Sample records for forest ecosystem model

  1. Northern Forest Ecosystem Dynamics Using Coupled Models and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Sun, G.; Knox, R. G.; Levine, E. R.; Weishampel, J. F.; Fifer, S. T.

    1999-01-01

    Forest ecosystem dynamics modeling, remote sensing data analysis, and a geographical information system (GIS) were used together to determine the possible growth and development of a northern forest in Maine, USA. Field measurements and airborne synthetic aperture radar (SAR) data were used to produce maps of forest cover type and above ground biomass. These forest attribute maps, along with a conventional soils map, were used to identify the initial conditions for forest ecosystem model simulations. Using this information along with ecosystem model results enabled the development of predictive maps of forest development. The results obtained were consistent with observed forest conditions and expected successional trajectories. The study demonstrated that ecosystem models might be used in a spatial context when parameterized and used with georeferenced data sets.

  2. Evaluating carbon fluxes of global forest ecosystems by using an individual tree-based model FORCCHN.

    PubMed

    Ma, Jianyong; Shugart, Herman H; Yan, Xiaodong; Cao, Cougui; Wu, Shuang; Fang, Jing

    2017-05-15

    The carbon budget of forest ecosystems, an important component of the terrestrial carbon cycle, needs to be accurately quantified and predicted by ecological models. As a preamble to apply the model to estimate global carbon uptake by forest ecosystems, we used the CO 2 flux measurements from 37 forest eddy-covariance sites to examine the individual tree-based FORCCHN model's performance globally. In these initial tests, the FORCCHN model simulated gross primary production (GPP), ecosystem respiration (ER) and net ecosystem production (NEP) with correlations of 0.72, 0.70 and 0.53, respectively, across all forest biomes. The model underestimated GPP and slightly overestimated ER across most of the eddy-covariance sites. An underestimation of NEP arose primarily from the lower GPP estimates. Model performance was better in capturing both the temporal changes and magnitude of carbon fluxes in deciduous broadleaf forest than in evergreen broadleaf forest, and it performed less well for sites in Mediterranean climate. We then applied the model to estimate the carbon fluxes of forest ecosystems on global scale over 1982-2011. This application of FORCCHN gave a total GPP of 59.41±5.67 and an ER of 57.21±5.32PgCyr -1 for global forest ecosystems during 1982-2011. The forest ecosystems over this same period contributed a large carbon storage, with total NEP being 2.20±0.64PgCyr -1 . These values are comparable to and reinforce estimates reported in other studies. This analysis highlights individual tree-based model FORCCHN could be used to evaluate carbon fluxes of forest ecosystems on global scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Modeling carbon and nitrogen biogeochemistry in forest ecosystems

    Treesearch

    Changsheng Li; Carl Trettin; Ge Sun; Steve McNulty; Klaus Butterbach-Bahl

    2005-01-01

    A forest biogeochemical model, Forest-DNDC, was developed to quantify carbon sequestration in and trace gas emissions from forest ecosystems. Forest-DNDC was constructed by integrating two existing moels, PnET and DNDC, with several new features including nitrification, forest litter layer, soil freezing and thawing etc, PnET is a forest physiological model predicting...

  4. Linking an ecosystem model and a landscape model to study forest species response to climate warming

    Treesearch

    Hong S. He; David J. Mladenoff; Thomas R. Crow

    1999-01-01

    No single model can address forest change from single tree to regional scales. We discuss a framework linking an ecosystem process model {LINKAGES) with a spatial landscape model (LANDIS) to examine forest species responses to climate warming for a large, heterogeneous landscape in northern Wisconsin, USA. Individual species response at the ecosystem scale was...

  5. Dynamics of Ecosystem Services during Forest Transitions in Reventazón, Costa Rica.

    PubMed

    Vallet, Améline; Locatelli, Bruno; Levrel, Harold; Brenes Pérez, Christian; Imbach, Pablo; Estrada Carmona, Natalia; Manlay, Raphaël; Oszwald, Johan

    2016-01-01

    The forest transition framework describes the temporal changes of forest areas with economic development. A first phase of forest contraction is followed by a second phase of expansion once a turning point is reached. This framework does not differentiate forest types or ecosystem services, and describes forests regardless of their contribution to human well-being. For several decades, deforestation in many tropical regions has degraded ecosystem services, such as watershed regulation, while increasing provisioning services from agriculture, for example, food. Forest transitions and expansion have been observed in some countries, but their consequences for ecosystem services are often unclear. We analyzed the implications of forest cover change on ecosystem services in Costa Rica, where a forest transition has been suggested. A review of literature and secondary data on forest and ecosystem services in Costa Rica indicated that forest transition might have led to an ecosystem services transition. We modeled and mapped the changes of selected ecosystem services in the upper part of the Reventazón watershed and analyzed how supply changed over time in order to identify possible transitions in ecosystem services. The modeled changes of ecosystem services is similar to the second phase of a forest transition but no turning point was identified, probably because of the limited temporal scope of the analysis. Trends of provisioning and regulating services and their tradeoffs were opposite in different spatial subunits of our study area, which highlights the importance of scale in the analysis of ecosystem services and forest transitions. The ecosystem services transition framework proposed in this study is useful for analyzing the temporal changes of ecosystem services and linking socio-economic drivers to ecosystem services demand at different scales.

  6. Dynamics of Ecosystem Services during Forest Transitions in Reventazón, Costa Rica

    PubMed Central

    Vallet, Améline; Locatelli, Bruno; Levrel, Harold; Brenes Pérez, Christian; Imbach, Pablo; Estrada Carmona, Natalia; Manlay, Raphaël; Oszwald, Johan

    2016-01-01

    The forest transition framework describes the temporal changes of forest areas with economic development. A first phase of forest contraction is followed by a second phase of expansion once a turning point is reached. This framework does not differentiate forest types or ecosystem services, and describes forests regardless of their contribution to human well-being. For several decades, deforestation in many tropical regions has degraded ecosystem services, such as watershed regulation, while increasing provisioning services from agriculture, for example, food. Forest transitions and expansion have been observed in some countries, but their consequences for ecosystem services are often unclear. We analyzed the implications of forest cover change on ecosystem services in Costa Rica, where a forest transition has been suggested. A review of literature and secondary data on forest and ecosystem services in Costa Rica indicated that forest transition might have led to an ecosystem services transition. We modeled and mapped the changes of selected ecosystem services in the upper part of the Reventazón watershed and analyzed how supply changed over time in order to identify possible transitions in ecosystem services. The modeled changes of ecosystem services is similar to the second phase of a forest transition but no turning point was identified, probably because of the limited temporal scope of the analysis. Trends of provisioning and regulating services and their tradeoffs were opposite in different spatial subunits of our study area, which highlights the importance of scale in the analysis of ecosystem services and forest transitions. The ecosystem services transition framework proposed in this study is useful for analyzing the temporal changes of ecosystem services and linking socio-economic drivers to ecosystem services demand at different scales. PMID:27390869

  7. The 1990 forest ecosystem dynamics multisensor aircraft campaign

    NASA Technical Reports Server (NTRS)

    Williams, Darrel L.; Ranson, K. Jon

    1991-01-01

    The overall objective of the Forest Ecosystem Dynamics (FED) research activity is to develop a better understanding of the dynamics of forest ecosystem evolution over a variety of temporal and spatial scales. Primary emphasis is being placed on assessing the ecosystem dynamics associated with the transition zone between northern hardwood forests in eastern North America and the predominantly coniferous forests of the more northerly boreal biome. The approach is to combine ground-based, airborne, and satellite observations with an integrated forest pattern and process model which is being developed to link together existing models of forest growth and development, soil processes, and radiative transfer.

  8. Applying and Individual-Based Model to Simultaneously Evaluate Net Ecosystem Production and Tree Diameter Increment

    NASA Astrophysics Data System (ADS)

    Fang, F. J.

    2017-12-01

    Reconciling observations at fundamentally different scales is central in understanding the global carbon cycle. This study investigates a model-based melding of forest inventory data, remote-sensing data and micrometeorological-station data ("flux towers" estimating forest heat, CO2 and H2O fluxes). The individual tree-based model FORCCHN was used to evaluate the tree DBH increment and forest carbon fluxes. These are the first simultaneous simulations of the forest carbon budgets from flux towers and individual-tree growth estimates of forest carbon budgets using the continuous forest inventory data — under circumstances in which both predictions can be tested. Along with the global implications of such findings, this also improves the capacity for forest sustainable management and the comprehensive understanding of forest ecosystems. In forest ecology, diameter at breast height (DBH) of a tree significantly determines an individual tree's cross-sectional sapwood area, its biomass and carbon storage. Evaluation the annual DBH increment (ΔDBH) of an individual tree is central to understanding tree growth and forest ecology. Ecosystem Carbon flux is a consequence of key ecosystem processes in the forest-ecosystem carbon cycle, Gross and Net Primary Production (GPP and NPP, respectively) and Net Ecosystem Respiration (NEP). All of these closely relate with tree DBH changes and tree death. Despite advances in evaluating forest carbon fluxes with flux towers and forest inventories for individual tree ΔDBH, few current ecological models can simultaneously quantify and predict the tree ΔDBH and forest carbon flux.

  9. Global sensitivity analysis of DRAINMOD-FOREST, an integrated forest ecosystem model

    Treesearch

    Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya; Eric D. Vance

    2014-01-01

    Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant growth in lowland forests. The...

  10. Balancing trade-offs between ecosystem services in Germany’s forests under climate change

    NASA Astrophysics Data System (ADS)

    Gutsch, Martin; Lasch-Born, Petra; Kollas, Chris; Suckow, Felicitas; Reyer, Christopher P. O.

    2018-04-01

    Germany’s forests provide a variety of ecosystem services. Sustainable forest management aims to optimize the provision of these services at regional level. However, climate change will impact forest ecosystems and subsequently ecosystem services. The objective of this study is to quantify the effects of two alternative management scenarios and climate impacts on forest variables indicative of ecosystem services related to timber, habitat, water, and carbon. The ecosystem services are represented through nine model output variables (timber harvest, above and belowground biomass, net ecosystem production, soil carbon, percolation, nitrogen leaching, deadwood, tree dimension, broadleaf tree proportion) from the process-based forest model 4C. We simulated forest growth, carbon and water cycling until 2045 with 4C set-up for the whole German forest area based on National Forest Inventory data and driven by three management strategies (nature protection, biomass production and a baseline management) and an ensemble of regional climate scenarios (RCP2.6, RCP 4.5, RCP 8.5). We provide results as relative changes compared to the baseline management and observed climate. Forest management measures have the strongest effects on ecosystem services inducing positive or negative changes of up to 40% depending on the ecosystem service in question, whereas climate change only slightly alters ecosystem services averaged over the whole forest area. The ecosystem services ‘carbon’ and ‘timber’ benefit from climate change, while ‘water’ and ‘habitat’ lose. We detect clear trade-offs between ‘timber’ and all other ecosystem services, as well as synergies between ‘habitat’ and ‘carbon’. When evaluating all ecosystem services simultaneously, our results reveal certain interrelations between climate and management scenarios. North-eastern and western forest regions are more suitable to provide timber (while minimizing the negative impacts on remaining ecosystem services) whereas southern and central forest regions are more suitable to fulfil ‘habitat’ and ‘carbon’ services. The results provide the base for future forest management optimizations at the regional scale in order to maximize ecosystem services and forest ecosystem sustainability at the national scale.

  11. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States.

    PubMed

    Ajaz Ahmed, Mukhtar Ahmed; Abd-Elrahman, Amr; Escobedo, Francisco J; Cropper, Wendell P; Martin, Timothy A; Timilsina, Nilesh

    2017-09-01

    Understanding ecosystem processes and the influence of regional scale drivers can provide useful information for managing forest ecosystems. Examining more local scale drivers of forest biomass and water yield can also provide insights for identifying and better understanding the effects of climate change and management on forests. We used diverse multi-scale datasets, functional models and Geographically Weighted Regression (GWR) to model ecosystem processes at the watershed scale and to interpret the influence of ecological drivers across the Southeastern United States (SE US). Aboveground forest biomass (AGB) was determined from available geospatial datasets and water yield was estimated using the Water Supply and Stress Index (WaSSI) model at the watershed level. Our geostatistical model examined the spatial variation in these relationships between ecosystem processes, climate, biophysical, and forest management variables at the watershed level across the SE US. Ecological and management drivers at the watershed level were analyzed locally to identify whether drivers contribute positively or negatively to aboveground forest biomass and water yield ecosystem processes and thus identifying potential synergies and tradeoffs across the SE US region. Although AGB and water yield drivers varied geographically across the study area, they were generally significantly influenced by climate (rainfall and temperature), land-cover factor1 (Water and barren), land-cover factor2 (wetland and forest), organic matter content high, rock depth, available water content, stand age, elevation, and LAI drivers. These drivers were positively or negatively associated with biomass or water yield which significantly contributes to ecosystem interactions or tradeoff/synergies. Our study introduced a spatially-explicit modelling framework to analyze the effect of ecosystem drivers on forest ecosystem structure, function and provision of services. This integrated model approach facilitates multi-scale analyses of drivers and interactions at the local to regional scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Biogeochemical modelling vs. tree-ring data - comparison of forest ecosystem productivity estimates

    NASA Astrophysics Data System (ADS)

    Zorana Ostrogović Sever, Maša; Barcza, Zoltán; Hidy, Dóra; Paladinić, Elvis; Kern, Anikó; Marjanović, Hrvoje

    2017-04-01

    Forest ecosystems are sensitive to environmental changes as well as human-induce disturbances, therefore process-based models with integrated management modules represent valuable tool for estimating and forecasting forest ecosystem productivity under changing conditions. Biogeochemical model Biome-BGC simulates carbon, nitrogen and water fluxes, and it is widely used for different terrestrial ecosystems. It was modified and parameterised by many researchers in the past to meet the specific local conditions. In this research, we used recently published improved version of the model Biome-BGCMuSo (BBGCMuSo), with multilayer soil module and integrated management module. The aim of our research is to validate modelling results of forest ecosystem productivity (NPP) from BBGCMuSo model with observed productivity estimated from an extensive dataset of tree-rings. The research was conducted in two distinct forest complexes of managed Pedunculate oak in SE Europe (Croatia), namely Pokupsko basin and Spačva basin. First, we parameterized BBGCMuSo model at a local level using eddy-covariance (EC) data from Jastrebarsko EC site. Parameterized model was used for the assessment of productivity on a larger scale. Results of NPP assessment with BBGCMuSo are compared with NPP estimated from tree ring data taken from trees on over 100 plots in both forest complexes. Keywords: Biome-BGCMuSo, forest productivity, model parameterization, NPP, Pedunculate oak

  13. Available fuel dynamics in nine contrasting forest ecosystems in North America

    Treesearch

    Soung-Ryoul Ryu; Jiquan Chen; Thomas R. Crow; Sari C. Saunders

    2004-01-01

    Available fuel and its dynamics, both of which affect fire behavior in forest ecosystems, are direct products of ecosystem production, decomposition, and disturbances. Using published ecosystem models and equations, we developed a simulation model to evaluate the effects of dynamics of aboveground net primary production (ANPP), carbon allocation, residual slash,...

  14. Parameterisation of Biome BGC to assess forest ecosystems in Africa

    NASA Astrophysics Data System (ADS)

    Gautam, Sishir; Pietsch, Stephan A.

    2010-05-01

    African forest ecosystems are an important environmental and economic resource. Several studies show that tropical forests are critical to society as economic, environmental and societal resources. Tropical forests are carbon dense and thus play a key role in climate change mitigation. Unfortunately, the response of tropical forests to environmental change is largely unknown owing to insufficient spatially extensive observations. Developing regions like Africa where records of forest management for long periods are unavailable the process-based ecosystem simulation model - BIOME BGC could be a suitable tool to explain forest ecosystem dynamics. This ecosystem simulation model uses descriptive input parameters to establish the physiology, biochemistry, structure, and allocation patterns within vegetation functional types, or biomes. Undocumented parameters for larger-resolution simulations are currently the major limitations to regional modelling in African forest ecosystems. This study was conducted to document input parameters for BIOME-BGC for major natural tropical forests in the Congo basin. Based on available literature and field measurements updated values for turnover and mortality, allometry, carbon to nitrogen ratios, allocation of plant material to labile, cellulose, and lignin pools, tree morphology and other relevant factors were assigned. Daily climate input data for the model applications were generated using the statistical weather generator MarkSim. The forest was inventoried at various sites and soil samples of corresponding stands across Gabon were collected. Carbon and nitrogen in the collected soil samples were determined from soil analysis. The observed tree volume, soil carbon and soil nitrogen were then compared with the simulated model outputs to evaluate the model performance. Furthermore, the simulation using Congo Basin specific parameters and generalised BIOME BGC parameters for tropical evergreen broadleaved tree species were also executed and the simulated results compared. Once the model was optimised for forests in the Congo basin it was validated against observed tree volume, soil carbon and soil nitrogen from a set of independent plots.

  15. A dynamic organic soil biogeochemical model for simulating the effects of wildfire on soil environmental conditions and carbon dynamics of black spruce forests

    Treesearch

    Shuhua Yi; A. David McGuire; Eric Kasischke; Jennifer Harden; Kristen Manies; Michelle Mack; Merritt Turetsky

    2010-01-01

    Ecosystem models have not comprehensively considered how interactions among fire disturbance, soil environmental conditions, and biogeochemical processes affect ecosystem dynamics in boreal forest ecosystems. In this study, we implemented a dynamic organic soil structure in the Terrestrial Ecosystem Model (DOS-TEM) to investigate the effects of fire on soil temperature...

  16. Analyzing the ecosystem carbon and hydrologic characteristics of forested wetland using a biogeochemical process model

    Treesearch

    Jianbo Cui; Changsheng Li; Carl Trettin

    2005-01-01

    A comprehensive biogeochemical model, Wetland-DNDC, was applied to analyze the carbon and hydrologic characteristics of forested wetland ecosystem at Minnesota (MN) and Florida (FL) sites. The model simulates the flows of carbon, energy, and water in forested wetlands. Modeled carbon dynamics depends on physiological plant factors, the size of plant pools,...

  17. Predictors of Drought Recovery across Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Anderegg, W.

    2016-12-01

    The impacts of climate extremes on terrestrial ecosystems are poorly understood but central for predicting carbon cycle feedbacks to climate change. Coupled climate-carbon cycle models typically assume that vegetation recovery from extreme drought is immediate and complete, which conflicts with basic plant physiological understanding. Here, we discuss what we have learned about forest ecosystem recovery from extreme drought across spatial and temporal scales, drawing on inference from tree rings, eddy covariance data, large scale gross primary productivity products, and ecosystem models. In tree rings, we find pervasive and substantial "legacy effects" of reduced growth and incomplete recovery for 1-4 years after severe drought, and that legacy effects are most prevalent in dry ecosystems, Pinaceae, and species with low hydraulic safety margins. At larger scales, we see relatively rapid recovery of ecosystem fluxes, with strong influences of ecosystem productivity and diversity and longer recovery periods in high latidue forests. In contrast, no or limited legacy effects are simulated in current climate-vegetation models after drought, and we highlight some of the key missing mechanisms in dynamic vegetation models. Our results reveal hysteresis in forest ecosystem carbon cycling and delayed recovery from climate extremes and help advance a predictive understanding of ecosystem recovery.

  18. Effects of ice storm on forest ecosystem of southern China in 2008 Shaoqiang Wang1, Lei Zhou1, Weimin Ju2, Kun Huang1 1Key Lab of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Beijing, 10010

    NASA Astrophysics Data System (ADS)

    Wang, Shaoqiang

    2014-05-01

    Evidence is mounting that an increase in extreme climate events has begun to occur worldwide during the recent decades, which affect biosphere function and biodiversity. Ecosystems returned to its original structures and functions to maintain its sustainability, which was closely dependent on ecosystem resilience. Understanding the resilience and recovery capacity of ecosystem to extreme climate events is essential to predicting future ecosystem responses to climate change. Given the overwhelming importance of this region in the overall carbon cycle of forest ecosystems in China, south China suffered a destructive ice storm in 2008. In this study, we used the number of freezing day and a process-based model (Boreal Ecosystem Productivity Simulator, BEPS) to characterize the spatial distribution of ice storm region in southeastern China and explore the impacts on carbon cycle of forest ecosystem over the past decade. The ecosystem variables, i.e. Net primary productivity (NPP), Evapotranspiration (ET), and Water use efficiency (WUE, the ratio of NPP to ET) from the outputs of BEPS models were used to detect the resistance and resilience of forest ecosystem in southern China. The pattern of ice storm-induced forest productivity widespread decline was closely related to the number of freezing day during the ice storm period. The NPP of forest area suffered heavy ice storm returned to normal status after five months with high temperature and ample moisture, indicated a high resilience of subtropical forest in China. The long-term changes of forest WUE remain stable, behaving an inherent sensitivity of ecosystem to extreme climate events. In addition, ground visits suggested that the recovery of forest productivity was attributed to rapid growth of understory. Understanding the variability and recovery threshold of ecosystem following extreme climate events help us to better simulate and predict the variability of ecosystem structure and function under current and future climate change.

  19. The impact of human-environment interactions on the stability of forest-grassland mosaic ecosystems

    PubMed Central

    Innes, Clinton; Anand, Madhur; Bauch, Chris T.

    2013-01-01

    Forest-grassland mosaic ecosystems can exhibit alternative stables states, whereby under the same environmental conditions, the ecosystem could equally well reside either in one state or another, depending on the initial conditions. We develop a mathematical model that couples a simplified forest-grassland mosaic model to a dynamic model of opinions about conservation priorities in a population, based on perceptions of ecosystem rarity. Weak human influence increases the region of parameter space where alternative stable states are possible. However, strong human influence precludes bistability, such that forest and grassland either co-exist at a single, stable equilibrium, or their relative abundance oscillates. Moreover, a perturbation can shift the system from a stable state to an oscillatory state. We conclude that human-environment interactions can qualitatively alter the composition of forest-grassland mosaic ecosystems. The human role in such systems should be viewed as dynamic, responsive element rather than as a fixed, unchanging entity. PMID:24048359

  20. Simulation of the effect of air pollution on forest ecosystems in a region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarko, A.M.; Bykadorov, A.V.; Kryuchkov, V.V.

    1995-03-01

    This article describes a model of air pollution effects on spruce in forests of the northern taiga regions which have been exposed to air pollution from a large metallurgical industrial complex. Both the predictions the model makes about forest ecosystem degradation zones and the limitations of the model are discussed. 5 refs., 1 fig.

  1. Assessing Forest NPP: BIOME-BGC Predictions versus BEF Derived Estimates

    NASA Astrophysics Data System (ADS)

    Hasenauer, H.; Pietsch, S. A.; Petritsch, R.

    2007-05-01

    Forest productivity has always been a major issue within sustainable forest management. While in the past terrestrial forest inventory data have been the major source for assessing forest productivity, recent developments in ecosystem modeling offer an alternative approach using ecosystem models such as Biome-BGC to estimate Net Primary Production (NPP). In this study we compare two terrestrial driven approaches for assessing NPP: (i) estimates from a species specific adaptation of the biogeochemical ecosystem model BIOME-BGC calibrated for Alpine conditions; and (ii) NPP estimates derived from inventory data using biomass expansion factors (BEF). The forest inventory data come from 624 sample plots across Austria and consist of repeated individual tree observations and include growth as well as soil and humus information. These locations are covered with spruce, beech, oak, pine and larch stands, thus addressing the main Austrian forest types. 144 locations were previously used in a validating effort to produce species-specific parameter estimates of the ecosystem model. The remaining 480 sites are from the Austrian National Forest Soil Survey carried out at the Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW). By using diameter at breast height (dbh) and height (h) volume and subsequently biomass of individual trees were calculated, aggregated for the whole forest stand and compared with the model output. Regression analyses were performed for both volume and biomass estimates.

  2. Paying for Forest Ecosystem Services: Voluntary Versus Mandatory Payments.

    PubMed

    Roesch-McNally, Gabrielle E; Rabotyagov, Sergey S

    2016-03-01

    The emergence of new markets for forest ecosystem services can be a compelling opportunity for market diversification for private forest landowners, while increasing the provision of public goods from private lands. However, there is limited information available on the willingness-to-pay (WTP) for specific forest ecosystem services, particularly across different ecosystem market mechanisms. We utilize survey data from Oregon and Washington households to compare marginal WTP for forest ecosystem services and the total WTP for cost-effective bundles of forest ecosystem services obtained from a typical Pacific Northwest forest across two value elicitation formats representing two different ecosystem market mechanisms: an incentive-compatible choice experiment involving mandatory tax payments and a hypothetical private provision scenario modeled as eliciting contributions to the preferred forest management alternative via a provision point mechanism with a refund. A representative household's total WTP for the average forest management program was estimated at $217.59 per household/year under a mandatory tax mechanism and $160.44 per household/per year under a voluntary, crowdfunding-style, contribution mechanism; however, these estimates are not statistically different. Marginal WTP estimates were assessed for particular forest ecosystem service attributes including water quality, carbon storage, mature forest habitat, and public recreational access. This study finds that survey respondents place significant economic value on forest ecosystem services in both elicitation formats and that the distributions of the marginal WTP are not statistically significantly different.

  3. Paying for Forest Ecosystem Services: Voluntary Versus Mandatory Payments

    NASA Astrophysics Data System (ADS)

    Roesch-McNally, Gabrielle E.; Rabotyagov, Sergey S.

    2016-03-01

    The emergence of new markets for forest ecosystem services can be a compelling opportunity for market diversification for private forest landowners, while increasing the provision of public goods from private lands. However, there is limited information available on the willingness-to-pay (WTP) for specific forest ecosystem services, particularly across different ecosystem market mechanisms. We utilize survey data from Oregon and Washington households to compare marginal WTP for forest ecosystem services and the total WTP for cost-effective bundles of forest ecosystem services obtained from a typical Pacific Northwest forest across two value elicitation formats representing two different ecosystem market mechanisms: an incentive-compatible choice experiment involving mandatory tax payments and a hypothetical private provision scenario modeled as eliciting contributions to the preferred forest management alternative via a provision point mechanism with a refund. A representative household's total WTP for the average forest management program was estimated at 217.59 per household/year under a mandatory tax mechanism and 160.44 per household/per year under a voluntary, crowdfunding-style, contribution mechanism; however, these estimates are not statistically different. Marginal WTP estimates were assessed for particular forest ecosystem service attributes including water quality, carbon storage, mature forest habitat, and public recreational access. This study finds that survey respondents place significant economic value on forest ecosystem services in both elicitation formats and that the distributions of the marginal WTP are not statistically significantly different.

  4. Studies on Interpretive Structural Model for Forest Ecosystem Management Decision-Making

    NASA Astrophysics Data System (ADS)

    Liu, Suqing; Gao, Xiumei; Zen, Qunying; Zhou, Yuanman; Huang, Yuequn; Han, Weidong; Li, Linfeng; Li, Jiping; Pu, Yingshan

    Characterized by their openness, complexity and large scale, forest ecosystems interweave themselves with social system, economic system and other natural ecosystems, thus complicating both their researches and management decision-making. According to the theories of sustainable development, hierarchy-competence levels, cybernetics and feedback, 25 factors have been chosen from human society, economy and nature that affect forest ecosystem management so that they are systematically analyzed via developing an interpretive structural model (ISM) to reveal their relationships and positions in the forest ecosystem management. The ISM consists of 7 layers with the 3 objectives for ecosystem management being the top layer (the seventh layer). The ratio between agricultural production value and industrial production value as the bases of management decision-making in forest ecosystems becomes the first layer at the bottom because it has great impacts on the values of society and the development trends of forestry, while the factors of climatic environments, intensive management extent, management measures, input-output ratio as well as landscape and productivity are arranged from the second to sixth layers respectively.

  5. Reducing the uncertainty of parameters controlling seasonal carbon and water fluxes in Chinese forests and its implication for simulated climate sensitivities

    NASA Astrophysics Data System (ADS)

    Li, Yue; Yang, Hui; Wang, Tao; MacBean, Natasha; Bacour, Cédric; Ciais, Philippe; Zhang, Yiping; Zhou, Guangsheng; Piao, Shilong

    2017-08-01

    Reducing parameter uncertainty of process-based terrestrial ecosystem models (TEMs) is one of the primary targets for accurately estimating carbon budgets and predicting ecosystem responses to climate change. However, parameters in TEMs are rarely constrained by observations from Chinese forest ecosystems, which are important carbon sink over the northern hemispheric land. In this study, eddy covariance data from six forest sites in China are used to optimize parameters of the ORganizing Carbon and Hydrology In Dynamics EcosystEms TEM. The model-data assimilation through parameter optimization largely reduces the prior model errors and improves the simulated seasonal cycle and summer diurnal cycle of net ecosystem exchange, latent heat fluxes, and gross primary production and ecosystem respiration. Climate change experiments based on the optimized model are deployed to indicate that forest net primary production (NPP) is suppressed in response to warming in the southern China but stimulated in the northeastern China. Altered precipitation has an asymmetric impact on forest NPP at sites in water-limited regions, with the optimization-induced reduction in response of NPP to precipitation decline being as large as 61% at a deciduous broadleaf forest site. We find that seasonal optimization alters forest carbon cycle responses to environmental change, with the parameter optimization consistently reducing the simulated positive response of heterotrophic respiration to warming. Evaluations from independent observations suggest that improving model structure still matters most for long-term carbon stock and its changes, in particular, nutrient- and age-related changes of photosynthetic rates, carbon allocation, and tree mortality.

  6. Carbon fluxes in tropical forest ecosystems: the value of Eddy-covariance data for individual-based dynamic forest gap models

    NASA Astrophysics Data System (ADS)

    Roedig, Edna; Cuntz, Matthias; Huth, Andreas

    2015-04-01

    The effects of climatic inter-annual fluctuations and human activities on the global carbon cycle are uncertain and currently a major issue in global vegetation models. Individual-based forest gap models, on the other hand, model vegetation structure and dynamics on a small spatial (<100 ha) and large temporal scale (>1000 years). They are well-established tools to reproduce successions of highly-diverse forest ecosystems and investigate disturbances as logging or fire events. However, the parameterizations of the relationships between short-term climate variability and forest model processes are often uncertain in these models (e.g. daily variable temperature and gross primary production (GPP)) and cannot be constrained from forest inventories. We addressed this uncertainty and linked high-resolution Eddy-covariance (EC) data with an individual-based forest gap model. The forest model FORMIND was applied to three diverse tropical forest sites in the Amazonian rainforest. Species diversity was categorized into three plant functional types. The parametrizations for the steady-state of biomass and forest structure were calibrated and validated with different forest inventories. The parameterizations of relationships between short-term climate variability and forest model processes were evaluated with EC-data on a daily time step. The validations of the steady-state showed that the forest model could reproduce biomass and forest structures from forest inventories. The daily estimations of carbon fluxes showed that the forest model reproduces GPP as observed by the EC-method. Daily fluctuations of GPP were clearly reflected as a response to daily climate variability. Ecosystem respiration remains a challenge on a daily time step due to a simplified soil respiration approach. In the long-term, however, the dynamic forest model is expected to estimate carbon budgets for highly-diverse tropical forests where EC-measurements are rare.

  7. Forest fragmentation and selective logging have inconsistent effects on multiple animal-mediated ecosystem processes in a tropical forest.

    PubMed

    Schleuning, Matthias; Farwig, Nina; Peters, Marcell K; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Naumann, Clas M; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J Wolfgang; Böhning-Gaese, Katrin

    2011-01-01

    Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants.

  8. Forest Fragmentation and Selective Logging Have Inconsistent Effects on Multiple Animal-Mediated Ecosystem Processes in a Tropical Forest

    PubMed Central

    Schleuning, Matthias; Farwig, Nina; Peters, Marcell K.; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W.; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H.; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J. Wolfgang; Böhning-Gaese, Katrin

    2011-01-01

    Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants. PMID:22114695

  9. Integrating a process-based ecosystem model with Landsat imagery to assess impacts of forest disturbance on terrestrial carbon dynamics: Case studies in Alabama and Mississippi

    DOE PAGES

    Chen, Guangsheng; Tian, Hanqin; Huang, Chengquan; ...

    2013-07-01

    Forest ecosystems in the southern United States are dramatically altered by three major disturbances: timber harvesting, hurricane, and permanent land conversion. Understanding and quantifying effects of disturbance on forest carbon, nitrogen, and water cycles is critical for sustainable forest management in this region. In this study, we introduced a process-based ecosystem model for simulating forest disturbance impacts on ecosystem carbon, nitrogen, and water cycles. Based on forest mortality data classified from Landsat TM/ETM + images, this model was then applied to estimate changes in carbon storage using Mississippi and Alabama as a case study. Mean annual forest mortality rate formore » these states was 2.37%. Due to frequent disturbance, over 50% of the forest land in the study region was less than 30 years old. Forest disturbance events caused a large carbon source (138.92 Tg C, 6.04 Tg C yr -1; 1 Tg = 10 12 g) for both states during 1984–2007, accounting for 2.89% (4.81% if disregard carbon storage changes in wood products) of the total forest carbon storage in this region. Large decreases and slow recovery of forest biomass were the main causes for carbon release. Forest disturbance could result in a carbon sink in few areas if wood product carbon was considered as a local carbon pool, indicating the importance of accounting for wood product carbon when assessing forest disturbance effects. The legacy effects of forest disturbance on ecosystem carbon storage could last over 50 years. Lastly, this study implies that understanding forest disturbance impacts on carbon dynamics is of critical importance for assessing regional carbon budgets.« less

  10. Simulating the impacts of land use in northwest Europe on Net Ecosystem Exchange (NEE): the role of arable ecosystems, grasslands and forest plantations in climate change mitigation.

    PubMed

    Abdalla, Mohamed; Saunders, Matthew; Hastings, Astley; Williams, Mike; Smith, Pete; Osborne, Bruce; Lanigan, Gary; Jones, Mike B

    2013-11-01

    In this study, we compared measured and simulated Net Ecosystem Exchange (NEE) values from three wide spread ecosystems in the southeast of Ireland (forest, arable and grassland), and investigated the suitability of the DNDC (the DeNitrification-DeComposition) model to estimate present and future NEE. Although, the field-DNDC version overestimated NEE at temperatures >5 °C, forest-DNDC under-estimated NEE at temperatures >5 °C. The results suggest that the field/forest DNDC models can successfully estimate changes in seasonal and annual NEE from these ecosystems. Differences in NEE were found to be primarily land cover specific. The annual NEE was similar for the grassland and arable sites, but due to the contribution of exported carbon, the soil carbon increased at the grassland site and decreased at the arable site. The NEE of the forest site was an order of magnitude larger than that of the grassland or arable ecosystems, with large amounts of carbon stored in woody biomass and the soil. The average annual NEE, GPP and Reco values over the measurement period were -904, 2379 and 1475 g C m(-2) (forest plantations), -189, 906 and 715 g C m(-2) (arable systems) and -212, 1653 and 1444 g C m(-2) (grasslands), respectively. The average RMSE values were 3.8 g C m(-2) (forest plantations), 0.12 g C m(-2) (arable systems) and 0.21 g C m(-2) (grasslands). When these models were run with climate change scenarios to 2060, predictions show that all three ecosystems will continue to operate as carbon sinks. Further, climate change may decrease the carbon sink strength in the forest plantations by up to 50%. This study supports the use of the DNDC model as a valid tool to predict the consequences of climate change on NEE from different ecosystems. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Quantification of soil respiration in forest ecosystems across China

    NASA Astrophysics Data System (ADS)

    Song, Xinzhang; Peng, Changhui; Zhao, Zhengyong; Zhang, Zhiting; Guo, Baohua; Wang, Weifeng; Jiang, Hong; Zhu, Qiuan

    2014-09-01

    We collected 139 estimates of the annual forest soil CO2 flux and 173 estimates of the Q10 value (the temperature sensitivity) assembled from 90 published studies across Chinese forest ecosystems. We analyzed the annual soil respiration (Rs) rates and the temperature sensitivities of seven forest ecosystems, including evergreen broadleaf forests (EBF), deciduous broadleaf forests (DBF), broadleaf and needleleaf mixed forests (BNMF), evergreen needleleaf forests (ENF), deciduous needleleaf forests (DNF), bamboo forests (BF) and shrubs (SF). The results showed that the mean annual Rs rate was 33.65 t CO2 ha-1 year-1 across Chinese forest ecosystems. Rs rates were significantly different (P < 0.001) among the seven forest types, and were significantly and positively influenced by mean annual temperature (MAT), mean annual precipitation (MAP), and actual evapotranspiration (AET); but negatively affected by latitude and elevation. The mean Q10 value of 1.28 was lower than the world average (1.4-2.0). The Q10 values derived from the soil temperature at a depth of 5 cm varied among forest ecosystems by an average of 2.46 and significantly decreased with the MAT but increased with elevation and latitude. Moreover, our results suggested that an artificial neural network (ANN) model can effectively predict Rs across Chinese forest ecosystems. This study contributes to better understanding of Rs across Chinese forest ecosystems and their possible responses to global warming.

  12. Effects of disturbance and climate change on ecosystem performance in the Yukon River Basin boreal forest

    USGS Publications Warehouse

    Wylie, Bruce K.; Rigge, Matthew B.; Brisco, Brian; Mrnaghan, Kevin; Rover, Jennifer R.; Long, Jordan

    2014-01-01

    A warming climate influences boreal forest productivity, dynamics, and disturbance regimes. We used ecosystem models and 250 m satellite Normalized Difference Vegetation Index (NDVI) data averaged over the growing season (GSN) to model current, and estimate future, ecosystem performance. We modeled Expected Ecosystem Performance (EEP), or anticipated productivity, in undisturbed stands over the 2000–2008 period from a variety of abiotic data sources, using a rule-based piecewise regression tree. The EEP model was applied to a future climate ensemble A1B projection to quantify expected changes to mature boreal forest performance. Ecosystem Performance Anomalies (EPA), were identified as the residuals of the EEP and GSN relationship and represent performance departures from expected performance conditions. These performance data were used to monitor successional events following fire. Results suggested that maximum EPA occurs 30–40 years following fire, and deciduous stands generally have higher EPA than coniferous stands. Mean undisturbed EEP is projected to increase 5.6% by 2040 and 8.7% by 2070, suggesting an increased deciduous component in boreal forests. Our results contribute to the understanding of boreal forest successional dynamics and its response to climate change. This information enables informed decisions to prepare for, and adapt to, climate change in the Yukon River Basin forest.

  13. [Global climate change and carbon balance in forest ecosystems of boreal zones: imitating modeling as a forecast tool].

    PubMed

    Shanin, V N; Mikhaĭlov, A V; Bykhovets, S S; Komarov, A S

    2010-01-01

    The individually oriented system of the EFIMOD models simulating carbon and nitrogen flows in forest ecosystems has been used for forecasting the response of forest ecosystems to various forest exploitation regimes with climate change. As input data the forest management materials for the Manturovskii forestry of the Kostroma region were used. It has been shown that increase of mid-annual temperatures and rainfall influence the redistribution of carbon and nitrogen supply in organic form: supply increase of these elements in phytomass simultaneously with depletion of them in soil occurred. The most carbon and nitrogen accumulation in forest ecosystems occurs in the scenario without felling. In addition, in this scenario only the ecosystems of the modeling territory function as a carbon drain; in the other two scenarios (with selective and total felling) they function as a source of carbon. Climate changes greatly influence the decomposition rate of organic matter in soil, which leads to increased emission of carbonic acid. The second consequence of the increase in the destruction rate is nitrogen increase in the soil in a form available for plants that entails production increase of plantations.

  14. An ecosystem model for tropical forest disturbance and selective logging

    Treesearch

    Maoyi Huang; Gregory P. Asner; Michael Keller; Joseph A. Berry

    2008-01-01

    [1] A new three-dimensional version of the Carnegie-Ames-Stanford Approach (CASA) ecosystem model (CASA-3D) was developed to simulate regional carbon cycling in tropical forest ecosystems after disturbances such as logging. CASA-3D has the following new features: (1) an alternative approach for calculating absorbed photosynthetically active radiation (APAR) using new...

  15. Fitting rainfall interception models to forest ecosystems of Mexico

    NASA Astrophysics Data System (ADS)

    Návar, José

    2017-05-01

    Models that accurately predict forest interception are essential both for water balance studies and for assessing watershed responses to changes in land use and the long-term climate variability. This paper compares the performance of four rainfall interception models-the sparse Gash (1995), Rutter et al. (1975), Liu (1997) and two new models (NvMxa and NvMxb)-using data from four spatially extensive, structurally diverse forest ecosystems in Mexico. Ninety-eight case studies measuring interception in tropical dry (25), arid/semi-arid (29), temperate (26), and tropical montane cloud forests (18) were compiled and analyzed. Coefficients derived from raw data or published statistical relationships were used as model input to evaluate multi-storm forest interception at the case study scale. On average empirical data showed that, tropical montane cloud, temperate, arid/semi-arid and tropical dry forests intercepted 14%, 18%, 22% and 26% of total precipitation, respectively. The models performed well in predicting interception, with mean deviations between measured and modeled interception as a function of total precipitation (ME) generally <5.8% and Nash-Sutcliffe efficiency E estimators >0.66. Model fitting precision was dependent on the forest ecosystem. Arid/semi-arid forests exhibited the smallest, while tropical montane cloud forest displayed the largest ME deviations. Improved agreement between measured and modeled data requires modification of in-storm evaporation rate in the Liu; the canopy storage in the sparse Gash model; and the throughfall coefficient in the Rutter and the NvMx models. This research concludes on recommending the wide application of rainfall interception models with some caution as they provide mixed results. The extensive forest interception data source, the fitting and testing of four models, the introduction of a new model, and the availability of coefficient values for all four forest ecosystems are an important source of information and a benchmark for future investigations in this area of hydrology.

  16. Influence of forest planning alternatives on landscape pattern and ecosystem processes in northern Wisconsin, USA

    Treesearch

    Patrick A. Zollner; L. Jay Roberts; Eric J. Gustafson; Hong S. He; Volker Radeloff

    2008-01-01

    Incorporating an ecosystem management perspective into forest planning requires consideration of the impacts of timber management on a suite of landscape characteristics at broad spatial and long temporal scales. We used the LANDIS forest landscape simulation model to predict forest composition and landscape pattern under seven alternative forest management plans...

  17. Modeling impacts of management on carbon sequestration and trace gas emissions in forested wetland ecosystems

    Treesearch

    Changsheng Li; Jianbo Cui

    2004-01-01

    A process- based model, Wetland-DNDC, was modified to enhance its capacity to predict the impacts of management practices on carbon sequestration in and trace gas emissions from forested wetland ecosystems. The modifications included parameterization of management practices fe.g., forest harvest, chopping, burning, water management, fertilization, and tree planting),...

  18. Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services.

    PubMed

    Paoletti, E; Schaub, M; Matyssek, R; Wieser, G; Augustaitis, A; Bastrup-Birk, A M; Bytnerowicz, A; Günthardt-Goerg, M S; Müller-Starck, G; Serengil, Y

    2010-06-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Next-generation forest change mapping across the United States: the landscape change monitoring system (LCMS)

    Treesearch

    Sean P. Healey; Warren B. Cohen; Yang Zhiqiang; Ken Brewer; Evan Brooks; Noel Gorelick; Mathew Gregory; Alexander Hernandez; Chengquan Huang; Joseph Hughes; Robert Kennedy; Thomas Loveland; Kevin Megown; Gretchen Moisen; Todd Schroeder; Brian Schwind; Stephen Stehman; Daniel Steinwand; James Vogelmann; Curtis Woodcock; Limin Yang; Zhe Zhu

    2015-01-01

    Forest change information is critical in forest planning, ecosystem modeling, and in updating forest condition maps. The Landsat satellite platform has provided consistent observations of the world’s ecosystems since 1972. A number of innovative change detection algorithms have been developed to use the Landsat archive to identify and characterize forest change. The...

  20. Intelligent Model Management in a Forest Ecosystem Management Decision Support System

    Treesearch

    Donald Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mark Twery; H. Michael Rauscher; Peter Knopp; Scott Thomasma; Mayukh Dass; Hajime Uchiyama

    2002-01-01

    Decision making for forest ecosystem management can include the use of a wide variety of modeling tools. These tools include vegetation growth models, wildlife models, silvicultural models, GIS, and visualization tools. NED-2 is a robust, intelligent, goal-driven decision support system that integrates tools in each of these categories. NED-2 uses a blackboard...

  1. Impacts of Diffuse Radiation on Light Use Efficiency across Terrestrial Ecosystems Based on Eddy Covariance Observation in China

    PubMed Central

    Huang, Kun; Wang, Shaoqiang; Zhou, Lei; Wang, Huimin; Zhang, Junhui; Yan, Junhua; Zhao, Liang; Wang, Yanfen; Shi, Peili

    2014-01-01

    Ecosystem light use efficiency (LUE) is a key factor of production models for gross primary production (GPP) predictions. Previous studies revealed that ecosystem LUE could be significantly enhanced by an increase on diffuse radiation. Under large spatial heterogeneity and increasing annual diffuse radiation in China, eddy covariance flux data at 6 sites across different ecosystems from 2003 to 2007 were used to investigate the impacts of diffuse radiation indicated by the cloudiness index (CI) on ecosystem LUE in grassland and forest ecosystems. Our results showed that the ecosystem LUE at the six sites was significantly correlated with the cloudiness variation (0.24≤R2≤0.85), especially at the Changbaishan temperate forest ecosystem (R2 = 0.85). Meanwhile, the CI values appeared more frequently between 0.8 and 1.0 in two subtropical forest ecosystems (Qianyanzhou and Dinghushan) and were much larger than those in temperate ecosystems. Besides, cloudiness thresholds which were favorable for enhancing ecosystem carbon sequestration existed at the three forest sites, respectively. Our research confirmed that the ecosystem LUE at the six sites in China was positively responsive to the diffuse radiation, and the cloudiness index could be used as an environmental regulator for LUE modeling in regional GPP prediction. PMID:25393629

  2. Impacts of diffuse radiation on light use efficiency across terrestrial ecosystems based on Eddy covariance observation in China.

    PubMed

    Huang, Kun; Wang, Shaoqiang; Zhou, Lei; Wang, Huimin; Zhang, Junhui; Yan, Junhua; Zhao, Liang; Wang, Yanfen; Shi, Peili

    2014-01-01

    Ecosystem light use efficiency (LUE) is a key factor of production models for gross primary production (GPP) predictions. Previous studies revealed that ecosystem LUE could be significantly enhanced by an increase on diffuse radiation. Under large spatial heterogeneity and increasing annual diffuse radiation in China, eddy covariance flux data at 6 sites across different ecosystems from 2003 to 2007 were used to investigate the impacts of diffuse radiation indicated by the cloudiness index (CI) on ecosystem LUE in grassland and forest ecosystems. Our results showed that the ecosystem LUE at the six sites was significantly correlated with the cloudiness variation (0.24 ≤ R(2) ≤ 0.85), especially at the Changbaishan temperate forest ecosystem (R(2) = 0.85). Meanwhile, the CI values appeared more frequently between 0.8 and 1.0 in two subtropical forest ecosystems (Qianyanzhou and Dinghushan) and were much larger than those in temperate ecosystems. Besides, cloudiness thresholds which were favorable for enhancing ecosystem carbon sequestration existed at the three forest sites, respectively. Our research confirmed that the ecosystem LUE at the six sites in China was positively responsive to the diffuse radiation, and the cloudiness index could be used as an environmental regulator for LUE modeling in regional GPP prediction.

  3. Comparing simulated carbon budget of a Lei bamboo forest with flux tower data

    USGS Publications Warehouse

    Li, Xuehe; Jiang, Hong; Liu, Jinxun; Sun, Cheng; Wang, Ying; Jin, Jiaxin

    2014-01-01

    Bamboo forest ecosystem is the part of the forest ecosystem. The distribution area of bamboo forest is limited, but in somewhere, like south China, it has been cultivate for a long time with human management. As the climate change has been take great effect on forest carbon budget, many researchers pay attention to the carbon budget in bamboo forest. Moreover cultivative management had a significant impact on the bamboo forest carbon budget. In this study, we modified a terrestrial ecosystem model named Integrated Biosphere Simulator (IBIS) according the management of Lei bamboo forest. Some management, like fertilization, shoots harvesting and organic mulching in winter, had been incorporated into model. Then we had compared model results with the observation data from a Lei bamboo flux tower. The simulated and observed results had achieved good consistency. Our simulated Lei bamboo forest yearly net ecosystem productivity (NEP) was 0.41 kgC a-1 of carbon, which is very close to the observation data 0.45 kgC a-1 of carbon. And the monthly simulated results can take the change of carbon budget in each month, similar to the data we got from flux tower. It reflects that the modified IBIS model can characterize the growth of bamboo forest and perform the simulation well. And then two groups of simulations were set to evaluate effects of cultivative managements on Lei bamboo forests carbon budget. And results showed that both fertilization and organic mulching had taken positive effects on Lei bamboo forests carbon sequestration.

  4. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling.

    PubMed

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha; Thompson, Jill; Zimmerman, Jess K; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here, we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured interannual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including aboveground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate. © 2017 John Wiley & Sons Ltd.

  5. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    USGS Publications Warehouse

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha C.; Thompson, Jill; Zimmerman, Jess K.; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured inter-annual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including above-ground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.

  6. Moderate forest disturbance as a stringent test for gap and big-leaf models

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B.; Fisk, J. P.; Holm, J. A.; Bailey, V.; Bohrer, G.; Gough, C. M.

    2015-01-01

    Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. It is thus unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging US forests. We tested whether three forest ecosystem models - Biome-BGC (BioGeochemical Cycles), a classic big-leaf model, and the ZELIG and ED (Ecosystem Demography) gap-oriented models - could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experiment in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ZELIG and ED correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes, in particular gross primary production or net primary production (NPP). Biome-BGC NPP was correctly resilient but for the wrong reasons, and could not match the absolute observational values. ZELIG and ED, in contrast, exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. It is thus an open question whether most ecosystem models will simulate correctly the gradual and less extensive tree mortality characteristic of moderate disturbances.

  7. Moderate forest disturbance as a stringent test for gap and big-leaf models

    DOE PAGES

    Bond-Lamberty, Benjamin; Fisk, Justin P.; Holm, Jennifer; ...

    2015-01-27

    Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. It is thus unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging US forests. We tested whether three forest ecosystem models – Biome-BGC (BioGeochemical Cycles), a classic big-leaf model, and the ZELIG and ED (Ecosystem Demography) gap-oriented models – could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experimentmore » in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ZELIG and ED correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes, in particular gross primary production or net primary production (NPP). Biome-BGC NPP was correctly resilient but for the wrong reasons, and could not match the absolute observational values. ZELIG and ED, in contrast, exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. It is thus an open question whether most ecosystem models will simulate correctly the gradual and less extensive tree mortality characteristic of moderate disturbances.« less

  8. Past and future effects of atmospheric deposition on the forest ecosystem at the Hubbard Brook Experimental Forest: simulations with the dynamic model ForSAFE

    Treesearch

    Salim Belyazid; Scott Bailey; Harald Sverdrup

    2010-01-01

    The Hubbard Brook Ecosystem Study presents a unique opportunity for studying long-term ecosystem responses to changes in anthropogenic factors. Following industrialisation and the intensification of agriculture, the Hubbard Brook Experimental Forest (HBEF) has been subject to increased loads of atmospheric deposition, particularly sulfur and nitrogen. The deposition of...

  9. Latent heat exchange in the boreal and arctic biomes.

    PubMed

    Kasurinen, Ville; Alfredsen, Knut; Kolari, Pasi; Mammarella, Ivan; Alekseychik, Pavel; Rinne, Janne; Vesala, Timo; Bernier, Pierre; Boike, Julia; Langer, Moritz; Belelli Marchesini, Luca; van Huissteden, Ko; Dolman, Han; Sachs, Torsten; Ohta, Takeshi; Varlagin, Andrej; Rocha, Adrian; Arain, Altaf; Oechel, Walter; Lund, Magnus; Grelle, Achim; Lindroth, Anders; Black, Andy; Aurela, Mika; Laurila, Tuomas; Lohila, Annalea; Berninger, Frank

    2014-11-01

    In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need to take into account vegetation type and phenology in energy exchange modeling. © 2014 John Wiley & Sons Ltd.

  10. Are more complex physiological models of forest ecosystems better choices for plot and regional predictions?

    Treesearch

    Wenchi Jin; Hong S. He; Frank R. Thompson

    2016-01-01

    Process-based forest ecosystem models vary from simple physiological, complex physiological, to hybrid empirical-physiological models. Previous studies indicate that complex models provide the best prediction at plot scale with a temporal extent of less than 10 years, however, it is largely untested as to whether complex models outperform the other two types of models...

  11. Mapping potential carbon and timber losses from hurricanes using a decision tree and ecosystem services driver model.

    PubMed

    Delphin, S; Escobedo, F J; Abd-Elrahman, A; Cropper, W

    2013-11-15

    Information on the effect of direct drivers such as hurricanes on ecosystem services is relevant to landowners and policy makers due to predicted effects from climate change. We identified forest damage risk zones due to hurricanes and estimated the potential loss of 2 key ecosystem services: aboveground carbon storage and timber volume. Using land cover, plot-level forest inventory data, the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, and a decision tree-based framework; we determined potential damage to subtropical forests from hurricanes in the Lower Suwannee River (LS) and Pensacola Bay (PB) watersheds in Florida, US. We used biophysical factors identified in previous studies as being influential in forest damage in our decision tree and hurricane wind risk maps. Results show that 31% and 0.5% of the total aboveground carbon storage in the LS and PB, respectively was located in high forest damage risk (HR) zones. Overall 15% and 0.7% of the total timber net volume in the LS and PB, respectively, was in HR zones. This model can also be used for identifying timber salvage areas, developing ecosystem service provision and management scenarios, and assessing the effect of other drivers on ecosystem services and goods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Forests tend to cool the land surface in the temperate zone: An analysis of the mechanisms controlling radiometric surface temperature change in managed temperate ecosystems

    NASA Astrophysics Data System (ADS)

    Stoy, P. C.; Katul, G. G.; Juang, J.; Siqueira, M. B.; Novick, K. A.; Essery, R.; Dore, S.; Kolb, T. E.; Montes-Helu, M. C.; Scott, R. L.

    2010-12-01

    Vegetation is an important control on the surface energy balance and thereby surface temperature. Boreal forests and arctic shrubs are thought to warm the land surface by absorbing more radiation than the vegetation they replace. The surface temperatures of tropical forests tend to be cooler than deforested landscapes due to enhanced evapotranspiration. The effects of reforestation on surface temperature change in the temperate zone is less-certain, but recent modeling efforts suggest forests have a global warming effect. We quantified the mechanisms driving radiometric surface changes following landcover changes using paired ecosystem case studies from the Ameriflux database with energy balance models of varying complexity. Results confirm previous findings that deciduous and coniferous forests in the southeastern U.S. are ca. 1 °C cooler than an adjacent field on an annual basis because aerodynamic/ecophysiological cooling of 2-3 °C outweighs an albedo-related warming of <1 °C. A 50-70% reduction in the aerodynamic resistance to sensible and latent heat exchange in the forests dominated the cooling effect. A grassland ecosystem that succeeded a stand-replacing ponderosa pine fire was ca. 1 °C warmer than unburned stands because a 1.5 °C aerodynamic warming offset a slight surface cooling due to greater albedo and soil heat flux. An ecosystem dominated by mesquite shrub encroachment was nearly 2 °C warmer than a native grassland ecosystem as aerodynamic and albedo-related warming outweighed a small cooling effect due to changes in soil heat flux. The forested ecosystems in these case studies are documented to have higher carbon uptake than the non-forested systems. Results suggest that temperate forests tend to cool the land surface and suggest that previous model-based findings that forests warm the Earth’s surface globally should be reconsidered.Changes to radiometric surface temperature (K) following changes in vegetation using paired ecosystem case studies C4 grassland and shrub ecosystem surface temperatures were adjusted for differences in air temperature across sites.

  13. Disturbance Distance: Using a process based ecosystem model to estimate and map potential thresholds in disturbance rates that would give rise to fundamentally altered ecosystems

    NASA Astrophysics Data System (ADS)

    Dolan, K. A.; Hurtt, G. C.; Fisk, J.; Flanagan, S.; LePage, Y.; Sahajpal, R.

    2014-12-01

    Disturbance plays a critical role in shaping the structure and function of forested ecosystems as well as the ecosystem services they provide, including but not limited to: carbon storage, biodiversity habitat, water quality and flow, and land atmosphere exchanges of energy and water. As recent studies highlight novel disturbance regimes resulting from pollution, invasive pests and climate change, there is a need to include these alterations in predictions of future forest function and structure. The Ecosystem Demography (ED) model is a mechanistic model of forest ecosystem dynamics in which individual-based forest dynamics can be efficiently implemented over regional to global scales due to advanced scaling methods. We utilize ED to characterize the sensitivity of potential vegetation structure and function to changes in rates of density independent mortality. Disturbance rate within ED can either be altered directly or through the development of sub-models. Disturbance sub-models in ED currently include fire, land use and hurricanes. We use a tiered approach to understand the sensitivity of North American ecosystems to changes in background density independent mortality. Our first analyses were conducted at half-degree spatial resolution with a constant rate of disturbance in space and time, which was altered between runs. Annual climate was held constant at the site level and the land use and fire sub-models were turned off. Results showed an ~ 30% increase in non-forest area across the US when disturbance rates were changed from 0.6% a year to 1.2% a year and a more than 3.5 fold increase in non-forest area when disturbance rates doubled again from 1.2% to 2.4%. Continued runs altered natural background disturbance rates with the existing fire and hurricane sub models turned on as well as historic and future land use. By quantify differences between model outputs that characterize ecosystem structure and function related to the carbon cycle across the US, we are identifying areas and characteristics that display higher sensitivities to change in disturbance rates.

  14. Integrating remotely sensed land cover observations and a biogeochemical model for estimating forest ecosystem carbon dynamics

    USGS Publications Warehouse

    Liu, J.; Liu, S.; Loveland, Thomas R.; Tieszen, L.L.

    2008-01-01

    Land cover change is one of the key driving forces for ecosystem carbon (C) dynamics. We present an approach for using sequential remotely sensed land cover observations and a biogeochemical model to estimate contemporary and future ecosystem carbon trends. We applied the General Ensemble Biogeochemical Modelling System (GEMS) for the Laurentian Plains and Hills ecoregion in the northeastern United States for the period of 1975-2025. The land cover changes, especially forest stand-replacing events, were detected on 30 randomly located 10-km by 10-km sample blocks, and were assimilated by GEMS for biogeochemical simulations. In GEMS, each unique combination of major controlling variables (including land cover change history) forms a geo-referenced simulation unit. For a forest simulation unit, a Monte Carlo process is used to determine forest type, forest age, forest biomass, and soil C, based on the Forest Inventory and Analysis (FIA) data and the U.S. General Soil Map (STATSGO) data. Ensemble simulations are performed for each simulation unit to incorporate input data uncertainty. Results show that on average forests of the Laurentian Plains and Hills ecoregion have been sequestrating 4.2 Tg C (1 teragram = 1012 gram) per year, including 1.9 Tg C removed from the ecosystem as the consequences of land cover change. ?? 2008 Elsevier B.V.

  15. Transient traceability analysis of land carbon storage dynamics: procedures and its application to two forest ecosystems

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Shi, Z.; Xia, J.; Liang, J.; Lu, X.; Wang, Y.; Luo, Y.

    2017-12-01

    Uptake of anthropogenically emitted carbon (C) dioxide by terrestrial ecosystem is critical for determining future climate. However, Earth system models project large uncertainties in future C storage. To help identify sources of uncertainties in model predictions, this study develops a transient traceability framework to trace components of C storage dynamics. Transient C storage (X) can be decomposed into two components, C storage capacity (Xc) and C storage potential (Xp). Xc is the maximum C amount that an ecosystem can potentially store and Xp represents the internal capacity of an ecosystem to equilibrate C input and output for a network of pools. Xc is co-determined by net primary production (NPP) and residence time (𝜏N), with the latter being determined by allocation coefficients, transfer coefficients, environmental scalar, and exit rate. Xp is the product of redistribution matrix (𝜏ch) and net ecosystem exchange. We applied this framework to two contrasting ecosystems, Duke Forest and Harvard Forest with an ecosystem model. This framework helps identify the mechanisms underlying the responses of carbon cycling in the two forests to climate change. The temporal trajectories of X are similar between the two ecosystems. Using this framework, we found that two different mechanisms leading to the similar trajectory. This framework has potential to reveal mechanisms behind transient C storage in response to various global change factors. It can also identify sources of uncertainties in predicted transient C storage across models and can therefore be useful for model intercomparison.

  16. The impact of forest structure and light utilization on carbon cycling in tropical forests

    NASA Astrophysics Data System (ADS)

    Morton, D. C.; Longo, M.; Leitold, V.; Keller, M. M.

    2015-12-01

    Light competition is a fundamental organizing principle of forest ecosystems, and interactions between forest structure and light availability provide an important constraint on forest productivity. Tropical forests maintain a dense, multi-layered canopy, based in part on abundant diffuse light reaching the forest understory. Climate-driven changes in light availability, such as more direct illumination during drought conditions, therefore alter the potential productivity of forest ecosystems during such events. Here, we used multi-temporal airborne lidar data over a range of Amazon forest conditions to explore the influence of forest structure on gross primary productivity (GPP). Our analysis combined lidar-based observations of canopy illumination and turnover in the Ecosystem Demography model (ED, version 2.2). The ED model was updated to specifically account for regional differences in canopy and understory illumination using lidar-derived measures of canopy light environments. Model simulations considered the influence of forest structure on GPP over seasonal to decadal time scales, including feedbacks from differential productivity between illuminated and shaded canopy trees on mortality rates and forest composition. Finally, we constructed simple scenarios with varying diffuse and direct illumination to evaluate the potential for novel plant-climate interactions under scenarios of climate change. Collectively, the lidar observations and model simulations underscore the need to account for spatial heterogeneity in the vertical structure of tropical forests to constrain estimates of tropical forest productivity under current and future climate conditions.

  17. Integrating a process-based ecosystem model with Landsat imagery to assess impacts of forest disturbance on terrestrial carbon dynamics: Case studies in Alabama and Mississippi

    USDA-ARS?s Scientific Manuscript database

    Forest ecosystems in the southern United States are dramatically altered by three major 26 disturbances: timber harvesting, hurricane, and permanent land conversion. Understanding and quantifying effects of disturbance on forest carbon, nitrogen, and water cycles is critical for sustainable forest m...

  18. The Northwest Forest Plan as a model for broad-scale ecosystem management: a social perspective.

    Treesearch

    Susan Charnley

    2006-01-01

    I evaluated the Northwest Forest Plan as a model for ecosystem management to achieve social and economic goals in communities located around federal forests in the US. Pacific Northwest. My assessment is based on the results of socioeconomic monitoring conducted to evaluate progress in achieving the plan's goals during its past 10 years. The assessment criteria I...

  19. The Northwest Forest Plan as a model for broad-scale ecosystem management: a social perspective.

    Treesearch

    Susan Charnely

    2006-01-01

    I evaluated the Northwest Forest Plan as a model for ecosystem management to achieve social and economic goals in communities located around federal forests in the U.S. Pacific Northwest. My assessment is based on the results of socioeconomic monitoring conducted to evaluate progress in achieving the plan's goals during its past 10 years. The assessment criteria I...

  20. Evapotranspiration estimates from eddy covariance towers and hydrologic modeling in managed forests in Northern Wisconsin, USA

    Treesearch

    Ge Sun; A. Noormets; J. Chen; S.G. McNulty

    2008-01-01

    Direct measurement of ecosystem evapotranspiration by the eddy covariance method and simulation modeling were employed to quantify the growing season (May–October) evapotranspiration (ET) of eight forest ecosystems representing a management gradient in dominant forest types and age classes in the Upper Great Lakes Region from 2002 to 2003. We measured net exchange of...

  1. Carbon budget of tropical forests in Southeast Asia and the effects of deforestation: an approach using a process-based model and field measurements

    NASA Astrophysics Data System (ADS)

    Adachi, M.; Ito, A.; Ishida, A.; Kadir, W. R.; Ladpala, P.; Yamagata, Y.

    2011-09-01

    More reliable estimates of the carbon (C) stock within forest ecosystems and C emission induced by deforestation are urgently needed to mitigate the effects of emissions on climate change. A process-based terrestrial biogeochemical model (VISIT) was applied to tropical primary forests of two types (a seasonal dry forest in Thailand and a rainforest in Malaysia) and one agro-forest (an oil palm plantation in Malaysia) to estimate the C budget of tropical ecosystems in Southeast Asia, including the impacts of land-use conversion. The observed aboveground biomass in the seasonal dry tropical forest in Thailand (226.3 t C ha-1) and the rainforest in Malaysia (201.5 t C ha-1) indicate that tropical forests of Southeast Asia are among the most C-abundant ecosystems in the world. The model simulation results in rainforests were consistent with field data, except for the NEP, however, the VISIT model tended to underestimate C budget and stock in the seasonal dry tropical forest. The gross primary production (GPP) based on field observations ranged from 32.0 to 39.6 t C ha-1 yr-1 in the two primary forests, whereas the model slightly underestimated GPP (26.5-34.5 t C ha-1 yr-1). The VISIT model appropriately captured the impacts of disturbances such as deforestation and land-use conversions on the C budget. Results of sensitivity analysis showed that the proportion of remaining residual debris was a key parameter determining the soil C budget after the deforestation event. According to the model simulation, the total C stock (total biomass and soil C) of the oil palm plantation was about 35% of the rainforest's C stock at 30 yr following initiation of the plantation. However, there were few field data of C budget and stock, especially in oil palm plantation. The C budget of each ecosystem must be evaluated over the long term using both the model simulations and observations to understand the effects of climate and land-use conversion on C budgets in tropical forest ecosystems.

  2. Development of the BIOME-BGC model for the simulation of managed Moso bamboo forest ecosystems.

    PubMed

    Mao, Fangjie; Li, Pingheng; Zhou, Guomo; Du, Huaqiang; Xu, Xiaojun; Shi, Yongjun; Mo, Lufeng; Zhou, Yufeng; Tu, Guoqing

    2016-05-01

    Numerical models are the most appropriate instrument for the analysis of the carbon balance of terrestrial ecosystems and their interactions with changing environmental conditions. The process-based model BIOME-BGC is widely used in simulation of carbon balance within vegetation, litter and soil of unmanaged ecosystems. For Moso bamboo forests, however, simulations with BIOME-BGC are inaccurate in terms of the growing season and the carbon allocation, due to the oversimplified representation of phenology. Our aim was to improve the applicability of BIOME-BGC for managed Moso bamboo forest ecosystem by implementing several new modules, including phenology, carbon allocation, and management. Instead of the simple phenology and carbon allocation representations in the original version, a periodic Moso bamboo phenology and carbon allocation module was implemented, which can handle the processes of Moso bamboo shooting and high growth during "on-year" and "off-year". Four management modules (digging bamboo shoots, selective cutting, obtruncation, fertilization) were integrated in order to quantify the functioning of managed ecosystems. The improved model was calibrated and validated using eddy covariance measurement data collected at a managed Moso bamboo forest site (Anji) during 2011-2013 years. As a result of these developments and calibrations, the performance of the model was substantially improved. Regarding the measured and modeled fluxes (gross primary production, total ecosystem respiration, net ecosystem exchange), relative errors were decreased by 42.23%, 103.02% and 18.67%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Current net ecosystem exchange of CO2 in a young mixed forest: any heritage from the previous ecosystem?

    NASA Astrophysics Data System (ADS)

    Violette, Aurélie; Heinesch, Bernard; Erpicum, Michel; Carnol, Monique; Aubinet, Marc; François, Louis

    2013-04-01

    For 15 years, networks of flux towers have been developed to determine accurate carbon balance with the eddy-covariance method and determine if forests are sink or source of carbon. However, for prediction of the evolution of carbon cycle and climate, major uncertainties remain on the ecosystem respiration (Reco, which includes the respiration of above ground part of trees, roots respiration and mineralization of the soil organic matter), the gross primary productivity (GPP) and their difference, the net ecosystem exchange (NEE) of forests. These uncertainties are consequences of spatial and inter-annual variability, driven by previous and current climatic conditions, as well as by the particular history of the site (management, diseases, etc.). In this study we focus on the carbon cycle in two mixed forests in the Belgian Ardennes. The first site, Vielsalm, is a mature stand mostly composed of beeches (Fagus sylvatica) and douglas fir (Pseudotsuga menziesii) from 80 to 100 years old. The second site, La Robinette, was covered before 1995 with spruces. After an important windfall and a clear cutting, the site was replanted, between 1995 and 2000, with spruces (Piceas abies) and deciduous species (mostly Betula pendula, Aulnus glutinosa and Salix aurita). The challenge here is to highlight how initial conditions can influence the current behavior of the carbon cycle in a growing stand compared to a mature one, where initial conditions are supposed to be forgotten. A modeling approach suits particularly well for sensitivity tests and estimation of the temporal lag between an event and the ecosystem response. We use the forest ecosystem model ASPECTS (Rasse et al., Ecological Modelling 141, 35-52, 2001). This model predicts long-term forest growth by calculating, over time, hourly NEE. It was developed and already validated on the Vielsalm forest. Modelling results are confronted to eddy-covariance data on both sites from 2006 to 2011. The main difference between both sites seems to rely on soil respiration, which is probably partly a heritage of the previous ecosystem at the young forest site.

  4. Disturbance Distance: Combining a process based ecosystem model and remote sensing data to map the vulnerability of U.S. forested ecosystems to potentially altered disturbance rates

    NASA Astrophysics Data System (ADS)

    Dolan, K. A.

    2015-12-01

    Disturbance plays a critical role in shaping the structure and function of forested ecosystems as well as the ecosystem services they provide, including but not limited to: carbon storage, biodiversity habitat, water quality and flow, and land atmosphere exchanges of energy and water. In addition, recent studies suggest that disturbance rates may increase in the future under altered climate and land use scenarios. Thus understanding how vulnerable forested ecosystems are to potential changes in disturbance rates is of high importance. This study calculated the theoretical threshold rate of disturbance for which forest ecosystems could no longer be sustained (λ*) across the Coterminous U.S. using an advanced process based ecosystem model (ED). Published rates of disturbance (λ) in 50 study sites were obtained from the North American Forest Disturbance (NAFD) program. Disturbance distance (λ* - λ) was calculated for each site by differencing the model based threshold under current climate conditions and average observed rates of disturbance over the last quarter century. Preliminary results confirm all sample forest sites have current average rates of disturbance below λ*, but there were interesting patterns in the recorded disturbance distances. In general western sites had much smaller disturbance distances, suggesting higher vulnerability to change, while eastern sites showed larger buffers. Ongoing work is being conducted to assess the vulnerability of these sites in the context of potential future changes by propagating scenarios of future climate and land-use change through the analysis.

