ecosystems.

  1. Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya

    PubMed Central

    Chitale, Vishwas; Rijal, Srijana Joshi; Bisht, Neha; Shrestha, Bharat Babu

    2018-01-01

    Invasive alien plant species (IAPS) can pose severe threats to biodiversity and stability of native ecosystems, therefore, predicting the distribution of the IAPS plays a crucial role in effective planning and management of ecosystems. In the present study, we use Maximum Entropy (MaxEnt) modelling approach to predict the potential of distribution of eleven IAPS under future climatic conditions under RCP 2.6 and RCP 8.5 in part of Kailash sacred landscape region in Western Himalaya. Based on the model predictions, distribution of most of these invasive plants is expected to expand under future climatic scenarios, which might pose a serious threat to the native ecosystems through competition for resources in the study area. Native scrublands and subtropical needle-leaved forests will be the most affected ecosystems by the expansion of these IAPS. The present study is first of its kind in the Kailash Sacred Landscape in the field of invasive plants and the predictions of potential distribution under future climatic conditions from our study could help decision makers in planning and managing these forest ecosystems effectively. PMID:29664961

  2. Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya.

    PubMed

    Thapa, Sunil; Chitale, Vishwas; Rijal, Srijana Joshi; Bisht, Neha; Shrestha, Bharat Babu

    2018-01-01

    Invasive alien plant species (IAPS) can pose severe threats to biodiversity and stability of native ecosystems, therefore, predicting the distribution of the IAPS plays a crucial role in effective planning and management of ecosystems. In the present study, we use Maximum Entropy (MaxEnt) modelling approach to predict the potential of distribution of eleven IAPS under future climatic conditions under RCP 2.6 and RCP 8.5 in part of Kailash sacred landscape region in Western Himalaya. Based on the model predictions, distribution of most of these invasive plants is expected to expand under future climatic scenarios, which might pose a serious threat to the native ecosystems through competition for resources in the study area. Native scrublands and subtropical needle-leaved forests will be the most affected ecosystems by the expansion of these IAPS. The present study is first of its kind in the Kailash Sacred Landscape in the field of invasive plants and the predictions of potential distribution under future climatic conditions from our study could help decision makers in planning and managing these forest ecosystems effectively.

  3. Remote sensing in support of high-resolution terrestrial carbon monitoring and modeling

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Zhao, M.; Dubayah, R.; Huang, C.; Swatantran, A.; ONeil-Dunne, J.; Johnson, K. D.; Birdsey, R.; Fisk, J.; Flanagan, S.; Sahajpal, R.; Huang, W.; Tang, H.; Armstrong, A. H.

    2014-12-01

    As part of its Phase 1 Carbon Monitoring System (CMS) activities, NASA initiated a Local-Scale Biomass Pilot study. The goals of the pilot study were to develop protocols for fusing high-resolution remotely sensed observations with field data, provide accurate validation test areas for the continental-scale biomass product, and demonstrate efficacy for prognostic terrestrial ecosystem modeling. In Phase 2, this effort was expanded to the state scale. Here, we present results of this activity focusing on the use of remote sensing in high-resolution ecosystem modeling. The Ecosystem Demography (ED) model was implemented at 90 m spatial resolution for the entire state of Maryland. We rasterized soil depth and soil texture data from SSURGO. For hourly meteorological data, we spatially interpolated 32-km 3-hourly NARR into 1-km hourly and further corrected them at monthly level using PRISM data. NLCD data were used to mask sand, seashore, and wetland. High-resolution 1 m forest/non-forest mapping was used to define forest fraction of 90 m cells. Three alternative strategies were evaluated for initialization of forest structure using high-resolution lidar, and the model was used to calculate statewide estimates of forest biomass, carbon sequestration potential, time to reach sequestration potential, and sensitivity to future forest growth and disturbance rates, all at 90 m resolution. To our knowledge, no dynamic ecosystem model has been run at such high spatial resolution over such large areas utilizing remote sensing and validated as extensively. There are over 3 million 90 m land cells in Maryland, greater than 43 times the ~73,000 half-degree cells in a state-of-the-art global land model.

  4. Spatial and temporal patterns of carbon storage in forest ecosystems on Hainan island, southern China.

    PubMed

    Ren, Hai; Li, Linjun; Liu, Qiang; Wang, Xu; Li, Yide; Hui, Dafeng; Jian, Shuguang; Wang, Jun; Yang, Huai; Lu, Hongfang; Zhou, Guoyi; Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing

    2014-01-01

    Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993-2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices.

  5. Spatial and Temporal Patterns of Carbon Storage in Forest Ecosystems on Hainan Island, Southern China

    PubMed Central

    Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing

    2014-01-01

    Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993–2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices. PMID:25229628

  6. Assessing the Impacts of forest degradation on water, energy, and carbon budgets in Amazon forest using the Functionally Assembled Terrestrial Ecosystem Simulator

    NASA Astrophysics Data System (ADS)

    Huang, M.; Xu, Y.; Longo, M.; Keller, M.; Knox, R. G.; Koven, C.; Fisher, R.

    2017-12-01

    Tropical forest degradation from logging, fire, and fragmentation not only alters carbon stocks and carbon fluxes, but also impacts physical land-surface properties such as albedo and roughness length. Such impacts are poorly quantified to date due to difficulties in accessing and maintaining observational infrastructures, and the lack of proper modeling tools for capturing the interactions among biophysical properties, ecosystem demography, and biogeochemical cycling in tropical forests. As a first step to address these limitations, we implemented a selective logging module into the Functional Assembled Terrestrial Ecosystem Simulator (FATES) and parameterized the model to reproduce the selective logging experiment at the Tapajos National Forest in Brazil. The model was spun up until it reached the steady state, and simulations with and without logging were compared with the eddy covariance flux towers located at the logged and intact sites. The sensitivity of simulated water, energy, and carbon fluxes to key plant functional traits (e.g. Vcmax and leaf longevity) were quantified by perturbing their values within their documented ranges. Our results suggest that the model can reproduce water and carbon fluxes in intact forests, although sensible heat fluxes were overestimated. The effects of logging intensity and techniques on fluxes were assessed by specifying different disturbance parameters in the models (e.g., size-dependent mortality rates associated with timber harvest, collateral damage, and mechanical damage for infrastructure construction). The model projections suggest that even though the degraded forests rapidly recover water and energy fluxes compared with old-growth forests, the recovery times for carbon stocks, forest structure and composition are much longer. In addition, the simulated recovery trajectories are highly dependent on choices of values for functional traits. Our study highlights the advantages of an Earth system modeling approach, constrained by observations, to quantify the complex interactions among forest degradation, ecosystem recovery, climate, and environmental factors. Our results also show the urgent need to improve the representations of key mechanisms and traits to better capture forest degradation dynamics in Earth System Models.

