The Missouri Ozark Forest Ecosystem Project: past, present, and future
Brian L. Brookshire; Randy Jensen; Daniel C. Dey
1997-01-01
In 1989, the Missouri Department of Conservation initiated a research project to examine the impacts of forest management practices on multiple ecosystem components. The Missouri Ozark Forest Ecosystem Project (MOFEP) is a landscape experiment comparing the impacts of even-aged management, uneven-aged management, and no harvesting on a wide array of ecosystem...
Supplementing forest ecosystem health projects on the ground
Cathy Barbouletos; Lynette Z. Morelan
1995-01-01
Understanding the functions and processes of ecosystems is critical before implementing forest ecosystem health projects on the landscape. Silvicultural treatments such as thinning, prescribed fire, and reforestation can simulate disturbance regimes and landscape patterns that have regulated forest ecosystems for centuries. As land managers we need to understand these...
The Kings River Sustainable Forest Ecosystems Project: inception, objectives, and progress
Jared Verner; Mark T. Smith
2002-01-01
The Kings River Sustainable Forest Ecosystems Project, a formal administrative study involving extensive and intensive collaboration between Forest Service managers and researchers, is a response to changes in the agencyâs orientation in favor of ecosystem approaches and to recent concern over issues associated with maintenance of late successional forest attributes...
Brian L. Brookshire; Daniel C. Dey
2000-01-01
The Missouri Ozark Forest Ecosystem Project (MOFEP) is an experiment designed to determine the effects of forest management practices on important ecosystem attributes. MOFEP treatments evaluated include even-aged, uneven-aged, and no management treatments. Forest vegetation provides a common ecological link among many organisms and ecological processes, and therefore...
The Mammoth-June Ecosystem Management Project, Inyo National Forest
Connie Millar
1996-01-01
The Sierra Nevada Ecosystem Project (SNEP) case-study assessmentof the Mammoth-June Ecosystem Management Project(MJEMP) was undertaken to review and analyze the efficacy of alocal landscape analysis in achieving ecosystem-management objectivesin the Sierra Nevada. Of primary interest to SNEP was applicationof the new U.S. Forest Service (USFS) regional process...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-03
...-Challis National Forest, ID; Upper North Fork HFRA Ecosystem Restoration Project Environmental Impact... improve the health of the ecosystem and reach the desired future condition. DATES: Comments concerning the... Ecosystem Restoration Project EIS, P.O. Box 180, 11 Casey Rd., North Fork, ID 83466. Comments may also be...
Robert L. Deal; Nikola Smith; Joe Gates
2017-01-01
Ecosystem services are increasingly recognized as a way of framing and describing the broad suite of benefits that people receive from forests. The USDA Forest Service has been exploring use of an ecosystem services framework to describe forest values provided by federal lands and to attract and build partnerships with stakeholders to implement projects. Recently, the...
[Effects of small hydropower substitute fuel project on forest ecosystem services].
Yu, Hai Yan; Zha, Tong Gang; Nie, Li Shui; Lyu, Zhi Yuan
2016-10-01
Based on the Forest Ecosystem Services Assessment Standards (LY/T 1721-2008) issued by the State Forestry Administration, this paper evaluated four key functions of forest ecosystems, i.e., water conservation, soil conservation, carbon fixation and oxygen release, and nutrient accumulation. Focusing on the project area of Majiang County in Guizhou Province, this study provided some quantitative evidence that the implementation of the small hydropower substituting fuel project had positive effects on the values and material quantities of ecosystem service functions. The results showed that the small hydropower substituting fuel project had a significant effect on the increase of forest ecosystem services. Water conservation quantity of Pinus massoniana and Cupressus funebris plantations inside project area was 20662.04 m 3 ·hm -2 ·a -1 , 20.5% higher than outside project area, with soil conservation quantity of 119.1 t·hm -2 ·a -1 , 29.7% higher than outside project area, carbon fixation and oxygen release of 220.49 t·hm -2 ·a -1 , 40.2% higher than outside project area, and forest tree nutrition accumulation of 3.49 t·hm -2 ·a -1 , 48.5% higher than outside project area. Small hydropower substituting fuel project for increasing the quota of forest ecosystem service function value was in the order of carbon fixation and oxygen release function (71400 yuan·hm -2 ·a -1 ) > water conservation function (60100 yuan·hm -2 ·a -1 ) > tree nutrition accumulation function (13800 yuan·hm -2 ·a -1 ) > soil conservation function (8100 yuan·hm -2 ·a -1 ). Small hydropower substituting fuel project played an important role for improving the forest ecological service function value and realizing the sustainable development of forest.
Missouri Ozark Forest Ecosystem Project: the experiment
Steven L. Sheriff
2002-01-01
Missouri Ozark Forest Ecosystem Project (MOFEP) is a unique experiment to learn about the impacts of management practices on a forest system. Three forest management practices (uneven-aged management, even-aged management, and no-harvest management) as practiced by the Missouri Department of Conservation were randomly assigned to nine forest management sites using a...
NASA 1990 Multisensor Airborne Campaigns (MACs) for ecosystem and watershed studies
NASA Technical Reports Server (NTRS)
Wickland, Diane E.; Asrar, Ghassem; Murphy, Robert E.
1991-01-01
The Multisensor Airborne Campaign (MAC) focus within NASA's former Land Processes research program was conceived to achieve the following objectives: to acquire relatively complete, multisensor data sets for well-studied field sites, to add a strong remote sensing science component to ecology-, hydrology-, and geology-oriented field projects, to create a research environment that promotes strong interactions among scientists within the program, and to more efficiently utilize and compete for the NASA fleet of remote sensing aircraft. Four new MAC's were conducted in 1990: the Oregon Transect Ecosystem Research (OTTER) project along an east-west transect through central Oregon, the Forest Ecosystem Dynamics (FED) project at the Northern Experimental Forest in Howland, Maine, the MACHYDRO project in the Mahantango Creek watershed in central Pennsylvania, and the Walnut Gulch project near Tombstone, Arizona. The OTTER project is testing a model that estimates the major fluxes of carbon, nitrogen, and water through temperate coniferous forest ecosystems. The focus in the project is on short time-scale (days-year) variations in ecosystem function. The FED project is concerned with modeling vegetation changes of forest ecosystems using remotely sensed observations to extract biophysical properties of forest canopies. The focus in this project is on long time-scale (decades to millenia) changes in ecosystem structure. The MACHYDRO project is studying the role of soil moisture and its regulating effects on hydrologic processes. The focus of the study is to delineate soil moisture differences within a basin and their changes with respect to evapotranspiration, rainfall, and streamflow. The Walnut Gulch project is focused on the effects of soil moisture in the energy and water balance of arid and semiarid ecosystems and their feedbacks to the atmosphere via thermal forcing.
Stephen Handler; Matthew J. Duveneck; Louis Iverson; Emily Peters; Robert M. Scheller; Kirk R. Wythers; Leslie Brandt; Patricia Butler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Kelly Barrett; Randy Kolka; Casey McQuiston; Brian Palik; Peter B. Reich; Clarence Turner; Mark White; Cheryl Adams; Anthony D' Amato; Suzanne Hagell; Patricia Johnson; Rosemary Johnson; Mike Larson; Stephen Matthews; Rebecca Montgomery; Steve Olson; Matthew Peters; Anantha Prasad; Jack Rajala; Jad Daley; Mae Davenport; Marla R. Emery; David Fehringer; Christopher L. Hoving; Gary Johnson; Lucinda Johnson; David Neitzel; Adena Rissman; Chadwick Rittenhouse; Robert. Ziel
2014-01-01
Forests in northern Minnesota will be affected directly and indirectly by a changing climate over the next 100 years. This assessment evaluates the vulnerability of forest ecosystems in Minnesota's Laurentian Mixed Forest Province to a range of future climates. Information on current forest conditions, observed climate trends, projected climate changes, and...
Integrating studies in the Missouri Ozark Forest Ecosystem Project: Status and outlook
David Gwaze; Stephen Sheriff; John Kabrick; Larry Vangilder
2011-01-01
The Missouri Ozark Forest Ecosystem Project (MOFEP), which was started in 1989 by the Missouri Department of Conservation, evaluates the effects of forest management practices (even-aged management, uneven-aged management, and no-harvest management) on upland oak-forest components in southern Missouri. MOFEP is a long-term, landscape-level, fully replicated, and...
The experimental design of the Missouri Ozark Forest Ecosystem Project
Steven L. Sheriff; Shuoqiong He
1997-01-01
The Missouri Ozark Forest Ecosystem Project (MOFEP) is an experiment that examines the effects of three forest management practices on the forest community. MOFEP is designed as a randomized complete block design using nine sites divided into three blocks. Treatments of uneven-aged, even-aged, and no-harvest management were randomly assigned to sites within each block...
Brian B. Boroski; Richard T. Golightly; Amie K. Mazzoni; Kimberly A. Sager
2002-01-01
The Kings River Sustainable Forest Ecosystems Project was initiated on the Kings River Ranger District of the Sierra National Forest, California, in 1993, with fieldwork beginning in 1994. Knowledge of the ecology of the fisher (Martes pennanti) in the Project area, and in the Sierra Nevada of California in general, is insufficient to develop...
John M. Kabrick; Randy G. Jensen; Stephen R. Shifley; David R. Larsen
2002-01-01
The Missouri Ozark Forest Ecosystem Project (MOFEP) experimentally tests forest ecosystem response to (a) even-aged management with clearcutting, (b) uneven-aged management with single-tree and group selection, and (c) no-harvesting. The nine MOFEP experimental sites in the southeast Missouri Ozarks are small landscapes ranging from 772 ac (312 ha) to 1,271 ac (514 ha...
The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off
Anderegg, William R. L.; Berry, Joseph A.; Smith, Duncan D.; Sperry, John S.; Anderegg, Leander D. L.; Field, Christopher B.
2012-01-01
Forest ecosystems store approximately 45% of the carbon found in terrestrial ecosystems, but they are sensitive to climate-induced dieback. Forest die-off constitutes a large uncertainty in projections of climate impacts on terrestrial ecosystems, climate–ecosystem interactions, and carbon-cycle feedbacks. Current understanding of the physiological mechanisms mediating climate-induced forest mortality limits the ability to model or project these threshold events. We report here a direct and in situ study of the mechanisms underlying recent widespread and climate-induced trembling aspen (Populus tremuloides) forest mortality in western North America. We find substantial evidence of hydraulic failure of roots and branches linked to landscape patterns of canopy and root mortality in this species. On the contrary, we find no evidence that drought stress led to depletion of carbohydrate reserves. Our results illuminate proximate mechanisms underpinning recent aspen forest mortality and provide guidance for understanding and projecting forest die-offs under climate change. PMID:22167807
Stephen Handler; Matthew J. Duveneck; Louis Iverson; Emily Peters; Robert M. Scheller; Kirk R. Wythers; Leslie Brandt; Patricia Butler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Amy Clark Eagle; Joshua G. Cohen; Rich Corner; Peter B. Reich; Tim Baker; Sophan Chhin; Eric Clark; David Fehringer; Jon Fosgitt; James Gries; Christine Hall; Kimberly R. Hall; Robert Heyd; Christopher L. Hoving; Ines Ibáñez; Don Kuhr; Stephen Matthews; Jennifer Muladore; Knute Nadelhoffer; David Neumann; Matthew Peters; Anantha Prasad; Matt Sands; Randy Swaty; Leiloni Wonch; Jad Daley; Mae Davenport; Marla R. Emery; Gary Johnson; Lucinda Johnson; David Neitzel; Adena Rissman; Chadwick Rittenhouse; Robert. Ziel
2014-01-01
Forests in northern Michigan will be affected directly and indirectly by a changing climate during the next 100 years. This assessment evaluates the vulnerability of forest ecosystems in Michigan's eastern Upper Peninsula and northern Lower Peninsula to a range of future climates. Information on current forest conditions, observed climate trends, projected climate...
Johann N. Bruhn; James J. Wetteroff; Jeanne D. Mihail; Randy G. Jensen; James B. Pickens
2002-01-01
The Missouri Ozark Forest Ecosystem Project (MOFEP) is a long-term, multidisciplinary, landscape-based research program studying effects of even-aged (EAM), uneven-aged (UAM), and no-harvest (NHM) management on forest communities. The first MOFEP timber harvests occurred from May through November 1996. Harvest- related disturbance occurred on 69 of 180 permanent 0.2-ha...
Patricia R. Butler; Louis Iverson; Frank R. Thompson; Leslie Brandt; Stephen Handler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Kent Karriker; Jarel Bartig; Stephanie Connolly; William Dijak; Scott Bearer; Steve Blatt; Andrea Brandon; Elizabeth Byers; Cheryl Coon; Tim Culbreth; Jad Daly; Wade Dorsey; David Ede; Chris Euler; Neil Gillies; David M. Hix; Catherine Johnson; Latasha Lyte; Stephen Matthews; Dawn McCarthy; Dave Minney; Daniel Murphy; Claire O’Dea; Rachel Orwan; Matthew Peters; Anantha Prasad; Cotton Randall; Jason Reed; Cynthia Sandeno; Tom Schuler; Lesley Sneddon; Bill Stanley; Al Steele; Susan Stout; Randy Swaty; Jason Teets; Tim Tomon; Jim Vanderhorst; John Whatley; Nicholas Zegre
2015-01-01
Forest ecosystems in the Central Appalachians will be affected directly and indirectly by a changing climate over the 21st century. This assessment evaluates the vulnerability of forest ecosystems in the Central Appalachian Broadleaf Forest-Coniferous Forest-Meadow and Eastern Broadleaf Forest Provinces of Ohio, West Virginia, and Maryland for a range of future...
Synthesis and Integration of Pre-treatment Results from the Missouri Ozark Forest Ecosystem Project
Wendy K. Gram; Victoria L. Sork; Robert J. Marquis
1997-01-01
Integrating results across disciplines is a critical component of ecosystem management and research. The common research sites, landscape-scale experimental design, and breadth of research subjects in Missouri Ozark Forest Ecosystem Project provide circumstances conducive for addressing multidisciplinary questions. Our objectives were to (1) summarize the treatment and...
Jennifer K. Grabner; Eric K. Zenner
2002-01-01
The Missouri Ozark Forest Ecosystem Project (MOFEP) is a landscape-scale experiment to test for effects of the following three common forest management practices on upland forests: 1) even-aged management (EAM), 2) uneven-aged management (UAM), and 3) no-harvest management (NHM). The first round of harvesting treatments was applied on the nine MOFEP sites in 1996. One...
Rochelle B. Renken; Debby K. Frantz
2002-01-01
We examined the immediate, landscape-scale impacts of even-aged and uneven-aged forest management on the species composition, species richness, and relative abundance of herpetofaunal communities and selected focal groups of species during the second and third years following initial tree harvest on Missouri Ozark Forest Ecosystem Project (MOFEP) sites in southern...
Constance I. Millar
1996-01-01
To assess the various ways organizations and people come together to manage Sierran ecosystems, SNEP conducted four case studies to examine the efficacy of different institutional arrangements:The Mammoth-June case study examines how a single national forest is attempting to implement the new Forest Service policy for ecosystem analysis...
NASA Astrophysics Data System (ADS)
Domke, G. M.; Williams, C. A.; Birdsey, R.; Pendall, E.
2017-12-01
In North America forest and grassland ecosystems play a major role in the carbon cycle. Here we present the latest trends and projections of United States and North American carbon cycle processes, stocks, and flows in the context of interactions with global scale budgets and climate change impacts in managed and unmanaged grassland and forest ecosystems. We describe recent trends in natural and anthropogenic disturbances in these ecosystems as well as the carbon dynamics associated with land use and land cover change. We also highlight carbon management science and tools for informing decisions and opportunities for improving carbon measurements, observations, and projections in forests and grasslands.
S.R. Shifley; J.M., eds. Kabrick
2002-01-01
Presents the short-term effects of even-aged, uneven-aged, and no-harvest management on forest ecosystems included in the Missouri Ozark Forest Project (MOFEP). Individual papers address study design, site history, species diversity, genetic diversity, woody vegetation, ground layer vegetation, stump sprouting, tree cavities, logging disturbance, avian communities,...
A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project.
Ewers, Robert M; Didham, Raphael K; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L; Turner, Edgar C
2011-11-27
Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.
A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project
Ewers, Robert M.; Didham, Raphael K.; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D.; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L.; Turner, Edgar C.
2011-01-01
Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification. PMID:22006969
Maria K. Janowiak; Louis R. Iverson; David J. Mladenoff; Emily Peters; Kirk R. Wythers; Weimin Xi; Leslie A. Brandt; Patricia R. Butler; Stephen D. Handler; P. Danielle Shannon; Chris Swanston; Linda R. Parker; Amy J. Amman; Brian Bogaczyk; Christine Handler; Ellen Lesch; Peter B. Reich; Stephen Matthews; Matthew Peters; Anantha Prasad; Sami Khanal; Feng Liu; Tara Bal; Dustin Bronson; Andrew Burton; Jim Ferris; Jon Fosgitt; Shawn Hagan; Erin Johnston; Evan Kane; Colleen Matula; Ryan O' Connor; Dale Higgins; Matt St. Pierre; Jad Daley; Mae Davenport; Marla R. Emery; David Fehringer; Christopher L. Hoving; Gary Johnson; David Neitzel; Michael Notaro; Adena Rissman; Chadwick Rittenhouse; Robert Ziel
2014-01-01
Forest ecosystems across the Northwoods will face direct and indirect impacts from a changing climate over the 21st century. This assessment evaluates the vulnerability of forest ecosystems in the Laurentian Mixed Forest Province of northern Wisconsin and western Upper Michigan under a range of future climates. Information on current forest conditions, observed climate...
[A review on disturbance ecology of forest].