  5. Increased topsoil carbon stock across China's forests.

    PubMed

    Yang, Yuanhe; Li, Pin; Ding, Jinzhi; Zhao, Xia; Ma, Wenhong; Ji, Chengjun; Fang, Jingyun

    2014-08-01

    Biomass carbon accumulation in forest ecosystems is a widespread phenomenon at both regional and global scales. However, as coupled carbon-climate models predicted, a positive feedback could be triggered if accelerated soil carbon decomposition offsets enhanced vegetation growth under a warming climate. It is thus crucial to reveal whether and how soil carbon stock in forest ecosystems has changed over recent decades. However, large-scale changes in soil carbon stock across forest ecosystems have not yet been carefully examined at both regional and global scales, which have been widely perceived as a big bottleneck in untangling carbon-climate feedback. Using newly developed database and sophisticated data mining approach, here we evaluated temporal changes in topsoil carbon stock across major forest ecosystem in China and analysed potential drivers in soil carbon dynamics over broad geographical scale. Our results indicated that topsoil carbon stock increased significantly within all of five major forest types during the period of 1980s-2000s, with an overall rate of 20.0 g C m(-2) yr(-1) (95% confidence interval, 14.1-25.5). The magnitude of soil carbon accumulation across coniferous forests and coniferous/broadleaved mixed forests exhibited meaningful increases with both mean annual temperature and precipitation. Moreover, soil carbon dynamics across these forest ecosystems were positively associated with clay content, with a larger amount of SOC accumulation occurring in fine-textured soils. In contrast, changes in soil carbon stock across broadleaved forests were insensitive to either climatic or edaphic variables. Overall, these results suggest that soil carbon accumulation does not counteract vegetation carbon sequestration across China's forest ecosystems. The combination of soil carbon accumulation and vegetation carbon sequestration triggers a negative feedback to climate warming, rather than a positive feedback predicted by coupled carbon-climate models. © 2014 John Wiley & Sons Ltd.

  6. An individual-based process model to simulate landscape-scale forest ecosystem dynamics

    Treesearch

    Rupert Seidl; Werner Rammer; Robert M. Scheller; Thomas Spies

    2012-01-01

    Forest ecosystem dynamics emerges from nonlinear interactions between adaptive biotic agents (i.e., individual trees) and their relationship with a spatially and temporally heterogeneous abiotic environment. Understanding and predicting the dynamics resulting from these complex interactions is crucial for the sustainable stewardship of ecosystems, particularly in the...

  7. Research agenda for integrated landscape modeling

    Treesearch

    Samuel A. Cushman; Donald McKenzie; David L. Peterson; Jeremy Littell; Kevin S. McKelvey

    2007-01-01

    Reliable predictions of how changing climate and disturbance regimes will affect forest ecosystems are crucial for effective forest management. Current fire and climate research in forest ecosystem and community ecology offers data and methods that can inform such predictions. However, research in these fields occurs at different scales, with disparate goals, methods,...

  8. Research agenda for integrated landscape modeling

    Treesearch

    Samuel A. Cushman; Donald McKenzie; David L. Peterson; Jeremy Littell; Kevin S. McKelvey

    2006-01-01

    Reliable predictions of the effects changing climate and disturbance regimes will have on forest ecosystems are crucial for effective forest management. Current fire and climate research in forest ecosystem and community ecology offers data and methods that can inform such predictions. However, research in these fields occurs at different scales, with disparate goals,...

  9. Modelling carbon fluxes of forest and grassland ecosystems in Western Europe using the CARAIB dynamic vegetation model: evaluation against eddy covariance data.

    NASA Astrophysics Data System (ADS)

    Henrot, Alexandra-Jane; François, Louis; Dury, Marie; Hambuckers, Alain; Jacquemin, Ingrid; Minet, Julien; Tychon, Bernard; Heinesch, Bernard; Horemans, Joanna; Deckmyn, Gaby

    2015-04-01

    Eddy covariance measurements are an essential resource to understand how ecosystem carbon fluxes react in response to climate change, and to help to evaluate and validate the performance of land surface and vegetation models at regional and global scale. In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), vegetation dynamics and carbon fluxes of forest and grassland ecosystems simulated by the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) are evaluated and validated by comparison of the model predictions with eddy covariance data. Here carbon fluxes (e.g. net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RECO)) and evapotranspiration (ET) simulated with the CARAIB model are compared with the fluxes measured at several eddy covariance flux tower sites in Belgium and Western Europe, chosen from the FLUXNET global network (http://fluxnet.ornl.gov/). CARAIB is forced either with surface atmospheric variables derived from the global CRU climatology, or with in situ meteorological data. Several tree (e.g. Pinus sylvestris, Fagus sylvatica, Picea abies) and grass species (e.g. Poaceae, Asteraceae) are simulated, depending on the species encountered on the studied sites. The aim of our work is to assess the model ability to reproduce the daily, seasonal and interannual variablility of carbon fluxes and the carbon dynamics of forest and grassland ecosystems in Belgium and Western Europe.

  10. Multi-objective optimization to evaluate tradeoffs among forest ecosystem services following fire hazard reduction in the Deschutes National Forest, USA

    Treesearch

    Svetlana A. (Kushch) Schroder; Sandor F. Toth; Robert L. Deal; Gregory J. Ettl

    2016-01-01

    Forest owners worldwide are increasingly interested in managing forests to provide a broad suite of Ecosystem services, balancing multiple objectives and evaluating management activities in terms of Potential tradeoffs. We describe a multi-objective mathematical programming model to quantify tradeoffs in expected sediment delivery and the preservation of Northern...

  11. Tree diversity does not always improve resistance of forest ecosystems to drought.

    PubMed

    Grossiord, Charlotte; Granier, André; Ratcliffe, Sophia; Bouriaud, Olivier; Bruelheide, Helge; Chećko, Ewa; Forrester, David Ian; Dawud, Seid Muhie; Finér, Leena; Pollastrini, Martina; Scherer-Lorenzen, Michael; Valladares, Fernando; Bonal, Damien; Gessler, Arthur

    2014-10-14

    Climate models predict an increase in the intensity and frequency of drought episodes in the Northern Hemisphere. Among terrestrial ecosystems, forests will be profoundly impacted by drier climatic conditions, with drastic consequences for the functions and services they supply. Simultaneously, biodiversity is known to support a wide range of forest ecosystem functions and services. However, whether biodiversity also improves the resistance of these ecosystems to drought remains unclear. We compared soil drought exposure levels in a total of 160 forest stands within five major forest types across Europe along a gradient of tree species diversity. We assessed soil drought exposure in each forest stand by calculating the stand-level increase in carbon isotope composition of late wood from a wet to a dry year (Δδ(13)CS). Δδ(13)CS exhibited a negative linear relationship with tree species diversity in two forest types, suggesting that species interactions in these forests diminished the drought exposure of the ecosystem. However, the other three forest types were unaffected by tree species diversity. We conclude that higher diversity enhances resistance to drought events only in drought-prone environments. Managing forest ecosystems for high tree species diversity does not necessarily assure improved adaptability to the more severe and frequent drought events predicted for the future.

  12. An agent architecture for an integrated forest ecosystem management decision support system

    Treesearch

    Donald Nute; Walter D. Potter; Mayukh Dass; Astrid Glende; Frederick Maier; Hajime Uchiyama; Jin Wang; Mark Twery; Peter Knopp; Scott Thomasma; H. Michael Rauscher

    2003-01-01

    A wide variety of software tools are available to support decision in the management of forest ecosystems. These tools include databases, growth and yield models, wildlife models, silvicultural expert systems, financial models, geographical informations systems, and visualization tools. Typically, each of these tools has its own complex interface and data format. To...

  13. PICUS v1.6 - enhancing the water cycle within a hybrid ecosystem model to assess the provision of drinking water in a changing climate

    NASA Astrophysics Data System (ADS)

    Schimmel, A.; Rammer, W.; Lexer, M. J.

    2012-04-01

    The PICUS model is a hybrid ecosystem model which is based on a 3D patch model and a physiological stand level production model. The model includes, among others, a submodel of bark beetle disturbances in Norway spruce and a management module allowing any silvicultural treatment to be mimicked realistically. It has been tested intensively for its ability to realistically reproduce tree growth and stand dynamics in complex structured mixed and mono-species temperate forest ecosystems. In several applications the models capacity to generate relevant forest related attributes which were subsequently fed into indicator systems to assess sustainable forest management under current and future climatic conditions has been proven. However, the relatively coarse monthly temporal resolution of the driving climate data as well as the process resolution of the major water relations within the simulated ecosystem hampered the inclusion of more detailed physiologically based assessments of drought conditions and water provisioning ecosystem services. In this contribution we present the improved model version PICUS v1.6 focusing on the newly implemented logic for the water cycle calculations. Transpiration, evaporation from leave surfaces and the forest floor, snow cover and snow melt as well as soil water dynamics in several soil horizons are covered. In enhancing the model overarching goal was to retain the large-scale applicability by keeping the input requirements to a minimum while improving the physiological foundation of water related ecosystem processes. The new model version is tested against empirical time series data. Future model applications are outlined.

  14. [Simulating of carbon fluxes in bamboo forest ecosystem using BEPS model based on the LAI assimilated with Dual Ensemble Kalman Filter].

    PubMed

    Li, Xue Jian; Mao, Fang Jie; Du, Hua Qiang; Zhou, Guo Mo; Xu, Xiao Jun; Li, Ping Heng; Liu, Yu Li; Cui, Lu

    2016-12-01

    LAI is one of the most important observation data in the research of carbon cycle of forest ecosystem, and it is also an important parameter to drive process-based ecosystem model. The Moso bamboo forest (MBF) and Lei bamboo forest (LBF) were selected as the study targets. Firstly, the MODIS LAI time series data during 2014-2015 was assimilated with Dual Ensemble Kalman Filter method. Secondly, the high quality assimilated MBF LAI and LBF LAI were used as input dataset to drive BEPS model for simulating the gross primary productivity (GPP), net ecosystem exchange (NEE) and total ecosystem respiration (TER) of the two types of bamboo forest ecosystem, respectively. The modeled carbon fluxes were evaluated by the observed carbon fluxes data, and the effects of different quality LAI inputs on carbon cycle simulation were also studied. The LAI assimilated using Dual Ensemble Kalman Filter of MBF and LBF were significantly correlated with the observed LAI, with high R 2 of 0.81 and 0.91 respectively, and lower RMSE and absolute bias, which represented the great improvement of the accuracy of MODIS LAI products. With the driving of assimilated LAI, the modeled GPP, NEE, and TER were also highly correlated with the flux observation data, with the R 2 of 0.66, 0.47, and 0.64 for MBF, respectively, and 0.66, 0.45, and 0.73 for LBF, respectively. The accuracy of carbon fluxes modeled with assimilated LAI was higher than that acquired by the locally adjusted cubic-spline capping method, in which, the accuracy of mo-deled NEE for MBF and LBF increased by 11.2% and 11.8% at the most degrees, respectively.

  15. Simulating Carbon cycle and phenology in complex forests using a multi-layer process based ecosystem model; evaluation and use of 3D-CMCC-Forest Ecosystem Model in a deciduous and an evergreen neighboring forests, within the area of Brasschaat (Be)

    NASA Astrophysics Data System (ADS)

    Marconi, S.; Collalti, A.; Santini, M.; Valentini, R.

    2013-12-01

    3D-CMCC-Forest Ecosystem Model is a process based model formerly developed for complex forest ecosystems to estimate growth, water and carbon cycles, phenology and competition processes on a daily/monthly time scale. The Model integrates some characteristics of the functional-structural tree models with the robustness of the light use efficiency approach. It treats different heights, ages and species as discrete classes, in competition for light (vertical structure) and space (horizontal structure). The present work evaluates the results of the recently developed daily version of 3D-CMCC-FEM for two neighboring different even aged and mono specific study cases. The former is a heterogeneous Pedunculate oak forest (Quercus robur L. ), the latter a more homogeneous Scot pine forest (Pinus sylvestris L.). The multi-layer approach has been evaluated against a series of simplified versions to determine whether the improved model complexity in canopy structure definition increases its predictive ability. Results show that a more complex structure (three height layers) should be preferable to simulate heterogeneous scenarios (Pedunculate oak stand), where heights distribution within the canopy justify the distinction in dominant, dominated and sub-dominated layers. On the contrary, it seems that using a multi-layer approach for more homogeneous stands (Scot pine stand) may be disadvantageous. Forcing the structure of an homogeneous stand to a multi-layer approach may in fact increase sources of uncertainty. On the other hand forcing complex forests to a mono layer simplified model, may cause an increase in mortality and a reduction in average DBH and Height. Compared with measured CO2 flux data, model results show good ability in estimating carbon sequestration trends, on both a monthly/seasonal and daily time scales. Moreover the model simulates quite well leaf phenology and the combined effects of the two different forest stands on CO2 fluxes.

  16. Moderate forest disturbance as a stringent test for gap and big-leaf models

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B.; Fisk, J.; Holm, J. A.; Bailey, V.; Gough, C. M.

    2014-07-01

    Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. In particular, it is unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging US forests. We tested whether three forest ecosystem models - Biome-BGC, a classic big-leaf model, and the ED and ZELIG gap-oriented models - could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experiment in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols, and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ED and ZELIG correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes. Biome-BGC net primary production (NPP) was correctly resilient, but for the wrong reasons, while ED and ZELIG exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. As a result we expect that most ecosystem models, developed to simulate processes following stand-replacing disturbances, will not simulate well the gradual and less extensive tree mortality characteristic of moderate disturbances.

  17. The synergistic use of models and observations: understanding the mechanisms behind observed biomass dynamics at 14 Amazonian field sites and the implications for future biomass change

    NASA Astrophysics Data System (ADS)

    Levine, N. M.; Galbraith, D.; Christoffersen, B. J.; Imbuzeiro, H. A.; Restrepo-Coupe, N.; Malhi, Y.; Saleska, S. R.; Costa, M. H.; Phillips, O.; Andrade, A.; Moorcroft, P. R.

    2011-12-01

    The Amazonian rainforests play a vital role in global water, energy and carbon cycling. The sensitivity of this system to natural and anthropogenic disturbances therefore has important implications for the global climate. Some global models have predicted large-scale forest dieback and the savannization of Amazonia over the next century [Meehl et al., 2007]. While several studies have demonstrated the sensitivity of dynamic global vegetation models to changes in temperature, precipitation, and dry season length [e.g. Galbraith et al., 2010; Good et al., 2011], the ability of these models to accurately reproduce ecosystem dynamics of present-day transitional or low biomass tropical forests has not been demonstrated. A model-data intercomparison was conducted with four state-of-the-art terrestrial ecosystem models to evaluate the ability of these models to accurately represent structure, function, and long-term biomass dynamics over a range of Amazonian ecosystems. Each modeling group conducted a series of simulations for 14 sites including mature forest, transitional forest, savannah, and agricultural/pasture sites. All models were run using standard physical parameters and the same initialization procedure. Model results were compared against forest inventory and dendrometer data in addition to flux tower measurements. While the models compared well against field observations for the mature forest sites, significant differences were observed between predicted and measured ecosystem structure and dynamics for the transitional forest and savannah sites. The length of the dry season and soil sand content were good predictors of model performance. In addition, for the big leaf models, model performance was highest for sites dominated by late successional trees and lowest for sites with predominantly early and mid-successional trees. This study provides insight into tropical forest function and sensitivity to environmental conditions that will aid in predictions of the response of the Amazonian rainforest to future anthropogenically induced changes.

  18. Integrating Science and Management to Assess Forest Ecosystem Vulnerability to Climate Change

    Treesearch

    Leslie A. Brandt; Patricia R. Butler; Stephen D. Handler; Maria K. Janowiak; P. Danielle Shannon; Christopher W. Swanston

    2017-01-01

    We developed the ecosystem vulnerability assessment approach (EVAA) to help inform potential adaptation actions in response to a changing climate. EVAA combines multiple quantitative models and expert elicitation from scientists and land managers. In each of eight assessment areas, a panel of local experts determined potential vulnerability of forest ecosystems to...

  19. A dynamic ecosystem growth model for forests at high complexity structure

    NASA Astrophysics Data System (ADS)

    Collalti, A.; Perugini, L.; Chiti, T.; Matteucci, G.; Oriani, A.; Santini, M.; Papale, D.; Valentini, R.

    2012-04-01

    Forests ecosystem play an important role in carbon cycle, biodiversity conservation and for other ecosystem services and changes in their structure and status perturb a delicate equilibrium that involves not only vegetation components but also biogeochemical cycles and global climate. The approaches to determine the magnitude of these effects are nowadays various and one of those include the use of models able to simulate structural changes and the variations in forests yield The present work shows the development of a forest dynamic model, on ecosystem spatial scale using the well known light use efficiency to determine Gross Primary Production. The model is predictive and permits to simulate processes that determine forest growth, its dynamic and the effects of forest management using eco-physiological parameters easy to be assessed and to be measured. The model has been designed to consider a tri-dimensional cell structure composed by different vertical layers depending on the forest type that has to be simulated. These features enable the model to work on multi-layer and multi-species forest types, typical of Mediterranean environment, at the resolution of one hectare and at monthly time-step. The model simulates, for each layer, a value of available Photosynthetic Active Radiation (PAR) through Leaf Area Index, Light Extinction Coefficient and cell coverage, the transpiration rate that is closely linked to the intercepted light and the evaporation from soil. Using this model it is possible to evaluate the possible impacts of climate change on forests that may result in decrease or increase of productivity as well as the feedback of one or more dominated layers in terms of CO2 uptake in a forest stand and the effects of forest management activities during the forest harvesting cycle. The model has been parameterised, validated and applied in a multi-layer, multi-age and multi-species Italian turkey oak forest (Q. cerris L., C. betulus L. and C. avellana L.) where the medium-term (10 years) development of forest parameters were simulated. The results obtained for net primary production and for stem, root and foliage compartments as well as for forest structure i.e. Diameter at Breast Height, height and canopy cover are in good accordance with field data (R2>0.95). These results show how the model is able to predict forest yield as well as forest dynamic with good accuracy and encourage testing the model capability on other sites with a more complex forest structure and for long-time period with an higher spatial resolution.

  20. How Visualizing Ecosystem Land Management Assessments (VELMA) modeling quantifies co-benefits and tradeoffs in Community Forest management

    EPA Science Inventory

    The Northwest Community Forest Coalition invited EPA-WED Research Scientist Bob McKane to present the Keynote Address for the 2018 Northwest Community Forest Forum on May 9‐11 in Astoria, OR. His address will describe "How Visualizing Ecosystem Land Management Assessme...

  1. Forest Ecosystem Analysis Using a GIS

    Treesearch

    S.G. McNulty; W.T. Swank

    1996-01-01

    Forest ecosystem studies have expanded spatially in recent years to address large scale environmental issues. We are using a geographic information system (GIS) to understand and integrate forest processes at landscape to regional spatial scales. This paper presents three diverse research studies using a GIS. First, we used a GIS to develop a landscape scale model to...

  2. DRAINMOD-FOREST: Integrated modeling of hydrology, soil carbon and nitrogen dynamics, and plant growth for drained forests

    Treesearch

    Shiying Tian; Mohamed A. Youssef; R. Wayne Skaggs; Devendra M. Amatya; G.M. Chescheir

    2012-01-01

    We present a hybrid and stand-level forest ecosystem model, DRAINMOD-FOREST, for simulating the hydrology, carbon (C) and nitrogen (N) dynamics, and tree growth for drained forest lands under common silvicultural practices. The model was developed by linking DRAINMOD, the hydrological model, and DRAINMOD-N II, the soil C and N dynamics model, to a forest growth model,...

  3. Validating a method for transferring social values of ecosystem services between public lands in the Rocky Mountain region

    USGS Publications Warehouse

    Sherrouse, Benson C.; Semmens, Darius J.

    2014-01-01

    With growing pressures on ecosystem services, social values attributed to them are increasingly important to land management decisions. Social values, defined here as perceived values the public ascribes to ecosystem services, particularly cultural services, are generally not accounted for through economic markets or considered alongside economic and ecological values in ecosystem service assessments. Social-values data can be elicited through public value and preference surveys; however, limitations prevent them from being regularly collected. These limitations led to our three study objectives: (1) demonstrate an approach for applying benefit transfer, a nonmarket-valuation method, to spatially explicit social values; (2) validate the approach; and (3) identify potential improvements. We applied Social Values for Ecosystem Services (SolVES) to survey data for three national forests in Colorado and Wyoming. Social-value maps and models were generated, describing relationships between the maps and various combinations of environmental variables. Models from each forest were used to estimate social-value maps for the other forests via benefit transfer. Model performance was evaluated relative to the locally derived models. Performance varied with the number and type of environmental variables used, as well as differences in the forests' physical and social contexts. Enhanced metadata and better social-context matching could improve model transferability.

  4. Hydrologic Modeling of Boreal Forest Ecosystems

    NASA Technical Reports Server (NTRS)

    Haddeland, I.; Lettenmaier, D. P.

    1995-01-01

    This study focused on the hydrologic response, including vegetation water use, of two test regions within the Boreal-Ecosystem-Atmosphere Study (BOREAS) region in the Canadian boreal forest, one north of Prince Albert, Saskatchewan, and the other near Thompson, Manitoba. Fluxes of moisture and heat were studied using a spatially distributed hydrology soil-vegetation-model (DHSVM).

  5. Modelling the management of forest ecosystems: Importance of wood decomposition

    Treesearch

    Juan A. Blanco; Deborah S. Page-Dumroese; Martin F. Jurgensen; Michael P. Curran; Joanne M. Tirocke; Joanna Walitalo

    2018-01-01

    Scarce and uncertain data on woody debris decomposition rates are available for calibrating forest ecosystem models, owing to the difficulty of their empirical estimations. Using field data from three experimental sites which are part of the North American Long-Term Soil Productivity (LTSP) Study in south-eastern British Columbia (Canada), we developed probability...

  6. Moderate forest disturbance as a stringent test for gap and big-leaf models

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B. P.; Fisk, J.; Holm, J. A.; Bailey, V. L.; Gough, C. M.

    2014-12-01

    Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. In particular, it is unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging U.S. forests. We tested whether three forest ecosystem models—Biome-BGC, a classic big-leaf model, and the ED and ZELIG gap-oriented models—could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experiment in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols, and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ED and ZELIG correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes. Biome-BGC net primary production (NPP) was correctly resilient, but for the wrong reasons, while ED and ZELIG exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. As a result we expect that most ecosystem models, developed to simulate processes following stand-replacing disturbances, will not simulate well the gradual and less extensive tree mortality characteristic of moderate disturbances.

  7. Simulating the biogeochemical cycles in cypress wetland-pine upland ecosystems at a landscape scale with the wetland-DNDC model

    Treesearch

    G. Sun; C. Li; C. Tretting; J. Lu; S.G. McNulty

    2005-01-01

    A modeling framework (Wetland-DNDC) that described forested wetland ecosystem processes has been developed and validated with data from North America and Europe. The model simulates forest photosynthesis, respiration, carbon allocation, and liter production, soil organic matter (SOM) turnover, trace gas emissions, and N leaching. Inputs required by Wetland-DNDC...

  8. Potential Effects of Drought on Tree Dieback in Great Britain and Implications for Forest Management in Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Yu, Jianjun; Berry, Pam

    2017-04-01

    The drought and heat stress has alerted the composition, structure and biogeography of forests globally, whilst the projected severe and widespread droughts are potentially increasing. This challenges the sustainable forest management to better cope with future climate and maintain the forest ecosystem functions and services. Many studies have investigated the climate change impacts on forest ecosystem but less considered the climate extremes like drought. In this study, we implement a dynamic ecosystem model based on a version of LPJ-GUESS parameterized with European tree species and apply to Great Britain at a finer spatial resolution of 5*5 km. The model runs for the baseline from 1961 to 2011 and projects to the latter 21st century using 100 climate scenarios generated from MaRIUS project to tackle the climate model uncertainty. We will show the potential impacts of climate change on forest ecosystem and vegetation transition in Great Britain by comparing the modelled conditions in the 2030s and the 2080s relative to the baseline. In particular, by analyzing the modelled tree mortality, we will show the tree dieback patterns in response to drought for various species, and assess their drought vulnerability across Great Britain. We also use species distribution modelling to project the suitable climate space for selected tree species using the same climate scenarios. Aided by these two modelling approaches and based on the corresponding modelling results, we will discuss the implications for adaptation strategy for forest management, especially in extreme drought conditions. The gained knowledge and lessons for Great Britain are considered to be transferable in many other regions.

  9. Evaluation of water conservation capacity of loess plateau typical mountain ecosystems based on InVEST model simulation

    NASA Astrophysics Data System (ADS)

    Lv, Xizhi; Zuo, Zhongguo; Xiao, Peiqing

    2017-06-01

    With increasing demand for water resources and frequently a general deterioration of local water resources, water conservation by forests has received considerable attention in recent years. To evaluate water conservation capacities of different forest ecosystems in mountainous areas of Loess Plateau, the landscape of forests was divided into 18 types in Loess Plateau. Under the consideration of the factors such as climate, topography, plant, soil and land use, the water conservation of the forest ecosystems was estimated by means of InVEST model. The result showed that 486417.7 hm2 forests in typical mountain areas were divided into 18 forest types, and the total water conservation quantity was 1.64×1012m3, equaling an average of water conversation quantity of 9.09×1010m3. There is a great difference in average water conversation capacity among various forest types. The water conservation function and its evaluation is crucial and complicated issues in the study of ecological service function in modern times.

  10. Devil's in the details: Using archaeological and historical data to refine ecosystem models at the local level

    Treesearch

    Don Hann

    2006-01-01

    The United States Forest Service is charged with managing extensive and varied ecosystems throughout the country. Under the rubric of “ecosystem management” the goal has been to provide goods and services from Forest Service lands while maintaining ecological integrity. Recognizing that ecosystems are dynamic in nature, the concept of Historical Range of Variability (...

  11. Modeling forest development after fire disturbance: Climate, soil organic layer, and nitrogen jointly affect forest canopy species and long-term ecosystem carbon accumulation in the North American boreal forest

    NASA Astrophysics Data System (ADS)

    Trugman, A. T.; Fenton, N.; Bergeron, Y.; Xu, X.; Welp, L.; Medvigy, D.

    2015-12-01

    Soil organic layer dynamics strongly affect boreal forest development after fire. Field studies show that soil organic layer thickness exerts a species-specific control on propagule establishment in the North American boreal forest. On organic soils thicker than a few centimeters, all propagules are less able to recruit, but broadleaf trees recruit less effectively than needleleaf trees. In turn, forest growth controls organic layer accumulation through modulating litter input and litter quality. These dynamics have not been fully incorporated into models, but may be essential for accurate projections of ecosystem carbon storage. Here, we develop a data-constrained model for understanding boreal forest development after fire. We update the ED2 model to include new aspen and black spruce species-types, species-specific propagule survivorship dependent on soil organic layer depth, species-specific litter decay rates, dynamically accumulating moss and soil organic layers, and nitrogen fixation by cyanobacteria associated with moss. The model is validated against diverse observations ranging from monthly to centennial timescales and spanning a climate gradient in Alaska, central Canada, and Quebec. We then quantify differences in forest development that result from changes in organic layer accumulation, temperature, and nitrogen. We find that (1) the model accurately reproduces a range of observations throughout the North American boreal forest; (2) the presence of a thick organic layer results in decreased decomposition and decreased aboveground productivity, effects that can increase or decrease ecosystem carbon uptake depending on location-specific attributes; (3) with a mean warming of 4°C, some forests switch from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing ecosystem accumulation by ~30% after 300 years; (4) the availability of nitrogen regulates successional dynamics such than broadleaf species are less able to compete with needleleaf trees under low nitrogen regimes. We conclude that a joint regulation between the soil organic layer, temperature, and nitrogen will likely play an important role in influencing boreal forests development after fire in future climates, and should be represented in models.

  12. A decision framework for identifying models to estimate forest ecosystem services gains from restoration

    USGS Publications Warehouse

    Christin, Zachary; Bagstad, Kenneth J.; Verdone, Michael

    2016-01-01

    Restoring degraded forests and agricultural lands has become a global conservation priority. A growing number of tools can quantify ecosystem service tradeoffs associated with forest restoration. This evolving “tools landscape” presents a dilemma: more tools are available, but selecting appropriate tools has become more challenging. We present a Restoration Ecosystem Service Tool Selector (RESTS) framework that describes key characteristics of 13 ecosystem service assessment tools. Analysts enter information about their decision context, services to be analyzed, and desired outputs. Tools are filtered and presented based on five evaluative criteria: scalability, cost, time requirements, handling of uncertainty, and applicability to benefit-cost analysis. RESTS uses a spreadsheet interface but a web-based interface is planned. Given the rapid evolution of ecosystem services science, RESTS provides an adaptable framework to guide forest restoration decision makers toward tools that can help quantify ecosystem services in support of restoration.

  13. Modeling forest harvesting effects on landscape pattern in the Northwest Wisconsin Pine Barrens

    Treesearch

    Volker C. Radeloff; David J. Mladenoff; Eric J. Gustafson; Robert M. Scheller; Patrick A. Zollner; Hong S. Heilman; H. Resit Akcakaya

    2006-01-01

    Forest management shapes landscape patterns, and these patterns often differ significantly from those typical for natural disturbance regimes. This may affect wildlife habitat and other aspects of ecosystem function. Our objective was to examine the effects of different forest management decisions on landscape pattern in a fire adapted ecosystem. We used a factorial...

  14. The Coosawhatchie Bottomland Ecosystem Study: A Report on the Development of Reference Wetland

    Treesearch

    Mark H. Eisenbies

    2000-01-01

    Only 23 percent of the presettlement acreage of bottomland hardwood forests remains today, and the remaining forests have lost many of their original functions. To successfully manage these forests we must be able to compare their functional capacities with reference or model wetlands. This report contains the results of the Coosawhatchie Bottomland Ecosystem Study...

  15. Integrating LANDIS model and a multi-criteria decision-making approach to evaluate cumulative effects of forest management in the Missouri Ozarks, USA

    Treesearch

    Zong Bo Shang; Hong S. He; Weimin Xi; Stephen R. Shifley; Brian J. Palik

    2012-01-01

    Public forest management requires consideration of numerous objectives including protecting ecosystem health, sustaining habitats for native communities, providing sustainable forest products, and providing noncommodity ecosystem services. It is difficult to evaluate the long-term, cumulative effects and tradeoffs these and other associated management objectives. To...

  16. Assessing the Impacts of forest degradation on water, energy, and carbon budgets in Amazon forest using the Functionally Assembled Terrestrial Ecosystem Simulator

    NASA Astrophysics Data System (ADS)

    Huang, M.; Xu, Y.; Longo, M.; Keller, M.; Knox, R. G.; Koven, C.; Fisher, R.

    2017-12-01

    Tropical forest degradation from logging, fire, and fragmentation not only alters carbon stocks and carbon fluxes, but also impacts physical land-surface properties such as albedo and roughness length. Such impacts are poorly quantified to date due to difficulties in accessing and maintaining observational infrastructures, and the lack of proper modeling tools for capturing the interactions among biophysical properties, ecosystem demography, and biogeochemical cycling in tropical forests. As a first step to address these limitations, we implemented a selective logging module into the Functional Assembled Terrestrial Ecosystem Simulator (FATES) and parameterized the model to reproduce the selective logging experiment at the Tapajos National Forest in Brazil. The model was spun up until it reached the steady state, and simulations with and without logging were compared with the eddy covariance flux towers located at the logged and intact sites. The sensitivity of simulated water, energy, and carbon fluxes to key plant functional traits (e.g. Vcmax and leaf longevity) were quantified by perturbing their values within their documented ranges. Our results suggest that the model can reproduce water and carbon fluxes in intact forests, although sensible heat fluxes were overestimated. The effects of logging intensity and techniques on fluxes were assessed by specifying different disturbance parameters in the models (e.g., size-dependent mortality rates associated with timber harvest, collateral damage, and mechanical damage for infrastructure construction). The model projections suggest that even though the degraded forests rapidly recover water and energy fluxes compared with old-growth forests, the recovery times for carbon stocks, forest structure and composition are much longer. In addition, the simulated recovery trajectories are highly dependent on choices of values for functional traits. Our study highlights the advantages of an Earth system modeling approach, constrained by observations, to quantify the complex interactions among forest degradation, ecosystem recovery, climate, and environmental factors. Our results also show the urgent need to improve the representations of key mechanisms and traits to better capture forest degradation dynamics in Earth System Models.

  17. Acting Locally: A Guide to Model, Community and Demonstration Forests.

    ERIC Educational Resources Information Center

    Keen, Debbie Pella

    1993-01-01

    Describes Canada's efforts in sustainable forestry, which refers to management practices that ensure long-term health of forest ecosystems so that they can continue to provide environmental, social, and economic benefits. Describes model forests, community forests, and demonstration forests and lists contacts for each of the projects. (KS)

  18. Current and future carbon budget at Takayama site, Japan, evaluated by a regional climate model and a process-based terrestrial ecosystem model.

    PubMed

    Kuribayashi, Masatoshi; Noh, Nam-Jin; Saitoh, Taku M; Ito, Akihiko; Wakazuki, Yasutaka; Muraoka, Hiroyuki

    2017-06-01

    Accurate projection of carbon budget in forest ecosystems under future climate and atmospheric carbon dioxide (CO 2 ) concentration is important to evaluate the function of terrestrial ecosystems, which serve as a major sink of atmospheric CO 2 . In this study, we examined the effects of spatial resolution of meteorological data on the accuracies of ecosystem model simulation for canopy phenology and carbon budget such as gross primary production (GPP), ecosystem respiration (ER), and net ecosystem production (NEP) of a deciduous forest in Japan. Then, we simulated the future (around 2085) changes in canopy phenology and carbon budget of the forest by incorporating high-resolution meteorological data downscaled by a regional climate model. The ecosystem model overestimated GPP and ER when we inputted low-resolution data, which have warming biases over mountainous landscape. But, it reproduced canopy phenology and carbon budget well, when we inputted high-resolution data. Under the future climate, earlier leaf expansion and delayed leaf fall by about 10 days compared with the present state was simulated, and also, GPP, ER and NEP were estimated to increase by 25.2%, 23.7% and 35.4%, respectively. Sensitivity analysis showed that the increase of NEP in June and October would be mainly caused by rising temperature, whereas that in July and August would be largely attributable to CO 2 fertilization. This study suggests that the downscaling of future climate data enable us to project more reliable carbon budget of forest ecosystem in mountainous landscape than the low-resolution simulation due to the better predictions of leaf expansion and shedding.

  19. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Smith, B.; Wårlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S.

    2013-11-01

    The LPJ-GUESS dynamic vegetation model uniquely combines an individual- and patch-based representation of vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. We present an updated version that includes plant and soil N dynamics, analysing the implications of accounting for C-N interactions on predictions and performance of the model. Stand structural dynamics and allometric scaling of tree growth suggested by global databases of forest stand structure and development were well-reproduced by the model in comparison to an earlier multi-model study. Accounting for N cycle dynamics improved the goodness-of-fit for broadleaved forests. N limitation associated with low N mineralisation rates reduces productivity of cold-climate and dry-climate ecosystems relative to mesic temperate and tropical ecosystems. In a model experiment emulating free-air CO2 enrichment (FACE) treatment for forests globally, N-limitation associated with low N mineralisation rates of colder soils reduces CO2-enhancement of NPP for boreal forests, while some temperate and tropical forests exhibit increased NPP enhancement. Under a business-as-usual future climate and emissions scenario, ecosystem C storage globally was projected to increase by c. 10%; additional N requirements to match this increasing ecosystem C were within the high N supply limit estimated on stoichiometric grounds in an earlier study. Our results highlight the importance of accounting for C-N interactions not only in studies of global terrestrial C cycling, but to understand underlying mechanisms on local scales and in different regional contexts.

  20. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Smith, B.; Wårlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S.

    2014-04-01

    The LPJ-GUESS dynamic vegetation model uniquely combines an individual- and patch-based representation of vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. We present an updated version that includes plant and soil N dynamics, analysing the implications of accounting for C-N interactions on predictions and performance of the model. Stand structural dynamics and allometric scaling of tree growth suggested by global databases of forest stand structure and development were well reproduced by the model in comparison to an earlier multi-model study. Accounting for N cycle dynamics improved the goodness of fit for broadleaved forests. N limitation associated with low N-mineralisation rates reduces productivity of cold-climate and dry-climate ecosystems relative to mesic temperate and tropical ecosystems. In a model experiment emulating free-air CO2 enrichment (FACE) treatment for forests globally, N limitation associated with low N-mineralisation rates of colder soils reduces CO2 enhancement of net primary production (NPP) for boreal forests, while some temperate and tropical forests exhibit increased NPP enhancement. Under a business-as-usual future climate and emissions scenario, ecosystem C storage globally was projected to increase by ca. 10%; additional N requirements to match this increasing ecosystem C were within the high N supply limit estimated on stoichiometric grounds in an earlier study. Our results highlight the importance of accounting for C-N interactions in studies of global terrestrial N cycling, and as a basis for understanding mechanisms on local scales and in different regional contexts.

  1. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qichun; Zhang, Xuesong

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio_E), large leaf to biomass fraction (Bio_LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWATmore » model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT’s performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests.« less

  2. Biogeochemical cycling in terrestrial ecosystems - Modeling, measurement, and remote sensing

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.; Matson, P. A.; Lawless, J. G.; Aber, J. D.; Vitousek, P. M.

    1985-01-01

    The use of modeling, remote sensing, and measurements to characterize the pathways and to measure the rate of biogeochemical cycling in forest ecosystems is described. The application of the process-level model to predict processes in intact forests and ecosystems response to disturbance is examined. The selection of research areas from contrasting climate regimes and sites having a fertility gradient in that regime is discussed, and the sites studied are listed. The use of remote sensing in determining leaf area index and canopy biochemistry is analyzed. Nitrous oxide emission is investigated by using a gas measurement instrument. Future research projects, which include studying the influence of changes on nutrient cycling in ecosystems and the effect of pollutants on the ecosystems, are discussed.

  3. Integrating ecophysiology and forest landscape models to improve projections of drought effects under climate change

    Treesearch

    Eric J. Gustafson; Arjan M.G. De Bruijn; Robert E. Pangle; Jean-Marc Limousin; Nate G. McDowell; William T. Pockman; Brian R. Sturtevant; Jordan D. Muss; Mark E. Kubiske

    2015-01-01

    Fundamental drivers of ecosystem processes such as temperature and precipitation are rapidly changing and creating novel environmental conditions. Forest landscape models (FLM) are used by managers and policy-makers to make projections of future ecosystem dynamics under alternative management or policy options, but the links between the fundamental drivers and...

  4. Managing uncertainty in climate-driven ecological models to inform adaptation to climate change

    Treesearch

    Jeremy S. Littell; Donald McKenzie; Becky K. Kerns; Samuel Cushman; Charles G. Shaw

    2011-01-01

    The impacts of climate change on forest ecosystems are likely to require changes in forest planning and natural resource management. Changes in tree growth, disturbance extent and intensity, and eventually species distributions are expected. In natural resource management and planning, ecosystem models are typically used to provide a "best estimate" about how...

  5. Space images processing methodology for assessment of atmosphere pollution impact on forest-swamp territories

    NASA Astrophysics Data System (ADS)

    Polichtchouk, Yuri; Tokareva, Olga; Bulgakova, Irina V.

    2003-03-01

    Methodical problems of space images processing for assessment of atmosphere pollution impact on forest ecosystems using geoinformation systems are developed. An approach to quantitative assessment of atmosphere pollution impact on forest ecosystems is based on calculating relative squares of forest landscapes which are inside atmosphere pollution zones. Landscape structure of forested territories in the southern part of Western Siberia are determined on the basis of procession of middle resolution space images from spaceborn Resource-O. Particularities of atmosphere pollution zones modeling caused by gas burning in torches on territories of oil fields are considered. Pollution zones were revealed by modeling of contaminants dispersal in atmosphere with standard models. Polluted landscapes squares are calculated depending on atmosphere pollution level.

  6. A climate sensitive model of carbon transfer through atmosphere, vegetation and soil in managed forest ecosystems

    NASA Astrophysics Data System (ADS)

    Loustau, D.; Moreaux, V.; Bosc, A.; Trichet, P.; Kumari, J.; Rabemanantsoa, T.; Balesdent, J.; Jolivet, C.; Medlyn, B. E.; Cavaignac, S.; Nguyen-The, N.

    2012-12-01

    For predicting the future of the forest carbon cycle in forest ecosystems, it is necessary to account for both the climate and management impacts. Climate effects are significant not only at a short time scale but also at the temporal horizon of a forest life cycle e.g. through shift in atmospheric CO2 concentration, temperature and precipitation regimes induced by the enhanced greenhouse effect. Intensification of forest management concerns an increasing fraction of temperate and tropical forests and untouched forests represents only one third of the present forest area. Predicting tools are therefore needed to project climate and management impacts over the forest life cycle and understand the consequence of management on the forest ecosystem carbon cycle. This communication summarizes the structure, main components and properties of a carbon transfer model that describes the processes controlling the carbon cycle of managed forest ecosystems. The model, GO+, links three main components, (i) a module describing the vegetation-atmosphere mass and energy exchanges in 3D, (ii) a plant growth module and a (iii) soil carbon dynamics module in a consistent carbon scheme of transfer from atmosphere back into the atmosphere. It was calibrated and evaluated using observed data collected on coniferous and broadleaved forest stands. The model predicts the soil, water and energy balance of entire rotations of managed stands from the plantation to the final cut and according to a range of management alternatives. It accounts for the main soil and vegetation management operations such as soil preparation, understorey removal, thinnings and clearcutting. Including the available knowledge on the climatic sensitivity of biophysical and biogeochemical processes involved in atmospheric exchanges and carbon cycle of forest ecosystems, GO+ can produce long-term backward or forward simulations of forest carbon and water cycles under a range of climate and management scenarios. This model applications to the prediction and analysis of climate scenarios impacts on southwestern European forests underlines the role of management alternatives, precipitation regime, CO2 concentration and atmospheric humidity .Frequency of soil preparation operations and understorey management play a major role in controlling the net carbon flux into the atmosphere at the juvenile stage ( 0 to 10 y-old) whereas climate and rotation duration control the functioning of adult phase. The model predicts that a drier and warmer climate will reduce the forest productivity and deplete soil and carbon stocks in managed forest from Southwestern Europe within decades, such effects being amplified for most intensive management alternatives. This work was part of the European research project GHG-Europe (EU contract No. 244122) and the French national project FAST co-funded by the Ecology, Agriculture and Forestry Ministries and the Region Aquitaine.

  7. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off

    PubMed Central

    Anderegg, William R. L.; Berry, Joseph A.; Smith, Duncan D.; Sperry, John S.; Anderegg, Leander D. L.; Field, Christopher B.

    2012-01-01

    Forest ecosystems store approximately 45% of the carbon found in terrestrial ecosystems, but they are sensitive to climate-induced dieback. Forest die-off constitutes a large uncertainty in projections of climate impacts on terrestrial ecosystems, climate–ecosystem interactions, and carbon-cycle feedbacks. Current understanding of the physiological mechanisms mediating climate-induced forest mortality limits the ability to model or project these threshold events. We report here a direct and in situ study of the mechanisms underlying recent widespread and climate-induced trembling aspen (Populus tremuloides) forest mortality in western North America. We find substantial evidence of hydraulic failure of roots and branches linked to landscape patterns of canopy and root mortality in this species. On the contrary, we find no evidence that drought stress led to depletion of carbohydrate reserves. Our results illuminate proximate mechanisms underpinning recent aspen forest mortality and provide guidance for understanding and projecting forest die-offs under climate change. PMID:22167807

  8. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.

    2013-04-01

    Stand-replacing fires are the dominant fire type in North American boreal forest and leave a historical legacy of a mosaic landscape of different aged forest cohorts. To accurately quantify the role of fire in historical and current regional forest carbon balance using models, one needs to explicitly simulate the new forest cohort that is established after fire. The present study adapted the global process-based vegetation model ORCHIDEE to simulate boreal forest fire CO2 emissions and follow-up recovery after a stand-replacing fire, with representation of postfire new cohort establishment, forest stand structure and the following self-thinning process. Simulation results are evaluated against three clusters of postfire forest chronosequence observations in Canada and Alaska. Evaluation variables for simulated postfire carbon dynamics include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index (LAI), and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). The model simulation results, when forced by local climate and the atmospheric CO2 history on each chronosequence site, generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that current postfire forest carbon sink on evaluation sites observed by chronosequence methods is mainly driven by historical atmospheric CO2 increase when forests recover from fire disturbance. Historical climate generally exerts a negative effect, probably due to increasing water stress caused by significant temperature increase without sufficient increase in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon stocks evolution after fire, making it suitable for regional simulations in boreal regions where fire regimes play a key role on ecosystem carbon balance.

  9. Assess and Adapt: Coordinated Ecoregional Forest Vulnerability Assessments Covering the Upper Midwest and Northeast in Support of Climate-informed Decision-making

    NASA Astrophysics Data System (ADS)

    Swanston, C.; Janowiak, M.; Handler, S.; Butler, P.; Brandt, L.; Iverson, L.; Thompson, F.; Ontl, T.; Shannon, D.

    2016-12-01

    Forest ecosystem vulnerability assessments are rapidly becoming an integral component of forest management planning, in which there is increasing public expectation that even near-term activities explicitly incorporate information about anticipated climate impacts and risks. There is a clear desire among forest managers for targeted assessments that address critical questions about species and ecosystem vulnerabilities while delivering this information in an accessible format. We developed the Ecosystem Vulnerability Assessment Approach (EVAA), which combines multiple quantitative models, expert elicitation from scientists and land managers, and a templated report structure oriented to natural resource managers. The report structure includes relevant information on the contemporary landscape, past climate, future climate projections, impact model results, and a transparent vulnerability assessment of species and ecosystems. We have used EVAA in seven ecoregional assessments covering 246 million acres of forestland across the upper Midwest and Northeast (www.forestadaptation.org; five published, two in review). We convened a panel of local forest ecology and management experts in each assessment area to examine projected climate effects on system drivers, stressors, and dominant species, as well as the current adaptive capacity of the major ecoregional forest ecosystems. The panels provided a qualitative assessment of the vulnerability of forest ecosystems to climate change over the next century. Over 130 authors from dozens of organizations collaborated on these peer-reviewed assessment publications, which are delivered to thousands of stakeholders through live and recorded webinars, online briefs, and in-person trainings and seminars. The assessments are designed to be used with the Adaptation Workbook (www.adaptationworkbook.org), a planning tool that works at multiple scales and has generated more than 200 real-world forest adaptation demonstration projects.

  10. Statistical uncertainty of eddy flux-based estimates of gross ecosystem carbon exchange at Howland Forest, Maine

    Treesearch

    S.C. Hagen; B.H. Braswell; E. Linder; S. Frolking; A.D. Richardson; David Hollinger. D.Y; Hollinger. D.Y

    2006-01-01

    We present an uncertainty analysis of gross ecosystem carbon exchange (GEE) estimates derived from 7 years of continuous eddy covariance measurements of forest atmosphere CO2 fluxes at Howland Forest, Maine, USA. These data, which have high temporal resolution, can be used to validate process modeling analyses, remote sensing assessments, and field surveys. However,...

  11. Modeling relationships among 217 fires using remote sensing of burn severity in southern pine forests

    Treesearch

    Sparkle L. Malone; Leda N. Kobziar; Christina L. Staudhammer; Amr Abd-Elrahman

    2011-01-01

    Pine flatwoods forests in the southeastern US have experienced severe wildfires over the past few decades, often attributed to fuel load build-up. These forest communities are fire dependent and require regular burning for ecosystem maintenance and health. Although prescribed fire has been used to reduce wildfire risk and maintain ecosystem integrity, managers are...

  12. Fir sawyer beetle-Siberian fir interaction modeling: resistance of fir stands to insect outbreaks

    Treesearch

    Tamara M. Ovtchinnikova; Victor V. Kiselev

    1991-01-01

    Entomological monitoring is part of a total ecological monitoring system. Its purpose is the identification, prognosis, and estimation of forest ecosystem impacts induced by insects. The entomological monitoring of a forest is based on a clear understanding of the role played by insects in forest ecosystems. The patterns of insect population dynamics in space and time...

  13. FOREST ECOLOGY. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models.

    PubMed

    Anderegg, W R L; Schwalm, C; Biondi, F; Camarero, J J; Koch, G; Litvak, M; Ogle, K; Shaw, J D; Shevliakova, E; Williams, A P; Wolf, A; Ziaco, E; Pacala, S

    2015-07-31

    The impacts of climate extremes on terrestrial ecosystems are poorly understood but important for predicting carbon cycle feedbacks to climate change. Coupled climate-carbon cycle models typically assume that vegetation recovery from extreme drought is immediate and complete, which conflicts with the understanding of basic plant physiology. We examined the recovery of stem growth in trees after severe drought at 1338 forest sites across the globe, comprising 49,339 site-years, and compared the results with simulated recovery in climate-vegetation models. We found pervasive and substantial "legacy effects" of reduced growth and incomplete recovery for 1 to 4 years after severe drought. Legacy effects were most prevalent in dry ecosystems, among Pinaceae, and among species with low hydraulic safety margins. In contrast, limited or no legacy effects after drought were simulated by current climate-vegetation models. Our results highlight hysteresis in ecosystem-level carbon cycling and delayed recovery from climate extremes. Copyright © 2015, American Association for the Advancement of Science.

  14. Evaluating the responses of forest ecosystems to climate change and CO2 using dynamic global vegetation models.

    PubMed

    Song, Xiang; Zeng, Xiaodong

    2017-02-01

    The climate has important influences on the distribution and structure of forest ecosystems, which may lead to vital feedback to climate change. However, much of the existing work focuses on the changes in carbon fluxes or water cycles due to climate change and/or atmospheric CO 2 , and few studies have considered how and to what extent climate change and CO 2 influence the ecosystem structure (e.g., fractional coverage change) and the changes in the responses of ecosystems with different characteristics. In this work, two dynamic global vegetation models (DGVMs): IAP-DGVM coupled with CLM3 and CLM4-CNDV, were used to investigate the response of the forest ecosystem structure to changes in climate (temperature and precipitation) and CO 2 concentration. In the temperature sensitivity tests, warming reduced the global area-averaged ecosystem gross primary production in the two models, which decreased global forest area. Furthermore, the changes in tree fractional coverage (Δ F tree ; %) from the two models were sensitive to the regional temperature and ecosystem structure, i.e., the mean annual temperature (MAT; °C) largely determined whether Δ F tree was positive or negative, while the tree fractional coverage ( F tree ; %) played a decisive role in the amplitude of Δ F tree around the globe, and the dependence was more remarkable in IAP-DGVM. In cases with precipitation change, F tree had a uniformly positive relationship with precipitation, especially in the transition zones of forests (30% <  F tree  < 60%) for IAP-DGVM and in semiarid and arid regions for CLM4-CNDV. Moreover, Δ F tree had a stronger dependence on F tree than on the mean annual precipitation (MAP; mm/year). It was also demonstrated that both models captured the fertilization effects of the CO 2 concentration.

  15. A second-order impact model for forest fire regimes.

    PubMed

    Maggi, Stefano; Rinaldi, Sergio

    2006-09-01

    We present a very simple "impact" model for the description of forest fires and show that it can mimic the known characteristics of wild fire regimes in savannas, boreal forests, and Mediterranean forests. Moreover, the distribution of burned biomasses in model generated fires resemble those of burned areas in numerous large forests around the world. The model has also the merits of being the first second-order model for forest fires and the first example of the use of impact models in the study of ecosystems.

  16. Modeling forest ecosystem changes resulting from surface coal mining in West Virginia

    Treesearch

    John Brown; Andrew J. Lister; Mary Ann Fajvan; Bonnie Ruefenacht; Christine Mazzarella

    2012-01-01

    The objective of this project is to assess the effects of surface coal mining on forest ecosystem disturbance and restoration in the Coal River Subbasin in southern West Virginia. Our approach is to develop disturbance impact models for this subbasin that will serve as a case study for testing the feasibility of integrating currently available GIS data layers, remote...

  17. Simulating Forest Dynamics of Lowland Rainforests in Eastern Madagascar

    NASA Technical Reports Server (NTRS)

    Armstrong, Amanda; Fischer, Rico; Huth, Andreas; Shugart, Herman; Fatoyinbo, Temilola

    2018-01-01

    Ecological modeling and forecasting are essential tools for the understanding of complex vegetation dynamics. The parametric demands of some of these models are often lacking or scant for threatened ecosystems, particularly in diverse tropical ecosystems. One such ecosystem and also one of the world's biodiversity hotspots, Madagascar's lowland rainforests, have disappeared at an alarming rate. The processes that drive tree species growth and distribution remain as poorly understood as the species themselves. We investigated the application of the process-based individual-based FORMIND model to successfully simulate a Madagascar lowland rainforest using previously collected multi-year forest inventory plot data. We inspected the model's ability to characterize growth and species abundance distributions over the study site, and then validated the model with an independently collected forest-inventory dataset from another lowland rainforest in eastern Madagascar. Following a comparative analysis using inventory data from the two study sites, we found that FORMIND accurately captures the structure and biomass of the study forest, with r(squared) values of 0.976, 0.895, and 0.995 for 1:1 lines comparing observed and simulated values across all plant functional types for aboveground biomass (tonnes/ha), stem numbers, and basal area (m(squared)/ha), respectively. Further, in validation with a second study forest site, FORMIND also compared well, only slightly over-estimating shade-intermediate species as compared to the study site, and slightly under-representing shade-tolerant species in percentage of total aboveground biomass. As an important application of the FORMIND model, we measured the net ecosystem exchange (NEE, in tons of carbon per hectare per year) for 50 ha of simulated forest over a 1000-year run from bare ground. We found that NEE values ranged between 1 and -1 t Cha(exp -1)year(exp -1), consequently the study forest can be considered as a net neutral or a very slight carbon sink ecosystem, after the initial 130 years of growth. Our study found that FORMIND represents a valuable tool toward simulating forest dynamics in the immensely diverse Madagascar rainforests.

  18. Forest ecosystems in the Alaskan taiga

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Cleve, K.; Chapin, F.S. III; Flanagan, P.W.

    1986-01-01

    This volume in the series ''Ecological Studies'' provides an overview and synthesis of research on the structure and function of taiga forest ecosystems of interior Alaska. The first section discusses the nature of the taiga environment and covers climate, forest ecosystem distribution, natural regeneration of vegetation, and the role of fire. The second edition focuses on environmental controls over organism activity with discussions on growth and nutrient use, nitrogen fixation, physiological ecology of mosses, and microbial activity and element availability. The final section considers environmental controls over ecosystem processes with discussions of processes, plant-animal interactions, and a model of forestmore » growth and yield.« less

  19. Multiple constraint modeling of nutrient cycling stoichiometry following forest clearing and pasture abandonment in the Eastern Amazon

    NASA Astrophysics Data System (ADS)

    Davidson, Eric; Nifong, Rachel

    2017-04-01

    While deforestation has declined since its peak, land-use change continues to modify Amazonian landscapes. The responses and feedbacks of biogeochemical cycles to these changes play an important role in determining possible future trajectories of ecosystem function and for land stewardship through effects on rates of secondary forest regrowth, soil emissions of greenhouse gases, inputs of nutrients to groundwater and streamwater, and nutrient management in agroecosystems. Here we present a new synthetic analyses of data from the NASA-supported LBA-ECO project and others datasets on nutrient cycling in cattle pastures, secondary forests, and mature forests at Paragominas, Pará, Brazil. We have developed a stoichiometric model relating C-N-P interactions during original forest clearing, extensive and intensive pasture management, and secondary forest regrowth, constrained by multiple observations of ecosystem stocks and fluxes in each land use. While P is conservatively cycled in all land uses, we demonstrate that pyrolyzation of N during pasture formation and during additional burns for pasture management depletes available-N pools, consistent with observations of lower rates of N leaching and trace gas emission and consistent with secondary forest growth responses to experimental N amendments. The soils store large stocks of N and P, and our parameterization of available forms of these nutrients for steady-state dynamics in the mature forest yield reasonable estimates of net N and P mineralization available for grasses and secondary forest species at rates consistent with observed biomass accumulation and productivity in these modified ecosystems. Because grasses and forests have much different demands for N relative to P, the land use has important biogeochemical impacts. The model demonstrates the need for periodic P inputs for sustainable pasture management and for a period of significant biological N fixation for early-to-mid-successional secondary forest regrowth. The model framework illustrates the relative magnitudes of changing stocks and flows of nutrients and attendant ecosystem functions through the phases of land use change experienced in eastern Amazonia.

  20. Catchment hydrological responses to forest harvest amount and spatial pattern - 2011

    EPA Science Inventory

    We used an ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest location and amount on ecosystem carbon (C) and nitrogen (N) dynamics in an intensively studied headwater catchment (WS10) in western Oregon,...

  1. Taking the pulse of mountains: Ecosystem responses to climatic variability

    USGS Publications Warehouse

    Fagre, Daniel B.; Peterson, David L.; Hessl, Amy E.

    2003-01-01

    An integrated program of ecosystem modeling and field studies in the mountains of the Pacific Northwest (U.S.A.) has quantified many of the ecological processes affected by climatic variability. Paleoecological and contemporary ecological data in forest ecosystems provided model parameterization and validation at broad spatial and temporal scales for tree growth, tree regeneration and treeline movement. For subalpine tree species, winter precipitation has a strong negative correlation with growth; this relationship is stronger at higher elevations and west-side sites (which have more precipitation). Temperature affects tree growth at some locations with respect to length of growing season (spring) and severity of drought at drier sites (summer). Furthermore, variable but predictable climate-growth relationships across elevation gradients suggest that tree species respond differently to climate at different locations, making a uniform response of these species to future climatic change unlikely. Multi-decadal variability in climate also affects ecosystem processes. Mountain hemlock growth at high-elevation sites is negatively correlated with winter snow depth and positively correlated with the winter Pacific Decadal Oscillation (PDO) index. At low elevations, the reverse is true. Glacier mass balance and fire severity are also linked to PDO. Rapid establishment of trees in subalpine ecosystems during this century is increasing forest cover and reducing meadow cover at many subalpine locations in the western U.S.A. and precipitation (snow depth) is a critical variable regulating conifer expansion. Lastly, modeling potential future ecosystem conditions suggests that increased climatic variability will result in increasing forest fire size and frequency, and reduced net primary productivity in drier, east-side forest ecosystems. As additional empirical data and modeling output become available, we will improve our ability to predict the effects of climatic change across a broad range of climates and mountain ecosystems in the northwestern U.S.A.

  2. Modeling approaches to describe H2O and CO2 exchange in mare ecosystems

    NASA Astrophysics Data System (ADS)

    Olchev, A.; Novenko, E.; Volkova, E.

    2012-04-01

    The modern climatic conditions is strongly influenced by both internal variability of climatic system, and various external natural and anthropogenic factors (IPCC 2007). Significant increase of concentration of greenhouse gases in the atmosphere and especially the growth of atmospheric CO2 due to human activity are considered as the main factors that are responsible for global warming and climate changes. A significant part of anthropogenic CO2 is absorbed from the atmosphere by land biota and especially by vegetation cover. However, it is still not completely clear what is the role of different land ecosystems and especially forests and mares in global cycles of H2O and CO2 and what is a sensitivity of these ecosystems to climate changes. Within the frameworks of this study the spatial and temporal variability of H2O and CO2 fluxes in different types of mare ecosystems of the forest-steppe zone in European part of Russia was described using modeling approaches and results of field measurements. For this modeling and experimental study the mare ecosystems of Tula region were selected. The Tula region is located mostly in the forest-steppe zone and it is unique area for such studies because almost all existed types of mare ecosystems of Northern Eurasia distinguished by a geomorphological position, water and mineral supply can be found there. Most mares in Tula region have a relatively small size and surrounded by very heterogeneous forests that make not possible an application of the classical measuring and modeling approaches e.g. an eddy covariance technique or one-dimensional H2O and CO2 exchange models for flux estimation in such sites. In our study to describe the radiation, sensible heat, H2O and CO2 exchange between such heterogeneous mare ecosystems and the atmosphere a three-dimensional model Forbog-3D and one-dimensional Mixfor-SVAT were applied. The main concept used in the Forbog-3D and Mixfor-SVAT models is an aggregated description of physical and biological processes at various hierarchical levels of forest and mire ecosystems: from a single leaf to a tree and an entire ecosystem. The models consist of the several closely coupled sub-models describing: transfer of direct and diffuse solar radiation; turbulent exchange of sensible heat, H2O and CO2 within and above a vegetation cover; transpiration, photosynthesis and respiration of vegetation and soil; heat and moisture transfer in different soil layers. The models were validated and applied to describe the H2O and CO2 exchange processes in various mare ecosystems with different relief position, type of water and mineral supply as well as vegetation composition. Selected mares are located in different parts of the Tula region (both in forest and forest-steppe zones) and characterized by different microclimatic conditions. The study was supported by grants (11-04-97538-r_center_a, 11-04-01622-a and 11-05-00557-a) of the Russian Foundation for Basic Research (RFBR) and by grant of Government of Russian Federation N 11.G34.31.0079.

  3. Simulating ectomycorrhiza in boreal forests: implementing ectomycorrhizal fungi model MYCOFON in CoupModel (v5)

    NASA Astrophysics Data System (ADS)

    He, Hongxing; Meyer, Astrid; Jansson, Per-Erik; Svensson, Magnus; Rütting, Tobias; Klemedtsson, Leif

    2018-02-01

    The symbiosis between plants and Ectomycorrhizal fungi (ECM) is shown to considerably influence the carbon (C) and nitrogen (N) fluxes between the soil, rhizosphere, and plants in boreal forest ecosystems. However, ECM are either neglected or presented as an implicit, undynamic term in most ecosystem models, which can potentially reduce the predictive power of models.

    In order to investigate the necessity of an explicit consideration of ECM in ecosystem models, we implement the previously developed MYCOFON model into a detailed process-based, soil-plant-atmosphere model, Coup-MYCOFON, which explicitly describes the C and N fluxes between ECM and roots. This new Coup-MYCOFON model approach (ECM explicit) is compared with two simpler model approaches: one containing ECM implicitly as a dynamic uptake of organic N considering the plant roots to represent the ECM (ECM implicit), and the other a static N approach in which plant growth is limited to a fixed N level (nonlim). Parameter uncertainties are quantified using Bayesian calibration in which the model outputs are constrained to current forest growth and soil C / N ratio for four forest sites along a climate and N deposition gradient in Sweden and simulated over a 100-year period.

    The nonlim approach could not describe the soil C / N ratio due to large overestimation of soil N sequestration but simulate the forest growth reasonably well. The ECM implicit and explicit approaches both describe the soil C / N ratio well but slightly underestimate the forest growth. The implicit approach simulated lower litter production and soil respiration than the explicit approach. The ECM explicit Coup-MYCOFON model provides a more detailed description of internal ecosystem fluxes and feedbacks of C and N between plants, soil, and ECM. Our modeling highlights the need to incorporate ECM and organic N uptake into ecosystem models, and the nonlim approach is not recommended for future long-term soil C and N predictions. We also provide a key set of posterior fungal parameters that can be further investigated and evaluated in future ECM studies.

  4. Estimating the carbon budget and maximizing future carbon uptake for a temperate forest region in the U.S.

    PubMed Central

    2012-01-01

    Background Forests of the Midwest U.S. provide numerous ecosystem services. Two of these, carbon sequestration and wood production, are often portrayed as conflicting. Currently, carbon management and biofuel policies are being developed to reduce atmospheric CO2 and national dependence on foreign oil, and increase carbon storage in ecosystems. However, the biological and industrial forest carbon cycles are rarely studied in a whole-system structure. The forest system carbon balance is the difference between the biological (net ecosystem production) and industrial (net emissions from forest industry) forest carbon cycles, but to date this critical whole system analysis is lacking. This study presents a model of the forest system, uses it to compute the carbon balance, and outlines a methodology to maximize future carbon uptake in a managed forest region. Results We used a coupled forest ecosystem process and forest products life cycle inventory model for a regional temperate forest in the Midwestern U.S., and found the net system carbon balance for this 615,000 ha forest was positive (2.29 t C ha-1 yr-1). The industrial carbon budget was typically less than 10% of the biological system annually, and averaged averaged 0.082 t C ha-1 yr-1. Net C uptake over the next 100-years increased by 22% or 0.33 t C ha-1 yr-1 relative to the current harvest rate in the study region under the optized harvest regime. Conclusions The forest’s biological ecosystem current and future carbon uptake capacity is largely determined by forest harvest practices that occurred over a century ago, but we show an optimized harvesting strategy would increase future carbon sequestration, or wood production, by 20-30%, reduce long transportation chain emissions, and maintain many desirable stand structural attributes that are correlated to biodiversity. Our results for this forest region suggest that increasing harvest over the next 100 years increases the strength of the carbon sink, and that carbon sequestration and wood production are not conflicting for this particular forest ecosystem. The optimal harvest strategy found here may not be the same for all forests, but the methodology is applicable anywhere sufficient forest inventory data exist. PMID:22713794

  5. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    USGS Publications Warehouse

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m−2 yr−1, for biomass carbon ~1000 g C m−2 and for soil carbon ~2000 g C m−2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon-stock evolution after fire. This makes the model suitable for regional simulations in boreal regions where fire regimes play a key role in the ecosystem carbon balance.

  6. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.

    2013-12-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon-stock evolution after fire. This makes the model suitable for regional simulations in boreal regions where fire regimes play a key role in the ecosystem carbon balance.

  7. Evaluating management tradeoffs between economic fiber production and other ecosystem services in a Chinese-fir dominated forest plantation in Fujian Province.

    PubMed

    Kang, Haijun; Seely, Brad; Wang, Guangyu; Innes, John; Zheng, Dexiang; Chen, Pingliu; Wang, Tongli; Li, Qinglin

    2016-07-01

    Chinese fir (Cunninghamia lanceolata) is not only a valuable timber species, but also plays an important role in the provision of ecosystem services. Forest management decisions to increase the production of fiber for economic gain may have negative impacts on the long-term flow of ecosystem services from forest resources. Such tradeoffs should be taken into account to fulfill the requirements of sustainable forest management. Here we employed an established, ecosystem-based, stand-level model (FORECAST) in combination with a simplified harvest-scheduling model to evaluate the potential tradeoffs among indicators of provisional, regulating and supporting ecosystem services in a Chinese-fir-dominated landscape located in Fujian Province as a case study. Indicators included: merchantable volume harvested, biomass harvested, ecosystem carbon storage, CO2 fixation, O2 released, biomass nitrogen content, pollutant absorption, and soil fertility. A series of alternative management scenarios, representing different combinations of rotation length and harvest intensity, were simulated to facilitate the analysis. Results from the analysis were summarized in the form of a decision matrix designed to provide a method for forest managers to evaluate management alternatives and tradeoffs in the context of key indicators of ecosystem services. The scenario analysis suggests that there are considerable tradeoffs in terms of ecosystem services associated with stand and landscape-level management decisions. Longer rotations and increased retention tended to favor regulating and supporting services while the opposite was true for provisional services. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effects of Soil Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest Ecosystem.

    Treesearch

    Whendee L. Silver; Jason Neff; Megan McGroddy; Ed Veldkamp; Michael Keller; Raimundo Cosme

    2000-01-01

    Soil texture plays a key role in belowground C storage in forest ecosystems and strongly influences nutrient availability and retention, particularly in highly weathered soils. We used field data and the Century ecosystem model to explore the role of soil texture in belowground C storage, nutrient pool sizes, and N fluxes in highly weathered soils in an Amazonian...

  9. Model for multi-stand management based on structural attributes of individual stands

    Treesearch

    G.W. Miller; J. Sullivan

    1997-01-01

    A growing interest in managing forest ecosystems calls for decision models that take into account attribute goals for large forest areas while continuing to recognize the individual stand as a basic unit of forest management. A dynamic, nonlinear forest management model is described that schedules silvicultural treatments for individual stands that are linked by multi-...

  10. δ15N constraints on long-term nitrogen balances in temperate forests

    USGS Publications Warehouse

    Perakis, S.S.; Sinkhorn, E.R.; Compton, J.E.

    2011-01-01

    Biogeochemical theory emphasizes nitrogen (N) limitation and the many factors that can restrict N accumulation in temperate forests, yet lacks a working model of conditions that can promote naturally high N accumulation. We used a dynamic simulation model of ecosystem N and δ15N to evaluate which combination of N input and loss pathways could produce a range of high ecosystem N contents characteristic of forests in the Oregon Coast Range. Total ecosystem N at nine study sites ranged from 8,788 to 22,667 kg ha−1 and carbon (C) ranged from 188 to 460 Mg ha−1, with highest values near the coast. Ecosystem δ15N displayed a curvilinear relationship with ecosystem N content, and largely reflected mineral soil, which accounted for 96–98% of total ecosystem N. Model simulations of ecosystem N balances parameterized with field rates of N leaching required long-term average N inputs that exceed atmospheric deposition and asymbiotic and epiphytic N2-fixation, and that were consistent with cycles of post-fire N2-fixation by early-successional red alder. Soil water δ15NO3 − patterns suggested a shift in relative N losses from denitrification to nitrate leaching as N accumulated, and simulations identified nitrate leaching as the primary N loss pathway that constrains maximum N accumulation. Whereas current theory emphasizes constraints on biological N2-fixation and disturbance-mediated N losses as factors that limit N accumulation in temperate forests, our results suggest that wildfire can foster substantial long-term N accumulation in ecosystems that are colonized by symbiotic N2-fixing vegetation.

  11. Drought impacts on ecosystem functions of the U.S. National Forests and Grasslands: Part I evaluation of a water and carbon balance model

    Treesearch

    Shanlei Sun; Ge Sun; Peter Caldwell; Steven G. McNulty; Erika Cohen; Jingfeng Xiao; Yang Zhang

    2015-01-01

    Understanding and quantitatively evaluating the regional impacts of climate change and variability (e.g., droughts) on forest ecosystem functions (i.e., water yield, evapotranspiration, and productivity) and services (e.g., fresh water supply and carbon sequestration) is of great importance for developing climate change adaptation strategies for National Forests and...

  12. Remote sensing of the seasonal variation of coniferous forest structure and function

    NASA Technical Reports Server (NTRS)

    Spanner, Michael; Waring, Richard

    1991-01-01

    One of the objectives of the Oregon Transect Ecosystem Research (OTTER) project is the remotely sensed determination of the seasonal variation of leaf area index (LAI) and absorbed photosynthetically active radiation (APAR). These measurements are required for input into a forest ecosystem model which predicts net primary production evapotranspiration, and photosynthesis of coniferous forests. Details of the study are given.

  13. Remote sensing in support of high-resolution terrestrial carbon monitoring and modeling

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Zhao, M.; Dubayah, R.; Huang, C.; Swatantran, A.; ONeil-Dunne, J.; Johnson, K. D.; Birdsey, R.; Fisk, J.; Flanagan, S.; Sahajpal, R.; Huang, W.; Tang, H.; Armstrong, A. H.