  7. Hyperspectral and LiDAR remote sensing of fire fuels in Hawaii Volcanoes National Park.

    PubMed

    Varga, Timothy A; Asner, Gregory P

    2008-04-01

    Alien invasive grasses threaten to transform Hawaiian ecosystems through the alteration of ecosystem dynamics, especially the creation or intensification of a fire cycle. Across sub-montane ecosystems of Hawaii Volcanoes National Park on Hawaii Island, we quantified fine fuels and fire spread potential of invasive grasses using a combination of airborne hyperspectral and light detection and ranging (LiDAR) measurements. Across a gradient from forest to savanna to shrubland, automated mixture analysis of hyperspectral data provided spatially explicit fractional cover estimates of photosynthetic vegetation, non-photosynthetic vegetation, and bare substrate and shade. Small-footprint LiDAR provided measurements of vegetation height along this gradient of ecosystems. Through the fusion of hyperspectral and LiDAR data, a new fire fuel index (FFI) was developed to model the three-dimensional volume of grass fuels. Regionally, savanna ecosystems had the highest volumes of fire fuels, averaging 20% across the ecosystem and frequently filling all of the three-dimensional space represented by each image pixel. The forest and shrubland ecosystems had lower FFI values, averaging 4.4% and 8.4%, respectively. The results indicate that the fusion of hyperspectral and LiDAR remote sensing can provide unique information on the three-dimensional properties of ecosystems, their flammability, and the potential for fire spread.

  8. IN SITU ESTIMATES OF FOREST LAI FOR MODIS DATA VALIDATION

    EPA Science Inventory

    Satellite remote sensor data are commonly used to assess ecosystem conditions through synoptic monitoring of terrestrial vegetation extent, biomass, and seasonal dynamics. Two commonly used vegetation indices that can be derived from various remote sensor systems include the Norm...

  9. Response diversity, functional redundancy, and post-logging productivity in northern temperate and boreal forests.

    PubMed

    Correia, David Laginha Pinto; Raulier, Frédéric; Bouchard, Mathieu; Filotas, Élise

    2018-04-19

    The development of efficient ecosystem resilience indicators was identified as one of the key research priorities in the improvement of existing sustainable forest management frameworks. Two indicators of tree diversity associated with ecosystem functioning have recently received particular attention in the literature: functional redundancy (FR) and response diversity (RD). We examined how these indicators could be used to predict post-logging productivity in forests of Québec, Canada. We analysed the relationships between pre-logging FR and RD, as measured with sample plots, and post-logging productivity, measured as seasonal variation in enhanced vegetation index obtained from MODIS satellite imagery. The effects of the deciduous and coniferous tree components in our pre-disturbance diversity assessments were isolated in order to examine the hypothesis that they have different impacts on post-disturbance productivity. We also examined the role of tree species richness and species identity effects. Our analysis revealed the complementary nature of traditional biodiversity indicators and trait-based approaches in the study of biodiversity-ecosystem-functioning relationships in dynamic ecosystems. We report a significant and positive relationship between pre-disturbance deciduous RD and post-disturbance productivity, as well as an unexpected significant negative effect of coniferous RD on productivity. This negative relationship with post-logging productivity likely results from slower coniferous regeneration speeds and from the relatively short temporal scale examined. Negative black-spruce-mediated identity effects were likely associated with increased stand vulnerability to paludification and invasion by ericaceous shrubs that slow down forest regeneration. Response diversity outperformed functional redundancy as a measure of post-disturbance productivity most likely due to the stand-replacing nature of the disturbance considered. To the best of our knowledge, this is among the first studies to report a negative significant relationship between a component of RD and ecosystem functioning, namely coniferous RD and forest ecosystem productivity after a stand-replacing disturbance. © 2018 by the Ecological Society of America.

  10. Divergent phenological response to hydroclimate variability in forested mountain watersheds.

    PubMed

    Hwang, Taehee; Band, Lawrence E; Miniat, Chelcy F; Song, Conghe; Bolstad, Paul V; Vose, James M; Love, Jason P

    2014-08-01

    Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins' Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate-resolution imaging spectro-radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape-induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape-induced phenological patterns are easily observed over wide areas and may be used as a unique diagnostic for sources of ecosystem vulnerability and sensitivity to hydroclimate change. © 2014 John Wiley & Sons Ltd.

  11. Lagged processes and critical timescales in boreal forest response to climate

    NASA Astrophysics Data System (ADS)

    Wofsy, S. C.; Dunn, A. L.; Amiro, B. D.; Barr, A.; Rocha, A. V.; Goulden, M. L.

    2006-12-01

    Long-term eddy covariance datasets have recorded the response of boreal ecosystems to climate on timescales up to decadal (Dunn et al. 2006, Barr et al. 2006). Carbon balances in these forests are very dynamic, responding to climatic anomalies on timescales of months to years. A boreal black spruce forest in central Manitoba, Canada, was a source of carbon to the atmosphere in the mid-1990s (55 g C m^{- 2} y-1, 1995-1997), but switched to a sink in recent years (-25 g C m-2 y-1, 2003-2005). The short-term carbon exchange at this site was strongly controlled by temperature, but on long timescales the water balance was more important (Dunn et al. 2006). In a boreal aspen forest in central Saskatchewan, Canada, temperature was the main driver of phenology and canopy duration, but drought status, and especially the persistence of drought over multiple years, was a critical control on ecosystem respiration and resultant carbon balance (Barr et al. 2006). Lagged processes are especially important in the boreal forest: Dunn et al. (2006) found that carbon balances, and especially ecosystem respiration, were strongly controlled by the integrated water balance over preceding years, suggesting that the effects of climatic anomalies are expressed slowly in these forests. Rocha et al. (2006) found similar evidence in tree-ring cores from the NOBS site, which showed a strong correlation with lagged water balances, suggesting that wood growth in these forests is a process integrating over prior years. In a tree-ring analysis across aspen stands in western Canada, Hogg et al. (2005) found that current and lagged (up to four years) moisture status were critical factors regulating ecosystem carbon balance. These results from long-term boreal datasets suggest that the vulnerability of these forests to climate change will be strongly dependent on the future balance between precipitation and temperature. Persistent perturbations to the local climate will likely shift overall biome carbon balance.