Zhu, Jiaojun; Liu, Zugen
2004-10-01
More than 80% of terrestrial ecosystems have been influenced by natural disasters, human activities and the combination of both natural and human disturbances. Forest ecosystem, as one of the most important terrestrial ecosystems, has also been disturbed without exception. Under the disturbance from natural disasters and human activities, particularly from the unreasonable activities of human beings, forest decline or forest degradation has become more and more severe. For this reason, sustaining or recovering forest service functions is one of the current purposes for managing forest ecosystems. In recent decades, the studies on disturbed ecosystems have been carried out frequently, especially on their ecological processes and their responses to the disturbances. These studies play a very important role in the projects of natural forest conservation and the construction of ecological environment in China. Based on a wide range of literatures collection on forest disturbance research, this paper discussed the fundamental concepts of disturbance ecology, the relationships between forest management and disturbance, and the study contents of forest disturbance ecology. The major research topics of forest disturbance ecology may include: 1) the basic characteristics of disturbed forests; 2) the processes of natural and human disturbances; 3) the responses of forests ecosystem to the disturbances; 4) the main ecological processes or the consequential results of disturbed forests, including the change of biodiversity, soil nutrient and water cycle, eco-physiology and carbon cycle, regeneration mechanism of disturbed forests and so on; 5) the relationships between disturbances and forest management; and 6) the principles and techniques for the management of disturbed forests. This review may be helpful to the management of disturbed forest ecosystem, and to the projects of natural forest conservation in China.
Gerald J. Gottfried; Carleton B. Edminster
2005-01-01
The USDA Forest Service initiated the Southwestern Borderlands Ecosystem Management Project in 1994. The Project concentrates on the unique, relatively unfragmented landscape of exceptional biological diversity in southeastern Arizona and southwestern New Mexico. Its mission is to: "Contribute to the scientific basis for developing and implementing a comprehensive...
ERIC Educational Resources Information Center
Liljeström, Anu; Enkenberg, Jorma; Vanninen, Petteri; Vartiainen, Henriikka; Pöllänen, Sinikka
2014-01-01
This paper discusses the OpenForest portal and its related multidisciplinary learning project. The OpenForest portal is an open learning environment and ecosystem, in which students can participate in co-developing and co-creating practices. The aim of the OpenForest ecosystem is to create an extensive interactive network of diverse learning…
Stephen G. Pallardy
1995-01-01
The vegetation data set of the Missouri Forest Ecosystem Project (MOFEP, initiated by the Missouri Department of Conservation) in the Ozark Mountains of southeastern Missouri was ordinated by Detrended Correspondence Analysis (DCA) to identify vegetation gradients and potential environmental influences.
Gerald J. Gottfried; Carleton B. Edminster
2005-01-01
The USDA Forest Serviceâs Southwestern Borderlands Ecosystem Management Project mission is to contribute to the scientific basis for developing and implementing a comprehensive ecosystem management plan to restore natural processes, improve the productivity and biological diversity of grasslands and woodlands, and sustain an open landscape with a viable rural economy...
This EnviroAtlas dataset contains polygons depicting the geographic areas of market-based programs, referred to herein as markets, and projects addressing ecosystem services protection in the United States. Depending upon the type of market or project and data availability, polygons reflect market coverage areas, project footprints, or project primary impact areas in which ecosystem service markets and projects operate. The data were collected via surveys and desk research conducted by Forest Trends' Ecosystem Marketplace from 2008 to 2016 on biodiversity (i.e., imperiled species/habitats; wetlands and streams), carbon, and water markets. Additional biodiversity data were obtained from the Regulatory In-lieu Fee and Bank Information Tracking System (RIBITS) database in 2015. Attribute data include information regarding the methodology, design, and development of biodiversity, carbon, and water markets and projects. This dataset was produced by Forest Trends' Ecosystem Marketplace for EnviroAtlas in order to support public access to and use of information related to environmental markets. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about thi
Acorn Production on the Missouri Ozark Forest Ecosystem Project Study Sites: Pre-treatment Data
Larry D. Vangilder
1997-01-01
In the pre-treatment phase of a study to determine if even- and uneven-aged forest management affects the production of acorns on the Missourt Forest Ecosystem Project (MOFEP) study sites, acorn production was measured on the nine study sites by randomly placing from 2 to 6 plots in each of four ecological land type (ELT) groupings (N=130 plots). A split-plot...
Brian L. Brookshire; Stephen R., eds. Shifley
1997-01-01
Describes the Missouri Ozark Forest Ecosystem Projects (MOFEP) that was initiated in 1991 in southeastern Missouri. Describes in detail the coordinated research studies examining vegetation dynamics, down wood, fungi, birds, small mammals, herpetofauna, invertebrates, and genetics. Soils, geolandforms, ecological landtypes, and climate at the sites are described....
Brian Brookshire; Carl Hauser
1993-01-01
The effects of forest management on non-timber resources are of growing concern to forest managers and the public. While many previous studies have reported effects of stand-level treatments (less than 15 ha) on various stand-level attributes, few studies have attempted to document the influence of forest management on the biotic and abiotic characteristics of entire...
This EnviroAtlas dataset contains points depicting the location of market-based programs, referred to herein as markets, and projects addressing ecosystem services protection in the United States. The data were collected via surveys and desk research conducted by Forest Trends' Ecosystem Marketplace from 2008 to 2016 on biodiversity (i.e., imperiled species/habitats; wetlands and streams), carbon, and water markets. Additional biodiversity data were obtained from the Regulatory In-lieu Fee and Bank Information Tracking System (RIBITS) database in 2015. Points represent the centroids (i.e., center points) of market coverage areas, project footprints, or project primary impact areas in which ecosystem service markets or projects operate. National-level markets are an exception to this norm with points representing administrative headquarters locations. Attribute data include information regarding the methodology, design, and development of biodiversity, carbon, and water markets and projects. This dataset was produced by Forest Trends' Ecosystem Marketplace for EnviroAtlas in order to support public access to and use of information related to environmental markets. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) o
R. K. Kolka; C. C. Trettin; E. A. Nelson; C. D. Barton; D. E. Fletcher
2002-01-01
Forested wetland restoration assessment is difficult because of the timeframe necessary for the development of a forest ecosystem. The development of a forested wetland ecosystem includes the recovery of hydrology, soils, vegetation, and faunal communities. To assess forested wetland restoration projects, measures need to be developed that are sensitive to early...
R.K. Kolka; Carl C. Trettin; E.A. Nelson; C.D. Barton; D.E. Fletcher
2002-01-01
Forested wetland restoration assessment is difficult because of the timeframe necessary for the development of a forest ecosystem. The development of a forested wetland ecosystem includes the recovery of hydrology, soils, vegetation, and faunal communities. To assess forested wetland restoration projects, measures need to be developed that are sensitive to early...
Funding Mechanisms for Ecosystem Services Projects
NASA Astrophysics Data System (ADS)
Russell, V.
2014-12-01
Ecosystem services projects ideally should be funded through commoditized markets. Where those markets do not exist financing directly from interested private sector parties can be a direct link between business interested in fulfilling sustainability goals and project implementers. Challenges exist, however in 1) linking those interests; 2) carefully quantifying the services produced, their true costs to implement and meeting protocol standards; 3) measuring the success of projects, especially over lengthy periods of time; and 4) balancing issues related to multiple spatial scales for projects and funding to make a difference. Examples from National Forest Foundation's experience implementing carbon and water projects with multiple private sector funders and the USDA Forest Service will highlight experiences and lessons learned in funding and implementing ecosystem service projects.
NASA Astrophysics Data System (ADS)
Swanston, C.; Janowiak, M.; Handler, S.; Butler, P.; Brandt, L.; Iverson, L.; Thompson, F.; Ontl, T.; Shannon, D.
2016-12-01
Forest ecosystem vulnerability assessments are rapidly becoming an integral component of forest management planning, in which there is increasing public expectation that even near-term activities explicitly incorporate information about anticipated climate impacts and risks. There is a clear desire among forest managers for targeted assessments that address critical questions about species and ecosystem vulnerabilities while delivering this information in an accessible format. We developed the Ecosystem Vulnerability Assessment Approach (EVAA), which combines multiple quantitative models, expert elicitation from scientists and land managers, and a templated report structure oriented to natural resource managers. The report structure includes relevant information on the contemporary landscape, past climate, future climate projections, impact model results, and a transparent vulnerability assessment of species and ecosystems. We have used EVAA in seven ecoregional assessments covering 246 million acres of forestland across the upper Midwest and Northeast (www.forestadaptation.org; five published, two in review). We convened a panel of local forest ecology and management experts in each assessment area to examine projected climate effects on system drivers, stressors, and dominant species, as well as the current adaptive capacity of the major ecoregional forest ecosystems. The panels provided a qualitative assessment of the vulnerability of forest ecosystems to climate change over the next century. Over 130 authors from dozens of organizations collaborated on these peer-reviewed assessment publications, which are delivered to thousands of stakeholders through live and recorded webinars, online briefs, and in-person trainings and seminars. The assessments are designed to be used with the Adaptation Workbook (www.adaptationworkbook.org), a planning tool that works at multiple scales and has generated more than 200 real-world forest adaptation demonstration projects.
Eric J. Gustafson; Arjan M.G. De Bruijn; Robert E. Pangle; Jean-Marc Limousin; Nate G. McDowell; William T. Pockman; Brian R. Sturtevant; Jordan D. Muss; Mark E. Kubiske
2015-01-01
Fundamental drivers of ecosystem processes such as temperature and precipitation are rapidly changing and creating novel environmental conditions. Forest landscape models (FLM) are used by managers and policy-makers to make projections of future ecosystem dynamics under alternative management or policy options, but the links between the fundamental drivers and...
Patterns of Genetic Variation in Woody Plant Species in the Missouri Ozark Forest Ecosystem Project
Victoria L. Sork; Anthony Koop; Marie Ann de la Fuente; Paul Foster; Jay Raveill
1997-01-01
We quantified current patterns of genetic variation of three woody plant speciesâCarya tomentosa (Juglandaceae), Quercus alba (Fagaceae), and Sassafras albidum (Lauraceae)âdistributed throughout the nine Missouri Ozark Forest Ecosystem Project (MOFEP) study sites and evaluated the data in light of the MOFEP...
Debby K. Fantz; Rochelle B. Renken
1997-01-01
We conducted a capture-recapture study on northeast-facing slopes to determine the pre-treatment landscape-scale effect of even- and uneven-aged silvicultural treatments upon the species composition, species richness, and relative abundance of small mammals on Missouri Ozark Forest Ecosystem Project (MOFEP) sites. Similarity indices of species composition between sites...
Toral Patel-Weynand
2012-01-01
Scientific literature on the effects of climatic variability and change on forest ecosystems has increased significantly over the past decade, providing a foundation for establishing forest-climate relationships and projecting the effects of continued warming on a wide range of forest resources and ecosystem services. In addition, certainty about the nature of some of...
Improving scientific knowledge
James M. Vose; David L. Peterson
2012-01-01
Scientific literature on the effects of climatic variability and change on forest ecosystems has increased significantly over the past decade, providing a foundation for establishing forest-climate relationships and projecting the effects of continued warming on a wide range of forest resources and ecosystem services. In addition, certainty about the nature of some of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munger, J. William; Foster, David R.; Richardson, Andrew D.
This report summarizes work to improve quantitative understanding of the terrestrial ecosystem processes that control carbon sequestration in unmanaged forests It builds upon the comprehensive long-term observations of CO2 fluxes, climate and forest structure and function at the Harvard Forest in Petersham, MA. This record includes the longest CO2 flux time series in the world. The site is a keystone for the AmeriFlux network. Project Description The project synthesizes observations made at the Harvard Forest HFEMS and Hemlock towers, which represent the dominant mixed deciduous and coniferous forest types in the northeastern United States. The 20+ year record of carbonmore » uptake at Harvard Forest and the associated comprehensive meteorological and biometric data, comprise one of the best data sets to challenge ecosystem models on time scales spanning hourly, daily, monthly, interannual and multi-decadal intervals, as needed to understand ecosystem change and climate feedbacks.« less
Maria K. Janowiak; Anthony W. D' Amato; Christopher W. Swanston; Louis Iverson; Frank R. Thompson; William D. Dijak; Stephen Matthews; Matthew P. Peters; Anantha Prasad; Jacob S. Fraser; Leslie A. Brandt; Patricia Butler-Leopold; Stephen D. Handler; P. Danielle Shannon; Diane Burbank; John Campbell; Charles Cogbill; Matthew J. Duveneck; Marla R. Emery; Nicholas Fisichelli; Jane Foster; Jennifer Hushaw; Laura Kenefic; Amanda Mahaffey; Toni Lyn Morelli; Nicholas J. Reo; Paul G. Schaberg; K. Rogers Simmons; Aaron Weiskittel; Sandy Wilmot; David Hollinger; Erin Lane; Lindsey Rustad; Pamela H. Templer
2018-01-01
Forest ecosystems will face direct and indirect impacts from a changing climate over the 21st century. This assessment evaluates the vulnerability of forest ecosystems across the New England region (Connecticut, Maine, Massachusetts, New Hampshire, northern New York, Rhode Island, and Vermont) under a range of future climates. We synthesized and summarized information...
Stephen R. Shifley; Brian L., eds. Brookshire
2000-01-01
Describes vegetation and physical site conditions at the initiation (1991-1995) of the Missouri Ozark Forest Ecosystem Project (MOFEP) in the southeastern Missouri Ozarks. Provides detailed information on sampling protocols and summarizes initial conditions of the landscape experiment prior to harvest treatments. Summaries are by plot, by ~800-acre...
Ecological research at the Blacks Mountain Experimental Forest in northeastern California
William W. Oliver
2000-01-01
At Blacks Mountain Experimental Forest in northeastern California, an interdisciplinary team of scientists developed and implemented a research project to study how forest structural complexity affects the health and vigor of interior ponderosa pine (Pinus ponderosa Dougl. ex Laws.) ecosystems, the ecosystem's resilience to natural and human-caused disturbances,...
Leslie Brandt; Chris Swanston; Linda Parker; Maria Janowiak; Richard Birdsey; Louis Iverson; David Mladenoff; Patricia Butler
2012-01-01
Climate change is leading to direct and indirect impacts on forest tree species and ecosystems in northern Wisconsin. Land managers will need to prepare for and respond to these impacts, so we designed a workshop to identify forest management approaches that can enhance the ability of ecosystems in northern Wisconsin to cope with climate change and address how National...
Implementing watershed investment programs to restore fire-adapted forests for watershed services
NASA Astrophysics Data System (ADS)
Springer, A. E.
2013-12-01
Payments for ecosystems services and watershed investment programs have created new solutions for restoring upland fire-adapted forests to support downstream surface-water and groundwater uses. Water from upland forests supports not only a significant percentage of the public water supplies in the U.S., but also extensive riparian, aquatic, and groundwater dependent ecosystems. Many rare, endemic, threatened, and endangered species are supported by the surface-water and groundwater generated from the forested uplands. In the Ponderosa pine forests of the Southwestern U.S., post Euro-American settlement forest management practices, coupled with climate change, has significantly impacted watershed functionality by increasing vegetation cover and associated evapotranspiration and decreasing runoff and groundwater recharge. A large Collaborative Forest Landscape Restoration Program project known as the Four Forests Restoration Initiative is developing landscape scale processes to make the forests connected to these watersheds more resilient. However, there are challenges in financing the initial forest treatments and subsequent maintenance treatments while garnering supportive public opinion to forest thinning projects. A solution called the Flagstaff Watershed Protection Project is utilizing City tax dollars collected through a public bond to finance forest treatments. Exit polling from the bond election documented the reasons for the 73 % affirmative vote on the bond measure. These forest treatments have included in their actions restoration of associated ephemeral stream channels and spring ecosystems, but resources still need to be identified for these actions. A statewide strategy for developing additional forest restoration resources outside of the federal financing is being explored by state and local business and governmental leaders. Coordination, synthesis, and modeling supported by a NSF Water Sustainability and Climate project has been instrumental in facilitating the forest restoration and watershed health decision making processes.
Xiaoqian Sun; Zhuoqiong He; John Kabrick
2008-01-01
This paper presents a Bayesian spatial method for analysing the site index data from the Missouri Ozark Forest Ecosystem Project (MOFEP). Based on ecological background and availability, we select three variables, the aspect class, the soil depth and the land type association as covariates for analysis. To allow great flexibility of the smoothness of the random field,...
Snags and Down Wood on Upland Oak Sites in the Missouri Ozark Forest Ecosystem Project
Stephen R. Shifley; Brian L. Brookshire; David R. Larsen; Laura A. Herbeck; Randy G. Jensen
1997-01-01
We analyzed volume, surface area, and percent cover of down wood to determine if there were pre-treatment differences among the sites in the Missouri Ozark Forest Ecosystem Project. We also compared pre-treatment values for the number and basal area of snags. We observed no statistically significant differences (P > 0.05) among treatment classes for these...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... DEPARTMENT OF AGRICULTURE Forest Service Beaver Creek Landscape Management Project, Ashland Ranger... manner that increases resiliency of the Beaver Creek Landscape Management Project area ecosystem to... requirements to require. The Beaver Creek Landscape Management Project includes treatments previously proposed...
The ten-ecosystem study investigation plan
NASA Technical Reports Server (NTRS)
Kan, E. P.
1976-01-01
With the continental United States divided into ten forest and grassland ecosystems, the Ten Ecosystem Study (TES) is designed to investigate the feasibility and applicability of state-of-the-art automatic data processing remote sensing technology to inventory forest, grassland, and water resources by using Land Satellite data. The study will serve as a prelude to a possible future nationwide remote sensing application to inventory forest and rangeland renewable resources. This plan describes project design and phases, the ten ecosystem, data utilization and output, personnel organization, resource requirements, and schedules and milestones.
Evidence and implications of recent and projected climate change in Alaska's forest ecosystems
Jane M. Wolken; Teresa N. Hollingsworth; T. Scott Rupp; F. Stuart Chapin; Sarah F. Trainor; Tara M. Barrett; Patrick F. Sullivan; A. David McGuire; Eugenie S. Euskirchen; Paul E. Hennon; Erik A. Beever; Jeff S. Conn; Lisa K. Crone; David V. A' More; Nancy Fresco; Thomas A. Hanley; Knut Kielland; James J. Kruse; Trista Patterson; Edward A.G. Schuur; David L. Verbyla; John Yarie
2011-01-01
The structure and function of Alaska's forests have changed significantly in response to a changing climate, including alterations in species composition and climate feedbacks (e.g., carbon, radiation budgets) that have important regional societal consequences and human feedbacks to forest ecosystems. In this paper we present the first comprehensive synthesis of...