    2014-12-01

    As part of its Phase 1 Carbon Monitoring System (CMS) activities, NASA initiated a Local-Scale Biomass Pilot study. The goals of the pilot study were to develop protocols for fusing high-resolution remotely sensed observations with field data, provide accurate validation test areas for the continental-scale biomass product, and demonstrate efficacy for prognostic terrestrial ecosystem modeling. In Phase 2, this effort was expanded to the state scale. Here, we present results of this activity focusing on the use of remote sensing in high-resolution ecosystem modeling. The Ecosystem Demography (ED) model was implemented at 90 m spatial resolution for the entire state of Maryland. We rasterized soil depth and soil texture data from SSURGO. For hourly meteorological data, we spatially interpolated 32-km 3-hourly NARR into 1-km hourly and further corrected them at monthly level using PRISM data. NLCD data were used to mask sand, seashore, and wetland. High-resolution 1 m forest/non-forest mapping was used to define forest fraction of 90 m cells. Three alternative strategies were evaluated for initialization of forest structure using high-resolution lidar, and the model was used to calculate statewide estimates of forest biomass, carbon sequestration potential, time to reach sequestration potential, and sensitivity to future forest growth and disturbance rates, all at 90 m resolution. To our knowledge, no dynamic ecosystem model has been run at such high spatial resolution over such large areas utilizing remote sensing and validated as extensively. There are over 3 million 90 m land cells in Maryland, greater than 43 times the ~73,000 half-degree cells in a state-of-the-art global land model.

  14. Integration of multispectral and SAR data for monitoring forest ecosystems recovery after fire

    NASA Astrophysics Data System (ADS)

    Stankova, Nataliya; Nedkov, Roumen; Ivanova, Iva; Avetisyan, Daniela

    2017-09-01

    The aim of this study is assessing the impacts and monitoring the condition and recovery processes of forest ecosystems after fire based on remote aerospace methods and data. To achieve this goal, satellite imagery in microwave and optical range of the spectrum were used. A hybrid model for assessing the instantaneous condition of forest ecosystems after fire that uses parallel data from optical and Synthetic Aperture Radar (SAR) was developed. Based on the three Tasseled Cap components (Brightness-BR, Greenness-GR and Wetness-W), a vector describing the current condition of the forest ecosystems was obtained and used as input data from the optical range. Results obtained by implementation of the proposed approach show that the integrated composite images of VIC and SAR represent the degree of recovery.

  15. Carbon cycling at the tipping point: Does ecosystem structure predict resistance to disturbance?

    NASA Astrophysics Data System (ADS)

    Gough, C. M.; Bond-Lamberty, B. P.; Stuart-Haentjens, E.; Atkins, J.; Haber, L.; Fahey, R. T.

    2017-12-01

    Ecosystems worldwide are subjected to disturbances that reshape their physical and biological structure and modify biogeochemical processes, including carbon storage and cycling rates. Disturbances, including those from insect pests, pathogens, and extreme weather, span a continuum of severity and, accordingly, may have different effects on carbon cycling processes. Some ecosystems resist biogeochemical changes following disturbance, until a critical threshold of severity is exceeded. The ecosystem properties underlying such functional resistance, and signifying when a tipping point will occur, however, are almost entirely unknown. Here, we present observational and experimental results from forests in the Great Lakes region, showing ecosystem structure is closely coupled with carbon cycling responses to disturbance, with shifts in structure predicting thresholds of and, in some cases, increases in carbon storage. We find, among forests in the region, that carbon storage regularly exhibits a non-linear threshold response to increasing disturbance levels, but the severity at which a threshold is reached varies among disturbed forests. More biologically and structurally complex forest ecosystems sometimes exhibit greater functional resistance than simpler forests, and consequently may have a higher disturbance severity threshold. Counter to model predictions but consistent with some theoretical frameworks, empirical data show moderate levels of disturbance may increase ecosystem complexity to a point, thereby increasing rates of carbon storage. Disturbances that increase complexity therefore may stimulate carbon storage, while severe disturbances at or beyond thresholds may simplify structure, leading to carbon storage declines. We conclude that ecosystem structural attributes are closely coupled with biogeochemical thresholds across disturbance severity gradients, suggesting that improved predictions of disturbance-related changes in the carbon cycle require better representation of ecosystem structure in models.

  16. Measuring and modeling carbon balance in mountainous Northern Rocky mixed conifer forests

    NASA Astrophysics Data System (ADS)

    Hudiburg, T. W.; Berardi, D.; Stenzel, J.

    2016-12-01

    Drought and wildfire caused by changing precipitation patterns, increased temperatures, increased fuel loads, and decades of fire suppression are reducing forest carbon uptake from local to continental scales. This trend is especially widespread in Idaho and the intermountain west and has important implications for climate change and forest management options. Given the key role of forests in climate regulation, understanding forest response to drought and the feedbacks to the atmosphere is a key research and policy-relevant priority globally. As temperature, fire, and precipitation regimes continue to change and there is increased risk of forest mortality, measurements and modeling at temporal and spatial scales that are conducive to understanding the impacts and underlying mechanisms of carbon and nutrient cycling become critically important. Until recently, sub-daily measurements of ecosystem carbon balance have been limited in remote, mountainous terrain (e.g Northern Rocky mountain forests). Here, we combine new measurement technology and state-of-the-art ecosystem modeling to determine the impact of drought on the total carbon balance of a mature, mixed-conifer forest in Northern Idaho. Our findings indicate that drought had no impact on aboveground NPP, despite early growing season reductions in soil moisture and fine root biomass compared to non-drought years in the past. Modeled estimates of net ecosystem production (NEP) suggest that a simultaneous reduction in heterotrophic respiration increased the carbon sink for this forest. This has important implications for forest management, such as thinning where the objectives are to increase forest resilience to fire and drought, but may decrease NEP.

  17. Improving Lidar-based Aboveground Biomass Estimation with Site Productivity for Central Hardwood Forests, USA

    NASA Astrophysics Data System (ADS)

    Shao, G.; Gallion, J.; Fei, S.

    2016-12-01

    Sound forest aboveground biomass estimation is required to monitor diverse forest ecosystems and their impacts on the changing climate. Lidar-based regression models provided promised biomass estimations in most forest ecosystems. However, considerable uncertainties of biomass estimations have been reported in the temperate hardwood and hardwood-dominated mixed forests. Varied site productivities in temperate hardwood forests largely diversified height and diameter growth rates, which significantly reduced the correlation between tree height and diameter at breast height (DBH) in mature and complex forests. It is, therefore, difficult to utilize height-based lidar metrics to predict DBH-based field-measured biomass through a simple regression model regardless the variation of site productivity. In this study, we established a multi-dimension nonlinear regression model incorporating lidar metrics and site productivity classes derived from soil features. In the regression model, lidar metrics provided horizontal and vertical structural information and productivity classes differentiated good and poor forest sites. The selection and combination of lidar metrics were discussed. Multiple regression models were employed and compared. Uncertainty analysis was applied to the best fit model. The effects of site productivity on the lidar-based biomass model were addressed.

  18. Optimizing efficiency of height modeling for extensive forest inventories.

    Treesearch

    T.M. Barrett

    2006-01-01

    Although critical to monitoring forest ecosystems, inventories are expensive. This paper presents a generalizable method for using an integer programming model to examine tradeoffs between cost and estimation error for alternative measurement strategies in forest inventories. The method is applied to an example problem of choosing alternative height-modeling strategies...

  19. More than Drought: Precipitation Variance, Excessive Wetness, Pathogens and the Future of the Western Edge of the Eastern Deciduous Forest.

    PubMed

    Hubbart, Jason A; Guyette, Richard; Muzika, Rose-Marie

    2016-10-01

    For many regions of the Earth, anthropogenic climate change is expected to result in increasingly divergent climate extremes. However, little is known about how increasing climate variance may affect ecosystem productivity. Forest ecosystems may be particularly susceptible to this problem considering the complex organizational structure of specialized species niche adaptations. Forest decline is often attributable to multiple stressors including prolonged heat, wildfire and insect outbreaks. These disturbances, often categorized as megadisturbances, can push temperate forests beyond sustainability thresholds. Absent from much of the contemporary forest health literature, however, is the discussion of excessive precipitation that may affect other disturbances synergistically or that might represent a principal stressor. Here, specific points of evidence are provided including historic climatology, variance predictions from global change modeling, Midwestern paleo climate data, local climate influences on net ecosystem exchange and productivity, and pathogen influences on oak mortality. Data sources reveal potential trends, deserving further investigation, indicating that the western edge of the Eastern Deciduous forest may be impacted by ongoing increased precipitation, precipitation variance and excessive wetness. Data presented, in conjunction with recent regional forest health concerns, suggest that climate variance including drought and excessive wetness should be equally considered for forest ecosystem resilience against increasingly dynamic climate. This communication serves as an alert to the need for studies on potential impacts of increasing climate variance and excessive wetness in forest ecosystem health and productivity in the Midwest US and similar forest ecosystems globally. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance.

    PubMed

    Wang, Shaoqiang; Zhou, Lei; Chen, Jingming; Ju, Weimin; Feng, Xianfeng; Wu, Weixing

    2011-06-01

    Affected by natural and anthropogenic disturbances such as forest fires, insect-induced mortality and harvesting, forest stand age plays an important role in determining the distribution of carbon pools and fluxes in a variety of forest ecosystems. An improved understanding of the relationship between net primary productivity (NPP) and stand age (i.e., age-related increase and decline in forest productivity) is essential for the simulation and prediction of the global carbon cycle at annual, decadal, centurial, or even longer temporal scales. In this paper, we developed functions describing the relationship between national mean NPP and stand age using stand age information derived from forest inventory data and NPP simulated by the BEPS (Boreal Ecosystem Productivity Simulator) model in 2001. Due to differences in ecobiophysical characteristics of different forest types, NPP-age equations were developed for five typical forest ecosystems in China (deciduous needleleaf forest (DNF), evergreen needleleaf forest in tropic and subtropical zones (ENF-S), deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), and mixed broadleaf forest (MBF)). For DNF, ENF-S, EBF, and MBF, changes in NPP with age were well fitted with a common non-linear function, with R(2) values equal to 0.90, 0.75, 0.66, and 0.67, respectively. In contrast, a second order polynomial was best suitable for simulating the change of NPP for DBF, with an R(2) value of 0.79. The timing and magnitude of the maximum NPP varied with forest types. DNF, EBF, and MBF reached the peak NPP at the age of 54, 40, and 32 years, respectively, while the NPP of ENF-S maximizes at the age of 13 years. The highest NPP of DBF appeared at 122 years. NPP was generally lower in older stands with the exception of DBF, and this particular finding runs counter to the paradigm of age-related decline in forest growth. Evaluation based on measurements of NPP and stand age at the plot-level demonstrates the reliability and applicability of the fitted NPP-age relationships. These relationships were used to replace the normalized NPP-age relationship used in the original InTEC (Integrated Terrestrial Ecosystem Carbon) model, to improve the accuracy of estimated carbon balance for China's forest ecosystems. With the revised NPP-age relationship, the InTEC model simulated a larger carbon source from 1950-1980 and a larger carbon sink from 1985-2001 for China's forests than the original InTEC model did because of the modification to the age-related carbon dynamics in forests. This finding confirms the importance of considering the dynamics of NPP related to forest age in estimating regional and global terrestrial carbon budgets. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Gap models and their individual-based relatives in the assessment of the consequences of global change

    NASA Astrophysics Data System (ADS)

    Shugart, Herman H.; Wang, Bin; Fischer, Rico; Ma, Jianyong; Fang, Jing; Yan, Xiaodong; Huth, Andreas; Armstrong, Amanda H.

    2018-03-01

    Individual-based models (IBMs) of complex systems emerged in the 1960s and early 1970s, across diverse disciplines from astronomy to zoology. Ecological IBMs arose with seemingly independent origins out of the tradition of understanding the ecosystems dynamics of ecosystems from a ‘bottom-up’ accounting of the interactions of the parts. Individual trees are principal among the parts of forests. Because these models are computationally demanding, they have prospered as the power of digital computers has increased exponentially over the decades following the 1970s. This review will focus on a class of forest IBMs called gap models. Gap models simulate the changes in forests by simulating the birth, growth and death of each individual tree on a small plot of land. The summation of these plots comprise a forest (or set of sample plots on a forested landscape or region). Other, more aggregated forest IBMs have been used in global applications including cohort-based models, ecosystem demography models, etc. Gap models have been used to provide the parameters for these bulk models. Currently, gap models have grown from local-scale to continental-scale and even global-scale applications to assess the potential consequences of climate change on natural forests. Modifications to the models have enabled simulation of disturbances including fire, insect outbreak and harvest. Our objective in this review is to provide the reader with an overview of the history, motivation and applications, including theoretical applications, of these models. In a time of concern over global changes, gap models are essential tools to understand forest responses to climate change, modified disturbance regimes and other change agents. Development of forest surveys to provide the starting points for simulations and better estimates of the behavior of the diversity of tree species in response to the environment are continuing needs for improvement for these and other IBMs.

  2. Forecasting Urban Forest Ecosystem Structure, Function, and Vulnerability

    NASA Astrophysics Data System (ADS)

    Steenberg, James W. N.; Millward, Andrew A.; Nowak, David J.; Robinson, Pamela J.; Ellis, Alexis

    2017-03-01

    The benefits derived from urban forest ecosystems are garnering increasing attention in ecological research and municipal planning. However, because of their location in heterogeneous and highly-altered urban landscapes, urban forests are vulnerable and commonly suffer disproportionate and varying levels of stress and disturbance. The objective of this study is to assess and analyze the spatial and temporal changes, and potential vulnerability, of the urban forest resource in Toronto, Canada. This research was conducted using a spatially-explicit, indicator-based assessment of vulnerability and i-Tree Forecast modeling of temporal changes in forest structure and function. Nine scenarios were simulated for 45 years and model output was analyzed at the ecosystem and municipal scale. Substantial mismatches in ecological processes between spatial scales were found, which can translate into unanticipated loss of function and social inequities if not accounted for in planning and management. At the municipal scale, the effects of Asian longhorned beetle and ice storm disturbance were far less influential on structure and function than changes in management actions. The strategic goals of removing invasive species and increasing tree planting resulted in a decline in carbon storage and leaf biomass. Introducing vulnerability parameters in the modeling increased the spatial heterogeneity in structure and function while expanding the disparities of resident access to ecosystem services. There was often a variable and uncertain relationship between vulnerability and ecosystem structure and function. Vulnerability assessment and analysis can provide strategic planning initiatives with valuable insight into the processes of structural and functional change resulting from management intervention.

  3. Forecasting Urban Forest Ecosystem Structure, Function, and Vulnerability.

    PubMed

    Steenberg, James W N; Millward, Andrew A; Nowak, David J; Robinson, Pamela J; Ellis, Alexis

    2017-03-01

    The benefits derived from urban forest ecosystems are garnering increasing attention in ecological research and municipal planning. However, because of their location in heterogeneous and highly-altered urban landscapes, urban forests are vulnerable and commonly suffer disproportionate and varying levels of stress and disturbance. The objective of this study is to assess and analyze the spatial and temporal changes, and potential vulnerability, of the urban forest resource in Toronto, Canada. This research was conducted using a spatially-explicit, indicator-based assessment of vulnerability and i-Tree Forecast modeling of temporal changes in forest structure and function. Nine scenarios were simulated for 45 years and model output was analyzed at the ecosystem and municipal scale. Substantial mismatches in ecological processes between spatial scales were found, which can translate into unanticipated loss of function and social inequities if not accounted for in planning and management. At the municipal scale, the effects of Asian longhorned beetle and ice storm disturbance were far less influential on structure and function than changes in management actions. The strategic goals of removing invasive species and increasing tree planting resulted in a decline in carbon storage and leaf biomass. Introducing vulnerability parameters in the modeling increased the spatial heterogeneity in structure and function while expanding the disparities of resident access to ecosystem services. There was often a variable and uncertain relationship between vulnerability and ecosystem structure and function. Vulnerability assessment and analysis can provide strategic planning initiatives with valuable insight into the processes of structural and functional change resulting from management intervention.

  4. Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China’s forest ecosystems

    Treesearch

    Wei Ren; Hanqin Tian; Bo Tao; Art Chappelka; Ge Sun; et al

    2011-01-01

    Aim We investigated how ozone pollution and climate change/variability have interactively affected net primary productivity (NPP) and net carbon exchange (NCE) across China’s forest ecosystem in the past half century. Location Continental China. Methods Using the dynamic land ecosystem model (DLEM) in conjunction with 10-km-resolution gridded historical data sets (...

  5. Chapter 8: Simulating mortality from forest insects and diseases

    Treesearch

    Alan A. Ager; Jane L. Hayes; Craig L. Schmitt

    2004-01-01

    We describe methods for incorporating the effects of insects and diseases on coniferous forests into forest simulation models and discuss options for including this capability in the modeling work of the Interior Northwest Landscape Analysis System (INLAS) project. Insects and diseases are major disturbance agents in forested ecosystems in the Western United States,...

  6. The role of a peri-urban forest on air quality improvement in the Mexico City megalopolis.

    PubMed

    Baumgardner, Darrel; Varela, Sebastian; Escobedo, Francisco J; Chacalo, Alicia; Ochoa, Carlos

    2012-04-01

    Air quality improvement by a forested, peri-urban national park was quantified by combining the Urban Forest Effects (UFORE) and the Weather Research and Forecasting coupled with Chemistry (WRF-Chem) models. We estimated the ecosystem-level annual pollution removal function of the park's trees, shrub and grasses using pollution concentration data for carbon monoxide (CO), ozone (O(3)), and particulate matter less than 10 microns in diameter (PM(10)), modeled meteorological and pollution variables, and measured forest structure data. Ecosystem-level O(3) and CO removal and formation were also analyzed for a representative month. Total annual air quality improvement of the park's vegetation was approximately 0.02% for CO, 1% for O(3,) and 2% for PM(10), of the annual concentrations for these three pollutants. Results can be used to understand the air quality regulation ecosystem services of peri-urban forests and regional dynamics of air pollution emissions from major urban areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Ecosystem services capacity across heterogeneous forest types: understanding the interactions and suggesting pathways for sustaining multiple ecosystem services.

    PubMed

    Alamgir, Mohammed; Turton, Stephen M; Macgregor, Colin J; Pert, Petina L

    2016-10-01

    As ecosystem services supply from tropical forests is declining due to deforestation and forest degradation, much effort is essential to sustain ecosystem services supply from tropical forested landscapes, because tropical forests provide the largest flow of multiple ecosystem services among the terrestrial ecosystems. In order to sustain multiple ecosystem services, understanding ecosystem services capacity across heterogeneous forest types and identifying certain ecosystem services that could be managed to leverage positive effects across the wider bundle of ecosystem services are required. We sampled three forest types, tropical rainforests, sclerophyll forests, and rehabilitated plantation forests, over an area of 32,000m(2) from Wet Tropics bioregion, Australia, aiming to compare supply and evaluate interactions and patterns of eight ecosystem services (global climate regulation, air quality regulation, erosion regulation, nutrient regulation, cyclone protection, habitat provision, energy provision, and timber provision). On average, multiple ecosystem services were highest in the rainforests, lowest in sclerophyll forests, and intermediate in rehabilitated plantation forests. However, a wide variation was apparent among the plots across the three forest types. Global climate regulation service had a synergistic impact on the supply of multiple ecosystem services, while nutrient regulation service was found to have a trade-off impact. Considering multiple ecosystem services, most of the rehabilitated plantation forest plots shared the same ordination space with rainforest plots in the ordination analysis, indicating that rehabilitated plantation forests may supply certain ecosystem services nearly equivalent to rainforests. Two synergy groups and one trade-off group were identified. Apart from conserving rainforests and sclerophyll forests, our findings suggest two additional integrated pathways to sustain the supply of multiple ecosystem services from a heterogeneous tropical forest landscape: (i) rehabilitation of degraded forests aiming to provide global climate regulation and habitat provision ecosystem services and (ii) management intervention to sustain global climate regulation and habitat provision ecosystem services. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change.

    PubMed

    Levine, Naomi M; Zhang, Ke; Longo, Marcos; Baccini, Alessandro; Phillips, Oliver L; Lewis, Simon L; Alvarez-Dávila, Esteban; Segalin de Andrade, Ana Cristina; Brienen, Roel J W; Erwin, Terry L; Feldpausch, Ted R; Monteagudo Mendoza, Abel Lorenzo; Nuñez Vargas, Percy; Prieto, Adriana; Silva-Espejo, Javier Eduardo; Malhi, Yadvinder; Moorcroft, Paul R

    2016-01-19

    Amazon forests, which store ∼ 50% of tropical forest carbon and play a vital role in global water, energy, and carbon cycling, are predicted to experience both longer and more intense dry seasons by the end of the 21st century. However, the climate sensitivity of this ecosystem remains uncertain: several studies have predicted large-scale die-back of the Amazon, whereas several more recent studies predict that the biome will remain largely intact. Combining remote-sensing and ground-based observations with a size- and age-structured terrestrial ecosystem model, we explore the sensitivity and ecological resilience of these forests to changes in climate. We demonstrate that water stress operating at the scale of individual plants, combined with spatial variation in soil texture, explains observed patterns of variation in ecosystem biomass, composition, and dynamics across the region, and strongly influences the ecosystem's resilience to changes in dry season length. Specifically, our analysis suggests that in contrast to existing predictions of either stability or catastrophic biomass loss, the Amazon forest's response to a drying regional climate is likely to be an immediate, graded, heterogeneous transition from high-biomass moist forests to transitional dry forests and woody savannah-like states. Fire, logging, and other anthropogenic disturbances may, however, exacerbate these climate change-induced ecosystem transitions.

  9. Revision and application of the LINKAGES model to simulate forest growth in central hardwood landscapes in response to climate change

    Treesearch

    William D. Dijak; Brice B. Hanberry; Jacob S. Fraser; Hong S. He; Wen J. Wang; Frank R. Thompson

    2017-01-01

    Context. Global climate change impacts forest growth and methods of modeling those impacts at the landscape scale are needed to forecast future forest species composition change and abundance. Changes in forest landscapes will affect ecosystem processes and services such as succession and disturbance, wildlife habitat, and production of forest...

  10. Temporal carbon dynamics of forests in Washington, US: implications for ecological theory and carbon management

    Treesearch

    Crystal L. Raymond; Donald McKenzie

    2014-01-01

    We quantified carbon (C) dynamics of forests in Washington, US using theoretical models of C dynamics as a function of forest age. We fit empirical models to chronosequences of forest inventory data at two scales: a coarse-scale ecosystem classification (ecosections) and forest types (potential vegetation) within ecosections. We hypothesized that analysis at the finer...

  11. NASA 1990 Multisensor Airborne Campaigns (MACs) for ecosystem and watershed studies

    NASA Technical Reports Server (NTRS)

    Wickland, Diane E.; Asrar, Ghassem; Murphy, Robert E.

    1991-01-01

    The Multisensor Airborne Campaign (MAC) focus within NASA's former Land Processes research program was conceived to achieve the following objectives: to acquire relatively complete, multisensor data sets for well-studied field sites, to add a strong remote sensing science component to ecology-, hydrology-, and geology-oriented field projects, to create a research environment that promotes strong interactions among scientists within the program, and to more efficiently utilize and compete for the NASA fleet of remote sensing aircraft. Four new MAC's were conducted in 1990: the Oregon Transect Ecosystem Research (OTTER) project along an east-west transect through central Oregon, the Forest Ecosystem Dynamics (FED) project at the Northern Experimental Forest in Howland, Maine, the MACHYDRO project in the Mahantango Creek watershed in central Pennsylvania, and the Walnut Gulch project near Tombstone, Arizona. The OTTER project is testing a model that estimates the major fluxes of carbon, nitrogen, and water through temperate coniferous forest ecosystems. The focus in the project is on short time-scale (days-year) variations in ecosystem function. The FED project is concerned with modeling vegetation changes of forest ecosystems using remotely sensed observations to extract biophysical properties of forest canopies. The focus in this project is on long time-scale (decades to millenia) changes in ecosystem structure. The MACHYDRO project is studying the role of soil moisture and its regulating effects on hydrologic processes. The focus of the study is to delineate soil moisture differences within a basin and their changes with respect to evapotranspiration, rainfall, and streamflow. The Walnut Gulch project is focused on the effects of soil moisture in the energy and water balance of arid and semiarid ecosystems and their feedbacks to the atmosphere via thermal forcing.

  12. Criterion 3: Maintenance of forest ecosystem health and vitality

    Treesearch

    Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield

    2012-01-01

    Forest ecosystem health depends on stable forest composition and structure and on sustainable ecosystem processes. Forest disturbances that push an ecosystem beyond the range of conditions considered normal can upset the balance among processes, exacerbate forest health problems, and increase mortality beyond historical norms. Sometimes forest ecosystems respond to...

  13. Temporal dynamics of phosphorus during aquatic and terrestrial litter decomposition in an alpine forest.

    PubMed

    Peng, Yan; Yang, Wanqin; Yue, Kai; Tan, Bo; Huang, Chunping; Xu, Zhenfeng; Ni, Xiangyin; Zhang, Li; Wu, Fuzhong

    2018-06-17

    Plant litter decomposition in forested soil and watershed is an important source of phosphorus (P) for plants in forest ecosystems. Understanding P dynamics during litter decomposition in forested aquatic and terrestrial ecosystems will be of great importance for better understanding nutrient cycling across forest landscape. However, despite massive studies addressing litter decomposition have been carried out, generalizations across aquatic and terrestrial ecosystems regarding the temporal dynamics of P loss during litter decomposition remain elusive. We conducted a two-year field experiment using litterbag method in both aquatic (streams and riparian zones) and terrestrial (forest floors) ecosystems in an alpine forest on the eastern Tibetan Plateau. By using multigroup comparisons of structural equation modeling (SEM) method with different litter mass-loss intervals, we explicitly assessed the direct and indirect effects of several biotic and abiotic drivers on P loss across different decomposition stages. The results suggested that (1) P concentration in decomposing litter showed similar patterns of early increase and later decrease across different species and ecosystems types; (2) P loss shared a common hierarchy of drivers across different ecosystems types, with litter chemical dynamics mainly having direct effects but environment and initial litter quality having both direct and indirect effects; (3) when assessing at the temporal scale, the effects of initial litter quality appeared to increase in late decomposition stages, while litter chemical dynamics showed consistent significant effects almost in all decomposition stages across aquatic and terrestrial ecosystems; (4) microbial diversity showed significant effects on P loss, but its effects were lower compared with other drivers. Our results highlight the importance of including spatiotemporal variations and indicate the possibility of integrating aquatic and terrestrial decomposition into a common framework for future construction of models that account for the temporal dynamics of P in decomposing litter. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Climate-based models for pulsed resources improve predictability of consumer population dynamics: outbreaks of house mice in forest ecosystems.

    PubMed

    Holland, E Penelope; James, Alex; Ruscoe, Wendy A; Pech, Roger P; Byrom, Andrea E

    2015-01-01

    Accurate predictions of the timing and magnitude of consumer responses to episodic seeding events (masts) are important for understanding ecosystem dynamics and for managing outbreaks of invasive species generated by masts. While models relating consumer populations to resource fluctuations have been developed successfully for a range of natural and modified ecosystems, a critical gap that needs addressing is better prediction of resource pulses. A recent model used change in summer temperature from one year to the next (ΔT) for predicting masts for forest and grassland plants in New Zealand. We extend this climate-based method in the framework of a model for consumer-resource dynamics to predict invasive house mouse (Mus musculus) outbreaks in forest ecosystems. Compared with previous mast models based on absolute temperature, the ΔT method for predicting masts resulted in an improved model for mouse population dynamics. There was also a threshold effect of ΔT on the likelihood of an outbreak occurring. The improved climate-based method for predicting resource pulses and consumer responses provides a straightforward rule of thumb for determining, with one year's advance warning, whether management intervention might be required in invaded ecosystems. The approach could be applied to consumer-resource systems worldwide where climatic variables are used to model the size and duration of resource pulses, and may have particular relevance for ecosystems where global change scenarios predict increased variability in climatic events.

  15. Leaf ontogeny and demography explain photosynthetic seasonality in Amazon evergreen forests

    NASA Astrophysics Data System (ADS)

    Wu, J.; Albert, L.; Lopes, A. P.; Restrepo-Coupe, N.; Hayek, M.; Wiedemann, K. T.; Guan, K.; Stark, S. C.; Prohaska, N.; Tavares, J. V.; Marostica, S. F.; Kobayashi, H.; Ferreira, M. L.; Campos, K.; Silva, R. D.; Brando, P. M.; Dye, D. G.; Huxman, T. E.; Huete, A. R.; Nelson, B. W.; Saleska, S. R.

    2015-12-01

    Photosynthetic seasonality couples the evolutionary ecology of plant leaves to large-scale rhythms of carbon and water exchanges that are important feedbacks to climate. However, the extent, magnitude, and controls on photosynthetic seasonality of carbon-rich tropical forests are poorly resolved, controversial in the remote sensing literature, and inadequately represented in most earth system models. Here we show that ecosystem-scale phenology (measured by photosynthetic capacity), rather than environmental seasonality, is the primary driver of photosynthetic seasonality at four Amazon evergreen forests spanning gradients in rainfall seasonality, forest composition, and flux seasonality. We further demonstrate that leaf ontogeny and demography explain most of this ecosystem phenology at two central Amazon evergreen forests, using a simple leaf-cohort canopy model that integrates eddy covariance-derived CO2 fluxes, novel near-surface camera-detected leaf phenology, and ground observations of litterfall and leaf physiology. The coordination of new leaf growth and old leaf divestment (litterfall) during the dry season shifts canopy composition towards younger leaves with higher photosynthetic efficiency, driving large seasonal increases (~27%) in ecosystem photosynthetic capacity. Leaf ontogeny and demography thus reconciles disparate observations of forest seasonality from leaves to eddy flux towers to satellites. Strategic incorporation of such whole-plant coordination processes as phenology and ontogeny will improve ecological, evolutionary and earth system theories describing tropical forests structure and function, allowing more accurate representation of forest dynamics and feedbacks to climate in earth system models.

  16. Climate changes impact the surface albedo of a forest ecosystem based on MODIS satellite data

    NASA Astrophysics Data System (ADS)

    Zoran, M. A.; Nemuc, A. V.

    2007-10-01

    Surface albedo is one of the most important biophysical parameter responsible for energy balance control and the surface temperature and boundary-layer structure of the atmosphere. Forest land surface albedo is also highly variable temporally showing both diurnal as well as seasonal variations. In forest systems, albedo controls the microclimate conditions which affects ecosystem physical, physiological, and biogeochemical processes such as energy balance, evapotranspiration, photosynthesis. Due to anthropogenic and natural factors, land cover and land use changes result is the land surfaces albedo change. The main aim of this paper is to investigate the albedo patterns due to the impact of atmospheric pollution and climate variations of a forest ecosystem Branesti-Cernica, placed to the North-East of Bucharest city, Romania based on satellite Landsat ETM+, IKONOS and MODIS data and climate station observations. Our study focuses on 3 years of data (2003-2005), each of which had a different climatic regime. As the physical climate system is very sensitive to surface albedo, forest ecosystems could significantly feedback to the projected climate change modeling scenarios through albedo changes. The results of this research have a number of applications in weather forecasting, climate change, and forest ecosystem studies.

  17. Leveraging 35 years of Pinus taeda research in the southeastern US to constrain forest carbon cycle predictions: regional data assimilation using ecosystem experiments

    Treesearch

    R. Quinn Thomas; Evan B. Brooks; Annika L. Jersild; Eric J. Ward; Randolph H. Wynne; Timothy J. Albaugh; Heather Dinon-Aldridge; Harold E. Burkhart; Jean-Christophe Domec; Timothy R. Fox; Carlos A. Gonzalez-Benecke; Timothy A. Martin; Asko Noormets; David A. Sampson; Robert O. Teskey

    2017-01-01

    Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model–data fusion, allows the use of...

  18. [Detecting the moisture content of forest surface soil based on the microwave remote sensing technology.

    PubMed

    Li, Ming Ze; Gao, Yuan Ke; Di, Xue Ying; Fan, Wen Yi

    2016-03-01

    The moisture content of forest surface soil is an important parameter in forest ecosystems. It is practically significant for forest ecosystem related research to use microwave remote sensing technology for rapid and accurate estimation of the moisture content of forest surface soil. With the aid of TDR-300 soil moisture content measuring instrument, the moisture contents of forest surface soils of 120 sample plots at Tahe Forestry Bureau of Daxing'anling region in Heilongjiang Province were measured. Taking the moisture content of forest surface soil as the dependent variable and the polarization decomposition parameters of C band Quad-pol SAR data as independent variables, two types of quantitative estimation models (multilinear regression model and BP-neural network model) for predicting moisture content of forest surface soils were developed. The spatial distribution of moisture content of forest surface soil on the regional scale was then derived with model inversion. Results showed that the model precision was 86.0% and 89.4% with RMSE of 3.0% and 2.7% for the multilinear regression model and the BP-neural network model, respectively. It indicated that the BP-neural network model had a better performance than the multilinear regression model in quantitative estimation of the moisture content of forest surface soil. The spatial distribution of forest surface soil moisture content in the study area was then obtained by using the BP neural network model simulation with the Quad-pol SAR data.

  19. Scaling approach of terrestrial carbon cycle over Alaska's black spruce forests: a synthesis of field observation, remote sensing, and ecosystem modeling

    NASA Astrophysics Data System (ADS)

    Ueyama, M.; Date, T.; Harazono, Y.; Ichii, K.

    2007-12-01

    Spatio-temporal scale up of the eddy covariance data is an important challenge especially in the northern high latitude ecosystems, since continuous ground observations are rarely conducted. In this study, we measured the carbon fluxes at a black spruce forest in interior Alaska, and then scale up the eddy covariance data to spatio- temporal variations in regional carbon budget by using satellite remote sensing data and a process based ecosystem model, Biome-BGC. At point scale, both satellite-based empirical model and Biome-BGC could reproduce seasonal and interannual variations in GPP/RE/NEE. The magnitude of GPP/RE is also consistent among the models. However, spatial patterns in GPP/RE are something different among the models; high productivity in low elevation area is estimated by the satellite-based model whereas insignificant relationship is simulated by Biome-BGC. Long- term satellite records, AVHRR and MODIS, show the gradual decline of NDVI in Alaska's black spruce forests between 1981 and 2006, resulting in a general trend of decreasing GPP/RE for Alaska's black spruce forests. These trends are consistent with the Biome-BGC simulation. The trend of carbon budget is also consistent among the models, where the carbon budget of black spruce forests did not significantly change in the period. The simulated results suggest that the carbon fluxes in black spruce forests could be more sensitive to water availability than air temperature.

  20. Landscape Level Carbon and Water Balances and Agricultural Production in Mountainous Terrain of the Haean Basin, South Korea

    NASA Astrophysics Data System (ADS)

    Lee, B.; Geyer, R.; Seo, B.; Lindner, S.; Walther, G.; Tenhunen, J. D.

    2009-12-01

    The process-based spatial simulation model PIXGRO was used to estimate gross primary production, ecosystem respiration, net ecosystem CO2 exchange and water use by forest and crop fields of Haean Basin, South Korea at landscape scale. Simulations are run for individual years from early spring to late fall, providing estimates for dry land crops and rice paddies with respect to carbon gain, biomass and leaf area development, allocation of photoproducts to the belowground ecosystem compartment, and harvest yields. In the case of deciduous oak forests, gas exchange is estimated, but spatial simulation of growth over the single annual cycles is not included. Spatial parameterization of the model is derived for forest LAI based on remote sensing, for forest and cropland fluxes via eddy covariance and chamber studies, for soil characteristics by generalization from spatial surveys, for climate drivers by generalizing observations at ca. 20 monitoring stations distributed throughout the basin and along the elevation gradient from 500 to 1000 m, and for incident radiation via modelling of the radiation components in complex terrain. Validation of the model is being carried out at point scale based on comparison of model output at selected locations with observations as well as with known trends in ecosystem response documented in the literature. The resulting modelling tool is useful for estimation of ecosystem services at landscape scale, first expressed as kg ha-1 crop yield, but via future cooperative studies also in terms of monetary gain to individual farms and farming cooperatives applying particular management strategies.

  1. A sensor fusion field experiment in forest ecosystem dynamics

    NASA Technical Reports Server (NTRS)

    Smith, James A.; Ranson, K. Jon; Williams, Darrel L.; Levine, Elissa R.; Goltz, Stewart M.

    1990-01-01

    The background of the Forest Ecosystem Dynamics field campaign is presented, a progress report on the analysis of the collected data and related modeling activities is provided, and plans for future experiments at different points in the phenological cycle are outlined. The ecological overview of the study site is presented, and attention is focused on forest stands, needles, and atmospheric measurements. Sensor deployment and thermal and microwave observations are discussed, along with two examples of the optical radiation measurements obtained during the experiment in support of radiative transfer modeling. Future activities pertaining to an archival system, synthetic aperture radar, carbon acquisition modeling, and upcoming field experiments are considered.

  2. Forest forming process and dynamic vegetation models under global change

    Treesearch

    A. Shvidenko; E. Gustafson

    2009-01-01

    The paper analyzes mathematical models that are used to project the dynamics of forest ecosystems on different spatial and temporal scales. Landscape disturbance and succession models (LDSMs) are of a particular interest for studying the forest forming process in Northern Eurasia. They have a solid empirical background and are able to model ecological processes under...

  3. A dendrochronological analysis of a disturbance-succession model for oak-pine forests of the Appalachian Mountains, USA

    Treesearch

    Patrick H. Brose; Thomas A. Waldrop

    2010-01-01

    Disturbance-succession models describe the relationship between the disturbance regime and the dominant tree species of a forest type. Such models are useful tools in ecosystem management and restoration, provided they are accurate. We tested a disturbance-succession model for the oak-pine (Quercus spp. - Pinus spp.) forests of the...

  4. Predictive model for sustaining biodiversity in tropical countryside

    PubMed Central

    Mendenhall, Chase D.; Sekercioglu, Cagan H.; Brenes, Federico Oviedo; Ehrlich, Paul R.; Daily, Gretchen C.

    2011-01-01

    Growing demand for food, fuel, and fiber is driving the intensification and expansion of agricultural land through a corresponding displacement of native woodland, savanna, and shrubland. In the wake of this displacement, it is clear that farmland can support biodiversity through preservation of important ecosystem elements at a fine scale. However, how much biodiversity can be sustained and with what tradeoffs for production are open questions. Using a well-studied tropical ecosystem in Costa Rica, we develop an empirically based model for quantifying the “wildlife-friendliness” of farmland for native birds. Some 80% of the 166 mist-netted species depend on fine-scale countryside forest elements (≤60-m-wide clusters of trees, typically of variable length and width) that weave through farmland along hilltops, valleys, rivers, roads, and property borders. Our model predicts with ∼75% accuracy the bird community composition of any part of the landscape. We find conservation value in small (≤20 m wide) clusters of trees and somewhat larger (≤60 m wide) forest remnants to provide substantial support for biodiversity beyond the borders of tropical forest reserves. Within the study area, forest elements on farms nearly double the effective size of the local forest reserve, providing seminatural habitats for bird species typically associated with the forest. Our findings provide a basis for estimating and sustaining biodiversity in farming systems through managing fine-scale ecosystem elements and, more broadly, informing ecosystem service analyses, biodiversity action plans, and regional land use strategies. PMID:21911396

  5. Predictive model for sustaining biodiversity in tropical countryside.

    PubMed

    Mendenhall, Chase D; Sekercioglu, Cagan H; Brenes, Federico Oviedo; Ehrlich, Paul R; Daily, Gretchen C

    2011-09-27

    Growing demand for food, fuel, and fiber is driving the intensification and expansion of agricultural land through a corresponding displacement of native woodland, savanna, and shrubland. In the wake of this displacement, it is clear that farmland can support biodiversity through preservation of important ecosystem elements at a fine scale. However, how much biodiversity can be sustained and with what tradeoffs for production are open questions. Using a well-studied tropical ecosystem in Costa Rica, we develop an empirically based model for quantifying the "wildlife-friendliness" of farmland for native birds. Some 80% of the 166 mist-netted species depend on fine-scale countryside forest elements (≤ 60-m-wide clusters of trees, typically of variable length and width) that weave through farmland along hilltops, valleys, rivers, roads, and property borders. Our model predicts with ∼75% accuracy the bird community composition of any part of the landscape. We find conservation value in small (≤ 20 m wide) clusters of trees and somewhat larger (≤ 60 m wide) forest remnants to provide substantial support for biodiversity beyond the borders of tropical forest reserves. Within the study area, forest elements on farms nearly double the effective size of the local forest reserve, providing seminatural habitats for bird species typically associated with the forest. Our findings provide a basis for estimating and sustaining biodiversity in farming systems through managing fine-scale ecosystem elements and, more broadly, informing ecosystem service analyses, biodiversity action plans, and regional land use strategies.

  6. An integrated eco-hydrologic modeling framework for assessing the effects of interacting stressors on forest ecosystem services

    EPA Science Inventory

    The U.S. Environmental Protection Agency recently established the Ecosystem Services Research Program to help formulate methods and models for conducting comprehensive risk assessments that quantify how multiple ecosystem services interact and respond in concert to environmental ...

  7. Estimating the ecology of extinct species with paleoecological data assimilation

    NASA Astrophysics Data System (ADS)

    Raiho, A.; McLachlan, J. S.; Dietze, M.

    2017-12-01

    In order to understand long term, unobservable ecosystem processes, ecologists must use both paleoecoloigcal data and ecosystem models. Models parameterize species competitive interactions using modern data. But, modern ecological or physiological observations are not available for extinct species, making it difficult for models to conceptualize their ecology. For instance, American chestnut (Castanea dentata), who played a large role in forests of northeastern US, was decimated by disease to virtual extinction. Since chestnut's demise, defining its ecology has been controversial. Models typically assume that chestnut's ecology was very similar to oak; They parameterize chestnut like oak species. These assumptions are drawn from paleoecological data, but these data are often reported without uncertainty. Since the paleoecological data are often reported without uncertainty, paleoecological data has never been directly incorporated with ecosystem models. We developed a Bayesian statistical model to estimate fractional composition from paleoecological data with uncertainty. Then, we assimilated this data product into an ecosystem model for long term forest succession using a generalized ensemble adjustment filter to determine which species demographic parameters lead to changes in species composition over the last 2,000 years at Harvard Forest. We found that chestnut was strongly negatively correlated with white pine (Pinus strobus) and red oak (Quercus rubra) in the process covariance matrix, suggesting a strong competitive interaction that is not currently understood by models for forest succession. These findings provide support for utilizing a data assimilation framework to ecologically interpret paleoecological data or data products to learn about the ecology of extinct species.

  8. Mapping leaf nitrogen and carbon concentrations of intact and fragmented indigenous forest ecosystems using empirical modeling techniques and WorldView-2 data

    NASA Astrophysics Data System (ADS)

    Omer, Galal; Mutanga, Onisimo; Abdel-Rahman, Elfatih M.; Peerbhay, Kabir; Adam, Elhadi

    2017-09-01

    Forest nitrogen (N) and carbon (C) are among the most important biochemical components of tree organic matter, and the estimation of their concentrations can help to monitor the nutrient uptake processes and health of forest trees. Traditionally, these tree biochemical components are estimated using costly, labour intensive, time-consuming and subjective analytical protocols. The use of very high spatial resolution multispectral data and advanced machine learning regression algorithms such as support vector machines (SVM) and artificial neural networks (ANN) provide an opportunity to accurately estimate foliar N and C concentrations over intact and fragmented forest ecosystems. In the present study, the utility of spectral vegetation indices calculated from WorldView-2 (WV-2) imagery for mapping leaf N and C concentrations of fragmented and intact indigenous forest ecosystems was explored. We collected leaf samples from six tree species in the fragmented as well as intact Dukuduku indigenous forest ecosystems. Leaf samples (n = 85 for each of the fragmented and intact forests) were subjected to chemical analysis for estimating the concentrations of N and C. We used 70% of samples for training our models and 30% for validating the accuracy of our predictive empirical models. The study showed that the N concentration was significantly higher (p = 0.03) in the intact forests than in the fragmented forest. There was no significant difference (p = 0.55) in the C concentration between the intact and fragmented forest strata. The results further showed that the foliar N and C concentrations could be more accurately estimated using the fragmented stratum data compared with the intact stratum data. Further, SVM achieved relatively more accurate N (maximum R2 Val = 0.78 and minimum RMSEVal = 1.07% of the mean) and C (maximum R2 Val = 0.67 and minimum RMSEVal = 1.64% of the mean) estimates compared with ANN (maximum R2Val = 0.70 for N and 0.51 for C and minimum RMSEVal = 5.40% of the mean for N and 2.21% of the mean for C). Overall, SVM regressions achieved more accurate models for estimating forest foliar N and C concentrations in the fragmented and intact indigenous forests compared to the ANN regression method. It is concluded that the successful application of the WV-2 data integrated with SVM can provide an accurate framework for mapping the concentrations of biochemical elements in two indigenous forest ecosystems.

  9. Merging a mechanistic enzymatic model of soil heterotrophic respiration into an ecosystem model in two AmeriFlux sites of northeastern USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sihi, Debjani; Davidson, Eric A.; Chen, Min

    Heterotrophic respiration (Rh), microbial processing of soil organic matter to carbon dioxide (CO 2), is a major, yet highly uncertain, carbon (C) flux from terrestrial systems to the atmosphere. Temperature sensitivity of Rh is often represented with a simple Q 10 function in ecosystem models and earth system models (ESMs), sometimes accompanied by an empirical soil moisture modifier. More explicit representation of the effects of soil moisture, substrate supply, and their interactions with temperature has been proposed as a way to disentangle the confounding factors of apparent temperature sensitivity of Rh and improve the performance of ecosystem models and ESMs.more » The objective of this work was to insert into an ecosystem model a more mechanistic, but still parsimonious, model of environmental factors controlling Rh and evaluate the model performance in terms of soil and ecosystem respiration. The Dual Arrhenius and Michaelis-Menten (DAMM) model simulates Rh using Michaelis-Menten, Arrhenius, and diffusion functions. Soil moisture affects Rh and its apparent temperature sensitivity in DAMM by regulating the diffusion of oxygen, soluble C substrates, and extracellular enzymes to the enzymatic reaction site. Here, we merged the DAMM soil flux model with a parsimonious ecosystem flux model, FöBAAR (Forest Biomass, Assimilation, Allocation and Respiration). We used high-frequency soil flux data from automated soil chambers and landscape-scale ecosystem fluxes from eddy covariance towers at two AmeriFlux sites (Harvard Forest, MA and Howland Forest, ME) in the northeastern USA to estimate parameters, validate the merged model, and to quantify the uncertainties in a multiple constraints approach. The optimized DAMM-FöBAAR model better captured the seasonal and inter-annual dynamics of soil respiration (Soil R) compared to the FöBAAR-only model for the Harvard Forest, where higher frequency and duration of drying events significantly regulate substrate supply to heterotrophs. However, DAMM-FöBAAR showed improvement over FöBAAR-only at the boreal transition Howland Forest only in unusually dry years. The frequency of synoptic-scale dry periods is lower at Howland, resulting in only brief water limitation of Rh in some years. At both sites, the declining trend of soil R during drying events was captured by the DAMM-FöBAAR model; however, model performance was also contingent on site conditions, climate, and the temporal scale of interest. While the DAMM functions require a few more parameters than a simple Q10 function, we have demonstrated that they can be included in an ecosystem model and reduce the model-data mismatch. Moreover, the mechanistic structure of the soil moisture effects using DAMM functions should be more generalizable than the wide variety of empirical functions that are commonly used, and these DAMM functions could be readily incorporated into other ecosystem models and ESMs.« less

  10. Density-dependent vulnerability of forest ecosystems to drought

    Treesearch

    Alessandra Bottero; Anthony W. D' Amato; Brian J. Palik; John B. Bradford; Shawn Fraver; Mike A. Battaglia; Lance A. Asherin; Harald Bugmann

    2017-01-01

    Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary...

  11. Amazon forest structure generates diurnal and seasonal variability in light utilization

    Treesearch

    Douglas C. Morton; Jeremy Rubio; Bruce D. Cook; Jean-Philippe Gastellu-Etchegorry; Marcos Longo; Hyeungu Choi; Maria Hunter; Michael Keller

    2016-01-01

    The complex three-dimensional (3-D) structure of tropical forests generates a diversity of light environments for canopy and understory trees. Understanding diurnal and seasonal changes in light availability is critical for interpreting measurements of net ecosystem exchange and improving ecosystem models. Here, we used the Discrete Anisotropic Radiative Transfer (DART...

  12. Plant hydraulic diversity buffers forest ecosystem responses to drought

    NASA Astrophysics Data System (ADS)

    Anderegg, W.; Konings, A. G.; Trugman, A. T.; Pacala, S. W.; Yu, K.; Sulman, B. N.; Sperry, J.; Bowling, D. R.

    2017-12-01

    Drought impacts carbon, water, and energy cycles in forests and may pose a fundamental threat to forests in future climates. Plant hydraulic transport of water is central to tree drought responses, including curtailing of water loss and the risk of mortality during drought. The effect of biodiversity on ecosystem function has typically been examined in grasslands, yet the diversity of plant hydraulic strategies may influence forests' response to drought. In a combined analysis of eddy covariance measurements, remote-sensing data of plant water content variation, model simulations, and plant hydraulic trait data, we test the degree to which plant water stress schemes influence the carbon cycle and how hydraulic diversity within and across ecosystems affects large-scale drought responses. We find that current plant functional types are not well-suited to capture hydraulic variation and that higher hydraulic diversity buffers ecosystem variation during drought. Our results demonstrate that tree functional diversity, particularly hydraulic diversity, may be critical to simulate in plant functional types in current land surface model projections of future vegetation's response to climate extremes.

  13. Modeling forest C and N allocation responses to free-air CO2 enrichment

    NASA Astrophysics Data System (ADS)

    Luus, Kristina; De Kauwe, Martin; Walker, Anthony; Werner, Christian; Iversen, Colleen; McCarthy, Heather; Medlyn, Belinda; Norby, Richard; Oren, Ram; Zak, Donald; Zaehle, Sönke

    2015-04-01

    Vegetation allocation patterns and soil-vegetation partitioning of C and N are predicted to change in response to rising atmospheric concentrations of CO2. These allocation responses to rising CO2 have been examined at the ecosystem level through through free-air CO2 enrichment (FACE) experiments, and their global implications for the timing of progressive N limitation (PNL) and C sequestration have been predicted for ~100 years using a variety of ecosystem models. However, recent FACE model-data syntheses studies [1,2,3] have indicated that ecosystem models do not capture the 5-10 year site-level ecosystem allocation responses to elevated CO2. This may be due in part to the missing representation of the rhizosphere interactions between plants and soil biota in models. Ecosystem allocation of C and N is altered by interactions between soil and vegetation through the priming effect: as plant N availability diminishes, plants respond physiologically by altering their tissue allocation strategies so as to increase rates of root growth and rhizodeposition. In response, either soil organic material begins to accumulate, which hastens the onset of PNL, or soil microbes start to decompose C more rapidly, resulting in increased N availability for plant uptake, which delays PNL. In this study, a straightforward approach for representing rhizosphere interactions in ecosystem models was developed through which C and N allocation to roots and rhizodeposition responds dynamically to elevated CO2 conditions, modifying soil decomposition rates without pre-specification of the direction in which soil C and N accumulation should shift in response to elevated CO2. This approach was implemented in a variety of ecosystem models ranging from stand (G'DAY), to land surface (CLM 4.5, O-CN), to dynamic global vegetation (LPJ-GUESS) models. Comparisons against data from three forest FACE sites (Duke, Oak Ridge & Rhinelander) indicated that representing rhizosphere interactions allowed models to more reliably capture responses of ecosystem C and N allocation to free-air CO2 enrichment because they were able to simulate the priming effect. Insights were therefore gained into between-site differences observed in forest FACE experiments, and the underlying physiological and biogeochemical mechanisms determining ecosystem C and N allocation responses to elevated CO2. References 1. De Kauwe, M. G., et al. (2014), Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites, New Phytologist, 203, 883-899. 2. Walker, A. P., et al. (2014), Comprehensive ecosystem model-data synthesis using multiple data sets at two temperate forest free-air CO2 enrichment experiments: Model performance at ambient CO2 concentration, Journal of Geophysical Research: Biogeosciences, 119, 937-964. 3. Zaehle, S., et al. (2014), Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies, New Phytologist, 202 (3), 803-822.

  14. Carbon exchanges and their responses to temperature and precipitation in forest ecosystems in Yunnan, Southwest China.

    PubMed

    Fei, Xuehai; Song, Qinghai; Zhang, Yiping; Liu, Yuntong; Sha, Liqing; Yu, Guirui; Zhang, Leiming; Duan, Changqun; Deng, Yun; Wu, Chuansheng; Lu, Zhiyun; Luo, Kang; Chen, Aiguo; Xu, Kun; Liu, Weiwei; Huang, Hua; Jin, Yanqiang; Zhou, Ruiwu; Li, Jing; Lin, Youxing; Zhou, Liguo; Fu, Yane; Bai, Xiaolong; Tang, Xianhui; Gao, Jinbo; Zhou, Wenjun; Grace, John

    2018-03-01

    Forest ecosystems play an increasingly important role in the global carbon cycle. However, knowledge on carbon exchanges, their spatio-temporal patterns, and the extent of the key controls that affect carbon fluxes is lacking. In this study, we employed 29-site-years of eddy covariance data to observe the state, spatio-temporal variations and climate sensitivity of carbon fluxes (gross primary productivity (GPP), ecosystem respiration (R eco ), and net ecosystem carbon exchange (NEE)) in four representative forest ecosystems in Yunnan. We found that 1) all four forest ecosystems were carbon sinks (the average NEE was -3.40tCha -1 yr -1 ); 2) contrasting seasonality of the NEE among the ecosystems with a carbon sink mainly during the wet season in the Yuanjiang savanna ecosystem (YJ) but during the dry season in the Xishuangbanna tropical rainforest ecosystem (XSBN), besides an equivalent NEE uptake was observed during the wet/dry season in the Ailaoshan subtropical evergreen broad-leaved forest ecosystem (ALS) and Lijiang subalpine coniferous forest ecosystem (LJ); 3) as the GPP increased, the net ecosystem production (NEP) first increased and then decreased when the GPP>17.5tCha -1 yr -1 ; 4) the precipitation determines the carbon sinks in the savanna ecosystem (e.g., YJ), while temperature did so in the tropical forest ecosystem (e.g., XSBN); 5) overall, under the circumstances of warming and decreased precipitation, the carbon sink might decrease in the YJ but maybe increase in the ALS and LJ, while future strength of the sink in the XSBN is somewhat uncertain. However, based on the redundancy analysis, the temperature and precipitation combined together explained 39.7%, 32.2%, 25.3%, and 29.6% of the variations in the NEE in the YJ, XSBN, ALS and LJ, respectively, which indicates that considerable changes in the NEE could not be explained by variations in the temperature and precipitation. Therefore, the effects of other factors (e.g., CO 2 concentration, N/P deposition, aerosol and other variables) on the NEE still require extensive research and need to be considered seriously in carbon-cycle-models. Copyright © 2017. Published by Elsevier B.V.

  15. Incorporating an enzymatic model of effects of temperature, moisture, and substrate supply on soil respiration into an ecosystem model for two forests of northeastern USA

    NASA Astrophysics Data System (ADS)

    Sihi, Debjani; Davidson, Eric; Chen, Min; Savage, Kathleen; Richardson, Andrew; Keenan, Trevor; Hollinger, David

    2017-04-01

    Soils represent the largest terrestrial carbon (C) pool, and microbial decomposition of soil organic matter (SOM) to carbon dioxide, also called heterotrophic respiration (Rh), is an important component of the global C cycle. Temperature sensitivity of Rh is often represented with a simple Q10 function in ecosystem models and earth system models (ESMs), sometimes accompanied by an empirical soil moisture modifier. More explicit representation of the effects of soil moisture, substrate supply, and their interactions with temperature has been proposed to disentangle the confounding factors of apparent temperature sensitivity of SOM decomposition and improve performance of ecosystem models and ESMs. The objective of this work was to incorporate into an ecosystem model a more mechanistic, but still parsimonious, model of environmental factors controlling Rh. The Dual Arrhenius and Michaelis-Menten (DAMM) model simulates Rh using Michaelis-Menten, Arrhenius, and diffusion functions. Soil moisture affects Rh and its apparent temperature sensitivity in DAMM by regulating the diffusion of oxygen and soluble carbon substrates to the enzymatic reaction site. However, in its current configuration, DAMM depends on assumptions or inputs from other models regarding soil C inputs. Here we merged the DAMM soil flux model with a parsimonious ecosystem flux model, FöBAAR (Forest Biomass, Assimilation, Allocation and Respiration) by replacing FöBAAR's algorithms for Rh with those of DAMM. Classical root trenching experiments provided data to partition soil CO2 efflux into Rh (trenched plot) and root respiration (untrenched minus trenched plots). We used three years of high-frequency soil flux data from automated soil chambers (trenched and untrenched plots) and landscape-scale ecosystem fluxes from eddy covariance towers from two mid-latitude forests (Harvard Forest, MA and Howland Forest, ME) of northeastern USA to develop and validate the merged model and to quantify the uncertainties in a multiple constraints approach. The optimized DAMM-FöBAAR model better captured the seasonal dynamics of Rh compared to the FöBAAR-only model for the Harvard Forest, as indicated by lower cost functions (model-data mismatch). However, DAMM-FöBAAR showed less improvement over FöBAAR-only for the boreal transition forest at Howland. The frequency of droughts is lower at Howland, due to a shallow water table, resulting in only brief water limitation affecting Rh in some years. At both sites, the declining trend of soil respiration during drought episodes was captured by the DAMM-FöBAAR model, but not the FöBAAR-only model, which simulates Rh using only a Q10 type function. Greater confidence in model prediction resulting from the inclusion of mechanistic simulation of moisture limitation on substrate availability, an emergent property of DAMM, depends on site conditions, climate, and the temporal scale of interest. While the DAMM functions require a few more parameters than a simple Q10 function, we have demonstrated that they can be included in an ecosystem model and reduce the cost function. Moreover, the mechanistic structure of the soil moisture effects using DAMM functions should be more generalizable than other commonly used empirical functions.

  16. Combining fire and erosion modeling to target forest management activities

    Treesearch

    William J. Elliot; Mary Ellen Miller; Nic Enstice

    2015-01-01

    Forests deliver a number of important ecosystem services including clean water. When forests are disturbed by wildfire, the timing, quantity and quality of runoff are altered. A modeling study was carried out in a forested watershed in California to determine the risk of wildfire, and the potential post-fire sediment delivery from approximately 6-ha hillslope polygons...

  17. Targeting forest management through fire and erosion modeling

    Treesearch

    William J. Elliot; Mary Ellen Miller; Nic Enstice

    2016-01-01

    Forests deliver a number of important ecosystem services, including clean water. When forests are disturbed by wildfire, the timing, quantity and quality of runoff are altered. A modelling study was conducted in a forested watershed in California, USA, to determine the risk of wildfire, and the potential post-fire sediment delivery from ~4-ha hillslope polygons within...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munger, J. William; Foster, David R.; Richardson, Andrew D.

    This report summarizes work to improve quantitative understanding of the terrestrial ecosystem processes that control carbon sequestration in unmanaged forests It builds upon the comprehensive long-term observations of CO2 fluxes, climate and forest structure and function at the Harvard Forest in Petersham, MA. This record includes the longest CO2 flux time series in the world. The site is a keystone for the AmeriFlux network. Project Description The project synthesizes observations made at the Harvard Forest HFEMS and Hemlock towers, which represent the dominant mixed deciduous and coniferous forest types in the northeastern United States. The 20+ year record of carbonmore » uptake at Harvard Forest and the associated comprehensive meteorological and biometric data, comprise one of the best data sets to challenge ecosystem models on time scales spanning hourly, daily, monthly, interannual and multi-decadal intervals, as needed to understand ecosystem change and climate feedbacks.« less

  19. Model-experiment synthesis at two FACE sites in the southeastern US. Forest ecosystem responses to elevated CO[2]. (Invited)

    NASA Astrophysics Data System (ADS)

    Walker, A. P.; Zaehle, S.; De Kauwe, M. G.; Medlyn, B. E.; Dietze, M.; Hickler, T.; Iversen, C. M.; Jain, A. K.; Luo, Y.; McCarthy, H. R.; Parton, W. J.; Prentice, C.; Thornton, P. E.; Wang, S.; Wang, Y.; Warlind, D.; Warren, J.; Weng, E.; Hanson, P. J.; Oren, R.; Norby, R. J.

    2013-12-01

    Ecosystem observations from two long-term Free-Air CO[2] Enrichment (FACE) experiments (Duke forest and Oak Ridge forest) were used to evaluate the assumptions of 11 terrestrial ecosystem models and the consequences of those assumptions for the responses of ecosystem water, carbon (C) and nitrogen (N) fluxes to elevated CO[2] (eCO[2]). Nitrogen dynamics were the main constraint on simulated productivity responses to eCO[2]. At Oak Ridge some models reproduced the declining response of C and N fluxes, while at Duke none of the models were able to maintain the observed sustained responses. C and N cycles are coupled through a number of complex interactions, which causes uncertainty in model simulations in multiple ways. Nonetheless, the major difference between models and experiments was a larger than observed increase in N-use efficiency and lower than observed response of N uptake. The results indicate that at Duke there were mechanisms by which trees accessed additional N in response to eCO[2] that were not represented in the ecosystem models, and which did not operate with the same efficiency at Oak Ridge. Sequestration of the additional productivity under eCO[2] into forest biomass depended largely on C allocation. Allocation assumptions were classified into three main categories--fixed partitioning coefficients, functional relationships and a partial (leaf allocation only) optimisation. The assumption which best constrained model results was a functional relationship between leaf area and sapwood area (pipe-model) and increased root allocation when nitrogen or water were limiting. Both, productivity and allocation responses to eCO[2] determined the ecosystem-level response of LAI, which together with the response of stomatal conductance (and hence water-use efficiency; WUE) determined the ecosystem response of transpiration. Differences in the WUE response across models were related to the representation of the relationship of stomatal conductance to CO[2] and the relative importance of the combined boundary and aerodynamic resistances in the total resistance to leaf-atmosphere water transport.

  20. Development of lichen response indexes using a regional gradient modeling approach for large-scale monitoring of forests

    Treesearch

    Susan Will-Wolf; Peter Neitlich

    2010-01-01

    Development of a regional lichen gradient model from community data is a powerful tool to derive lichen indexes of response to environmental factors for large-scale and long-term monitoring of forest ecosystems. The Forest Inventory and Analysis (FIA) Program of the U.S. Department of Agriculture Forest Service includes lichens in its national inventory of forests of...

  1. FORCARB2: An updated version of the U.S. Forest Carbon Budget Model

    Treesearch

    Linda S. Heath; Michael C. Nichols; James E. Smith; John R. Mills

    2010-01-01

    FORCARB2, an updated version of the U.S. FORest CARBon Budget Model (FORCARB), produces estimates of carbon stocks and stock changes for forest ecosystems and forest products at 5-year intervals. FORCARB2 includes a new methodology for carbon in harvested wood products, updated initial inventory data, a revised algorithm for dead wood, and now includes public forest...

  2. Elevated CO2 induces changes in the ecohydrological functions of forests - from mechanisms to models

    NASA Astrophysics Data System (ADS)

    Pötzelsberger, Elisabeth; Warren, Jeffrey M.; Wullschleger, Stan D.; Thornton, Peter E.; Norby, Richard J.; Hasenauer, Hubert

    2010-05-01

    Forests are known to considerably influence ecosystem water balance as a result of the many dynamic interactions between the plant physiology, morphology, phenology and other biophysical properties and environmental conditions. A changing climate will exert a new environmental setting for the forests and the biological feedbacks will be considerable. With the mechanistic ecosystem model Biome-BGC the dense net of cause-response relationships among carbon, nitrogen, water and energy cycles at a free-air CO2 enrichment (FACE) site in a North American deciduous broadleaved forest can be represented. At the Oak Ridge National Laboratory (ORNL) closed canopy sweetgum plantation elevated CO2 caused a decrease in stomatal conductance, and concurrent changes in daily transpiration were observed. This is in agreement with data from other FACE experiments. At the ORNL FACE site average transpiration reduction in a growing season was 10-16%, with 7-16% during mid summer, depending on the year. After parameterization of the model for this ecosystem the observed transpiration patterns could be well represented. Most importantly, the complete water budget at the site could be described and increased outflow could be observed (~15%). This yields crucial information for broader scale future water budget simulations. Changes in the water balance of deciduous forests will affect a wide range of ecosystem functions, from decomposition, over carbon and nutrient cycling to plant-plant competition and species composition.

  3. An integrated eco-hydrologic modeling framework for assessing the effects of interacting stressors on forest ecosystem services - ESRP mtg

    EPA Science Inventory

    The U.S. Environmental Protection Agency recently established the Ecosystem Services Research Program to help formulate methods and models for conducting comprehensive risk assessments that quantify how multiple ecosystem services interact and respond in concert to environmental ...

  4. MODELING MINERAL NITROGEN EXPORT FROM A FOREST TERRESTRIAL ECOSYSTEM TO STREAMS

    EPA Science Inventory

    Terrestrial ecosystems are major sources of N pollution to aquatic ecosystems. Predicting N export to streams is a critical goal of non-point source modeling. This study was conducted to assess the effect of terrestrial N cycling on stream N export using long-term monitoring da...

  5. Carbon budget of tropical forests in Southeast Asia and the effects of deforestation: an approach using a process-based model and field measurements

    NASA Astrophysics Data System (ADS)

    Adachi, M.; Ito, A.; Ishida, A.; Kadir, W. R.; Ladpala, P.; Yamagata, Y.

    2011-03-01

    More reliable estimates of carbon (C) stock within forest ecosystems and C emission induced by deforestation are urgently needed to mitigate the effects of emissions on climate change. A process-based terrestrial biogeochemical model (VISIT) was applied to tropical primary forests of two types (a seasonal dry forest in Thailand and a rainforest in Malaysia) and one agro-forest (an oil palm plantation in Malaysia) to estimate the C budget of tropical ecosystems, including the impacts of land-use conversion, in Southeast Asia. Observations and VISIT model simulations indicated that the primary forests had high photosynthetic uptake: gross primary production was estimated at 31.5-35.5 t C ha-1 yr-1. In the VISIT model simulation, the rainforest had a higher total C stock (plant biomass and soil organic matter, 301.5 t C ha-1) than that in the seasonal dry forest (266.5 t C ha-1) in 2008. The VISIT model appropriately captured the impacts of disturbances such as deforestation and land-use conversions on the C budget. Results of sensitivity analysis implied that the ratio of remaining residual debris was a key parameter determining the soil C budget after deforestation events. The C stock of the oil palm plantation was about 46% of the rainforest's C at 30 yr following initiation of the plantation, when the ratio of remaining residual debris was assumed to be about 33%. These results show that adequate forest management is important for reducing C emission from soil and C budget of each ecosystem must be evaluated over a long term using both the model simulations and observations.

  6. Carbon Budget and its Dynamics over Northern Eurasia Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Shvidenko, Anatoly; Schepaschenko, Dmitry; Kraxner, Florian; Maksyutov, Shamil

    2016-04-01

    The presentation contains an overview of recent findings and results of assessment of carbon cycling of forest ecosystems of Northern Eurasia. From a methodological point of view, there is a clear tendency in understanding a need of a Full and Verified Carbon Account (FCA), i.e. in reliable assessment of uncertainties for all modules and all stages of FCA. FCA is considered as a fuzzy (underspecified) system that supposes a system integration of major methods of carbon cycling study (land-ecosystem approach, LEA; process-based models; eddy covariance; and inverse modelling). Landscape-ecosystem approach 1) serves for accumulation of all relevant knowledge of landscape and ecosystems; 2) for strict systems designing the account, 3) contains all relevant spatially distributed empirical and semi-empirical data and models, and 4) is presented in form of an Integrated Land Information System (ILIS). The ILIS includes a hybrid land cover in a spatially and temporarily explicit way and corresponding attributive databases. The forest mask is provided by utilizing multi-sensor remote sensing data, geographically weighed regression and validation within GEO-wiki platform. By-pixel parametrization of forest cover is based on a special optimization algorithms using all available knowledge and information sources (data of forest inventory and different surveys, observations in situ, official statistics of forest management etc.). Major carbon fluxes within the LEA (NPP, HR, disturbances etc.) are estimated based on fusion of empirical data and aggregations with process-based elements by sets of regionally distributed models. Uncertainties within LEA are assessed for each module and at each step of the account. Within method results of LEA and corresponding uncertainties are harmonized and mutually constrained with independent outputs received by other methods based on the Bayesian approach. The above methodology have been applied to carbon account of Russian forests for 2000-2012. It has been shown that the Net Ecosystem Carbon Budget (NECB) of Russian forests for this period was in range of 0.5-0.7 Pg C yr-1 with a slight negative trend during the period due to acceleration of disturbance regimes and negative impacts of weather extremes (heat waves etc.). Uncertainties of the FCA for individual years were estimated at about 25% (CI 0.9). It has been shown that some models (e.g. majority of DGVMs) do not describe some processes on permafrost satisfactory while results of applications of ensembles of inverse models on average are closed to empirical assessments. A most important conclusion from this experience is that future improvements of knowledge of carbon cycling of Northern Eurasia forests requires development of an integrated observing system as a unified information background, as well as systems methodological improvements of all methods of cognition of carbon cycling.

  7. Bottom-up assessment of the Net Ecosystem Carbon Balance of Russian forests in 2010 for comparison to Top-down estimates.

    NASA Astrophysics Data System (ADS)

    Maksyutov, S. S.; Shvidenko, A.; Shchepashchenko, D.

    2014-12-01

    The verified full carbon assessment of Russian forests (FCA) is based on an Integrated Land Information System (ILIS) that includes a multi-layer and multi-scale GIS with basic resolution of 1 km and corresponding attributive databases. The ILIS aggregates all available information about ecosystems and landscapes, sets of empirical and semi-empirical data and aggregations, data of different inventories and surveys, and multi-sensor remote sensing data. The ILIS serves as an information base for application of the landscape-ecosystem approach (LEA) of the FCA and as a systems design for comparison and mutual constraints with other methods of study of carbon cycling of forest ecosystems (eddy covariance; process models; inverse modeling; and multi-sensor application of remote sensing). The LEA is based on a complimentary use of the flux-based method with some elements of the pool-based method. Introduction of climatic parameters of individual years in the LEA, as well as some process-based elements, allows providing a substantial decrease of the uncertainties of carbon cycling yearly indicators of forest ecosystems. Major carbon pools (live biomass, coarse woody debris, soil organic carbon) are estimated based on data on areas, distribution and major biometric characteristics of Russian forests presented in form of the ILIS for the country. The major fluxes accounted for include Net Primary Production (NPP), Soil Heterotrophic Respiration (SHR), as well as fluxes caused by decomposition of Coarse Woody Debris (CWD), harvest and use of forest products, fluxes caused by natural disturbances (fire, insect outbreaks, impacts of unfavorable environment) and lateral fluxes to hydrosphere and lithosphere. Use of landscape-ecosystem approach resulted in the NECB at 573±140 Tg C yr-1 (CI 0.9). While the total carbon sink is high, large forest areas, particularly on permafrost, serve as a carbon source. The ratio between net primary production and soil heterotrophic respiration, together with natural and human-induced disturbances are major drivers of the magnitude and spatial distribution of the NECB of forest ecosystems. We also present comparison to the recent top-down estimates of the Siberian carbon sink.