  12. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests.

    PubMed

    Cusack, Daniela F; Silver, Whendee L; Torn, Margaret S; Burton, Sarah D; Firestone, Mary K

    2011-03-01

    Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and 13C nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types.

  13. Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine

    Treesearch

    John S. King; Timothy J. Albaugh; H. Lee Allen; Boyd R. Strain; Phillip Dougherty

    2002-01-01

    Availability of growth limiting resources may alter root dynamics in forest ecosystems, possibly affecting the land-atmosphere exchange of carbon. This was evaluated for a commercially important southern timber species by installing a factorial experiment of fertilization and irrigation treatments in an 8-yr-old loblolly pine (Pinus taeda) plantation...

  14. Dynamics of stem water uptake among isohydric and anisohydric species experiencing a severe drought

    Treesearch

    Koong Yi; Danilo Dragoni; Richard P. Phillips; Daniel Tyler Roman; Kimberly A. Novick

    2017-01-01

    Predicting the impact of drought on forest ecosystem processes requires an understanding of trees' species-specific responses to drought, especially in the Eastern USA, where species composition is highly dynamic due to historical changes in land use and fire regime. Here, we adapted a framework that classifies trees' water-use strategy along the spectrum of...

  15. A climate sensitive model of carbon transfer through atmosphere, vegetation and soil in managed forest ecosystems

    NASA Astrophysics Data System (ADS)

    Loustau, D.; Moreaux, V.; Bosc, A.; Trichet, P.; Kumari, J.; Rabemanantsoa, T.; Balesdent, J.; Jolivet, C.; Medlyn, B. E.; Cavaignac, S.; Nguyen-The, N.

    2012-12-01

    For predicting the future of the forest carbon cycle in forest ecosystems, it is necessary to account for both the climate and management impacts. Climate effects are significant not only at a short time scale but also at the temporal horizon of a forest life cycle e.g. through shift in atmospheric CO2 concentration, temperature and precipitation regimes induced by the enhanced greenhouse effect. Intensification of forest management concerns an increasing fraction of temperate and tropical forests and untouched forests represents only one third of the present forest area. Predicting tools are therefore needed to project climate and management impacts over the forest life cycle and understand the consequence of management on the forest ecosystem carbon cycle. This communication summarizes the structure, main components and properties of a carbon transfer model that describes the processes controlling the carbon cycle of managed forest ecosystems. The model, GO+, links three main components, (i) a module describing the vegetation-atmosphere mass and energy exchanges in 3D, (ii) a plant growth module and a (iii) soil carbon dynamics module in a consistent carbon scheme of transfer from atmosphere back into the atmosphere. It was calibrated and evaluated using observed data collected on coniferous and broadleaved forest stands. The model predicts the soil, water and energy balance of entire rotations of managed stands from the plantation to the final cut and according to a range of management alternatives. It accounts for the main soil and vegetation management operations such as soil preparation, understorey removal, thinnings and clearcutting. Including the available knowledge on the climatic sensitivity of biophysical and biogeochemical processes involved in atmospheric exchanges and carbon cycle of forest ecosystems, GO+ can produce long-term backward or forward simulations of forest carbon and water cycles under a range of climate and management scenarios. This model applications to the prediction and analysis of climate scenarios impacts on southwestern European forests underlines the role of management alternatives, precipitation regime, CO2 concentration and atmospheric humidity .Frequency of soil preparation operations and understorey management play a major role in controlling the net carbon flux into the atmosphere at the juvenile stage ( 0 to 10 y-old) whereas climate and rotation duration control the functioning of adult phase. The model predicts that a drier and warmer climate will reduce the forest productivity and deplete soil and carbon stocks in managed forest from Southwestern Europe within decades, such effects being amplified for most intensive management alternatives. This work was part of the European research project GHG-Europe (EU contract No. 244122) and the French national project FAST co-funded by the Ecology, Agriculture and Forestry Ministries and the Region Aquitaine.

  16. Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests.

    PubMed

    Susaeta, Andres; Adams, Damian C; Carter, Douglas R; Dwivedi, Puneet

    2016-09-01

    Forests provide myriad ecosystem services that are vital to humanity. With climate change, we expect to see significant changes to forests that will alter the supply of these critical services and affect human well-being. To better understand the impacts of climate change on forest-based ecosystem services, we applied a data envelopment analysis method to assess plot-level efficiency in the provision of ecosystem services in Florida natural loblolly pine (Pinus taeda L.) forests. Using field data for n = 16 loblolly pine forest plots, including inputs such as site index, tree density, age, precipitation, and temperatures for each forest plot, we assessed the relative plot-level production of three ecosystem services: timber, carbon sequestered, and species richness. The results suggested that loblolly pine forests in Florida were largely inefficient in the provision of these ecosystem services under current climatic conditions. Climate change had a small negative impact on the loblolly pine forests efficiency in the provision of ecosystem services. In this context, we discussed the reduction of tree density that may not improve ecosystem services production.