Lu, Fei; Hu, Huifeng; Sun, Wenjuan; Zhu, Jiaojun; Liu, Guobin; Zhou, Wangming; Zhang, Quanfa; Shi, Peili; Liu, Xiuping; Wu, Xing; Zhang, Lu; Wei, Xiaohua; Dai, Limin; Zhang, Kerong; Sun, Yirong; Xue, Sha; Zhang, Wanjun; Xiong, Dingpeng; Deng, Lei; Liu, Bojie; Zhou, Li; Zhang, Chao; Zheng, Xiao; Cao, Jiansheng; Huang, Yao; He, Nianpeng; Zhou, Guoyi; Bai, Yongfei; Xie, Zongqiang; Tang, Zhiyao; Wu, Bingfang; Fang, Jingyun; Liu, Guohua; Yu, Guirui
2018-04-17
The long-term stressful utilization of forests and grasslands has led to ecosystem degradation and C loss. Since the late 1970s China has launched six key national ecological restoration projects to protect its environment and restore degraded ecosystems. Here, we conducted a large-scale field investigation and a literature survey of biomass and soil C in China's forest, shrubland, and grassland ecosystems across the regions where the six projects were implemented (∼16% of the country's land area). We investigated the changes in the C stocks of these ecosystems to evaluate the contributions of the projects to the country's C sink between 2001 and 2010. Over this decade, we estimated that the total annual C sink in the project region was 132 Tg C per y (1 Tg = 10 12 g), over half of which (74 Tg C per y, 56%) was attributed to the implementation of the projects. Our results demonstrate that these restoration projects have substantially contributed to CO 2 mitigation in China.
Wylie, Bruce K.; Rigge, Matthew B.; Brisco, Brian; Mrnaghan, Kevin; Rover, Jennifer R.; Long, Jordan
2014-01-01
A warming climate influences boreal forest productivity, dynamics, and disturbance regimes. We used ecosystem models and 250 m satellite Normalized Difference Vegetation Index (NDVI) data averaged over the growing season (GSN) to model current, and estimate future, ecosystem performance. We modeled Expected Ecosystem Performance (EEP), or anticipated productivity, in undisturbed stands over the 2000–2008 period from a variety of abiotic data sources, using a rule-based piecewise regression tree. The EEP model was applied to a future climate ensemble A1B projection to quantify expected changes to mature boreal forest performance. Ecosystem Performance Anomalies (EPA), were identified as the residuals of the EEP and GSN relationship and represent performance departures from expected performance conditions. These performance data were used to monitor successional events following fire. Results suggested that maximum EPA occurs 30–40 years following fire, and deciduous stands generally have higher EPA than coniferous stands. Mean undisturbed EEP is projected to increase 5.6% by 2040 and 8.7% by 2070, suggesting an increased deciduous component in boreal forests. Our results contribute to the understanding of boreal forest successional dynamics and its response to climate change. This information enables informed decisions to prepare for, and adapt to, climate change in the Yukon River Basin forest.
[Evaluation of economic forest ecosystem services in China].
Wang, Bing; Lu, Shao-Wei
2009-02-01
This paper quantitatively evaluated the economic forest ecosystem services in the provinces of China in 2003, based on the long-term and continuous observations of economic forest ecosystems in this country, the sixth China national forest resources inventory data, and the price parameter data from the authorities in the world, and by applying the law of market value, the method of substitution of the expenses, and the law of the shadow project. The results showed that in 2003, the total value of economic forest ecosystem services in China was 11763.39 x 10(8) yuan, and the total value of the products from economic forests occupied 19.3% of the total ecosystem services value, which indicated that the economic forests not only provided society direct products, but also exhibited enormous eco-economic value. The service value of the functions of economic forests was in the order of water storage > C fixation and O2 release > biodiversity conservation > erosion control > air quality purification > nutrient cycle. The spatial pattern of economic forest ecosystem services in the provinces of China had the same trend with the spatial distribution of water and heat resources and biodiversity. To understand the differences of economic forest ecosystem services in the provinces of China was of significance in alternating the irrational arrangement of our present forestry production, diminishing the abuses of forest management, and establishing high grade, high efficient, and modernized economic forests.
Chris Swanston; Maria Janowiak; Louis Iverson; Linda Parker; David Mladenoff; Leslie Brandt; Patricia Butler; Matt St. Pierre; Anantha Prasad; Stephen Matthews; Matthew Peters; Dale Higgins; Avery Dorland
2011-01-01
The forests of northern Wisconsin will likely experience dramatic changes over the next 100 years as a result of climate change. This assessment evaluates key forest ecosystem vulnerabilities to climate change across northern Wisconsin under a range of future climate scenarios. Warmer temperatures and shifting precipitation patterns are expected to influence ecosystem...
Forest ecosystems, disturbance, and climate change in Washington State, USA
Jeremy S. Littell; Elaine E. Oneil; Donald McKenzie; Jeffrey A. Hicke; James A. Lutz; Robert A. Norheim; Marketa M. Elsner
2010-01-01
Climatic change is likely to affect Pacific Northwest (PNW) forests in several important ways. In this paper, we address the role of climate in four forest ecosystem processes and project the effects of future climatic change on these processes across Washington State. First, we relate Douglas-fir growth to climatic limitation and suggest that where Douglas-fir is...
Prescribed burning in the Kings River Ecosystem Project Area: lessons learned
David S. McCandliss
2002-01-01
The prescribed fire program on the Sierra National Forest is in its infancy. Prescription burning was initiated in 1994 in two 32,000-acre watersheds in the Kings River District of the Sierra National Forest. Primary objectives are to return fire to a more historical role in forest ecosystems and to provide opportunities for scientists from the Pacific Southwest...
NASA Astrophysics Data System (ADS)
Yu, Jianjun; Berry, Pam
2017-04-01
The drought and heat stress has alerted the composition, structure and biogeography of forests globally, whilst the projected severe and widespread droughts are potentially increasing. This challenges the sustainable forest management to better cope with future climate and maintain the forest ecosystem functions and services. Many studies have investigated the climate change impacts on forest ecosystem but less considered the climate extremes like drought. In this study, we implement a dynamic ecosystem model based on a version of LPJ-GUESS parameterized with European tree species and apply to Great Britain at a finer spatial resolution of 5*5 km. The model runs for the baseline from 1961 to 2011 and projects to the latter 21st century using 100 climate scenarios generated from MaRIUS project to tackle the climate model uncertainty. We will show the potential impacts of climate change on forest ecosystem and vegetation transition in Great Britain by comparing the modelled conditions in the 2030s and the 2080s relative to the baseline. In particular, by analyzing the modelled tree mortality, we will show the tree dieback patterns in response to drought for various species, and assess their drought vulnerability across Great Britain. We also use species distribution modelling to project the suitable climate space for selected tree species using the same climate scenarios. Aided by these two modelling approaches and based on the corresponding modelling results, we will discuss the implications for adaptation strategy for forest management, especially in extreme drought conditions. The gained knowledge and lessons for Great Britain are considered to be transferable in many other regions.
A synthesis of evaluation monitoring projects by the forest health monitoring program (1998-2007)
William A. Bechtold; Michael J. Bohne; Barbara L. Conkling; Dana L. Friedman
2012-01-01
The national Forest Health Monitoring Program of the Forest Service, U.S. Department of Agriculture, has funded over 200 Evaluation Monitoring projects. Evaluation Monitoring is designed to verify and define the extent of deterioration in forest ecosystems where potential problems have been identified. This report is a synthesis of results from over 150 Evaluation...
Using a terrestrial ecosystem survey to estimate the historical density of ponderosa pine trees
Scott R. Abella; Charles W. Denton; David G. Brewer; Wayne A. Robbie; Rory W. Steinke; W. Wallace Covington
2011-01-01
Maps of historical tree densities for project areas and landscapes may be useful for a variety of management purposes such as determining site capabilities and planning forest thinning treatments. We used the U.S. Forest Service Region 3 terrestrial ecosystem survey in a novel way to determine if the ecosystem classification is a useful a guide for estimating...
Jared Verner
2002-01-01
Ecosystem management aligns different uses of the land with ecological parameters and goals of environmental quality. An important USDA Forest Service mission is to balance the multiple uses of its lands in an ecologically sustainable way. This objective has been particularly challenging for National Forests of the Sierra Nevada in the face of heated controversies over...
Remote sensing of the seasonal variation of coniferous forest structure and function
NASA Technical Reports Server (NTRS)
Spanner, Michael; Waring, Richard
1991-01-01
One of the objectives of the Oregon Transect Ecosystem Research (OTTER) project is the remotely sensed determination of the seasonal variation of leaf area index (LAI) and absorbed photosynthetically active radiation (APAR). These measurements are required for input into a forest ecosystem model which predicts net primary production evapotranspiration, and photosynthesis of coniferous forests. Details of the study are given.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
..., California, Grey's Mountain Ecosystem Restoration Project AGENCY: Forest Service, USDA. ACTION: Notice of... a series of ecological restoration treatments, north of the community of Bass Lake, California, south of Soquel Meadow, east of Nelder Grove Historical Area and west of Graham Mountain. Treatment...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-03
... support the highest level of biodiversity for interior western forests. Productivity of aspen ecosystem... intolerant and sprouts heavily following disturbance; such as fire, which removes shading effects in areas..., mechanical treatments in Inventoried Roadless Areas, effects on wildlife species, effects to watersheds and...
Lu, Fei; Hu, Huifeng; Sun, Wenjuan; Zhu, Jiaojun; Liu, Guobin; Zhou, Wangming; Zhang, Quanfa; Shi, Peili; Liu, Xiuping; Wu, Xing; Zhang, Lu; Wei, Xiaohua; Dai, Limin; Zhang, Kerong; Sun, Yirong; Xue, Sha; Zhang, Wanjun; Xiong, Dingpeng; Deng, Lei; Liu, Bojie; Zhou, Li; Zhang, Chao; Cao, Jiansheng; Huang, Yao; Zhou, Guoyi; Bai, Yongfei; Xie, Zongqiang; Wu, Bingfang; Fang, Jingyun; Liu, Guohua; Yu, Guirui
2018-01-01
The long-term stressful utilization of forests and grasslands has led to ecosystem degradation and C loss. Since the late 1970s China has launched six key national ecological restoration projects to protect its environment and restore degraded ecosystems. Here, we conducted a large-scale field investigation and a literature survey of biomass and soil C in China’s forest, shrubland, and grassland ecosystems across the regions where the six projects were implemented (∼16% of the country’s land area). We investigated the changes in the C stocks of these ecosystems to evaluate the contributions of the projects to the country’s C sink between 2001 and 2010. Over this decade, we estimated that the total annual C sink in the project region was 132 Tg C per y (1 Tg = 1012 g), over half of which (74 Tg C per y, 56%) was attributed to the implementation of the projects. Our results demonstrate that these restoration projects have substantially contributed to CO2 mitigation in China. PMID:29666317
NASA Astrophysics Data System (ADS)
Ren, J.; Hanan, E. J.; Kolden, C.; Abatzoglou, J. T.; Tague, C.; Liu, M.; Adam, J. C.
2017-12-01
Drought events have been increasing across the western United States in recent years. Many studies have shown that, in the context of climate change, droughts will continue to be stronger, more frequent, and prolonged in the future. However, the response of forest ecosystems to droughts, particularly multi-year droughts, is not well understood. The objectives of this study are to examine how drought events of varying characteristics (e.g. intensity, duration, frequency, etc.) have affected the functioning of forest ecosystems historically, and how changing drought characteristics (including multi-year droughts) may affect forest functioning in a future climate. We utilize the Regional Hydro-Ecological Simulation System (RHESSys) to simulate impacts of both historical droughts and scenarios of future droughts on forest ecosystems. RHESSys is a spatially-distributed and process-based model that captures the interactions between coupled biogeochemical and hydrologic cycles at catchment scales. Here our case study is the Trail Creek catchment of the Big Wood River basin in Idaho, the Northwestern USA. For historical simulations, we use the gridded meteorological data of 1979 to 2016; for future climate scenarios, we utilize downscaled data from GCMs that have been demonstrated to capture drought events in the Northwest of the USA. From these climate projections, we identify various types of drought in intensity and duration, including multi-year drought events. We evaluate the following responses of ecosystems to these events: 1) evapotranspiration and streamflow; 2) gross primary productivity; 3) the post-drought recovery of plant biomass; and 4) the forest functioning and recovery after multi-year droughts. This research is part of an integration project to examine the roles of drought, insect outbreak, and forest management activities on wildfire activity and its impacts. This project will provide improved information for forest managers and communities in the wild urban interface to adapt to climate change.
Wilson, Sarah Jane; Rhemtulla, Jeanine M
2016-01-01
Community-based tropical forest restoration projects, often promoted as a win-win solution for local communities and the environment, have increased dramatically in number in the past decade. Many such projects are underway in Andean cloud forests, which, given their extremely high biodiversity and history of extensive clearing, are understudied. This study investigates the efficacy of community-based tree-planting projects to accelerate cloud forest recovery, as compared to unassisted natural regeneration. This study takes place in northwest Andean Ecuador, where the majority of the original, highly diverse cloud forests have been cleared, in five communities that initiated tree-planting projects to restore forests in 2003. In 2011, we identified tree species along transects in planted forests (n = 5), naturally regenerating forests (n = 5), and primary forests (n = 5). We also surveyed 120 households about their restoration methods, tree preferences, and forest uses. We found that tree diversity was higher in planted than in unplanted secondary forest, but both were less diverse than primary forests. Ordination analysis showed that all three forests had distinct species compositions, although planted forests shared more species with primary forests than did unplanted forests. Planted forests also contained more animal-dispersed species in both the planted canopy and in the unplanted, regenerating understory than unplanted forests, and contained the highest proportion of species with use value for local people. While restoring forest increased biodiversity and accelerated forest recovery, restored forests may also represent novel ecosystems that are distinct from the region's previous ecosystems and, given their usefulness to people, are likely to be more common in the future.
NASA Astrophysics Data System (ADS)
Saah, D. S.; Moritz, M.; Ganz, D. J.; Stine, P. A.; Moody, T.
2010-12-01
Years of successful fire suppression activities have left forests unnaturally dense, overstocked, and with high hazardous fuel loads. Wildfires, particularly those of high severity, may dramatically reduce carbon stocks and convert forested lands from carbon sinks to decades-long carbon sources . Forest resource managers are currently pursuing fuels reduction and mitigation strategies to reduce wildfire risk and maintain carbon stocks. These projects include selective thinning and removal of trees and brush to return forest ecosystems to more natural stocking levels, resulting in a more fire-resilient forest that in theory would retain higher carry capacity for standing above ground carbon. Resource managers are exploring the possibility of supporting these local forest management projects by offering greenhouse gas (GHG) offsets to project developers that require GHG emissions mitigation. Using robust field data, this research project modeled three types of carbon benefits that could be realized from forest management: 1. Fuels treatments in the study area were shown to reduce the GHG and Criteria Air Pollutant emissions from wildfires by decreasing the probability, extent, and severity of fires and the corresponding loss in forest carbon stocks; 2. Biomass utilization from fuel treatment was shown to reduce GHG and Criteria Air Pollutant emissions over the duration of the fuels treatment project compared to fossil fuel energy. 3. Management and thinning of forests in order to stimulate growth, resulting in more rapid uptake of atmospheric carbon and approaching a carbon carrying capacity stored in a forest ecosystem under prevailing environmental conditions and natural disturbance regimes.
Unlocking the climate riddle in forested ecosystems
Greg C. Liknes; Christopher W. Woodall; Brian F. Walters; Sara A. Goeking
2012-01-01
Climate information is often used as a predictor in ecological studies, where temporal averages are typically based on climate normals (30-year means) or seasonal averages. While ensemble projections of future climate forecast a higher global average annual temperature, they also predict increased climate variability. It remains to be seen whether forest ecosystems...
Highlighted scientific findings of the Interior Columbia Basin Ecosystem Management Project.
Thomas M. Quigley; Heidi Bigler Cole
1997-01-01
Decisions regarding 72 million acres of Forest Service- and Bureau of Land Management- administered lands will be based on scientific findings brought forth in the Interior Columbia Basin Ecosystem Management Project. Some highlights of the scientific findings are presented here. Project scientists drew three general conclusions: (1) Conditions and trends differ widely...
Divergence of ecosystem services in U.S. National Forests and Grasslands under a changing climate.
Duan, Kai; Sun, Ge; Sun, Shanlei; Caldwell, Peter V; Cohen, Erika C; McNulty, Steven G; Aldridge, Heather D; Zhang, Yang
2016-04-21
The 170 National Forests and Grasslands (NFs) in the conterminous United States are public lands that provide important ecosystem services such as clean water and timber supply to the American people. This study investigates the potential impacts of climate change on two key ecosystem functions (i.e., water yield and ecosystem productivity) using the most recent climate projections derived from 20 Global Climate Models (GCMs) of the Coupled Model Intercomparison Project phase 5 (CMIP5). We find that future climate change may result in a significant reduction in water yield but an increase in ecosystem productivity in NFs. On average, gross ecosystem productivity is projected to increase by 76 ~ 229 g C m(-2) yr(-1) (8% ~ 24%) while water yield is projected to decrease by 18 ~ 31 mm yr(-1) (4% ~ 7%) by 2100 as a result of the combination of increased air temperature (+1.8 ~ +5.2 °C) and precipitation (+17 ~ +51 mm yr(-1)). The notable divergence in ecosystem services of water supply and carbon sequestration is expected to intensify under higher greenhouse gas emission and associated climate change in the future, posing greater challenges to managing NFs for both ecosystem services.