  8. Measuring resilience and assessing vulnerability of terrestrial ecosystems to climate change in South America

    PubMed Central

    2018-01-01

    Climate change has been identified as the primary threat to the integrity and functioning of ecosystems in this century, although there is still much uncertainty about its effects and the degree of vulnerability for different ecosystems to this threat. Here we propose a new methodological approach capable of measuring and mapping the resilience of terrestrial ecosystems at large scales based on their climatic niche. To do this, we used high spatial resolution remote sensing data and ecological niche modeling techniques to calculate and spatialize the resilience of three stable states of ecosystems in South America: forest, savanna, and grassland. Also, we evaluated the sensitivity of ecosystems to climate stress, the likelihood of exposure to non-analogous climatic conditions, and their respective adaptive capacities in the face of climate change. Our results indicate that forests, the most productive and biodiverse terrestrial ecosystems on the earth, are more vulnerable to climate change than savannas or grasslands. Forests showed less resistance to climate stress and a higher chance of exposure to non-analogous climatic conditions. If this scenario occurs, the forest ecosystems would have less chance of adaptation compared to savannas or grasslands because of their narrow climate niche. Therefore, we can conclude that a possible consolidation of non-analogous climatic conditions would lead to a loss of resilience in the forest ecosystem, significantly increasing the chance of a critical transition event to another stable state with a lower density of vegetation cover (e.g., savanna or grassland). PMID:29554132

  9. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests

    USGS Publications Warehouse

    Wu, Jin; Albert, Lauren; Lopes, Aline; Restrepo-Coupe, Natalia; Hayek, Matthew; Wiedemann, Kenia T.; Guan, Kaiyu; Stark, Scott C.; Christoffersen, Bradley; Prohaska, Neill; Tavares, Julia V.; Marostica, Suelen; Kobayashi, Hideki; Ferreira, Maurocio L.; Campos, Kleber Silva; da Silva, Rodrigo; Brando, Paulo M.; Dye, Dennis G.; Huxman, Travis E.; Huete, Alfredo; Nelson, Bruce; Saleska, Scott

    2016-01-01

    In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.

  10. Successional dynamics drive tropical forest nutrient limitation

    NASA Astrophysics Data System (ADS)

    Chou, C.; Hedin, L. O. O.

    2017-12-01

    It is increasingly recognized that nutrients such as N and P may significantly constrain the land carbon sink. However, we currently lack a complete understanding of these nutrient cycles in forest ecosystems and how to incorporate them into Earth System Models. We have developed a framework of dynamic forest nutrient limitation, focusing on the role of secondary forest succession and canopy gap disturbances as bottlenecks of high plant nutrient demand and limitation. We used succession biomass data to parameterize a simple ecosystem model and examined the dynamics of nutrient limitation throughout tropical secondary forest succession. Due to the patterns of biomass recovery in secondary tropical forests, we found high nutrient demand from rapid biomass accumulation in the earliest years of succession. Depending on previous land use scenarios, soil nutrient availability may also be low in this time period. Coupled together, this is evidence that there may be high biomass nutrient limitation early in succession, which is partially met by abundant symbiotic nitrogen fixation from certain tree species. We predict a switch from nitrogen limitation in early succession to one of three conditions: (i) phosphorus only, (ii) phosphorus plus nitrogen, or (iii) phosphorus, nitrogen, plus light co-limitation. We will discuss the mechanisms that govern the exact trajectory of limitation as forests build biomass. In addition, we used our model to explore scenarios of tropical secondary forest impermanence and the impacts of these dynamics on ecosystem nutrient limitation. We found that secondary forest impermanence exacerbates nutrient limitation and the need for nitrogen fixation early in succession. Together, these results indicate that biomass recovery dynamics early in succession as well as their connection to nutrient demand and limitation are fundamental for understanding and modeling nutrient limitation of the tropical forest carbon sink.

  11. Seeing the future impacts of climate change and forest management: a landscape visualization system for forest managers

    Treesearch

    Eric J. Gustafson; Melissa Lucash; Johannes Liem; Helen Jenny; Rob Scheller; Kelly Barrett; Brian R. Sturtevant

    2016-01-01

    Forest managers are increasingly considering how climate change may alter forests' capacity to provide ecosystem goods and services. But identifying potential climate change effects on forests is difficult because interactions among forest growth and mortality, climate change, management, and disturbances are complex and uncertain. Although forest landscape models...

  12. Numerical modeling of watershed-scale radiocesium transport coupled with biogeochemical cycling in forests

    NASA Astrophysics Data System (ADS)

    Mori, K.; Tada, K.; Tawara, Y.; Tosaka, H.; Ohno, K.; Asami, M.; Kosaka, K.

    2015-12-01

    Since the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, intensive monitoring and modeling works on radionuclide transfer in environment have been carried out. Although Cesium (Cs) concentration has been attenuating due to both physical and environmental half-life (i.e., wash-off by water and sediment), the attenuation rate depends clearly on the type of land use and land cover. In the Fukushima case, studying the migration in forest land use is important for predicting the long-term behavior of Cs because most of the contaminated region is covered by forests. Atmospheric fallout is characterized by complicated behavior in biogeochemical cycle in forests which can be described by biotic/abiotic interactions between many components. In developing conceptual and mathematical model on Cs transfer in forest ecosystem, defining the dominant components and their interactions are crucial issues (BIOMASS, 1997-2001). However, the modeling of fate and transport in geosphere after Cs exports from the forest ecosystem is often ignored. An integrated watershed modeling for simulating spatiotemporal redistribution of Cs that includes the entire region from source to mouth and surface to subsurface, has been recently developed. Since the deposited Cs can migrate due to water and sediment movement, the different species (i.e., dissolved and suspended) and their interactions are key issues in the modeling. However, the initial inventory as source-term was simplified to be homogeneous and time-independent, and biogeochemical cycle in forests was not explicitly considered. Consequently, it was difficult to evaluate the regionally-inherent characteristics which differ according to land uses, even if the model was well calibrated. In this study, we combine the different advantages in modeling of forest ecosystem and watershed. This enable to include more realistic Cs deposition and time series of inventory can be forced over the land surface. These processes are integrated into the watershed simulator GETFLOWS coupled with biogeochemical cycling in forests. We present brief a overview of the simulator and an application for reservoir basin.

  13. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China

    NASA Astrophysics Data System (ADS)

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo

    2015-03-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  14. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China.

    PubMed

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C; Sang, Weiguo

    2015-03-13

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  15. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China

    PubMed Central

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo

    2015-01-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning. PMID:25766381

  16. Leveraging 35 years of Pinus taeda research in the southeastern US to constrain forest carbon cycle predictions: regional data assimilation using ecosystem experiments

    NASA Astrophysics Data System (ADS)

    Quinn Thomas, R.; Brooks, Evan B.; Jersild, Annika L.; Ward, Eric J.; Wynne, Randolph H.; Albaugh, Timothy J.; Dinon-Aldridge, Heather; Burkhart, Harold E.; Domec, Jean-Christophe; Fox, Thomas R.; Gonzalez-Benecke, Carlos A.; Martin, Timothy A.; Noormets, Asko; Sampson, David A.; Teskey, Robert O.

    2017-07-01

    Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model-data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions, DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 105 km2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO2 study were allowed to have different mortality parameters than the other field plots in the region. We present predictions of stem biomass productivity under elevated CO2, decreased precipitation, and increased nutrient availability that include estimates of uncertainty for the southeastern US. Overall, we (1) demonstrated how three decades of research in southeastern US planted pine forests can be used to develop DA techniques that use multiple locations, multiple data streams, and multiple ecosystem experiment types to optimize parameters and (2) developed a tool for the development of future predictions of forest productivity for natural resource managers that leverage a rich dataset of integrated ecosystem observations across a region.

  17. Forest response and recovery following disturbance in upland forests of the Atlantic Coastal Plain.

    PubMed

    Schäfer, Karina V R; Renninger, Heidi J; Carlo, Nicholas J; Vanderklein, Dirk W

    2014-01-01

    Carbon and water cycling of forests contribute significantly to the Earth's overall biogeochemical cycling and may be affected by disturbance and climate change. As a larger body of research becomes available about leaf-level, ecosystem and regional scale effects of disturbances on forest ecosystems, a more mechanistic understanding is developing which can improve modeling efforts. Here, we summarize some of the major effects of physical and biogenic disturbances, such as drought, prescribed fire, and insect defoliation, on leaf and ecosystem-scale physiological responses as well as impacts on carbon and water cycling in an Atlantic Coastal Plain upland oak/pine and upland pine forest. During drought, stomatal conductance and canopy stomatal conductance were reduced, however, defoliation increased conductance on both leaf-level and canopy scale. Furthermore, after prescribed fire, leaf-level stomatal conductance was unchanged for pines but decreased for oaks, while canopy stomatal conductance decreased temporarily, but then rebounded the following growing season, thus exhibiting transient responses. This study suggests that forest response to disturbance varies from the leaf to ecosystem level as well as species level and thus, these differential responses interplay to determine the fate of forest structure and functioning post disturbance.

  18. Modeling Forest Structure and Vascular Plant Diversity in Piedmont Forests

    NASA Astrophysics Data System (ADS)

    Hakkenberg, C.

    2014-12-01

    When the interacting stressors of climate change and land cover/land use change (LCLUC) overwhelm ecosystem resilience to environmental and climatic variability, forest ecosystems are at increased risk of regime shifts and hyperdynamism in process rates. To meet the growing range of novel biotic and environmental stressors on human-impacted ecosystems, the maintenance of taxonomic diversity and functional redundancy in metacommunities has been proposed as a risk spreading measure ensuring that species critical to landscape ecosystem functioning are available for recruitment as local systems respond to novel conditions. This research is the first in a multi-part study to establish a dynamic, predictive model of the spatio-temporal dynamics of vascular plant diversity in North Carolina Piedmont mixed forests using remotely sensed data inputs. While remote sensing technologies are optimally suited to monitor LCLUC over large areas, direct approaches to the remote measurement of plant diversity remain a challenge. This study tests the efficacy of predicting indices of vascular plant diversity using remotely derived measures of forest structural heterogeneity from aerial LiDAR and high spatial resolution broadband optical imagery in addition to derived topo-environmental variables. Diversity distribution modelling of this sort is predicated upon the idea that environmental filtering of dispersing species help define fine-scale (permeable) environmental envelopes within which biotic structural and compositional factors drive competitive interactions that, in addition to background stochasticity, determine fine-scale alpha diversity. Results reveal that over a range of Piedmont forest communities, increasing structural complexity is positively correlated with measures of plant diversity, though the nature of this relationship varies by environmental conditions and community type. The diversity distribution model is parameterized and cross-validated using three high quality vegetation survey datasets, including Duke Forest Korstian permanent plots, Forest Inventory Analysis (FIA), and the scale transgressive, nested module Carolina Vegetation Survey (CVS).

  19. New Projections of Global Forest Carbon and Ecosystems at Risk for Increased Greenhouse Gas Emissions From Disturbance and Forest Degradation

    NASA Astrophysics Data System (ADS)

    Klooster, S.; Potter, C. S.; Genovese, V. B.; Gross, P. M.; Kumar, V.; Boriah, S.; Mithal, V.; Castilla-Rubio, J.

    2009-12-01

    Widely cited forest carbon values from look-up tables and statistical correlations with aboveground biomass have proven to be inadequate to discern details of national carbon stocks in forest pools. Similarly, global estimates based on biome-average (tropical, temperate, boreal, etc.) carbon measurements are generally insufficient to support REDD incentives (Reductions in Emission from Deforestation in Developing countries). The NASA-CASA (Carnegie-Ames-Stanford Approach) ecosystem model published by Potter et al. (1999 and 2003) offers several unique advantages for carbon accounting that cannot be provided by conventional inventory techniques. First, CASA uses continuous satellite observations to map land cover status and changes in vegetation on a monthly time interval over the past 25 years. NASA satellites observe areas that are too remote or rugged for conventional inventory-based techniques to measure. Second, CASA estimates both aboveground and belowground pools of carbon in all ecosystems (forests, shrublands, croplands, and rangelands). Carbon storage estimates for forests globally are currently being estimated for the Cisco Planetary Skin open collaborative platform (www.planetaryskin.org ) in a new series of CASA model runs using the latest input data from the NASA MODIS satellites, from 2000 to the present. We have also developed an approach for detection of large-scale ecosystem disturbance (LSED) events based on sustained declines in the same satellite greenness data used for CASA modeling. This approach is global in scope, covers more than a decade of observations, and encompasses all potential categories of major ecosystem disturbance - physical, biogenic, and anthropogenic, using advanced methods of data mining and analysis. In addition to quantifying forest areas at various levels of risk for loss of carbon storage capacity, our data mining approaches for LSED events can be adapted to detect and map biophysically unsuitable areas for deforestation worldwide and to develop carbon risk scoring algorithms that can enable large scale finance for conservation and reforestation efforts globally.

  20. Modeling landscape net ecosystem productivity (LandNEP) under alternative management regimes

    Treesearch

    Eugenie S. Euskirchen; Jiquan Chen; Harbin Li; Eric J. Gustafson; Thomas R. Crow

    2002-01-01

    Forests have been considered as a major carbon sink within the global carbon budget. However, a fragmented forest landscape varies significantly in its composition and age structure, and the amount of carbon sequestered at this level remains generally unknown to the scientific community. More precisely, the temporal dynamics and spatial distribution of net ecosystem...

  1. Coupled cycling of dissolved organic nitrogen and carbon in a forest stream

    Treesearch

    E.N. Jack Brookshire; H. Maurice Valett; Steven A. Thomas; Jackson R. Webster

    2005-01-01

    Dissolved organic nitrogen (DON) is an abundant but poorly understood pool of N in many ecosystems. We assessed DON cycling in a N-limited headwater forest stream via whole-ecosystem additions of dissolved inorganic nitrogen (DIN) and labile dissolved organic matter (DOM), hydrologic transport and biogeochemical modeling, and laboratory experiments with native...

  2. Modeling wildfire regimes in forest landscapes: abstracting a complex reality

    Treesearch

    Donald McKenzie; Ajith H. Perera

    2015-01-01

    Fire is a natural disturbance that is nearly ubiquitous in terrestrial ecosystems. The capacity to burn exists virtually wherever vegetation grows. In some forested landscapes, fi re is a principal driver of rapid ecosystem change, resetting succession ( McKenzie et al. 1996a ) and changing wildlife habitat (Cushman et al. 2011 ), hydrology ( Feikema et al. 2013 ),...

  3. A comparison of mangrove canopy height using multiple independent measurements from land, air, and space

    Treesearch

    David Lagomasino; Temilola Fatoyinbo; SeungKuk Lee; Emanuelle Feliciano; Carl Trettin; Marc Simard

    2016-01-01

    Canopy height is one of the strongest predictors of biomass and carbon in forested ecosystems. Additionally, mangrove ecosystems represent one of the most concentrated carbon reservoirs that are rapidly degrading as a result of deforestation, development, and hydrologic manipulation. Therefore, the accuracy of Canopy Height Models (CHM) over mangrove forest...

  4. Using a Forest Health Index as an Outreach Tool for Improving Public Understanding of Ecosystem Dynamics and Research-Based Management

    NASA Astrophysics Data System (ADS)

    Osenga, E. C.; Cundiff, J.; Arnott, J. C.; Katzenberger, J.; Taylor, J. R.; Jack-Scott, E.

    2015-12-01

    An interactive tool called the Forest Health Index (FHI) has been developed for the Roaring Fork watershed of Colorado, with the purpose of improving public understanding of local forest management and ecosystem dynamics. The watershed contains large areas of White River National Forest, which plays a significant role in the local economy, particularly for recreation and tourism. Local interest in healthy forests is therefore strong, but public understanding of forest ecosystems is often simplified. This can pose challenges for land managers and researchers seeking a scientifically informed approach to forest restoration, management, and planning. Now in its second iteration, the FHI is a tool designed to help bridge that gap. The FHI uses a suite of indicators to create a numeric rating of forest functionality and change, based on the desired forest state in relation to four categories: Ecological Integrity, Public Health and Safety, Ecosystem Services, and Sustainable Use and Management. The rating is based on data derived from several sources including local weather stations, stream gauge data, SNOTEL sites, and National Forest Service archives. In addition to offering local outreach and education, this project offers broader insight into effective communication methods, as well as into the challenges of using quantitative analysis to rate ecosystem health. Goals of the FHI include its use in schools as a means of using local data and place-based learning to teach basic math and science concepts, improved public understanding of ecological complexity and need for ongoing forest management, and, in the future, its use as a model for outreach tools in other forested communities in the Intermountain West.

  5. Fuel load modeling from mensuration attributes in temperate forests in northern Mexico

    Treesearch

    Maricela Morales-Soto; Marín Pompa-Garcia

    2013-01-01

    The study of fuels is an important factor in defining the vulnerability of ecosystems to forest fires. The aim of this study was to model a dead fuel load based on forest mensuration attributes from forest management inventories. A scatter plot analysis was performed and, from explanatory trends between the variables considered, correlation analysis was carried out...

  6. The impact of lianas on the carbon cycle of tropical forests: a modeling study using the Ecosystem Demography model

    NASA Astrophysics Data System (ADS)

    di Porcia e Brugnera, M.; Longo, M.; Verbeek, H.

    2017-12-01

    Lianas are an important component of tropical forests, constituting up to 40% of the woody stems and about 35% of the woody species. Tropical forests have been experiencing large-scale structural changes, including an increase in liana abundance and biomass. This may eventually reduce the projected carbon sink of tropical forests. Despite their crucial role no single terrestrial ecosystem model has included lianas so far. Here, we present the very first implementation of lianas in the Ecosystem Demography model (ED2). ED2 is able to represent the competition for water and light between different vegetation types at the regional level. Our new implementation of ED2 is hence suitable to address important questions such as the impact of lianas on the tropical forest carbon balance. We validated the model against forest inventory and eddy covariance flux data at a dry seasonal site (Barro Colorado Island, Panama), and at a wet rainforest site (Paracou, French Guiana). The model was able to represent size structure and carbon accumulation rates. We also evaluated the impact of the unique allocation strategy of lianas on their competitive ability. Lianas invest only a small fraction of their carbon for structural tissues when compared to trees. As a result, lianas benefit from an extra amount of available carbon, however the trade-offs of low allocation on structural tissues are not yet well understood. We are currently investigating a number of hypotheses, including the possibility for lianas to have high turnover rates for leaves and fine roots, or to have high mortality rates due to the loss of structural support when trees die. As such our model allows us to get a better understanding of the role of lianas in the tropical forest carbon cycle.

  7. The Importance of Uncertainty and Sensitivity Analysis in Process-based Models of Carbon and Nitrogen Cycling in Terrestrial Ecosystems with Particular Emphasis on Forest Ecosystems — Selected Papers from a Workshop Organized by the International Society for Ecological Modelling (ISEM) at the Third Biennal Meeting of the International Environmental Modelling and Software Society (IEMSS) in Burlington, Vermont, USA, August 9-13, 2006

    USGS Publications Warehouse

    Larocque, Guy R.; Bhatti, Jagtar S.; Liu, Jinxun; Ascough, James C.; Gordon, Andrew M.

    2008-01-01

    Many process-based models of carbon (C) and nitrogen (N) cycles have been developed for terrestrial ecosystems, including forest ecosystems. They address many basic issues of ecosystems structure and functioning, such as the role of internal feedback in ecosystem dynamics. The critical factor in these phenomena is scale, as these processes operate at scales from the minute (e.g. particulate pollution impacts on trees and other organisms) to the global (e.g. climate change). Research efforts remain important to improve the capability of such models to better represent the dynamics of terrestrial ecosystems, including the C, nutrient, (e.g. N) and water cycles. Existing models are sufficiently well advanced to help decision makers develop sustainable management policies and planning of terrestrial ecosystems, as they make realistic predictions when used appropriately. However, decision makers must be aware of their limitations by having the opportunity to evaluate the uncertainty associated with process-based models (Smith and Heath, 2001 and Allen et al., 2004). The variation in scale of issues currently being addressed by modelling efforts makes the evaluation of uncertainty a daunting task.

  8. Modelling and predicting the spatial distribution of tree root density in heterogeneous forest ecosystems

    PubMed Central

    Mao, Zhun; Saint-André, Laurent; Bourrier, Franck; Stokes, Alexia; Cordonnier, Thomas

    2015-01-01

    Background and Aims In mountain ecosystems, predicting root density in three dimensions (3-D) is highly challenging due to the spatial heterogeneity of forest communities. This study presents a simple and semi-mechanistic model, named ChaMRoots, that predicts root interception density (RID, number of roots m–2). ChaMRoots hypothesizes that RID at a given point is affected by the presence of roots from surrounding trees forming a polygon shape. Methods The model comprises three sub-models for predicting: (1) the spatial heterogeneity – RID of the finest roots in the top soil layer as a function of tree basal area at breast height, and the distance between the tree and a given point; (2) the diameter spectrum – the distribution of RID as a function of root diameter up to 50 mm thick; and (3) the vertical profile – the distribution of RID as a function of soil depth. The RID data used for fitting in the model were measured in two uneven-aged mountain forest ecosystems in the French Alps. These sites differ in tree density and species composition. Key Results In general, the validation of each sub-model indicated that all sub-models of ChaMRoots had good fits. The model achieved a highly satisfactory compromise between the number of aerial input parameters and the fit to the observed data. Conclusions The semi-mechanistic ChaMRoots model focuses on the spatial distribution of root density at the tree cluster scale, in contrast to the majority of published root models, which function at the level of the individual. Based on easy-to-measure characteristics, simple forest inventory protocols and three sub-models, it achieves a good compromise between the complexity of the case study area and that of the global model structure. ChaMRoots can be easily coupled with spatially explicit individual-based forest dynamics models and thus provides a highly transferable approach for modelling 3-D root spatial distribution in complex forest ecosystems. PMID:26173892

  9. Net ecosystem productivity of temperate and boreal forests after clearcutting - a Fluxnet-Canada measurement and modelling synthesis

    NASA Astrophysics Data System (ADS)

    Grant, R. F.; Barr, A.; Black, T. A.; Margolis, H. A.; McCaughey, J. H.; Trofymow, J. A.

    2010-05-01

    Clearcutting strongly affects subsequent forest net ecosystem productivity (NEP). Hypotheses for ecological controls on NEP in the ecosystem model ecosys were tested with CO2 fluxes measured by eddy covariance (EC) in three post-clearcut conifer chronosequences. An algorithm for microbial colonization of fine and woody debris allowed the model to reproduce sigmoidal declines in debris observed after clearcutting. In the model, Rh drove debris decomposition that drove microbial growth, N mineralization and asymbiotic N2 fixation. These processes controlled root N uptake, and thereby CO2 fixation in regrowing vegetation. Interactions among soil and plant processes allowed the model to simulate hourly CO2 fluxes and annual NEP within the uncertainty of EC measurements from 2003 through 2007 over forest stands from 1 to 80 years of age in all three chronosequences without site- or species-specific parameterization. The model was then used to study the impacts of increasing harvest removals on subsequent C stocks at one of the chronosequence sites. Model results indicated that increasing harvest removals would hasten recovery of NEP during the first 30 years after clearcutting, but would reduce ecosystem C stocks by about 15% of the increased removals at the end of an 80 year harvest cycle.

  10. [Regional and global estimates of carbon stocks and carbon sequestration capacity in forest ecosystems: A review].

    PubMed

    Liu, Wei-wei; Wang, Xiao-ke; Lu, Fei; Ouyang, Zhi-yun

    2015-09-01

    As a dominant part of terrestrial ecosystems, forest ecosystem plays an important role in absorbing atmospheric CO2 and global climate change mitigation. From the aspects of zonal climate and geographical distribution, the present carbon stocks and carbon sequestration capacity of forest ecosystem were comprehensively examined based on the review of the latest literatures. The influences of land use change on forest carbon sequestration were analyzed, and factors that leading to the uncertainty of carbon sequestration assessment in forest ecosystem were also discussed. It was estimated that the current forest carbon stock was in the range of 652 to 927 Pg C and the carbon sequestration capacity was approximately 4.02 Pg C · a(-1). In terms of zonal climate, the carbon stock and carbon sequestration capacity of tropical forest were the maximum, about 471 Pg C and 1.02-1.3 Pg C · a(-1) respectively; then the carbon stock of boreal forest was about 272 Pg C, while its carbon sequestration capacity was the minimum, approximately 0.5 Pg C · a(-1); for temperate forest, the carbon stock was minimal, around 113 to 159 Pg C and its carbon sequestration capacity was 0.8 Pg C · a(-1). From the aspect of geographical distribution, the carbon stock of forest ecosystem in South America was the largest (187.7-290 Pg C), then followed by European (162.6 Pg C), North America (106.7 Pg C), Africa (98.2 Pg C) and Asia (74.5 Pg C), and Oceania (21.7 Pg C). In addition, carbon sequestration capacity of regional forest ecosystem was summed up as listed below: Tropical South America forest was the maximum (1276 Tg C · a(-1)), then were Tropical Africa (753 Tg C · a(-1)), North America (248 Tg C · a(-1)) and European (239 Tg C · a(-1)), and East Asia (98.8-136.5 Tg C · a(-1)) was minimum. To further reduce the uncertainty in the estimations of the carbon stock and carbon sequestration capacity of forest ecosystem, comprehensive application of long-term observation, inventories, remote sensing and modeling method should be required.

  11. Clarifying the confusion: old-growth savannahs and tropical ecosystem degradation

    PubMed Central

    2016-01-01

    Ancient tropical grassy biomes are often misrecognized as severely degraded forests. I trace this confusion to several factors, with roots in the nineteenth century, including misinterpretations of the nature of fire in savannahs, attempts to reconcile savannah ecology with Clementsian succession, use of physiognomic (structural) definitions of savannah and development of tropical degradation frameworks focused solely on forests. Towards clarity, I present two models that conceptualize the drivers of ecosystem degradation as operating in both savannahs and forests. These models highlight how human-induced environmental changes create ecosystems with superficially similar physiognomies but radically different conservation values. Given the limitation of physiognomy to differentiate savannahs from severely degraded forests, I present an alternative approach based on floristic composition. Data from eastern lowland Bolivia show that old-growth savannahs can be reliably distinguished by eight grass species and that species identity influences ecosystem flammability. I recommend that scientists incorporate savannahs in tropical degradation frameworks alongside forests, and that savannah be qualified as old-growth savannah in reference to ancient grassy biomes or derived savannah in reference to deforestation. These conceptual advances will require attention not only to tree cover, but also to savannah herbaceous plant species and their ecologies. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502372

  12. Estimation of Carbon Flux of Forest Ecosystem over Qilian Mountains by BIOME-BGC Model

    NASA Astrophysics Data System (ADS)

    Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei

    2014-11-01

    The gross primary production (GPP) and net ecosystem exchange (NEE) are important indicators for carbon fluxes. This study aims at evaluating the forest GPP and NEE over the Qilian Mountains using meteorological, remotely sensed and other ancillary data at large scale. To realize this, the widely used ecological-process-based model, Biome-BGC, and remote-sensing-based model, MODIS GPP algorithm, were selected for the simulation of the forest carbon fluxes. The combination of these two models was based on calibrating the Biome-BGC by the optimized MODIS GPP algorithm. The simulated GPP and NEE values were evaluated against the eddy covariance observed GPPs and NEEs, and the well agreements have been reached, with R2=0.76, 0.67 respectively.

  13. Estimation of Carbon Flux of Forest Ecosystem over Qilian Mountains by BIOME-BGC Model

    NASA Astrophysics Data System (ADS)

    Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei

    2014-11-01

    The gross primary production (GPP) and net ecosystem exchange (NEE) are important indicators for carbon fluxes. This study aims at evaluating the forest GPP and NEE over the Qilian Mountains using meteorological, remotely sensed and other ancillary data at large scale. To realize this, the widely used ecological-process- based model, Biome-BGC, and remote-sensing-based model, MODIS GPP algorithm, were selected for the simulation of the forest carbon fluxes. The combination of these two models was based on calibrating the Biome-BGC by the optimized MODIS GPP algorithm. The simulated GPP and NEE values were evaluated against the eddy covariance observed GPPs and NEEs, and the well agreements have been reached, with R2=0.76, 0.67 respectively.

  14. Integrated evaluation of the vulnerability to thermokarst disturbance and its implications for the regional carbon balance in boreal Alaska

    NASA Astrophysics Data System (ADS)

    Helene, G.; Lara, M. J.; McGuire, A. D.; Euskirchen, E. S.; Bolton, W. R.; Romanovsky, V. E.

    2017-12-01

    Our capacity to project future ecosystem trajectories in northern permafrost regions depends on our ability to characterize complex interactions between climatic and ecological processes at play in the soil, the vegetation, and the atmosphere. We present a study that uses remote sensing analyses, field observations, and data synthesis to inform models for the prediction of ecosystem responses to climate change in the boreal zone of Alaska. Recent warming, altered precipitation and fire regimes are driving permafrost degradation, threatening to mobilize vast reservoirs of ancient carbon previously protected from decomposition. Although large scale, progressive, top-down permafrost thaw have been well studied and represented in high-latitude ecosystem models, the consequences of abrupt and local thermokarst disturbances (TK) are less well understood. To fill this gap, we conducted a detection analysis characterizing 60 years of land cover change in the Tanana Flats, a wetland complex subjected to TK disturbance in Interior Alaska, using aerial and satellite images. We observed a nonlinear loss of permafrost plateau forest associated with TK and driven by precipitation and forest fragmentation. The results of this analysis were integrated into the Alaska Thermokarst Model (ATM), a state-and-transition model that simulates land cover change associated with TK disturbance. Thermokarst-related land cover change was simulated from 2000 to 2100 across the Tanana Flats. By 2100, the model predicts a mean decrease of 7.4% (sd 1.8%) in permafrost plateau forests associated with an increase in TK fens and bogs. Transitions from permafrost plateau forests to TK wetlands are accompanied with changes in physical and biogeochemical processes affecting ecosystem carbon balance. We evaluated the consequences of TK disturbances on the regional carbon balance by coupling outputs from the ATM and from a process-based biogeochemical model. We used long-term field observations of vegetation and soil physical and biogeochemical attributes to develop new parameterizations for TK wetlands and permafrost plateau forest land cover types. Preliminary simulations from 2000 to 2100 estimate that the conversion of permafrost plateau forest to young TK wetlands would result in a 7.5% (sd 3.5%) decrease in Net Ecosystem Exchange.

  15. Application of BIOME-BGC to Managed Forest Ecosystems in Europe

    NASA Astrophysics Data System (ADS)

    Pietsch, S. A.; Petritsch, R.; Hasenauer, H.

    2007-05-01

    European forests have been severely modified by humans resulting in a reduction of forest covered land area, a change in tree species distribution and the deterioration of forest soils. One option to assess forest management impacts on the cycling of carbon, nitrogen and water is the use of BGC-Models. Such models are considered as diagnostic tools for studying sustainability of forest ecosystems and have been used for climate change impact studies on forest growth and carbon sequestration issues. In our efforts to develop an appropriate diagnostic tool to assess the dynamics of carbon, nitrogen, water and energy flux for sustainable forest ecosystem management and climate change studies, we have selected BIOME-BGC. The main reason was that the general model structure is flexible enough to integrate large scale, regional as well as forest stand level information. During the last years we worked on the following extensions: (1) Tested and extended algorithms to interpolate daily climate input data as they are needed to run the model for any location within the country; (2) We developed a set of species specific parameters for all major tree species in Central Europe: Norway spruce (two variants highland and lowlands), Scots pine, Stone pine, larch, common beech and oak forests. These parameters sets are important since in BIOME-BGC vegetation is distinguished in biomes or plant functional types but the impacts of forest management (e.g. changes in stand density) may differ substantially among the tree species assigned to a single biome. (3) We extended the model to cover the full variation ranging from conditions including temperature extremes at the timberline to periodic ground water access or flooding in lowlands. (4) We adapted the spinup procedure to ensure unbiased predictions on forest status in the absence of past and present management impacts. (5) Explicitly addressed the effects of past and present forest management as they may differ by species and silvicultural practice. (6) We assess climate change impacts on managed forests and discuss the impacts of our results on forest management practices.

  16. Pre-industrial baseline variation of upper midwestern forests in the United States

    NASA Astrophysics Data System (ADS)

    Dawson, A.; Paciorek, C. J.; Goring, S. J.; Williams, J. W.; Jackson, S. T.; McLachlan, J. S.

    2016-12-01

    Terrestrial ecosystems play an important role in Earth systems processes, yet we still do not understand how they respond to changes in climate. While it has been argued that terrestrial ecosystems were fairly stable (by Quaternary standards) in the millennia before major anthropogenic disruption, others have emphasized vegetation response to environmental variability during this time. These competing perspectives are not necessarily in conflict, but argue for a quantitative assessment of forest ecosystem variability over the last several millennia. Here we reconstruct maps of forest composition for the last two millenia, with uncertainty. To do this, we use a network of fossil pollen records - the most reliable paleoecological proxy for forest composition. We link the fossil pollen records to public land survey forest composition using a Bayesian hierarchical model which accounts for key processes including pollen production and dispersal. The model is calibrated using data from the pre-settlement time with the hope of minimizing anthropogenic impacts. Process parameters are estimated in the calibration phase, and are subsequently used in the prediction phase to generate spatially explicit maps of relative species composition across the upper Midwestern US over the last 2000 years, with robust uncertainty estimates. Estimates of forest composition and uncertainty show many previously noted vegetation shifts, three of which we discuss here. First, we see expansion of the hemlock range into western Wisconsin. Second, we see changes along the prairie-forest ecotone. Third, we see significant increases in elm at approximately 500 YBP in the region known as the Minnesota Big Woods. These changes are significant in both a statistical and ecological sense, but the scale of these changes is small relative to changes in the early holocene. Our novel spatio-temporal composition estimates will be used to improve the forecasting capabilities of ecosystem models.

  17. Effects of Disturbance on Carbon Sequestration in the New Jersey Pine Barrens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schafer, Karina; Bohrer, Gil

    While carbon and water cycling of forests contribute significantly to the Earth's overall biogeochemical cycling, it may be affected by disturbance and climate change. In this research, we contributed to the body of research on leaf-level, ecosystem and regional scale effects of disturbances on forest ecosystems, in an effort to foster more mechanistic understanding, which in turn can improve modeling efforts. Here, we summarize some of the major findings in this research of physical and biogenic disturbances, such as drought, prescribed fire, and insect defoliation, on leaf and ecosystem-scale physiological responses as well as impacts on carbon and water cyclingmore » in an Atlantic Coastal Plain upland oak/pine and upland pine forest. Following we have incorporated some of our findings into a new version of the Finite-element Tree-Crown Hydrodynamics (model version 2) model, which improved timing and hysteresis of transpiration modeling for trees. Furthermore, incorporation of hydrodynamics into modeling transpiration improved latent heat flux estimates. In our study on the physiology of the trees, we showed that during drought, stomatal conductance and canopy stomatal conductance were reduced, however, defoliation increased conductance on both leaf-level and canopy scale. Furthermore, after prescribed fire, leaf-level stomatal conductance was unchanged for pines but decreased for oaks, while canopy stomatal conductance decreased temporarily, but then rebounded the following growing season, thus exhibiting transient responses. This study suggests that forest response to disturbance varies from the leaf to ecosystem level as well as species level and thus, these differential responses interplay to determine the fate of forest structure and functioning post disturbance. Incorporating this responses improves model outcome.« less

  18. Testing a land model in ecosystem functional space via a comparison of observed and modeled ecosystem flux responses to precipitation regimes and associated stresses in a Central U.S. forest: Test Model in Ecosystem Functional Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Lianhong; Pallardy, Stephen G.; Yang, Bai

    Testing complex land surface models has often proceeded by asking the question: does the model prediction agree with the observation? This approach has yet led to high-performance terrestrial models that meet the challenges of climate and ecological studies. Here we test the Community Land Model (CLM) by asking the question: does the model behave like an ecosystem? We pursue its answer by testing CLM in the ecosystem functional space (EFS) at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the Central U.S., focusing on carbon and water flux responses to precipitation regimes and associated stresses. In the observed EFS, precipitationmore » regimes and associated water and heat stresses controlled seasonal and interannual variations of net ecosystem exchange (NEE) of CO 2 and evapotranspiration in this deciduous forest ecosystem. Such controls were exerted more strongly by precipitation variability than by the total precipitation amount per se. A few simply constructed climate variability indices captured these controls, suggesting a high degree of potential predictability. While the interannual fluctuation in NEE was large, a net carbon sink was maintained even during an extreme drought year. Although CLM predicted seasonal and interanual variations in evapotranspiration reasonably well, its predictions of net carbon uptake were too small across the observed range of climate variability. Also, the model systematically underestimated the sensitivities of NEE and evapotranspiration to climate variability and overestimated the coupling strength between carbon and water fluxes. Its suspected that the modeled and observed trajectories of ecosystem fluxes did not overlap in the EFS and the model did not behave like the ecosystem it attempted to simulate. A definitive conclusion will require comprehensive parameter and structural sensitivity tests in a rigorous mathematical framework. We also suggest that future model improvements should focus on better representation and parameterization of process responses to environmental stresses and on more complete and robust representations of carbon-specific processes so that adequate responses to climate variability and a proper degree of coupling between carbon and water exchanges are captured.« less

  19. Testing a land model in ecosystem functional space via a comparison of observed and modeled ecosystem flux responses to precipitation regimes and associated stresses in a Central U.S. forest: Test Model in Ecosystem Functional Space

    DOE PAGES

    Gu, Lianhong; Pallardy, Stephen G.; Yang, Bai; ...

    2016-07-14

    Testing complex land surface models has often proceeded by asking the question: does the model prediction agree with the observation? This approach has yet led to high-performance terrestrial models that meet the challenges of climate and ecological studies. Here we test the Community Land Model (CLM) by asking the question: does the model behave like an ecosystem? We pursue its answer by testing CLM in the ecosystem functional space (EFS) at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the Central U.S., focusing on carbon and water flux responses to precipitation regimes and associated stresses. In the observed EFS, precipitationmore » regimes and associated water and heat stresses controlled seasonal and interannual variations of net ecosystem exchange (NEE) of CO 2 and evapotranspiration in this deciduous forest ecosystem. Such controls were exerted more strongly by precipitation variability than by the total precipitation amount per se. A few simply constructed climate variability indices captured these controls, suggesting a high degree of potential predictability. While the interannual fluctuation in NEE was large, a net carbon sink was maintained even during an extreme drought year. Although CLM predicted seasonal and interanual variations in evapotranspiration reasonably well, its predictions of net carbon uptake were too small across the observed range of climate variability. Also, the model systematically underestimated the sensitivities of NEE and evapotranspiration to climate variability and overestimated the coupling strength between carbon and water fluxes. Its suspected that the modeled and observed trajectories of ecosystem fluxes did not overlap in the EFS and the model did not behave like the ecosystem it attempted to simulate. A definitive conclusion will require comprehensive parameter and structural sensitivity tests in a rigorous mathematical framework. We also suggest that future model improvements should focus on better representation and parameterization of process responses to environmental stresses and on more complete and robust representations of carbon-specific processes so that adequate responses to climate variability and a proper degree of coupling between carbon and water exchanges are captured.« less

  20. An analytical framework to assist decision makers in the use of forest ecosystem model predictions

    USDA-ARS?s Scientific Manuscript database

    The predictions of most terrestrial ecosystem models originate from deterministic simulations. Relatively few uncertainty evaluation exercises in model outputs are performed by either model developers or users. This issue has important consequences for decision makers who rely on models to develop n...

  1. The role of organic soil layer on the fate of Siberian larch forest and near-surface permafrost under changing climate: A simulation study

    NASA Astrophysics Data System (ADS)

    SATO, H.; Iwahana, G.; Ohta, T.

    2013-12-01

    Siberian larch forest is the largest coniferous forest region in the world. In this vast region, larch often forms nearly pure stands, regenerated by recurrent fire. This region is characterized by a short and dry growing season; the annual mean precipitation for Yakutsk was only about 240 mm. To maintain forest ecosystem under such small precipitation, underlying permafrost and seasonal soil freezing-thawing-cycle have been supposed to play important roles; (1) frozen ground inhibits percolation of soil water into deep soil layers, and (2) excess soil water at the end of growing season can be carried over until the next growing season as ice, and larch trees can use the melt water. As a proof for this explanation, geographical distribution of Siberian larch region highly coincides with continuous and discontinuous permafrost zone. Recent observations and simulation studies suggests that existences of larch forest and permafrost in subsurface layer are co-dependent; permafrost maintains the larch forest by enhancing water use efficiency of trees, while larch forest maintains permafrost by inhibiting solar radiation and preventing heat exchanges between soil and atmosphere. Owing to such complexity and absence of enough ecosystem data available, current-generation Earth System Models significantly diverse in their prediction of structure and key ecosystem functions in Siberian larch forest under changing climate. Such uncertainty should in turn expand uncertainty over predictions of climate, because Siberian larch forest should have major role in the global carbon balance with its huge area and vast potential carbon pool within the biomass and soil, and changes in boreal forest albedo can have a considerable effect on Northern Hemisphere climate. In this study, we developed an integrated ecosystem model, which treats interactions between plant-dynamics and freeze-thaw cycles. This integrated model contains a dynamic global vegetation model SEIB-DGVM, which simulates plant and carbon dynamics. It also contains a one-dimensional land surface model NOAH 2.7.1, which simulates soil moisture (both liquid and frozen), soil temperature, snowpack depth and density, canopy water content, and the energy and water fluxes. This integrated model quantitatively reconstructs post-fire development of forest structure (i.e. LAI and biomass) and organic soil layer, which dampens heat exchanges between soil and atmosphere. With the post-fire development of LAI and the soil organic layer, the integrated model also quantitatively reconstructs changes in seasonal maximum of active layer depth. The integrated model is then driven by the IPCC A1B scenario of rising atmospheric CO2, and by climate changes during the twenty-first century resulting from the change in CO2. This simulation suggests that forecasted global warming would causes decay of Siberian larch ecosystem, but such responses could be delayed by "memory effect" of the soil organic layer for hundreds of years.

  2. The impacts of disturbance on the spatial and temporal variations of carbon balance in forest ecosystems on Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Hirata, R.; Ito, A.; Saigusa, N.

    2013-12-01

    Carbon balance in a forest ecosystem can be quite variable if the forest ecosystem structure and function change abruptly as a result of disturbance and subsequent recovery processes. A map of forest age is useful for upscaling carbon balance from the site level to a regional scale because it provides information about when disturbance occurred and how it spread over a wide area. In this study, we used maps of forest age to help evaluate spatial and temporal variations in the carbon balance of forest ecosystems with a process-based ecosystem model. Forests less than 60 years old account for more than 70% of Japanese forests because forest stands have been quickly replaced after disturbance caused by thinning, harvesting, plantations, fires, typhoons, and insect damage. However, few studies have attempted to quantify how much disturbance affects the spatial and temporal variations of carbon balance. In this study, we focused on how disturbance and subsequent re-growth affected the spatial and temporal variations of the carbon balance of forests. We adapted the Vegetation Integrative SImulator for Trace Gases (VISIT) model in order to simulate carbon balance on Hokkaido, which is the northernmost island of Japan. The model was validated with tower flux data obtained from forests with ages between 0 and 43 years. Simulations of the carbon balance were conducted for the period 1948-2010 after a 1000-year spin-up at a spatial resolution of 1 km × 1 km. We investigated two case studies of simulated carbon balance: one that took into account the spatial distribution of forest ages derived from forest inventory data, and another that ignored the impact of disturbance (i.e., no disturbance and a homogeneous distribution of ages). We first focused on the difference from 2000-2010 in the spatial distribution of net ecosystem production (NEP) between the disturbance and non-disturbance cases. In the non-disturbance case, the temporal and spatial changes in NEP were gradual and ranged from 0 to 1 t C ha-1 y-1, depending on meteorological conditions such as temperature or solar radiation. In the disturbance case, however, large NEP changes ranging from 3 to 5 t C ha-1 y-1 were distributed in patches like hotspots, because the forests in those spots ranged in age from 20 to 100 years and were younger than the forests in the non-disturbance case. In the 1970s, wood harvesting and tree planting were conducted intensively on Hokkaido. In the disturbance case during this period, there were many hotspots where NEP was negative. We next focused on the difference between the disturbance and non-disturbance cases of temporal variations of spatially averaged NEP on Hokkaido. Until 1970, the difference between the two cases of average NEP was less than 0.01 t C ha-1 y-1. After 1970, the difference became large and reached about 0.5 t C ha-1 y-1, the implication being that the regional NEP in the disturbance case increased to as much as 2-5 times the regional NEP of the non-disturbance case. Our results show the importance of considering forest age when simulating the carbon balance of forests. Carbon balance maps that take forest age into account are useful for carbon management and prediction of ecosystem feedbacks on climate change.

  3. An Agent-Based Model of Private Woodland Owner Management Behavior Using Social Interactions, Information Flow, and Peer-To-Peer Networks

    PubMed Central

    Huff, Emily Silver; Leahy, Jessica E.; Hiebeler, David; Weiskittel, Aaron R.; Noblet, Caroline L.

    2015-01-01

    Privately owned woodlands are an important source of timber and ecosystem services in North America and worldwide. Impacts of management on these ecosystems and timber supply from these woodlands are difficult to estimate because complex behavioral theory informs the owner’s management decisions. The decision-making environment consists of exogenous market factors, internal cognitive processes, and social interactions with fellow landowners, foresters, and other rural community members. This study seeks to understand how social interactions, information flow, and peer-to-peer networks influence timber harvesting behavior using an agent-based model. This theoretical model includes forested polygons in various states of ‘harvest readiness’ and three types of agents: forest landowners, foresters, and peer leaders (individuals trained in conservation who use peer-to-peer networking). Agent rules, interactions, and characteristics were parameterized with values from existing literature and an empirical survey of forest landowner attitudes, intentions, and demographics. The model demonstrates that as trust in foresters and peer leaders increases, the percentage of the forest that is harvested sustainably increases. Furthermore, peer leaders can serve to increase landowner trust in foresters. Model output and equations will inform forest policy and extension/outreach efforts. The model also serves as an important testing ground for new theories of landowner decision making and behavior. PMID:26562429

  4. Long-term impacts of recurrent logging and fire in Amazon forests: a modeling study using the Ecosystem Demography Model (ED2)

    NASA Astrophysics Data System (ADS)

    Longo, M.; Keller, M.; Scaranello, M. A., Sr.; dos-Santos, M. N.; Xu, Y.; Huang, M.; Morton, D. C.

    2017-12-01

    Logging and understory fires are major drivers of tropical forest degradation, reducing carbon stocks and changing forest structure, composition, and dynamics. In contrast to deforested areas, sites that are disturbed by logging and fires retain some, albeit severely altered, forest structure and function. In this study we simulated selective logging using the Ecosystem Demography Model (ED-2) to investigate the impact of a broad range of logging techniques, harvest intensities, and recurrence cycles on the long-term dynamics of Amazon forests, including the magnitude and duration of changes in forest flammability following timber extraction. Model results were evaluated using eddy covariance towers at logged sites at the Tapajos National Forest in Brazil and data on long-term dynamics reported in the literature. ED-2 is able to reproduce both the fast (< 5yr) recovery of water, energy fluxes compared to flux tower, and the typical, field-observed, decadal time scales for biomass recovery when no additional logging occurs. Preliminary results using the original ED-2 fire model show that canopy cover loss of forests under high-intensity, conventional logging cause sufficient drying to support more intense fires. These results indicate that under intense degradation, forests may shift to novel disturbance regimes, severely reducing carbon stocks, and inducing long-term changes in forest structure and composition from recurrent fires.

  5. One carbon cycle: Impacts of model integration, ecosystem process detail, model resolution, and initialization data, on projections of future climate mitigation strategies

    NASA Astrophysics Data System (ADS)

    Fisk, J.; Hurtt, G. C.; le page, Y.; Patel, P. L.; Chini, L. P.; Sahajpal, R.; Dubayah, R.; Thomson, A. M.; Edmonds, J.; Janetos, A. C.

    2013-12-01

    Integrated assessment models (IAMs) simulate the interactions between human and natural systems at a global scale, representing a broad suite of phenomena across the global economy, energy system, land-use, and carbon cycling. Most proposed climate mitigation strategies rely on maintaining or enhancing the terrestrial carbon sink as a substantial contribution to restrain the concentration of greenhouse gases in the atmosphere, however most IAMs rely on simplified regional representations of terrestrial carbon dynamics. Our research aims to reduce uncertainties associated with forest modeling within integrated assessments, and to quantify the impacts of climate change on forest growth and productivity for integrated assessments of terrestrial carbon management. We developed the new Integrated Ecosystem Demography (iED) to increase terrestrial ecosystem process detail, resolution, and the utilization of remote sensing in integrated assessments. iED brings together state-of-the-art models of human society (GCAM), spatial land-use patterns (GLM) and terrestrial ecosystems (ED) in a fully coupled framework. The major innovative feature of iED is a consistent, process-based representation of ecosystem dynamics and carbon cycle throughout the human, terrestrial, land-use, and atmospheric components. One of the most challenging aspects of ecosystem modeling is to provide accurate initialization of land surface conditions to reflect non-equilibrium conditions, i.e., the actual successional state of the forest. As all plants in ED have an explicit height, it is one of the few ecosystem models that can be initialized directly with vegetation height data. Previous work has demonstrated that ecosystem model resolution and initialization data quality have a large effect on flux predictions at continental scales. Here we use a factorial modeling experiment to quantify the impacts of model integration, process detail, model resolution, and initialization data on projections of future climate mitigation strategies. We find substantial effects on key integrated assessment projections including the magnitude of emissions to mitigate, the economic value of ecosystem carbon storage, future land-use patterns, food prices and energy technology.

  6. The carbon debt from Amazon forest degradation: integrating airborne lidar, field measurements, and an ecosystem demography model.

    NASA Astrophysics Data System (ADS)

    Longo, M.; Keller, M. M.; dos-Santos, M. N.; Scaranello, M. A., Sr.; Pinagé, E. R.; Leitold, V.; Morton, D. C.

    2016-12-01

    Amazon deforestation has declined over the last decade, yet forest degradation from logging, fire, and fragmentation continue to impact forest carbon stocks and fluxes. The magnitude of this impact remains uncertain, and observation-based studies are often limited by short time intervals or small study areas. To better understand the long-term impact of forest degradation and recovery, we have been developing a framework that integrates field plot measurements and airborne lidar surveys into an individual- and process-based model (Ecosystem Demography model, ED). We modeled forest dynamics for three forest landscapes in the Amazon with diverse degradation histories: conventional and reduced-impact logging, logging and burning, and multiple burns. Based on the initialization with contemporary forest structure and composition, model results suggest that degraded forests rapidly recover (30 years) water and energy fluxes compared with old-growth, even at sites that were affected by multiple fires. However, degraded forests maintained different carbon stocks and fluxes even after 100 years without further disturbances, because of persistent differences in forest structure and composition. Recurrent disturbances may hinder the recovery of degraded forests. Simulations using a simple fire model entirely dependent on environmental controls indicate that the most degraded forests would take much longer to reach biomass typical of old-growth forests, because drier conditions near the ground make subsequent fires more intense and more recurrent. Fires in tropical forests are also closely related to nearby human activities; while results suggest an important feedback between fires and the microenvironment, additional work is needed to improve how the model represents the human impact on current and future fire regimes. Our study highlights that recovery of degraded forests may act as an important carbon sink, but efficient recovery depends on controlling future disturbances.

  7. Leveraging 35 years of Pinus taeda research in the southeastern US to constrain forest carbon cycle predictions: regional data assimilation using ecosystem experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, R. Quinn; Brooks, Evan B.; Jersild, Annika L.

    Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model–data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions,more » DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO 2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 10 5 km 2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO 2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO 2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO 2 study were allowed to have different mortality parameters than the other field plots in the region. We present predictions of stem biomass productivity under elevated CO 2, decreased precipitation, and increased nutrient availability that include estimates of uncertainty for the southeastern US. Overall, we (1) demonstrated how three decades of research in southeastern US planted pine forests can be used to develop DA techniques that use multiple locations, multiple data streams, and multiple ecosystem experiment types to optimize parameters and (2) developed a tool for the development of future predictions of forest productivity for natural resource managers that leverage a rich dataset of integrated ecosystem observations across a region.« less

  8. Leveraging 35 years of Pinus taeda research in the southeastern US to constrain forest carbon cycle predictions: regional data assimilation using ecosystem experiments

    DOE PAGES

    Thomas, R. Quinn; Brooks, Evan B.; Jersild, Annika L.; ...

    2017-07-26

    Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model–data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions,more » DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO 2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 10 5 km 2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO 2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO 2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO 2 study were allowed to have different mortality parameters than the other field plots in the region. We present predictions of stem biomass productivity under elevated CO 2, decreased precipitation, and increased nutrient availability that include estimates of uncertainty for the southeastern US. Overall, we (1) demonstrated how three decades of research in southeastern US planted pine forests can be used to develop DA techniques that use multiple locations, multiple data streams, and multiple ecosystem experiment types to optimize parameters and (2) developed a tool for the development of future predictions of forest productivity for natural resource managers that leverage a rich dataset of integrated ecosystem observations across a region.« less

  9. Simulations of forest mortality in Colorado River basin

    NASA Astrophysics Data System (ADS)

    Wei, L.; Xu, C.; Johnson, D. J.; Zhou, H.; McDowell, N.

    2017-12-01

    The Colorado River Basin (CRB) had experienced multiple severe forest mortality events under the recent changing climate. Such forest mortality events may have great impacts on ecosystem services and water budget of the watershed. It is hence important to estimate and predict the forest mortality in the CRB with climate change. We simulated forest mortality in the CRB with a model of plant hydraulics within the FATES (the Functionally Assembled Terrestrial Ecosystem Simulator) coupled to the DOE Earth System model (ACME: Accelerated Climate Model of Energy) at a 0.5 x 0.5 degree resolution. Moreover, we incorporated a stable carbon isotope (δ13C) module to ACME(FATE) and used it as a new predictor of forest mortality. The δ13C values of plants with C3 photosynthetic pathway (almost all trees are C3 plants) can indicate the water stress plants experiencing (the more intensive stress, the less negative δ13C value). We set a δ13C threshold in model simulation, above which forest mortality initiates. We validate the mortality simulations with field data based on Forest Inventory and Analysis (FIA) data, which were aggregated into the same spatial resolution as the model simulations. Different mortality schemes in the model (carbon starvation, hydraulic failure, and δ13C) were tested and compared. Each scheme demonstrated its strength and the plant hydraulics module provided more reliable simulations of forest mortality than the earlier ACME(FATE) version. Further testing is required for better forest mortality modelling.

  10. Using landscape disturbance and succession models to support forest management

    Treesearch

    Eric J. Gustafson; Brian R. Sturtevant; Anatoly S. Shvidenko; Robert M. Scheller

    2010-01-01

    Managers of forested landscapes must account for multiple, interacting ecological processes operating at broad spatial and temporal scales. These interactions can be of such complexity that predictions of future forest ecosystem states are beyond the analytical capability of the human mind. Landscape disturbance and succession models (LDSM) are predictive and...

  11. Predictive mapping for tree sizes and densities in southeast Alaska.

    Treesearch

    John P. Caouette; Eugene J. DeGayner

    2005-01-01

    The Forest Service has relied on a single forest measure, timber volume, to meet many management and planning information needs in southeast Alaska. This economic-based categorization of forest types tends to mask critical information relevant to other contemporary forest-management issues, such as modeling forest structure, ecosystem diversity, or wildlife habitat. We...

  12. soil carbon pools within oak forest is endangered by global climate change in central mexico

    NASA Astrophysics Data System (ADS)

    García-Oliva, Felipe; Merino, Agustín; González-Rodriguez, Antonio; Chávez-Vergara, Bruno; Tapia-Torres, Yunuen; Oyama, Ken

    2016-04-01

    Forest soil represents the main C pool in terrestrial ecosystems. In particular, temperate forest ecosystems play an important role in the C budget among tropical countries, such as Mexico. For example, the temperate forest ecosystem contains higher C contents on average (295 Mg C ha-1) than the soil C associated with other ecosystems in Mexico (between 56 to 287 Mg C ha-1). At a regional scale, oak forest has the highest C content (460 Mg C ha-1) among the forest ecosystem in Michoacán State at Central Mexico. At the local scale, the soil C content is strongly affected by the composition of organic matter produced by the plant species. The oak species are very diverse in Mexico, distributed within two sections: Quercus sensu stricto and Lobatae. The oak species from Quercus s.s. section produced litterfall with lower concentrations of recalcitrant and thermostable compounds than oak species from Lobatae section, therefore the soil under the former species had higher microbial activity and nutrient availability than the soil under the later species. However, the forest fragment with higher amount of oak species from Quercus s.s. section increases the amount of soil C contents. Unfortunately, Quercus species distribution models for the central western region of Mexico predict a decrease of distribution area of the majority of oak species by the year 2080, as a consequence of higher temperatures and lower precipitation expected under climate change scenarios. Additionally to these scenarios, the remnant oak forest fragments suffer strong degradation due to uncontrolled wood extraction and deforestation. For this reason, the conservation of oak forest fragments is a priority to mitigate the greenhouse gases emission to the atmosphere. In order to enhance the protection of these forest fragments it is required that the society identify the ecosystem services that are provided by these forest fragments.

  13. Disturbance, complexity, and succession of net ecosystem production in North America’s temperate deciduous forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gough, Christopher; Curtis, Peter; Hardiman, Brady

    Century-old forests in the U.S. upper Midwest and Northeast power much of North Amer- ica’s terrestrial carbon (C) sink, but these forests’ production and C sequestration capacity are expected to soon decline as fast-growing early successional species die and are replaced by slower growing late successional species. But will this really happen? Here we marshal empirical data and ecological theory to argue that substantial declines in net ecosystem production (NEP) owing to reduced forest growth, or net primary production (NPP), are not imminent in regrown temperate deciduous forests over the next several decades. Forest age and production data for temperatemore » deciduous forests, synthesized from published literature, suggest slight declines in NEP and increasing or stable NPP during middle successional stages. We revisit long-held hypotheses by EP Odum and others that suggest low-severity, high-frequency disturbances occurring in the region’s aging forests will, against intuition, maintain NEP at higher-than- expected rates by increasing ecosystem complexity, sustaining or enhancing NPP to a level that largely o sets rising C losses as heterotrophic respiration increases. This theoretical model is also supported by biological evidence and observations from the Forest Accelerated Succession Experiment in Michigan, USA. Ecosystems that experience high-severity disturbances that simplify ecosystem complexity can exhibit substantial declines in production during middle stages of succession. However, observations from these ecosystems have exerted a disproportionate in uence on assumptions regarding the trajectory and magnitude of age-related declines in forest production. We conclude that there is a wide ecological space for forests to maintain NPP and, in doing so, lessens the declines in NEP, with signi cant implications for the future of the North American carbon sink. Our intellectual frameworks for understanding forest C cycle dynamics and resilience need to catch up to our more complex and nuanced understanding of ecological succession.« less

  14. Forest on the edge: Seasonal cloud forest in Oman creates its own ecological niche

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Anke; Eltahir, Elfatih A. B.

    2006-06-01

    Cloud forests usually grow in the moist tropics where water is not a limiting factor to plant growth. Here, for the first time, we describe the hydrology of a water limited seasonal cloud forest in the Dhofar mountains of Oman. This ecosystem is under significant stress from camels feeding on tree canopies. The Dhofar forests are the remnants of a moist vegetation belt, which once spread across the Arabian Peninsula. According to our investigation the process of cloud immersion during the summer season creates within this desert a niche for moist woodland vegetation. Woodland vegetation survives in this ecosystem, sustained through enhanced capture of cloud water by their canopies (horizontal precipitation). Degraded land lacks this additional water source, which inhibits re-establishment of trees. Our modeling results suggest that cattle feeding may lead to irreversible destruction of one of the most diverse ecosystems in Arabia.

  15. Combining Multi-Source Remotely Sensed Data and a Process-Based Model for Forest Aboveground Biomass Updating.

    PubMed

    Lu, Xiaoman; Zheng, Guang; Miller, Colton; Alvarado, Ernesto

    2017-09-08

    Monitoring and understanding the spatio-temporal variations of forest aboveground biomass (AGB) is a key basis to quantitatively assess the carbon sequestration capacity of a forest ecosystem. To map and update forest AGB in the Greater Khingan Mountains (GKM) of China, this work proposes a physical-based approach. Based on the baseline forest AGB from Landsat Enhanced Thematic Mapper Plus (ETM+) images in 2008, we dynamically updated the annual forest AGB from 2009 to 2012 by adding the annual AGB increment (ABI) obtained from the simulated daily and annual net primary productivity (NPP) using the Boreal Ecosystem Productivity Simulator (BEPS) model. The 2012 result was validated by both field- and aerial laser scanning (ALS)-based AGBs. The predicted forest AGB for 2012 estimated from the process-based model can explain 31% ( n = 35, p < 0.05, RMSE = 2.20 kg/m²) and 85% ( n = 100, p < 0.01, RMSE = 1.71 kg/m²) of variation in field- and ALS-based forest AGBs, respectively. However, due to the saturation of optical remote sensing-based spectral signals and contribution of understory vegetation, the BEPS-based AGB tended to underestimate/overestimate the AGB for dense/sparse forests. Generally, our results showed that the remotely sensed forest AGB estimates could serve as the initial carbon pool to parameterize the process-based model for NPP simulation, and the combination of the baseline forest AGB and BEPS model could effectively update the spatiotemporal distribution of forest AGB.

  16. Combining Multi-Source Remotely Sensed Data and a Process-Based Model for Forest Aboveground Biomass Updating

    PubMed Central

    Lu, Xiaoman; Zheng, Guang; Miller, Colton

    2017-01-01

    Monitoring and understanding the spatio-temporal variations of forest aboveground biomass (AGB) is a key basis to quantitatively assess the carbon sequestration capacity of a forest ecosystem. To map and update forest AGB in the Greater Khingan Mountains (GKM) of China, this work proposes a physical-based approach. Based on the baseline forest AGB from Landsat Enhanced Thematic Mapper Plus (ETM+) images in 2008, we dynamically updated the annual forest AGB from 2009 to 2012 by adding the annual AGB increment (ABI) obtained from the simulated daily and annual net primary productivity (NPP) using the Boreal Ecosystem Productivity Simulator (BEPS) model. The 2012 result was validated by both field- and aerial laser scanning (ALS)-based AGBs. The predicted forest AGB for 2012 estimated from the process-based model can explain 31% (n = 35, p < 0.05, RMSE = 2.20 kg/m2) and 85% (n = 100, p < 0.01, RMSE = 1.71 kg/m2) of variation in field- and ALS-based forest AGBs, respectively. However, due to the saturation of optical remote sensing-based spectral signals and contribution of understory vegetation, the BEPS-based AGB tended to underestimate/overestimate the AGB for dense/sparse forests. Generally, our results showed that the remotely sensed forest AGB estimates could serve as the initial carbon pool to parameterize the process-based model for NPP simulation, and the combination of the baseline forest AGB and BEPS model could effectively update the spatiotemporal distribution of forest AGB. PMID:28885556

  17. Harnessing ecosystem models and multi-criteria decision analysis for the support of forest management.

    PubMed

    Wolfslehner, Bernhard; Seidl, Rupert

    2010-12-01

    The decision-making environment in forest management (FM) has changed drastically during the last decades. Forest management planning is facing increasing complexity due to a widening portfolio of forest goods and services, a societal demand for a rational, transparent decision process and rising uncertainties concerning future environmental conditions (e.g., climate change). Methodological responses to these challenges include an intensified use of ecosystem models to provide an enriched, quantitative information base for FM planning. Furthermore, multi-criteria methods are increasingly used to amalgamate information, preferences, expert judgments and value expressions, in support of the participatory and communicative dimensions of modern forestry. Although the potential of combining these two approaches has been demonstrated in a number of studies, methodological aspects in interfacing forest ecosystem models (FEM) and multi-criteria decision analysis (MCDA) are scarcely addressed explicitly. In this contribution we review the state of the art in FEM and MCDA in the context of FM planning and highlight some of the crucial issues when combining ecosystem and preference modeling. We discuss issues and requirements in selecting approaches suitable for supporting FM planning problems from the growing body of FEM and MCDA concepts. We furthermore identify two major challenges in a harmonized application of FEM-MCDA: (i) the design and implementation of an indicator-based analysis framework capturing ecological and social aspects and their interactions relevant for the decision process, and (ii) holistic information management that supports consistent use of different information sources, provides meta-information as well as information on uncertainties throughout the planning process.

  18. Harnessing Ecosystem Models and Multi-Criteria Decision Analysis for the Support of Forest Management

    NASA Astrophysics Data System (ADS)

    Wolfslehner, Bernhard; Seidl, Rupert

    2010-12-01

    The decision-making environment in forest management (FM) has changed drastically during the last decades. Forest management planning is facing increasing complexity due to a widening portfolio of forest goods and services, a societal demand for a rational, transparent decision process and rising uncertainties concerning future environmental conditions (e.g., climate change). Methodological responses to these challenges include an intensified use of ecosystem models to provide an enriched, quantitative information base for FM planning. Furthermore, multi-criteria methods are increasingly used to amalgamate information, preferences, expert judgments and value expressions, in support of the participatory and communicative dimensions of modern forestry. Although the potential of combining these two approaches has been demonstrated in a number of studies, methodological aspects in interfacing forest ecosystem models (FEM) and multi-criteria decision analysis (MCDA) are scarcely addressed explicitly. In this contribution we review the state of the art in FEM and MCDA in the context of FM planning and highlight some of the crucial issues when combining ecosystem and preference modeling. We discuss issues and requirements in selecting approaches suitable for supporting FM planning problems from the growing body of FEM and MCDA concepts. We furthermore identify two major challenges in a harmonized application of FEM-MCDA: (i) the design and implementation of an indicator-based analysis framework capturing ecological and social aspects and their interactions relevant for the decision process, and (ii) holistic information management that supports consistent use of different information sources, provides meta-information as well as information on uncertainties throughout the planning process.

  19. Strong spatial variability in trace gas dynamics following experimental drought in a humid tropical forest

    Treesearch

    Tana Wood; W. L. Silver

    2012-01-01

    [1] Soil moisture is a key driver of biogeochemical processes in terrestrial ecosystems, strongly affecting carbon (C) and nutrient availability as well as trace gas production and consumption in soils. Models predict increasing drought frequency in tropical forest ecosystems, which could feed back on future climate change directly via effects on trace gasdynamics and...

  20. Windstorm damage in Boundary Waters Canoe Area Wilderness (Minnesota, USA): Evaluating landscape-level risk factors

    Treesearch

    W. Keith Moser; Mark D. Nelson

    2009-01-01

    Ecosystem management requires an understanding of disturbance processes and their influence on forests. One of these disturbances is damage due to severe wind events. In an ideal model, assessing risk of windstorm damage to a forested ecosystem entails defining tree-, stand-, and landscape-level factors that influence response and recovery. Data are not always...

  1. Environmental variation is directly responsible for short- but not long-term variation in forest-atmosphere carbon exchange

    Treesearch

    Andrew D. Richardson; David Y. Hollinger; John D. Aber; Scott V. Ollinger; Bobby H. Braswell

    2007-01-01

    Tower-based eddy covariance measurements of forest-atmosphere carbon dioxide (CO2) exchange from many sites around the world indicate that there is considerable year-to-year variation in net ecosystem exchange (NEE). Here, we use a statistical modeling approach to partition the interannual variability in NEE (and its component fluxes, ecosystem...

  2. Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems.

    PubMed

    Sicard, Pierre; Augustaitis, Algirdas; Belyazid, Salim; Calfapietra, Carlo; de Marco, Alessandra; Fenn, Mark; Bytnerowicz, Andrzej; Grulke, Nancy; He, Shang; Matyssek, Rainer; Serengil, Yusuf; Wieser, Gerhard; Paoletti, Elena

    2016-06-01

    Research directions from the 27th conference for Specialists in Air Pollution and Climate Change Effects on Forest Ecosystems (2015) reflect knowledge advancements about (i) Mechanistic bases of tree responses to multiple climate and pollution stressors, in particular the interaction of ozone (O3) with nitrogen (N) deposition and drought; (ii) Linking genetic control with physiological whole-tree activity; (iii) Epigenetic responses to climate change and air pollution; (iv) Embedding individual tree performance into the multi-factorial stand-level interaction network; (v) Interactions of biogenic and anthropogenic volatile compounds (molecular, functional and ecological bases); (vi) Estimating the potential for carbon/pollution mitigation and cost effectiveness of urban and peri-urban forests; (vii) Selection of trees adapted to the urban environment; (viii) Trophic, competitive and host/parasite relationships under changing pollution and climate; (ix) Atmosphere-biosphere-pedosphere interactions as affected by anthropospheric changes; (x) Statistical analyses for epidemiological investigations; (xi) Use of monitoring for the validation of models; (xii) Holistic view for linking the climate, carbon, N and O3 modelling; (xiii) Inclusion of multiple environmental stresses (biotic and abiotic) in critical load determinations; (xiv) Ecological impacts of N deposition in the under-investigated areas; (xv) Empirical models for mechanistic effects at the local scale; (xvi) Broad-scale N and sulphur deposition input and their effects on forest ecosystem services; (xvii) Measurements of dry deposition of N; (xviii) Assessment of evapotranspiration; (xix) Remote sensing assessment of hydrological parameters; and (xx) Forest management for maximizing water provision and overall forest ecosystem services. Ground-level O3 is still the phytotoxic air pollutant of major concern to forest health. Specific issues about O3 are: (xxi) Developing dose-response relationships and stomatal O3 flux parameterizations for risk assessment, especially, in under-investigated regions; (xxii) Defining biologically based O3 standards for protection thresholds and critical levels; (xxiii) Use of free-air exposure facilities; (xxiv) Assessing O3 impacts on forest ecosystem services. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests

    USGS Publications Warehouse

    Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie A.; Reed, Sasha C.; Reich, Peter B.; Ryan, Michael G.; Wood, Tana E.; Yang, Xiaojuan

    2017-01-01

    For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is to compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.

  4. Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie

    For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO 2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is tomore » compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO 2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.« less

  5. Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests

    NASA Astrophysics Data System (ADS)

    Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie; Reed, Sasha; Reich, Peter B.; Ryan, Michael G.; Wood, Tana E.; Yang, Xiaojuan

    2017-10-01

    For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is to compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.

  6. Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests

    DOE PAGES

    Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie; ...