  17. Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests

    NASA Astrophysics Data System (ADS)

    Susaeta, Andres; Adams, Damian C.; Carter, Douglas R.; Dwivedi, Puneet

    2016-09-01

    Forests provide myriad ecosystem services that are vital to humanity. With climate change, we expect to see significant changes to forests that will alter the supply of these critical services and affect human well-being. To better understand the impacts of climate change on forest-based ecosystem services, we applied a data envelopment analysis method to assess plot-level efficiency in the provision of ecosystem services in Florida natural loblolly pine ( Pinus taeda L.) forests. Using field data for n = 16 loblolly pine forest plots, including inputs such as site index, tree density, age, precipitation, and temperatures for each forest plot, we assessed the relative plot-level production of three ecosystem services: timber, carbon sequestered, and species richness. The results suggested that loblolly pine forests in Florida were largely inefficient in the provision of these ecosystem services under current climatic conditions. Climate change had a small negative impact on the loblolly pine forests efficiency in the provision of ecosystem services. In this context, we discussed the reduction of tree density that may not improve ecosystem services production.

  18. Ecosystem Level Methane Dynamics in a Southern Forest Wetland

    NASA Astrophysics Data System (ADS)

    Mitra, B.; Minick, K.; Miao, G.; Furst, J.; Domec, J. C.; Sun, G.; McNulty, S.; King, J. S.; Noormets, A.

    2017-12-01

    Methane (CH4) budgets of most ecosystems remain poorly defined, particularly for the forested wetlands of the Southeastern United States.These once abundant ecosystems are unique in the amount of sequestered soil carbon they hold, and because of their interaction with climate through their contribution to both CO2 and CH4 exchange. The stability of the large C stocks in the vegetation and soil of these ecosystems is largest in submerged anoxic conditions, even though methanogenic processes still occur. However, the pressure from land development and drainage, more variable hydrology, and salt-water intrusion can alter the magnitude and balance of aerobic and anaerobic decomposition processes. Here we report five years of CH4 and CO2 fluxes from a forested wetland in the Alligator River National Wildlife Refuge (ARNWR) on the Albemarle-Pamlico Peninsula of North Carolina, USA. Time series of eddy covariance based estimates of CH4 fluxes from 2012 to 2016 show large temporal variation, with seasonal progression in daily mean fluxes from June through October. The peak methane emission coincided with the peak of gross primary production and ecosystem level respiration. The combined responses of these fluxes increases the uncertainty in whether wetlands will be sources or sinks of carbon. CH4 fluxes demonstrated strong variability and different environmental regulation across years and seasons. Water table depth and atmospheric pressure regulated synoptic and seasonal patterns of CH4 emissions. Across all years, the forested wetland emitted CH4 at rates far exceeding those reported for mid-latitude wetlands and rice paddy systems.

  19. Old-growth forests can accumulate carbon in soils

    USGS Publications Warehouse

    Zhou, G.; Liu, S.; Li, Z.; Zhang, Dongxiao; Tang, X.; Zhou, C.; Yan, J.; Mo, J.

    2006-01-01

    Old-growth forests have traditionally been considered negligible as carbon sinks because carbon uptake has been thought to be balanced by respiration. We show that the top 20-centimeter soil layer in preserved old-growth forests in southern China accumulated atmospheric carbon at an unexpectedly high average rate of 0.61 megagrams of carbon hectare-1 year-1 from 1979 to 2003. This study suggests that the carbon cycle processes in the belowground system of these forests are changing in response to the changing environment. The result directly challenges the prevailing belief in ecosystem ecology regarding carbon budget in old-growth forests and supports the establishment of a new, nonequilibrium conceptual framework to study soil carbon dynamics.

  20. Evapotranspiration and favorable growing degree-days are key to tree height growth and ecosystem functioning: Meta-analyses of Pacific Northwest historical data.

    PubMed

    Liu, Yang; El-Kassaby, Yousry A

    2018-05-29

    While temperature and precipitation comprise important ecological filtering for native ranges of forest trees and are predisposing factors underlying forest ecosystem dynamics, the extent and severity of drought raises reasonable concerns for carbon storage and species diversity. Based on historical data from common garden experiments across the Pacific Northwest region, we developed non-linear niche models for height-growth trajectories of conifer trees at the sapling stage using annual or seasonal climatic variables. The correlations between virtual tree height for each locality and ecosystem functions were respectively assessed. Best-fitted models were composed of two distinct components: evapotranspiration and the degree-days disparity for temperature regimes between 5 °C and 18 °C (effective temperature sum and growth temperature, respectively). Tree height prediction for adaptive generalists (e.g., Pinus monticola, Thuja plicata) had smaller residuals than for specialists (e.g., Pinus contorta, Pseudotsuga menziesii), albeit a potential confounding factor - tree age. Discernably, there were linearly positive patterns between tree height growth and ecosystem functions (productivity, biomass and species diversity). Additionally, there was a minor effect of tree diversity on height growth in coniferous forests. This study uncovers the implication of key ecological filtering and increases our integrated understanding of how environmental cues affect tree stand growth, species dominance and ecosystem functions.

  1. Assimilating leaf area index of three typical types of subtropical forest in China from MODIS time series data based on the integrated ensemble Kalman filter and PROSAIL model

    NASA Astrophysics Data System (ADS)

    Li, Xuejian; Mao, Fangjie; Du, Huaqiang; Zhou, Guomo; Xu, Xiaojun; Han, Ning; Sun, Shaobo; Gao, Guolong; Chen, Liang

    2017-04-01

    Subtropical forest ecosystems play essential roles in the global carbon cycle and in carbon sequestration functions, which challenge the traditional understanding of the main functional areas of carbon sequestration in the temperate forests of Europe and America. The leaf area index (LAI) is an important biological parameter in the spatiotemporal simulation of the carbon cycle, and it has considerable significance in carbon cycle research. Dynamic retrieval based on remote sensing data is an important method with which to obtain large-scale high-accuracy assessments of LAI. This study developed an algorithm for assimilating LAI dynamics based on an integrated ensemble Kalman filter using MODIS LAI data, MODIS reflectance data, and canopy reflectance data modeled by PROSAIL, for three typical types of subtropical forest (Moso bamboo forest, Lei bamboo forest, and evergreen and deciduous broadleaf forest) in China during 2014-2015. There were some errors of assimilation in winter, because of the bad data quality of the MODIS product. Overall, the assimilated LAI well matched the observed LAI, with R2 of 0.82, 0.93, and 0.87, RMSE of 0.73, 0.49, and 0.42, and aBIAS of 0.50, 0.23, and 0.03 for Moso bamboo forest, Lei bamboo forest, and evergreen and deciduous broadleaf forest, respectively. The algorithm greatly decreased the uncertainty of the MODIS LAI in the growing season and it improved the accuracy of the MODIS LAI. The advantage of the algorithm is its use of biophysical parameters (e.g., measured LAI) in the LAI assimilation, which makes it possible to assimilate long-term MODIS LAI time series data, and to provide high-accuracy LAI data for the study of carbon cycle characteristics in subtropical forest ecosystems.