Vulnerability to climate-induced changes in ecosystem services of boreal forests
NASA Astrophysics Data System (ADS)
Holmberg, Maria; Rankinen, Katri; Aalto, Tuula; Akujärvi, Anu; Nadir Arslan, Ali; Liski, Jari; Markkanen, Tiina; Mäkelä, Annikki; Peltoniemi, Mikko
2016-04-01
Boreal forests provide an array of ecosystem services. They regulate climate, and carbon, water and nutrient fluxes, and provide renewable raw material, food, and recreational possibilities. Rapid climate warming is projected for the boreal zone, and has already been observed in Finland, which sets these services at risk. MONIMET (LIFE12 ENV/FI/000409, 2.9.2013 - 1.9.2017) is a project funded by EU Life programme about Climate Change Indicators and Vulnerability of Boreal Zone Applying Innovative Observation and Modeling Techniques. The coordinating beneficiary of the project is the Finnish Meteorological Institute. Associated beneficiaries are the Natural Resources Institute Finland, the Finnish Environment Institute and the University of Helsinki. In the MONIMET project, we use state-of-the-art models and new monitoring methods to investigate the impacts of a warming climate on the provision of ecosystem services of boreal forests. This poster presents results on carbon storage in soil and assessment of drought indices, as a preparation for assessing the vulnerability of society to climate-induced changes in ecosystem services. The risk of decreasing provision of ecosystem services depends on the sensitivity of the ecosystem as well as its exposure to climate stress. The vulnerability of society, in turn, depends on the risk of decreasing provision of a certain service in combination with society's demand for that service. In the next phase, we will look for solutions to challenges relating to the quantification of the demand for ecosystem services and differences in spatial extent and resolution of the information on future supply and demand.
Great Basin Research and Management Project: Restoring and maintaining riparian ecosystem integrity
Jeanne C. Chambers
2000-01-01
The Great Basin Research and Management Project was initiated in 1994 by the USDA Forest Service, Rocky Mountain Research Stationâs Ecology, Paleoecology, and Restoration of Great Basin Watersheds Project to address the problems of stream incision and riparian ecosystem degradation in central Nevada. It is a highly interdisciplinary project that is being conducted in...
Acting Locally: A Guide to Model, Community and Demonstration Forests.
ERIC Educational Resources Information Center
Keen, Debbie Pella
1993-01-01
Describes Canada's efforts in sustainable forestry, which refers to management practices that ensure long-term health of forest ecosystems so that they can continue to provide environmental, social, and economic benefits. Describes model forests, community forests, and demonstration forests and lists contacts for each of the projects. (KS)
On the move: Recent happenings in vegetation research
Colin C. Hardy
1999-01-01
Scientists either directly or indirectly associated with previous Bitterroot Ecosystem Research Management Project (BEMRP) vegetation studies continue to pursue both fundamental and applied vegetation research projects in the interior West. Most of the "recent happenings" in vegetation research relate to restoration of forested ecosystems, including...
NASA Astrophysics Data System (ADS)
Asbjornsen, H.; Rustad, L.; Templer, P. H.; Jennings, K.; Phillips, R.; Smith, M.
2014-12-01
Recent trends and projections for future change for the U.S. northern forests suggest that the region's climate is becoming warmer, wetter, and, ironically, drier, with more precipitation occurring as large events, separated by longer periods with no precipitation. However, to date, precipitation manipulation experiments conducted in forest ecosystems represent only ~5% of all such experiments worldwide, and our understanding of how the mesic-adapted northern forest will respond to greater frequency and intensity of drought in the future is especially poor. Several important challenges have hampered previous research efforts to conduct forest drought experiments and draw robust conclusions, including difficulties in reducing water uptake by deep and lateral tree roots, logistical and financial constraints to establishing and maintaining large-scale field experiments, and the lack of standardized approaches for determining the appropriate precipitation manipulation treatment (e.g., amount and timing of throughfall displacement), designing and constructing the throughfall displacement infrastructure, identifying key response variables, and collecting and analyzing the field data. The overarching goal of this project is to establish a regional research coordination network - Northern Forest DroughtNet - to investigate the impacts of changes in the amount and distribution of precipitation on the hydrology, biogeochemistry, and carbon (C) cycling dynamics of northern temperate forests. Specific objectives include the development of a standard prototype for conducting precipitation manipulation studies in forest ecosystems (in collaboration with the international DroughtNet-RCN) and the implementation of this prototype drought experiment at the Hubbard Brook Experimental Forest. Here, we present the advances made thus far towards achieving the objectives of Northern Forest DroughtNet, plans for future work, and an invitation to the larger scientific community interested in precipitation manipulation experiments in forest ecosystems to participate in the network.
K. E. Skog; R. J. Barbour; J. E. Baumgras; A. Clark
1997-01-01
Using an ecosystem approach to forest management will change silvicultural practices, thus requiring utilization options to provide revenue and to help offset the costs of the silviculture treatments. The Forest Service, university cooperators, and several industry mills in the southern, western, and northeastern United States have been involved in a national...
North American forest disturbance mapped from a decadal Landsat record
Jeffrey G. Masek; Chengquan Huang; Robert Wolfe; Warren Cohen; Forrest Hall; Jonathan Kutler; Peder Nelson
2008-01-01
Forest disturbance and recovery are critical ecosystem processes, but the spatial pattern of disturbance has never been mapped across North America. The LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing System) project has assembled a wall-to-wall record of stand-clearing disturbance (clearcut harvest, fire) for the United States and Canada for the period 1990-...
The Agua Salud Project, Central Panama
NASA Astrophysics Data System (ADS)
Stallard, R. F.; Elsenbeer, H.; Ogden, F. L.; Hall, J. S.
2007-12-01
The Agua Salud Project utilizes the Panama Canal's central role in world commerce to focus global attention on the ecosystem services provided by tropical forests. It will be the largest field experiment of its kind in the tropics aimed at quantifying the environmental services (water, carbon, and biodiversity) provided by tropical forests. The Agua Salud Watershed is our principal field site. This watershed and the headwaters of several adjacent rivers include both protected mature forests and a wide variety of land uses that are typical of rural Panama. Experiments at the scale of entire catchments will permit complete water and carbon inventories and exchanges for different landscape uses. The following questions will be addressed: (1) How do landscape treatments and management approaches affect ecosystem services such as carbon storage, water quality and quantity, dry- season water supply, and biodiversity? (2) Can management techniques be designed to optimize forest production along with ecosystem services during reforestation? (3) Do different tree planting treatments and landscape management approaches influence groundwater storage, which is thought to be critical to maintaining dry-season flow, thus insuring the full operation of the Canal during periods of reduced rainfall and severe climatic events such as El Niño. In addition we anticipate expanding this project to address biodiversity, social, and economic values of these forests.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-26
... and Fuels Reduction Project to harvest timber, reduce hazardous forest fuels, prescribe burn, and... National Forest System lands before they burn onto private lands; (6) provide forest products to the local... of prescribed ecosystem burning are proposed. Use of existing and construction of temporary and...
Templer, Pamela H; Reinmann, Andrew B; Sanders-DeMott, Rebecca; Sorensen, Patrick O; Juice, Stephanie M; Bowles, Francis; Sofen, Laura E; Harrison, Jamie L; Halm, Ian; Rustad, Lindsey; Martin, Mary E; Grant, Nicholas
2017-01-01
Climate models project an increase in mean annual air temperatures and a reduction in the depth and duration of winter snowpack for many mid and high latitude and high elevation seasonally snow-covered ecosystems over the next century. The combined effects of these changes in climate will lead to warmer soils in the growing season and increased frequency of soil freeze-thaw cycles (FTCs) in winter due to the loss of a continuous, insulating snowpack. Previous experiments have warmed soils or removed snow via shoveling or with shelters to mimic projected declines in the winter snowpack. To our knowledge, no experiment has examined the interactive effects of declining snowpack and increased frequency of soil FTCs, combined with soil warming in the snow-free season on terrestrial ecosystems. In addition, none have mimicked directly the projected increase in soil FTC frequency in tall statured forests that is expected as a result of a loss of insulating snow in winter. We established the Climate Change Across Seasons Experiment (CCASE) at Hubbard Brook Experimental Forest in the White Mountains of New Hampshire in 2012 to assess the combined effects of these changes in climate on a variety of pedoclimate conditions, biogeochemical processes, and ecology of northern hardwood forests. This paper demonstrates the feasibility of creating soil FTC events in a tall statured ecosystem in winter to simulate the projected increase in soil FTC frequency over the next century and combines this projected change in winter climate with ecosystem warming throughout the snow-free season. Together, this experiment provides a new and more comprehensive approach for climate change experiments that can be adopted in other seasonally snow-covered ecosystems to simulate expected changes resulting from global air temperature rise.
Templer, Pamela H.; Reinmann, Andrew B.; Sanders-DeMott, Rebecca; Sorensen, Patrick O.; Juice, Stephanie M.; Bowles, Francis; Sofen, Laura E.; Harrison, Jamie L.; Halm, Ian; Rustad, Lindsey; Martin, Mary E.; Grant, Nicholas
2017-01-01
Climate models project an increase in mean annual air temperatures and a reduction in the depth and duration of winter snowpack for many mid and high latitude and high elevation seasonally snow-covered ecosystems over the next century. The combined effects of these changes in climate will lead to warmer soils in the growing season and increased frequency of soil freeze-thaw cycles (FTCs) in winter due to the loss of a continuous, insulating snowpack. Previous experiments have warmed soils or removed snow via shoveling or with shelters to mimic projected declines in the winter snowpack. To our knowledge, no experiment has examined the interactive effects of declining snowpack and increased frequency of soil FTCs, combined with soil warming in the snow-free season on terrestrial ecosystems. In addition, none have mimicked directly the projected increase in soil FTC frequency in tall statured forests that is expected as a result of a loss of insulating snow in winter. We established the Climate Change Across Seasons Experiment (CCASE) at Hubbard Brook Experimental Forest in the White Mountains of New Hampshire in 2012 to assess the combined effects of these changes in climate on a variety of pedoclimate conditions, biogeochemical processes, and ecology of northern hardwood forests. This paper demonstrates the feasibility of creating soil FTC events in a tall statured ecosystem in winter to simulate the projected increase in soil FTC frequency over the next century and combines this projected change in winter climate with ecosystem warming throughout the snow-free season. Together, this experiment provides a new and more comprehensive approach for climate change experiments that can be adopted in other seasonally snow-covered ecosystems to simulate expected changes resulting from global air temperature rise. PMID:28207766
Future socio-economic impacts and vulnerabilities
Balgis Osman-Elasha; Neil Adger; Maria Brockhaus; Carol J. Pierce Colfer; Brent Sohngen; Tallaat Dafalla; Linda A. Joyce; Nkem Johnson; Carmenza Robledo
2009-01-01
The projected impacts of climate change are significant, and despite the uncertainties associated with current climate and ecosystem model projections, the associated changes in the provision of forest ecosystem services are expected to be substantial in many parts of the world. These impacts will present significant social and economic challenges for affected...
Jessica R. Miesel; Randy Kolka; Phil Townsend
2018-01-01
Fire is a key ecological driver in determining vegetation composition, biomass, and ecosystem dynamics in coniferous forests of the Laurentian Mixed Forest in the Great Lakes region (Cleland and others 2004, Frelich 1995). Regional projections of future climate conditions indicate warmer temperatures, more variable precipitation patterns, and greater moisture stress (...
Modeling forest ecosystem changes resulting from surface coal mining in West Virginia
John Brown; Andrew J. Lister; Mary Ann Fajvan; Bonnie Ruefenacht; Christine Mazzarella
2012-01-01
The objective of this project is to assess the effects of surface coal mining on forest ecosystem disturbance and restoration in the Coal River Subbasin in southern West Virginia. Our approach is to develop disturbance impact models for this subbasin that will serve as a case study for testing the feasibility of integrating currently available GIS data layers, remote...
Janine Rice; Andrew Tredennick; Linda A. Joyce
2012-01-01
The Shoshone National Forest (Shoshone) covers 2.4 million acres of mountainous topography in northwest Wyoming and is a vital ecosystem that provides clean water, wildlife habitat, timber, grazing, recreational opportunities, and aesthetic value. The Shoshone has experienced and adapted to changes in climate for many millennia, and is currently experiencing a warming...
Growth projection and valuation of restoration of the shortleaf pine-bluestem grass ecosystem
Difei Zhang; Michael M. Huebschmann; Thomas B. Lynch; James M. Guldin
2012-01-01
The fire-dependent shortleaf pineâbluestem grass ecosystem that existed prior to European settlement is being restored on approximately 62,700 ha in the Ouachita National Forest. The restoration effort's economic effects are not completely understood. This study will provide the Forest Service with a framework for better communicating the biological and economic...
Modeling the potential of the Northern China forest shelterbelt in improving hydroclimate conditions
Yongqiang Liu; John Stanturf; Houquan Lu
2008-01-01
The forest shelterbelt (afforestation) project in northern China is the most significant ecosystem project initiated in China during the past three decades. It aims to improve and conserve the ecological environment in the project areas. The tree belt stands along the southern edge of the sandy lands, nearly paralleling to the Great Wall. This study used a regional...
Busch, G; Lammel, G; Beese, F O; Feichter, J; Dentener, F J; Roelofs, G J
2001-01-01
A global assessment of the impact of the anthropogenic perturbation of the nitrogen and sulfur cycles on forest ecosystems is carried out for both the present-day [1980-1990] and for a projection into the future [2040-2050] under a scenario of economic development which represents a medium path of development according to expert guess [IPCC IS92a]. Results show that forest soils will receive considerably increasing loads of nitrogen and acid deposition and that deposition patterns are likely to change. The regions which are most prone to depletion of soils buffering capacity and supercritical nitrogen deposition are identified in the subtropical and tropical regions of South America and Southeast Asia apart from the well known 'hotspots' North-Eastern America and Central Europe. The forest areas likely to meet these two risks are still a minor fraction of the global forest ecosystems, though. But the bias between eutrophication and acidification will become greater and an enhanced growth triggered by the fertilizing effects of increasing nitrogen input cannot be balanced by the forest soils nutrient pools. Results show increasing loads into forest ecosystems which are likely to account for 46% higher acid loads and 36% higher nitrogen loads in relation to the 1980-1990 situation. Global background deposition of up to 5 kg N ha-1 a-1 will be exceeded at more than 25% of global forest ecosystems and at more than 50% of forest ecosystems on acid sensitive soils. More than 33% of forest ecosystems on acid sensitive soils will receive acid loads which exceeds their buffering capacity. About 25% of forest areas with exceeded acid loads will receive critical nitrogen loads.
ECO-Report - Finding common ground: Montana Forest Restoration Committee
Sharon Ritter; Greg Jones; Alan Watson; Ward McCaughey; Mick Harrington; Rafal Zwolak; Kerry Foresman; Elizabeth Crone; Dean Pearson; Yvette Ortega; Dan Loeffler
2008-01-01
EcoReport is an annual Rocky Mountain Research Station (RMRS) publication which contains a set of articles showcasing the Bitterroot Ecosystem Management Research Project (BEMRP) research projects and activities. The articles are concise, user-friendly, and designed to inform a broad range of audiences interested in ecosystem management. Articles featured in...
ECO-News - BEMRP: A first of its kind within the Forest Service
Madelyn Kempf; Kerry Foresman; Jack Lyon; Steve Arno; Cindy Chojnacky
1995-01-01
ECO-News is an annual Rocky Mountain Research Station (RMRS) publication which contains a set of articles showcasing the Bitterroot Ecosystem Management Research Project (BEMRP) research projects and activities. The articles are concise, user-friendly, and designed to inform a broad range of audiences interested in ecosystem management. Articles featured in...
NASA Astrophysics Data System (ADS)
Loustau, D.; Moreaux, V.; Bosc, A.; Trichet, P.; Kumari, J.; Rabemanantsoa, T.; Balesdent, J.; Jolivet, C.; Medlyn, B. E.; Cavaignac, S.; Nguyen-The, N.
2012-12-01
For predicting the future of the forest carbon cycle in forest ecosystems, it is necessary to account for both the climate and management impacts. Climate effects are significant not only at a short time scale but also at the temporal horizon of a forest life cycle e.g. through shift in atmospheric CO2 concentration, temperature and precipitation regimes induced by the enhanced greenhouse effect. Intensification of forest management concerns an increasing fraction of temperate and tropical forests and untouched forests represents only one third of the present forest area. Predicting tools are therefore needed to project climate and management impacts over the forest life cycle and understand the consequence of management on the forest ecosystem carbon cycle. This communication summarizes the structure, main components and properties of a carbon transfer model that describes the processes controlling the carbon cycle of managed forest ecosystems. The model, GO+, links three main components, (i) a module describing the vegetation-atmosphere mass and energy exchanges in 3D, (ii) a plant growth module and a (iii) soil carbon dynamics module in a consistent carbon scheme of transfer from atmosphere back into the atmosphere. It was calibrated and evaluated using observed data collected on coniferous and broadleaved forest stands. The model predicts the soil, water and energy balance of entire rotations of managed stands from the plantation to the final cut and according to a range of management alternatives. It accounts for the main soil and vegetation management operations such as soil preparation, understorey removal, thinnings and clearcutting. Including the available knowledge on the climatic sensitivity of biophysical and biogeochemical processes involved in atmospheric exchanges and carbon cycle of forest ecosystems, GO+ can produce long-term backward or forward simulations of forest carbon and water cycles under a range of climate and management scenarios. This model applications to the prediction and analysis of climate scenarios impacts on southwestern European forests underlines the role of management alternatives, precipitation regime, CO2 concentration and atmospheric humidity .Frequency of soil preparation operations and understorey management play a major role in controlling the net carbon flux into the atmosphere at the juvenile stage ( 0 to 10 y-old) whereas climate and rotation duration control the functioning of adult phase. The model predicts that a drier and warmer climate will reduce the forest productivity and deplete soil and carbon stocks in managed forest from Southwestern Europe within decades, such effects being amplified for most intensive management alternatives. This work was part of the European research project GHG-Europe (EU contract No. 244122) and the French national project FAST co-funded by the Ecology, Agriculture and Forestry Ministries and the Region Aquitaine.
Chicago's urban forest ecosystem: results of the Chicago Urban Forest Climate Project
Gregory E. McPherson; David J. Nowak; Rowan A. Rowntree
1994-01-01
Results of the 3-year Chicago Urban Forest Climate Project indicate that there are an estimated 50.8 million trees in the Chicago area of Cook and DuPage Counties; 66 percent of these trees rated in good or excellent condition. During 1991, trees in the Chicago area removed an estimated 6,145 tons of air pollutants, providing air cleansing valued at $9.2 million...
Climate changes impact the surface albedo of a forest ecosystem based on MODIS satellite data
NASA Astrophysics Data System (ADS)
Zoran, M. A.; Nemuc, A. V.