    2017-10-23

    For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO 2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is tomore » compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO 2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.« less

  7. Computer models for economic and silvicultural decisions

    Treesearch

    Rosalie J. Ingram

    1989-01-01

    Computer systems can help simplify decisionmaking to manage forest ecosystems. We now have computer models to help make forest management decisions by predicting changes associated with a particular management action. Models also help you evaluate alternatives. To be effective, the computer models must be reliable and appropriate for your situation.

  8. Preliminary Survey on TRY Forest Traits and Growth Index Relations - New Challenges

    NASA Astrophysics Data System (ADS)

    Lyubenova, Mariyana; Kattge, Jens; van Bodegom, Peter; Chikalanov, Alexandre; Popova, Silvia; Zlateva, Plamena; Peteva, Simona

    2016-04-01

    Forest ecosystems provide critical ecosystem goods and services, including food, fodder, water, shelter, nutrient cycling, and cultural and recreational value. Forests also store carbon, provide habitat for a wide range of species and help alleviate land degradation and desertification. Thus they have a potentially significant role to play in climate change adaptation planning through maintaining ecosystem services and providing livelihood options. Therefore the study of forest traits is such an important issue not just for individual countries but for the planet as a whole. We need to know what functional relations between forest traits exactly can express TRY data base and haw it will be significant for the global modeling and IPBES. The study of the biodiversity characteristics at all levels and functional links between them is extremely important for the selection of key indicators for assessing biodiversity and ecosystem services for sustainable natural capital control. By comparing the available information in tree data bases: TRY, ITR (International Tree Ring) and SP-PAM the 42 tree species are selected for the traits analyses. The dependence between location characteristics (latitude, longitude, altitude, annual precipitation, annual temperature and soil type) and forest traits (specific leaf area, leaf weight ratio, wood density and growth index) is studied by by multiply regression analyses (RDA) using the statistical software package Canoco 4.5. The Pearson correlation coefficient (measure of linear correlation), Kendal rank correlation coefficient (non parametric measure of statistical dependence) and Spearman correlation coefficient (monotonic function relationship between two variables) are calculated for each pair of variables (indexes) and species. After analysis of above mentioned correlation coefficients the dimensional linear regression models, multidimensional linear and nonlinear regression models and multidimensional neural networks models are built. The strongest dependence between It and WD was obtained. The research will support the work on: Strategic Plan for Biodiversity 2011-2020, modelling and implementation of ecosystem-based approaches to climate change adaptation and disaster risk reduction. Key words: Specific leaf area (SLA), Leaf weight ratio (LWR), Wood density (WD), Growth index (It)

  9. Assessing the protection function of Alpine forest ecosystems using BGC modelling theory

    NASA Astrophysics Data System (ADS)

    Pötzelsberger, E.; Hasenauer, H.; Petritsch, R.; Pietsch, S. A.

    2009-04-01

    The purpose of this study was to assess the protection function of forests in Alpine areas by modelling the flux dynamics (water, carbon, nutrients) within a watershed as they may depend on the vegetation pattern and forest management impacts. The application case for this study was the catchment Schmittenbach, located in the province of Salzburg. Data available covered the hydrology (rainfall measurements from 1981 to 1998 and runoff measurements at the river Schmittenbach from 1981 to 2005), vegetation dynamics (currently 69% forest, predominantly Norway Spruce). The method of simulating the forest growth and water outflow was validated. For simulations of the key ecosystem processes (e.g. photosynthesis, carbon and nitrogen allocation in the different plant parts, litter fall, mineralisation, tree water uptake, transpiration, rainfall interception, evaporation, snow accumulation and snow melt, outflow of spare water) the biogeochemical ecosystem model Biome-BGC was applied. Relevant model extensions were the tree species specific parameter sets and the improved thinning regime. The model is sensitive to site characteristics and needs daily weather data and information on the atmospheric composition, which makes it sensitive to higher CO2-levels and climate change. For model validation 53 plots were selected covering the full range of site quality and stand age. Tree volume and soil was measured and compared with the respective model results. The outflow for the watershed was predicted by combining the simulated forest-outflow (derived from plot-outflow) with the outflow from the non-forest area (calculated with a fixed outflow/rainfall coefficient (OC)). The analysis of production and water related model outputs indicated that mechanistic modelling can be used as a tool to assess the performance of Alpine protection forests. The Water Use Efficiency (WUE), the ratio of Net primary production (NPP) and Transpiration, was found the highest for juvenile stands (≤20yr). The WUE was also found directly proportional to the elevation. A positive correlation between annual outflow and the WUE could be shown. Yearly outflow predictions for the whole catchment for the years 1981-2005 showed no significant difference from the measurements. Key words: protection forests, outflow, flux dynamics, BGC-Modelling

  10. Modeling Sustainable Bioenergy Feedstock Production in the Alps

    NASA Astrophysics Data System (ADS)

    Kraxner, Florian; Leduc, Sylvain; Kindermann, Georg; Fuss, Sabine; Pietsch, Stephan; Lakyda, Ivan; Serrano Leon, Hernan; Shchepashchenko, Dmitry; Shvidenko, Anatoly

    2016-04-01

    Sustainability of bioenergy is often indicated by the neutrality of emissions at the conversion site while the feedstock production site is assumed to be carbon neutral. Recent research shows that sustainability of bioenergy systems starts with feedstock management. Even if sustainable forest management is applied, different management types can impact ecosystem services substantially. This study examines different sustainable forest management systems together with an optimal planning of green-field bioenergy plants in the Alps. Two models - the biophysical global forest model (G4M) and a techno-economic engineering model for optimizing renewable energy systems (BeWhere) are implemented. G4M is applied in a forward looking manner in order to provide information on the forest under different management scenarios: (1) managing the forest for maximizing the carbon sequestration; or (2) managing the forest for maximizing the harvestable wood amount for bioenergy production. The results from the forest modelling are then picked up by the engineering model BeWhere, which optimizes the bioenergy production in terms of energy demand (power and heat demand by population) and supply (wood harvesting potentials), feedstock harvesting and transport costs, the location and capacity of the bioenergy plant as well as the energy distribution logistics with respect to heat and electricity (e.g. considering existing grids for electricity or district heating etc.). First results highlight the importance of considering ecosystem services under different scenarios and in a geographically explicit manner. While aiming at producing the same amount of bioenergy under both forest management scenarios, it turns out that in scenario (1) a substantially larger area (distributed across the Alps) will need to be used for producing (and harvesting) the necessary amount of feedstock than under scenario (2). This result clearly shows that scenario (2) has to be seen as an "intensification scenario" under which more biomass feedstock can be produced and harvested, so that less area would be affected by harvesting and other management activities. Intensification through optimal forest management can lead to a substantial reduction of the area necessary for bioenergy feedstock supply. This in turn means that the "spared" area and the associated ecosystem services can be designated for conservation or other uses. This insight provides support to policy and decision makers in considering the optimal "mix" or "co-existence" of different ecosystem services and economic demands from a modern landscape management approach.

  11. Modeling the Effects of Drought Events on Forest Ecosystem Functioning Historically and Under Scenarios of Climate Change

    NASA Astrophysics Data System (ADS)

    Ren, J.; Hanan, E. J.; Kolden, C.; Abatzoglou, J. T.; Tague, C.; Liu, M.; Adam, J. C.

    2017-12-01

    Drought events have been increasing across the western United States in recent years. Many studies have shown that, in the context of climate change, droughts will continue to be stronger, more frequent, and prolonged in the future. However, the response of forest ecosystems to droughts, particularly multi-year droughts, is not well understood. The objectives of this study are to examine how drought events of varying characteristics (e.g. intensity, duration, frequency, etc.) have affected the functioning of forest ecosystems historically, and how changing drought characteristics (including multi-year droughts) may affect forest functioning in a future climate. We utilize the Regional Hydro-Ecological Simulation System (RHESSys) to simulate impacts of both historical droughts and scenarios of future droughts on forest ecosystems. RHESSys is a spatially-distributed and process-based model that captures the interactions between coupled biogeochemical and hydrologic cycles at catchment scales. Here our case study is the Trail Creek catchment of the Big Wood River basin in Idaho, the Northwestern USA. For historical simulations, we use the gridded meteorological data of 1979 to 2016; for future climate scenarios, we utilize downscaled data from GCMs that have been demonstrated to capture drought events in the Northwest of the USA. From these climate projections, we identify various types of drought in intensity and duration, including multi-year drought events. We evaluate the following responses of ecosystems to these events: 1) evapotranspiration and streamflow; 2) gross primary productivity; 3) the post-drought recovery of plant biomass; and 4) the forest functioning and recovery after multi-year droughts. This research is part of an integration project to examine the roles of drought, insect outbreak, and forest management activities on wildfire activity and its impacts. This project will provide improved information for forest managers and communities in the wild urban interface to adapt to climate change.

  12. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession.

    PubMed

    Lohbeck, Madelon; Poorter, Lourens; Martínez-Ramos, Miguel; Bongers, Frans

    2015-05-01

    Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity, actual litter decomposition, and potential litter decomposition) during secondary succession after shifting cultivation in wet tropical forest of Mexico. We test the importance of three alternative drivers of ecosystem processes: vegetation biomass (vegetation quantity hypothesis), community-weighted trait mean (mass ratio hypothesis), and functional diversity (niche complementarity hypothesis) using structural equation modeling. This allows us to infer the relative importance of different mechanisms underlying ecosystem process recovery. Ecosystem process rates changed during succession, and the strongest driver was aboveground biomass for each of the processes. Productivity of aboveground stem biomass and leaf litter as well as actual litter decomposition increased with initial standing vegetation biomass, whereas potential litter decomposition decreased with standing biomass. Additionally, biomass productivity was positively affected by community-weighted mean of specific leaf area, and potential decomposition was positively affected by functional divergence, and negatively by community-weighted mean of leaf dry matter content. Our empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession. Instead, simply, the amount of vegetation in a site is the major driver of changes, perhaps because there is a steep biomass buildup during succession that overrides more subtle effects of community functional properties on ecosystem processes. We recommend future studies in the field of biodiversity and ecosystem functioning to separate the effects of vegetation quality (community-weighted mean trait values and functional diversity) from those of vegetation quantity (biomass) on ecosystem processes and services.

  13. Models for Forest Ecosystem Management: A European Perspective

    PubMed Central

    Pretzsch, H.; Grote, R.; Reineking, B.; Rötzer, Th.; Seifert, St.

    2008-01-01

    Background Forest management in Europe is committed to sustainability. In the face of climate change and accompanying risks, however, planning in order to achieve this aim becomes increasingly challenging, underlining the need for new and innovative methods. Models potentially integrate a wide range of system knowledge and present scenarios of variables important for any management decision. In the past, however, model development has mainly focused on specific purposes whereas today we are increasingly aware of the need for the whole range of information that can be provided by models. It is therefore assumed helpful to review the various approaches that are available for specific tasks and to discuss how they can be used for future management strategies. Scope Here we develop a concept for the role of models in forest ecosystem management based on historical analyses. Five paradigms of forest management are identified: (1) multiple uses, (2) dominant use, (3) environmentally sensitive multiple uses, (4) full ecosystem approach and (5) eco-regional perspective. An overview of model approaches is given that is dedicated to this purpose and to developments of different kinds of approaches. It is discussed how these models can contribute to goal setting, decision support and development of guidelines for forestry operations. Furthermore, it is shown how scenario analysis, including stand and landscape visualization, can be used to depict alternatives, make long-term consequences of different options transparent, and ease participation of different stakeholder groups and education. Conclusions In our opinion, the current challenge of forest ecosystem management in Europe is to integrate system knowledge from different temporal and spatial scales and from various disciplines. For this purpose, using a set of models with different focus that can be selected from a kind of toolbox according to particular needs is more promising than developing one overarching model, covering ecological, production and landscape issues equally well. PMID:17954471

  14. Modeling urban host tree distributions for invasive forest insects using a two-step approach

    Treesearch

    Mark J. Ambrose; Frank H. Koch; Denys Yemshanov; P. Eric Wiseman

    2015-01-01

    Many alien insect species currently impacting forested ecosystems in North America first appeared in urban forests. Unfortunately, despite serving as critical gateways for the human-mediated spread of these and other forest pests, urban forests remain less well documented than their “natural” forest counterparts. While Forest Inventory and Analysis (FIA) data provide...

  15. Inter-annual variability of carbon fluxes in temperate forest ecosystems: effects of biotic and abiotic factors

    NASA Astrophysics Data System (ADS)

    Chen, M.; Keenan, T. F.; Hufkens, K.; Munger, J. W.; Bohrer, G.; Brzostek, E. R.; Richardson, A. D.

    2014-12-01

    Carbon dynamics in terrestrial ecosystems are influenced by both abiotic and biotic factors. Abiotic factors, such as variation in meteorological conditions, directly drive biophysical and biogeochemical processes; biotic factors, referring to the inherent properties of the ecosystem components, reflect the internal regulating effects including temporal dynamics and memory. The magnitude of the effect of abiotic and biotic factors on forest ecosystem carbon exchange has been suggested to vary at different time scales. In this study, we design and conduct a model-data fusion experiment to investigate the role and relative importance of the biotic and abiotic factors for inter-annual variability of the net ecosystem CO2 exchange (NEE) of temperate deciduous forest ecosystems in the Northeastern US. A process-based model (FöBAAR) is parameterized at four eddy-covariance sites using all available flux and biometric measurements. We conducted a "transplant" modeling experiment, that is, cross- site and parameter simulations with different combinations of site meteorology and parameters. Using wavelet analysis and variance partitioning techniques, analysis of model predictions identifies both spatial variant and spatially invariant parameters. Variability of NEE was primarily modulated by gross primary productivity (GPP), with relative contributions varying from hourly to yearly time scales. The inter-annual variability of GPP and NEE is more regulated by meteorological forcing, but spatial variability in certain model parameters (biotic response) has more substantial effects on the inter-annual variability of ecosystem respiration (Reco) through the effects on carbon pools. Both the biotic and abiotic factors play significant roles in modulating the spatial and temporal variability in terrestrial carbon cycling in the region. Together, our study quantifies the relative importance of both, and calls for better understanding of them to better predict regional CO2 exchanges.

  16. Integrating Nutrient Enrichment and Forest Management Experiments in Sweden to Constrain the Process-Based Land Surface Model ORCHIDEE

    NASA Astrophysics Data System (ADS)

    Resovsky, A.; Luyssaert, S.; Guenet, B.; Peylin, P.; Lansø, A. S.; Vuichard, N.; Messina, P.; Smith, B.; Ryder, J.; Naudts, K.; Chen, Y.; Otto, J.; McGrath, M.; Valade, A.

    2017-12-01

    Understanding coupling between carbon (C) and nitrogen (N) cycling in forest ecosystems is key to predicting global change. Numerous experimental studies have demonstrated the positive response of stand-level photosynthesis and net primary production (NPP) to atmospheric CO2 enrichment, while N availability has been shown to exert an important control on the timing and magnitude of such responses. However, several factors complicate efforts to precisely represent ecosystem-level C and N cycling in the current generation of land surface models (LSMs), including sparse in-situ data, uncertainty with regard to key state variables and disregard for the effects of natural and anthropogenic forest management. In this study, we incorporate empirical data from N-fertilization experiments at two long-term manipulation sites in Sweden to improve the representation of C and N interaction in the ORCHIDEE land surface model. Our version of the model represents the union of two existing ORCHIDEE branches: 1) ORCHIDEE-CN, which resolves processes related to terrestrial C and N cycling, and 2) ORCHIDEE-CAN, which integrates a multi-layer canopy structure and includes representation of forest management practices. Using this new model branch (referred to as ORCHIDEE-CN-CAN), we aim to replicate the growth patterns of managed forests both with and without N limitations. Our hope is that the results, in combination with measurements of various ecosystem parameters (such as soil N) will facilitate LSM optimization, inform future model development, and reduce structural uncertainty in global change predictions.

  17. Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests.

    PubMed

    Samuelson, Lisa J; Stokes, Thomas A; Butnor, John R; Johnsen, Kurt H; Gonzalez-Benecke, Carlos A; Martin, Timothy A; Cropper, Wendell P; Anderson, Pete H; Ramirez, Michael R; Lewis, John C

    2017-01-01

    Forests can partially offset greenhouse gas emissions and contribute to climate change mitigation, mainly through increases in live biomass. We quantified carbon (C) density in 20 managed longleaf pine (Pinus palustris Mill.) forests ranging in age from 5 to 118 years located across the southeastern United States and estimated above- and belowground C trajectories. Ecosystem C stock (all pools including soil C) and aboveground live tree C increased nonlinearly with stand age and the modeled asymptotic maxima were 168 Mg C/ha and 80 Mg C/ha, respectively. Accumulation of ecosystem C with stand age was driven mainly by increases in aboveground live tree C, which ranged from <1 Mg C/ha to 74 Mg C/ha and comprised <1% to 39% of ecosystem C. Live root C (sum of below-stump C, ground penetrating radar measurement of lateral root C, and live fine root C) increased with stand age and represented 4-22% of ecosystem C. Soil C was related to site index, but not to stand age, and made up 39-92% of ecosystem C. Live understory C, forest floor C, downed dead wood C, and standing dead wood C were small fractions of ecosystem C in these frequently burned stands. Stand age and site index accounted for 76% of the variation in ecosystem C among stands. The mean root-to-shoot ratio calculated as the average across all stands (excluding the grass-stage stand) was 0.54 (standard deviation of 0.19) and higher than reports for other conifers. Long-term accumulation of live tree C, combined with the larger role of belowground accumulation of lateral root C than in other forest types, indicates a role of longleaf pine forests in providing disturbance-resistant C storage that can balance the more rapid C accumulation and C removal associated with more intensively managed forests. Although other managed southern pine systems sequester more C over the short-term, we suggest that longleaf pine forests can play a meaningful role in regional forest C management. © 2016 by the Ecological Society of America.

  18. Correlations among stand ages and forest strata in mixed-oak forests of southeastern Ohio

    Treesearch

    P. Charles Goebel; David M. Hix

    1997-01-01

    Many models of landscape ecosystem development, as well as of forest stand dynamics, are based upon spatial and temporal changes in the species composition and structure of various forest strata. However, few document the interrelationships among forest strata, or the response of different strata to alterations of natural disturbance regimes. To examine how...

  19. Modeling compensatory responses of ecosystem-scale water fluxes in forests affected by pine and spruce beetle mortality

    NASA Astrophysics Data System (ADS)

    Millar, D.; Ewers, B. E.; Peckham, S. D.; Mackay, D. S.; Frank, J. M.; Massman, W. J.; Reed, D. E.

    2015-12-01

    Mountain pine beetle (Dendroctonus ponderosae) and spruce beetle (Dendroctonus rufipennis) epidemics have led to extensive mortality in lodgepole pine (Pinus contorta) and Engelmann spruce (Picea engelmannii) forests in the Rocky Mountains of the western US. In both of these tree species, mortality results from hydraulic failure within the xylem, due to blue stain fungal infection associated with beetle attack. However, the impacts of these disturbances on ecosystem-scale water fluxes can be complex, owing to their variable and transient nature. In this work, xylem scaling factors that reduced whole-tree conductance were initially incorporated into a forest ecohydrological model (TREES) to simulate the impact of beetle mortality on evapotranspiration (ET) in both pine and spruce forests. For both forests, simulated ET was compared to observed ET fluxes recorded using eddy covariance techniques. Using xylem scaling factors, the model overestimated the impact of beetle mortality, and observed ET fluxes were approximately two-fold higher than model predictions in both forests. The discrepancy between simulated and observed ET following the onset of beetle mortality may be the result of spatial and temporal heterogeneity of plant communities within the foot prints of the eddy covariance towers. Since simulated ET fluxes following beetle mortality in both forests only accounted for approximately 50% of those observed in the field, it is possible that newly established understory vegetation in recently killed tree stands may play a role in stabilizing ecosystem ET fluxes. Here, we further investigate the unaccounted for ET fluxes in the model by breaking it down into multiple cohorts that represent live trees, dying trees, and understory vegetation that establishes following tree mortality.

  20. Sinks for Inorganic Nitrogen Deposition in Forest Ecosystems with Low and High Nitrogen Deposition in China

    PubMed Central

    Sheng, Wenping; Yu, Guirui; Fang, Huajun; Jiang, Chunming; Yan, Junhua; Zhou, Mei

    2014-01-01

    We added the stable isotope 15N in the form of (15NH4)2SO4 and K15NO3 to forest ecosystems in eastern China under two different N deposition levels to study the fate of the different forms of deposited N. Prior to the addition of the 15N tracers, the natural 15N abundance ranging from −3.4‰ to +10.9‰ in the forest under heavy N deposition at Dinghushan (DHS), and from −3.92‰ to +7.25‰ in the forest under light N deposition at Daxinganling (DXAL). Four months after the tracer application, the total 15N recovery from the major ecosystem compartments ranged from 55.3% to 90.5%. The total 15N recoveries were similar under the (15NH4)2SO4 tracer treatment in both two forest ecosystems, whereas the total 15N recovery was significantly lower in the subtropical forest ecosystem at DHS than in the boreal forest ecosystem at DXAL under the K15NO3 tracer treatment. The 15N assimilated into the tree biomass represented only 8.8% to 33.7% of the 15N added to the forest ecosystems. In both of the tracer application treatments, more 15N was recovered from the tree biomass in the subtropical forest ecosystem at DHS than the boreal forest ecosystem at DXAL. The amount of 15N assimilated into tree biomass was greater under the K15NO3 tracer treatment than that of the (15NH4)2SO4 treatment in both forest ecosystems. This study suggests that, although less N was immobilized in the forest ecosystems under more intensive N deposition conditions, forest ecosystems in China strongly retain N deposition, even in areas under heavy N deposition intensity or in ecosystems undergoing spring freezing and thawing melts. Compared to ammonium deposition, deposited nitrate is released from the forest ecosystem more easily. However, nitrate deposition could be retained mostly in the plant N pool, which might lead to more C sequestration in these ecosystems. PMID:24586688

  1. Sinks for inorganic nitrogen deposition in forest ecosystems with low and high nitrogen deposition in China.

    PubMed

    Sheng, Wenping; Yu, Guirui; Fang, Huajun; Jiang, Chunming; Yan, Junhua; Zhou, Mei

    2014-01-01

    We added the stable isotope (15)N in the form of ((15)NH4)2SO4 and K(15)NO3 to forest ecosystems in eastern China under two different N deposition levels to study the fate of the different forms of deposited N. Prior to the addition of the (15)N tracers, the natural (15)N abundance ranging from -3.4‰ to +10.9‰ in the forest under heavy N deposition at Dinghushan (DHS), and from -3.92‰ to +7.25‰ in the forest under light N deposition at Daxinganling (DXAL). Four months after the tracer application, the total (15)N recovery from the major ecosystem compartments ranged from 55.3% to 90.5%. The total (15)N recoveries were similar under the ((15)NH4)2SO4 tracer treatment in both two forest ecosystems, whereas the total (15)N recovery was significantly lower in the subtropical forest ecosystem at DHS than in the boreal forest ecosystem at DXAL under the K(15)NO3 tracer treatment. The (15)N assimilated into the tree biomass represented only 8.8% to 33.7% of the (15)N added to the forest ecosystems. In both of the tracer application treatments, more (15)N was recovered from the tree biomass in the subtropical forest ecosystem at DHS than the boreal forest ecosystem at DXAL. The amount of (15)N assimilated into tree biomass was greater under the K(15)NO3 tracer treatment than that of the ((15)NH4)2SO4 treatment in both forest ecosystems. This study suggests that, although less N was immobilized in the forest ecosystems under more intensive N deposition conditions, forest ecosystems in China strongly retain N deposition, even in areas under heavy N deposition intensity or in ecosystems undergoing spring freezing and thawing melts. Compared to ammonium deposition, deposited nitrate is released from the forest ecosystem more easily. However, nitrate deposition could be retained mostly in the plant N pool, which might lead to more C sequestration in these ecosystems.

  2. Contribution of ecosystem services to air quality and climate change mitigation policies: the case of urban forests in Barcelona, Spain.

    PubMed

    Baró, Francesc; Chaparro, Lydia; Gómez-Baggethun, Erik; Langemeyer, Johannes; Nowak, David J; Terradas, Jaume

    2014-05-01

    Mounting research highlights the contribution of ecosystem services provided by urban forests to quality of life in cities, yet these services are rarely explicitly considered in environmental policy targets. We quantify regulating services provided by urban forests and evaluate their contribution to comply with policy targets of air quality and climate change mitigation in the municipality of Barcelona, Spain. We apply the i-Tree Eco model to quantify in biophysical and monetary terms the ecosystem services "air purification," "global climate regulation," and the ecosystem disservice "air pollution" associated with biogenic emissions. Our results show that the contribution of urban forests regulating services to abate pollution is substantial in absolute terms, yet modest when compared to overall city levels of air pollution and GHG emissions. We conclude that in order to be effective, green infrastructure-based efforts to offset urban pollution at the municipal level have to be coordinated with territorial policies at broader spatial scales.

  3. Integrating modelling and remote sensing to identify ecosystem performance anomalies in the boreal forest, Yukon River Basin, Alaska

    USGS Publications Warehouse

    Wylie, B.K.; Zhang, L.; Bliss, Norman B.; Ji, Lei; Tieszen, Larry L.; Jolly, W. M.

    2008-01-01

    High-latitude ecosystems are exposed to more pronounced warming effects than other parts of the globe. We develop a technique to monitor ecological changes in a way that distinguishes climate influences from disturbances. In this study, we account for climatic influences on Alaskan boreal forest performance with a data-driven model. We defined ecosystem performance anomalies (EPA) using the residuals of the model and made annual maps of EPA. Most areas (88%) did not have anomalous ecosystem performance for at least 6 of 8 years between 1996 and 2004. Areas with underperforming EPA (10%) often indicate areas associated with recent fires and areas of possible insect infestation or drying soil related to permafrost degradation. Overperforming areas (2%) occurred in older fire recovery areas where increased deciduous vegetation components are expected. The EPA measure was validated with composite burn index data and Landsat vegetation indices near and within burned areas.

  4. Cryptic Methane Emissions from Upland Forest Ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Megonigal, Patrick; Pitz, Scott

    This exploratory research on Cryptic Methane Emissions from Upland Forest Ecosystems was motivated by evidence that upland ecosystems emit 36% as much methane to the atmosphere as global wetlands, yet we knew almost nothing about this source. The long-term objective was to refine Earth system models by quantifying methane emissions from upland forests, and elucidate the biogeochemical processes that govern upland methane emissions. The immediate objectives of the grant were to: (i) test the emerging paradigm that upland trees unexpectedly transpire methane, (ii) test the basic biogeochemical assumptions of an existing global model of upland methane emissions, and (iii) developmore » the suite of biogeochemical approaches that will be needed to advance research on upland methane emissions. We instrumented a temperate forest system in order to explore the processes that govern upland methane emissions. We demonstrated that methane is emitted from the stems of dominant tree species in temperate upland forests. Tree emissions occurred throughout the growing season, while soils adjacent to the trees consumed methane simultaneously, challenging the concept that forests are uniform sinks of methane. High frequency measurements revealed diurnal cycling in the rate of methane emissions, pointing to soils as the methane source and transpiration as the most likely pathway for methane transport. We propose the forests are smaller methane sinks than previously estimated due to stem emissions. Stem emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration, resolving differences between models and measurements. The methods we used can be effectively implemented in order to determine if the phenomenon is widespread.« less

  5. Modeling Climate-Biosphere Interactions in the Boreal Forest

    NASA Technical Reports Server (NTRS)

    Frolking, Steve

    1998-01-01

    The overall goal of this BOREAS Program was to develop, test, and apply a model of the carbon balance of boreal forest sites with a significant groundcover component (moss or lichen). The basic question addressed with this model was: What is the sensitivity of the boreal forest carbon balance to weather variability? More specifically: What are the differences in the sensitivities of carbon gains (photosynthesis) and carbon losses (respiration) of the various components of the ecosystem? Are there different seasonalities to their sensitivities (e.g., warmer springs will have one effect, warmer summers a different effect)? What are the effects of different patterns of successive weather years (wet/dry, warm/cool)? What, for example, would be the difference in effects of two "warmer than normal" months-one with each day warmer than normal, and the other with three normal weeks and one very hot week? Due to weather variability, how "noisy" will any carbon flux or carbon pool signal be that we might use to try to detect change? The project resulted in the development of a new boreal forest ecosystem model. This model was the first model in the BOREAS project to look closely at the role of mosses in the ecosystem carbon balance, and also was the first model in the BOREAS project to look closely at interannual variability in carbon fluxes. Along with the work of many other groups, TE-19 modeling analysis pointed to the need for a second, longer field season in 1996, with particular focus on the spring and fall transitions and on ground vegetation. BOREAS groups TE-19 (Frolking), TGB-1 (Crill) & TGB-3 (Moore & Roulet) analyzed BOREAS data and other published and unpublished data to develop a relationship between peatland ecosystem productivity and incoming radiation, which is quite distinct from the upland ecosystem relationships observed in other studies.

  6. Modelling the potential role of forest thinning in maintaining water supplies under a changing climate across the conterminous United States

    Treesearch

    Ge Sun; Peter V. Caldwell; Steven G. McNulty

    2015-01-01

    The goal of this study was to test the sensitivity of water yield to forest thinning and other forest management/disturbances and climate across the conterminous United States (CONUS). Leaf area index (LAI) was selected as a key parameter linking changes in forest ecosystem structure and functions. We used the Water Supply Stress Index model to examine water yield...

  7. Empirical Succession Mapping and Data Assimilation to Constrain Demographic Processes in an Ecosystem Model

    NASA Astrophysics Data System (ADS)

    Kelly, R.; Andrews, T.; Dietze, M.

    2015-12-01

    Shifts in ecological communities in response to environmental change have implications for biodiversity, ecosystem function, and feedbacks to global climate change. Community composition is fundamentally the product of demography, but demographic processes are simplified or missing altogether in many ecosystem, Earth system, and species distribution models. This limitation arises in part because demographic data are noisy and difficult to synthesize. As a consequence, demographic processes are challenging to formulate in models in the first place, and to verify and constrain with data thereafter. Here, we used a novel analysis of the USFS Forest Inventory Analysis to improve the representation of demography in an ecosystem model. First, we created an Empirical Succession Mapping (ESM) based on ~1 million individual tree observations from the eastern U.S. to identify broad demographic patterns related to forest succession and disturbance. We used results from this analysis to guide reformulation of the Ecosystem Demography model (ED), an existing forest simulator with explicit tree demography. Results from the ESM reveal a coherent, cyclic pattern of change in temperate forest tree size and density over the eastern U.S. The ESM captures key ecological processes including succession, self-thinning, and gap-filling, and quantifies the typical trajectory of these processes as a function of tree size and stand density. Recruitment is most rapid in early-successional stands with low density and mean diameter, but slows as stand density increases; mean diameter increases until thinning promotes recruitment of small-diameter trees. Strikingly, the upper bound of size-density space that emerges in the ESM conforms closely to the self-thinning power law often observed in ecology. The ED model obeys this same overall size-density boundary, but overestimates plot-level growth, mortality, and fecundity rates, leading to unrealistic emergent demographic patterns. In particular, the current ED formulation cannot capture steady state dynamics evident in the ESM. Ongoing efforts are aimed at reformulating ED to more closely approach overall forest dynamics evident in the ESM, and then assimilating inventory data to constrain model parameters and initial conditions.

  8. Forests under climate change and air pollution: gaps in understanding and future directions for research.

    PubMed

    Matyssek, R; Wieser, G; Calfapietra, C; de Vries, W; Dizengremel, P; Ernst, D; Jolivet, Y; Mikkelsen, T N; Mohren, G M J; Le Thiec, D; Tuovinen, J-P; Weatherall, A; Paoletti, E

    2012-01-01

    Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between changes in air quality (trace gas concentrations), climate and other site factors on forest ecosystem response, (ii) significance of biotic processes in system response, (iii) tools for mechanistic and diagnostic understanding and upscaling, and (iv) the need for unifying modelling and empirical research for synthesis. This position paper highlights the above focuses, including the global dimension of air pollution as part of climate change and the need for knowledge transfer to enable reliable risk assessment. A new type of research site in forest ecosystems ("supersites") will be conducive to addressing these gaps by enabling integration of experimentation and modelling within the soil-plant-atmosphere interface, as well as further model development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States

    Treesearch

    Jie Zhu; Ge Sun; Wenhong Li; Yu Zhang; Guofang Miao; Asko Noormets; Steve G. McNulty; John S. King; Mukesh Kumar; Xuan Wang

    2017-01-01

    The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, ground- water recharge, and wildlife habitat. However, these wet- land ecosystems are dependent on local climate and hydrol- ogy, and are therefore at risk due to climate and land use change. This study develops site-...

  10. Recent drought effects on ecosystem carbon uptake in California ecosystems

    NASA Astrophysics Data System (ADS)

    Chen, M.; Guan, K.; Brodrick, P. G.; Berry, J. A.; Asner, G. P.

    2016-12-01

    California is one of the Earth's most biodiverse places and most of California has experienced an extreme (millennium scale) drought in the period of 2012-2015. Although the effect of the drought on the water resources have been well studied, the responses of ecosystems has not been explored in this detail. This study used advanced remotely sensed data (e.g., remotely sensed vegetation indices and solar-induced fluorescence), an ecosystem model, and model-data fusion techniques to study the impacts of the severe drought on ecosystem carbon uptakes in California. We have found that: (1) the drought has significantly suppressed carbon uptake and light use efficiency in California ecosystems - except in the semi-deserts, and the moist forests in the northern coast; (2) effects on the photosynthetic capacity of the ecosystems extends after the drought is relieved; and (3) the drought has shifted both the timing and magnitude of the seasonality of the carbon uptake in non-forested regions. These findings provide a better understanding of the impacts of droughts, and provide an improved basis for prediction of ecosystem responses under a more extreme climate in the future.

  11. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems.

    PubMed

    Hisano, Masumi; Searle, Eric B; Chen, Han Y H

    2018-02-01

    Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. © 2017 Cambridge Philosophical Society.

  12. Changes in the Carbon Cycle of Amazon Ecosystems During the 2010 Drought

    NASA Technical Reports Server (NTRS)

    Potter, Christophera; Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa; Castilla-Rubino, Juan Carlos

    2011-01-01

    Satellite remote sensing was combined with the NASA-CASA carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production (NPP) in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO2 uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon River basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO2 to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to forests outside the main river floodplains.

  13. Nitrous oxide emissions from cropland: A procedure for calibrating the DayCent biogeochemical model using inverse modelling

    USDA-ARS?s Scientific Manuscript database

    DayCent is a biogeochemical model of intermediate complexity widely used to simulate greenhouse gases (GHG), soil organic carbon (SOC) and nutrients in crop, grassland, forest and savannah ecosystems. Although this model has been applied to a wide range of ecosystems, it is still typically parameter...

  14. Aquatic biodiversity in forests: A weak link in ecosystem services resilience

    USGS Publications Warehouse

    Penaluna, Brooke E.; Olson, Deanna H.; Flitcroft, Rebecca L; Weber, Matthew A.; Bellmore, J. Ryan; Wondzell, Steven M.; Dunham, Jason B.; Johnson, Sherri L.; Reeves, Gordon H.

    2017-01-01

    The diversity of aquatic ecosystems is being quickly reduced on many continents, warranting a closer examination of the consequences for ecological integrity and ecosystem services. Here we describe intermediate and final ecosystem services derived from aquatic biodiversity in forests. We include a summary of the factors framing the assembly of aquatic biodiversity in forests in natural systems and how they change with a variety of natural disturbances and human-derived stressors. We consider forested aquatic ecosystems as a multi-state portfolio, with diverse assemblages and life-history strategies occurring at local scales as a consequence of a mosaic of habitat conditions and past disturbances and stressors. Maintaining this multi-state portfolio of assemblages requires a broad perspective of ecosystem structure, various functions, services, and management implications relative to contemporary stressors. Because aquatic biodiversity provides multiple ecosystem services to forests, activities that compromise aquatic ecosystems and biodiversity could be an issue for maintaining forest ecosystem integrity. We illustrate these concepts with examples of aquatic biodiversity and ecosystem services in forests of northwestern North America, also known as Northeast Pacific Rim. Encouraging management planning at broad as well as local spatial scales to recognize multi-state ecosystem management goals has promise for maintaining valuable ecosystem services. Ultimately, integration of information from socio-ecological ecosystems will be needed to maintain ecosystem services derived directly and indirectly from forest aquatic biota.

  15. Modeling the temporal dynamics of nonstructural carbohydrate pools in forest trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Andrew D.

    Trees store carbohydrates, in the form of sugars and starch, as reserves to be used to power both future growth as well as to support day-to-day metabolic functions. These reserves are particularly important in the context of how trees cope with disturbance and stress—for example, as related to pest outbreaks, wind or ice damage, and extreme climate events. In this project, we measured the size of carbon reserves in forest trees, and determined how quickly these reserves are used and replaced—i.e., their “turnover time”. Our work was conducted at Harvard Forest, a temperate deciduous forest in central Massachusetts. Through fieldmore » sampling, laboratory-based chemical analyses, and allometric modeling, we scaled these measurements up to whole-tree NSC budgets. We used these data to test and improve computer simulation models of carbon flow through forest ecosystems. Our modeling focused on the mathematical representation of these stored carbon reserves, and we examined the sensitivity of model performance to different model structures. This project contributes to DOE’s goal to improve next-generation models of the earth system, and to understand the impacts of climate change on terrestrial ecosystems.« less

  16. Spatial and temporal patterns of carbon storage in forest ecosystems on Hainan island, southern China.

    PubMed

    Ren, Hai; Li, Linjun; Liu, Qiang; Wang, Xu; Li, Yide; Hui, Dafeng; Jian, Shuguang; Wang, Jun; Yang, Huai; Lu, Hongfang; Zhou, Guoyi; Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing

    2014-01-01

    Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993-2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices.

  17. Spatial and Temporal Patterns of Carbon Storage in Forest Ecosystems on Hainan Island, Southern China

    PubMed Central

    Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing

    2014-01-01

    Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993–2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices. PMID:25229628

  18. Simulating forest landscape disturbances as coupled human and natural systems

    USGS Publications Warehouse

    Wimberly, Michael; Sohl, Terry L.; Liu, Zhihua; Lamsal, Aashis

    2015-01-01

    Anthropogenic disturbances resulting from human land use affect forest landscapes over a range of spatial and temporal scales, with diverse influences on vegetation patterns and dynamics. These processes fall within the scope of the coupled human and natural systems (CHANS) concept, which has emerged as an important framework for understanding the reciprocal interactions and feedbacks that connect human activities and ecosystem responses. Spatial simulation modeling of forest landscape change is an important technique for exploring the dynamics of CHANS over large areas and long time periods. Landscape models for simulating interactions between human activities and forest landscape dynamics can be grouped into two main categories. Forest landscape models (FLMs) focus on landscapes where forests are the dominant land cover and simulate succession and natural disturbances along with forest management activities. In contrast, land change models (LCMs) simulate mosaics of different land cover and land use classes that include forests in addition to other land uses such as developed areas and agricultural lands. There are also several examples of coupled models that combine elements of FLMs and LCMs. These integrated models are particularly useful for simulating human–natural interactions in landscapes where human settlement and agriculture are expanding into forested areas. Despite important differences in spatial scale and disciplinary scope, FLMs and LCMs have many commonalities in conceptual design and technical implementation that can facilitate continued integration. The ultimate goal will be to implement forest landscape disturbance modeling in a CHANS framework that recognizes the contextual effects of regional land use and other human activities on the forest ecosystem while capturing the reciprocal influences of forests and their disturbances on the broader land use mosaic.

  19. A study on the relationship between carbon budget and ecosystem service in urban areas according to urbanization

    NASA Astrophysics Data System (ADS)

    Lee, S. J.; Lee, W. K.

    2017-12-01

    The study on the analysis of carbon storage capacity of urban green spaces with increasing urban forest. Modern cities have experienced rapid economic development since Industrial Revolution in the 18th century. The rapid economic growth caused an exponential concentration of population to the cities and decrease of green spaces due to the conversion of forest and agricultural lands to build-up areas with rapid urbanization. As green areas including forests, grasslands, and wetlands provide diverse economic, environmental, and cultural benefits, the decrease of green areas might be a huge loss. Also, the process of urbanization caused pressure on the urban environment more than its natural capacity, which accelerates global climate change. This study tries to see the relations between carbon budget and ecosystem services according to the urbanization. For calculating carbon dynamics, this study used VISIT(Vegetation Integrated Simulator for trace gases) model. And the value that ecosystem provides is explained with the concept of ecosystem service and calculated by InVEST model. Study sites are urban and peri-urban areas in Northeast Asia. From the result of the study, the effect of the urbanization can be understood in regard to carbon storage and ecosystem services.

  20. Developing the next generation of forest ecosystem models

    Treesearch

    Christopher R. Schwalm; Alan R. Ek

    2002-01-01

    Forest ecology and management are model-rich areas for research. Models are often cast as either empirical or mechanistic. With evolving climate change, hybrid models gain new relevance because of their ability to integrate existing mechanistic knowledge with empiricism based on causal thinking. The utility of hybrid platforms results in the combination of...

  1. Later springs green-up faster: the relation between onset and completion of green-up in deciduous forests of North America

    NASA Astrophysics Data System (ADS)

    Klosterman, Stephen; Hufkens, Koen; Richardson, Andrew D.

    2018-05-01

    In deciduous forests, spring leaf phenology controls the onset of numerous ecosystem functions. While most studies have focused on a single annual spring event, such as budburst, ecosystem functions like photosynthesis and transpiration increase gradually after budburst, as leaves grow to their mature size. Here, we examine the "velocity of green-up," or duration between budburst and leaf maturity, in deciduous forest ecosystems of eastern North America. We use a diverse data set that includes 301 site-years of phenocam data across a range of sites, as well as 22 years of direct ground observations of individual trees and 3 years of fine-scale high-frequency aerial photography, both from Harvard Forest. We find a significant association between later start of spring and faster green-up: - 0.47 ± 0.04 (slope ± 1 SE) days change in length of green-up for every day later start of spring within phenocam sites, - 0.31 ± 0.06 days/day for trees under direct observation, and - 1.61 ± 0.08 days/day spatially across fine-scale landscape units. To explore the climatic drivers of spring leaf development, we fit degree-day models to the observational data from Harvard Forest. We find that the default phenology parameters of the ecosystem model PnET make biased predictions of leaf initiation (39 days early) and maturity (13 days late) for red oak, while the optimized model has biases of 1 day or less. Springtime productivity predictions using optimized parameters are closer to results driven by observational data (within 1%) than those of the default parameterization (17% difference). Our study advances empirical understanding of the link between early and late spring phenophases and demonstrates that accurately modeling these transitions is important for simulating seasonal variation in ecosystem productivity.

  2. Managing burned landscapes: Evaluating future management strategies for resilient forests under a warming climate

    Treesearch

    K. L. Shive; P. Z. Fule; C. H. Sieg; B. A. Strom; M. E. Hunter

    2014-01-01

    Climate change effects on forested ecosystems worldwide include increases in drought-related mortality, changes to disturbance regimes and shifts in species distributions. Such climate-induced changes will alter the outcomes of current management strategies, complicating the selection of appropriate strategies to promote forest resilience. We modelled forest growth in...

  3. Modelling the ecological vulnerability to forest fires in mediterranean ecosystems using geographic information technologies.

    PubMed

    Duguy, Beatriz; Alloza, José Antonio; Baeza, M Jaime; De la Riva, Juan; Echeverría, Maite; Ibarra, Paloma; Llovet, Juan; Cabello, Fernando Pérez; Rovira, Pere; Vallejo, Ramon V

    2012-12-01

    Forest fires represent a major driver of change at the ecosystem and landscape levels in the Mediterranean region. Environmental features and vegetation are key factors to estimate the ecological vulnerability to fire; defined as the degree to which an ecosystem is susceptible to, and unable to cope with, adverse effects of fire (provided a fire occurs). Given the predicted climatic changes for the region, it is urgent to validate spatially explicit tools for assessing this vulnerability in order to support the design of new fire prevention and restoration strategies. This work presents an innovative GIS-based modelling approach to evaluate the ecological vulnerability to fire of an ecosystem, considering its main components (soil and vegetation) and different time scales. The evaluation was structured in three stages: short-term (focussed on soil degradation risk), medium-term (focussed on changes in vegetation), and coupling of the short- and medium-term vulnerabilities. The model was implemented in two regions: Aragón (inland North-eastern Spain) and Valencia (eastern Spain). Maps of the ecological vulnerability to fire were produced at a regional scale. We partially validated the model in a study site combining two complementary approaches that focused on testing the adequacy of model's predictions in three ecosystems, all very common in fire-prone landscapes of eastern Spain: two shrublands and a pine forest. Both approaches were based on the comparison of model's predictions with values of NDVI (Normalized Difference Vegetation Index), which is considered a good proxy for green biomass. Both methods showed that the model's performance is satisfactory when applied to the three selected vegetation types.

  4. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change

    PubMed Central

    Longo, Marcos; Baccini, Alessandro; Phillips, Oliver L.; Lewis, Simon L.; Alvarez-Dávila, Esteban; Segalin de Andrade, Ana Cristina; Brienen, Roel J. W.; Erwin, Terry L.; Feldpausch, Ted R.; Monteagudo Mendoza, Abel Lorenzo; Nuñez Vargas, Percy; Prieto, Adriana; Silva-Espejo, Javier Eduardo; Malhi, Yadvinder; Moorcroft, Paul R.

    2016-01-01

    Amazon forests, which store ∼50% of tropical forest carbon and play a vital role in global water, energy, and carbon cycling, are predicted to experience both longer and more intense dry seasons by the end of the 21st century. However, the climate sensitivity of this ecosystem remains uncertain: several studies have predicted large-scale die-back of the Amazon, whereas several more recent studies predict that the biome will remain largely intact. Combining remote-sensing and ground-based observations with a size- and age-structured terrestrial ecosystem model, we explore the sensitivity and ecological resilience of these forests to changes in climate. We demonstrate that water stress operating at the scale of individual plants, combined with spatial variation in soil texture, explains observed patterns of variation in ecosystem biomass, composition, and dynamics across the region, and strongly influences the ecosystem’s resilience to changes in dry season length. Specifically, our analysis suggests that in contrast to existing predictions of either stability or catastrophic biomass loss, the Amazon forest’s response to a drying regional climate is likely to be an immediate, graded, heterogeneous transition from high-biomass moist forests to transitional dry forests and woody savannah-like states. Fire, logging, and other anthropogenic disturbances may, however, exacerbate these climate change-induced ecosystem transitions. PMID:26711984

  5. Seasonal carbon fluxes for an old-growth temperate forest inferred from carbonyl sulphide

    NASA Astrophysics Data System (ADS)

    Rastogi, Bharat; Jiang, Yueyang; Berkelhammer, Maxwell; Wharton, Sonia; Noone, David; Still, Christopher

    2017-04-01

    Characterizing and quantifying the processes that control terrestrial ecosystem exchanges of carbon and water are critical for understanding how forested ecosystems respond to a changing climate. A small but increasing number of studies has identified carbonyl sulfide (OCS) as a potential tracer of canopy photosynthesis and stomatal function. Here we present seasonal fluxes of OCS from a 60m tall old-growth temperate forest. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W) in 2014 and 2015. GPP (Gross Primary Production) is inferred from OCS fluxes and compared with estimates derived from measurements of NEE (Net Ecosystem Exchange) from eddy flux data as well as GPP predictions using a process based model. Our findings seek to resolve scientific questions regarding ecosystem carbon exchange from tall old growth forests, which have a complicated vertical leaf area structure, high above ground biomass and amount and aerial cover of epiphytic vegetation. Estimates of canopy conductance calculated using tower flux data are also combined with measurements of stable isotopologues of CO2 to infer emergent ecosystem properties such as canopy ci/ca and water use efficiency.

  6. A quantitative assessment of a terrestrial biosphere model's data needs across North American biomes

    NASA Astrophysics Data System (ADS)

    Dietze, Michael C.; Serbin, Shawn P.; Davidson, Carl; Desai, Ankur R.; Feng, Xiaohui; Kelly, Ryan; Kooper, Rob; LeBauer, David; Mantooth, Joshua; McHenry, Kenton; Wang, Dan

    2014-03-01

    Terrestrial biosphere models are designed to synthesize our current understanding of how ecosystems function, test competing hypotheses of ecosystem function against observations, and predict responses to novel conditions such as those expected under climate change. Reducing uncertainties in such models can improve both basic scientific understanding and our predictive capacity, but rarely are ecosystem models employed in the design of field campaigns. We provide a synthesis of carbon cycle uncertainty analyses conducted using the Predictive Ecosystem Analyzer ecoinformatics workflow with the Ecosystem Demography model v2. This work is a synthesis of multiple projects, using Bayesian data assimilation techniques to incorporate field data and trait databases across temperate forests, grasslands, agriculture, short rotation forestry, boreal forests, and tundra. We report on a number of data needs that span a wide array of diverse biomes, such as the need for better constraint on growth respiration, mortality, stomatal conductance, and water uptake. We also identify data needs that are biome specific, such as photosynthetic quantum efficiency at high latitudes. We recommend that future data collection efforts balance the bias of past measurements toward aboveground processes in temperate biomes with the sensitivities of different processes as represented by ecosystem models. ©2014. American Geophysical Union. All Rights Reserved.

  7. Satellite-based modeling of gross primary production in an evergreen needleleaf forest

    Treesearch

    Xiangming Xiao; David Hollinger; John Aber; Mike Goltz; Eric A. Davidson; Qingyuan Zhang; Berrien Moore III

    2004-01-01

    The eddy covariance technique provides valuable information on net ecosystem exchange (NEE) of CO2, between the atmosphere and terrestrial ecosystems, ecosystem respiration, and gross primary production (GPP) at a variety of C02 eddy flux tower sites. In this paper, we develop a new, satellite-based Vegetation Photosynthesis Model (VPM) to estimate the seasonal dynamcs...

  8. Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests.

    PubMed

    Susaeta, Andres; Adams, Damian C; Carter, Douglas R; Dwivedi, Puneet

    2016-09-01

    Forests provide myriad ecosystem services that are vital to humanity. With climate change, we expect to see significant changes to forests that will alter the supply of these critical services and affect human well-being. To better understand the impacts of climate change on forest-based ecosystem services, we applied a data envelopment analysis method to assess plot-level efficiency in the provision of ecosystem services in Florida natural loblolly pine (Pinus taeda L.) forests. Using field data for n = 16 loblolly pine forest plots, including inputs such as site index, tree density, age, precipitation, and temperatures for each forest plot, we assessed the relative plot-level production of three ecosystem services: timber, carbon sequestered, and species richness. The results suggested that loblolly pine forests in Florida were largely inefficient in the provision of these ecosystem services under current climatic conditions. Climate change had a small negative impact on the loblolly pine forests efficiency in the provision of ecosystem services. In this context, we discussed the reduction of tree density that may not improve ecosystem services production.

  9. Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests

    NASA Astrophysics Data System (ADS)

    Susaeta, Andres; Adams, Damian C.; Carter, Douglas R.; Dwivedi, Puneet

    2016-09-01

    Forests provide myriad ecosystem services that are vital to humanity. With climate change, we expect to see significant changes to forests that will alter the supply of these critical services and affect human well-being. To better understand the impacts of climate change on forest-based ecosystem services, we applied a data envelopment analysis method to assess plot-level efficiency in the provision of ecosystem services in Florida natural loblolly pine ( Pinus taeda L.) forests. Using field data for n = 16 loblolly pine forest plots, including inputs such as site index, tree density, age, precipitation, and temperatures for each forest plot, we assessed the relative plot-level production of three ecosystem services: timber, carbon sequestered, and species richness. The results suggested that loblolly pine forests in Florida were largely inefficient in the provision of these ecosystem services under current climatic conditions. Climate change had a small negative impact on the loblolly pine forests efficiency in the provision of ecosystem services. In this context, we discussed the reduction of tree density that may not improve ecosystem services production.

  10. Soil carbon stocks across tropical forests of Panama regulated by base cation effects on fine roots

    DOE PAGES

    Cusack, Daniela F.; Markesteijn, Lars; Condit, Richard; ...

    2018-01-02

    We report that tropical forests are the most carbon (C)- rich ecosystems on Earth, containing 25–40% of global terrestrial C stocks. While large-scale quantifi- cation of aboveground biomass in tropical forests has improved recently, soil C dynamics remain one of the largest sources of uncertainty in Earth system models, which inhibits our ability to predict future climate. Globally, soil texture and climate predict B 30% of the variation in soil C stocks, so ecosystem models often predict soil C using measures of aboveground plant growth. However, this approach can underestimate tropical soil C stocks, and has proven inaccurate when comparedmore » with data for soil C in data-rich northern ecosystems. By quantifying soil organic C stocks to 1 m depth for 48 humid tropical forest plots across gradients of rainfall and soil fertility in Panama, we show that soil C does not correlate with common predictors used in models, such as plant biomass or litter production. Instead, a structural equation model including base cations, soil clay content, and rainfall as exogenous factors and root biomass as an endogenous factor predicted nearly 50% of the variation in tropical soil C stocks, indicating a strong indirect effect of base cation availability on tropical soil C storage. Including soil base cations in C cycle models, and thus emphasizing mechanistic links among nutrients, root biomass, and soil C stocks, will improve prediction of climate-soil feedbacks in tropical forests.« less

  11. Soil carbon stocks across tropical forests of Panama regulated by base cation effects on fine roots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cusack, Daniela F.; Markesteijn, Lars; Condit, Richard

    We report that tropical forests are the most carbon (C)- rich ecosystems on Earth, containing 25–40% of global terrestrial C stocks. While large-scale quantifi- cation of aboveground biomass in tropical forests has improved recently, soil C dynamics remain one of the largest sources of uncertainty in Earth system models, which inhibits our ability to predict future climate. Globally, soil texture and climate predict B 30% of the variation in soil C stocks, so ecosystem models often predict soil C using measures of aboveground plant growth. However, this approach can underestimate tropical soil C stocks, and has proven inaccurate when comparedmore » with data for soil C in data-rich northern ecosystems. By quantifying soil organic C stocks to 1 m depth for 48 humid tropical forest plots across gradients of rainfall and soil fertility in Panama, we show that soil C does not correlate with common predictors used in models, such as plant biomass or litter production. Instead, a structural equation model including base cations, soil clay content, and rainfall as exogenous factors and root biomass as an endogenous factor predicted nearly 50% of the variation in tropical soil C stocks, indicating a strong indirect effect of base cation availability on tropical soil C storage. Including soil base cations in C cycle models, and thus emphasizing mechanistic links among nutrients, root biomass, and soil C stocks, will improve prediction of climate-soil feedbacks in tropical forests.« less

  12. Modelling effects of forest disturbance history on carbon balance: a deep learning approach using Landsat-time series.

    NASA Astrophysics Data System (ADS)

    Besnard, S.; Carvalhais, N.; Clevers, J.; Dutrieux, L.; Gans, F.; Herold, M.; Reichstein, M.; Jung, M.

    2017-12-01

    Forests play a crucial role in the global carbon (C) cycle, covering about 30% of the planet's terrestrial surface, accounting for 50% of plant productivity, and storing 45% of all terrestrial C. As such, forest disturbances affect the balance of terrestrial C dioxide (CO 2 ) exchange, with the potential of releasing large amounts of C into the atmosphere. Understanding and quantifying the effect of forest disturbance on terrestrial C metabolism is critical for improving forest C balance estimates and predictions. Here we combine remote sensing, climate, and eddy-covariance (EC) data to study forest land surface-atmosphere C fluxes at more than 180 sites globally. We aim to enhance understanding of C balance in forest ecosystems by capturing the ecological carry-over effect of disturbance historyon C fluxes. Our objectives are to (1) characterize forest disturbance history through the full temporal depth of the Landsat time series (LTS); and (2) to investigate lag and carry-over effects of forest dynamics and climate on ecosystem C fluxes using a data-driven recurrent neural network(RNN). The resulting data-driven model integrates carry-over effects of the system, using LTS, ecosystem productivity, and several abiotic factors. In this study, we show that our RNN algorithm is able to effectively calculate realistic seasonal, interannual, and across-site C flux variabilities based on EC, LTS, and climate data. In addition, our results demonstrate that a deep learning approach with embedded dynamic memory effects offorest dynamics is able to better capture lag and carry-over effects due to soil-vegetation feedback compared to a classic approach considering only the current condition of the ecosystem. Our study paves the way to produce accurate, high resolution carbon fluxes maps, providing morecomprehensive monitoring, mapping, and reporting of the carbon consequences of forest change globally.

  13. Influence of disturbance on temperate forest productivity

    USGS Publications Warehouse

    Peters, Emily B.; Wythers, Kirk R.; Bradford, John B.; Reich, Peter B.

    2013-01-01

    Climate, tree species traits, and soil fertility are key controls on forest productivity. However, in most forest ecosystems, natural and human disturbances, such as wind throw, fire, and harvest, can also exert important and lasting direct and indirect influence over productivity. We used an ecosystem model, PnET-CN, to examine how disturbance type, intensity, and frequency influence net primary production (NPP) across a range of forest types from Minnesota and Wisconsin, USA. We assessed the importance of past disturbances on NPP, net N mineralization, foliar N, and leaf area index at 107 forest stands of differing types (aspen, jack pine, northern hardwood, black spruce) and disturbance history (fire, harvest) by comparing model simulations with observations. The model reasonably predicted differences among forest types in productivity, foliar N, leaf area index, and net N mineralization. Model simulations that included past disturbances minimally improved predictions compared to simulations without disturbance, suggesting the legacy of past disturbances played a minor role in influencing current forest productivity rates. Modeled NPP was more sensitive to the intensity of soil removal during a disturbance than the fraction of stand mortality or wood removal. Increasing crown fire frequency resulted in lower NPP, particularly for conifer forest types with longer leaf life spans and longer recovery times. These findings suggest that, over long time periods, moderate frequency disturbances are a relatively less important control on productivity than climate, soil, and species traits.

  14. Lidar Remote Sensing of Forests: New Instruments and Modeling Capabilities

    NASA Technical Reports Server (NTRS)

    Cook, Bruce D.

    2012-01-01

    Lidar instruments provide scientists with the unique opportunity to characterize the 3D structure of forest ecosystems. This information allows us to estimate properties such as wood volume, biomass density, stocking density, canopy cover, and leaf area. Structural information also can be used as drivers for photosynthesis and ecosystem demography models to predict forest growth and carbon sequestration. All lidars use time-in-flight measurements to compute accurate ranging measurements; however, there is a wide range of instruments and data types that are currently available, and instrument technology continues to advance at a rapid pace. This seminar will present new technologies that are in use and under development at NASA for airborne and space-based missions. Opportunities for instrument and data fusion will also be discussed, as Dr. Cook is the PI for G-LiHT, Goddard's LiDAR, Hyperspectral, and Thermal airborne imager. Lastly, this talk will introduce radiative transfer models that can simulate interactions between laser light and forest canopies. Developing modeling capabilities is important for providing continuity between observations made with different lidars, and to assist the design of new instruments. Dr. Bruce Cook is a research scientist in NASA's Biospheric Sciences Laboratory at Goddard Space Flight Center, and has more than 25 years of experience conducting research on ecosystem processes, soil biogeochemistry, and exchange of carbon, water vapor and energy between the terrestrial biosphere and atmosphere. His research interests include the combined use of lidar, hyperspectral, and thermal data for characterizing ecosystem form and function. He is Deputy Project Scientist for the Landsat Data Continuity Mission (LDCM); Project Manager for NASA s Carbon Monitoring System (CMS) pilot project for local-scale forest biomass; and PI of Goddard's LiDAR, Hyperspectral, and Thermal (G-LiHT) airborne imager.

  15. Guiding the Next Generation of Forest FACE Experiments with Lessons from the Past

    NASA Astrophysics Data System (ADS)

    Norby, Richard

    2016-04-01

    The free air CO2 enrichment (FACE) experiments that were initiated in forest ecosystems 20 years ago represented a large commitment of time and energy of many students, early career, and senior scientists, and they were a substantial investment of funding from government science agencies. The experiments produced hundreds of primary research papers and dozens of synthesis and review papers, so it is highly appropriate to ask: What did we learn from this enterprise about how trees and forests will respond to an ever increasing concentration of CO2 in the atmosphere? The diversity of sites and species preclude any single, simple answer. Nevertheless, the FACE experiments were successful in building upon earlier, smaller scale elevated CO2 experiments to provide the data needed to evaluate hypotheses derived from past results, and they provided novel insights into the ecological mechanisms controlling the cycling and storage of carbon in terrestrial ecosystems. Important lessons include: (1) Net primary productivity is increased by elevated CO2, but the response can diminish over time. (2) Carbon accumulation is driven by the distribution of carbon among plant and soil components with differing turnover rates and by interactions between the carbon and nitrogen cycles. (3) Plant community structure may change, but elevated CO2 has only minor effects on microbial community structure. However, despite these insights, the size and longevity of forests preclude experimental evaluation, even in decade-long experiments, of the critical global-scale issues associated with forest responses to rising atmospheric CO2 concentration and the feedbacks provided to the climate system. Instead, we must rely on models that simulate the exchange of carbon, water, and energy in the terrestrial biosphere. An important objective of FACE experiments has always been to provide data and evaluation tools for ecosystem models and thereby contribute to our ability to project how ecosystems will respond to future CO2 concentrations. The FACE model-data synthesis (FACE-MDS) project challenged 11 terrestrial ecosystem models with data from the Oak Ridge National Laboratory FACE experiment in Tennessee, USA, and Duke FACE in North Carolina, USA. This exercise was valuable in identifying critical model assumptions and evaluating whether the assumptions were supported by the experimental data, and it provided a framework to evaluate forest processes that occur over much longer time frames than the duration of the experiments. The next generation of forest FACE experiments will greatly expand the breadth of our knowledge base on responses to elevated CO2 by investigating responses of mature forest ecosystems in boreal to tropical biomes over a wide range of climatic and edaphic conditions. Our experience with the FACE-MDS has shown the value in initiating the model-data interaction as an integral part of experimental design. The FACE-MDS framework has led to a set of model-guided, cross-site science questions for new FACE experiments, including responses of mature forests; interactions with temperature, water stress, and phosphorus limitation; and the influence of biodiversity. This sets an exciting research agenda for the next decade.

  16. Model-data fusion across ecosystems: from multisite optimizations to global simulations

    NASA Astrophysics Data System (ADS)

    Kuppel, S.; Peylin, P.; Maignan, F.; Chevallier, F.; Kiely, G.; Montagnani, L.; Cescatti, A.

    2014-11-01

    This study uses a variational data assimilation framework to simultaneously constrain a global ecosystem model with eddy covariance measurements of daily net ecosystem exchange (NEE) and latent heat (LE) fluxes from a large number of sites grouped in seven plant functional types (PFTs). It is an attempt to bridge the gap between the numerous site-specific parameter optimization works found in the literature and the generic parameterization used by most land surface models within each PFT. The present multisite approach allows deriving PFT-generic sets of optimized parameters enhancing the agreement between measured and simulated fluxes at most of the sites considered, with performances often comparable to those of the corresponding site-specific optimizations. Besides reducing the PFT-averaged model-data root-mean-square difference (RMSD) and the associated daily output uncertainty, the optimization improves the simulated CO2 balance at tropical and temperate forests sites. The major site-level NEE adjustments at the seasonal scale are reduced amplitude in C3 grasslands and boreal forests, increased seasonality in temperate evergreen forests, and better model-data phasing in temperate deciduous broadleaf forests. Conversely, the poorer performances in tropical evergreen broadleaf forests points to deficiencies regarding the modelling of phenology and soil water stress for this PFT. An evaluation with data-oriented estimates of photosynthesis (GPP - gross primary productivity) and ecosystem respiration (Reco) rates indicates distinctively improved simulations of both gross fluxes. The multisite parameter sets are then tested against CO2 concentrations measured at 53 locations around the globe, showing significant adjustments of the modelled seasonality of atmospheric CO2 concentration, whose relevance seems PFT-dependent, along with an improved interannual variability. Lastly, a global-scale evaluation with remote sensing NDVI (normalized difference vegetation index) measurements indicates an improvement of the simulated seasonal variations of the foliar cover for all considered PFTs.

  17. Integration of ground and satellite data to model Mediterranean forest processes

    NASA Astrophysics Data System (ADS)

    Chiesi, M.; Fibbi, L.; Genesio, L.; Gioli, B.; Magno, R.; Maselli, F.; Moriondo, M.; Vaccari, F. P.

    2011-06-01

    The current work presents the testing of a modeling strategy that has been recently developed to simulate the gross and net carbon fluxes of Mediterranean forest ecosystems. The strategy is based on the use of a NDVI-driven parametric model, C-Fix, and of a biogeochemical model, BIOME-BGC, whose outputs are combined to simulate the behavior of forest ecosystems at different development stages. The performances of the modeling strategy are evaluated in three Italian study sites (San Rossore, Lecceto and Pianosa), where carbon fluxes are being measured through the eddy correlation technique. These sites are characterized by variable Mediterranean climates and are covered by different types of forest vegetation (pine wood, Holm oak forest and Macchia, respectively). The results of the tests indicate that the modeling strategy is generally capable of reproducing monthly GPP and NEE patterns in all three study sites. The highest accuracy is obtained in the most mature, homogenous pine wood of San Rossore, while the worst results are found in the Lecceto forest, where there are the most heterogeneous terrain, soil and vegetation conditions. The main error sources are identified in the inaccurate definition of the model inputs, particularly those regulating the site water budgets, which exert a strong control on forest productivity during the Mediterranean summer dry season. In general, the incorporation of NDVI-derived fAPAR estimates corrects for most of these errors and renders the forest flux simulations more stable and accurate.

  18. Density-dependent vulnerability of forest ecosystems to drought

    USGS Publications Warehouse

    Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Bradford, John B.; Fraver, Shawn; Battaglia, Mike A.; Asherin, Lance A.

    2017-01-01

    1. Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary driver of competitive intensity among trees, which influences tree growth and mortality. Manipulating tree population density may be a mechanism for moderating drought-induced stress and growth reductions, although the relationship between tree population density and tree drought vulnerability remains poorly quantified, especially across climatic gradients.2. In this study, we examined three long-term forest ecosystem experiments in two widely distributed North American pine species, ponderosa pine Pinus ponderosa (Lawson & C. Lawson) and red pine Pinus resinosa (Aiton), to better elucidate the relationship between tree population density, growth and drought. These experiments span a broad latitude and aridity range and include tree population density treatments that have been purposefully maintained for several decades. We investigated how tree population density influenced resistance (growth during drought) and resilience (growth after drought compared to pre-drought growth) of stand-level growth during and after documented drought events.3. Our results show that relative tree population density was negatively related to drought resistance and resilience, indicating that trees growing at lower densities were less vulnerable to drought. This result was apparent in all three forest ecosystems, and was consistent across species, stand age and drought intensity.4. Synthesis and applications. Our results highlighted that managing pine forest ecosystems at low tree population density represents a promising adaptive strategy for reducing the adverse impacts of drought on forest growth in coming decades. Nonetheless, the broader applicability of our findings to other types of forest ecosystems merits additional investigation.

  19. Utilizing Forest Inventory and Analysis Data, Remote Sensing, and Ecosystem Models for National Forest System Carbon Assessments

    Treesearch

    Alexa J. Dugan; Richard A. Birdsey; Sean P. Healey; Christopher Woodall; Fangmin Zhang; Jing M. Chen; Alexander Hernandez; James B. McCarter

    2015-01-01

    Forested lands, representing the largest terrestrial carbon sink in the United States, offset 16% of total U.S. carbon dioxide emissions through carbon sequestration. Meanwhile, this carbon sink is threatened by deforestation, climate change and natural disturbances. As a result, U.S. Forest Service policies require that National Forests assess baseline carbon stocks...

  20. Assessing the effect of climate change on carbon sequestration in a Mexican dry forest in the Yucatan Peninsula

    Treesearch

    Z. Dai; K.D. Johnson; R.A. Birdsey; J.L. Hernandez-Stefanoni; J.M. Dupuy

    2015-01-01

    Assessing the effect of climate change on carbon sequestration in tropical forest ecosystems is important to inform monitoring, reporting, and verification (MRV) for reducing deforestation and forest degradation (REDD), and to effectively assess forest management options under climate change. Two process-based models, Forest-DNDC and Biome-BGC, with different spatial...

  1. Relationships between net primary productivity and forest stand age in U.S. forests

    Treesearch

    Liming He; Jing M. Chen; Yude Pan; Richard Birdsey; Jens Kattge

    2012-01-01

    Net primary productivity (NPP) is a key flux in the terrestrial ecosystem carbon balance, as it summarizes the autotrophic input into the system. Forest NPP varies predictably with stand age, and quantitative information on the NPP-age relationship for different regions and forest types is therefore fundamentally important for forest carbon cycle modeling. We used four...

  2. Lessons from forest FACE experiments provide guidance for Amazon-FACE science plan (Invited)

    NASA Astrophysics Data System (ADS)

    Norby, R. J.; Lapola, D. M.

    2013-12-01

    Free-air CO2 enrichment (FACE) experiments have provided novel insights into the ecological mechanisms controlling the cycling and storage of carbon in terrestrial ecosystems, and they provide a strong foundation for next-generation experiments in unexplored biomes. Specific lessons from FACE experiments include: (1) Carbon cycle responses are time-dependent because component processes have different rate constants: for example, net primary productivity is increased by elevated CO2, but the response may diminish with time as N cycling feedbacks become important. (2) Carbon partitioning patterns determine the fate of the extra C taken up by CO2-enriched plants, but partitioning responses remain an important challenge for ecosystem models. (3) The influence of N cycling on plant and ecosystem C cycling continues to be a critical uncertainty, and new experiments, especially in the tropics, must also consider P cycling. (4) Plant community structure can influence the ecosystem response to elevated CO2, but dynamic vegetation effects have not been adequately addressed. These experiences from FACE experiments in temperate forests are now guiding the development of a science plan for a FACE experiment in Amazonia. Models and small-scale experimental results agree that elevated CO2 will affect the metabolism of tropical ecosystems, but the qualitative and quantitative expression of the effects are largely unknown, representing a major source of uncertainty that limits our capacity to assess the vulnerability of the Amazon forest to climate change. Recognizing the high importance of the forests of the Amazon basin on global carbon, water, and energy cycles, biodiversity conservation, and the provision of essential services in Latin America, a consortium of Brazilian researchers and international collaborators have developed a science plan for Amazon-FACE. While the challenges presented both by infrastructure needs (roads, electricity, and provision of CO2) and biology (the size and diversity of the forest) are substantial, preliminary evaluation and past experience from temperate forest FACE experiments have supported the feasibility of an experiment comprising replicated 30-m diameter FACE plots in primary forest. The proposed site is the ZF2 research area 60 km north of Manaus and administered by Brazil's National Institute for Amazonia Research (INPA). The vegetation is representative of a dominant fraction of the forests occurring in the Amazon basin: old-growth closed-canopy terra firme (non-flooded) forest with trees 30-35 m in height on well drained clay soils. The major science questions guiding the experiment are closely informed by results of past FACE experiment and involve carbon metabolism, water use, nutrient cycling, interactions with environmental stressors, and the relationship between plant functional traits and community composition. FACE experiments can define ecological processes and mechanisms of responses for predictive models of ecosystem response, and models of CO2 response can define critical uncertainties and testable hypotheses for experiments; hence, the Amazon FACE experiment will feature a close integration of modeling and experimental approaches.