  2. Redox potential: An indicator of site productivity in forest management

    NASA Astrophysics Data System (ADS)

    Sajedi, Toktam; Prescott, Cindy; Lavkulich, Les

    2010-05-01

    Redox potential (Eh) is an integrated soil measurement that reflects several environmental conditions in the soil associated with aeration, moisture and carbon (organic matter) dynamics. Its measurement can be related to water table fluctuations, precipitation and landscape gradients, organic matter decomposition rates, nutrient dynamics, biological diversity and plant species distribution. Redox is an excellent indicator of soil biological processes, as it is largely a reflection of microbial activities which to a large extent govern carbon dynamics and nutrient cycling. Redox thus serves as an ecological indicator of site productivity at the ecosystem scale and may be used for management purposes as its magnitude can be altered by activities such as harvesting and drainage. A threshold value of 300 mv has been documented as the critical value below which anaerobic conditions in the soil develop. However, redox measurements and its impacts on ecosystem processes such as nutrient cycling and productivity, especially in forest ecosystems, have not received the attention that this "master" variable deserves, On northern Vancouver Island, Canada, regenerating stands of western redcedar-western hemlock (CH) sites exhibit symptoms of nutrient deficiencies and slow growth, but this phenomenon does not occur on adjacent western hemlock- amabalis fir (HA) sites. We tested the hypothesis that differences in nutrient supply and distribution of plant species was caused by differences in moisture regime and redox potential. Redox potential, pH, soil aeration depth (steel rods), organic matter thickness, bulk density, soil carbon store, plant species distribution and richness were measured at five old-growth and five 10-year-old cutover blocks. Results of investigations confirmed that CH forests were wetter, had redox values lower than the critical 300mv and a shallower aerated zone, compared with adjacent regenerating HA sites. Fifty percent of the CH plots had redox values less than +300 mv in the forest floor; whereas only 15 percent of the HA plots had such low values. Composition of the forest understory species was related to soil moisture/aeration. Soil aeration was the most important soil variable influencing plant species composition, explaining 25% of the plant community variability. Eh was always greater than +300 mv in the mineral soil of old growth HA forests but below +300 mv in HA clearcuts, suggesting paludification; however it was below or at this threshold in both CH forests and clearcuts. The reduction in measured redox without a noticeable change in the watertable in HA sites suggests that harvesting HA forests shifts the ecosystem towards more anaerobic conditions more similar to CH sites. In a complimentary study, the significance of redox was assessed in a cedar swamp cutover by exploring the relationships between soil redox potential and tree growth, and mineralization of C and soil C store along a gradient of moisture caused by drainage. Drainage improved aeration in the rooting zone, expressed as redox, and above- and below ground C storage; however C mineralization measured as CO2 evolution was not affected. Tree growth was positively correlated with redox potential. Our results indicate that drainage could be a useful silvicultural practice for improving the productivity of these ecosystems and that it may be possible to improve tree growth without stimulating loss of soil C. This requires that drainage improve aeration in the rooting zone while maintaining redox levels of less than +300 mV in the bulk soil, indicating that redox measurements should be incorporated into silviculture interventions to improve productivity of these forests.

  3. The importance of drought-pathogen interactions in driving oak mortality events in the Ozark Border Region

    NASA Astrophysics Data System (ADS)

    Wood, Jeffrey D.; Knapp, Benjamin O.; Muzika, Rose-Marie; Stambaugh, Michael C.; Gu, Lianhong

    2018-01-01

    Forests are expected to become more vulnerable to drought-induced tree mortality owing to rising temperatures and changing precipitation patterns that amplify drought lethality. There is a crucial knowledge gap regarding drought-pathogen interactions and their effects on tree mortality. The objectives of this research were to examine whether stand dynamics and ‘background’ mortality rates were affected by a severe drought in 2012; and to evaluate the importance of drought-pathogen interactions within the context of a mortality event that killed 10.0% and 26.5% of white (Quercus alba L.) and black (Q. velutina Lam.) oak stems, respectively, in a single year. We synthesized (i) forest inventory data (24 years), (ii) 11 years of ecosystem flux data with supporting biological data including predawn leaf water potential and annual forest inventories, (iii) tree-ring analyses of individual white oaks that were alive and ones that died in 2013, and (iv) documentation of a pathogen infection. This forest displayed stand dynamics consistent with expected patterns of decreasing tree density and increasing basal area. Continued basal area growth outpaced mortality implying a net accumulation of live biomass, which was supported by eddy covariance ecosystem carbon flux observations. Individual white and black oaks that died in 2013 displayed historically lower growth with the majority of dead trees exhibiting Biscogniauxia cankers. Our observations point to the importance of event-based oak mortality and that drought-Biscogniauxia interactions are important in shaping oak stand dynamics in this region. Although forest function has not been significantly impaired, these drought-pathogen interactions could amplify mortality under future climate conditions and thus warrant further investigation.

  4. The importance of drought–pathogen interactions in driving oak mortality events in the Ozark Border Region

    DOE PAGES

    Wood, Jeffrey D.; Knapp, Benjamin O.; Muzika, Rose-Marie; ...