2007-10-01
Surface albedo is one of the most important biophysical parameter responsible for energy balance control and the surface temperature and boundary-layer structure of the atmosphere. Forest land surface albedo is also highly variable temporally showing both diurnal as well as seasonal variations. In forest systems, albedo controls the microclimate conditions which affects ecosystem physical, physiological, and biogeochemical processes such as energy balance, evapotranspiration, photosynthesis. Due to anthropogenic and natural factors, land cover and land use changes result is the land surfaces albedo change. The main aim of this paper is to investigate the albedo patterns due to the impact of atmospheric pollution and climate variations of a forest ecosystem Branesti-Cernica, placed to the North-East of Bucharest city, Romania based on satellite Landsat ETM+, IKONOS and MODIS data and climate station observations. Our study focuses on 3 years of data (2003-2005), each of which had a different climatic regime. As the physical climate system is very sensitive to surface albedo, forest ecosystems could significantly feedback to the projected climate change modeling scenarios through albedo changes. The results of this research have a number of applications in weather forecasting, climate change, and forest ecosystem studies.
United States forest disturbance trends observed with landsat time series
Jeffrey G. Masek; Samuel N. Goward; Robert E. Kennedy; Warren B. Cohen; Gretchen G. Moisen; Karen Schleweiss; Chengquan Huang
2013-01-01
Disturbance events strongly affect the composition, structure, and function of forest ecosystems; however, existing US land management inventories were not designed to monitor disturbance. To begin addressing this gap, the North American Forest Dynamics (NAFD) project has examined a geographic sample of 50 Landsat satellite image time series to assess trends in forest...
Chapter 8: Simulating mortality from forest insects and diseases
Alan A. Ager; Jane L. Hayes; Craig L. Schmitt
2004-01-01
We describe methods for incorporating the effects of insects and diseases on coniferous forests into forest simulation models and discuss options for including this capability in the modeling work of the Interior Northwest Landscape Analysis System (INLAS) project. Insects and diseases are major disturbance agents in forested ecosystems in the Western United States,...
Tree cavity estimation and verification in the Missouri Ozarks
Randy G. Jensen; John M. Kabrick; Eric K. Zenner
2002-01-01
Missouri forest management guidelines require that cavity trees and snags be provided for wildlife. Missouri Ozark Forest Ecosystem Project (MOFEP) timber inventories provided opportunities to determine if cavity tree and snag densities in a mature second-growth oak-hickory-pine forest meet forest management guidelines, to evaluate the effects of the first-entry...
Leslie Brandt; Hong He; Louis Iverson; Frank R. Thompson; Patricia Butler; Stephen Handler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Matthew Albrecht; Richard Blume-Weaver; Paul Deizman; John DePuy; William D. Dijak; Gary Dinkel; Songlin Fei; D. Todd Jones-Farrand; Michael Leahy; Stephen Matthews; Paul Nelson; Brad Oberle; Judi Perez; Matthew Peters; Anantha Prasad; Jeffrey E. Schneiderman; John Shuey; Adam B. Smith; Charles Studyvin; John M. Tirpak; Jeffery W. Walk; Wen J. Wang; Laura Watts; Dale Weigel; Steve Westin
2014-01-01
The forests in the Central Hardwoods Region will be affected directly and indirectly by a changing climate over the next 100 years. This assessment evaluates the vulnerability of terrestrial ecosystems in the Central Hardwoods Region of Illinois, Indiana, and Missouri to a range of future climates. Information on current forest conditions, observed climate trends,...
USDA-ARS?s Scientific Manuscript database
The objective of this study was to evaluate carbon, nitrogen, sulfur and phosphorus (CNSP) cycling and to determine potential biochemical soil health indicators applicable to timber harvesting in the Missouri Ozarks. Soil samples were collected from the Missouri Forest Ecosystem Project (MOFEP) and ...
Projecting Forest Policy and Management Effects across Ownerships in Coastal Oregon
Thomas A. Spies; K. Norman Johnson
2007-01-01
Two of the most fundamental questions in forest ecosystem management are: (1) What are the consequences of different forest management practices? and (2) How do they vary with spatial and temporal scale? The forest management controversies of the 1990s in the Pacific Northwest revolved around these questions and led to major new forest polices in the region for federal...
Kuribayashi, Masatoshi; Noh, Nam-Jin; Saitoh, Taku M; Ito, Akihiko; Wakazuki, Yasutaka; Muraoka, Hiroyuki
2017-06-01
Accurate projection of carbon budget in forest ecosystems under future climate and atmospheric carbon dioxide (CO 2 ) concentration is important to evaluate the function of terrestrial ecosystems, which serve as a major sink of atmospheric CO 2 . In this study, we examined the effects of spatial resolution of meteorological data on the accuracies of ecosystem model simulation for canopy phenology and carbon budget such as gross primary production (GPP), ecosystem respiration (ER), and net ecosystem production (NEP) of a deciduous forest in Japan. Then, we simulated the future (around 2085) changes in canopy phenology and carbon budget of the forest by incorporating high-resolution meteorological data downscaled by a regional climate model. The ecosystem model overestimated GPP and ER when we inputted low-resolution data, which have warming biases over mountainous landscape. But, it reproduced canopy phenology and carbon budget well, when we inputted high-resolution data. Under the future climate, earlier leaf expansion and delayed leaf fall by about 10 days compared with the present state was simulated, and also, GPP, ER and NEP were estimated to increase by 25.2%, 23.7% and 35.4%, respectively. Sensitivity analysis showed that the increase of NEP in June and October would be mainly caused by rising temperature, whereas that in July and August would be largely attributable to CO 2 fertilization. This study suggests that the downscaling of future climate data enable us to project more reliable carbon budget of forest ecosystem in mountainous landscape than the low-resolution simulation due to the better predictions of leaf expansion and shedding.
Zhang, Yuke; Liu, Hongyan
2010-07-01
The projected recession of forests in the forest-steppe ecotone under projected climate drying would restrict the carbon sink function of terrestrial ecosystems. Previous studies have shown that the forest-steppe ecotone in the southeastern Inner Mongolia Plateau originally resulted from climate drying and vegetation shifts during the mid- to late-Holocene, but the interrelated processes of changing soil carbon storage and vegetation and soil shifts remain unclear. A total of 44 forest soil profiles and 40 steppe soil profiles were excavated to determine soil carbon storage in deciduous broadleaf forests (DBF), coniferous forests (CF) and steppe (ST) in this area. Carbon density was estimated to be 106.51 t/hm(2) (DBF), 73.20 t/hm(2) (CF), and 28.14 t/hm(2) (ST) for these ecosystems. Soil organic carbon (SOC) content was negatively correlated with sand content (R = -0.879, P < 0.01, n = 42), and positively correlated with silt (R = 0.881, P < 0.01, n = 42) and clay (R = 0.858, P < 0.01, n = 42) content. Consistent trends between fractions of coarse sand and a proxy index of relative aridity in sediment sequences from two palaeo-lakes further imply that climate drying reduced SOC through coarsening of the soil texture in the forest-steppe ecotone. Changes in carbon storage caused by climate drying can be divided into two stages: (1) carbon storage of the ecosystem was reduced to 68.7%, mostly by soil coarsening when DBF were replaced by CF at approximately 5,900 (14)C years before present (BP); and (2) carbon storage was reduced to 26.4%, mostly by vegetation shifts when CF were replaced by ST at approximately 2,900 (14)C years BP.
Forest restoration, biodiversity and ecosystem functioning.
Aerts, Raf; Honnay, Olivier
2011-11-24
Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but it also highlights that much remains to be understood, especially regarding the relation between forest functioning on the one side and genetic diversity and above-ground-below-ground species associations on the other. The strong emphasis of the BEF-approach on functional rather than taxonomic diversity may also be the beginning of a paradigm shift in restoration ecology, increasing the tolerance towards allochthonous species.
LANDFIRE: Collaboration for National Fire Fuel Assessment
Zhu, Zhi-Liang
2006-01-01
The implementation of national fire management policies, such as the National Fire Plan and the Healthy Forest Restoration Act, requires geospatial data of vegetation types and structure, wildland fuels, fire risks, and ecosystem fire regime conditions. Presently, no such data sets are available that can meet these requirements. As a result, the U.S. Department of Agriculture (USDA) Forest Service and the Department of the Interior's land management bureaus (Bureau of Indian Affairs (BIA), Bureau of Land Management (BLM), Fish and Wildlife Service (FWS), and National Park Service (NPS)) have jointly sponsored LANDFIRE, a new research and development project. The primary objective of the project is to develop an integrated and repeatable methodology and produce vegetation, fire, and ecosystem information and predictive models for cost-effective national land management applications. The project is conducted collaboratively by the U.S. Geological Survey (USGS), the USDA Forest Service, and The Nature Conservancy.
Temporal-Spatial Pattern of Carbon Stocks in Forest Ecosystems in Shaanxi, Northwest China
Cui, Gaoyang; Chen, Yunming; Cao, Yang
2015-01-01
The precise and accurate quantitative evaluation of the temporal and spatial pattern of carbon (C) storage in forest ecosystems is critical for understanding the role of forests in the global terrestrial C cycle and is essential for formulating forest management policies to combat climate change. In this study, we examined the C dynamics of forest ecosystems in Shaanxi, northwest China, based on four forest inventories (1989–1993, 1994–1998, 1999–2003, and 2004–2008) and field-sampling measurements (2012). The results indicate that the total C storage of forest ecosystems in Shaanxi increased by approximately 29.3%, from 611.72 Tg in 1993 to 790.75 Tg in 2008, partially as a result of ecological restoration projects. The spatial pattern of C storage in forest ecosystems mainly exhibited a latitude-zonal distribution across the province, increasing from north (high latitude) to south (low latitude) generally, which signifies the effect of environmental conditions, chiefly water and heat related factors, on forest growth and C sequestration. In addition, different data sources and estimation methods had a significant effect on the results obtained, with the C stocks in 2008 being considerably overestimated (864.55 Tg) and slightly underestimated (778.07 Tg) when measured using the mean C density method and integrated method, respectively. Overall, our results demonstrated that the forest ecosystem in Shaanxi acted as a C sink over the last few decades. However, further studies should be carried out with a focus on adaption of plants to environmental factors along with forest management for vegetation restoration to maximize the C sequestration potential and to better cope with climate change. PMID:26353011
Stream channel designs for riparian and wet meadow rangelands in the southwestern United States
Roy Jemison; Daniel G. Neary
2000-01-01
Inappropriate land uses have degraded wetland and riparian ecosystems throughout the Southwestern United States. In 1996, the Cibola National Forest in New Mexico implemented a channel relocation project, as part of a road improvement project, to determine the feasibility of restoring wet meadow and riparian ecosystems degraded by inappropriately located roads and...
Xiaoping Zhou; Miles A. Hemstrom
2014-01-01
Forest land provides various ecosystem services, including timber, biomass, and carbon sequestration. Estimating trends in these ecosystem services is essential for assessing potential outcomes of landscape management scenarios. However, the state-and transition models used in the Integrated Landscape Assessment Project for simulating landscape changes over time do not...
Vegetation indicators of transformation in the urban forest ecosystems of "Kuzminki-Lyublino" Park
NASA Astrophysics Data System (ADS)
Buyvolova, Anna; Trifonova, Tatiana; Bykova, Elena
2017-04-01
Forest ecosystems in the city are at the same time a component of its natural environment and part of urban developmental planning. It imposes upon urban forests a large functional load, both environmental (formation of environment, air purification, noise pollution reducing, etc.) and social (recreational, educational) which defines the special attitude to their management and study. It is not a simple task to preserve maximum accessibility to the forest ecosystems of the large metropolises with a minimum of change. The urban forest vegetates in naturally formed soil, it has all the elements of a morphological structure (canopy layers), represented by natural species of the zonal vegetation. Sometimes it is impossible for a specialist to distinguish between an urban forest and a rural one. However, the urban forests are changing, being under the threat of various negative influences of the city, of which pollution is arguably the most significant. This article presents some indicators of structural changes to the plant communities, which is a response of forest ecosystems to an anthropogenic impact. It is shown that the indicators of the transformation of natural ecosystems in the city can be a reduction of the projective cover of moss layer, until its complete absence (in the pine forest), increasing the role of Acer negundo (adventive species) in the undergrowth, high variability of floristic indicators of the ground herbaceous vegetation, and a change in the spatial arrangement of adventive species. The assessment of the impact of the urban environment on the state of vegetation in the "Kuzminki-Lyublino" Natural-Historical Park was conducted in two key areas least affected by anthropogenic impacts under different plant communities represented by complex pine and birch forests and in similar forest types in the Prioksko-Terrasny Biosphere Reserve. The selection of pine forests as a model is due to the fact that, according to some scientists, pine (Pinus Sylvestris L.), a very ductile and widespread species, is a sensitive indicator of anthropogenic burden, responding to the impact of defoliation and needles discoloration, and survives even at fairly high levels of pollution. The vegetation cover is one of the most dynamic components of the ecosystem and under the conditions of urban existence it is subject to transformation. The indicators of the transformation of natural ecosystems in the city can be a reduction of the projective cover of moss layer, until its complete absence (in the pine forest), increasing the role of Acer negundo (adventive species) in the undergrowth, high variability of floristic indicators of the ground herbaceous vegetation, and a change in the spatial arrangement of adventive species. The further study of plant communities with a view to identifying indicators of transformation in urban environmental conditions will help for the early detection of reversible changes in the ecosystems of urban forests and the development of rational urban forest care technologies.
Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests
Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie A.; Reed, Sasha C.; Reich, Peter B.; Ryan, Michael G.; Wood, Tana E.; Yang, Xiaojuan
2017-01-01
For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is to compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.
Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie
For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO 2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is tomore » compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO 2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.« less
Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests
NASA Astrophysics Data System (ADS)
Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie; Reed, Sasha; Reich, Peter B.; Ryan, Michael G.; Wood, Tana E.; Yang, Xiaojuan
2017-10-01
For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is to compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.
Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests
Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie; ...
2017-10-23
For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO 2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is tomore » compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO 2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.« less
Anthony R. DeGange; Bruce G. Marcot; James Lawler; Torre Jorgenson; Robert Winfree
2013-01-01
We used a modeling framework and a recent ecological land classification and land cover map to predict how ecosystems and wildlife habitat in northwest Alaska might change in response to increasing temperature. Our results suggest modest increases in forest and tall shrub ecotypes in Northwest Alaska by the end of this century thereby increasing habitat for forest-...
Michael J. Furniss; Ken B. Roby; Dan Cenderelli; John Chatel; Caty F. Clifton; Alan Clingenpeel; Polly E. Hays; Dale Higgins; Ken Hodges; Carol Howe; Laura Jungst; Joan Louie; Christine Mai; Ralph Martinez; Kerry Overton; Brian P. Staab; Rory Steinke; Mark Weinhold
2013-01-01
Existing models and predictions project serious changes to worldwide hydrologic processes as a result of global climate change. Projections indicate that significant change may threaten National Forest System watersheds that are an important source of water used to support people, economies, and ecosystems.Wildland managers are expected to anticipate and...
Tree seedling reponses to wastewater irrigation on a reforested old field in southern Michigan.
D.G. Brockway
1982-01-01
In recent years, the number of municipal wastewater irrigation projects utilizing forest ecosystems for nutrient recycling and groundwater recharge has continued to grow. Land managers involved with these projects have, in the same time period, increased their demand for scientific data which better defines the capabilities and limitations of various forest species-...
Overview of global climate change and carbon sequestration
Kurt Johnsen
2004-01-01
The potential influence of global climate change on southern forests is uncertain. Outputs of climate change models differ considerably in their projections for precipitation and other variables that affect forests. Forest responses, particularly effects on competition among species, are difficult to assess. Even the responses of relatively simple ecosystems, such as...
Evidence and implications of recent and projected climate change in Alaska's forest ecosystems
Wolken, Jane M.; Hollingsworth, Teresa N.; Rupp, T. Scott; Chapin, Stuart III; Trainor, Sarah F.; Barrett, Tara M.; Sullivan, Patrick F.; McGuire, A. David; Euskirchen, Eugénie S.; Hennon, Paul E.; Beever, Erik A.; Conn, Jeff S.; Crone, Lisa K.; D'Amore, David V.; Fresco, Nancy; Hanley, Thomas A.; Kielland, Knut; Kruse, James J.; Patterson, Trista; Schuur, Edward A.G.; Verbyla, David L.; Yarie, John
2011-01-01
The structure and function of Alaska's forests have changed significantly in response to a changing climate, including alterations in species composition and climate feedbacks (e.g., carbon, radiation budgets) that have important regional societal consequences and human feedbacks to forest ecosystems. In this paper we present the first comprehensive synthesis of climate-change impacts on all forested ecosystems of Alaska, highlighting changes in the most critical biophysical factors of each region. We developed a conceptual framework describing climate drivers, biophysical factors and types of change to illustrate how the biophysical and social subsystems of Alaskan forests interact and respond directly and indirectly to a changing climate. We then identify the regional and global implications to the climate system and associated socio-economic impacts, as presented in the current literature. Projections of temperature and precipitation suggest wildfire will continue to be the dominant biophysical factor in the Interior-boreal forest, leading to shifts from conifer- to deciduous-dominated forests. Based on existing research, projected increases in temperature in the Southcentral- and Kenai-boreal forests will likely increase the frequency and severity of insect outbreaks and associated wildfires, and increase the probability of establishment by invasive plant species. In the Coastal-temperate forest region snow and ice is regarded as the dominant biophysical factor. With continued warming, hydrologic changes related to more rapidly melting glaciers and rising elevation of the winter snowline will alter discharge in many rivers, which will have important consequences for terrestrial and marine ecosystem productivity. These climate-related changes will affect plant species distribution and wildlife habitat, which have regional societal consequences, and trace-gas emissions and radiation budgets, which are globally important. Our conceptual framework facilitates assessment of current and future consequences of a changing climate, emphasizes regional differences in biophysical factors, and points to linkages that may exist but that currently lack supporting research. The framework also serves as a visual tool for resource managers and policy makers to develop regional and global management strategies and to inform policies related to climate mitigation and adaptation.