  3. [Simulation study on the effects of climate change on aboveground biomass of plantation in southern China: Taking Moshao forest farm in Huitong Ecological Station as an example].

    PubMed

    Dai, Er Fu; Zhou, Heng; Wu, Zhuo; Wang, Xiao-Fan; Xi, Wei Min; Zhu, Jian Jia

    2016-10-01

    Global climate warming has significant effect on territorial ecosystem, especially on forest ecosystem. The increase in temperature and radiative forcing will significantly alter the structure and function of forest ecosystem. The southern plantation is an important part of forests in China, its response to climate change is getting more and more intense. In order to explore the responses of southern plantation to climate change under future climate scenarios and to reduce the losses that might be caused by climate change, we used climatic estimated data under three new emission scenarios, representative concentration pathways (RCPs) scenarios (RCP2.6 scenario, RCP4.5 scenario, and RCP8.5 scenario). We used the spatially dynamic forest landscape model LANDIS-2, coupled with a forest ecosystem process model PnET-2, to simulate the impact of climate change on aboveground net primary production (ANPP), species' establishment probability (SEP) and aboveground biomass of Moshao forest farm in Huitong Ecological Station, which located in Hunan Province during the period of 2014-2094. The results showed that there were obvious differences in SEP and ANPP among different forest types under changing climate. The degrees of response of SEP to climate change for different forest types were shown as: under RCP2.6 and RCP4.5, artificial coniferous forest>natural broadleaved forest>artificial broadleaved forest. Under RCP8.5, natural broadleaved forest>artificial broadleaved forest>artificial coniferous forest. The degrees of response of ANPP to climate change for different forest types were shown as: under RCP2.6, artificial broadleaved forest> natural broadleaved forest>artificial coniferous forest. Under RCP4.5 and RCP8.5, natural broadleaved forest>artificial broadleaved forest>artificial coniferous forest. The aboveground biomass of the artificial coniferous forest would decline at about 2050, but the natural broadleaved forest and artificial broadleaved forest showed a rising trend in general. During the period of 2014-2094, the total aboveground biomass under RCP2.6, RCP4.5 and RCP8.5 scenarios increased by 68.2%, 79.3% and 72.6%, respectively. The total aboveground biomass under various climatic scenarios sort as: RCP4.5>RCP8.5>RCP2.6. We thought that an appropriate temperature might be beneficial to the biomass accumulation in this study area. However, overextended temperature might hinder the sustainable development of forest production and ecological function.

  4. Importance of Foliar Nitrogen Concentration to Predict Forest Productivity in the Mid-Atlantic Region

    Treesearch

    Yude Pan; John Hom; Jennifer Jenkins; Richard Birdsey

    2004-01-01

    To assess what difference it might make to include spatially defined estimates of foliar nitrogen in the regional application of a forest ecosystem model (PnET-II), we composed model predictions of wood production from extensive ground-based forest inventory analysis data across the Mid-Atlantic region. Spatial variation in foliar N concentration was assigned based on...

  5. Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass

    NASA Astrophysics Data System (ADS)

    Joetzjer, E.; Pillet, M.; Ciais, P.; Barbier, N.; Chave, J.; Schlund, M.; Maignan, F.; Barichivich, J.; Luyssaert, S.; Hérault, B.; von Poncet, F.; Poulter, B.

    2017-07-01

    Despite advances in Earth observation and modeling, estimating tropical biomass remains a challenge. Recent work suggests that integrating satellite measurements of canopy height within ecosystem models is a promising approach to infer biomass. We tested the feasibility of this approach to retrieve aboveground biomass (AGB) at three tropical forest sites by assimilating remotely sensed canopy height derived from a texture analysis algorithm applied to the high-resolution Pleiades imager in the Organizing Carbon and Hydrology in Dynamic Ecosystems Canopy (ORCHIDEE-CAN) ecosystem model. While mean AGB could be estimated within 10% of AGB derived from census data in average across sites, canopy height derived from Pleiades product was spatially too smooth, thus unable to accurately resolve large height (and biomass) variations within the site considered. The error budget was evaluated in details, and systematic errors related to the ORCHIDEE-CAN structure contribute as a secondary source of error and could be overcome by using improved allometric equations.

  6. Tropical forest response to elevated CO2: Model-experiment integration at the AmazonFACE site.

    NASA Astrophysics Data System (ADS)

    Frankenberg, C.; Berry, J. A.; Guanter, L.; Joiner, J.

    2014-12-01

    The terrestrial biosphere's response to current and future elevated atmospheric carbon dioxide (eCO2) is a large source of uncertainty in future projections of the C cycle, climate and ecosystem functioning. In particular, the sensitivity of tropical rainforest ecosystems to eCO­2 is largely unknown even though the importance of tropical forests for biodiversity, carbon storage and regional and global climate feedbacks is unambiguously recognized. The AmazonFACE (Free-Air Carbon Enrichment) project will be the first ecosystem scale eCO2 experiment undertaken in the tropics, as well as the first to be undertaken in a mature forest. AmazonFACE provides the opportunity to integrate ecosystem modeling with experimental observations right from the beginning of the experiment, harboring a two-way exchange, i.e. models provide hypotheses to be tested, and observations deliver the crucial data to test and improve ecosystem models. We present preliminary exploration of observed and expected process responses to eCO2 at the AmazonFACE site from the dynamic global vegetation model LPJ-GUESS, highlighting opportunities and pitfalls for model integration of tropical FACE experiments. The preliminary analysis provides baseline hypotheses, which are to be further developed with a follow-up multiple model inter-comparison. The analysis builds on the recently undertaken FACE-MDS (Model-Data Synthesis) project, which was applied to two temperate FACE experiments and exceeds the traditional focus on comparing modeled end-target output. The approach has proven successful in identifying well (and less well) represented processes in models, which are separated for six clusters also here; (1) Carbon fluxes, (2) Carbon pools, (3) Energy balance, (4) Hydrology, (5) Nutrient cycling, and (6) Population dynamics. Simulation performance of observed conditions at the AmazonFACE site (a.o. from Manaus K34 eddy flux tower) will highlight process-based model deficiencies, and aid the separation of uncertainties arising from general ecosystem responses and those responses related to eCO2.

  7. Tropical forest response to elevated CO2: Model-experiment integration at the AmazonFACE site.

    NASA Astrophysics Data System (ADS)

    Fleischer, K.

    2015-12-01

    The terrestrial biosphere's response to current and future elevated atmospheric carbon dioxide (eCO2) is a large source of uncertainty in future projections of the C cycle, climate and ecosystem functioning. In particular, the sensitivity of tropical rainforest ecosystems to eCO­2 is largely unknown even though the importance of tropical forests for biodiversity, carbon storage and regional and global climate feedbacks is unambiguously recognized. The AmazonFACE (Free-Air Carbon Enrichment) project will be the first ecosystem scale eCO2 experiment undertaken in the tropics, as well as the first to be undertaken in a mature forest. AmazonFACE provides the opportunity to integrate ecosystem modeling with experimental observations right from the beginning of the experiment, harboring a two-way exchange, i.e. models provide hypotheses to be tested, and observations deliver the crucial data to test and improve ecosystem models. We present preliminary exploration of observed and expected process responses to eCO2 at the AmazonFACE site from the dynamic global vegetation model LPJ-GUESS, highlighting opportunities and pitfalls for model integration of tropical FACE experiments. The preliminary analysis provides baseline hypotheses, which are to be further developed with a follow-up multiple model inter-comparison. The analysis builds on the recently undertaken FACE-MDS (Model-Data Synthesis) project, which was applied to two temperate FACE experiments and exceeds the traditional focus on comparing modeled end-target output. The approach has proven successful in identifying well (and less well) represented processes in models, which are separated for six clusters also here; (1) Carbon fluxes, (2) Carbon pools, (3) Energy balance, (4) Hydrology, (5) Nutrient cycling, and (6) Population dynamics. Simulation performance of observed conditions at the AmazonFACE site (a.o. from Manaus K34 eddy flux tower) will highlight process-based model deficiencies, and aid the separation of uncertainties arising from general ecosystem responses and those responses related to eCO2.

  8. Modeling of larch forest dynamics under a changing climate in eastern Siberia

    NASA Astrophysics Data System (ADS)

    Nakai, T.; Kumagai, T.; Iijima, Y.; Ohta, T.; Kotani, A.; Maximov, T. C.; Hiyama, T.

    2017-12-01

    According to the projection by an earth system model under RCP8.5 scenario, boreal forest in eastern Siberia (near Yakutsk) is predicted to experience significant changes in climate, in which the mean annual air temperature is projected to be positive and the annual precipitation will be doubled by the end of 21st century. Since the forest in this region is underlain by continuous permafrost, both increasing temperature and precipitation can affect the dynamics of forest through the soil water processes. To investigate such effects, we adopted a newly developed terrestrial ecosystem dynamics model named S-TEDy (SEIB-DGVM-originated Terrestrial Ecosystem Dynamics model), which mechanistically simulates "the way of life" of each individual tree and resulting tree mortality under the future climate conditions. This model was first developed for the simulation of the dynamics of a tropical rainforest in the Borneo Island, and successfully reproduced higher mortality of large trees due to a prolonged drought induced by ENSO event of 1997-1998. To apply this model to a larch forest in eastern Siberia, we are developing a soil submodel to consider the effect of thawing-freezing processes. We will present a simulation results using the future climate projection.

  9. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning

    PubMed Central

    Seidl, Rupert; Rammer, Werner; Spies, Thomas A.

    2015-01-01

    Disturbances are key drivers of forest ecosystem dynamics, and forests are well adapted to their natural disturbance regimes. However, as a result of climate change, disturbance frequency is expected to increase in the future in many regions. It is not yet clear how such changes might affect forest ecosystems, and which mechanisms contribute to (current and future) disturbance resilience. We studied a 6364-ha landscape in the western Cascades of Oregon, USA, to investigate how patches of remnant old-growth trees (as one important class of biological legacies) affect the resilience of forest ecosystems to disturbance. Using the spatially explicit, individual-based, forest landscape model iLand, we analyzed the effect of three different levels of remnant patches (0%, 12%, and 24% of the landscape) on 500-year recovery trajectories after a large, high-severity wildfire. In addition, we evaluated how three different levels of fire frequency modulate the effects of initial legacies. We found that remnant live trees enhanced the recovery of total ecosystem carbon (TEC) stocks after disturbance, increased structural complexity of forest canopies, and facilitated the recolonization of late-seral species (LSS). Legacy effects were most persistent for indicators of species composition (still significant 500 years after disturbance), while TEC (i.e., a measure of ecosystem functioning) was least affected, with no significant differences among legacy scenarios after 236 years. Compounding disturbances were found to dampen legacy effects on all indicators, and higher initial legacy levels resulted in elevated fire severity in the second half of the study period. Overall, disturbance frequency had a stronger effect on ecosystem properties than the initial level of remnant old-growth trees. A doubling of the historically observed fire frequency to a mean fire return interval of 131 years reduced TEC by 10.5% and lowered the presence of LSS on the landscape by 18.1% on average, demonstrating that an increase in disturbance frequency (a potential climate change effect) may considerably alter the structure, composition, and functioning of forest landscapes. Our results indicate that live tree legacies are an important component of disturbance resilience, underlining the potential of retention forestry to address challenges in ecosystem management. PMID:27053913

  10. Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements

    NASA Astrophysics Data System (ADS)

    Liu, Chunwei; Sun, Ge; McNulty, Steven G.; Noormets, Asko; Fang, Yuan

    2017-01-01

    The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient (Kc) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, Kc has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. This study aimed at deriving monthly Kc for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly Kc data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), Kc values had large seasonal variation across all land covers. The spatial variability of Kc was well explained by latitude, suggesting site factors are a major control on Kc. Seasonally, Kc increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly Kc in all land covers, except in EBF. During the peak growing season, forests had the highest Kc values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for Kc by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. The Kc models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.

  11. Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chunwei; Sun, Ge; McNulty, Steven G.

    The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient ( K c) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, K c has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. Thismore » study aimed at deriving monthly K c for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly K c data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), K c values had large seasonal variation across all land covers. The spatial variability of K c was well explained by latitude, suggesting site factors are a major control on K c. Seasonally, K c increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly K c in all land covers, except in EBF. During the peak growing season, forests had the highest K c values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for K c by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. Here, the K c models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.« less

  12. Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements

    DOE PAGES

    Liu, Chunwei; Sun, Ge; McNulty, Steven G.; ...

    2017-01-18

    The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient ( K c) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, K c has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. Thismore » study aimed at deriving monthly K c for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly K c data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), K c values had large seasonal variation across all land covers. The spatial variability of K c was well explained by latitude, suggesting site factors are a major control on K c. Seasonally, K c increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly K c in all land covers, except in EBF. During the peak growing season, forests had the highest K c values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for K c by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. Here, the K c models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.« less

  13. Global variation of carbon use efficiency in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolu; Carvalhais, Nuno; Moura, Catarina; Reichstein, Markus

    2017-04-01

    Carbon use efficiency (CUE), defined as the ratio between net primary production (NPP) and gross primary production (GPP), is an emergent property of vegetation that describes its effectiveness in storing carbon (C) and is of significance for understanding C biosphere-atmosphere exchange dynamics. A constant CUE value of 0.5 has been widely used in terrestrial C-cycle models, such as the Carnegie-Ames-Stanford-Approach model, or the Marine Biological Laboratory/Soil Plant-Atmosphere Canopy Model, for regional or global modeling purposes. However, increasing evidence argues that CUE is not constant, but varies with ecosystem types, site fertility, climate, site management and forest age. Hence, the assumption of a constant CUE of 0.5 can produce great uncertainty in estimating global carbon dynamics between terrestrial ecosystems and the atmosphere. Here, in order to analyze the global variations in CUE and understand how CUE varies with environmental variables, a global database was constructed based on published data for crops, forests, grasslands, wetlands and tundra ecosystems. In addition to CUE data, were also collected: GPP and NPP; site variables (e.g. climate zone, site management and plant function type); climate variables (e.g. temperature and precipitation); additional carbon fluxes (e.g. soil respiration, autotrophic respiration and heterotrophic respiration); and carbon pools (e.g. stem, leaf and root biomass). Different climate metrics were derived to diagnose seasonal temperature (mean annual temperature, MAT, and maximum temperature, Tmax) and water availability proxies (mean annual precipitation, MAP, and Palmer Drought Severity Index), in order to improve the local representation of environmental variables. Additionally were also included vegetation phenology dynamics as observed by different vegetation indices from the MODIS satellite. The mean CUE of all terrestrial ecosystems was 0.45, 10% lower than the previous assumed constant CUE of 0.50. CUE varied significantly between sites - from 0.13 to 0.93 - and between ecosystem types, ranging between 0.41 and 0.60, decreasing from wetlands, to tundra, to croplands, to grasslands until the lower CUE found on average for forested ecosystems. Our analysis shows that ecosystem type was the most important predictor of CUE in terrestrial ecosystems, immediately followed by Tmax; MAT and management practices. For crop, forest and wetland ecosystems CUE varied with climate zones and a strong linear negative correlation was found between CUE and MAT and MAP for grassland ecosystems. Overall, the interaction between different environmental variables showed significant effects on CUE for all ecosystem types. Our results challenge the consideration of a constant value of 0.5 for modeling global purposes, and argue for a deeper understanding of environmental controls on CUE for different ecosystem types.

  14. Tree species diversity mitigates disturbance impacts on the forest carbon cycle.

    PubMed

    Silva Pedro, Mariana; Rammer, Werner; Seidl, Rupert

    2015-03-01

    Biodiversity fosters the functioning and stability of forest ecosystems and, consequently, the provision of crucial ecosystem services that support human well-being and quality of life. In particular, it has been suggested that tree species diversity buffers ecosystems against the impacts of disturbances, a relationship known as the "insurance hypothesis". Natural disturbances have increased across Europe in recent decades and climate change is expected to amplify the frequency and severity of disturbance events. In this context, mitigating disturbance impacts and increasing the resilience of forest ecosystems is of growing importance. We have tested how tree species diversity modulates the impact of disturbance on net primary production and the total carbon stored in living biomass for a temperate forest landscape in Central Europe. Using the simulation model iLand to study the effect of different disturbance regimes on landscapes with varying levels of tree species richness, we found that increasing diversity generally reduces the disturbance impact on carbon storage and uptake, but that this effect weakens or even reverses with successional development. Our simulations indicate a clear positive relationship between diversity and resilience, with more diverse systems experiencing lower disturbance-induced variability in their trajectories of ecosystem functioning. We found that positive effects of tree species diversity are mainly driven by an increase in functional diversity and a modulation of traits related to recolonization and resource usage. The results of our study suggest that increasing tree species diversity could mitigate the effects of intensifying disturbance regimes on ecosystem functioning and improve the robustness of forest carbon storage and the role of forests in climate change mitigation.

  15. Seasonality of temperate forest photosynthesis and daytime respiration.

    PubMed

    Wehr, R; Munger, J W; McManus, J B; Nelson, D D; Zahniser, M S; Davidson, E A; Wofsy, S C; Saleska, S R

    2016-06-30

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night-the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.

  16. Predicting the effects of climate change on ecosystems and wildlife habitat in northwest Alaska: results from the WildCast project

    Treesearch

    Anthony R. DeGange; Bruce G. Marcot; James Lawler; Torre Jorgenson; Robert Winfree

    2013-01-01

    We used a modeling framework and a recent ecological land classification and land cover map to predict how ecosystems and wildlife habitat in northwest Alaska might change in response to increasing temperature. Our results suggest modest increases in forest and tall shrub ecotypes in Northwest Alaska by the end of this century thereby increasing habitat for forest-...

  17. Vegetation canopy and physiological control of GPP decline during drought and heat wave

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Xiao, X.; Zhou, S.; McCarthy, H. R.; Ciais, P.; Luo, Y.

    2015-12-01

    Different vegetation indices derived from satellites were often used as a proxy of vegetation activity to monitor and evaluate the impacts of drought and heat wave on ecosystem carbon fluxes (gross primary production, respiration) through the production efficiency models (PEMs). However, photosynthesis is also regulated by a series of physiological processes which cannot be directly observed through satellites. In this study, we analyzed the response of drought and heat wave induced GPP and climate anomaly from 15 Euroflux sites and the corresponding vegetation indices from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite. Correlation analysis suggests that the vegetation indices are more responsive to GPP variation in grasslands and open shrublands, but less responsive in forest ecosystems. Physiology control can be up to 20% of the total GPP during the drought period without changing the canopy structure. At temporal scale for each site, VPD and vegetation indices can be used to track the GPP for forest and non-forest, respectively. However, different stand characteristics should be taken into consideration for forest ecosystems. Based on the above findings, a conceptual model is built to illuminate the physiological and canopy control on the GPP during the drought period. Improvement for future PEMs should incorporate better indicators to deal with drought conditions for different ecosystems.

  18. Long-Term Post-Disturbance Forest Recovery in the Greater Yellowstone Ecosystem Analyzed Using Landsat Time Series Stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Feng R.; Meng, Ran; Huang, Chengquan

    Forest recovery from past disturbance is an integral process of ecosystem carbon cycles, and remote sensing provides an effective tool for tracking forest disturbance and recovery over large areas. Although the disturbance products (tracking the conversion from forest to non-forest type) derived using the Landsat Time Series Stack-Vegetation Change Tracker (LTSS-VCT) algorithm have been validated extensively for mapping forest disturbances across the United States, the ability of this approach to characterize long-term post-disturbance recovery (the conversion from non-forest to forest) has yet to be assessed. Here in this study, the LTSS-VCT approach was applied to examine long-term (up to 24more » years) post-disturbance forest spectral recovery following stand-clearing disturbances (fire and harvests) in the Greater Yellowstone Ecosystem (GYE). Using high spatial resolution images from Google Earth, we validated the detectable forest recovery status mapped by VCT by year 2011. Validation results show that the VCT was able to map long-term post-disturbance forest recovery with overall accuracy of ~80% for different disturbance types and forest types in the GYE. Harvested areas in the GYE have higher percentages of forest recovery than burned areas by year 2011, and National Forests land generally has higher recovery rates compared with National Parks. The results also indicate that forest recovery is highly related with forest type, elevation and environmental variables such as soil type. Findings from this study can provide valuable insights for ecosystem modeling that aim to predict future carbon dynamics by integrating fine scale forest recovery conditions in GYE, in the face of climate change. Lastly, with the availability of the VCT product nationwide, this approach can also be applied to examine long-term post-disturbance forest recovery in other study regions across the U.S.« less

  19. Long-Term Post-Disturbance Forest Recovery in the Greater Yellowstone Ecosystem Analyzed Using Landsat Time Series Stack

    DOE PAGES

    Zhao, Feng R.; Meng, Ran; Huang, Chengquan; ...

    2016-10-29

    Forest recovery from past disturbance is an integral process of ecosystem carbon cycles, and remote sensing provides an effective tool for tracking forest disturbance and recovery over large areas. Although the disturbance products (tracking the conversion from forest to non-forest type) derived using the Landsat Time Series Stack-Vegetation Change Tracker (LTSS-VCT) algorithm have been validated extensively for mapping forest disturbances across the United States, the ability of this approach to characterize long-term post-disturbance recovery (the conversion from non-forest to forest) has yet to be assessed. Here in this study, the LTSS-VCT approach was applied to examine long-term (up to 24more » years) post-disturbance forest spectral recovery following stand-clearing disturbances (fire and harvests) in the Greater Yellowstone Ecosystem (GYE). Using high spatial resolution images from Google Earth, we validated the detectable forest recovery status mapped by VCT by year 2011. Validation results show that the VCT was able to map long-term post-disturbance forest recovery with overall accuracy of ~80% for different disturbance types and forest types in the GYE. Harvested areas in the GYE have higher percentages of forest recovery than burned areas by year 2011, and National Forests land generally has higher recovery rates compared with National Parks. The results also indicate that forest recovery is highly related with forest type, elevation and environmental variables such as soil type. Findings from this study can provide valuable insights for ecosystem modeling that aim to predict future carbon dynamics by integrating fine scale forest recovery conditions in GYE, in the face of climate change. Lastly, with the availability of the VCT product nationwide, this approach can also be applied to examine long-term post-disturbance forest recovery in other study regions across the U.S.« less

  20. Advanced system demonstration for utilization of biomass as an energy source. Technical Appendix D: terrestrial ecosystems and forestry. Environmental report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCollom, M.

    1979-01-01

    The existing terrestrial ecosystems at the plant site and impacts on them are described. The following are discussed for the fuelwood harvest region: forest soils, forest types and ecological succession, nutrient cycles in the forest ecosystem, fauna of the ecosystem, forest practices in the harvest region, and long-term productivity of the forest resource. (MHR)

  1. [The concentration and distribution of 137Cs in soils of forest and agricultural ecosystems of Tula Region].

    PubMed

    Lipatov, D N; Shcheglov, A I; Tsvetnova, O B

    2007-01-01

    The paper deals with a comparative study of 137Cs contamination in forest, old arable and cultivated soils of Tula Region. Initial interception of Chernobyl derived 137Cs is higher in forest ecosystems: oak-forest > birch-forest > pine-forest > agricultural ecosystems. Vertical migration of 137Cs in deeper layers of soils was intensive in agricultural ecosystems: cultivated soils > old arable soils > birch-forest soils > oak-forest soils > pine-forest soils. In study have been evaluated spatial variability of 137Cs in soil and asymmetrical distribution, that is a skew to the right. Spatial heterogeneity of 137Cs in agricultural soils is much lower than in forest soils. For cultivated soil are determined the rate of resuspension, which equal to 6.1 x 10(-4) day(-1). For forest soils are described the 137Cs concentration in litter of different ecosystems. The role of main accumulation and barrier of 137Cs retain higher layers of soils (horizon A1(A1E) in forest, horizon Ap in agricultural ecosystems) in long-term forecast after Chernobyl accident.

  2. Describing the conditions of forest ecosystems using disturbance profiles

    Treesearch

    John E. Lundquist; J. P. Ward

    1995-01-01

    Data from a study on the effect of small-scale disturbances on small mammal prey of the Mexican spotted owl illustrates how spatial models of canopy cover and disturbance profiles of forest stands might be used to define forest stand condition and develop silvicultural prescriptions.

  3. Carbon storage, timber production, and biodiversity: comparing ecosystem services with multi-criteria decision analysis

    USGS Publications Warehouse

    Schwenk, W. Scott; Donovan, Therese; Keeton, William S.; Nunery, Jared S.

    2012-01-01

    Increasingly, land managers seek ways to manage forests for multiple ecosystem services and functions, yet considerable challenges exist in comparing disparate services and balancing trade-offs among them. We applied multi-criteria decision analysis (MCDA) and forest simulation models to simultaneously consider three objectives: (1) storing carbon, (2) producing timber and wood products, and (3) sustaining biodiversity. We used the Forest Vegetation Simulator (FVS) applied to 42 northern hardwood sites to simulate forest development over 100 years and to estimate carbon storage and timber production. We estimated biodiversity implications with occupancy models for 51 terrestrial bird species that were linked to FVS outputs. We simulated four alternative management prescriptions that spanned a range of harvesting intensities and forest structure retention. We found that silvicultural approaches emphasizing less frequent harvesting and greater structural retention could be expected to achieve the greatest net carbon storage but also produce less timber. More intensive prescriptions would enhance biodiversity because positive responses of early successional species exceeded negative responses of late successional species within the heavily forested study area. The combinations of weights assigned to objectives had a large influence on which prescriptions were scored as optimal. Overall, we found that a diversity of silvicultural approaches is likely to be preferable to any single approach, emphasizing the need for landscape-scale management to provide a full range of ecosystem goods and services. Our analytical framework that combined MCDA with forest simulation modeling was a powerful tool in understanding trade-offs among management objectives and how they can be simultaneously accommodated.

  4. Hydrology-oriented forest management trade-offs. A modeling framework coupling field data, simulation results and Bayesian Networks.

    PubMed

    Garcia-Prats, Alberto; González-Sanchis, María; Del Campo, Antonio D; Lull, Cristina

    2018-10-15

    Hydrology-oriented forest management sets water as key factor of the forest management for adaptation due to water is the most limiting factor in the Mediterranean forest ecosystems. The aim of this study was to apply Bayesian Network modeling to assess potential indirect effects and trade-offs when hydrology-oriented forest management is applied to a real Mediterranean forest ecosystem. Water, carbon and nitrogen cycles, and forest fire risk were included in the modeling framework. Field data from experimental plots were employed to calibrate and validate the mechanistic Biome-BGCMuSo model that simulates the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere. Many other 50-year long scenarios with different conditions to the ones measured in the field experiment were simulated and the outcomes employed to build the Bayesian Network in a linked chain of models. Hydrology-oriented forest management was very positive insofar as more water was made available to the stand because of an interception reduction. This resource was made available to the stand, which increased the evapotranspiration and its components, the soil water content and a slightly increase of deep percolation. Conversely, Stemflow was drastically reduced. No effect was observed on Runof due to the thinning treatment. The soil organic carbon content was also increased which in turn caused a greater respiration. The long-term effect of the thinning treatment on the LAI was very positive. This was undoubtedly due to the increased vigor generated by the greater availability of water and nutrients for the stand and the reduction of competence between trees. This greater activity resulted in an increase in GPP and vegetation carbon, and therefore, we would expect a higher carbon sequestration. It is worth emphasizing that this extra amount of water and nutrients was taken up by the stand and did not entail any loss of nutrients. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Forest Health Monitoring and Forest Inventory Analysis programs monitor climate change effects in forest ecosystems

    Treesearch

    Kenneth W. Stolte

    2001-01-01

    The Forest Health Monitoring (FHM) and Forest Inventory and Analyses (FIA) programs are integrated bilogical monitoring systems that use nationally standardized methods to evaluate and report on the health and sustainability of forest ecosystems in the United States. Many of the anticipated changes in forest ecosystems from climate change were also issues addressed in...

  6. Understanding fire drivers and relative impacts in different Chinese forest ecosystems.

    PubMed

    Guo, Futao; Su, Zhangwen; Wang, Guangyu; Sun, Long; Tigabu, Mulualem; Yang, Xiajie; Hu, Haiqing

    2017-12-15

    In this study, spatial patterns and driving factors of fires were identified from 2000 to 2010 using Ripley's K (d) function and logistic regression (LR) model in two different forest ecosystems of China: the boreal forest (Daxing'an Mountains) and sub-tropical forest (Fujian province). Relative effects of each driving factor on fire occurrence were identified based on standardized coefficients in the LR model. Results revealed that fires were spatially clustered and that fire drivers vary amongst differing forest ecosystems in China. Fires in the Daxing'an Mountains respond primarily to human factors, of which infrastructure is recognized as the most influential. In contrast, climate factors played a critical role in fire occurrence in Fujian, of which the temperature of fire season was found to be of greater importance than other climate factors. Selected factors can predict nearly 80% of the total fire occurrence in the Daxing'an Mountains and 66% in Fujian, wherein human and climate factors contributed the greatest impact in the two study areas, respectively. This study suggests that different fire prevention and management strategies are required in the areas of study, as significant variations of the main fire-driving exist. Rapid socio-economic development has produced similar effects in different forest ecosystems within China, implying a strong correlation between socio-economic development and fire regimes. It can be concluded that the influence of human factors will increase in the future as China's economy continues to grow - an issue of concern that should be further addressed in future national fire management. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Non-linear Feedbacks Between Forest Mortality and Climate Change: Implications for Snow Cover, Water Resources, and Ecosystem Recovery in Western North America (Invited)

    NASA Astrophysics Data System (ADS)

    Brooks, P. D.; Harpold, A. A.; Biederman, J. A.; Gochis, D. J.; Litvak, M. E.; Ewers, B. E.; Broxton, P. D.; Reed, D. E.

    2013-12-01

    Unprecedented levels of tree mortality from insect infestation and wildfire are dramatically altering forest structure and composition in Western North America. Warming temperatures and increased drought stress have been implicated as major factors in the increasing spatial extent and frequency of these forest disturbances, but it is unclear how these changes in forest structure will interact with ongoing climate change to affect snowmelt water resources either for society or for ecosystem recovery following mortality. Because surface discharge, groundwater recharge, and ecosystem productivity all depend on seasonal snowmelt, a critical knowledge gap exists not only in predicting discharge, but in quantifying spatial and temporal variability in the partitioning of snowfall into abiotic vapor loss, plant available water, recharge, and streamflow within the complex mosaic of forest disturbance and topography that characterizes western mountain catchments. This presentation will address this knowledge gap by synthesizing recent work on snowpack dynamics and ecosystem productivity from seasonally snow-covered forests along a climate gradient from Arizona to Wyoming; including undisturbed sites, recently burned forests, and areas of extensive insect-induced forest mortality. Both before-after and control-impacted studies of forest disturbance on snow accumulation and ablation suggest that the spatial scale of snow distribution increases following disturbance, but net snow water input in a warming climate will increase only in topographically sheltered areas. While forest disturbance changes spatial scale of snowpack partitioning, the amount and especially the timing of snow cover accumulation and ablation are strongly related to interannual variability in ecosystem productivity with both earlier snowmelt and later snow accumulation associated with decreased carbon uptake. Empirical analyses and modeling are being developed to identify landscapes most sensitive to climate change as well as to develop management alternatives that minimize the effects of disturbance on high elevation forests and the services of water provision and carbon storage they provide.

  8. INSECTS & PATHOGENS Regulators of Forest Ecosystems

    Treesearch

    Robert A. Haack; James W. Byler

    1993-01-01

    Today's forest managers are challenged by issues such as soil productivity, biodiversity, threatened and endangered species, and ecosystem sustainability; and ecosystem management has been proposed as a way to deal with them. The Society of American Foresters (1993) defines this term as keeping forest ecosystems functioning well over long periods of time in order...

  9. Carbon fluxes in ecosystems of Yellowstone National Park predicted from remote sensing data and simulation modeling

    PubMed Central

    2011-01-01

    Background A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP). The CASA (Carnegie Ames Stanford Approach) model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP) and soil respiration components. Predicted net ecosystem production (NEP) flux of CO2 is estimated from the model for carbon sinks and sources over multi-year periods that varied in climate and (wildfire) disturbance histories. Monthly Enhanced Vegetation Index (EVI) image coverages from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instrument (from 2000 to 2006) were direct inputs to the model. New map products have been added to CASA from airborne remote sensing of coarse woody debris (CWD) in areas burned by wildfires over the past two decades. Results Model results indicated that relatively cooler and wetter summer growing seasons were the most favorable for annual plant production and net ecosystem carbon gains in representative landscapes of YNP. When summed across vegetation class areas, the predominance of evergreen forest and shrubland (sagebrush) cover was evident, with these two classes together accounting for 88% of the total annual NPP flux of 2.5 Tg C yr-1 (1 Tg = 1012 g) for the entire Yellowstone study area from 2000-2006. Most vegetation classes were estimated as net ecosystem sinks of atmospheric CO2 on annual basis, making the entire study area a moderate net sink of about +0.13 Tg C yr-1. This average sink value for forested lands nonetheless masks the contribution of areas burned during the 1988 wildfires, which were estimated as net sources of CO2 to the atmosphere, totaling to a NEP flux of -0.04 Tg C yr-1 for the entire burned area. Several areas burned in the 1988 wildfires were estimated to be among the lowest in overall yearly NPP, namely the Hellroaring Fire, Mink Fire, and Falls Fire areas. Conclusions Rates of recovery for burned forest areas to pre-1988 biomass levels were estimated from a unique combination of remote sensing and CASA model predictions. Ecosystem production and carbon fluxes in the Greater Yellowstone Ecosystem (GYE) result from complex interactions between climate, forest age structure, and disturbance-recovery patterns of the landscape. PMID:21835025

  10. Carbon fluxes in ecosystems of Yellowstone National Park predicted from remote sensing data and simulation modeling.

    PubMed

    Potter, Christopher; Klooster, Steven; Crabtree, Robert; Huang, Shengli; Gross, Peggy; Genovese, Vanessa

    2011-08-11

    A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP). The CASA (Carnegie Ames Stanford Approach) model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP) and soil respiration components. Predicted net ecosystem production (NEP) flux of CO2 is estimated from the model for carbon sinks and sources over multi-year periods that varied in climate and (wildfire) disturbance histories. Monthly Enhanced Vegetation Index (EVI) image coverages from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instrument (from 2000 to 2006) were direct inputs to the model. New map products have been added to CASA from airborne remote sensing of coarse woody debris (CWD) in areas burned by wildfires over the past two decades. Model results indicated that relatively cooler and wetter summer growing seasons were the most favorable for annual plant production and net ecosystem carbon gains in representative landscapes of YNP. When summed across vegetation class areas, the predominance of evergreen forest and shrubland (sagebrush) cover was evident, with these two classes together accounting for 88% of the total annual NPP flux of 2.5 Tg C yr-1 (1 Tg = 1012 g) for the entire Yellowstone study area from 2000-2006. Most vegetation classes were estimated as net ecosystem sinks of atmospheric CO2 on annual basis, making the entire study area a moderate net sink of about +0.13 Tg C yr-1. This average sink value for forested lands nonetheless masks the contribution of areas burned during the 1988 wildfires, which were estimated as net sources of CO2 to the atmosphere, totaling to a NEP flux of -0.04 Tg C yr-1 for the entire burned area. Several areas burned in the 1988 wildfires were estimated to be among the lowest in overall yearly NPP, namely the Hellroaring Fire, Mink Fire, and Falls Fire areas. Rates of recovery for burned forest areas to pre-1988 biomass levels were estimated from a unique combination of remote sensing and CASA model predictions. Ecosystem production and carbon fluxes in the Greater Yellowstone Ecosystem (GYE) result from complex interactions between climate, forest age structure, and disturbance-recovery patterns of the landscape.

  11. Influence of Land Cover Heterogeneity, Land-Use Change and Management on the Regional Carbon Cycle in the Upper Midwest USA as Evaluated by High-Density Observations and a Dynamic Ecosystem Model

    NASA Astrophysics Data System (ADS)

    Desai, A. R.; Bolstad, P. V.; Moorcroft, P. R.; Davis, K. J.

    2005-12-01

    The interplay between land use change, forest management and land cover variability complicates the ability to characterize regional scale (10-1000 km) exchange of carbon dioxide between the land surface and atmosphere in heterogeneous landscapes. An attempt was made to observe and model these factors and their influence on the regional carbon cycle across the upper Midwest USA. A high density of eddy-covariance carbon flux, micrometeorology, carbon dioxide mixing ratio, stand-scale biometry and canopy component flux observations have been occurring in this area as part of the Chequamegon Ecosystem-Atmosphere Study. Observations limited to sampling only dominant stands and coarse-resolution biogeochemical models limited to biome-scale parameterization neither accurately capture the variability of carbon fluxes measured by the network of eddy covariance towers nor match the regional-scale carbon flux inferred from very tall tower eddy covariance measurements and multi-site upscaling. Analysis of plot level biometric data, U.S. Forest Service Forest Inventory Analysis data and high-resolution land cover data around the tall tower revealed significant variations in vegetation type, stand age, canopy stocking and structure. Wetlands, clearcuts and recent natural disturbances occur in characteristic small non-uniformly distributed patches that aggregate to form more than 30% of the landscape. The Ecosystem Demography model, a dynamic ecosystem model that incorporates vegetation heterogeneity, canopy structure, stand age, disturbance, land use change and forest management, was parameterized with regional biometric data and meteorology, historical records of land management and high-resolution satellite land cover maps. The model will be used to examine the significance of past land use change, natural disturbance history and current forest management in explaining landscape structure and regional carbon fluxes observed in the region today.

  12. Mixed-species forest ecosystems in the Great Lakes region: A bibliography

    Treesearch

    John P. Gerlach; Daniel W. Gilmore; Klaus J. Puettmann; John C. Zasada

    2002-01-01

    Most of the world?s forests are dominated by mixed species stands but until recently, most forest management activities have focused on the development of single-species stands. To maximize fiber production, monoculture plantations were preferred because management and growth and yield prediction were simplified. This model of forest management developed because the...

  13. A practical approach for comparing management strategies in complex forest ecosystems using meta-modelling toolkits

    Treesearch

    Andrew Fall; B. Sturtevant; M.-J. Fortin; M. Papaik; F. Doyon; D. Morgan; K. Berninger; C. Messier

    2010-01-01

    The complexity and multi-scaled nature of forests poses significant challenges to understanding and management. Models can provide useful insights into process and their interactions, and implications of alternative management options. Most models, particularly scientific models, focus on a relatively small set of processes and are designed to operate within a...

  14. Whole-system carbon balance for a regional temperate forest in Northern Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Peckham, S. D.; Gower, S. T.

    2010-12-01

    The whole-system (biological + industrial) carbon (C) balance was estimated for the Chequamegon-Nicolet National Forest (CNNF), a temperate forest covering 600,000 ha in Northern Wisconsin, USA. The biological system was modeled using a spatially-explicit version of the ecosystem process model Biome-BGC. The industrial system was modeled using life cycle inventory (LCI) models for wood and paper products. Biome-BGC was used to estimate net primary production, net ecosystem production (NEP), and timber harvest (H) over the entire CNNF. The industrial carbon budget (Ci) was estimated by applying LCI models of CO2 emissions resulting from timber harvest and production of specific wood and paper products in the CNNF region. In 2009, simulated NEP of the CNNF averaged 3.0 tC/ha and H averaged 0.1 tC/ha. Despite model uncertainty, the CNNF region is likely a carbon sink (NEP - Ci > 0), even when CO2 emissions from timber harvest and production of wood and paper products are included in the calculation of the entire forest system C budget.

  15. Emerging themes in the ecology and management of North American forests

    USGS Publications Warehouse

    Sharik, Terry L.; Adair, William; Baker, Fred A.; Battaglia, Michael; Comfort, Emily J.; D'Amato, Anthony W.; Delong, Craig; DeRose, R. Justin; Ducey, Mark J.; Harmon, Mark; Levy, Louise; Logan, Jesse A.; O'Brien, Joseph; Palik, Brian J.; Roberts, Scott D.; Rogers, Paul C.; Shinneman, Douglas J.; Spies, Thomas; Taylor, Sarah L.; Woodall, Christopher; Youngblood, Andrew

    2010-01-01

    The 7th North American Forest Ecology Workshop, consisting of 149 presentations in 16 oral sessions and a poster session, reflected a broad range of topical areas currently under investigation in forest ecology and management. There was an overarching emphasis on the role of disturbance, both natural and anthropogenic, in the dynamics of forest ecosystems, and the recognition that legacies from past disturbances strongly influence future trajectories. Climate was invoked as a major driver of ecosystem change. An emphasis was placed on application of research findings for predicting system responses to changing forest management initiatives. Several “needs” emerged from the discussions regarding approaches to the study of forest ecosystems, including (1) consideration of variable spatial and temporal scales, (2) long-term monitoring, (3) development of universal databases more encompassing of time and space to facilitate meta-analyses, (4) combining field studies and modeling approaches, (5) standardizing methods of measurement and assessment, (6) guarding against oversimplification or overgeneralization from limited site-specific results, (7) greater emphasis on plant-animal interactions, and (8) better alignment of needs and communication of results between researchers and managers.

  16. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy

    NASA Astrophysics Data System (ADS)

    Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni

    2015-09-01

    The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.

  17. Sustainability and economics: The Adirondack Park experience, a forest economic-ecological model, and solar energy policy

    NASA Astrophysics Data System (ADS)

    Erickson, Jon David

    The long-term sustainability of human communities will depend on our relationship with regional environments, our maintenance of renewable resources, and our successful disengagement from nonrenewable energy dependence. This dissertation investigates sustainability at these three levels, following a critical analysis of sustainability and economics. At the regional environment level, the Adirondack Park of New York State is analyzed as a potential model of sustainable development. A set of initial and ongoing conditions are presented that both emerge from and support a model of sustainability in the Adirondacks. From these conditions, a clearer picture emerges of the definition of regional sustainability, consequences of its adoption, and lessons from its application. Next, an economic-ecological model of the northern hardwood forest ecosystem is developed. The model integrates economic theory and intertemporal ecological concepts, linking current harvest decisions with future forest growth, financial value, and ecosystem stability. The results indicate very different economic and ecological outcomes by varying opportunity cost and ecosystem recovery assumptions, and suggest a positive benefit to ecological recovery in the forest rotation decision of the profit maximizing manager. The last section investigates the motives, economics, and international development implications of renewable energy (specifically photovoltaic technology) in rural electrification and technology transfer, drawing on research in the Dominican Republic. The implications of subsidizing a photovoltaic market versus investing in basic research are explored.

  18. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy.

    PubMed

    Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni

    2015-09-01

    The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.

  19. An imperative need for global change research in tropical forests.

    PubMed

    Zhou, Xuhui; Fu, Yuling; Zhou, Lingyan; Li, Bo; Luo, Yiqi

    2013-09-01

    Tropical forests play a crucial role in regulating regional and global climate dynamics, and model projections suggest that rapid climate change may result in forest dieback or savannization. However, these predictions are largely based on results from leaf-level studies. How tropical forests respond and feedback to climate change is largely unknown at the ecosystem level. Several complementary approaches have been used to evaluate the effects of climate change on tropical forests, but the results are conflicting, largely due to confounding effects of multiple factors. Although altered precipitation and nitrogen deposition experiments have been conducted in tropical forests, large-scale warming and elevated carbon dioxide (CO2) manipulations are completely lacking, leaving many hypotheses and model predictions untested. Ecosystem-scale experiments to manipulate temperature and CO2 concentration individually or in combination are thus urgently needed to examine their main and interactive effects on tropical forests. Such experiments will provide indispensable data and help gain essential knowledge on biogeochemical, hydrological and biophysical responses and feedbacks of tropical forests to climate change. These datasets can also inform regional and global models for predicting future states of tropical forests and climate systems. The success of such large-scale experiments in natural tropical forests will require an international framework to coordinate collaboration so as to meet the challenges in cost, technological infrastructure and scientific endeavor.

  20. A community based approach to improving resilience of forests and water resources: A local and regional climate adaptation methodology

    Treesearch

    Toby Thaler; Gwen Griffith; Nancy Gilliam

    2014-01-01

    Forest-based ecosystem services are at risk from human-caused stressors, including climate change. Improving governance and management of forests to reduce impacts and increase community resilience to all stressors is the objective of forest-related climate change adaptation. The Model Forest Policy Program (MFPP) has applied one method designed to meet this objective...

  1. Quantifying legacies of clearcut on carbon fluxes and biomass carbon stock in northern temperate forests

    Treesearch

    W. Wang; J. Xiao; S. V. Ollinger; J. Chen; A. Noormets

    2014-01-01

    Stand-replacing disturbances including harvests have substantial impacts on forest carbon (C) fluxes and stocks. The quantification and simulation of these effects is essential for better understanding forest C dynamics and informing forest management 5 in the context of global change. We evaluated the process-based forest ecosystem model, PnET-CN, for how well and by...

  2. Forest Canopy Heights in Amazon River Basin Forests as Estimated with the Geoscience Laser Altimeter System (GLAS)

    Treesearch

    E. H. Helmer; M. A. Lefsky

    2006-01-01

    Land-use change, mainly forest burning, harvest, or clearing for agriculture, may compose 15 to 40 percent of annual human-caused emissions of carbon (C) to the atmosphere. Spatially extensive data on forest C pools can validate and parameterize atmospheric and ecosystem models of those fluxes and quantify fluxes from forest change. Excellent evidence exists that light...

  3. Quantitative retrieving forest ecological parameters based on remote sensing in Liping County of China

    NASA Astrophysics Data System (ADS)

    Tian, Qingjiu; Chen, Jing M.; Zheng, Guang; Xia, Xueqi; Chen, Junying

    2006-09-01

    Forest ecosystem is an important component of terrestrial ecosystem and plays an important role in global changes. Aboveground biomass (AGB) of forest ecosystem is an important factor in global carbon cycle studies. The purpose of this study was to retrieve the yearly Net Primary Productivity (NPP) of forest from the 8-days-interval MODIS-LAI images of a year and produce a yearly NPP distribution map. The LAI, DBH (diameter at breast height), tree height, and tree age field were measured in different 80 plots for Chinese fir, Masson pine, bamboo, broadleaf, mix forest in Liping County. Based on the DEM image and Landsat TM images acquired on May 14th, 2000, the geometric correction and terrain correction were taken. In addition, the "6S"model was used to gain the surface reflectance image. Then the correlation between Leaf Area Index (LAI) and Reduced Simple Ratio (RSR) was built. Combined with the Landcover map, forest stand map, the LAI, aboveground biomass, tree age map were produced respectively. After that, the 8-days- interval LAI images of a year, meteorology data, soil data, forest stand image and Landcover image were inputted into the BEPS model to get the NPP spatial distribution. At last, the yearly NPP spatial distribution map with 30m spatial resolution was produced. The values in those forest ecological parameters distribution maps were quite consistent with those of field measurements. So it's possible, feasible and time-saving to estimate forest ecological parameters at a large scale by using remote sensing.

  4. Assimilation of repeated woody biomass observations constrains decadal ecosystem carbon cycle uncertainty in aggrading forests

    NASA Astrophysics Data System (ADS)

    Smallman, T. L.; Exbrayat, J.-F.; Mencuccini, M.; Bloom, A. A.; Williams, M.

    2017-03-01

    Forest carbon sink strengths are governed by plant growth, mineralization of dead organic matter, and disturbance. Across landscapes, remote sensing can provide information about aboveground states of forests and this information can be linked to models to estimate carbon cycling in forests close to steady state. For aggrading forests this approach is more challenging and has not been demonstrated. Here we apply a Bayesian approach, linking a simple model to a range of data, to evaluate their information content, for two aggrading forests. We compare high information content analyses using local observations with retrievals using progressively sparser remotely sensed information (repeated, single, and no woody biomass observations). The net biome productivity of both forests is constrained to be a net sink with <2 Mg C ha-1 yr-1 variation across the range of inputs. However, the sequestration of particular carbon pool(s) varies with assimilated biomass information. Assimilation of repeated biomass observations reduces uncertainty and/or bias in all ecosystem C pools not just wood, compared to analyses using single or no stock information. As verification, our repeated biomass analysis explains 78-86% of variation in litter dynamics at one forest, while at the second forest total dead organic matter estimates are within observational uncertainty. The uncertainty of retrieved ecosystem traits in the repeated biomass analysis is reduced by up to 50% compared to analyses with less biomass information. This study quantifies the importance of repeated woody observations in constraining the dynamics of both wood and dead organic matter, highlighting the benefit of proposed remote sensing missions.

  5. Assessment of forest fuel loadings in Puerto Rico and the US Virgin Islands

    Treesearch

    Thomas J. Brandeis; Christopher W. Woodall

    2008-01-01

    Quantification of the downed woody materials that comprise forest fuels has gained importance in Caribbean forest ecosystems due to the increasing incidence and severity of wildfires on island ecosystems. Because large-scale assessments of forest fuels have rarely been conducted for these ecosystems, forest fuels were assessed at 121 US Department of Agriculture forest...

  6. Investigating the relationship between tree heights derived from SIBBORK forest model and remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Osmanoglu, B.; Feliciano, E. A.; Armstrong, A. H.; Sun, G.; Montesano, P.; Ranson, K.

    2017-12-01

    Tree heights are one of the most commonly used remote sensing parameters to measure biomass of a forest. In this project, we investigate the relationship between remotely sensed tree heights (e.g. G-LiHT lidar and commercially available high resolution satellite imagery, HRSI) and the SIBBORK modeled tree heights. G-LiHT is a portable, airborne imaging system that simultaneously maps the composition, structure, and function of terrestrial ecosystems using lidar, imaging spectroscopy and thermal mapping. Ground elevation and canopy height models were generated using the lidar data acquired in 2012. A digital surface model was also generated using the HRSI technique from the commercially available WorldView data in 2016. The HRSI derived height and biomass products are available at the plot (10x10m) level. For this study, we parameterized the SIBBORK individual-based gap model for Howland forest, Maine. The parameterization was calibrated using field data for the study site and results show that the simulated forest reproduces the structural complexity of Howland old growth forest, based on comparisons of key variables including, aboveground biomass, forest height and basal area. Furthermore carbon cycle and ecosystem observational capabilities will be enhanced over the next 6 years via the launch of two LiDAR (NASA's GEDI and ICESAT 2) and two SAR (NASA's ISRO NiSAR and ESA's Biomass) systems. Our aim is to present the comparison of canopy height models obtained with SIBBORK forest model and remote sensing techniques, highlighting the synergy between individual-based forest modeling and high-resolution remote sensing.

  7. Ecosystem services of human-dominated watersheds and land use influences: a case study from the Dianchi Lake watershed in China.

    PubMed

    Hou, Ying; Li, Bo; Müller, Felix; Chen, Weiping

    2016-11-01

    Watersheds provide multiple ecosystem services. Ecosystem service assessment is a promising approach to investigate human-environment interaction at the watershed scale. The spatial characteristics of ecosystem services are closely related to land use statuses in human-dominated watersheds. This study aims to investigate the effects of land use on the spatial variations of ecosystem services at the Dianchi Lake watershed in Southwest China. We investigated the spatial variations of six ecosystem services-food supply, net primary productivity (NPP), habitat quality, evapotranspiration, water yield, and nitrogen retention. These services were selected based on their significance at the Dianchi Lake watershed and the availability of their data. The quantification of these services was based on modeling, value transference, and spatial analysis in combination with biophysical and socioeconomic data. Furthermore, we calculated the values of ecosystem services provided by different land use types and quantified the correlations between ecosystem service values and land use area proportions. The results show considerable spatial variations in the six ecosystem services associated with land use influences in the Dianchi Lake watershed. The cropland and forest land use types had predominantly positive influences on food productivity and NPP, respectively. The rural residential area and forest land use types reduced and enhanced habitat quality, respectively; these influences were identical to those of evapotranspiration. Urban area and rural residential area exerted significantly positive influences on water yield. In contrast, water yield was negatively correlated with forest area proportion. Finally, cropland and forest had significantly positive and negative influences, respectively, on nitrogen retention. Our study emphasizes the importance of consideration of the influences from land use composition and distribution on ecosystem services for managing the ecosystems of human-dominated watersheds.

  8. Evaluating alternative approaches to modeling terrestrial C and N interactions using observations of ecosystem response to nitrogen deposition and experimental fertilization

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Bonan, G. B.; Goodale, C. L.

    2012-12-01

    In many forest ecosystems, nitrogen deposition is increasing carbon storage and reducing climate warming from fossil fuel emissions. Accurately modeling the forest carbon sequestration response to elevated nitrogen deposition using global biogeochemical models coupled to climate models is therefore important. Here, we use observations of the forest carbon response to both nitrogen fertilization experiments and nitrogen deposition gradients to test and improve a global biogeochemical model (CLM-CN 4.0). We introduce a series of model modifications to the CLM-CN that 1) creates a more closed nitrogen cycle with reduced nitrogen fixation and N gas loss and 2) includes buffering of plant nitrogen uptake and buffering of soil nitrogen available for plants and microbial processes. Overall, the modifications improved the comparison of the model predictions to the observational data by increasing the carbon storage response to historical nitrogen deposition (1850-2004) in temperate forest ecosystems by 144% and reducing the response to nitrogen fertilization. The increased sensitivity to nitrogen deposition was primarily attributable to greater retention of nitrogen deposition in the ecosystem and a greater role of synergy between nitrogen deposition and rising atmospheric CO2. Based on our results, we suggest that nitrogen retention should be an important attribute investigated in model inter-comparisons. To understand the specific ecosystem processes that contribute to the sensitivity of carbon storage to nitrogen deposition, we examined sensitivity to nitrogen deposition in a set of intermediary models that isolate the key differences in model structure between the CLM-CN 4.0 and the modified version. We demonstrate that the nitrogen deposition response was most sensitive to the implementation of a more closed nitrogen cycle and buffered plant uptake of soil mineral nitrogen, and less sensitive to modifications of the canopy scaling of photosynthesis, soil buffering of available nitrogen, and plant buffering of labile nitrogen. By comparing carbon storage sensitivity to observational data from both nitrogen deposition gradients and nitrogen fertilization experiments, we show different observed estimates of sensitivity between these two approaches could be explained by differences in the magnitude and time-scale of nitrogen additions.

  9. Advances of Air Pollution Science: From Forest Decline to Multiple-Stress Effects on Forest Ecosystem Services

    Treesearch

    E. Paoletti; M. Schaub; R. Matyssek; G. Wieser; A. Augustaitis; A. M. Bastrup-Birk; A. Bytnerowicz; M. S. Gunthardt-Goerg; G. Muller-Starck; Y. Serengil

    2010-01-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of...

  10. Overview of global climate change and carbon sequestration

    Treesearch

    Kurt Johnsen

    2004-01-01

    The potential influence of global climate change on southern forests is uncertain. Outputs of climate change models differ considerably in their projections for precipitation and other variables that affect forests. Forest responses, particularly effects on competition among species, are difficult to assess. Even the responses of relatively simple ecosystems, such as...

  11. Quantifying uncertainty in forest nutrient budgets

    Treesearch

    Ruth D. Yanai; Carrie R. Levine; Mark B. Green; John L. Campbell

    2012-01-01

    Nutrient budgets for forested ecosystems have rarely included error analysis, in spite of the importance of uncertainty to interpretation and extrapolation of the results. Uncertainty derives from natural spatial and temporal variation and also from knowledge uncertainty in measurement and models. For example, when estimating forest biomass, researchers commonly report...

  12. Terrestrial Ecosystem Science 2017 ECRP Annual Report: Tropical Forest Response to a Drier Future: Turnover Times of Soil Organic Matter, Roots, Respired CO 2, and CH 4 Across Moisture Gradients in Time and Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarlane, Karis J.

    The overall goal of my Early Career research is to constrain belowground carbon turnover times for tropical forests across a broad range in moisture regimes. My group is using 14C analysis and modeling to address two major objectives: quantify age and belowground carbon turnover times across tropical forests spanning a moisture gradient from wetlands to dry forest; and identify specific areas for focused model improvement and data needs through site-specific model-data comparison and belowground carbon modeling for tropic forests.

  13. Approaches to modeling landscape-scale drought-induced forest mortality

    USGS Publications Warehouse

    Gustafson, Eric J.; Shinneman, Douglas

    2015-01-01

    Drought stress is an important cause of tree mortality in forests, and drought-induced disturbance events are projected to become more common in the future due to climate change. Landscape Disturbance and Succession Models (LDSM) are becoming widely used to project climate change impacts on forests, including potential interactions with natural and anthropogenic disturbances, and to explore the efficacy of alternative management actions to mitigate negative consequences of global changes on forests and ecosystem services. Recent studies incorporating drought-mortality effects into LDSMs have projected significant potential changes in forest composition and carbon storage, largely due to differential impacts of drought on tree species and interactions with other disturbance agents. In this chapter, we review how drought affects forest ecosystems and the different ways drought effects have been modeled (both spatially and aspatially) in the past. Building on those efforts, we describe several approaches to modeling drought effects in LDSMs, discuss advantages and shortcomings of each, and include two case studies for illustration. The first approach features the use of empirically derived relationships between measures of drought and the loss of tree biomass to drought-induced mortality. The second uses deterministic rules of species mortality for given drought events to project changes in species composition and forest distribution. A third approach is more mechanistic, simulating growth reductions and death caused by water stress. Because modeling of drought effects in LDSMs is still in its infancy, and because drought is expected to play an increasingly important role in forest health, further development of modeling drought-forest dynamics is urgently needed.

  14. The Hardwood Ecosystem Experiment: a framework for studying responses to forest management

    Treesearch

    Robert K. Swihart; Michael R. Saunders; Rebecca A. Kalb; G. Scott Haulton; Charles H., eds. Michler

    2013-01-01

    Conditions in forested ecosystems of southern Indiana are described before initiation of silvicultural treatments for the Hardwood Ecosystem Experiment (HEE). The HEE is a 100-year study begun in 2006 in Morgan-Monroe and Yellowwood State Forests to improve the sustainability of forest resources and quality of life of Indiana residents by understanding ecosystem and...

  15. Sustainable management in crop monocultures: the impact of retaining forest on oil palm yield.

    PubMed

    Edwards, Felicity A; Edwards, David P; Sloan, Sean; Hamer, Keith C

    2014-01-01

    Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ≈23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture.

  16. Sustainable Management in Crop Monocultures: The Impact of Retaining Forest on Oil Palm Yield

    PubMed Central

    Edwards, Felicity A.; Edwards, David P.; Sloan, Sean; Hamer, Keith C.

    2014-01-01

    Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ≈23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture. PMID:24638038

  17. Use of Knowledge Base Systems (EMDS) in Strategic and Tactical Forest Planning

    NASA Astrophysics Data System (ADS)

    Jensen, M. E.; Reynolds, K.; Stockmann, K.

    2008-12-01

    The USDA Forest Service 2008 Planning Rule requires Forest plans to provide a strategic vision for maintaining the sustainability of ecological, economic, and social systems across USFS lands through the identification of desired conditions and objectives. In this paper we show how knowledge-based systems can be efficiently used to evaluate disparate natural resource information to assess desired conditions and related objectives in Forest planning. We use the Ecosystem Management Decision Support (EMDS) system (http://www.institute.redlands.edu/emds/), which facilitates development of both logic-based models for evaluating ecosystem sustainability (desired conditions) and decision models to identify priority areas for integrated landscape restoration (objectives). The study area for our analysis spans 1,057 subwatersheds within western Montana and northern Idaho. Results of our study suggest that knowledge-based systems such as EMDS are well suited to both strategic and tactical planning and that the following points merit consideration in future National Forest (and other land management) planning efforts: 1) Logic models provide a consistent, transparent, and reproducible method for evaluating broad propositions about ecosystem sustainability such as: are watershed integrity, ecosystem and species diversity, social opportunities, and economic integrity in good shape across a planning area? The ability to evaluate such propositions in a formal logic framework also allows users the opportunity to evaluate statistical changes in outcomes over time, which could be very useful for regional and national reporting purposes and for addressing litigation; 2) The use of logic and decision models in strategic and tactical Forest planning provides a repository for expert knowledge (corporate memory) that is critical to the evaluation and management of ecosystem sustainability over time. This is especially true for the USFS and other federal resource agencies, which are likely to experience rapid turnover in tenured resource specialist positions within the next five years due to retirements; 3) Use of logic model output in decision models is an efficient method for synthesizing the typically large amounts of information needed to support integrated landscape restoration. Moreover, use of logic and decision models to design customized scenarios for integrated landscape restoration, as we have demonstrated with EMDS, offers substantial improvements to traditional GIS-based procedures such as suitability analysis. To our knowledge, this study represents the first attempt to link evaluations of desired conditions for ecosystem sustainability in strategic planning to tactical planning regarding the location of subwatersheds that best meet the objectives of integrated landscape restoration. The basic knowledge-based approach implemented in EMDS, with its logic (NetWeaver) and decision (Criterion Decision Plus) engines, is well suited both to multi-scale strategic planning and to multi-resource tactical planning.

  18. Predicting mosaics and wildlife diversity resulting from fire disturbance to a forest ecosystem

    NASA Astrophysics Data System (ADS)

    Potter, Meredith W.; Kessell, Stephen R.

    1980-05-01

    A model for predicting community mosaics and wildlife diversity resulting from fire disturbance to a forest ecosystem is presented. It applies an algorithm that delineates the size and shape of each patch from grid-based input data and calculates standard diversity measures for the entire mosaic of community patches and their included animal species. The user can print these diversity calculations, maps of the current community-type-age-class mosaic, and maps of habitat utilization by each animal species. Furthermore, the user can print estimates of changes in each resulting from natural disturbance. Although data and resolution level independent, the model is demonstrated and tested with data from the Lewis and Clark National Forest in Montana.

  19. Influence of physiological phenology on the seasonal pattern of ecosystem respiration in deciduous forests.

    PubMed

    Migliavacca, Mirco; Reichstein, Markus; Richardson, Andrew D; Mahecha, Miguel D; Cremonese, Edoardo; Delpierre, Nicolas; Galvagno, Marta; Law, Beverly E; Wohlfahrt, Georg; Black, T Andrew; Carvalhais, Nuno; Ceccherini, Guido; Chen, Jiquan; Gobron, Nadine; Koffi, Ernest; Munger, J William; Perez-Priego, Oscar; Robustelli, Monica; Tomelleri, Enrico; Cescatti, Alessandro

    2015-01-01

    Understanding the environmental and biotic drivers of respiration at the ecosystem level is a prerequisite to further improve scenarios of the global carbon cycle. In this study we investigated the relevance of physiological phenology, defined as seasonal changes in plant physiological properties, for explaining the temporal dynamics of ecosystem respiration (RECO) in deciduous forests. Previous studies showed that empirical RECO models can be substantially improved by considering the biotic dependency of RECO on the short-term productivity (e.g., daily gross primary production, GPP) in addition to the well-known environmental controls of temperature and water availability. Here, we use a model-data integration approach to investigate the added value of physiological phenology, represented by the first temporal derivative of GPP, or alternatively of the fraction of absorbed photosynthetically active radiation, for modeling RECO at 19 deciduous broadleaved forests in the FLUXNET La Thuile database. The new data-oriented semiempirical model leads to an 8% decrease in root mean square error (RMSE) and a 6% increase in the modeling efficiency (EF) of modeled RECO when compared to a version of the model that does not consider the physiological phenology. The reduction of the model-observation bias occurred mainly at the monthly time scale, and in spring and summer, while a smaller reduction was observed at the annual time scale. The proposed approach did not improve the model performance at several sites, and we identified as potential causes the plant canopy heterogeneity and the use of air temperature as a driver of ecosystem respiration instead of soil temperature. However, in the majority of sites the model-error remained unchanged regardless of the driving temperature. Overall, our results point toward the potential for improving current approaches for modeling RECO in deciduous forests by including the phenological cycle of the canopy. © 2014 John Wiley & Sons Ltd.

  20. Soil fertility assessment in the 3 PG model using site index in the southeastern United States

    Treesearch

    Santosh Subedi; Thomas R. Fox

    2016-01-01

    Soil fertility is one of the most important, yet least understood aspects of forest ecosystems. Study of soil fertility in forest ecosystems is complicated by the complex relationship between soil properties and stand productivity and immense variability in properties and characteristics of soils within relatively small geographic areas. Furthermore, the deep rooting...

  1. Management of Phytophthora ramorum at plot and landscape scales for disease control, tanoak conservation, and forest restoration - insights from epidemiological and ecosystem models

    Treesearch

    João A.N. Filipe; Richard C. Cobb; Maëlle Salmon; David M. Rizzo; Christopher A. Gilligan

    2013-01-01

    Phytophthora ramorum has continued to spread in forests in the western United States, the United Kingdom, and the Republic of Ireland, and continues to challenge vegetation and ecosystems in temperate regions (Brasier and Webber 2010, Grünwald et al. 2012). Disease management in the wild has been applied with some success in localized outbreaks in...

  2. Testing the sensitivity of terrestrial carbon models using remotely sensed biomass estimates

    NASA Astrophysics Data System (ADS)

    Hashimoto, H.; Saatchi, S. S.; Meyer, V.; Milesi, C.; Wang, W.; Ganguly, S.; Zhang, G.; Nemani, R. R.

    2010-12-01

    There is a large uncertainty in carbon allocation and biomass accumulation in forest ecosystems. With the recent availability of remotely sensed biomass estimates, we now can test some of the hypotheses commonly implemented in various ecosystem models. We used biomass estimates derived by integrating MODIS, GLAS and PALSAR data to verify above-ground biomass estimates simulated by a number of ecosystem models (CASA, BIOME-BGC, BEAMS, LPJ). This study extends the hierarchical framework (Wang et al., 2010) for diagnosing ecosystem models by incorporating independent estimates of biomass for testing and calibrating respiration, carbon allocation, turn-over algorithms or parameters.

  3. Tropical Tree Trait Diversity Enhances Forest Biomass Resilience in a Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Sakschewski, B.; Kirsten, T.; von Bloh, W.; Poorter, L.; Pena-Claros, M.; Boit, A.

    2016-12-01

    Functional diversity of ecosystems has been found to increase ecosystem functions and therefore enhance ecosystem resilience against environmental stressors. However, global carbon-cycle and biosphere models still classify the global vegetation into a relatively small number of distinct plant functional types (PFT) with constant features over space and time. Therefore, those models might underestimate the resilience and adaptive capacity of natural vegetation under climate change by ignoring positive effects that functional diversity might bring about. We diversified a set a of selected tree traits in a dynamic global vegetation model (LPJmL). In the new subversion, called LPJmL-FIT, Amazon region biomass stocks and forest structure appear significantly more resilient against climate change. Enhanced tree trait diversity enables the simulated rainforests to adjust to new environmental conditions via ecological sorting. These results may stimulate a new debate on the value of biodiversity for climate change mitigation.

  4. Cross-continental comparison of the functional composition and carbon allocation of two altitudinal forest transects in Ecuador and Rwanda.

    NASA Astrophysics Data System (ADS)

    Bauters, Marijn; Bruneel, Stijn; Demol, Miro; Taveirne, Cys; Van Der Heyden, Dries; Boeckx, Pascal; Kearsley, Elizabeth; Cizungu, Landry; Verbeeck, Hans

    2016-04-01

    Tropical forests are key actors in the global carbon cycle. Predicting future responses of these forests to global change is challenging, but important for global climate models. However, our current understanding of such responses is limited, due to the complexity of forest ecosystems and the slow dynamics that inherently form these systems. Our understanding of ecosystem ecology and functioning could greatly benefit from experimental setups including strong environmental gradients in the tropics, as found on altitudinal transects. We setup two such transects in both South-America and Africa, focussing on shifts in carbon allocation, forest structure and functional composition. By a cross-continental comparison of both transects, we will gain insight in how different or alike both tropical forests biomes are in their responses, and how universal the observed adaption mechanisms are.

  5. Effects of harvest on carbon and nitrogen dynamics in a Pacific Northwest forest catchment

    EPA Science Inventory

    We used a new ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest on catchment carbon and nitrogen dynamics. We applied the model to a 10 ha headwater catchment in the western Oregon Cascade Range where t...

  6. An Optimization-Based System Model of Disturbance-Generated Forest Biomass Utilization

    ERIC Educational Resources Information Center

    Curry, Guy L.; Coulson, Robert N.; Gan, Jianbang; Tchakerian, Maria D.; Smith, C. Tattersall

    2008-01-01

    Disturbance-generated biomass results from endogenous and exogenous natural and cultural disturbances that affect the health and productivity of forest ecosystems. These disturbances can create large quantities of plant biomass on predictable cycles. A systems analysis model has been developed to quantify aspects of system capacities (harvest,…

  7. The Study of Biogenetic Organic Compound Emissions and Ozone in a Subtropical Bamboo Forest

    NASA Astrophysics Data System (ADS)

    Bai, Jianhui; Guenther, Alex; Turnipseed, Andrew; Duhl, Tiffany; Duhl, Nanhao; van der A, Ronald; Yu, Shuquan; Wang, Bin

    2016-08-01

    Emissions of Biogenic Volatile Organic compounds (BVOCs), Photosynthetically Active Radiation (PAR), and meteorological parameters were measured in some ecosystems in China. A Relaxed Eddy Accumulation system and an enclosure technique were used to measure BVOC emissions. Obvious diurnal and seasonal variations of BVOC emissions were found. Empirical models of BVOC emissions were developed, the estimated BVOC emissions were in agreement with observations. BVOC emissions in growing seasons in the Inner Mongolia grassland, Chnagbai Mountain temperate forest, LinAn subtropical bamboo forest were estimated. The emission factors of these ecosystems were calculated.

  8. Emergent climate and CO2 sensitivities of net primary productivity in ecosystem models do not agree with empirical data in temperate forests of eastern North America.