    2017-10-20

    Forests are expected to become more vulnerable to drought-induced tree mortality owing to rising temperatures and changing precipitation patterns that amplify drought lethality. There is a crucial knowledge gap regarding drought–pathogen interactions and their effects on tree mortality. The objectives of this research were to examine whether stand dynamics and 'background' mortality rates were affected by a severe drought in 2012; and to evaluate the importance of drought–pathogen interactions within the context of a mortality event that killed 10.0% and 26.5% of white (Quercus alba L.) and black (Q. velutina Lam.) oak stems, respectively, in a single year. We synthesizedmore » (i) forest inventory data (24 years), (ii) 11 years of ecosystem flux data with supporting biological data including predawn leaf water potential and annual forest inventories, (iii) tree-ring analyses of individual white oaks that were alive and ones that died in 2013, and (iv) documentation of a pathogen infection. This forest displayed stand dynamics consistent with expected patterns of decreasing tree density and increasing basal area. Continued basal area growth outpaced mortality implying a net accumulation of live biomass, which was supported by eddy covariance ecosystem carbon flux observations. Individual white and black oaks that died in 2013 displayed historically lower growth with the majority of dead trees exhibiting Biscogniauxia cankers. Our observations point to the importance of event-based oak mortality and that drought–Biscogniauxia interactions are important in shaping oak stand dynamics in this region. Although forest function has not been significantly impaired, these drought–pathogen interactions could amplify mortality under future climate conditions and thus warrant further investigation.« less

  5. Vegetation dynamics under fire exclusion and logging in a Rocky Mountain watershed, 1856-1996

    USGS Publications Warehouse

    Gallant, Alisa L.; Hansen, A.J.; Councilman, J.S.; Monte, D.K.; Betz, D.W.

    2003-01-01

    How have changes in land management practices affected vegetation patterns in the greater Yellowstone ecosystem? This question led us to develop a deterministic, successional, vegetation model to “turn back the clock” on a study area and assess how patterns in vegetation cover type and structure have changed through different periods of management. Our modeling spanned the closing decades of use by Native Americans, subsequent Euro-American settlement, and associated indirect methods of fire suppression, and more recent practices of fire exclusion and timber harvest. Model results were striking, indicating that the primary forest dynamic in the study area is not fragmentation of conifer forest by logging, but the transition from a fire-driven mosaic of grassland, shrubland, broadleaf forest, and mixed forest communities to a conifer-dominated landscape. Projections for conifer-dominated stands showed an increase in areal coverage from 15% of the study area in the mid-1800s to ∼50% by the mid-1990s. During the same period, projections for aspen-dominated stands showed a decline in coverage from 37% to 8%. Substantial acreage previously occupied by a variety of age classes has given way to extensive tracts of mature forest. Only 4% of the study area is currently covered by young stands, all of which are coniferous. While logging has replaced wildfire as a mechanism for cycling younger stands into the landscape, the locations, species constituents, patch sizes, and ecosystem dynamics associated with logging do not mimic those associated with fire. It is also apparent that the nature of these differences varies among biophysical settings, and that land managers might consider a biophysical class strategy for tailoring management goals and restoration efforts.

  6. A stand-alone tree demography and landscape structure module for Earth system models: integration with global forest data

    NASA Astrophysics Data System (ADS)

    Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.

    2014-02-01

    Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESM). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first generation Dynamic Vegetation Models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second generation DVMs, that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to a range of forest types around the globe, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 yr. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents a preferable alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.

  7. The importance of drought–pathogen interactions in driving oak mortality events in the Ozark Border Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Jeffrey D.; Knapp, Benjamin O.; Muzika, Rose-Marie

    Forests are expected to become more vulnerable to drought-induced tree mortality owing to rising temperatures and changing precipitation patterns that amplify drought lethality. There is a crucial knowledge gap regarding drought–pathogen interactions and their effects on tree mortality. The objectives of this research were to examine whether stand dynamics and 'background' mortality rates were affected by a severe drought in 2012; and to evaluate the importance of drought–pathogen interactions within the context of a mortality event that killed 10.0% and 26.5% of white (Quercus alba L.) and black (Q. velutina Lam.) oak stems, respectively, in a single year. We synthesizedmore » (i) forest inventory data (24 years), (ii) 11 years of ecosystem flux data with supporting biological data including predawn leaf water potential and annual forest inventories, (iii) tree-ring analyses of individual white oaks that were alive and ones that died in 2013, and (iv) documentation of a pathogen infection. This forest displayed stand dynamics consistent with expected patterns of decreasing tree density and increasing basal area. Continued basal area growth outpaced mortality implying a net accumulation of live biomass, which was supported by eddy covariance ecosystem carbon flux observations. Individual white and black oaks that died in 2013 displayed historically lower growth with the majority of dead trees exhibiting Biscogniauxia cankers. Our observations point to the importance of event-based oak mortality and that drought–Biscogniauxia interactions are important in shaping oak stand dynamics in this region. Although forest function has not been significantly impaired, these drought–pathogen interactions could amplify mortality under future climate conditions and thus warrant further investigation.« less

  8. Are ungulates in forests concerns or key species for conservation and biodiversity? Reply to Boulanger et al. (DOI: 10.1111/gcb.13899).

    PubMed

    Fløjgaard, Camilla; Bruun, Hans Henrik; Hansen, Morten D D; Heilmann-Clausen, Jacob; Svenning, Jens-Christian; Ejrnaes, Rasmus

    2018-03-01

    Increasing species richness of light demanding species in forests may not be a conservation concern if we accept a macroecological and evolutionary baseline for biodiversity. Most of the current biodiversity in Europe has evolved in the Pleistocene or earlier, and in ecosystems markedly influenced by dynamic natural processes, including grazing. Many threatened species are associated with high-light forest environments such as forest glades and edges, as these have strongly declined at least partially due to the decline of large herbivores in European forests. Hence, moderate grazing in forests should be an ecological baseline and conservation target rather than a concern. © 2017 John Wiley & Sons Ltd.