Status of the Sierra Nevada: the Sierra Nevada Ecosystem Project
Erman, Don C.; ,
1997-01-01
The Sierra Nevada ecosystem project was requested by Congress in the Conference Report for Interior and related Agencies 1993 Appropriation Act, which authorized funds for a scientific review of the remaining old growth in the national forests of the Sierra Nevada in California, and for a study of the entire Sierra Nevada ecosystem by an independent panel of scientists, with expertise in diverse areas related to this issue. This CD-ROM is a digital version of the set of reports titled 'Sierra Nevada Ecosystem Project, final report to Congress' published in paper form by the Centers for Water and Wildland Resources of the University of California, Davis.
Lidar Remote Sensing of Forests: New Instruments and Modeling Capabilities
NASA Technical Reports Server (NTRS)
Cook, Bruce D.
2012-01-01
Lidar instruments provide scientists with the unique opportunity to characterize the 3D structure of forest ecosystems. This information allows us to estimate properties such as wood volume, biomass density, stocking density, canopy cover, and leaf area. Structural information also can be used as drivers for photosynthesis and ecosystem demography models to predict forest growth and carbon sequestration. All lidars use time-in-flight measurements to compute accurate ranging measurements; however, there is a wide range of instruments and data types that are currently available, and instrument technology continues to advance at a rapid pace. This seminar will present new technologies that are in use and under development at NASA for airborne and space-based missions. Opportunities for instrument and data fusion will also be discussed, as Dr. Cook is the PI for G-LiHT, Goddard's LiDAR, Hyperspectral, and Thermal airborne imager. Lastly, this talk will introduce radiative transfer models that can simulate interactions between laser light and forest canopies. Developing modeling capabilities is important for providing continuity between observations made with different lidars, and to assist the design of new instruments. Dr. Bruce Cook is a research scientist in NASA's Biospheric Sciences Laboratory at Goddard Space Flight Center, and has more than 25 years of experience conducting research on ecosystem processes, soil biogeochemistry, and exchange of carbon, water vapor and energy between the terrestrial biosphere and atmosphere. His research interests include the combined use of lidar, hyperspectral, and thermal data for characterizing ecosystem form and function. He is Deputy Project Scientist for the Landsat Data Continuity Mission (LDCM); Project Manager for NASA s Carbon Monitoring System (CMS) pilot project for local-scale forest biomass; and PI of Goddard's LiDAR, Hyperspectral, and Thermal (G-LiHT) airborne imager.
W. Keith Moser; Stephen R. Shifley
2012-01-01
Forests and forest ecosystems provide a critical array of benefits, from clean air and water to commercial products to open space. The forests and their ability to provide desired benefi ts constantly change in response to natural forces, human decisions, and human needs. The complexity and rate of change demand a rigorous evaluation of existing and emerging natural...
John T. Kliejunas
2011-01-01
This risk assessment projects the effects of eight forest diseases under two climate-change scenarios (warmer and drier, warmer and wetter). Examples are used to describe how various types of forest diseases may respond to environmental changes. Forest diseases discussed in this report include foliar diseases, Phytophthora diseases, stem rusts,...
Approaches to modeling landscape-scale drought-induced forest mortality
Gustafson, Eric J.; Shinneman, Douglas
2015-01-01
Drought stress is an important cause of tree mortality in forests, and drought-induced disturbance events are projected to become more common in the future due to climate change. Landscape Disturbance and Succession Models (LDSM) are becoming widely used to project climate change impacts on forests, including potential interactions with natural and anthropogenic disturbances, and to explore the efficacy of alternative management actions to mitigate negative consequences of global changes on forests and ecosystem services. Recent studies incorporating drought-mortality effects into LDSMs have projected significant potential changes in forest composition and carbon storage, largely due to differential impacts of drought on tree species and interactions with other disturbance agents. In this chapter, we review how drought affects forest ecosystems and the different ways drought effects have been modeled (both spatially and aspatially) in the past. Building on those efforts, we describe several approaches to modeling drought effects in LDSMs, discuss advantages and shortcomings of each, and include two case studies for illustration. The first approach features the use of empirically derived relationships between measures of drought and the loss of tree biomass to drought-induced mortality. The second uses deterministic rules of species mortality for given drought events to project changes in species composition and forest distribution. A third approach is more mechanistic, simulating growth reductions and death caused by water stress. Because modeling of drought effects in LDSMs is still in its infancy, and because drought is expected to play an increasingly important role in forest health, further development of modeling drought-forest dynamics is urgently needed.
VEMAP vs VINCERA: a DGVM sensitivity to differences in climate scenarios
Dominique Bachelet; James Lenihan; Ray Drapek; Ronald Neilson
2008-01-01
The MCI DGVM has been used in two international model comparison projects, VEMAP (Vegetation Ecosystem Modeling and Analysis Project) and VINCERA (Vulnerability and Impacts of North American forests to Climate Change: Ecosystem Responses and Adaptation). The latest version of MC1 was run on both VINCERA and VEMAP climate and soil input data to document how a change in...
NASA Astrophysics Data System (ADS)
Damayanti, Irma; Nur Bambang, Azis; Retnaningsih Soeprobowati, Tri
2018-05-01
Petungkriyono is the last tropical forest in Java and provides biodiversity including rare flora and fauna that must be maintained, managed and utilized in order to give meaning for humanity and sustainability. Services of Forest Ecosystem in Petungkriyono are included such as goods supply, soil-water conservation, climate regulation, purification environment and flora fauna habitats. The approach of this study is the literature review from various studies before perceiving the influenced of economic valuation in determining the measurement conservation strategies of Petungkriyono Natural Forest Ecosystem in Pekalongan Regency. The aims of this study are to analyzing an extended benefit cost of natural forest ecosystems and internalizing them in decision making. The method of quantification and valuation of forest ecosystem is Cost and Benefit Analysis (CBA) which is a standard economic appraisal tools government in development economics. CBA offers the possibility capturing impact of the project. By using productivity subtitution value and extended benefit cost analysis any comodity such as Backwoods,Pine Woods, Puspa woods and Pine Gum. Water value, preventive buildings of landslide and carbon sequestration have total economic value of IDR.163.065.858.080, and the value of Extended Benefit Cost Ratio in Petungkriyono is 281.35 %. However, from the result is expected the local government of Pekalongan to have high motivation in preserve the existence of Petungkriyono forest.
The Moquah Barrens Research Natural Area: Loss of a pine barrens ecosystem
Ribic, Christine
2017-01-01
The Moquah Barrens Research Natural Area (RNA) was established by the Chequamegon National Forest and the Lakes States Forest Experiment Station in 1935 with a research objective well-suited to the needs of the Forest Service and the scientific understanding of ecosystem function prevalent at the time of establishment. The original research plan was never implemented, which led to a joint Forest-Station decision in 1956 to disestablish the RNA. However, that decision was never implemented. A series of management decisions made after 1956 led to the loss of the pine barrens ecosystem originally encompassed by the RNA. This loss is not irretrievable and the work necessary to recover the original ecosystem is possible under existing RNA management guidelines. The experience of the Moquah Barrens RNA can be used by the Forest Service to improve overall management of the entire system of research natural areas. Two main areas of opportunity are identified: 1) implement an improved approach to managing official records associated with RNAs; and 2) adopt a management framework suitable for long-term ecological projects.
Lessons from community-based payment for ecosystem service schemes: from forests to rangelands.
Dougill, Andrew J; Stringer, Lindsay C; Leventon, Julia; Riddell, Mike; Rueff, Henri; Spracklen, Dominick V; Butt, Edward
2012-11-19
Climate finance investments and international policy are driving new community-based projects incorporating payments for ecosystem services (PES) to simultaneously store carbon and generate livelihood benefits. Most community-based PES (CB-PES) research focuses on forest areas. Rangelands, which store globally significant quantities of carbon and support many of the world's poor, have seen little CB-PES research attention, despite benefitting from several decades of community-based natural resource management (CBNRM) projects. Lessons from CBNRM suggest institutional considerations are vital in underpinning the design and implementation of successful community projects. This study uses documentary analysis to explore the institutional characteristics of three African community-based forest projects that seek to deliver carbon-storage and poverty-reduction benefits. Strong existing local institutions, clear land tenure, community control over land management decision-making and up-front, flexible payment schemes are found to be vital. Additionally, we undertake a global review of rangeland CBNRM literature and identify that alongside the lessons learned from forest projects, rangeland CB-PES project design requires specific consideration of project boundaries, benefit distribution, capacity building for community monitoring of carbon storage together with awareness-raising using decision-support tools to display the benefits of carbon-friendly land management. We highlight that institutional analyses must be undertaken alongside improved scientific studies of the carbon cycle to enable links to payment schemes, and for them to contribute to poverty alleviation in rangelands.
Lessons from community-based payment for ecosystem service schemes: from forests to rangelands
Dougill, Andrew J.; Stringer, Lindsay C.; Leventon, Julia; Riddell, Mike; Rueff, Henri; Spracklen, Dominick V.; Butt, Edward
2012-01-01
Climate finance investments and international policy are driving new community-based projects incorporating payments for ecosystem services (PES) to simultaneously store carbon and generate livelihood benefits. Most community-based PES (CB-PES) research focuses on forest areas. Rangelands, which store globally significant quantities of carbon and support many of the world's poor, have seen little CB-PES research attention, despite benefitting from several decades of community-based natural resource management (CBNRM) projects. Lessons from CBNRM suggest institutional considerations are vital in underpinning the design and implementation of successful community projects. This study uses documentary analysis to explore the institutional characteristics of three African community-based forest projects that seek to deliver carbon-storage and poverty-reduction benefits. Strong existing local institutions, clear land tenure, community control over land management decision-making and up-front, flexible payment schemes are found to be vital. Additionally, we undertake a global review of rangeland CBNRM literature and identify that alongside the lessons learned from forest projects, rangeland CB-PES project design requires specific consideration of project boundaries, benefit distribution, capacity building for community monitoring of carbon storage together with awareness-raising using decision-support tools to display the benefits of carbon-friendly land management. We highlight that institutional analyses must be undertaken alongside improved scientific studies of the carbon cycle to enable links to payment schemes, and for them to contribute to poverty alleviation in rangelands. PMID:23045714
Modeling of larch forest dynamics under a changing climate in eastern Siberia
NASA Astrophysics Data System (ADS)
Nakai, T.; Kumagai, T.; Iijima, Y.; Ohta, T.; Kotani, A.; Maximov, T. C.; Hiyama, T.
2017-12-01
According to the projection by an earth system model under RCP8.5 scenario, boreal forest in eastern Siberia (near Yakutsk) is predicted to experience significant changes in climate, in which the mean annual air temperature is projected to be positive and the annual precipitation will be doubled by the end of 21st century. Since the forest in this region is underlain by continuous permafrost, both increasing temperature and precipitation can affect the dynamics of forest through the soil water processes. To investigate such effects, we adopted a newly developed terrestrial ecosystem dynamics model named S-TEDy (SEIB-DGVM-originated Terrestrial Ecosystem Dynamics model), which mechanistically simulates "the way of life" of each individual tree and resulting tree mortality under the future climate conditions. This model was first developed for the simulation of the dynamics of a tropical rainforest in the Borneo Island, and successfully reproduced higher mortality of large trees due to a prolonged drought induced by ENSO event of 1997-1998. To apply this model to a larch forest in eastern Siberia, we are developing a soil submodel to consider the effect of thawing-freezing processes. We will present a simulation results using the future climate projection.
Biogeochemical cycling in terrestrial ecosystems - Modeling, measurement, and remote sensing
NASA Technical Reports Server (NTRS)
Peterson, D. L.; Matson, P. A.; Lawless, J. G.; Aber, J. D.; Vitousek, P. M.
1985-01-01
The use of modeling, remote sensing, and measurements to characterize the pathways and to measure the rate of biogeochemical cycling in forest ecosystems is described. The application of the process-level model to predict processes in intact forests and ecosystems response to disturbance is examined. The selection of research areas from contrasting climate regimes and sites having a fertility gradient in that regime is discussed, and the sites studied are listed. The use of remote sensing in determining leaf area index and canopy biochemistry is analyzed. Nitrous oxide emission is investigated by using a gas measurement instrument. Future research projects, which include studying the influence of changes on nutrient cycling in ecosystems and the effect of pollutants on the ecosystems, are discussed.
NASA Astrophysics Data System (ADS)
Osenga, E. C.; Cundiff, J.; Arnott, J. C.; Katzenberger, J.; Taylor, J. R.; Jack-Scott, E.
2015-12-01
An interactive tool called the Forest Health Index (FHI) has been developed for the Roaring Fork watershed of Colorado, with the purpose of improving public understanding of local forest management and ecosystem dynamics. The watershed contains large areas of White River National Forest, which plays a significant role in the local economy, particularly for recreation and tourism. Local interest in healthy forests is therefore strong, but public understanding of forest ecosystems is often simplified. This can pose challenges for land managers and researchers seeking a scientifically informed approach to forest restoration, management, and planning. Now in its second iteration, the FHI is a tool designed to help bridge that gap. The FHI uses a suite of indicators to create a numeric rating of forest functionality and change, based on the desired forest state in relation to four categories: Ecological Integrity, Public Health and Safety, Ecosystem Services, and Sustainable Use and Management. The rating is based on data derived from several sources including local weather stations, stream gauge data, SNOTEL sites, and National Forest Service archives. In addition to offering local outreach and education, this project offers broader insight into effective communication methods, as well as into the challenges of using quantitative analysis to rate ecosystem health. Goals of the FHI include its use in schools as a means of using local data and place-based learning to teach basic math and science concepts, improved public understanding of ecological complexity and need for ongoing forest management, and, in the future, its use as a model for outreach tools in other forested communities in the Intermountain West.
This EnviroAtlas web service contains layers depicting market-based programs and projects addressing ecosystem services protection in the United States. Layers include data collected via surveys and desk research conducted by Forest Trends' Ecosystem Marketplace from 2008 to 2016 on biodiversity (i.e., imperiled species/habitats; wetlands and streams), carbon, and water markets and enabling conditions that facilitate, directly or indirectly, market-based approaches to protecting and investing in those ecosystem services. This dataset was produced by Forest Trends' Ecosystem Marketplace for EnviroAtlas in order to support public access to and use of information related to environmental markets. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
A 2 °C warmer world is not safe for ecosystem services in the European Alps.
Elkin, Ché; Gutiérrez, Alvaro G; Leuzinger, Sebastian; Manusch, Corina; Temperli, Christian; Rasche, Livia; Bugmann, Harald
2013-06-01
Limiting the increase in global average temperature to 2 °C is the objective of international efforts aimed at avoiding dangerous climate impacts. However, the regional response of terrestrial ecosystems and the services that they provide under such a scenario are largely unknown. We focus on mountain forests in the European Alps and evaluate how a range of ecosystem services (ES) are projected to be impacted in a 2 °C warmer world, using four novel regional climate scenarios. We employ three complementary forest models to assess a wide range of ES in two climatically contrasting case study regions. Within each climate scenario we evaluate if and when ES will deviate beyond status quo boundaries that are based on current system variability. Our results suggest that the sensitivity of mountain forest ES to a 2 °C warmer world depends heavily on the current climatic conditions of a region, the strong elevation gradients within a region, and the specific ES in question. Our simulations project that large negative impacts will occur at low and intermediate elevations in initially warm-dry regions, where relatively small climatic shifts result in negative drought-related impacts on forest ES. In contrast, at higher elevations, and in regions that are initially cool-wet, forest ES will be comparatively resistant to a 2 °C warmer world. We also found considerable variation in the vulnerability of forest ES to climate change, with some services such as protection against rockfall and avalanches being sensitive to 2 °C global climate change, but other services such as carbon storage being reasonably resistant. Although our results indicate a heterogeneous response of mountain forest ES to climate change, the projected substantial reduction of some forest ES in dry regions suggests that a 2 °C increase in global mean temperature cannot be seen as a universally 'safe' boundary for the maintenance of mountain forest ES. © 2013 Blackwell Publishing Ltd.
C. Sean Dolter
2006-01-01
This paper reports on an initiative referred to as the Biodiversity Assessment Project (BAP). A suite of tools is being developed to assist forest managers in assessing the predicted future forest conditions of Newfoundland and Labradorâs forests under a variety of management scenarios. Since 1999, the Western Newfoundland Model Forest partnership...
David Rogers Tilley; Wayne T. Swank
2003-01-01
Emergy (with an 'm') synthesis was used to assess the balance between nature and humanity and the equity among forest outcomes of a US Forest Service ecosystem management demonstration project on the Wine Spring Creek watershed, a high-elevation (1600 m), temperate forest located in the southern Appalachian mountains of North Carolina, USA. EM embraces a...
S. Brooks; S. Cordell; L. Perry
2009-01-01
Hawaiian dry forests currently occupy a small fraction of their former range, and worldwide tropical dry forests are one of the most human-altered systems. Many small-scale projects have been successful in restoring native dry forests in abandoned pastures and degraded woodlands by outplanting after invasive species removal, but this is a costly approach. In this...
Climate-FVS Version 2: Content, users guide, applications, and behavior
Nicholas L. Crookston
2014-01-01
Climate change in the 21st Century is projected to cause widespread changes in forest ecosystems. Climate-FVS is a modification to the Forest Vegetation Simulator designed to take climate change into account when predicting forest dynamics at decadal to century time scales. Individual tree climate viability scores measure the likelihood that the climate at a given...
A successful experiment: The boundary spanner on the Bitterroot National Forest
Sharon Ritter
2006-01-01
The Bitterroot Ecosystem Management Research Project and the Bitterroot National Forest funded a boundary spanner to coordinate research activities taking place on the Forest, increase technology transfer and outreach, and foster increased dialogue among and between researchers and managers. Coordination involved use of a research special use permit and a GIS map to...
Maria K. Janowiak; Louis R. Iverson; Jon Fosgitt; Stephen D. Handler; Matt Dallman; Scott Thomasma; Brad Hutnik; Christopher W. Swanston
2017-01-01
Climate change is having important effects on forest ecosystems, presenting a challenge for natural resource professionals to reduce climate-associated impacts while still achieving diverse management objectives. Regional projections of climate change and forest response are becoming more readily available, but managers are still searching for practical ways to apply...