    PubMed

    Rollinson, Christine R; Liu, Yao; Raiho, Ann; Moore, David J P; McLachlan, Jason; Bishop, Daniel A; Dye, Alex; Matthes, Jaclyn H; Hessl, Amy; Hickler, Thomas; Pederson, Neil; Poulter, Benjamin; Quaife, Tristan; Schaefer, Kevin; Steinkamp, Jörg; Dietze, Michael C

    2017-07-01

    Ecosystem models show divergent responses of the terrestrial carbon cycle to global change over the next century. Individual model evaluation and multimodel comparisons with data have largely focused on individual processes at subannual to decadal scales. Thus far, data-based evaluations of emergent ecosystem responses to climate and CO 2 at multidecadal and centennial timescales have been rare. We compared the sensitivity of net primary productivity (NPP) to temperature, precipitation, and CO 2 in ten ecosystem models with the sensitivities found in tree-ring reconstructions of NPP and raw ring-width series at six temperate forest sites. These model-data comparisons were evaluated at three temporal extents to determine whether the rapid, directional changes in temperature and CO 2 in the recent past skew our observed responses to multiple drivers of change. All models tested here were more sensitive to low growing season precipitation than tree-ring NPP and ring widths in the past 30 years, although some model precipitation responses were more consistent with tree rings when evaluated over a full century. Similarly, all models had negative or no response to warm-growing season temperatures, while tree-ring data showed consistently positive effects of temperature. Although precipitation responses were least consistent among models, differences among models to CO 2 drive divergence and ensemble uncertainty in relative change in NPP over the past century. Changes in forest composition within models had no effect on climate or CO 2 sensitivity. Fire in model simulations reduced model sensitivity to climate and CO 2 , but only over the course of multiple centuries. Formal evaluation of emergent model behavior at multidecadal and multicentennial timescales is essential to reconciling model projections with observed ecosystem responses to past climate change. Future evaluation should focus on improved representation of disturbance and biomass change as well as the feedbacks with moisture balance and CO 2 in individual models. © 2017 John Wiley & Sons Ltd.

  9. Global resistance and resilience of primary production following extreme drought are predicted by mean annual precipitation

    NASA Astrophysics Data System (ADS)

    Stuart-Haëntjens, E. J.; De Boeck, H. J.; Lemoine, N. P.; Gough, C. M.; Kröel-Dulay, G.; Mänd, P.; Jentsch, A.; Schmidt, I. K.; Bahn, M.; Lloret, F.; Kreyling, J.; Wohlgemuth, T.; Stampfli, A.; Anderegg, W.; Classen, A. T.; Smith, M. D.

    2017-12-01

    Extreme drought is increasing globally in frequency and intensity, with uncertain consequences for the resistance and resilience of key ecosystem functions, including primary production. Primary production resistance, the capacity of an ecosystem to withstand change in primary production following extreme climate, and resilience, the degree to which primary production recovers, vary among and within ecosystem types, obscuring global patterns of resistance and resilience to extreme drought. Past syntheses on resistance have focused climatic gradients or individual ecosystem types, without assessing interactions between the two. Theory and many empirical studies suggest that forest production is more resistant but less resilient than grassland production to extreme drought, though some empirical studies reveal that these trends are not universal. Here, we conducted a global meta-analysis of sixty-four grassland and forest sites, finding that primary production resistance to extreme drought is predicted by a common continuum of mean annual precipitation (MAP). However, grasslands and forests exhibit divergent production resilience relationships with MAP. We discuss the likely mechanisms underlying the mixed production resistance and resilience patterns of forests and grasslands, including different plant species turnover times and drought adaptive strategies. These findings demonstrate the primary production responses of forests and grasslands to extreme drought are mixed, with far-reaching implications for Earth System Models, ecosystem management, and future studies of extreme drought resistance and resilience.

  10. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions

    PubMed Central

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2016-01-01

    The rates of anthropogenic climate change substantially exceed those at which forest ecosystems – dominated by immobile, long-lived organisms – are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest-dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate-induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate-induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process-based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid- to low-elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous adaptation need to be considered more explicitly in the ongoing efforts to safeguard biodiversity and ecosystem services provisioning. PMID:27633953

  11. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions.

    PubMed

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2017-01-01

    The rates of anthropogenic climate change substantially exceed those at which forest ecosystems - dominated by immobile, long-lived organisms - are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest-dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate-induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate-induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process-based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid- to low-elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous adaptation need to be considered more explicitly in the ongoing efforts to safeguard biodiversity and ecosystem services provisioning. © 2016 John Wiley & Sons Ltd.

  12. Drought and tree mortality in tropical rainforest: understanding and differentiating functional responses

    NASA Astrophysics Data System (ADS)

    Meir, P.; Rowland, L.; da Costa, A. C. L.; Mencuccini, M.; Oliveira, A.; Binks, O.; Christoffersen, B. O.; Eliane, M.; Vasconcelos, S.; Kruijt, B.; Ferreira, L.

    2014-12-01

    Our understanding of how forests respond to drought is especially constrained with respect to widespread tree mortality events. This limitation is particularly clear for tropical forests, despite the risk of drought to these ecosystems during the coming decades. We present new findings from the only current long-term 'ecosystem-scale' (1 ha) rainfall manipulation experiment in tropical rainforest, the Esecaflor experiment at Caxiuana National Forest, Para State, Brazil. Throughfall has been partially excluded from experimental forest at the Esecaflor experiment for more than a decade. We have previously demonstrated a capacity to model short-term physiological responses well, but longer term physiology and ecological dynamics remain challenging to understand and represent. In particular, high mortality and increased autotrophic respiration following extended drought are poorly understood phenomena, and their interaction with hydraulic responses and limitations needs to be characterised. We present initial data that for the first time combine carbon use and hydraulic metrics, comparing drought-vulnerable and non-vulnerable species that have experienced extended soil moisture deficit, as imposed in the experiment, also considering the response in soil respiration. We also discuss how these findings can be used to develop future empirical and modelling studies aimed at improving our capacity to predict the effects of drought on tropical forest ecosystems in Amazonia and in other tropical forest regions where species characteristics and environmental constraints may influence both short and long-term responses to drought.

  13. Potential climate change impacts on temperate forest ecosystem processes

    USGS Publications Warehouse

    Peters, Emily B.; Wythers, Kirk R.; Zhang, Shuxia; Bradford, John B.; Reich, Peter B.

    2013-01-01

    Large changes in atmospheric CO2, temperature and precipitation are predicted by 2100, yet the long-term consequences for carbon, water, and nitrogen cycling in forests are poorly understood. We applied the PnET-CN ecosystem model to compare the long-term effects of changing climate and atmospheric CO2 on productivity, evapotranspiration, runoff, and net nitrogen mineralization in current Great Lakes forest types. We used two statistically downscaled climate projections, PCM B1 (warmer and wetter) and GFDL A1FI (hotter and drier), to represent two potential future climate and atmospheric CO2 scenarios. To separate the effects of climate and CO2, we ran PnET-CN including and excluding the CO2 routine. Our results suggest that, with rising CO2 and without changes in forest type, average regional productivity could increase from 67% to 142%, changes in evapotranspiration could range from –3% to +6%, runoff could increase from 2% to 22%, and net N mineralization could increase 10% to 12%. Ecosystem responses varied geographically and by forest type. Increased productivity was almost entirely driven by CO2 fertilization effects, rather than by temperature or precipitation (model runs holding CO2 constant showed stable or declining productivity). The relative importance of edaphic and climatic spatial drivers of productivity varied over time, suggesting that productivity in Great Lakes forests may switch from being temperature to water limited by the end of the century.

  14. Simulating carbon stocks and fluxes of an African tropical montane forest with an individual-based forest model.

    PubMed

    Fischer, Rico; Ensslin, Andreas; Rutten, Gemma; Fischer, Markus; Schellenberger Costa, David; Kleyer, Michael; Hemp, Andreas; Paulick, Sebastian; Huth, Andreas

    2015-01-01

    Tropical forests are carbon-dense and highly productive ecosystems. Consequently, they play an important role in the global carbon cycle. In the present study we used an individual-based forest model (FORMIND) to analyze the carbon balances of a tropical forest. The main processes of this model are tree growth, mortality, regeneration, and competition. Model parameters were calibrated using forest inventory data from a tropical forest at Mt. Kilimanjaro. The simulation results showed that the model successfully reproduces important characteristics of tropical forests (aboveground biomass, stem size distribution and leaf area index). The estimated aboveground biomass (385 t/ha) is comparable to biomass values in the Amazon and other tropical forests in Africa. The simulated forest reveals a gross primary production of 24 tcha(-1) yr(-1). Modeling above- and belowground carbon stocks, we analyzed the carbon balance of the investigated tropical forest. The simulated carbon balance of this old-growth forest is zero on average. This study provides an example of how forest models can be used in combination with forest inventory data to investigate forest structure and local carbon balances.

  15. [A review on disturbance ecology of forest].

    PubMed

    Zhu, Jiaojun; Liu, Zugen

    2004-10-01

    More than 80% of terrestrial ecosystems have been influenced by natural disasters, human activities and the combination of both natural and human disturbances. Forest ecosystem, as one of the most important terrestrial ecosystems, has also been disturbed without exception. Under the disturbance from natural disasters and human activities, particularly from the unreasonable activities of human beings, forest decline or forest degradation has become more and more severe. For this reason, sustaining or recovering forest service functions is one of the current purposes for managing forest ecosystems. In recent decades, the studies on disturbed ecosystems have been carried out frequently, especially on their ecological processes and their responses to the disturbances. These studies play a very important role in the projects of natural forest conservation and the construction of ecological environment in China. Based on a wide range of literatures collection on forest disturbance research, this paper discussed the fundamental concepts of disturbance ecology, the relationships between forest management and disturbance, and the study contents of forest disturbance ecology. The major research topics of forest disturbance ecology may include: 1) the basic characteristics of disturbed forests; 2) the processes of natural and human disturbances; 3) the responses of forests ecosystem to the disturbances; 4) the main ecological processes or the consequential results of disturbed forests, including the change of biodiversity, soil nutrient and water cycle, eco-physiology and carbon cycle, regeneration mechanism of disturbed forests and so on; 5) the relationships between disturbances and forest management; and 6) the principles and techniques for the management of disturbed forests. This review may be helpful to the management of disturbed forest ecosystem, and to the projects of natural forest conservation in China.

  16. Assimilation of high resolution satellite imagery into the 3D-CMCC forest ecosystem model

    NASA Astrophysics Data System (ADS)

    Natali, S.; Collalti, A.; Candini, A.; Della Vecchia, A.; Valentini, R.

    2012-04-01

    The use of satellite observations for the accurate monitoring of the terrestrial biosphere has been carried out since the very early stage of remote sensing applications. The possibility to observe the ground surface with different wavelengths and different observation modes (namely active and passive observations) has given to the scientific community an invaluable tool for the observation of wide areas with a resolution down to the single tree. On the other hand, the continuous development of forest ecosystem models has permitted to perform simulations of complex ("natural") forest scenarios to evaluate forest status, forest growth and future dynamics. Both remote sensing and modelling forest assessment methods have advantages and disadvantages that could be overcome by the adoption of an integrated approach. In the framework of the European Space Agency Project KLAUS, high resolution optical satellite data has been integrated /assimilated into a forest ecosystem model (named 3D-CMCC) specifically developed for multi-specie, multi-age forests. 3D-CMCC permits to simulate forest areas with different forest layers, with different trees at different age on the same point. Moreover, the model permits to simulate management activities on the forest, thus evaluating the carbon stock evolution following a specific management scheme. The model has been modified including satellite data at 10m resolution, permitting the use of directly measured information, adding to the model the real phenological cycle of each simulated point. Satellite images have been collected by the JAXA ALOS-AVNIR-2 sensor. The integration schema has permitted to identify a spatial domain in which each pixel is characterised by a forest structure (species, ages, soil parameters), meteo-climatological parameters and estimated Leaf Area Index from satellite. The resulting software package (3D-CMCC-SAT) is built around 3D-CMCC: 2D / 3D input datasets are processed iterating on each point of the analysed domain to create a set of monthly/ yearly output maps. The integrated approach has been tested on the "Parco Nazionale dei Monti Sibillini, Italy". The high correlation showed between observed and computed data can be considered statistically meaningful and hence the model can be deemed a good predictor both for high resolution and for short period of simulation. Moreover the coupling satellite data at high resolution and field information as input data have shown that these data can be used in the 3D-CMCC Forest Model run. These data can be also successfully used to simulate the main physiological processes at regional scale and to produce with good accordance with measured and literature data, reliable output to better investigate forest growth, dynamic and carbon stock.

  17. A simple method for estimating gross carbon budgets for vegetation in forest ecosystems.

    PubMed

    Ryan, Michael G.

    1991-01-01

    Gross carbon budgets for vegetation in forest ecosystems are difficult to construct because of problems in scaling flux measurements made on small samples over short periods of time and in determining belowground carbon allocation. Recently, empirical relationships have been developed to estimate total belowground carbon allocation from litterfall, and maintenance respiration from tissue nitrogen content. I outline a method for estimating gross carbon budgets using these empirical relationships together with data readily available from ecosystem studies (aboveground wood and canopy production, aboveground wood and canopy biomass, litterfall, and tissue nitrogen contents). Estimates generated with this method are compared with annual carbon fixation estimates from the Forest-BGC model for a lodgepole pine (Pinus contorta Dougl.) and a Pacific silver fir (Abies amabilis Dougl.) chronosequence.

  18. Investigating the role of evergreen and deciduous forests in the increasing trend in atmospheric CO2 seasonal amplitude

    NASA Astrophysics Data System (ADS)

    Welp, L.; Calle, L.; Graven, H. D.; Poulter, B.

    2017-12-01

    The seasonal amplitude of Northern Hemisphere atmospheric CO2 concentrations has systematically increased over the last several decades, indicating that the timing and amplitude of net CO2 uptake and release by northern terrestrial ecosystems has changed substantially. Remote sensing, dynamic vegetation modeling, and in-situ studies have explored how changes in phenology, expansion of woody vegetation, and changes in species composition and disturbance regimes, among others, are driven by changes in climate and CO2. Despite these efforts, ecosystem models have not been able to reproduce observed atmospheric CO2 changes. Furthermore, the implications for the source/sink balance of northern ecosystems remains unclear. Changing proportions of evergreen and deciduous tree cover in response to climate change could be one of the key mechanisms that have given rise to amplified atmospheric CO2 seasonality. These two different plant functional types (PFTs) have different carbon uptake seasonal patterns and also different sensitivities to climate change, but are often lumped together as one forest type in global ecosystem models. We will demonstrate the potential that shifting distributions of evergreen and deciduous forests can have on the amplitude of atmospheric CO2. We will show phase differences in the net CO2 seasonal uptake using CO2 flux data from paired evergreen/deciduous eddy covariance towers. We will use simulations of evergreen and deciduous PFTs from the LPJ dynamic vegetation model to explore how climate change may influence the abundance and CO2 fluxes of each. Model results show that the area of deciduous forests is predicted to have increased, and the seasonal amplitude of CO2 fluxes has increased as well. The impact of surface flux seasonal variability on atmospheric CO2 amplitude is examined by transporting fluxes from each forest PFT through the TM3 transport model. The timing of the most intense CO2 uptake leads to an enhanced effect of deciduous forests on the atmospheric CO2 amplitude. These results demonstrate the potential significance of evergreen/deciduous forest PFTs on the amplitude of atmospheric CO2. In order to better understand the causes of the increasing amplitude trend, we encourage creating time-varying maps of evergreen/deciduous PFTs from remote sensing observations.

  19. A bottom-up evolution of terrestrial ecosystem modeling theory, and ideas toward global vegetation modeling

    NASA Technical Reports Server (NTRS)

    Running, Steven W.

    1992-01-01

    A primary purpose of this review is to convey lessons learned in the development of a forest ecosystem modeling approach, from it origins in 1973 as a single-tree water balance model to the current regional applications. The second intent is to use this accumulated experience to offer ideas of how terrestrial ecosystem modeling can be taken to the global scale: earth systems modeling. A logic is suggested where mechanistic ecosystem models are not themselves operated globally, but rather are used to 'calibrate' much simplified models, primarily driven by remote sensing, that could be implemented in a semiautomated way globally, and in principle could interface with atmospheric general circulation models (GCM's).

  20. Increasing the effectiveness of native forest regeneration and reforestation: towards climate-change adaptation in drylands

    NASA Astrophysics Data System (ADS)

    Branquinho, Cristina; Príncipe, Adriana; Nunes, Alice; Kobel, Melanie; Soares, Cristina; Pinho, Pedro

    2016-04-01

    The recent expansion of the semiarid climate to all the region of the south of Portugal and the growing impact of climate change demands local adaptation. The growth of the native forest represents a strategy at the ecosystem level to adapt to climate change since it increases resilience and increases also de delivery of ecosystem services such as the increment of organic matter in the soil, carbon and nitrogen, biodiversity, water infiltration, etc. Moreover decreases susceptibility to desertification. For that reason, large areas have been reforested in the south of Portugal with the native species holm oak and cork oak but with a low rate of effectiveness. Our goal in this work is to show how the cost-benefit relation of the actions intended to expand the forest of the Portuguese semiarid can be lowered by taking into account the microclimatic conditions and high spatial resolution management. The potential of forest regeneration was modelled at the local and regional level in the semiarid area using information concerning the Potential Solar Radiation. This model gives us the rate of native forest regeneration after a disturbance with high spatial resolution. Based on this model the territory was classified in: i) easy regeneration areas; ii) areas with the need of assisted reforestation, using methods that increase water and soil conservation; iii) areas of difficult reforestation because of the costs. Additionally a summary of the success of reforestations was made in the historical semiarid since the 60s based on the evaluation of a series of case studies, where we quantified the ecosystem services currently delivered by the reforested ecosystems. Acknowledgement: Programa Adapt: financed by EEA Grants and Fundo Português de Carbono

  1. Modeling soil erosion and sediment transport from fires in forested watersheds of the South Carolina Piedmont

    Treesearch

    Tyler Crumbley; Ge Sun; Steve McNulty

    2008-01-01

    Forested watersheds in the Southeastern U.S. provide high quality water vital to ecosystem integrity and downstream aquatic resources. Excessive sedimentation from human activities in forest streams is of concern to responsible land managers. Prescribed fire is a common treatment applied to Southeastern piedmont forests and the risk of wildfire is becoming increasingly...

  2. Tree migration detection through comparisons of historic and current forest inventories

    Treesearch

    Christopher W. Woodall; Christopher M. Oswalt; James A. Westfall; Charles H. Perry; Mark N. Nelson

    2009-01-01

    Changes in tree species distributions are a potential impact of climate change on forest ecosystems. The examination of tree species shifts in forests of the eastern United States largely has been limited to modeling activities with little empirical analysis of long-term forest inventory datasets. The goal of this study was to compare historic and current spatial...

  3. Carbon tradeoffs of restoration and provision of endangered species habitat in a fire-maintained forest

    Treesearch

    Katherine L. Martin; Matthew D. Hurteau; Bruce A. Hungate; George W. Koch; Malcolm P. North

    2015-01-01

    Forests are a significant part of the global carbon cycle and are increasingly viewed as tools for mitigating climate change. Natural disturbances, such as fire, can reduce carbon storage. However, many forests and dependent species evolved with frequent fire as an integral ecosystem process. We used a landscape forest simulation model to evaluate the effects of...

  4. Modeling soil erosion and sediment transport from fires in forested watersheds of the South Carolina Piedmont

    Treesearch

    Tyler Crumbley; Ge Sun; Steve McNulty

    2007-01-01

    Forested watersheds in the Southeastern U.S. provide high quality water vital to ecosystem integrity and downstream aquatic resources. Excessive sedimentation from human activities in forest streams is of concern to responsible land managers. Prescribed fire is a common treatment applied to Southeastern Piedmont forests and the risk of wildfire is becoming increasingly...

  5. The implications of microbial and substrate limitation for the fates of carbon in different organic soil horizon types of boreal forest ecosystems: a mechanistically based model analysis

    USGS Publications Warehouse

    He, Y.; Zhuang, Q.; Harden, Jennifer W.; McGuire, A. David; Fan, Z.; Liu, Y.; Wickland, Kimberly P.

    2014-01-01

    The large amount of soil carbon in boreal forest ecosystems has the potential to influence the climate system if released in large quantities in response to warming. Thus, there is a need to better understand and represent the environmental sensitivity of soil carbon decomposition. Most soil carbon decomposition models rely on empirical relationships omitting key biogeochemical mechanisms and their response to climate change is highly uncertain. In this study, we developed a multi-layer microbial explicit soil decomposition model framework for boreal forest ecosystems. A thorough sensitivity analysis was conducted to identify dominating biogeochemical processes and to highlight structural limitations. Our results indicate that substrate availability (limited by soil water diffusion and substrate quality) is likely to be a major constraint on soil decomposition in the fibrous horizon (40–60% of soil organic carbon (SOC) pool size variation), while energy limited microbial activity in the amorphous horizon exerts a predominant control on soil decomposition (>70% of SOC pool size variation). Elevated temperature alleviated the energy constraint of microbial activity most notably in amorphous soils, whereas moisture only exhibited a marginal effect on dissolved substrate supply and microbial activity. Our study highlights the different decomposition properties and underlying mechanisms of soil dynamics between fibrous and amorphous soil horizons. Soil decomposition models should consider explicitly representing different boreal soil horizons and soil–microbial interactions to better characterize biogeochemical processes in boreal forest ecosystems. A more comprehensive representation of critical biogeochemical mechanisms of soil moisture effects may be required to improve the performance of the soil model we analyzed in this study.

  6. Vegetation indicators of transformation in the urban forest ecosystems of "Kuzminki-Lyublino" Park

    NASA Astrophysics Data System (ADS)

    Buyvolova, Anna; Trifonova, Tatiana; Bykova, Elena

    2017-04-01

    Forest ecosystems in the city are at the same time a component of its natural environment and part of urban developmental planning. It imposes upon urban forests a large functional load, both environmental (formation of environment, air purification, noise pollution reducing, etc.) and social (recreational, educational) which defines the special attitude to their management and study. It is not a simple task to preserve maximum accessibility to the forest ecosystems of the large metropolises with a minimum of change. The urban forest vegetates in naturally formed soil, it has all the elements of a morphological structure (canopy layers), represented by natural species of the zonal vegetation. Sometimes it is impossible for a specialist to distinguish between an urban forest and a rural one. However, the urban forests are changing, being under the threat of various negative influences of the city, of which pollution is arguably the most significant. This article presents some indicators of structural changes to the plant communities, which is a response of forest ecosystems to an anthropogenic impact. It is shown that the indicators of the transformation of natural ecosystems in the city can be a reduction of the projective cover of moss layer, until its complete absence (in the pine forest), increasing the role of Acer negundo (adventive species) in the undergrowth, high variability of floristic indicators of the ground herbaceous vegetation, and a change in the spatial arrangement of adventive species. The assessment of the impact of the urban environment on the state of vegetation in the "Kuzminki-Lyublino" Natural-Historical Park was conducted in two key areas least affected by anthropogenic impacts under different plant communities represented by complex pine and birch forests and in similar forest types in the Prioksko-Terrasny Biosphere Reserve. The selection of pine forests as a model is due to the fact that, according to some scientists, pine (Pinus Sylvestris L.), a very ductile and widespread species, is a sensitive indicator of anthropogenic burden, responding to the impact of defoliation and needles discoloration, and survives even at fairly high levels of pollution. The vegetation cover is one of the most dynamic components of the ecosystem and under the conditions of urban existence it is subject to transformation. The indicators of the transformation of natural ecosystems in the city can be a reduction of the projective cover of moss layer, until its complete absence (in the pine forest), increasing the role of Acer negundo (adventive species) in the undergrowth, high variability of floristic indicators of the ground herbaceous vegetation, and a change in the spatial arrangement of adventive species. The further study of plant communities with a view to identifying indicators of transformation in urban environmental conditions will help for the early detection of reversible changes in the ecosystems of urban forests and the development of rational urban forest care technologies.

  7. Estimation of Forest Biomass Based on Muliti-Source Remote Sensing Data Set - a Case Study of Shangri-La County

    NASA Astrophysics Data System (ADS)

    Feng, Wanwan; Wang, Leiguang; Xie, Junfeng; Yue, Cairong; Zheng, Yalan; Yu, Longhua

    2018-04-01

    Forest biomass is an important indicator for the structure and function of forest ecosystems, and an accurate assessment of forest biomass is crucial for understanding ecosystem changes. Remote sensing has been widely used for inversion of biomass. However, in mature or over-mature forest areas, spectral saturation is prone to occur. Based on existing research, this paper synthesizes domestic high resolution satellites, ZY3-01 satellites, and GLAS14-level data from space-borne Lidar system, and other data set. Extracting texture and elevation features respectively, for the inversion of forest biomass. This experiment takes Shangri-La as the research area. Firstly, the biomass in the laser spot was calculated based on GLAS data and other auxiliary data, DEM, the second type inventory of forest resources data and the Shangri-La vector boundary data. Then, the regression model was established, that is, the relationship between the texture factors of ZY3-01 and biomass in the laser spot. Finally, by using this model and the forest distribution map in Shangri-La, the biomass of the whole area is obtained, which is 1.3972 × 108t.

  8. Impacts of insect disturbance on the structure, composition, and functioning of oak-pine forests

    NASA Astrophysics Data System (ADS)

    Medvigy, D.; Schafer, K. V.; Clark, K. L.

    2011-12-01

    Episodic disturbance is an essential feature of terrestrial ecosystems, and strongly modulates their structure, composition, and functioning. However, dynamic global vegetation models that are commonly used to make ecosystem and terrestrial carbon budget predictions rarely have an explicit representation of disturbance. One reason why disturbance is seldom included is that disturbance tends to operate on spatial scales that are much smaller than typical model resolutions. In response to this problem, the Ecosystem Demography model 2 (ED2) was developed as a way of tracking the fine-scale heterogeneity arising from disturbances. In this study, we used ED2 to simulate an oak-pine forest that experiences episodic defoliation by gypsy moth (Lymantria dispar L). The model was carefully calibrated against site-level data, and then used to simulate changes in ecosystem composition, structure, and functioning on century time scales. Compared to simulations that include gypsy moth defoliation, we show that simulations that ignore defoliation events lead to much larger ecosystem carbon stores and a larger fraction of deciduous trees relative to evergreen trees. Furthermore, we find that it is essential to preserve the fine-scale nature of the disturbance. Attempts to "smooth out" the defoliation event over an entire grid cells led to large biases in ecosystem structure and functioning.

  9. [Evaluation of economic forest ecosystem services in China].

    PubMed

    Wang, Bing; Lu, Shao-Wei

    2009-02-01

    This paper quantitatively evaluated the economic forest ecosystem services in the provinces of China in 2003, based on the long-term and continuous observations of economic forest ecosystems in this country, the sixth China national forest resources inventory data, and the price parameter data from the authorities in the world, and by applying the law of market value, the method of substitution of the expenses, and the law of the shadow project. The results showed that in 2003, the total value of economic forest ecosystem services in China was 11763.39 x 10(8) yuan, and the total value of the products from economic forests occupied 19.3% of the total ecosystem services value, which indicated that the economic forests not only provided society direct products, but also exhibited enormous eco-economic value. The service value of the functions of economic forests was in the order of water storage > C fixation and O2 release > biodiversity conservation > erosion control > air quality purification > nutrient cycle. The spatial pattern of economic forest ecosystem services in the provinces of China had the same trend with the spatial distribution of water and heat resources and biodiversity. To understand the differences of economic forest ecosystem services in the provinces of China was of significance in alternating the irrational arrangement of our present forestry production, diminishing the abuses of forest management, and establishing high grade, high efficient, and modernized economic forests.

  10. Simulating forest productivity along a neotropical elevational transect: temperature variation and carbon use efficiency

    NASA Astrophysics Data System (ADS)

    Marthews, T.; Malhi, Y.; Girardin, C.; Silva-Espejo, J.; Aragão, L.; Metcalfe, D.; Rapp, J.; Mercado, L.; Fisher, R.; Galbraith, D.; Fisher, J.; Salinas-Revilla, N.; Friend, A.; Restrepo-Coupe, N.; Williams, R.

    2012-04-01

    A better understanding of the mechanisms controlling the magnitude and sign of carbon components in tropical forest ecosystems is important for reliable estimation of this important regional component of the global carbon cycle. We used the JULES vegetation model to simulate all components of the carbon balance at six sites along an Andes-Amazon transect across Peru and Brazil and compared the results to published field measurements. In the upper montane zone the model predicted a vegetation dieback, indicating a need for better parameterisation of cloud forest vegetation. In the lower montane and lowland zones simulated ecosystem productivity and respiration were predicted with reasonable accuracy, although not always within the error bounds of the observations. Model-predicted carbon use efficiency in this transect surprisingly did not increase with elevation, but remained close to the 'temperate' value 0.5. This may be explained by elevational changes in the balance between growth and maintenance respiration within the forest canopy, as controlled by both temperature- and pressure-mediated processes.

  11. Emergence of nutrient limitation in tropical dry forests: hypotheses from simulation models

    NASA Astrophysics Data System (ADS)

    Medvigy, D.; Waring, B. G.; Xu, X.; Trierweiler, A.; Werden, L. K.; Wang, G.; Zhu, Q.; Powers, J. S.

    2017-12-01

    It is unclear to what extent tropical dry forest productivity may be limited by nutrients. Direct assessment of nutrient limitation through fertilization experiments has been rare, and paradigms pertaining to other ecosystems may not extend to tropical dry forests. For example, because dry tropical forests have a lower water supply than moist tropical forests, dry forests can have lower decomposition rates, higher soil carbon and nitrogen concentrations, and a more open nitrogen cycle than moist forests. We used a mechanistic, numerical model to generate hypotheses about nutrient limitation in tropical dry forests. The model dynamically couples ED2 (vegetation dynamics), MEND (biogeochemistry), and N-COM (plant-microbe competition for nutrients). Here, the MEND-component of the model has been extended to include nitrogen (N) and phosphorus (P) cycles. We focus on simulation of sixteen 25m x 25m plots in Costa Rica where a fertilization experiment has been underway since 2015. Baseline simulations are characterized by both nitrogen and phosphorus limitation of vegetation. Fertilization with N and P increased vegetation biomass, with N fertilization having a somewhat stronger effect. Nutrient limitation was also sensitive to climate and was more pronounced during drought periods. Overflow respiration was identified as a key process that mitigated nutrient limitation. These results suggest that, despite often having richer soils than tropical moist forests, tropical dry forests can also become nutrient-limited. If the climate becomes drier in the next century, as is expected for Central America, drier soils may decrease microbial activity and exacerbate nutrient limitation. The importance of overflow respiration underscores the need for appropriate treatment of microbial dynamics in ecosystem models. Ongoing and new nutrient fertilization experiments will present opportunities for testing whether, and how, nutrient limitation may indeed be emerging in tropical dry forests.

  12. Root hydraulic vulnerability regulation of whole-plant conductance along hillslope gradients within subalpine and montane forests

    NASA Astrophysics Data System (ADS)

    Beverly, D.; Speckman, H. N.; Ewers, B. E.

    2017-12-01

    Ecosystem-scale models often rely on root vulnerability or whole-plant conductance for simulating seasonal evapotranspiration declines via constraints of water uptake and vegetation mortality. Further, many of these ecosystem models rely on single, unvarying, hydraulic parameter estimates for modeling large areas. Ring-porous species have shown seasonal variability in root vulnerability (percent loss of conductivity; PLC) and whole-plant conductance (Kw) but simulations of coniferous forest typically rely on point measurements. This assumption for coniferous forest is not likely true because of seasonal variability caused by phenology and environmental stresses and the potential for cavitation fatigue is not considered. Moreover, many of these dynamics have only been considered for stems even though roots are often the most vulnerable segments of the pathway for conifers. We hypothesized that seasonally dynamic whole-plant conductance along hillslope gradients in coniferous forests are regulated by cavitation fatigue within the roots resulting in seasonal increases in vulnerability. To test the hypothesis, a subalpine mixed forest (3000 m.a.s.l) and montane forest (2550 m.a.s.l.) were monitored between 2015-2017 to quantify PLC and Kw along the hillslope gradients of 300 m and 50 m, respectively. Forest plots were instrumented with 35 Granier-type sapflow sensors. Seasonal sampling campaigns occurred to quantify PLC through centrifuge techniques and Kw through Darcy's law approximations with pre-dawn and diurnal leaf water potentials. Downslope roots exhibit a 33% decrease in maximal conductivity corresponding to the approximately 50% decrease in whole-plant conductance suggesting seasonal soil dry-down limitations within the downslope stands. Upslope stands had no to little change in root vulnerability or decrease in whole-plant conductance as soil water limitations occur immediately following snowmelt, thus limiting hydraulic conductance throughout the growing season. Integrating temporal and topographical variation for dynamic root vulnerability and whole-plant conductance estimates into ecosystem-scale models can decrease the uncertainty of evapotranspiration estimates in seasonally varying forests.

  13. Scaling Forest Management Practices in Earth System Models: Case Study of Southeast and Pacific Northwest Forests

    NASA Astrophysics Data System (ADS)

    Pourmokhtarian, A.; Becknell, J. M.; Hall, J.; Desai, A. R.; Boring, L. R.; Duffy, P.; Staudhammer, C. L.; Starr, G.; Dietze, M.

    2014-12-01

    A wide array of human-induced disturbances can alter the structure and function of forests, including climate change, disturbance and management. While there have been numerous studies on climate change impacts on forests, interactions of management with changing climate and natural disturbance are poorly studied. Forecasts of the range of plausible responses of forests to climate change and management are need for informed decision making on new management approaches under changing climate, as well as adaptation strategies for coming decades. Terrestrial biosphere models (TBMs) provide an excellent opportunity to investigate and assess simultaneous responses of terrestrial ecosystems to climatic perturbations and management across multiple spatio-temporal scales, but currently do not represent a wide array of management activities known to impact carbon, water, surface energy fluxes, and biodiversity. The Ecosystem Demography model 2 (ED2) incorporates non-linear impacts of fine-scale (~10-1 km) heterogeneity in ecosystem structure both horizontally and vertically at a plant level. Therefore it is an ideal candidate to incorporate different forest management practices and test various hypotheses under changing climate and across various spatial scales. The management practices that we implemented were: clear-cut, conversion, planting, partial harvest, low intensity fire, restoration, salvage, and herbicide. The results were validated against observed data across 8 different sites in the U.S. Southeast (Duke Forest, Joseph Jones Ecological Research Center, North Carolina Loblolly Pine, and Ordway-Swisher Biological Station) and Pacific Northwest (Metolius Research Natural Area, H.J. Andrews Experimental Forest, Wind River Field Station, and Mount Rainier National Park). These sites differ in regards to climate, vegetation, soil, and historical land disturbance as well as management approaches. Results showed that different management practices could successfully and realistically be implemented in the ED2 model at a site level. Moreover, sensitivity analyses determined the most important processes at different spatial scales, and also those which could be ignored while minimizing overall error.

  14. Ecosystem processes at the watershed scale: mapping and modeling ecohydrological controls

    Treesearch

    Lawrence E. Band; T. Hwang; T.C. Hales; James Vose; Chelcy Ford

    2012-01-01

    Mountain watersheds are sources of a set of valuable ecosystem services as well as potential hazards. The former include high quality freshwater, carbon sequestration, nutrient retention, and biodiversity, whereas the latter include flash floods, landslides and forest fires. Each of these ecosystem services and hazards represents different elements of the integrated...

  15. Development of a data driven process-based model for remote sensing of terrestrial ecosystem productivity, evapotranspiration, and above-ground biomass

    NASA Astrophysics Data System (ADS)

    El Masri, Bassil

    2011-12-01

    Modeling terrestrial ecosystem functions and structure has been a subject of increasing interest because of the importance of the terrestrial carbon cycle in global carbon budget and climate change. In this study, satellite data were used to estimate gross primary production (GPP), evapotranspiration (ET) for two deciduous forests: Morgan Monroe State forest (MMSF) in Indiana and Harvard forest in Massachusetts. Also, above-ground biomass (AGB) was estimated for the MMSF and the Howland forest (mixed forest) in Maine. Surface reflectance and temperature, vegetation indices, soil moisture, tree height and canopy area derived from the Moderate Resolution Imagining Spectroradiometer (MODIS), the Advanced Microwave Scanning Radiometer (AMRS-E), LIDAR, and aerial imagery respectively, were used for this purpose. These variables along with others derived from remotely sensed data were used as inputs variables to process-based models which estimated GPP and ET and to a regression model which estimated AGB. The process-based models were BIOME-BGC and the Penman-Monteith equation. Measured values for the carbon and water fluxes obtained from the Eddy covariance flux tower were compared to the modeled GPP and ET. The data driven methods produced good estimation of GPP and ET with an average root mean square error (RMSE) of 0.17 molC/m2 and 0.40 mm/day, respectively for the MMSF and the Harvard forest. In addition, allometric data for the MMSF were used to develop the regression model relating AGB with stem volume. The performance of the AGB regression model was compared to site measurements using remotely sensed data for the MMSF and the Howland forest where the model AGB RMSE ranged between 2.92--3.30 Kg C/m2. Sensitivity analysis revealed that improvement in maintenance respiration estimation and remotely sensed maximum photosynthetic activity as well as accurate estimate of canopy resistance will result in improved GPP and ET predictions. Moreover, AGB estimates were found to decrease as large grid size is used in rasterizing LIDAR return points. The analysis suggested that this methodology could be used as an operational procedure for monitoring changes in terrestrial ecosystem functions and structure brought by environmental changes.

  16. Mapping ecosystem services for land use planning, the case of Central Kalimantan.

    PubMed

    Sumarga, Elham; Hein, Lars

    2014-07-01

    Indonesia is subject to rapid land use change. One of the main causes for the conversion of land is the rapid expansion of the oil palm sector. Land use change involves a progressive loss of forest cover, with major impacts on biodiversity and global CO2 emissions. Ecosystem services have been proposed as a concept that would facilitate the identification of sustainable land management options, however, the scale of land conversion and its spatial diversity pose particular challenges in Indonesia. The objective of this paper is to analyze how ecosystem services can be mapped at the provincial scale, focusing on Central Kalimantan, and to examine how ecosystem services maps can be used for a land use planning. Central Kalimantan is subject to rapid deforestation including the loss of peatland forests and the provincial still lacks a comprehensive land use plan. We examine how seven key ecosystem services can be mapped and modeled at the provincial scale, using a variety of models, and how large scale ecosystem services maps can support the identification of options for sustainable expansion of palm oil production.

  17. Central Appalachians forest ecosystem vulnerability assessment and synthesis: a report from the Central Appalachians Climate Change Response Framework project

    Treesearch

    Patricia R. Butler; Louis Iverson; Frank R. Thompson; Leslie Brandt; Stephen Handler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Kent Karriker; Jarel Bartig; Stephanie Connolly; William Dijak; Scott Bearer; Steve Blatt; Andrea Brandon; Elizabeth Byers; Cheryl Coon; Tim Culbreth; Jad Daly; Wade Dorsey; David Ede; Chris Euler; Neil Gillies; David M. Hix; Catherine Johnson; Latasha Lyte; Stephen Matthews; Dawn McCarthy; Dave Minney; Daniel Murphy; Claire O’Dea; Rachel Orwan; Matthew Peters; Anantha Prasad; Cotton Randall; Jason Reed; Cynthia Sandeno; Tom Schuler; Lesley Sneddon; Bill Stanley; Al Steele; Susan Stout; Randy Swaty; Jason Teets; Tim Tomon; Jim Vanderhorst; John Whatley; Nicholas Zegre

    2015-01-01

    Forest ecosystems in the Central Appalachians will be affected directly and indirectly by a changing climate over the 21st century. This assessment evaluates the vulnerability of forest ecosystems in the Central Appalachian Broadleaf Forest-Coniferous Forest-Meadow and Eastern Broadleaf Forest Provinces of Ohio, West Virginia, and Maryland for a range of future...

  18. Modeling browse impacts on sapling and tree recruitment across forests in the northern United States

    Treesearch

    Matthew B. Russell; James A. Westfall; Christopher W. Woodall

    2017-01-01

    Understanding the patterns of tree recruitment is essential to quantifying the future health and productivity of forest ecosystems. Using national forest inventory information, we incorporated browse impact measurements into models of sapling (2.5–12.7 cm diameter at breast height (DBH)) and overstory tree (≥12.7 cm DBH) ingrowth across the northern United States....

  19. Urban forest ecosystem analysis using fused airborne hyperspectral and lidar data

    NASA Astrophysics Data System (ADS)

    Alonzo, Mike Gerard

    Urban trees are strategically important in a city's effort to mitigate their carbon footprint, heat island effects, air pollution, and stormwater runoff. Currently, the most common method for quantifying urban forest structure and ecosystem function is through field plot sampling. However, taking intensive structural measurements on private properties throughout a city is difficult, and the outputs from sample inventories are not spatially explicit. The overarching goal of this dissertation is to develop methods for mapping urban forest structure and function using fused hyperspectral imagery and waveform lidar data at the individual tree crown scale. Urban forest ecosystem services estimated using the USDA Forest Service's i-Tree Eco (formerly UFORE) model are based largely on tree species and leaf area index (LAI). Accordingly, tree species were mapped in my Santa Barbara, California study area for 29 species comprising >80% of canopy. Crown-scale discriminant analysis methods were introduced for fusing Airborne Visible Infrared Imaging Spectrometry (AVIRIS) data with a suite of lidar structural metrics (e.g., tree height, crown porosity) to maximize classification accuracy in a complex environment. AVIRIS imagery was critical to achieving an overall species-level accuracy of 83.4% while lidar data was most useful for improving the discrimination of small and morphologically unique species. LAI was estimated at both the field-plot scale using laser penetration metrics and at the crown scale using allometry. Agreement of the former with photographic estimates of gap fraction and the latter with allometric estimates based on field measurements was examined. Results indicate that lidar may be used reasonably to measure LAI in an urban environment lacking in continuous canopy and characterized by high species diversity. Finally, urban ecosystem services such as carbon storage and building energy-use modification were analyzed through combination of aforementioned methods and the i-Tree Eco modeling framework. The remote sensing methods developed in this dissertation will allow researchers to more precisely constrain urban ecosystem spatial analyses and equip cities to better manage their urban forest resource.

  20. Multimodeling Framework for Predicting Water Quality in Fragmented Agriculture-Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Rose, J. B.; Guber, A.; Porter, W. F.; Williams, D.; Tamrakar, S.; Dechen Quinn, A.

    2012-12-01

    Both livestock and wildlife are major contributors of nonpoint pollution of surface water bodies. The interactions among them can substantially increase the chance of contamination especially in fragmented agriculture-forest landscapes, where wildlife (e.g. white tailed deer) can transmit diseases between remote farms. Unfortunately, models currently available for predicting fate and transport of microorganisms in these ecosystems do not account for such interactions. The objectives of this study are to develop and test a multimodeling framework that assesses the risk of microbial contamination of surface water caused by wildlife-livestock interactions in fragmented agriculture-forest ecosystems. The framework consists of a modified Soil Water Assessment Tool (SWAT), KINematic Runoff and EROSion model (KINEROS2) with the add-on module STWIR (Microorganism Transport with Infiltration and Runoff), RAMAS GIS, SIR compartmental model and Quantitative Microbial Risk Assessment model (QMRA). The watershed-scale model SWAT simulates plant biomass growth, wash-off of microorganisms from foliage and soil, overland and in-stream microbial transport, microbial growth, and die-off in foliage and soil. RAMAS GIS model predicts the most probable habitat and subsequent population of white-tailed deer based on land use and crop biomass. KINEROS-STWIR simulates overland transport of microorganisms released from soil, surface applied manure, and fecal deposits during runoff events at high temporal and special resolutions. KINEROS-STWIR and RAMAS GIS provide input for an SIR compartmental model which simulates disease transmission within and between deer groups. This information is used in SWAT model to account for transmission and deposition of pathogens by white tailed deer in stream water, foliage and soil. The QMRA approach extends to microorganisms inactivated in forage and water consumed by deer. Probabilities of deer infections and numbers of infected animals are computed based on a dose-response approach, including Beta Poisson and Maximum Risk models, which take into account pathogen variation in infectivity. An example of the Multimodeling framework performance for a fragmented agriculture-forest ecosystem will be shown in the presentation.

  1. Forest ecosystems: Vegetation, disturbance, and economics: Chapter 5

    USGS Publications Warehouse

    Littell, Jeremy S.; Hicke, Jeffrey A.; Shafer, Sarah L.; Capalbo, Susan M.; Houston, Laurie L.; Glick, Patty

    2013-01-01

    Forests cover about 47% of the Northwest (NW–Washington, Oregon, and Idaho) (Smith et al. 2009, fig. 5.1, table 5.1). The impacts of current and future climate change on NW forest ecosystems are a product of the sensitivities of ecosystem processes to climate and the degree to which humans depend on and interact with those systems. Forest ecosystem structure and function, particularly in relatively unmanaged forests where timber harvest and other land use have smaller effects, is sensitive to climate change because climate has a strong influence on ecosystem processes. Climate can affect forest structure directly through its control of plan physiology and life history (establishment, individual growth, productivity, and morality) or indirectly through its control of disturbance (fire, insects, disease). As climate changes, many forest processes will be affected, altering ecosystem services such as timber production and recreation. These changes have socioeconomic implications (e.g. for timber economies) and will require changes to current management of forests. Climate and management will interact to determine the forests of the future, and the scientific basis for adaptation to climate change in forests thus depends significantly on how forests will be affected.

  2. Vegetation turnover and nitrogen feedback drive temperate forest carbon sequestration in response to elevated CO[2]. A multi-model structural analysis

    NASA Astrophysics Data System (ADS)

    Walker, A. P.; Zaehle, S.; Medlyn, B. E.; De Kauwe, M. G.; Asao, S.; Hickler, T.; Lomas, M. R.; Pak, B. C.; Parton, W. J.; Quegan, S.; Ricciuto, D. M.; Wang, Y.; Warlind, D.; Norby, R. J.

    2013-12-01

    Predicting forest carbon (C) sequestration requires understanding the processes leading to rates of biomass C accrual (net primary productivity; NPP) and loss (turnover). In temperate forest ecosystems, experiments and models have shown that feedback via progressive nitrogen limitation (PNL) is a key driver of NPP responses to elevated CO[2]. In this analysis we show that while still important, PNL may not be as severe a constraint on NPP as indicated by some studies and that the response of turnover to elevated CO[2] could be as important, especially in the near to medium term. Seven terrestrial ecosystem and biosphere models that couple C and N cycles with varying assumptions and complexity were used to simulate responses over 300 years to a step change in CO[2] to 550 ppmv. Simulations were run for the evergreen needleleaf Duke forest and the deciduous broadleaf Oak Ridge forest FACE experiments. Whether or not a model simulated PNL under elevated CO[2] depended on model structure and the timescale of observation. Avoiding PNL depended on mechanisms that reduced ecosystem N losses. The two key assumptions that reduced N losses were whether plant N uptake was based on plant N demand and whether ecosystem N losses (volatisation and leaching) were dependent on the concentration of N in the soil solution. Assumptions on allocation and turnover resulted in very different responses of turnover to elevated CO[2], which had profound implications for C sequestration. For example, at equilibrium CABLE2.0 predicted an increase in vegetation C sequestration despite decreased NPP, while O-CN predicted much less vegetation C sequestration than would be expected from predicted NPP increases alone. Generally elevated CO[2] favoured a shift in C partitioning towards longer lived wood biomass, which increased vegetation turnover and enhanced C sequestration. Enhanced wood partitioning was overlaid by increases or decreases in self-thinning depended on whether self-thinning was simply a function of forest structure, or structure and NPP. Self-thinning assumptions altered equilibrium C sequestration and were extremely important for the immediate transient response and near-term prediction of C sequestration.

  3. Acid Precipitation and the Forest Ecosystem

    ERIC Educational Resources Information Center

    Dochinger, Leon S.; Seliga, Thomas A.

    1975-01-01

    The First International Symposium on Acid Precipitation and the Forest Ecosystem dealt with the potential magnitude of the global effects of acid precipitation on aquatic ecosystems, forest soils, and forest vegetation. The problem is discussed in the light of atmospheric chemistry, transport, and precipitation. (Author/BT)

  4. Assessment and valuation of forest ecosystem services: State of the science review

    Treesearch

    Seth Binder; Robert G. Haight; Stephen Polasky; Travis Warziniack; Miranda H. Mockrin; Robert L. Deal; Greg Arthaud

    2017-01-01

    This review focuses on the assessment and economic valuation of ecosystem services from forest ecosystems—that is, our ability to predict changes in the quantity and value of ecosystem services as a result of specific forest management decisions. It is aimed at forest economists and managers and intended to provide a useful reference to those interested in developing...

  5. Functional outcomes of fungal community shifts driven by tree genotype and spatial-temporal factors in Mediterranean pine forests.

    PubMed

    Pérez-Izquierdo, Leticia; Zabal-Aguirre, Mario; Flores-Rentería, Dulce; González-Martínez, Santiago C; Buée, Marc; Rincón, Ana

    2017-04-01

    Fungi provide relevant ecosystem services contributing to primary productivity and the cycling of nutrients in forests. These fungal inputs can be decisive for the resilience of Mediterranean forests under global change scenarios, making necessary an in-deep knowledge about how fungal communities operate in these ecosystems. By using high-throughput sequencing and enzymatic approaches, we studied the fungal communities associated with three genotypic variants of Pinus pinaster trees, in 45-year-old common garden plantations. We aimed to determine the impact of biotic (i.e., tree genotype) and abiotic (i.e., season, site) factors on the fungal community structure, and to explore whether structural shifts triggered functional responses affecting relevant ecosystem processes. Tree genotype and spatial-temporal factors were pivotal structuring fungal communities, mainly by influencing their assemblage and selecting certain fungi. Diversity variations of total fungal community and of that of specific fungal guilds, together with edaphic properties and tree's productivity, explained relevant ecosystem services such as processes involved in carbon turnover and phosphorous mobilization. A mechanistic model integrating relations of these variables and ecosystem functional outcomes is provided. Our results highlight the importance of structural shifts in fungal communities because they may have functional consequences for key ecosystem processes in Mediterranean forests. © 2017 Society for Applied Microbiology and John Wiley and Sons Ltd.

  6. Constraining Night Time Ecosystem Respiration by Inverse Approaches

    NASA Astrophysics Data System (ADS)

    Juang, J.; Stoy, P. C.; Siqueira, M. B.; Katul, G. G.

    2004-12-01

    Estimating nighttime ecosystem respiration remains a key challenge in quantifying ecosystem carbon budgets. Currently, nighttime eddy-covariance (EC) flux measurements are plagued by uncertainties often attributed to poor mixing within the canopy volume, non-turbulent transport of CO2 into and out of the canopy, and non-stationarity and intermittency. Here, we explore the use of second-order closure models to estimate nighttime ecosystem respiration by mathematically linking sources of CO2 to mean concentration profiles via the continuity and the CO2 flux budget equation modified to include thermal stratification. By forcing this model to match, in a root-mean squared sense, the nighttime measured mean CO2 concentration profiles within the canopy the above ground CO2 production and forest floor respiration can be estimated via multi-dimensional optimization techniques. We show that in a maturing pine and a mature hardwood forest, these optimized CO2 sources are (1) consistently larger than the eddy covariance flux measurements above the canopy, and (2) agree well with chamber-based measurements. We also show that by linking the optimized nighttime ecosystem respiration to temperature measurements, the estimated annual ecosystem respiration from this approach agrees well with biometric estimates, at least when compared to eddy-covariance methods conditioned on a friction velocity threshold. The difference between the annual ecosystem respiration obtained by this optimization method and the friction-velocity thresholded night-time EC fluxes can be as large as 700 g C m-2 (in 2003) for the maturing pine forest, which is about 40% of the ecosystem respiration. For 2001 and 2002, the annual ecosystem respiration differences between the EC-based and the proposed approach were on the order of 300 to 400 g C m-2.

  7. An annotated bibliography of scientific literature on managing forests for carbon benefits

    Treesearch

    Sarah J. Hines; Linda S. Heath; Richard A. Birdsey

    2010-01-01

    Managing forests for carbon benefits is a consideration for climate change, bioenergy, sustainability, and ecosystem services. A rapidly growing body of scientific literature on forest carbon management includes experimental, modeling, and synthesis approaches, at the stand- to landscape- to continental-level. We conducted a search of the scientific literature on the...

  8. Applications of the BIOPHYS Algorithm for Physically-Based Retrieval of Biophysical, Structural and Forest Disturbance Information

    NASA Technical Reports Server (NTRS)

    Peddle, Derek R.; Huemmrich, K. Fred; Hall, Forrest G.; Masek, Jeffrey G.; Soenen, Scott A.; Jackson, Chris D.

    2011-01-01

    Canopy reflectance model inversion using look-up table approaches provides powerful and flexible options for deriving improved forest biophysical structural information (BSI) compared with traditional statistical empirical methods. The BIOPHYS algorithm is an improved, physically-based inversion approach for deriving BSI for independent use and validation and for monitoring, inventory and quantifying forest disturbance as well as input to ecosystem, climate and carbon models. Based on the multiple-forward mode (MFM) inversion approach, BIOPHYS results were summarized from different studies (Minnesota/NASA COVER; Virginia/LEDAPS; Saskatchewan/BOREAS), sensors (airborne MMR; Landsat; MODIS) and models (GeoSail; GOMS). Applications output included forest density, height, crown dimension, branch and green leaf area, canopy cover, disturbance estimates based on multi-temporal chronosequences, and structural change following recovery from forest fires over the last century. Good correspondences with validation field data were obtained. Integrated analyses of multiple solar and view angle imagery further improved retrievals compared with single pass data. Quantifying ecosystem dynamics such as the area and percent of forest disturbance, early regrowth and succession provide essential inputs to process-driven models of carbon flux. BIOPHYS is well suited for large-area, multi-temporal applications involving multiple image sets and mosaics for assessing vegetation disturbance and quantifying biophysical structural dynamics and change. It is also suitable for integration with forest inventory, monitoring, updating, and other programs.

  9. Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function.

    PubMed

    Antonarakis, Alexander S; Saatchi, Sassan S; Chazdon, Robin L; Moorcroft, Paul R

    2011-06-01

    Insights into vegetation and aboveground biomass dynamics within terrestrial ecosystems have come almost exclusively from ground-based forest inventories that are limited in their spatial extent. Lidar and synthetic-aperture Radar are promising remote-sensing-based techniques for obtaining comprehensive measurements of forest structure at regional to global scales. In this study we investigate how Lidar-derived forest heights and Radar-derived aboveground biomass can be used to constrain the dynamics of the ED2 terrestrial biosphere model. Four-year simulations initialized with Lidar and Radar structure variables were compared against simulations initialized from forest-inventory data and output from a long-term potential-vegtation simulation. Both height and biomass initializations from Lidar and Radar measurements significantly improved the representation of forest structure within the model, eliminating the bias of too many large trees that arose in the potential-vegtation-initialized simulation. The Lidar and Radar initializations decreased the proportion of larger trees estimated by the potential vegetation by approximately 20-30%, matching the forest inventory. This resulted in improved predictions of ecosystem-scale carbon fluxes and structural dynamics compared to predictions from the potential-vegtation simulation. The Radar initialization produced biomass values that were 75% closer to the forest inventory, with Lidar initializations producing canopy height values closest to the forest inventory. Net primary production values for the Radar and Lidar initializations were around 6-8% closer to the forest inventory. Correcting the Lidar and Radar initializations for forest composition resulted in improved biomass and basal-area dynamics as well as leaf-area index. Correcting the Lidar and Radar initializations for forest composition and fine-scale structure by combining the remote-sensing measurements with ground-based inventory data further improved predictions, suggesting that further improvements of structural and carbon-flux metrics will also depend on obtaining reliable estimates of forest composition and accurate representation of the fine-scale vertical and horizontal structure of plant canopies.

  10. Forest Ecosystem Dynamics Assessment and Predictive Modelling in Eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Kushwaha, S. P. S.; Nandy, S.; Ahmad, M.; Agarwal, R.

    2011-09-01

    This study focused on the forest ecosystem dynamics assessment and predictive modelling deforestation and forest cover prediction in a part of north-eastern India i.e. forest areas along West Bengal, Bhutan, Arunachal Pradesh and Assam border in Eastern Himalaya using temporal satellite imagery of 1975, 1990 and 2009 and predicted forest cover for the period 2028 using Cellular Automata Markov Modedel (CAMM). The exercise highlighted large-scale deforestation in the study area during 1975-1990 as well as 1990-2009 forest cover vectors. A net loss of 2,334.28 km2 forest cover was noticed between 1975 and 2009, and with current rate of deforestation, a forest area of 4,563.34 km2 will be lost by 2028. The annual rate of deforestation worked out to be 0.35 and 0.78% during 1975-1990 and 1990-2009 respectively. Bamboo forest increased by 24.98% between 1975 and 2009 due to opening up of the forests. Forests in Kokrajhar, Barpeta, Darrang, Sonitpur, and Dhemaji districts in Assam were noticed to be worst-affected while Lower Subansiri, West and East Siang, Dibang Valley, Lohit and Changlang in Arunachal Pradesh were severely affected. Among different forest types, the maximum loss was seen in case of sal forest (37.97%) between 1975 and 2009 and is expected to deplete further to 60.39% by 2028. The tropical moist deciduous forest was the next category, which decreased from 5,208.11 km2 to 3,447.28 (33.81%) during same period with further chances of depletion to 2,288.81 km2 (56.05%) by 2028. It noted progressive loss of forests in the study area between 1975 and 2009 through 1990 and predicted that, unless checked, the area is in for further depletion of the invaluable climax forests in the region, especially sal and moist deciduous forests. The exercise demonstrated high potential of remote sensing and geographic information system for forest ecosystem dynamics assessment and the efficacy of CAMM to predict the forest cover change.

  11. AmazonFACE: Assessing the Effects of Increasing Atmospheric CO2 on the Resilience of the Amazon Forest through Integrative Model-Experiment Research

    NASA Astrophysics Data System (ADS)

    Lapola, D. M.

    2015-12-01

    The existence, magnitude and duration of a supposed "CO2 fertilization" effect in tropical forests remains largely undetermined, despite being suggested for nearly 20 years as a key knowledge gap for understanding the future resilience of Amazonian forests and its impact on the global carbon cycle. Reducing this uncertainty is critical for assessing the future of the Amazon region as well as its vulnerability to climate change. The AmazonFACE (Free-Air CO2 Enrichment) research program is an integrated model-experiment initiative of unprecedented scope in an old-growth Amazon forest near Manaus, Brazil - the first of its kind in tropical forest. The experimental treatment will simulate an atmospheric CO2 concentration [CO2] of the future in order to address the question: "How will rising atmospheric CO2 affect the resilience of the Amazon forest, the biodiversity it harbors, and the ecosystem services it provides, in light of projected climatic changes?" AmazonFACE is divided into three phases: (I) pre-experimental ecological characterization of the research site; (II) pilot experiment comprised of two 30-m diameter plots, with one treatment plot maintained at elevated [CO2] (ambient +200 ppmv), and the other control plot at ambient [CO2]; and (III) a fully-replicated long-term experiment comprised of four pairs of control/treatment FACE plots maintained for 10 years. A team of scientists from Brazil, USA, Australia and Europe will employ state-of-the-art methods to study the forest inside these plots in terms of carbon metabolism and cycling, water use, nutrient cycling, forest community composition, and interactions with environmental stressors. All project phases also encompass ecosystem-modeling activities in a way such that models provide hypothesis to be verified in the experiment, which in turn will feed models to ultimately produce more accurate projections of the environment. Resulting datasets and analyses will be a valuable resource for a broad community, especially ecosystem and climate modelers, and policy-makers.

  12. USING THE ECLPSS SOFTWARE ENVIRONMENT TO BUILD A SPATIALLY EXPLICIT COMPONENT-BASED MODEL OF OZONE EFFECTS ON FOREST ECOSYSTEMS. (R827958)

    EPA Science Inventory

    We have developed a modeling framework to support grid-based simulation of ecosystems at multiple spatial scales, the Ecological Component Library for Parallel Spatial Simulation (ECLPSS). ECLPSS helps ecologists to build robust spatially explicit simulations of ...

  13. Simulating effects of fire on northern Rocky Mountain landscapes with the ecological process model FIRE-BGC.

    PubMed

    Keane, R E; Ryan, K C; Running, S W

    1996-03-01

    A mechanistic, biogeochemical succession model, FIRE-BGC, was used to investigate the role of fire on long-term landscape dynamics in northern Rocky Mountain coniferous forests of Glacier National Park, Montana, USA. FIRE-BGC is an individual-tree model-created by merging the gap-phase process-based model FIRESUM with the mechanistic ecosystem biogeochemical model FOREST-BGC-that has mixed spatial and temporal resolution in its simulation architecture. Ecological processes that act at a landscape level, such as fire and seed dispersal, are simulated annually from stand and topographic information. Stand-level processes, such as tree establishment, growth and mortality, organic matter accumulation and decomposition, and undergrowth plant dynamics are simulated both daily and annually. Tree growth is mechanistically modeled based on the ecosystem process approach of FOREST-BGC where carbon is fixed daily by forest canopy photosynthesis at the stand level. Carbon allocated to the tree stem at the end of the year generates the corresponding diameter and height growth. The model also explicitly simulates fire behavior and effects on landscape characteristics. We simulated the effects of fire on ecosystem characteristics of net primary productivity, evapotranspiration, standing crop biomass, nitrogen cycling and leaf area index over 200 years for the 50,000-ha McDonald Drainage in Glacier National Park. Results show increases in net primary productivity and available nitrogen when fires are included in the simulation. Standing crop biomass and evapotranspiration decrease under a fire regime. Shade-intolerant species dominate the landscape when fires are excluded. Model tree increment predictions compared well with field data.

  14. Estimating daily forest carbon fluxes using a combination of ground and remotely sensed data

    NASA Astrophysics Data System (ADS)

    Chirici, Gherardo; Chiesi, Marta; Corona, Piermaria; Salvati, Riccardo; Papale, Dario; Fibbi, Luca; Sirca, Costantino; Spano, Donatella; Duce, Pierpaolo; Marras, Serena; Matteucci, Giorgio; Cescatti, Alessandro; Maselli, Fabio

    2016-02-01

    Several studies have demonstrated that Monteith's approach can efficiently predict forest gross primary production (GPP), while the modeling of net ecosystem production (NEP) is more critical, requiring the additional simulation of forest respirations. The NEP of different forest ecosystems in Italy was currently simulated by the use of a remote sensing driven parametric model (modified C-Fix) and a biogeochemical model (BIOME-BGC). The outputs of the two models, which simulate forests in quasi-equilibrium conditions, are combined to estimate the carbon fluxes of actual conditions using information regarding the existing woody biomass. The estimates derived from the methodology have been tested against daily reference GPP and NEP data collected through the eddy correlation technique at five study sites in Italy. The first test concerned the theoretical validity of the simulation approach at both annual and daily time scales and was performed using optimal model drivers (i.e., collected or calibrated over the site measurements). Next, the test was repeated to assess the operational applicability of the methodology, which was driven by spatially extended data sets (i.e., data derived from existing wall-to-wall digital maps). A good estimation accuracy was generally obtained for GPP and NEP when using optimal model drivers. The use of spatially extended data sets worsens the accuracy to a varying degree, which is properly characterized. The model drivers with the most influence on the flux modeling strategy are, in increasing order of importance, forest type, soil features, meteorology, and forest woody biomass (growing stock volume).

  15. Revisiting drought impact on tropical forest photosynthesis: a novel multi-scale integrated approach reveals new insights

    NASA Astrophysics Data System (ADS)

    Detto, M.; Wu, J.; Xu, X.; Serbin, S.; Rogers, A.

    2017-12-01

    A fundamental unanswered question for global change ecology is to determine the vulnerability of tropical forests to climate change, particularly with increasing intensity and frequency of drought events. This question, despite its apparent simplicity, remains difficult for earth system models to answer, and is controversial in remote sensing literature. Here, we leverage unique multi-scale remote sensing measurements (from leaf to crown) in conjunction with four-continuous-year (2013-2017) eddy covariance measurements of ecosystem carbon fluxes in a tropical forest in Panama to revisit this question. We hypothesize that drought impacts tropical forest photosynthesis through variation in abiotic drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with physiological traits that govern photosynthesis, and biotic variation in ecosystem photosynthetic capacity associated with changes in the traits themselves. Our study site, located in a seasonal tropical forest on Barro Colorado Island (BCI), Panama, experienced a significant drought in 2015. Local eddy covariance derived photosynthesis shows an abrupt increase during the drought year. Our specific goal here is to assess the relative impact of abiotic and biotic drivers of such photosynthesis response to interannual drought. To this goal, we derived abiotic drivers from eddy tower-based meteorological measurements. We will derive the biotic drivers using a recently developed leaf demography-ontogeny model, where ecosystem photosynthetic capacity can be described as the product of field measured, age-dependent leaf photosynthetic capacity and local tower-camera derived ecosystem-scale inter-annual variability in leaf age demography of the same time period (2013-2017). Lastly, we will use a process-based model to assess the separate and joint effects of abiotic and biotic drivers on eddy covariance derive photosynthetic interannual variability. Collectively, this novel multi-scale integrated study aims to improve ecophysiological understanding of tropical forest response to interannual climate variability, highlighting the importance to combine state-of-the-art technology and theories to improve future projections of carbon dynamics in the tropics.

  16. Adapting forest to climate change in drylands: the Portuguese case-study

    NASA Astrophysics Data System (ADS)

    Branquinho, Cristina; Príncipe, Adriana; Nunes, Alice; Kobel, Melanie; Soares, Cristina; Vizinho, André; Serrano, Helena Cristina; Pinho, Pedro

    2017-04-01

    The recent expansion of the semiarid climate to all the region of the south of Portugal and the growing impact of climate change demands local adaptation. The growth of the native forest represents a strategy at the ecosystem level to adapt to climate change since it increases resilience and increases also de delivery of ecosystem services such as the increment of organic matter in the soil, carbon and nitrogen, biodiversity, water infiltration, etc. Moreover, decreases susceptibility to desertification. For that reason, large areas have been reforested in the south of Portugal with the native species holm oak and cork oak but with a low rate of effectiveness. Our goal in this work is to show how the cost-benefit relation of the actions intended to expand the forest of the Portuguese semiarid can be lowered by taking into account the microclimatic conditions and high spatial resolution management. The potential of forest regeneration was modelled at the local and regional level in the semiarid area using information concerning the Potential Solar Radiation. This model gives us the rate of native forest regeneration after a disturbance with high spatial resolution. Based on this model the territory was classified in: i) easy regeneration areas; ii) areas with the need of assisted reforestation, using methods that increase water and soil conservation; iii) areas of difficult reforestation because of the costs. Additionally, a summary of the success of reforestations was made in the historical semiarid since the 60s based on the evaluation of a series of case studies, where we quantified the ecosystem services currently delivered by the reforested ecosystems. We will discuss and propose a strategy for forests to adapt to climate change scenario in dryland Portugal. Acknowledgement: Programa Adapt: financed by EEA Grants and Fundo Português de Carbono and by FCT-MEC project PTDC/AAG-GLO/0045/2014.

  17. Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America.

    PubMed

    Medvigy, David; Moorcroft, Paul R

    2012-01-19

    Terrestrial biosphere models are important tools for diagnosing both the current state of the terrestrial carbon cycle and forecasting terrestrial ecosystem responses to global change. While there are a number of ongoing assessments of the short-term predictive capabilities of terrestrial biosphere models using flux-tower measurements, to date there have been relatively few assessments of their ability to predict longer term, decadal-scale biomass dynamics. Here, we present the results of a regional-scale evaluation of the Ecosystem Demography version 2 (ED2)-structured terrestrial biosphere model, evaluating the model's predictions against forest inventory measurements for the northeast USA and Quebec from 1985 to 1995. Simulations were conducted using a default parametrization, which used parameter values from the literature, and a constrained model parametrization, which had been developed by constraining the model's predictions against 2 years of measurements from a single site, Harvard Forest (42.5° N, 72.1° W). The analysis shows that the constrained model parametrization offered marked improvements over the default model formulation, capturing large-scale variation in patterns of biomass dynamics despite marked differences in climate forcing, land-use history and species-composition across the region. These results imply that data-constrained parametrizations of structured biosphere models such as ED2 can be successfully used for regional-scale ecosystem prediction and forecasting. We also assess the model's ability to capture sub-grid scale heterogeneity in the dynamics of biomass growth and mortality of different sizes and types of trees, and then discuss the implications of these analyses for further reducing the remaining biases in the model's predictions.

  18. Global change effects on humid tropical forests: Evidence for biogeochemical and biodiversity shifts at an ecosystem scale

    NASA Astrophysics Data System (ADS)

    Cusack, Daniela F.; Karpman, Jason; Ashdown, Daniel; Cao, Qian; Ciochina, Mark; Halterman, Sarah; Lydon, Scott; Neupane, Avishesh

    2016-09-01

    Government and international agencies have highlighted the need to focus global change research efforts on tropical ecosystems. However, no recent comprehensive review exists synthesizing humid tropical forest responses across global change factors, including warming, decreased precipitation, carbon dioxide fertilization, nitrogen deposition, and land use/land cover changes. This paper assesses research across spatial and temporal scales for the tropics, including modeling, field, and controlled laboratory studies. The review aims to (1) provide a broad understanding of how a suite of global change factors are altering humid tropical forest ecosystem properties and biogeochemical processes; (2) assess spatial variability in responses to global change factors among humid tropical regions; (3) synthesize results from across humid tropical regions to identify emergent trends in ecosystem responses; (4) identify research and management priorities for the humid tropics in the context of global change. Ecosystem responses covered here include plant growth, carbon storage, nutrient cycling, biodiversity, and disturbance regime shifts. The review demonstrates overall negative effects of global change on all ecosystem properties, with the greatest uncertainty and variability in nutrient cycling responses. Generally, all global change factors reviewed, except for carbon dioxide fertilization, demonstrate great potential to trigger positive feedbacks to global warming via greenhouse gas emissions and biogeophysical changes that cause regional warming. This assessment demonstrates that effects of decreased rainfall and deforestation on tropical forests are relatively well understood, whereas the potential effects of warming, carbon dioxide fertilization, nitrogen deposition, and plant species invasions require more cross-site, mechanistic research to predict tropical forest responses at regional and global scales.

  19. Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services

    PubMed Central

    Birch, Jennifer C.; Newton, Adrian C.; Aquino, Claudia Alvarez; Cantarello, Elena; Echeverría, Cristian; Kitzberger, Thomas; Schiappacasse, Ignacio; Garavito, Natalia Tejedor

    2010-01-01

    Although ecological restoration is widely used to combat environmental degradation, very few studies have evaluated the cost-effectiveness of this approach. We examine the potential impact of forest restoration on the value of multiple ecosystem services across four dryland areas in Latin America, by estimating the net value of ecosystem service benefits under different reforestation scenarios. The values of selected ecosystem services were mapped under each scenario, supported by the use of a spatially explicit model of forest dynamics. We explored the economic potential of a change in land use from livestock grazing to restored native forest using different discount rates and performed a cost–benefit analysis of three restoration scenarios. Results show that passive restoration is cost-effective for all study areas on the basis of the services analyzed, whereas the benefits from active restoration are generally outweighed by the relatively high costs involved. These findings were found to be relatively insensitive to discount rate but were sensitive to the market value of carbon. Substantial variation in values was recorded between study areas, demonstrating that ecosystem service values are strongly context specific. However, spatial analysis enabled localized areas of net benefits to be identified, indicating the value of this approach for identifying the relative costs and benefits of restoration interventions across a landscape. PMID:21106761

  20. Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services.