  9. An imperative need for global change research in tropical forests.

    PubMed

    Zhou, Xuhui; Fu, Yuling; Zhou, Lingyan; Li, Bo; Luo, Yiqi

    2013-09-01

    Tropical forests play a crucial role in regulating regional and global climate dynamics, and model projections suggest that rapid climate change may result in forest dieback or savannization. However, these predictions are largely based on results from leaf-level studies. How tropical forests respond and feedback to climate change is largely unknown at the ecosystem level. Several complementary approaches have been used to evaluate the effects of climate change on tropical forests, but the results are conflicting, largely due to confounding effects of multiple factors. Although altered precipitation and nitrogen deposition experiments have been conducted in tropical forests, large-scale warming and elevated carbon dioxide (CO2) manipulations are completely lacking, leaving many hypotheses and model predictions untested. Ecosystem-scale experiments to manipulate temperature and CO2 concentration individually or in combination are thus urgently needed to examine their main and interactive effects on tropical forests. Such experiments will provide indispensable data and help gain essential knowledge on biogeochemical, hydrological and biophysical responses and feedbacks of tropical forests to climate change. These datasets can also inform regional and global models for predicting future states of tropical forests and climate systems. The success of such large-scale experiments in natural tropical forests will require an international framework to coordinate collaboration so as to meet the challenges in cost, technological infrastructure and scientific endeavor.

  10. Evaluating the Community Land Model (CLM4.5) at a coniferous forest site in northwestern United States using flux and carbon-isotope measurements

    Treesearch

    Henrique F. Duarte; Brett M. Raczka; Daniel M. Ricciuto; John C. Lin; Charles D. Koven; Peter E. Thornton; David R. Bowling; Chun-Ta Lai; Kenneth J. Bible; James R. Ehleringer

    2017-01-01

    Droughts in the western United States are expected to intensify with climate change. Thus, an adequate representation of ecosystem response to water stress in land models is critical for predicting carbon dynamics. The goal of this study was to evaluate the performance of the Community Land Model (CLM) version 4.5 against observations at an old-growth coniferous forest...

  11. Non-indigenous bamboo along headwater streams of the Luquillo Mountains, Puerto Rico: leaf fall, aquatic leaf decay and patterns of invasion

    Treesearch

    PAUL J. O' CONNOR; ALAN P. COVICH; F. N. SCATENA; LLOYD L. LOOPE

    2000-01-01

    The introduction of bamboo to montane rain forests of the Luquillo Mountains, Puerto Rico in the 1930s and 1940s has led to present-day bamboo monocultures in numerous riparian areas. When a non-native species invades a riparian ecosystem, in-stream detritivores can be affected. Bamboo dynamics expected to in¯uence stream communities in the Luquillo Experimental Forest...

  12. Sustaining Pinus flexilis ecosystems of the southern Rocky Mountains (USA) in the presence of Cronartium ribicola and Dendroctonus ponderosae in a changing climate

    Treesearch

    Anna W. Schoettle; Richard A. Sniezko; Kelly S. Burns

    2009-01-01

    Limber pine, Pinus flexilis James, is characterized by a patchy distribution that displays metapopulation dynamics and spans a broad latitudinal and elevational range in North America (Webster and Johnson 2000). In the southern Rocky Mountains limber pine grows from below the forest-grassland ecotone up to the forest-alpine ecotone, from ~1600 m above sea level in the...

  13. Resuscitation of the rare biosphere contributes to pulses of ecosystem activity

    PubMed Central

    Aanderud, Zachary T.; Jones, Stuart E.; Fierer, Noah; Lennon, Jay T.

    2015-01-01

    Dormancy is a life history trait that may have important implications for linking microbial communities to the functioning of natural and managed ecosystems. Rapid changes in environmental cues may resuscitate dormant bacteria and create pulses of ecosystem activity. In this study, we used heavy-water (H182O) stable isotope probing (SIP) to identify fast-growing bacteria that were associated with pulses of trace gasses (CO2, CH4, and N2O) from different ecosystems [agricultural site, grassland, deciduous forest, and coniferous forest (CF)] following a soil-rewetting event. Irrespective of ecosystem type, a large fraction (69–74%) of the bacteria that responded to rewetting were below detection limits in the dry soils. Based on the recovery of sequences, in just a few days, hundreds of rare taxa increased in abundance and in some cases became dominant members of the rewetted communities, especially bacteria belonging to the Sphingomonadaceae, Comamonadaceae, and Oxalobacteraceae. Resuscitation led to dynamic shifts in the rank abundance of taxa that caused previously rare bacteria to comprise nearly 60% of the sequences that were recovered in rewetted communities. This rapid turnover of the bacterial community corresponded with a 5–20-fold increase in the net production of CO2 and up to a 150% reduction in the net production of CH4 from rewetted soils. Results from our study demonstrate that the rare biosphere may account for a large and dynamic fraction of a community that is important for the maintenance of bacterial biodiversity. Moreover, our findings suggest that the resuscitation of rare taxa from seed banks contribute to ecosystem functioning. PMID:25688238

  14. Spatial and Temporal Dynamics and Value of Nature-Based Recreation, Estimated via Social Media.

    PubMed

    Sonter, Laura J; Watson, Keri B; Wood, Spencer A; Ricketts, Taylor H

    2016-01-01

    Conserved lands provide multiple ecosystem services, including opportunities for nature-based recreation. Managing this service requires understanding the landscape attributes underpinning its provision, and how changes in land management affect its contribution to human wellbeing over time. However, evidence from both spatially explicit and temporally dynamic analyses is scarce, often due to data limitations. In this study, we investigated nature-based recreation within conserved lands in Vermont, USA. We used geotagged photographs uploaded to the photo-sharing website Flickr to quantify visits by in-state and out-of-state visitors, and we multiplied visits by mean trip expenditures to show that conserved lands contributed US $1.8 billion (US $0.18-20.2 at 95% confidence) to Vermont's tourism industry between 2007 and 2014. We found eight landscape attributes explained the pattern of visits to conserved lands; visits were higher in larger conserved lands, with less forest cover, greater trail density and more opportunities for snow sports. Some of these attributes differed from those found in other locations, but all aligned with our understanding of recreation in Vermont. We also found that using temporally static models to inform conservation decisions may have perverse outcomes for nature-based recreation. For example, static models suggest conserved land with less forest cover receive more visits, but temporally dynamic models suggest clearing forests decreases, rather than increases, visits to these sites. Our results illustrate the importance of understanding both the spatial and temporal dynamics of ecosystem services for conservation decision-making.

  15. Modeling temperature and humidity profiles within forest canopies

    USDA-ARS?s Scientific Manuscript database

    Physically-based models are a powerful tool to help understand interactions of vegetation, atmospheric dynamics, and hydrology, and to test hypotheses regarding the effects of land cover, management, hydrometeorology, and climate variability on ecosystem processes. The purpose of this paper is to f...