Forest forming process and dynamic vegetation models under global change
A. Shvidenko; E. Gustafson
2009-01-01
The paper analyzes mathematical models that are used to project the dynamics of forest ecosystems on different spatial and temporal scales. Landscape disturbance and succession models (LDSMs) are of a particular interest for studying the forest forming process in Northern Eurasia. They have a solid empirical background and are able to model ecological processes under...
Pérez-Luque, Antonio Jesús; Zamora, Regino; Bonet, Francisco Javier; Pérez-Pérez, Ramón
2015-01-01
Abstract In this data paper, we describe the dataset of the Global Change, Altitudinal Range Shift and Colonization of Degraded Habitats in Mediterranean Mountains (MIGRAME) project, which aims to assess the capacity of altitudinal migration and colonization of marginal habitats by Quercus pyrenaica Willd. forests in Sierra Nevada (southern Spain) considering two global-change drivers: temperature increase and land-use changes. The dataset includes information of the forest structure (diameter size, tree height, and abundance) of the Quercus pyrenaica ecosystem in Sierra Nevada obtained from 199 transects sampled at the treeline ecotone, mature forest, and marginal habitats (abandoned cropland and pine plantations). A total of 3839 occurrence records were collected and 5751 measurements recorded. The dataset is included in the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this mountain range. PMID:26491387
Driving Factors of Understory Evapotranspiration within a Siberian Larch Forest
NASA Astrophysics Data System (ADS)
Tobio, A.; Loranty, M. M.; Kropp, H.; Pena, H., III; Alexander, H. D.; Natali, S.; Kholodov, A. L.; Spawn, S.; Farmer, S.
2017-12-01
Amplified rates of climate change are causing alterations in vegetation productivity, hydrologic cycling, and wildfire severity and intensity in arctic ecosystems. Boreal larch forests in northeastern Siberia are a critical but understudied ecosystem that are affected by these modifications. These forests cover 2.5 million km2 with densities ranging from spare to thick. The current average canopy cover is at around 17% and is expected to increase with the observed increases in vegetation productivity and wildfire. These projected changes in forest density can alter the proportional contributions of over- and understory vegetation to whole ecosystem evapotranspiration. Low density boreal forests have much higher rates of understory evapotranspiration and can contribute as much as 80% to total ecosystem evapotranspiration, while the understory in high density forests is responsible for only around 15% of total ecosystem evapotranspiration. The objective of this research is to understand why there are changes in understory evapotranspiration with varying overstory density by looking at light levels, biomass, vegetation, and air and soil differences. To better learn about these differences in understory evapotranspiration in boreal larch forests the driving factors of evapotranspiration were measured within a burn scar with varying densities of high, medium, and low. Water fluxes were conducted using the static chamber technique under different environmental conditions. Furthermore, controlling factors of evapotranspiration such as photosynethically active radiation, vapor pressure deficit, soil moisture, moss cover, biomass, and leaf area index were measured or derived. In general, we found that low density areas have highest rates of evapotranspiration due to larger amount of biomass, and increased access to light, despite low levels of soil moisture. These results can help us understand how and why total ecosystem water exchange will change in boreal larch forests as they become denser.
Kulakowski, Dominik; Seidl, Rupert; Holeksa, Jan; Kuuluvainen, Timo; Nagel, Thomas A; Panayotov, Momchil; Svoboda, Miroslav; Thorn, Simon; Vacchiano, Giorgio; Whitlock, Cathy; Wohlgemuth, Thomas; Bebi, Peter
2017-03-15
Mountain forests are among the most important ecosystems in Europe as they support numerous ecological, hydrological, climatic, social, and economic functions. They are unique relatively natural ecosystems consisting of long-lived species in an otherwise densely populated human landscape. Despite this, centuries of intensive forest management in many of these forests have eclipsed evidence of natural processes, especially the role of disturbances in long-term forest dynamics. Recent trends of land abandonment and establishment of protected forests have coincided with a growing interest in managing forests in more natural states. At the same time, the importance of past disturbances highlighted in an emerging body of literature, and recent increasing disturbances due to climate change are challenging long-held views of dynamics in these ecosystems. Here, we synthesize aspects of this Special Issue on the ecology of mountain forest ecosystems in Europe in the context of broader discussions in the field, to present a new perspective on these ecosystems and their natural disturbance regimes. Most mountain forests in Europe, for which long-term data are available, show a strong and long-term effect of not only human land use but also of natural disturbances that vary by orders of magnitude in size and frequency. Although these disturbances may kill many trees, the forests themselves have not been threatened. The relative importance of natural disturbances, land use, and climate change for ecosystem dynamics varies across space and time. Across the continent, changing climate and land use are altering forest cover, forest structure, tree demography, and natural disturbances, including fires, insect outbreaks, avalanches, and wind disturbances. Projected continued increases in forest area and biomass along with continued warming are likely to further promote forest disturbances. Episodic disturbances may foster ecosystem adaptation to the effects of ongoing and future climatic change. Increasing disturbances, along with trends of less intense land use, will promote further increases in coarse woody debris, with cascading positive effects on biodiversity, edaphic conditions, biogeochemical cycles, and increased heterogeneity across a range of spatial scales. Together, this may translate to disturbance-mediated resilience of forest landscapes and increased biodiversity, as long as climate and disturbance regimes remain within the tolerance of relevant species. Understanding ecological variability, even imperfectly, is integral to anticipating vulnerabilities and promoting ecological resilience, especially under growing uncertainty. Allowing some forests to be shaped by natural processes may be congruent with multiple goals of forest management, even in densely settled and developed countries.
Carbon Offset Forestry: Forecasting Ecosystem Effects (COFFEE) Project Implementation Plan
COFFEE will evaluate the environmental impacts of implementing various COF practices by using the amount of total ecosystem C (TEC) sequestered in forests as the integrative response metric. These evaluations will be done for current-climate and future-climate scenarios and will...
NASA Astrophysics Data System (ADS)
Crosthwaite Eyre, Charles
2010-12-01
Payments for Ecosystem Services (PES) is an exciting and expanding opportunity for sustainably managed forests. PES are derived from a range of ecosystem benefits from forests including climate change mitigation through afforestation and avoided deforestation, green power generation, wetland and watershed rehabilitation, water quality improvement, marine flood defence and the reduction in desertification and soil erosion. Forests are also the ancestral home to many vulnerable communities which need protection. Sustainable forest management plays a key role in many of these services which generates a potentially critical source of finance. However, for forests to realise revenues from these PES, they must meet demanding standards of project validation and service verification. They also need geospatial data to manage and monitor operational risk. In many cases the data is difficult to collect on the ground - in some cases impossible. This will create a new demand for data that must be impartial, timely, area wide, accurate and cost effective. This presentation will highlight the unique capacity of EO to provide these geospatial inputs required in the generation of PES from forestry and demonstrate products with practical examples.
John H. Cissel; Frederick J. Swanson; Gordon E. Grant; Deanna H. Olson; Gregory V. Stanley; Steven L. Garman; Linda R. Ashkenas; Matthew G. Hunter; Jane A. Kertis; James H. Mayo; Michelle D. McSwain; Sam G. Swetland; Keith A. Swindle; David O. Wallin
1998-01-01
The Augusta Creek project was initiated to establish and integrate landscape and watershed objectives into a landscape plan to guide management activities within a 7600-hectare (19,000-acre) planning area in western Oregon. Primary objectives included the maintenance of native species, ecosystem processes and structures, and long-term ecosystem productivity in a...
Developing and managing sustainable forest ecosystems for spotted owls in the Sierra Nevada
J. Verner; K.S. McKelvey
1994-01-01
Studies of the California spotted owl have revealed significant selection for habitats with large, old trees; relatively high basal areas of snags; and relatively high biomass in large, downed logs. Based on planning documents for national forests in the Sierra Nevada, we projected declining amounts of older-forest attributes. Region 5 has adopted measures to retain...
Artificial watershed acidification on the Fernow Experimental Forest, USA
M.B. Adams; P.J. Edwards; F. Wood; J.N. Kochenderfer
1993-01-01
A whole-watershed manipulation project was begun on the Fernow Experimental Forest in West Virginia, USA, in 1987, with the objective of increasing understanding of the effects of acidic deposition on forest ecosystems. Two treatment watersheds (WS9 and WS3) and one control watershed (WS4) were included. Treatments were twice-ambient N and S deposition, applied via NH...
Expanding the vision of the Experimental Forest and Range network to urban areas
J. Morgan Grove
2014-01-01
After 100 years, the USDA Forest Service has emerging opportunities to expand the Experimental Forest and Range (EFR) network to urban areas. The purpose of this expansion would be to broaden the types of ecosystems studied, interdisciplinary approaches used, and relevance to society of the EFR network through long-term and large-scale social-ecological projects in...
Matthew B. Russell; Grant M. Domke; Christopher W. Woodall; Anthony W. D' Amato
2015-01-01
Background: Refined estimation of carbon (C) stocks within forest ecosystems is a critical component of efforts to reduce greenhouse gas emissions and mitigate the effects of projected climate change through forest C management. Specifically, belowground C stocks are currently estimated in the United States' national greenhouse gas inventory (US NGHGI) using...
Stand-level bird response to experimental forest management in the Missouri Ozarks
Sarah W. Kendrick; Paul A. Porneluzi; Frank R. Thompson; Dana L. Morris; Janet M. Haslerig; John Faaborg
2015-01-01
Long-term landscape-scale experiments allow for the detection of effects of silviculture on bird abundance. Manipulative studies allow for strong inference on effects and confirmation of patterns from observational studies.We estimated bird-territory density within forest stands (2.89-62 ha) for 19 years of the Missouri Ozark Forest Ecosystem Project (MOFEP), a 100-...
Jianwei Zhang; Martin W. Ritchie
2008-01-01
The ecological research project of interior ponderosa pine forests at the Blacks Mountain Experimental Forest in northeastern California was initiated by an interdisciplinary team of scientists in the early 1990s. The objectives of this study were to determine the effect of stand structure, and prescribed fire on vegetation growth, resilience, and sustainability of...
Plant hydraulic diversity buffers forest ecosystem responses to drought
NASA Astrophysics Data System (ADS)
Anderegg, W.; Konings, A. G.; Trugman, A. T.; Pacala, S. W.; Yu, K.; Sulman, B. N.; Sperry, J.; Bowling, D. R.
2017-12-01
Drought impacts carbon, water, and energy cycles in forests and may pose a fundamental threat to forests in future climates. Plant hydraulic transport of water is central to tree drought responses, including curtailing of water loss and the risk of mortality during drought. The effect of biodiversity on ecosystem function has typically been examined in grasslands, yet the diversity of plant hydraulic strategies may influence forests' response to drought. In a combined analysis of eddy covariance measurements, remote-sensing data of plant water content variation, model simulations, and plant hydraulic trait data, we test the degree to which plant water stress schemes influence the carbon cycle and how hydraulic diversity within and across ecosystems affects large-scale drought responses. We find that current plant functional types are not well-suited to capture hydraulic variation and that higher hydraulic diversity buffers ecosystem variation during drought. Our results demonstrate that tree functional diversity, particularly hydraulic diversity, may be critical to simulate in plant functional types in current land surface model projections of future vegetation's response to climate extremes.
Modeling Climate-Biosphere Interactions in the Boreal Forest
NASA Technical Reports Server (NTRS)
Frolking, Steve
1998-01-01
The overall goal of this BOREAS Program was to develop, test, and apply a model of the carbon balance of boreal forest sites with a significant groundcover component (moss or lichen). The basic question addressed with this model was: What is the sensitivity of the boreal forest carbon balance to weather variability? More specifically: What are the differences in the sensitivities of carbon gains (photosynthesis) and carbon losses (respiration) of the various components of the ecosystem? Are there different seasonalities to their sensitivities (e.g., warmer springs will have one effect, warmer summers a different effect)? What are the effects of different patterns of successive weather years (wet/dry, warm/cool)? What, for example, would be the difference in effects of two "warmer than normal" months-one with each day warmer than normal, and the other with three normal weeks and one very hot week? Due to weather variability, how "noisy" will any carbon flux or carbon pool signal be that we might use to try to detect change? The project resulted in the development of a new boreal forest ecosystem model. This model was the first model in the BOREAS project to look closely at the role of mosses in the ecosystem carbon balance, and also was the first model in the BOREAS project to look closely at interannual variability in carbon fluxes. Along with the work of many other groups, TE-19 modeling analysis pointed to the need for a second, longer field season in 1996, with particular focus on the spring and fall transitions and on ground vegetation. BOREAS groups TE-19 (Frolking), TGB-1 (Crill) & TGB-3 (Moore & Roulet) analyzed BOREAS data and other published and unpublished data to develop a relationship between peatland ecosystem productivity and incoming radiation, which is quite distinct from the upland ecosystem relationships observed in other studies.
NASA Technical Reports Server (NTRS)
Sellers, Piers J.
1991-01-01
The Boreal Ecosystems Atmosphere Study (BOREAS) is a cooperative field and analysis project involving elements of land surface climatology, tropospheric chemistry, and terrestrial ecology. The goal of the study is to understand the interactions between the boreal forest biome and the atmosphere in order to clarify their roles in global change. The study will be centered on two 20 by 20 km sites within the North American boreal forest region, located near the northern and southern limits of the biome. Studies based at these sites will be used to explore the roles of various environmental factors in controlling the extent and character of the biome. The sites will be the subject of surface, airborne, and satellite based observations which aim to improve understanding of the biological and physical processes and states which govern the exchanges of energy, water, carbon, and trace gases between boreal forest ecosystems and the atmosphere. Particular reference will be made to those processes and states that may be sensitive to global change. The study also aims to develop the use of remote sensing techniques to transfer understanding of the above process from local scales out to regional scales. The BOREAS project is being planned for 1992-1996, with a major field effort in 1994.
Kulakowski, Dominik; Seidl, Rupert; Holeksa, Jan; Kuuluvainen, Timo; Nagel, Thomas A.; Panayotov, Momchil; Svoboda, Miroslav; Thorn, Simon; Vacchiano, Giorgio; Whitlock, Cathy; Wohlgemuth, Thomas; Bebi, Peter
2017-01-01
Mountain forests are among the most important ecosystems in Europe as they support numerous ecological, hydrological, climatic, social, and economic functions. They are unique relatively natural ecosystems consisting of long-lived species in an otherwise densely populated human landscape. Despite this, centuries of intensive forest management in many of these forests have eclipsed evidence of natural processes, especially the role of disturbances in long-term forest dynamics. Recent trends of land abandonment and establishment of protected forests have coincided with a growing interest in managing forests in more natural states. At the same time, the importance of past disturbances highlighted in an emerging body of literature, and recent increasing disturbances due to climate change are challenging long-held views of dynamics in these ecosystems. Here, we synthesize aspects of this Special Issue on the ecology of mountain forest ecosystems in Europe in the context of broader discussions in the field, to present a new perspective on these ecosystems and their natural disturbance regimes. Most mountain forests in Europe, for which long-term data are available, show a strong and long-term effect of not only human land use but also of natural disturbances that vary by orders of magnitude in size and frequency. Although these disturbances may kill many trees, the forests themselves have not been threatened. The relative importance of natural disturbances, land use, and climate change for ecosystem dynamics varies across space and time. Across the continent, changing climate and land use are altering forest cover, forest structure, tree demography, and natural disturbances, including fires, insect outbreaks, avalanches, and wind disturbances. Projected continued increases in forest area and biomass along with continued warming are likely to further promote forest disturbances. Episodic disturbances may foster ecosystem adaptation to the effects of ongoing and future climatic change. Increasing disturbances, along with trends of less intense land use, will promote further increases in coarse woody debris, with cascading positive effects on biodiversity, edaphic conditions, biogeochemical cycles, and increased heterogeneity across a range of spatial scales. Together, this may translate to disturbance-mediated resilience of forest landscapes and increased biodiversity, as long as climate and disturbance regimes remain within the tolerance of relevant species. Understanding ecological variability, even imperfectly, is integral to anticipating vulnerabilities and promoting ecological resilience, especially under growing uncertainty. Allowing some forests to be shaped by natural processes may be congruent with multiple goals of forest management, even in densely settled and developed countries. PMID:28860677
NASA Astrophysics Data System (ADS)
Jiang, L.; Shi, Z.; Xia, J.; Liang, J.; Lu, X.; Wang, Y.; Luo, Y.
2017-12-01
Uptake of anthropogenically emitted carbon (C) dioxide by terrestrial ecosystem is critical for determining future climate. However, Earth system models project large uncertainties in future C storage. To help identify sources of uncertainties in model predictions, this study develops a transient traceability framework to trace components of C storage dynamics. Transient C storage (X) can be decomposed into two components, C storage capacity (Xc) and C storage potential (Xp). Xc is the maximum C amount that an ecosystem can potentially store and Xp represents the internal capacity of an ecosystem to equilibrate C input and output for a network of pools. Xc is co-determined by net primary production (NPP) and residence time (𝜏N), with the latter being determined by allocation coefficients, transfer coefficients, environmental scalar, and exit rate. Xp is the product of redistribution matrix (𝜏ch) and net ecosystem exchange. We applied this framework to two contrasting ecosystems, Duke Forest and Harvard Forest with an ecosystem model. This framework helps identify the mechanisms underlying the responses of carbon cycling in the two forests to climate change. The temporal trajectories of X are similar between the two ecosystems. Using this framework, we found that two different mechanisms leading to the similar trajectory. This framework has potential to reveal mechanisms behind transient C storage in response to various global change factors. It can also identify sources of uncertainties in predicted transient C storage across models and can therefore be useful for model intercomparison.
NASA Astrophysics Data System (ADS)
Fisk, J.; Hurtt, G. C.; le page, Y.; Patel, P. L.; Chini, L. P.; Sahajpal, R.; Dubayah, R.; Thomson, A. M.; Edmonds, J.; Janetos, A. C.