    PubMed

    Birch, Jennifer C; Newton, Adrian C; Aquino, Claudia Alvarez; Cantarello, Elena; Echeverría, Cristian; Kitzberger, Thomas; Schiappacasse, Ignacio; Garavito, Natalia Tejedor

    2010-12-14

    Although ecological restoration is widely used to combat environmental degradation, very few studies have evaluated the cost-effectiveness of this approach. We examine the potential impact of forest restoration on the value of multiple ecosystem services across four dryland areas in Latin America, by estimating the net value of ecosystem service benefits under different reforestation scenarios. The values of selected ecosystem services were mapped under each scenario, supported by the use of a spatially explicit model of forest dynamics. We explored the economic potential of a change in land use from livestock grazing to restored native forest using different discount rates and performed a cost-benefit analysis of three restoration scenarios. Results show that passive restoration is cost-effective for all study areas on the basis of the services analyzed, whereas the benefits from active restoration are generally outweighed by the relatively high costs involved. These findings were found to be relatively insensitive to discount rate but were sensitive to the market value of carbon. Substantial variation in values was recorded between study areas, demonstrating that ecosystem service values are strongly context specific. However, spatial analysis enabled localized areas of net benefits to be identified, indicating the value of this approach for identifying the relative costs and benefits of restoration interventions across a landscape.

  1. Testing DRAINMOD-FOREST for predicting evapotranspiration in a mid-rotation pine plantation

    Treesearch

    Shiying Tian; Mohamed A. Youssef; Ge Sun; George M. Chescheir; Asko Noormets; Devendra M. Amatya; R. Wayne Skaggs; John S. King; Steve McNulty; Michael Gavazzi; Guofang Miao; Jean-Christophe Domec

    2015-01-01

    Evapotranspiration (ET) is a key component of the hydrologic cycle in terrestrial ecosystems and accurate description of ET processes is essential for developing reliable ecohydrological models. This study investigated the accuracy of ET prediction by the DRAINMOD-FOREST after its calibration/validation for predicting commonly measured hydrological variables. The model...

  2. Sampling and modeling riparian forest structure and riparian microclimate

    Treesearch

    Bianca N.I. Eskelson; Paul D. Anderson; Hailemariam Temesgen

    2013-01-01

    Riparian areas are extremely variable and dynamic, and represent some of the most complex terrestrial ecosystems in the world. The high variability within and among riparian areas poses challenges in developing efficient sampling and modeling approaches that accurately quantify riparian forest structure and riparian microclimate. Data from eight stream reaches that are...

  3. Calibration of state and transition models with FVS

    Treesearch

    Melinda Moeur; Don Vandendriesche

    2010-01-01

    The Interagency Mapping and Assessment Project (IMAP), a partnership between federal and state agencies, is developing mid-scale vegetation data and state and transition models (STM) for comparing the likely outcomes of alternative management policies on forested landscapes across the Pacific Northwest Region. In an STM, acres within a forested ecosystem transition...

  4. Supplementing forest ecosystem health projects on the ground

    Treesearch

    Cathy Barbouletos; Lynette Z. Morelan

    1995-01-01

    Understanding the functions and processes of ecosystems is critical before implementing forest ecosystem health projects on the landscape. Silvicultural treatments such as thinning, prescribed fire, and reforestation can simulate disturbance regimes and landscape patterns that have regulated forest ecosystems for centuries. As land managers we need to understand these...

  5. Sustainable development and use of ecosystems with non-forest trees

    USDA-ARS?s Scientific Manuscript database

    Non-forest trees are components of managed ecosystems including orchards and agroforestry systems and natural ecosystems such as savannas and riparian corridors. Each of these ecosystems includes trees but does not have a complete tree canopy or spatial extent necessary to create a true forest ecosy...

  6. Impacts of Air Pollution and Climate Change on Forest Ecosystems — Emerging Research Needs

    PubMed Central

    Paoletti, Elena; Bytnerowicz, Andrzej; Andersen, Chris; Augustaitis, Algirdas; Ferretti, Marco; Grulke, Nancy; Günthardt-Goerg, Madeleine S.; Innes, John; Johnson, Dale; Karnosky, Dave; Luangjame, Jesada; Matyssek, Rainer; McNulty, Steven; Müller-Starck, Gerhard; Musselman, Robert; Percy, Kevin

    2007-01-01

    Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems “Forests under Anthropogenic Pressure Effects of Air Pollution, Climate Change and Urban Development”, September 1016, 2006, Riverside, CA, are summarized. Tropospheric or ground-level ozone (O3) is still the phytotoxic air pollutant of major interest. Challenging issues are how to make O3 standards or critical levels more biologically based and at the same time practical for wide use; quantification of plant detoxification processes in flux modeling; inclusion of multiple environmental stresses in critical load determinations; new concept development for nitrogen saturation; interactions between air pollution, climate, and forest pests; effects of forest fire on air quality; the capacity of forests to sequester carbon under changing climatic conditions and coexposure to elevated levels of air pollutants; enhanced linkage between molecular biology, biochemistry, physiology, and morphological traits. PMID:17450274

  7. Predicted spatio-temporal dynamics of radiocesium deposited onto forests following the Fukushima nuclear accident

    PubMed Central

    Hashimoto, Shoji; Matsuura, Toshiya; Nanko, Kazuki; Linkov, Igor; Shaw, George; Kaneko, Shinji

    2013-01-01

    The majority of the area contaminated by the Fukushima Dai-ichi nuclear power plant accident is covered by forest. To facilitate effective countermeasure strategies to mitigate forest contamination, we simulated the spatio-temporal dynamics of radiocesium deposited into Japanese forest ecosystems in 2011 using a model that was developed after the Chernobyl accident in 1986. The simulation revealed that the radiocesium inventories in tree and soil surface organic layer components drop rapidly during the first two years after the fallout. Over a period of one to two years, the radiocesium is predicted to move from the tree and surface organic soil to the mineral soil, which eventually becomes the largest radiocesium reservoir within forest ecosystems. Although the uncertainty of our simulations should be considered, the results provide a basis for understanding and anticipating the future dynamics of radiocesium in Japanese forests following the Fukushima accident. PMID:23995073

  8. [Ecological regulation services of Hainan Island ecosystem and their valuation].

    PubMed

    Ouyang, Zhiyun; Zhao, Tongqian; Zhao, Jingzhu; Xiao, Han; Wang, Xiaoke

    2004-08-01

    Ecosystem services imply the natural environmental conditions on which human life relies for existence, and their effectiveness formed and sustained by ecosystem and its ecological processes. In newly research reports, they were divided into four groups, i. e., provisioning services, regulation services, cultural services, and supporting services. To assess and valuate ecosystem services is the foundation of regional environmental reserve and development. Taking Hainan Island as an example and based on the structure and processes of natural ecosystem, this paper discussed the proper methods for regulation services assessment. The ecosystems were classified into 13 types including valley rain forest, mountainous rain forest, tropical monsoon forest, mountainous coppice forest, mountainous evergreen forest, tropical coniferous forest, shrubs, plantation, timber forest, windbreak forest, mangrove, savanna, and cropland, and then, the regulation services and their economic values of Hainan Island ecosystem were assessed and evaluated by terms of water-holding, soil conservancy, nutrient cycle, C fixation, and windbreak function. The economic value of the regulation services of Hainan Island ecosystem was estimated as 2035.88 x 10(8)-2153.39 x 10(8) RMB yuan, 8 times higher to its provisioning services (wood and agricultural products) which were estimated as only 254.06 x 10(8) RMB yuan. The result implied that ecosystem regulation services played an even more important role in the sustainable development of society and economy in Hainan Island.

  9. Improving ecosystem-scale modeling of evapotranspiration using ecological mechanisms that account for compensatory responses following disturbance

    NASA Astrophysics Data System (ADS)

    Millar, David J.; Ewers, Brent E.; Mackay, D. Scott; Peckham, Scott; Reed, David E.; Sekoni, Adewale

    2017-09-01

    Mountain pine beetle outbreaks in western North America have led to extensive forest mortality, justifiably generating interest in improving our understanding of how this type of ecological disturbance affects hydrological cycles. While observational studies and simulations have been used to elucidate the effects of mountain beetle mortality on hydrological fluxes, an ecologically mechanistic model of forest evapotranspiration (ET) evaluated against field data has yet to be developed. In this work, we use the Terrestrial Regional Ecosystem Exchange Simulator (TREES) to incorporate the ecohydrological impacts of mountain pine beetle disturbance on ET for a lodgepole pine-dominated forest equipped with an eddy covariance tower. An existing degree-day model was incorporated that predicted the life cycle of mountain pine beetles, along with an empirically derived submodel that allowed sap flux to decline as a function of temperature-dependent blue stain fungal growth. The eddy covariance footprint was divided into multiple cohorts for multiple growing seasons, including representations of recently attacked trees and the compensatory effects of regenerating understory, using two different spatial scaling methods. Our results showed that using a multiple cohort approach matched eddy covariance-measured ecosystem-scale ET fluxes well, and showed improved performance compared to model simulations assuming a binary framework of only areas of live and dead overstory. Cumulative growing season ecosystem-scale ET fluxes were 8 - 29% greater using the multicohort approach during years in which beetle attacks occurred, highlighting the importance of including compensatory ecological mechanism in ET models.

  10. Impacts of forestry on boreal forests: An ecosystem services perspective.

    PubMed

    Pohjanmies, Tähti; Triviño, María; Le Tortorec, Eric; Mazziotta, Adriano; Snäll, Tord; Mönkkönen, Mikko

    2017-11-01

    Forests are widely recognized as major providers of ecosystem services, including timber, other forest products, recreation, regulation of water, soil and air quality, and climate change mitigation. Extensive tracts of boreal forests are actively managed for timber production, but actions aimed at increasing timber yields also affect other forest functions and services. Here, we present an overview of the environmental impacts of forest management from the perspective of ecosystem services. We show how prevailing forestry practices may have substantial but diverse effects on the various ecosystem services provided by boreal forests. Several aspects of these processes remain poorly known and warrant a greater role in future studies, including the role of community structure. Conflicts among different interests related to boreal forests are most likely to occur, but the concept of ecosystem services may provide a useful framework for identifying and resolving these conflicts.

  11. Using Biodiversity Indicators to Assess the Success of Forecasting Adaptive Ecosystem Management: The Newfoundland and Labrador Experience

    Treesearch

    C. Sean Dolter

    2006-01-01

    This paper reports on an initiative referred to as the Biodiversity Assessment Project (BAP). A suite of tools is being developed to assist forest managers in assessing the predicted future forest conditions of Newfoundland and Labrador’s forests under a variety of management scenarios. Since 1999, the Western Newfoundland Model Forest partnership...

  12. Understory cover and biomass indices predictions for forest ecosystems of the Northwestern United States

    Treesearch

    Vasile A. Suchar; Nicholas L. Crookston

    2010-01-01

    The understory community is a critical component of many processes of forest ecosystems. Cover and biomass indices of shrubs and herbs of forested ecosystems of Northwestern United States are presented. Various forest data were recorded for 10,895 plots during a Current Vegetation Survey, over the National Forest lands of entire Pacific Northwest. No significant...

  13. Assessment of forest fuel loadings in Puerto Rico and the U.S. Virgin Islands

    Treesearch

    Thomas Brandeis; Christopher Woodall

    2009-01-01

    Quantification of the downed woody materials that comprise forest fuels has gained importance in Caribbean forest ecosystems due to the increasing incidence and severity of wildfires on island ecosystems. Because large-scale assessments of forest fuels have rarely been conducted for these ecosystems, forest fuels were assessed at 121 U.S. Department of Agriculture,...

  14. Sustainable carbon uptake - important ecosystem service within sustainable forest management

    NASA Astrophysics Data System (ADS)

    Zorana Ostrogović Sever, Maša; Anić, Mislav; Paladinić, Elvis; Alberti, Giorgio; Marjanović, Hrvoje

    2016-04-01

    Even-aged forest management with natural regeneration under continuous cover (i.e. close to nature management) is considered to be sustainable regarding the yield, biodiversity and stability of forest ecosystems. Recently, in the context of climate change, there is a raising question of sustainable forest management regarding carbon uptake. Aim of this research was to explore whether current close to nature forest management approach in Croatia can be considered sustainable in terms of carbon uptake throughout the life-time of Pedunculate oak forest. In state-owned managed forest a chronosequence experiment was set up and carbon stocks in main ecosystem pools (live biomass, dead wood, litter and mineral soil layer), main carbon fluxes (net primary production, soil respiration (SR), decomposition) and net ecosystem productivity were estimated in eight stands of different age (5, 13, 38, 53, 68, 108, 138 and 168 years) based on field measurements and published data. Air and soil temperature and soil moisture were recorded on 7 automatic mini-meteorological stations and weekly SR measurements were used to parameterize SR model. Carbon balance was estimated at weekly scale for the growing season 2011 (there was no harvesting), as well as throughout the normal rotation period of 140 years (harvesting was included). Carbon stocks in different ecosystem pools change during a stand development. Carbon stocks in forest floor increase with stand age, while carbon stocks in dead wood are highest in young and older stands, and lowest in middle-aged, mature stands. Carbon stocks in mineral soil layer were found to be stable across chronosequence with no statistically significant age-dependent trend. Pedunculate Oak stand, assuming successful regeneration, becomes carbon sink very early in a development phase, between the age of 5 and 13 years, and remains carbon sink even after the age of 160 years. Greatest carbon sink was reached in the stand aged 53 years. Obtained results indicate that current harvesting practice has no detrimental effect on carbon stored in forest soil. Observed early and long-lasting carbon sink suggest that close to nature forest management can be considered sustainable in terms of carbon uptake. Also, observed carbon sink in the oldest stand is valuable information for potential debate on prolonging rotation period in this type of forest ecosystems.

  15. Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy

    PubMed Central

    Asner, Gregory P.; Nepstad, Daniel; Cardinot, Gina; Ray, David

    2004-01-01

    Amazônia contains vast stores of carbon in high-diversity ecosystems, yet this region undergoes major changes in precipitation affecting land use, carbon dynamics, and climate. The extent and structural complexity of Amazon forests impedes ground studies of ecosystem functions such as net primary production (NPP), water cycling, and carbon sequestration. Traditional modeling and remote-sensing approaches are not well suited to tropical forest studies, because (i) biophysical mechanisms determining drought effects on canopy water and carbon dynamics are poorly known, and (ii) remote-sensing metrics of canopy greenness may be insensitive to small changes in leaf area accompanying drought. New spaceborne imaging spectroscopy may detect drought stress in tropical forests, helping to monitor forest physiology and constrain carbon models. We combined a forest drought experiment in Amazônia with spaceborne imaging spectrometer measurements of this area. With field data on rainfall, soil water, and leaf and canopy responses, we tested whether spaceborne hyperspectral observations quantify differences in canopy water and NPP resulting from drought stress. We found that hyperspectral metrics of canopy water content and light-use efficiency are highly sensitive to drought. Using these observations, forest NPP was estimated with greater sensitivity to drought conditions than with traditional combinations of modeling, remote-sensing, and field measurements. Spaceborne imaging spectroscopy will increase the accuracy of ecological studies in humid tropical forests. PMID:15071182

  16. Utilizing forest tree genetic diversity for an adaptation of forest to climate change

    NASA Astrophysics Data System (ADS)

    Schueler, Silvio; Lackner, Magdalena; Chakraborty, Debojyoti

    2017-04-01

    Since climate conditions are considered to be major determinants of tree species' distribution ranges and drivers of local adaptation, anthropogenic climate change (CC) is expected to modify the distribution of tree species, tree species diversity and the forest ecosystems connected to these species. The expected speed of environmental change is significantly larger than the natural migration and adaptation capacity of trees and makes spontaneous adjustment of forest ecosystems improbable. Planting alternative tree species and utilizing the tree species' intrinsic adaptive capacity are considered to be the most promising adaptation strategy. Each year about 900 million seedlings of the major tree species are being planted in Central Europe. At present, the utilization of forest reproductive material is mainly restricted to nationally defined ecoregions (seed/provenance zones), but when seedlings planted today become adult, they might be maladapted, as the climate conditions within ecoregions changed significantly. In the cooperation project SUSTREE, we develop transnational delineation models for forest seed transfer and genetic conservation based on species distribution models and available intra-specific climate-response function. These models are being connected to national registers of forest reproductive material in order support nursery and forest managers by selecting the appropriate seedling material for future plantations. In the long-term, European and national policies as well as regional recommendations for provenances use need to adapted to consider the challenges of climate change.

  17. A comparison of empirical and modeled nitrogen critical loads for Mediterranean forests and shrublands in California

    Treesearch

    M.E. Fenn; H.-D. Nagel; I. Koseva; J. Aherne; S.E. Jovan; L.H. Geiser; A. Schlutow; T. Scheuschner; A. Bytnerowicz; B.S. Gimeno; F. Yuan; S.A. Watmough; E.B. Allen; R.F. Johnson; T. Meixner

    2014-01-01

    Nitrogen (N) deposition is impacting a number of ecosystem types in California. Critical loads (CLs) for N deposition determined for mixed conifer forests and chaparral/oak woodlands in the Sierra Nevada Mountains of California and the San Bernardino Mountains in southern California using empirical and various modelling approaches were compared. Models used included...

  18. Predicting the responses of forest distribution and aboveground biomass to climate change under RCP scenarios in southern China.

    PubMed

    Dai, Erfu; Wu, Zhuo; Ge, Quansheng; Xi, Weimin; Wang, Xiaofan

    2016-11-01

    In the past three decades, our global climate has been experiencing unprecedented warming. This warming has and will continue to significantly influence the structure and function of forest ecosystems. While studies have been conducted to explore the possible responses of forest landscapes to future climate change, the representative concentration pathways (RCPs) scenarios under the framework of the Coupled Model Intercomparison Project Phase 5 (CMIP5) have not been widely used in quantitative modeling research of forest landscapes. We used LANDIS-II, a forest dynamic landscape model, coupled with a forest ecosystem process model (PnET-II), to simulate spatial interactions and ecological succession processes under RCP scenarios, RCP2.6, RCP4.5 and RCP8.5, respectively. We also modeled a control scenario of extrapolating current climate conditions to examine changes in distribution and aboveground biomass (AGB) among five different forest types for the period of 2010-2100 in Taihe County in southern China, where subtropical coniferous plantations dominate. The results of the simulation show that climate change will significantly influence forest distribution and AGB. (i) Evergreen broad-leaved forests will expand into Chinese fir and Chinese weeping cypress forests. The area percentages of evergreen broad-leaved forests under RCP2.6, RCP4.5, RCP8.5 and the control scenarios account for 18.25%, 18.71%, 18.85% and 17.46% of total forest area, respectively. (ii) The total AGB under RCP4.5 will reach its highest level by the year 2100. Compared with the control scenarios, the total AGB under RCP2.6, RCP4.5 and RCP8.5 increases by 24.1%, 64.2% and 29.8%, respectively. (iii) The forest total AGB increases rapidly at first and then decreases slowly on the temporal dimension. (iv) Even though the fluctuation patterns of total AGB will remain consistent under various future climatic scenarios, there will be certain responsive differences among various forest types. © 2016 John Wiley & Sons Ltd.

  19. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem.

    PubMed

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-03-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models.

  20. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem

    PubMed Central

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-01-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871

  1. Using iTree Model in Clark County, Nevada

    EPA Science Inventory

    Ecosystem services are the services and benefits that human populations obtain from nature. Whether surrounded by a forested, coastal, or urban area, ecosystems provide recreation, food, shelter, cleaner air and water. As the climate and environment change due to human activity,...

  2. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning.

    PubMed

    Barnes, Andrew D; Jochum, Malte; Mumme, Steffen; Haneda, Noor Farikhah; Farajallah, Achmad; Widarto, Tri Heru; Brose, Ulrich

    2014-10-28

    Our knowledge about land-use impacts on biodiversity and ecosystem functioning is mostly limited to single trophic levels, leaving us uncertain about whole-community biodiversity-ecosystem functioning relationships. We analyse consequences of the globally important land-use transformation from tropical forests to oil palm plantations. Species diversity, density and biomass of invertebrate communities suffer at least 45% decreases from rainforest to oil palm. Combining metabolic and food-web theory, we calculate annual energy fluxes to model impacts of land-use intensification on multitrophic ecosystem functioning. We demonstrate a 51% reduction in energy fluxes from forest to oil palm communities. Species loss clearly explains variation in energy fluxes; however, this relationship depends on land-use systems and functional feeding guilds, whereby predators are the most heavily affected. Biodiversity decline from forest to oil palm is thus accompanied by even stronger reductions in functionality, threatening to severely limit the functional resilience of communities to cope with future global changes.

  3. Resolving model parameter values from carbon and nitrogen stock measurements in a wide range of tropical mature forests using nonlinear inversion and regression trees

    Treesearch

    Shuguang Liua; Pamela Anderson; Guoyi Zhoud; Boone Kauffman; Flint Hughes; David Schimel; Vicente Watson; Joseph Tosi

    2008-01-01

    Objectively assessing the performance of a model and deriving model parameter values from observations are critical and challenging in landscape to regional modeling. In this paper, we applied a nonlinear inversion technique to calibrate the ecosystem model CENTURY against carbon (C) and nitrogen (N) stock measurements collected from 39 mature tropical forest sites in...

  4. An Automated Chamber Network for Evaluation the Long-term Response and Feedback of Soil Carbon Dynamics to Global Change

    NASA Astrophysics Data System (ADS)

    Liang, N.; Kim, S.; Shimoyama, K.; Kim, Y.; Hirano, T.; Takagi, K.; Fujinuma, Y.; Mukai, H.; Takahashi, Y.; Kakubari, Y.; Wang, Q.; Nakane, K.

    2007-12-01

    Regional networks for measuring carbon sequestration or loss by terrestrial ecosystems on a year round basis have been in operation since the mid-1990s. However, continuous measurements of soil CO2 efflux, the largest component of ecosystem respiration have only been reported over similar time scales at a few of the sites. We have developed a multichannel automated chamber system that can be used for continuous measuring soil CO2 efflux. The system equips 8 to 24 large automated chambers (90*90*50 cm, L*W*H). Since 1997, we have installed the chamber systems in the tundra in west Siberia, boreal forest in Alaska, cool- temperate and temperate forests in Japan, Korea and China, tropical seasonal forest in Thailand, and tropical rainforest in Malaysia. Annual soil CO2 effluxes were estimated to be about 5-6 tC ha-1 y-1 in the boreal and cool-temperate forests, 10 tC ha-1 y-1 in the temperate forests, and 30 tC ha-1 y-1 in the tropical rainforests. Efflux showed significant seasonality in the boreal and temperate forest that corresponding with the seasonal soil temperature. However, the wavelike efflux rates in the tropical forests were correlated with the seasonality of soil moisture. From 2007, a big project that funded by Ministry of the Environment of Japan (MOE) has launched to evaluate the response and feedback of soil carbon dynamics of Japanese forest ecosystems to global change. We are installing another 6 chamber systems at the six of Japanese typical forests to conduct the soil warming experiments. For scaling-up the chamber experiments and understanding the mechanisms of soil organic matter (SOM) dynamics to global change, soil samples from about 100 forest ecosystems will be incubated for modeling development. Furthermore, the environmental (temperature and CO2) controlled large open-top chambers have been employed to investigate the balance of SOM (the input from litter falls and loss due to the decomposition) of forest ecosystems with global change.

  5. Alternative stable states and the sustainability of forests, grasslands, and agriculture.

    PubMed

    Henderson, Kirsten A; Bauch, Chris T; Anand, Madhur

    2016-12-20

    Endangered forest-grassland mosaics interspersed with expanding agriculture and silviculture occur across many parts of the world, including the southern Brazilian highlands. This natural mosaic ecosystem is thought to reflect alternative stable states driven by threshold responses of recruitment to fire and moisture regimes. The role of adaptive human behavior in such systems remains understudied, despite its pervasiveness and the fact that such ecosystems can exhibit complex dynamics. We develop a nonlinear mathematical model of coupled human-environment dynamics in mosaic systems and social processes regarding conservation and economic land valuation. Our objective is to better understand how the coupled dynamics respond to changes in ecological and social conditions. The model is parameterized with southern Brazilian data on mosaic ecology, land-use profits, and questionnaire results concerning landowner preferences and conservation values. We find that the mosaic presently resides at a crucial juncture where relatively small changes in social conditions can generate a wide variety of possible outcomes, including complete loss of mosaics; large-amplitude, long-term oscillations between land states that preclude ecosystem stability; and conservation of the mosaic even to the exclusion of agriculture/silviculture. In general, increasing the time horizon used for conservation decision making is more likely to maintain mosaic stability. In contrast, increasing the inherent conservation value of either forests or grasslands is more likely to induce large oscillations-especially for forests-due to feedback from rarity-based conservation decisions. Given the potential for complex dynamics, empirically grounded nonlinear dynamical models should play a larger role in policy formulation for human-environment mosaic ecosystems.

  6. Estimation of biogeochemical climate regulation services in Chinese forest ecosystems

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, S.

    2016-12-01

    As the global climate is changing, the climate regulation service of terrestrial ecosystem has been widely studied. Forests, as one of the most important terrestrial ecosystem types, is the biggest carbon pool or sink on land and can regulate climate through both biophysical and biogeochemical means. China is a country with vast forested areas and a variety of forest ecosystems types. Although current studies have related the climate regulation service of forest in China with biophysical or biogeochemical mechanism, there is still a lack of quantitative estimation of climate regulation services, especially for the biogeochemical climate regulation service. The GHGV (greenhouse gas value) is an indicator that can quantify the biochemical climate regulation service using ecosystems' stored organic matter, annual greenhouse gas flux, and potential greenhouse gas exchange rates during disturbances over a multiple year time frame. Therefore, we used GHGV to estimate the contribution of China's ten main forest types to biogeochemical climate regulation and generate the pattern of biochemical climate regulation service in Chinese forest ecosystems.

  7. Vulnerability to climate-induced changes in ecosystem services of boreal forests

    NASA Astrophysics Data System (ADS)

    Holmberg, Maria; Rankinen, Katri; Aalto, Tuula; Akujärvi, Anu; Nadir Arslan, Ali; Liski, Jari; Markkanen, Tiina; Mäkelä, Annikki; Peltoniemi, Mikko

    2016-04-01

    Boreal forests provide an array of ecosystem services. They regulate climate, and carbon, water and nutrient fluxes, and provide renewable raw material, food, and recreational possibilities. Rapid climate warming is projected for the boreal zone, and has already been observed in Finland, which sets these services at risk. MONIMET (LIFE12 ENV/FI/000409, 2.9.2013 - 1.9.2017) is a project funded by EU Life programme about Climate Change Indicators and Vulnerability of Boreal Zone Applying Innovative Observation and Modeling Techniques. The coordinating beneficiary of the project is the Finnish Meteorological Institute. Associated beneficiaries are the Natural Resources Institute Finland, the Finnish Environment Institute and the University of Helsinki. In the MONIMET project, we use state-of-the-art models and new monitoring methods to investigate the impacts of a warming climate on the provision of ecosystem services of boreal forests. This poster presents results on carbon storage in soil and assessment of drought indices, as a preparation for assessing the vulnerability of society to climate-induced changes in ecosystem services. The risk of decreasing provision of ecosystem services depends on the sensitivity of the ecosystem as well as its exposure to climate stress. The vulnerability of society, in turn, depends on the risk of decreasing provision of a certain service in combination with society's demand for that service. In the next phase, we will look for solutions to challenges relating to the quantification of the demand for ecosystem services and differences in spatial extent and resolution of the information on future supply and demand.

  8. Comprehensive ecosystem model-experiment synthesis using multiple datasets at two temperate forest free-air CO2 enrichment experiments: model performance and compensating biases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Anthony P; Hanson, Paul J; DeKauwe, Martin G

    2014-01-01

    Free Air CO2 Enrichment (FACE) experiments provide a remarkable wealth of data to test the sensitivities of terrestrial ecosystem models (TEMs). In this study, a broad set of 11 TEMs were compared to 22 years of data from two contrasting FACE experiments in temperate forests of the south eastern US the evergreen Duke Forest and the deciduous Oak Ridge forest. We evaluated the models' ability to reproduce observed net primary productivity (NPP), transpiration and Leaf Area index (LAI) in ambient CO2 treatments. Encouragingly, many models simulated annual NPP and transpiration within observed uncertainty. Daily transpiration model errors were often relatedmore » to errors in leaf area phenology and peak LAI. Our analysis demonstrates that the simulation of LAI often drives the simulation of transpiration and hence there is a need to adopt the most appropriate of hypothesis driven methods to simulate and predict LAI. Of the three competing hypotheses determining peak LAI (1) optimisation to maximise carbon export, (2) increasing SLA with canopy depth and (3) the pipe model the pipe model produced LAI closest to the observations. Modelled phenology was either prescribed or based on broader empirical calibrations to climate. In some cases, simulation accuracy was achieved through compensating biases in component variables. For example, NPP accuracy was sometimes achieved with counter-balancing biases in nitrogen use efficiency and nitrogen uptake. Combined analysis of parallel measurements aides the identification of offsetting biases; without which over-confidence in model abilities to predict ecosystem function may emerge, potentially leading to erroneous predictions of change under future climates.« less

  9. The Missouri Ozark Forest Ecosystem Project: past, present, and future

    Treesearch

    Brian L. Brookshire; Randy Jensen; Daniel C. Dey

    1997-01-01

    In 1989, the Missouri Department of Conservation initiated a research project to examine the impacts of forest management practices on multiple ecosystem components. The Missouri Ozark Forest Ecosystem Project (MOFEP) is a landscape experiment comparing the impacts of even-aged management, uneven-aged management, and no harvesting on a wide array of ecosystem...

  10. Urban forests and pollution mitigation: analyzing ecosystem services and disservices.

    PubMed

    Escobedo, Francisco J; Kroeger, Timm; Wagner, John E

    2011-01-01

    The purpose of this paper is to integrate the concepts of ecosystem services and disservices when assessing the efficacy of using urban forests for mitigating pollution. A brief review of the literature identifies some pollution mitigation ecosystem services provided by urban forests. Existing ecosystem services definitions and typologies from the economics and ecological literature are adapted and applied to urban forest management and the concepts of ecosystem disservices from natural and semi-natural systems are discussed. Examples of the urban forest ecosystem services of air quality and carbon dioxide sequestration are used to illustrate issues associated with assessing their efficacy in mitigating urban pollution. Development of urban forest management alternatives that mitigate pollution should consider scale, contexts, heterogeneity, management intensities and other social and economic co-benefits, tradeoffs, and costs affecting stakeholders and urban sustainability goals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Simulating Carbon Stocks and Fluxes of an African Tropical Montane Forest with an Individual-Based Forest Model

    PubMed Central

    Fischer, Rico; Ensslin, Andreas; Rutten, Gemma; Fischer, Markus; Schellenberger Costa, David; Kleyer, Michael; Hemp, Andreas; Paulick, Sebastian; Huth, Andreas

    2015-01-01

    Tropical forests are carbon-dense and highly productive ecosystems. Consequently, they play an important role in the global carbon cycle. In the present study we used an individual-based forest model (FORMIND) to analyze the carbon balances of a tropical forest. The main processes of this model are tree growth, mortality, regeneration, and competition. Model parameters were calibrated using forest inventory data from a tropical forest at Mt. Kilimanjaro. The simulation results showed that the model successfully reproduces important characteristics of tropical forests (aboveground biomass, stem size distribution and leaf area index). The estimated aboveground biomass (385 t/ha) is comparable to biomass values in the Amazon and other tropical forests in Africa. The simulated forest reveals a gross primary production of 24 tcha-1yr-1. Modeling above- and belowground carbon stocks, we analyzed the carbon balance of the investigated tropical forest. The simulated carbon balance of this old-growth forest is zero on average. This study provides an example of how forest models can be used in combination with forest inventory data to investigate forest structure and local carbon balances. PMID:25915854

  12. Forest ecosystem services: Provisioning of non-timber forest products

    Treesearch

    James L. Chamberlain; Gregory E. Frey; C. Denise Ingram; Michael G. Jacobson; Cara Meghan Starbuck Downes

    2017-01-01

    The purpose of this chapter is to describe approaches to calculate a conservative and defensible estimate of the marginal value of forests for non-timber forest products (NTFPs). 'Provisioning" is one of four categories of benefits, or services that ecosystems provide to humans and was described by the Millennium Ecosystem Assessment as 'products...

  13. Forest-land conversion, ecosystem services, and economic issues for policy: a review

    Treesearch

    Robert A. Smail; David J. Lewis

    2009-01-01

    The continued conversion and development of forest land pose a serious threat to the ecosystem services derived from forested landscapes. We argue that developing an understanding of the full range of consequences from forest conversion requires understanding the effects of such conversion on both components of ecosystem services: products and processes....

  14. Forest Ecosystem Services As Production Inputs

    Treesearch

    Subhrendu Pattanayak; David T. Butry

    2003-01-01

    Are we cutting down tropical forests too rapidly and too extensively? If so, why? Answers to both questions are obscured in some ways by insufficient and unreliable data on the economic worth of forest ecosystem services. It is clear, however, that rapid, excessive cutting of forests can irreversibly and substantively impair ecosystem functions, thereby endangering the...

  15. Forest ecosystem services: Carbon and air quality

    Treesearch

    David J. Nowak; Neelam C. Poudyal; Steve G. McNulty

    2017-01-01

    Forests provide various ecosystem services related to air quality that can provide substantial value to society. Through tree growth and alteration of their local environment, trees and forests both directly and indirectly affect air quality. Though forests affect air quality in numerous ways, this chapter will focus on five main ecosystem services or disservices...

  16. Divergence of ecosystem services in U.S. National Forests and Grasslands under a changing climate.

    PubMed

    Duan, Kai; Sun, Ge; Sun, Shanlei; Caldwell, Peter V; Cohen, Erika C; McNulty, Steven G; Aldridge, Heather D; Zhang, Yang

    2016-04-21

    The 170 National Forests and Grasslands (NFs) in the conterminous United States are public lands that provide important ecosystem services such as clean water and timber supply to the American people. This study investigates the potential impacts of climate change on two key ecosystem functions (i.e., water yield and ecosystem productivity) using the most recent climate projections derived from 20 Global Climate Models (GCMs) of the Coupled Model Intercomparison Project phase 5 (CMIP5). We find that future climate change may result in a significant reduction in water yield but an increase in ecosystem productivity in NFs. On average, gross ecosystem productivity is projected to increase by 76 ~ 229 g C m(-2) yr(-1) (8% ~ 24%) while water yield is projected to decrease by 18 ~ 31 mm yr(-1) (4% ~ 7%) by 2100 as a result of the combination of increased air temperature (+1.8 ~ +5.2 °C) and precipitation (+17 ~ +51 mm yr(-1)). The notable divergence in ecosystem services of water supply and carbon sequestration is expected to intensify under higher greenhouse gas emission and associated climate change in the future, posing greater challenges to managing NFs for both ecosystem services.

  17. Interannual variation of carbon fluxes from three contrasting evergreen forests: the role of forest dynamics and climate.

    PubMed

    Sierra, Carlos A; Loescher, Henry W; Harmon, Mark E; Richardson, Andrew D; Hollinger, David Y; Perakis, Steven S

    2009-10-01

    Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed approximately 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data.

  18. Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling

    Treesearch

    James A. Thompson; Randall K. Kolka

    2005-01-01

    Carbon storage in soils is important to forest ecosystems. Moreover, forest soils may serve as important C sinks for ameliorating excess atmospheric CO2. Spatial estimates of soil organic C (SOC) storage have traditionally relied upon soil survey maps and laboratory characterization data. This approach does not account for inherent variability...

  19. Validation and application of a forest gap model to the southern Rocky Mountains

    Treesearch

    Adrianna C. Foster; Jacquelyn K. Shuman; Herman H. Shugart; Kathleen A. Dwire; Paula J. Fornwalt; Jason Sibold; Jose Negron

    2017-01-01

    Rocky Mountain forests are highly important for their part in carbon cycling and carbon storage as well as ecosystem services such as water retention and storage and recreational values. These forests are shaped by complex interactions among vegetation, climate, and disturbances. Thus, climate change and shifting disturbances may lead to significant changes in species...

  20. Testing a Landsat-based approach for mapping disturbance causality in U.S. forests

    Treesearch

    Todd A. Schroeder; Karen G. Schleeweis; Gretchen G. Moisen; Chris Toney; Warren B. Cohen; Elizabeth A. Freeman; Zhiqiang Yang; Chengquan Huang

    2017-01-01

    In light of Earth's changing climate and growing human population, there is an urgent need to improve monitoring of natural and anthropogenic disturbanceswhich effect forests' ability to sequester carbon and provide other ecosystem services. In this study, a two-step modeling approach was used to map the type and timing of forest disturbances occurring...

  1. Confronting challenges to economic analysis of biological invasions in forests

    Treesearch

    Thomas P Holmes

    2010-01-01

    Biological invasions of forests by non-indigenous organisms present a complex, persistent, and largely irreversible threat to forest ecosystems around the globe. Rigorous assessments of the economic impacts of introduced species, at a national scale, are needed to provide credible information to policy makers. It is proposed here that microeconomic models of damage due...

  2. Using model analyses and surface-atmosphere exchange measurements from the Howland AmeriFlux Site in Maine, USA, to improve understanding of forest ecosystem C cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollinger, David Y.; Davidson, Eric A.; Richardson, Andrew D.

    2013-03-25

    Summary of research carried out under Interagency Agreement DE-AI02-07ER64355 with the USDA Forest Service at the Howland Forest AmeriFlux site in central Maine. Includes a list of publications resulting in part or whole from this support.

  3. Assessing stand-level climate change risk using forest inventory data and species distribution models

    Treesearch

    Maria K. Janowiak; Louis R. Iverson; Jon Fosgitt; Stephen D. Handler; Matt Dallman; Scott Thomasma; Brad Hutnik; Christopher W. Swanston

    2017-01-01

    Climate change is having important effects on forest ecosystems, presenting a challenge for natural resource professionals to reduce climate-associated impacts while still achieving diverse management objectives. Regional projections of climate change and forest response are becoming more readily available, but managers are still searching for practical ways to apply...

  4. Modeling hydrologic responses to deforestation/forestation and climate change at multiple scales in the Southern US and China

    Treesearch

    Ge Sun; Steven McNulty; Jianbiao Lu; James Vose; Devendra Amayta; Guoyi Zhou; Zhiqiang Zhang

    2006-01-01

    Watershed management and restoration practices require a clear understanding of the basic eco-hydrologic processes and ecosystem responses to disturbances at multiple scales (Bruijnzeel, 2004; Scott et al., 2005). Worldwide century-long forest hydrologic research has documented that deforestation and forestation (i.e. reforestation and afforestation) can have variable...

  5. Simulated effects of reduced sulfur, nitrogen, and base cation deposition on soils and solutions in Southern Appalachian forests

    Treesearch

    D.W. Johnson; R.B. Susfalk; P.F. Brewer; W.T. Swank

    1999-01-01

    Effects of reduced deposition of N, S, and CB on nutrient pools, fluxes, soil, and soil solution chemistry were simulated for two Appalachian forest ecosystems using the nutrient cycling model. In the extremely acidic, N- and S-saturated red spruce (Picea rubens (Sarg.)) forest (Nolan Divide), reducing

  6. Defining the role of silvicultural research in the Northeastern Forest Experiment Station

    Treesearch

    Chris Nowak; Susan Stout; John Brissette; Laura Kenefic; Gary Miller; Bill Leak; Dan Yaussy; Tom Schuler; Kurt Gottschalk

    1997-01-01

    Research planning in the Northeastern Forest Experiment Station has followed a grass roots model for more than two years-ROADMAP, a research and development management plan. The goals for research within ROADMAP include understanding, protecting, managing, and utilizing forest ecosystems. There are nine research themes set to help achieve these goals, each with a set...

  7. Modelling moose—forest interactions under different predation scenarios at Isle Royale National Park, USA

    Treesearch

    Nathan R. De Jager; Jason J. Rohweder; Brian R. Miranda; Brian R. Sturtevant; Timothy J. Fox; Mark C. Romanski

    2017-01-01

    Loss of top predators may contribute to high ungulate population densities and chronic over-browsing of forest ecosystems. However, spatial and temporal variability in the strength of interactions between predators and ungulates occurs over scales that are much shorter than the scales over which forest communities change, making it difficult to characterize trophic...

  8. Study of landscape change under forest harvesting and climate warming-induced fire disturbance

    Treesearch

    S. He Hong; David J. Mladenoff; Eric J. Gustafson

    2002-01-01

    We examined tree species responses under forest harvesting and an increased fire disturbance scenario due to climate warming in northern Wisconsin where northern hardwood and boreal forests are currently predominant. Individual species response at the ecosystem scale was simulated with a gap model, which integrates soil, climate and species data, stratified by...

  9. Improving predictions of carbon fluxes in the tropics undre climatic changes using ED2

    NASA Astrophysics Data System (ADS)

    Feng, X.; Uriarte, M.

    2016-12-01

    Tropical forests play a critical role in the exchange of carbon between land and atmosphere, highlighting the urgency of understanding the effects of climate change on these ecosystems. The most optimistic predictions of climate models indicate that global mean temperatures will increase by up to 2 0C with some tropical regions experiencing extreme heat. Drought and heat-induced tree mortality will accelerate the release of carbon to the atmosphere creating a positive feedback that greatly exacerbates global warming. Thus, under a warmer and drier climate, tropical forests may become net sources, rather than sinks, of carbon. Earth system models have not reached a consensus on the magnitude and direction of climate change impacts on tropical forests, calling into question the reliability of their predictions. Thus, there is an immediate need to improve the representation of tropical forests in earth system models to make robust predictions. The goal of our study is to quantify the responses of tropical forests to climate variability and improve the predictive capacity of terrestrial ecosystem models. We have collected species-specific physiological and functional trait data from 144 tree species in a Puerto Rican rainforest to parameterize the Ecosystem Demography model (ED2). The large amount of data generated by this research will lead to better validation and lowering the uncertainty in future model predictions. To best represent the forest landscape in ED2, all the trees have been assigned to three plant functional types (PFTs): early, mid, and late successional species. Trait data for each PFT were synthesized in a Bayesian meta-analytical model and posterior distributions of traits were used to parameterize the ED2 model. Model predictions show that biomass production of late successional PFT (118.89 ton/ha) was consistently higher than mid (71.33 ton/ha) and early (13.21 ton/ha) PFTs. However, mid successional PFT had the highest contributions to NPP for the modeled period. Tropical forest biomass reduces by 30% under future drought scenario turning the tropics into carbon sources. Ensemble runs were conducted to construct error estimates around model forecasts, to compare modeled and observed aboveground biomass, and to identify which processes and tree species need further study.

  10. The AmazonFACE research program: assessing the effects of increasing atmospheric CO2 on the ecology and resilience of the Amazon forest

    NASA Astrophysics Data System (ADS)

    Lapola, David; Quesada, Carlos; Norby, Richard; Araújo, Alessandro; Domingues, Tomas; Hartley, Iain; Kruijt, Bart; Lewin, Keith; Meir, Patrick; Ometto, Jean; Rammig, Anja

    2016-04-01

    The existence, magnitude and duration of a supposed "CO2 fertilization" effect in tropical forests remains largely undetermined, despite being suggested for nearly 20 years as a key knowledge gap for understanding the future resilience of Amazonian forests and its impact on the global carbon cycle. Reducing this uncertainty is critical for assessing the future of the Amazon region as well as its vulnerability to climate change. The AmazonFACE (Free-Air CO2 Enrichment) research program is an integrated model-experiment initiative of unprecedented scope in an old-growth Amazon forest near Manaus, Brazil - the first of its kind in tropical forest. The experimental treatment will simulate an atmospheric CO2 concentration [CO2] of the future in order to address the question: "How will rising atmospheric CO2 affect the resilience of the Amazon forest, the biodiversity it harbors, and the ecosystem services it provides, in light of projected climatic changes?" AmazonFACE is divided into three phases: (I) pre-experimental ecological characterization of the research site; (II) pilot experiment comprised of two 30-m diameter plots, with one treatment plot maintained at elevated [CO2] (ambient +200 ppmv), and the other control plot at ambient [CO2]; and (III) a fully-replicated long-term experiment comprised of four pairs of control/treatment FACE plots maintained for 10 years. A team of scientists from Brazil, USA, Australia and Europe will employ state-of-the-art methods to study the forest inside these plots in terms of carbon metabolism and cycling, water use, nutrient cycling, forest community composition, and interactions with environmental stressors. All project phases also encompass ecosystem-modeling activities in a way such that models provide hypothesis to be verified in the experiment, which in turn will feed models to ultimately produce more accurate projections of the environment. Resulting datasets and analyses will be a valuable resource for a broad community, especially ecosystem and climate modelers, and policy-makers.

  11. An ecosystem-scale model for the spread of a host-specific forest pathogen in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Hatala, J.A.; Dietze, M.C.; Crabtree, R.L.; Kendall, Katherine C.; Six, D.; Moorcroft, P.R.

    2011-01-01

    The introduction of nonnative pathogens is altering the scale, magnitude, and persistence of forest disturbance regimes in the western United States. In the high-altitude whitebark pine (Pinus albicaulis) forests of the Greater Yellowstone Ecosystem (GYE), white pine blister rust (Cronartium ribicola) is an introduced fungal pathogen that is now the principal cause of tree mortality in many locations. Although blister rust eradication has failed in the past, there is nonetheless substantial interest in monitoring the disease and its rate of progression in order to predict the future impact of forest disturbances within this critical ecosystem.This study integrates data from five different field-monitoring campaigns from 1968 to 2008 to create a blister rust infection model for sites located throughout the GYE. Our model parameterizes the past rates of blister rust spread in order to project its future impact on high-altitude whitebark pine forests. Because the process of blister rust infection and mortality of individuals occurs over the time frame of many years, the model in this paper operates on a yearly time step and defines a series of whitebark pine infection classes: susceptible, slightly infected, moderately infected, and dead. In our analysis, we evaluate four different infection models that compare local vs. global density dependence on the dynamics of blister rust infection. We compare models in which blister rust infection is: (1) independent of the density of infected trees, (2) locally density-dependent, (3) locally density-dependent with a static global infection rate among all sites, and (4) both locally and globally density-dependent. Model evaluation through the predictive loss criterion for Bayesian analysis supports the model that is both locally and globally density-dependent. Using this best-fit model, we predicted the average residence times for the four stages of blister rust infection in our model, and we found that, on average, whitebark pine trees within the GYE remain susceptible for 6.7 years, take 10.9 years to transition from slightly infected to moderately infected, and take 9.4 years to transition from moderately infected to dead. Using our best-fit model, we project the future levels of blister rust infestation in the GYE at critical sites over the next 20 years.

  12. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models

    Treesearch

    W. R. L. Anderegg; C. Schwalm; F. Biondi; J. J. Camarero; G. Koch; M. Litvak; K. Ogle; J. D. Shaw; E. Shevliakova; A. P. Williams; A. Wolf; E. Ziaco; S. Pacala

    2015-01-01

    The impacts of climate extremes on terrestrial ecosystems are poorly understood but important for predicting carbon cycle feedbacks to climate change. Coupled climate-carbon cycle models typically assume that vegetation recovery from extreme drought is immediate and complete, which conflicts with the understanding of basic plant physiology. We examined the recovery of...

  13. Predicting regeneration in the grand fir-cedar-hemlock ecosystem of the northern Rocky Mountains

    Treesearch

    Dennis E. Ferguson; Albert R. Stage; Raymond J. Boyd

    1986-01-01

    Conifer establishment following regeneration treatments can be predicted in the grand fir-cedar-hemlock ecosystem of the northern Rocky Mountains. Alternative treatments can be evaluated by a model that represents regeneration establishment and early development. This model is designed to be used with the Intermountain Forest and Range Experiment Station's...

  14. Maintaining ecosystem function and services in logged tropical forests.

    PubMed

    Edwards, David P; Tobias, Joseph A; Sheil, Douglas; Meijaard, Erik; Laurance, William F

    2014-09-01

    Vast expanses of tropical forests worldwide are being impacted by selective logging. We evaluate the environmental impacts of such logging and conclude that natural timber-production forests typically retain most of their biodiversity and associated ecosystem functions, as well as their carbon, climatic, and soil-hydrological ecosystem services. Unfortunately, the value of production forests is often overlooked, leaving them vulnerable to further degradation including post-logging clearing, fires, and hunting. Because logged tropical forests are extensive, functionally diverse, and provide many ecosystem services, efforts to expand their role in conservation strategies are urgently needed. Key priorities include improving harvest practices to reduce negative impacts on ecosystem functions and services, and preventing the rapid conversion and loss of logged forests. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Evapotranspiration and favorable growing degree-days are key to tree height growth and ecosystem functioning: Meta-analyses of Pacific Northwest historical data.

    PubMed

    Liu, Yang; El-Kassaby, Yousry A

    2018-05-29

    While temperature and precipitation comprise important ecological filtering for native ranges of forest trees and are predisposing factors underlying forest ecosystem dynamics, the extent and severity of drought raises reasonable concerns for carbon storage and species diversity. Based on historical data from common garden experiments across the Pacific Northwest region, we developed non-linear niche models for height-growth trajectories of conifer trees at the sapling stage using annual or seasonal climatic variables. The correlations between virtual tree height for each locality and ecosystem functions were respectively assessed. Best-fitted models were composed of two distinct components: evapotranspiration and the degree-days disparity for temperature regimes between 5 °C and 18 °C (effective temperature sum and growth temperature, respectively). Tree height prediction for adaptive generalists (e.g., Pinus monticola, Thuja plicata) had smaller residuals than for specialists (e.g., Pinus contorta, Pseudotsuga menziesii), albeit a potential confounding factor - tree age. Discernably, there were linearly positive patterns between tree height growth and ecosystem functions (productivity, biomass and species diversity). Additionally, there was a minor effect of tree diversity on height growth in coniferous forests. This study uncovers the implication of key ecological filtering and increases our integrated understanding of how environmental cues affect tree stand growth, species dominance and ecosystem functions.

  16. A mangrove creek restoration plan utilizing hydraulic modeling

    EPA Science Inventory

    Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. As a result, the restoration of mangrove forests has become an important topic of research. Urban development has been a primary cause for mangrove destruction and d...

  17. Implementing watershed investment programs to restore fire-adapted forests for watershed services

    NASA Astrophysics Data System (ADS)

    Springer, A. E.

    2013-12-01

    Payments for ecosystems services and watershed investment programs have created new solutions for restoring upland fire-adapted forests to support downstream surface-water and groundwater uses. Water from upland forests supports not only a significant percentage of the public water supplies in the U.S., but also extensive riparian, aquatic, and groundwater dependent ecosystems. Many rare, endemic, threatened, and endangered species are supported by the surface-water and groundwater generated from the forested uplands. In the Ponderosa pine forests of the Southwestern U.S., post Euro-American settlement forest management practices, coupled with climate change, has significantly impacted watershed functionality by increasing vegetation cover and associated evapotranspiration and decreasing runoff and groundwater recharge. A large Collaborative Forest Landscape Restoration Program project known as the Four Forests Restoration Initiative is developing landscape scale processes to make the forests connected to these watersheds more resilient. However, there are challenges in financing the initial forest treatments and subsequent maintenance treatments while garnering supportive public opinion to forest thinning projects. A solution called the Flagstaff Watershed Protection Project is utilizing City tax dollars collected through a public bond to finance forest treatments. Exit polling from the bond election documented the reasons for the 73 % affirmative vote on the bond measure. These forest treatments have included in their actions restoration of associated ephemeral stream channels and spring ecosystems, but resources still need to be identified for these actions. A statewide strategy for developing additional forest restoration resources outside of the federal financing is being explored by state and local business and governmental leaders. Coordination, synthesis, and modeling supported by a NSF Water Sustainability and Climate project has been instrumental in facilitating the forest restoration and watershed health decision making processes.

  18. Modelling bidirectional fluxes of methanol and acetaldehyde with the FORCAsT canopy exchange model

    DOE PAGES

    Ashworth, Kirsti; Chung, Serena H.; McKinney, Karena A.; ...

    2016-12-15

    Here, the FORCAsT canopy exchange model was used to investigate the underlying mechanisms governing foliage emissions of methanol and acetaldehyde, two short chain oxygenated volatile organic compounds ubiquitous in the troposphere and known to have strong biogenic sources, at a northern mid-latitude forest site. The explicit representation of the vegetation canopy within the model allowed us to test the hypothesis that stomatal conductance regulates emissions of these compounds to an extent that its influence is observable at the ecosystem scale, a process not currently considered in regional- or global-scale atmospheric chemistry models. Here, we found that FORCAsT could only reproducemore » the magnitude and diurnal profiles of methanol and acetaldehyde fluxes measured at the top of the forest canopy at Harvard Forest if light-dependent emissions were introduced to the model. With the inclusion of such emissions, FORCAsT was able to successfully simulate the observed bidirectional exchange of methanol and acetaldehyde. Although we found evidence that stomatal conductance influences methanol fluxes and concentrations at scales beyond the leaf level, particularly at dawn and dusk, we were able to adequately capture ecosystem exchange without the addition of stomatal control to the standard parameterisations of foliage emissions, suggesting that ecosystem fluxes can be well enough represented by the emissions models currently used.« less

  19. Effects of repeated fires on ecosystem C and N stocks along a fire induced forest/grassland gradient

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Hsin; Chen, Yung-Sheng; Huang, Yu-Hsuan; Chiou, Chyi-Rong; Lin, Chau-Chih; Menyailo, Oleg V.

    2013-03-01

    Repeated fires might have different effect on ecosystem carbon storage than a single fire event, but information on repeated fires and their effects on forest ecosystems and carbon storage is scarce. However, changes in climate, vegetation composition, and human activities are expected to make forests more susceptible to fires that recur with relatively high frequency. In this study, the effects of repeated fires on ecosystem carbon and nitrogen stocks were examined along a fire-induced forest/grassland gradient wherein the fire events varied from an unburned forest to repeatedly burned grassland. Results from the study show repeated fires drastically decreased ecosystem carbon and nitrogen stocks along the forest/grassland gradient. The reduction began with the disappearance of living tree biomass, and followed by the loss of soil carbon and nitrogen. Within 4 years of the onset of repeated fires on the unburned forest, the original ecosystem carbon and nitrogen stocks were reduced by 42% and 21%, respectively. Subsequent fires caused cumulative reductions in ecosystem carbon and nitrogen stocks by 68% and 44% from the original ecosystem carbon and nitrogen stocks, respectively. The analyses of carbon budgets calculated by vegetation composition and stable isotopic δ13C values indicate that 84% of forest-derived carbon is lost at grassland, whereas the gain of grass-derived carbon only compensates 18% for this loss. Such significant losses in ecosystem carbon and nitrogen stocks suggest that the effects of repeated fires have substantial impacts on ecosystem and soil carbon and nitrogen cycling.

  20. Understanding the compatibility of multiple uses on forest land: a survey of multiresource research with application to the Pacific Northwest.

    Treesearch

    James A. Stevens; Claire A. Montgomery

    2002-01-01

    In this report, multiresource research is described as it has coevolved with forest policy objectives—from managing for single or dominant uses, to managing for compatible multiple forest uses, to sustaining ecosystem health on the forest. The evolution of analytical methods for multiresource research is traced from impact analysis to multiresource modeling, and...

  1. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    Treesearch

    Xiaohui Feng; María Uriarte; Grizelle González; Sasha Reed; Jill Thompson; Jess K. Zimmerman; Lora Murphy

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very...

  2. Improved estimates of net primary productivity from MODIS satellite data at regional and local scales

    Treesearch

    Yude Pan; Richard Birdsey; John Hom; Kevin McCullough; Kenneth Clark

    2006-01-01

    We compared estimates of net primary production (NPP) from the MODIS satellite with estimates from a forest ecosystem process model (PnET-CN) and forest inventory and analysis (FIA) data for forest types of the mid-Atlantic region of the United States. The regional means were similar for the three methods and for the dominant oak? hickory forests in the region. However...

  3. Temperate forest fragments maintain aboveground carbon stocks out to the forest edge despite changes in community composition.

    PubMed

    Ziter, Carly; Bennett, Elena M; Gonzalez, Andrew

    2014-11-01

    Edge effects are among the primary mechanisms by which forest fragmentation can influence the link between biodiversity and ecosystem processes, but relatively few studies have quantified these mechanisms in temperate regions. Carbon storage is an important ecosystem function altered by edge effects, with implications for climate change mitigation. Two opposing hypotheses suggest that aboveground carbon (AGC) stocks at the forest edge will (a) decrease due to increased tree mortality and compositional shifts towards smaller, lower wood density species (e.g., as seen in tropical systems) or, less often, (b) increase due to light/temperature-induced increases in diversity and productivity. We used field-based measurements, allometry, and mixed models to investigate the effects of proximity to the forest edge on AGC stocks, species richness, and community composition in 24 forest fragments in southern Quebec. We also asked whether fragment size or connectivity with surrounding forests altered these edge effects. AGC stocks remained constant across a 100 m edge-to-interior gradient in all fragment types, despite changes in tree community composition and stem density consistent with expectations of forest edge effects. We attribute this constancy primarily to compensatory effects of small trees at the forest edge; however, it is due in some cases to the retention of large trees at forest edges, likely a result of forest management. Our results suggest important differences between temperate and tropical fragments with respect to mechanisms linking biodiversity and AGC dynamics. Small temperate forest fragments may be valuable in conservation efforts based on maintaining biodiversity and multiple ecosystem services.

  4. Net carbon uptake has increased through warming-induced changes in temperate forest phenology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenan, Trevor; Gray, Josh; Friedl, Mark

    2014-01-01

    The timing of phenological events exerts a strong control over ecosystem function and leads to multiple feedbacks to the climate system1. Phenology is inherently sensitive to temperature (though the exact sensitivity is disputed2) and recent warming is reported to have led to earlier spring, later autumn3,4 and increased vegetation activity5,6. Such greening could be expected to enhance ecosystem carbon uptake7,8, though reports also suggest decreased uptake for boreal forests4,9. Here we assess changes in phenology of temperate forests over the eastern US during the past two decades, and quantify the resulting changes in forest carbon storage. We combine long-term groundmore » observations of phenology, satellite indices, and ecosystem-scale carbon dioxide flux measurements, along with 18 terrestrial biosphere models. We observe a strong trend of earlier spring and later autumn. In contrast to previous suggestions4,9 we show that carbon uptake through photosynthesis increased considerably more than carbon release through respiration for both an earlier spring and later autumn. The terrestrial biosphere models tested misrepresent the temperature sensitivity of phenology, and thus the effect on carbon uptake. Our analysis of the temperature-phenology-carbon coupling suggests a current and possible future enhancement of forest carbon uptake due to changes in phenology. This constitutes a negative feedback to climate change, and is serving to slow the rate of warming.« less

  5. Dynamics of ecosystem services provided by subtropical ...

    EPA Pesticide Factsheets

    The trends in the provision of ecosystem services during restoration and succession of subtropical forests and plantations were quantified, in terms of both receiver and donor values, based on a case study of a 3-step secondary succession series that included a 400-year-old subtropical forest and a 23-year history of growth on 3 subtropical forest plantations in Southeastern China. The ‘People's Republic of China Forestry Standard: Forest Ecosystem Service Valuation Norms’ was revised and applied to quantify the receiver values of ecosystem services, which were then compared with the emergy-based, donor values of the services. The results revealed that the efficiencies of subtropical forests and plantations in providing ecosystem services were 2 orders of magnitude higher than similar services provided by the current China economic system, and these efficiencieskept increasing over the course of succession. As a result, we conclude that afforestation is an efficient way to accelerate both the ability and efficiency of subtropical forests to provide ecosystem services. This paper is significant because it examines the dynamics of the provision of ecosystem services by forests over a succession series that spans 400 years. The paper also examines the rate of increase of services during forest restoration over a period of 23 years. The emergy used in ecosystem services provision is compared to the provision of similar services by economic means in the Chinese e

  6. Catchment hydrological responses to forest harvest amount and spatial pattern

    EPA Science Inventory

    Forest harvest effects on streamflow dynamics have been well described experimentally, but a clear understanding of process-level hydrological controls can be difficult to ascertain from data alone. We apply a new model, Visualizing Ecosystems for Land Management Assessments (VE...

  7. Ecosystem services to enhance sustainable forest management in the US: moving from forest service national programmes to local projects in the Pacific Northwest

    Treesearch

    Robert L. Deal; Nikola Smith; Joe Gates

    2017-01-01

    Ecosystem services are increasingly recognized as a way of framing and describing the broad suite of benefits that people receive from forests. The USDA Forest Service has been exploring use of an ecosystem services framework to describe forest values provided by federal lands and to attract and build partnerships with stakeholders to implement projects. Recently, the...

  8. Forest ecosystem vulnerability assessment and synthesis for northern Wisconsin and western Upper Michigan: a report from the Northwoods Climate Change Response Framework project

    Treesearch

    Maria K. Janowiak; Louis R. Iverson; David J. Mladenoff; Emily Peters; Kirk R. Wythers; Weimin Xi; Leslie A. Brandt; Patricia R. Butler; Stephen D. Handler; P. Danielle Shannon; Chris Swanston; Linda R. Parker; Amy J. Amman; Brian Bogaczyk; Christine Handler; Ellen Lesch; Peter B. Reich; Stephen Matthews; Matthew Peters; Anantha Prasad; Sami Khanal; Feng Liu; Tara Bal; Dustin Bronson; Andrew Burton; Jim Ferris; Jon Fosgitt; Shawn Hagan; Erin Johnston; Evan Kane; Colleen Matula; Ryan O' Connor; Dale Higgins; Matt St. Pierre; Jad Daley; Mae Davenport; Marla R. Emery; David Fehringer; Christopher L. Hoving; Gary Johnson; David Neitzel; Michael Notaro; Adena Rissman; Chadwick Rittenhouse; Robert Ziel

    2014-01-01

    Forest ecosystems across the Northwoods will face direct and indirect impacts from a changing climate over the 21st century. This assessment evaluates the vulnerability of forest ecosystems in the Laurentian Mixed Forest Province of northern Wisconsin and western Upper Michigan under a range of future climates. Information on current forest conditions, observed climate...

  9. A framework for developing urban forest ecosystem services and goods indicators

    Treesearch

    Cynnamon Dobbs; Francisco J. Escobedo; Wayne C. Zipperer

    2011-01-01

    The social and ecological processes impacting on urban forests have been studied at multiple temporal and spatial scales in order to help us quantify, monitor, and value the ecosystem services that benefit people. Few studies have comprehensively analyzed the full suite of ecosystem services, goods (ESG), and ecosystem disservices provided by an urban forest....

  10. Chapter 10: Case studies in ecosystem management: the Mammoth-June ecosystem management project, Inyo National Forest

    Treesearch

    Constance I. Millar

    1996-01-01

    To assess the various ways organizations and people come together to manage Sierran ecosystems, SNEP conducted four case studies to examine the efficacy of different institutional arrangements:The Mammoth-June case study examines how a single national forest is attempting to implement the new Forest Service policy for ecosystem analysis...

  11. Vegetation and environmental features of forest and range ecosystems

    Treesearch

    George A. Garrison; Ardell J. Bjugstad; Don A. Duncan; Mont E. Lewis; Dixie R. Smith

    1977-01-01

    This publication describes the 34 ecosystems into which all the land of the 48 contiguous states has been classified in the Forest-Range Environmental Study (FRES) of the Forest Service, U.S. Department of Agriculture. The description of each ecosystem discusses physiography, climate, vegetation, fauna, soils, and land use. For a number of the ecosystems, the...

  12. Development of simplified ecosystem models for applications in Earth system studies: The Century experience

    NASA Technical Reports Server (NTRS)

    Parton, William J.; Ojima, Dennis S.; Schimel, David S.; Kittel, Timothy G. F.

    1992-01-01

    During the past decade, a growing need to conduct regional assessments of long-term trends of ecosystem behavior and the technology to meet this need have converged. The Century model is the product of research efforts initially intended to develop a general model of plant-soil ecosystem dynamics for the North American central grasslands. This model is now being used to simulate plant production, nutrient cycling, and soil organic matter dynamics for grassland, crop, forest, and shrub ecosystems in various regions of the world, including temperate and tropical ecosystems. This paper will focus on the philosophical approach used to develop the structure of Century. The steps included were model simplification, parameterization, and testing. In addition, the importance of acquiring regional data bases for model testing and the present regional application of Century in the Great Plains, which focus on regional ecosystem dynamics and the effect of altering environmental conditions, are discussed.

  13. An Integrated Approach to Forest Ecosystem Services

    Treesearch

    José Joaquin Campos; Francisco Alpizar; Bastiaan Louman; John A. Parrotta

    2005-01-01

    Forest ecosystem services (FES) are fundamental for the Earth’s life support systems. This chapter discusses the different services provided by forest ecosystems and the effects that land use and forest management practices have on their provision. It also discusses the role of markets in providing an enabling environment for a sustainable and equitable provision of...

  14. The Kings River Sustainable Forest Ecosystems Project: inception, objectives, and progress

    Treesearch

    Jared Verner; Mark T. Smith

    2002-01-01

    The Kings River Sustainable Forest Ecosystems Project, a formal administrative study involving extensive and intensive collaboration between Forest Service managers and researchers, is a response to changes in the agency’s orientation in favor of ecosystem approaches and to recent concern over issues associated with maintenance of late successional forest attributes...

  15. Historical open forest ecosystems in the Missouri Ozarks: reconstruction and restoration targets

    Treesearch

    Brice B. Hanberry; D. Todd Jones-Farrand; John M. Kabrick

    2014-01-01

    Current forests no longer resemble historical open forest ecosystems in the eastern United States. In the absence of representative forest ecosystems under a continuous surface fire regime at a large scale, reconstruction of historical landscapes can provide a reference for restoration efforts. For initial expert-assigned vegetation phases ranging from prairie to...

  16. Establishment and Data Collection of Vegetation-related Studies on the Missouri Ozark Forest Ecosystem Project Study Sites

    Treesearch

    Brian L. Brookshire; Daniel C. Dey

    2000-01-01

    The Missouri Ozark Forest Ecosystem Project (MOFEP) is an experiment designed to determine the effects of forest management practices on important ecosystem attributes. MOFEP treatments evaluated include even-aged, uneven-aged, and no management treatments. Forest vegetation provides a common ecological link among many organisms and ecological processes, and therefore...

  17. Relating P-band AIRSAR backscatter to forest stand parameters

    NASA Technical Reports Server (NTRS)

    Wang, Yong; Melack, John M.; Davis, Frank W.; Kasischke, Eric S.; Christensen, Norman L., Jr.

    1993-01-01

    As part of research on forest ecosystems, the Jet Propulsion Laboratory (JPL) and collaborating research teams have conducted multi-season airborne synthetic aperture radar (AIRSAR) experiments in three forest ecosystems including temperate pine forest (Duke, Forest, North Carolina), boreal forest (Bonanza Creek Experimental Forest, Alaska), and northern mixed hardwood-conifer forest (Michigan Biological Station, Michigan). The major research goals were to improve understanding of the relationships between radar backscatter and phenological variables (e.g. stand density, tree size, etc.), to improve radar backscatter models of tree canopy properties, and to develop a radar-based scheme for monitoring forest phenological changes. In September 1989, AIRSAR backscatter data were acquired over the Duke Forest. As the aboveground biomass of the loblolly pine forest stands at Duke Forest increased, the SAR backscatter at C-, L-, and P-bands increased and saturated at different biomass levels for the C-band, L-band, and P-band data. We only use the P-band backscatter data and ground measurements here to study the relationships between the backscatter and stand density, the backscatter and mean trunk dbh (diameter at breast height) of trees in the stands, and the backscatter and stand basal area.

  18. Incorporating Ecosystem Experiments and Observations into Process Models of Forest Carbon and Water Cycles: Challenges and Solutions

    NASA Astrophysics Data System (ADS)

    Ward, E. J.; Thomas, R. Q.; Sun, G.; McNulty, S. G.; Domec, J. C.; Noormets, A.; King, J. S.

    2015-12-01

    Numerous studies, both experimental and observational, have been conducted over the past two decades in an attempt to understand how water and carbon cycling in terrestrial ecosystems may respond to changes in climatic conditions. These studies have produced a wealth of detailed data on key processes driving these cycles. In parallel, sophisticated models of these processes have been formulated to answer a variety of questions relevant to natural resource management. Recent advances in data assimilation techniques offer exciting new possibilities to combine this wealth of ecosystem data with process models of ecosystem function to improve prediction and quantify associated uncertainty. Using forests of the southeastern United States as our focus, we will specify how fine-scale physiological (e.g. half-hourly sap flux) can be scaled up with quantified error for use in models of stand growth and hydrology. This approach represents an opportunity to leverage current and past research from experiments including throughfall displacement × fertilization (PINEMAP), irrigation × fertilization (SETRES), elevated CO­2­ (Duke and ORNL FACE) and a variety of observational studies in both conifer and hardwood forests throughout the region, using a common platform for data assimilation and prediction. As part of this discussion, we will address variation in dominant species, stand structure, site age, management practices, soils and climate that represent both challenges to the development of a common analytical approach and opportunities to address questions of interest to policy makers and natural resource managers.

  19. Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya

    PubMed Central

    Chitale, Vishwas; Rijal, Srijana Joshi; Bisht, Neha; Shrestha, Bharat Babu

    2018-01-01

    Invasive alien plant species (IAPS) can pose severe threats to biodiversity and stability of native ecosystems, therefore, predicting the distribution of the IAPS plays a crucial role in effective planning and management of ecosystems. In the present study, we use Maximum Entropy (MaxEnt) modelling approach to predict the potential of distribution of eleven IAPS under future climatic conditions under RCP 2.6 and RCP 8.5 in part of Kailash sacred landscape region in Western Himalaya. Based on the model predictions, distribution of most of these invasive plants is expected to expand under future climatic scenarios, which might pose a serious threat to the native ecosystems through competition for resources in the study area. Native scrublands and subtropical needle-leaved forests will be the most affected ecosystems by the expansion of these IAPS. The present study is first of its kind in the Kailash Sacred Landscape in the field of invasive plants and the predictions of potential distribution under future climatic conditions from our study could help decision makers in planning and managing these forest ecosystems effectively. PMID:29664961

  20. Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya.

    PubMed

    Thapa, Sunil; Chitale, Vishwas; Rijal, Srijana Joshi; Bisht, Neha; Shrestha, Bharat Babu

    2018-01-01

    Invasive alien plant species (IAPS) can pose severe threats to biodiversity and stability of native ecosystems, therefore, predicting the distribution of the IAPS plays a crucial role in effective planning and management of ecosystems. In the present study, we use Maximum Entropy (MaxEnt) modelling approach to predict the potential of distribution of eleven IAPS under future climatic conditions under RCP 2.6 and RCP 8.5 in part of Kailash sacred landscape region in Western Himalaya. Based on the model predictions, distribution of most of these invasive plants is expected to expand under future climatic scenarios, which might pose a serious threat to the native ecosystems through competition for resources in the study area. Native scrublands and subtropical needle-leaved forests will be the most affected ecosystems by the expansion of these IAPS. The present study is first of its kind in the Kailash Sacred Landscape in the field of invasive plants and the predictions of potential distribution under future climatic conditions from our study could help decision makers in planning and managing these forest ecosystems effectively.

Top