  16. Assessing Earthquake-Induced Tree Mortality in Temperate Forest Ecosystems: A Case Study from Wenchuan, China

    DOE PAGES

    Zeng, Hongcheng; Lu, Tao; Jenkins, Hillary; ...

    2016-03-17

    Earthquakes can produce significant tree mortality, and consequently affect regional carbon dynamics. Unfortunately, detailed studies quantifying the influence of earthquake on forest mortality are currently rare. The committed forest biomass carbon loss associated with the 2008 Wenchuan earthquake in China is assessed by a synthetic approach in this study that integrated field investigation, remote sensing analysis, empirical models and Monte Carlo simulation. The newly developed approach significantly improved the forest disturbance evaluation by quantitatively defining the earthquake impact boundary and detailed field survey to validate the mortality models. Based on our approach, a total biomass carbon of 10.9 Tg·C wasmore » lost in Wenchuan earthquake, which offset 0.23% of the living biomass carbon stock in Chinese forests. Tree mortality was highly clustered at epicenter, and declined rapidly with distance away from the fault zone. It is suggested that earthquakes represent a signif icant driver to forest carbon dynamics, and the earthquake-induced biomass carbon loss should be included in estimating forest carbon budgets.« less

  17. Assessing Earthquake-Induced Tree Mortality in Temperate Forest Ecosystems: A Case Study from Wenchuan, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Hongcheng; Lu, Tao; Jenkins, Hillary

    Earthquakes can produce significant tree mortality, and consequently affect regional carbon dynamics. Unfortunately, detailed studies quantifying the influence of earthquake on forest mortality are currently rare. The committed forest biomass carbon loss associated with the 2008 Wenchuan earthquake in China is assessed by a synthetic approach in this study that integrated field investigation, remote sensing analysis, empirical models and Monte Carlo simulation. The newly developed approach significantly improved the forest disturbance evaluation by quantitatively defining the earthquake impact boundary and detailed field survey to validate the mortality models. Based on our approach, a total biomass carbon of 10.9 Tg·C wasmore » lost in Wenchuan earthquake, which offset 0.23% of the living biomass carbon stock in Chinese forests. Tree mortality was highly clustered at epicenter, and declined rapidly with distance away from the fault zone. It is suggested that earthquakes represent a signif icant driver to forest carbon dynamics, and the earthquake-induced biomass carbon loss should be included in estimating forest carbon budgets.« less

  18. Recent advances in radar remote sensing of forest

    NASA Technical Reports Server (NTRS)

    Letoan, Thuy

    1993-01-01

    On a global scale, forests represent most of the terrestrial standing biomass (80 to 90 percent). Thus, natural and anthropogenic change in forest covers can have major impacts not only on local ecosystems but also on global hydrologic, climatic, and biogeochemical cycles that involve exchange of energy, water, carbon, and other elements between the earth and atmosphere. Quantitative information on the state and dynamics of forest ecosystems and their interactions with the global cycles appear necessary to understand how the earth works as a natural system. The information required includes the lateral and vertical distribution of forest cover, the estimates of standing biomass (woody and foliar volume), the phenological and environmental variations and disturbances (clearcutting, fires, flood), and the longer term variations following deforestation (regeneration, successional stages). To this end, seasonal, annual, and decadal information is necessary in order to separate the long term effects in the global ecosystem from short term seasonal and interannual variations. Optical remote sensing has been used until now to study the forest cover at local, regional, and global scales. Radar remote sensing, which provides recent SAR data from space on a regular basis, represents an unique means of consistently monitoring different time scales, at all latitudes and in any atmospheric conditions. Also, SAR data have shown the potential to detect several forest parameters that cannot be inferred from optical data. The differences--and complementarity--lie in the penetration capabilities of SAR data and their sensitivity to dielectric and geometric properties of the canopy volume, whereas optical data are sensitive to the chemical composition of the external foliar layer of the vegetation canopy.

  19. Advanced system demonstration for utilization of biomass as an energy source. Technical Appendix D: terrestrial ecosystems and forestry. Environmental report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCollom, M.

    1979-01-01

    The existing terrestrial ecosystems at the plant site and impacts on them are described. The following are discussed for the fuelwood harvest region: forest soils, forest types and ecological succession, nutrient cycles in the forest ecosystem, fauna of the ecosystem, forest practices in the harvest region, and long-term productivity of the forest resource. (MHR)

  20. Quantification of soil respiration in forest ecosystems across China

    NASA Astrophysics Data System (ADS)

    Song, Xinzhang; Peng, Changhui; Zhao, Zhengyong; Zhang, Zhiting; Guo, Baohua; Wang, Weifeng; Jiang, Hong; Zhu, Qiuan

    2014-09-01

    We collected 139 estimates of the annual forest soil CO2 flux and 173 estimates of the Q10 value (the temperature sensitivity) assembled from 90 published studies across Chinese forest ecosystems. We analyzed the annual soil respiration (Rs) rates and the temperature sensitivities of seven forest ecosystems, including evergreen broadleaf forests (EBF), deciduous broadleaf forests (DBF), broadleaf and needleleaf mixed forests (BNMF), evergreen needleleaf forests (ENF), deciduous needleleaf forests (DNF), bamboo forests (BF) and shrubs (SF). The results showed that the mean annual Rs rate was 33.65 t CO2 ha-1 year-1 across Chinese forest ecosystems. Rs rates were significantly different (P < 0.001) among the seven forest types, and were significantly and positively influenced by mean annual temperature (MAT), mean annual precipitation (MAP), and actual evapotranspiration (AET); but negatively affected by latitude and elevation. The mean Q10 value of 1.28 was lower than the world average (1.4-2.0). The Q10 values derived from the soil temperature at a depth of 5 cm varied among forest ecosystems by an average of 2.46 and significantly decreased with the MAT but increased with elevation and latitude. Moreover, our results suggested that an artificial neural network (ANN) model can effectively predict Rs across Chinese forest ecosystems. This study contributes to better understanding of Rs across Chinese forest ecosystems and their possible responses to global warming.

Top