2013-12-01
Integrated assessment models (IAMs) simulate the interactions between human and natural systems at a global scale, representing a broad suite of phenomena across the global economy, energy system, land-use, and carbon cycling. Most proposed climate mitigation strategies rely on maintaining or enhancing the terrestrial carbon sink as a substantial contribution to restrain the concentration of greenhouse gases in the atmosphere, however most IAMs rely on simplified regional representations of terrestrial carbon dynamics. Our research aims to reduce uncertainties associated with forest modeling within integrated assessments, and to quantify the impacts of climate change on forest growth and productivity for integrated assessments of terrestrial carbon management. We developed the new Integrated Ecosystem Demography (iED) to increase terrestrial ecosystem process detail, resolution, and the utilization of remote sensing in integrated assessments. iED brings together state-of-the-art models of human society (GCAM), spatial land-use patterns (GLM) and terrestrial ecosystems (ED) in a fully coupled framework. The major innovative feature of iED is a consistent, process-based representation of ecosystem dynamics and carbon cycle throughout the human, terrestrial, land-use, and atmospheric components. One of the most challenging aspects of ecosystem modeling is to provide accurate initialization of land surface conditions to reflect non-equilibrium conditions, i.e., the actual successional state of the forest. As all plants in ED have an explicit height, it is one of the few ecosystem models that can be initialized directly with vegetation height data. Previous work has demonstrated that ecosystem model resolution and initialization data quality have a large effect on flux predictions at continental scales. Here we use a factorial modeling experiment to quantify the impacts of model integration, process detail, model resolution, and initialization data on projections of future climate mitigation strategies. We find substantial effects on key integrated assessment projections including the magnitude of emissions to mitigate, the economic value of ecosystem carbon storage, future land-use patterns, food prices and energy technology.
A case study for evaluating potential soil sensitivity in aridland systems.
Peterman, Wendy L; Ferschweiler, Ken
2016-04-01
Globally, ecosystems are subjected to prolonged droughts and extreme heat events, leading to forest die-offs and dominance shifts in vegetation. Some scientists and managers view soil as the main resource to be considered in monitoring ecosystem responses to aridification. As the medium through which precipitation is received, stored, and redistributed for plant use, soil is an important factor in the sensitivity of ecosystems to a drying climate. This study presents a novel approach to evaluating where on a landscape soils may be most sensitive to drying, making them less resilient to disturbance, and where potential future vegetation changes could lead to such disturbance. The drying and devegetation of arid lands can increase wind erosion, contributing to aerosol and dust emissions. This has implications for air quality, human health, and water resources. This approach combines soil data with vegetation simulations, projecting future vegetation change, to create maps of potential areas of concern for soil sensitivity and dust production in a drying climate. Consistent with recent observations, the projections show shifts from grasslands and woodlands to shrublands in much of the southwestern region. An increase in forested area occurs, but shifts in the dominant types and spatial distribution of the forests also are seen. A net increase in desert ecosystems in the region and some changes in alpine and tundra ecosystems are seen. Approximately 124,000 km(2) of soils flagged as "sensitive" are projected to have vegetation change between 2041 and 2050, and 82,927 km(2) of soils may become sensitive because of future vegetation changes. These maps give managers a way to visualize and identify where soils and vegetation should be investigated and monitored for degradation in a drying climate, so restoration and mitigation strategies can be focused in these areas. © 2015 SETAC.
Linda H. Pardo
2010-01-01
Projected emissions of sulfur and nitrogen are expected to have continuing negative impacts on forests, in spite of reductions in sulfur emissions as a result of SO2 control programs. Sulfur and nitrogen emissions present serious long-term threats to forest health and productivity in the United States. This report is intended to explain the...
Debby K. Frantz; Rochelle B. Renken
2002-01-01
We conducted a capture-recapture study on the northeast-facing slopes of the MOFEP sites in south central Missouri to determine the initial effects of even- and uneven-aged forest management on species composition, species richness, and relative abundance of the small mammal communities. We compared changes between pre-treatment (1994-1995) and post-treatment (1998-...
Linda M. Nagel; Brian J. Palik; Michael A. Battaglia; Anthony W. D' Amato; James M. Guldin; Chris Swanston; Maria K. Janowiak; Matthew P. Powers; Linda A. Joyce; Constance I. Millar; David L. Peterson; Lisa M. Ganio; Chad Kirschbaum; Molly R. Roske
2017-01-01
Forest managers in the United States must respond to the need for climate-adaptive strategies in the face of observed and projected climatic changes. However, there is a lack of on-the-ground forest adaptation research to indicate what adaptation measures or tactics might be effective in preparing forest ecosystems to deal with climate change. Natural resource managers...
Ralph Alig
2010-01-01
Since World War II, socio-economic drivers of US urbanization such as population totals and personal income levels have increased substantially. Human land use is the primary force driving changes in forest ecosystem attributes including forest area, which is the focus of this paper. The percentage of the US population residing in urban areas is higher than that in...
Forest Dynamics at the Missouri Ozark Forest Ecosystem Project viewed through stocking diagrams
David R. Larsen; John M. Kabrick; Stephen R. Shifley; Randy G. Jensen
2017-01-01
Stocking diagrams come in two forms, the Gingrich diagram and the density management diagram. While they both present the same information about a forest stand, they each provide a different perspective on the data being displayed. Density management diagrams have been around since the 1930s and the Gingrich diagram has been around since the 1960s, but applications of...
GRA prospectus: optimizing design and management of protected areas
Bernknopf, Richard; Halsing, David
2001-01-01
Protected areas comprise one major type of global conservation effort that has been in the form of parks, easements, or conservation concessions. Though protected areas are increasing in number and size throughout tropical ecosystems, there is no systematic method for optimally targeting specific local areas for protection, designing the protected area, and monitoring it, or for guiding follow-up actions to manage it or its surroundings over the long run. Without such a system, conservation projects often cost more than necessary and/or risk protecting ecosystems and biodiversity less efficiently than desired. Correcting these failures requires tools and strategies for improving the placement, design, and long-term management of protected areas. The objective of this project is to develop a set of spatially based analytical tools to improve the selection, design, and management of protected areas. In this project, several conservation concessions will be compared using an economic optimization technique. The forest land use portfolio model is an integrated assessment that measures investment in different land uses in a forest. The case studies of individual tropical ecosystems are developed as forest (land) use and preservation portfolios in a geographic information system (GIS). Conservation concessions involve a private organization purchasing development and resource access rights in a certain area and retiring them. Forests are put into conservation, and those people who would otherwise have benefited from extracting resources or selling the right to do so are compensated. Concessions are legal agreements wherein the exact amount and nature of the compensation result from a negotiated agreement between an agent of the conservation community and the local community. Funds are placed in a trust fund, and annual payments are made to local communities and regional/national governments. The payments are made pending third-party verification that the forest expanse and quality have been maintained.
NASA Astrophysics Data System (ADS)
Gobbi, José; Deguillon, Marie
2017-04-01
Payments for ecosystem services (PES) aim to improve the supply of ecosystem services (ES) by making payments to service providers, which are conditional on the provision of those services. Payments cannot be conditional unless the service can be effectively monitored. Direct monitoring of ES to assess conditionality could be methodologically complex and operatively expensive. To overcome such constraints, the pilot "GEF-PES Project" of Northern Argentina has developed a set of five indicators on forest conservation status (CS) as a basis for estimating the amount of ES provided -considering a positive correlation between the CS of a forest and its level of provision of ecosystem services -and for operationalizing the PES. Field data indicate that selected indicators: (i) exhibit strong correlation with the amount of carbon and biodiversity provided by forests according to their CS, ii) are cost-effective to monitor ES conditionality and (iii) allow easy application of payment levels.
Whole-ecosystem experimental manipulations of tropical forests.
Fayle, Tom M; Turner, Edgar C; Basset, Yves; Ewers, Robert M; Reynolds, Glen; Novotny, Vojtech
2015-06-01
Tropical forests are highly diverse systems involving extraordinary numbers of interactions between species, with each species responding in a different way to the abiotic environment. Understanding how these systems function and predicting how they respond to anthropogenic global change is extremely challenging. We argue for the necessity of 'whole-ecosystem' experimental manipulations, in which the entire ecosystem is targeted, either to reveal the functioning of the system in its natural state or to understand responses to anthropogenic impacts. We survey the current range of whole-ecosystem manipulations, which include those targeting weather and climate, nutrients, biotic interactions, human impacts, and habitat restoration. Finally we describe the unique challenges and opportunities presented by such projects and suggest directions for future experiments. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Piton, Guillaume; Tacnet, Jean Marc; Berger, Frédéric; Curt, Corinne; Curt, Thomas; Arnaud, Patrick
2017-04-01
NAIAD (NAture Insurance value: Assessment and Demonstration) is a H2020 European project gathering 23 partners interested in ecosystems services related to water. The project more specifically links nature services to the assurance world and aims to operationalise "Natural Assurance Schemes", defined as a range of schemes to internalise the value of ecosystems services, e.g., the buffering role of river systems against water risks, in insurance policies. It is based on an assessment methodology that includes the physical, socio-cultural and valuation aspects of ecosystems services in relation to water, adapted to the institutional frame to align economic incentives and financial flows. Within the NAIAD projet, IRSTEA will more specifically try to highlight the role of mountain forests in torrential flood hazards and risks. The forest eventually acts on hydrology by buffering part of the rainwater. Vegetation has also a key role in soil conservation by curtailing primary sediment production in the hillslopes. Conversely, woody debris dramatically aggravate hazards by clogging bridges and key protections structures as open check dams. Finally this dual role may change in time due to the forest vulnerability to climatic, biologic or physical changes, e.g. after a wildfire. The first project step will be an extensive literature review on all these effects. Secondly indicators describing the torrential systems will be proposed and link to variably pronounced influence of forest. In a third time, case studies will be undertaken. The dramatic flood that occur in the region of Nice in summer 2015 (20 fatalities) will probably be used as a benchmark test. Several scenarios of alternative forest and river managements under varying climate forcing will be tested later. Complete torrential risk assessment studies will be performed on several sites within this project, with and without the forest influences in order to highlight its role. Numerous check dams have been built in headwaters to facilitate reforestation in the past, their influence on the torrential flood triggering (e.g., sediment supply) and transfer (e.g., debris flow propagation) will be assessed. The effectiveness of protections structures as debris basins and woody debris traps will be studied. They are supposed to be key solutions to the drawbacks of woody debris jams resulting from forest standing in catchments, other effects on hydrology and sediment production being quite positive. The issue of uncertainty and its propagation along the whole chain of analysis will be subject to a special effort in our work. The NAIAD project just beginning in 2017, we propose to present the research steps and data treatment chains that are planned to be used along the project. More results and the case studies being under progress.
Modeling the temporal dynamics of nonstructural carbohydrate pools in forest trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, Andrew D.
Trees store carbohydrates, in the form of sugars and starch, as reserves to be used to power both future growth as well as to support day-to-day metabolic functions. These reserves are particularly important in the context of how trees cope with disturbance and stress—for example, as related to pest outbreaks, wind or ice damage, and extreme climate events. In this project, we measured the size of carbon reserves in forest trees, and determined how quickly these reserves are used and replaced—i.e., their “turnover time”. Our work was conducted at Harvard Forest, a temperate deciduous forest in central Massachusetts. Through fieldmore » sampling, laboratory-based chemical analyses, and allometric modeling, we scaled these measurements up to whole-tree NSC budgets. We used these data to test and improve computer simulation models of carbon flow through forest ecosystems. Our modeling focused on the mathematical representation of these stored carbon reserves, and we examined the sensitivity of model performance to different model structures. This project contributes to DOE’s goal to improve next-generation models of the earth system, and to understand the impacts of climate change on terrestrial ecosystems.« less
Hurteau, Matthew D
2017-01-01
Climate projections for the southwestern US suggest a warmer, drier future and have the potential to impact forest carbon (C) sequestration and post-fire C recovery. Restoring forest structure and surface fire regimes initially decreases total ecosystem carbon (TEC), but can stabilize the remaining C by moderating wildfire behavior. Previous research has demonstrated that fire maintained forests can store more C over time than fire suppressed forests in the presence of wildfire. However, because the climate future is uncertain, I sought to determine the efficacy of forest management to moderate fire behavior and its effect on forest C dynamics under current and projected climate. I used the LANDIS-II model to simulate carbon dynamics under early (2010-2019), mid (2050-2059), and late (2090-2099) century climate projections for a ponderosa pine (Pinus ponderosa) dominated landscape in northern Arizona. I ran 100-year simulations with two different treatments (control, thin and burn) and a 1 in 50 chance of wildfire occurring. I found that control TEC had a consistent decline throughout the simulation period, regardless of climate. Thin and burn TEC increased following treatment implementation and showed more differentiation than the control in response to climate, with late-century climate having the lowest TEC. Treatment efficacy, as measured by mean fire severity, was not impacted by climate. Fire effects were evident in the cumulative net ecosystem exchange (NEE) for the different treatments. Over the simulation period, 32.8-48.9% of the control landscape was either C neutral or a C source to the atmosphere and greater than 90% of the thin and burn landscape was a moderate C sink. These results suggest that in southwestern ponderosa pine, restoring forest structure and surface fire regimes provides a reasonable hedge against the uncertainty of future climate change for maintaining the forest C sink.
2017-01-01
Climate projections for the southwestern US suggest a warmer, drier future and have the potential to impact forest carbon (C) sequestration and post-fire C recovery. Restoring forest structure and surface fire regimes initially decreases total ecosystem carbon (TEC), but can stabilize the remaining C by moderating wildfire behavior. Previous research has demonstrated that fire maintained forests can store more C over time than fire suppressed forests in the presence of wildfire. However, because the climate future is uncertain, I sought to determine the efficacy of forest management to moderate fire behavior and its effect on forest C dynamics under current and projected climate. I used the LANDIS-II model to simulate carbon dynamics under early (2010–2019), mid (2050–2059), and late (2090–2099) century climate projections for a ponderosa pine (Pinus ponderosa) dominated landscape in northern Arizona. I ran 100-year simulations with two different treatments (control, thin and burn) and a 1 in 50 chance of wildfire occurring. I found that control TEC had a consistent decline throughout the simulation period, regardless of climate. Thin and burn TEC increased following treatment implementation and showed more differentiation than the control in response to climate, with late-century climate having the lowest TEC. Treatment efficacy, as measured by mean fire severity, was not impacted by climate. Fire effects were evident in the cumulative net ecosystem exchange (NEE) for the different treatments. Over the simulation period, 32.8–48.9% of the control landscape was either C neutral or a C source to the atmosphere and greater than 90% of the thin and burn landscape was a moderate C sink. These results suggest that in southwestern ponderosa pine, restoring forest structure and surface fire regimes provides a reasonable hedge against the uncertainty of future climate change for maintaining the forest C sink. PMID:28046079
Effect of tree line advance on carbon storage in NW Alaska
Wilmking, M.; Harden, J.; Tape, K.
2006-01-01
We investigated the size, distribution, and temporal dynamics of ecosystem carbon (C) pools in an area of recent tree line advance, northwest Alaska. Repeat aerial photographs show forest cover increased ???10% in our study area since 1949. We sampled C pools of four principal ecosystem types, tussock tundra, shrub tundra, woodland, and forest, all located on a 600-800 year old river terrace. Significant differences between ecosystem C pools, both above ground and below ground existed. Tundra sites store >22.2 kg C/m2, shrub tundra sites and woodland sites store 9.7 kg C/m2 and 14.3 kg C/m2, respectively, and forest sites store 14.4 kg C/m2. Landscape variation of total ecosystem C was primarily due to organic soil C and was secondarily due to C stored in trees. Soil C/N profiles of shrub tundra sites and woodland sites showed similarities with forest site soils at surface and tundra site soils at depth. We hypothesize that tundra systems transformed to forest systems in this area under a progression of permafrost degradation and enhanced drainage. On the basis of C pool estimates for the different ecosystem types, conversion of tundra sites to forest may have resulted in a net loss of > 7.8 kg C/m2, since aboveground C gains were more than offset by belowground C losses to decomposition in the tundra sites. Tree line advance therefore might not increase C storage in high-latitude ecosystems and thus might not, as previously suggested, act as a negative feedback to warming. Key to this hypothesis and to its projection to future climate response is the fate of soil carbon upon warming and permafrost drainage. Copyright 2006 by the American Geophysical Union.
Estimating forest fuels in the Southwest using forest inventory data
Krista M. Gebert; Ervin G. Schuster; Sharon Woudenberg; Renee O' Brien
2008-01-01
Catastrophic wildfires occurring over the last several years have led land management agencies to focus on reducing hazardous fuels. These wildland fuel reduction projects will likely be concentrated in shorter interval, fire-adapted ecosystems that have been moderately or significantly altered from their historical range. But where are these situations located? What...
Asko Noormets; Steve G. McNulty; Jared L. DeForest; Ge Sun; Qinglin Li; Jiquan Chen
2008-01-01
Climate change projections predict an intensifying hydrologic cycle and an increasing frequency of droughts, yet quantitative understanding of the effects on ecosystem carbon exchange remains limitedHere, the effect of contrasting precipitation and soil moisture dynamics were evaluated on forest carbon exchange using 2 yr of...
Calibration of state and transition models with FVS
Melinda Moeur; Don Vandendriesche
2010-01-01
The Interagency Mapping and Assessment Project (IMAP), a partnership between federal and state agencies, is developing mid-scale vegetation data and state and transition models (STM) for comparing the likely outcomes of alternative management policies on forested landscapes across the Pacific Northwest Region. In an STM, acres within a forested ecosystem transition...
Maintenance of productive capacity of forest ecosystems
W. Keith Moser; Patrick D. Miles; Aimee Stephens; Dale D. Gormanson; Stephen R. Shifley; Dave Wear; Robert J. Huggett; Ruhong Li
2016-01-01
This chapter reports projected changes in forest area, age, volume, biomass, number of trees, and removals from 2010 to 2060 for alternative scenarios that bracket a range of possible future socioeconomic and climate conditions in the Northern United States, which consists of 20 central and northeastern States. As described in Chapter 2, the scenarios incorporate...
NED-2: A decision support system for integrated forest ecosystem management
Mark J. Twery; Peter D. Knopp; Scott A. Thomasma; H. Michael Rauscher; Donald E. Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mayukh Dass; Hajime Uchiyama; Astrid Glende; Robin E. Hoffman
2005-01-01
NED-2 is a Windows-based system designed to improve project-level planning and decision making by providing useful and scientifically sound information to natural resource managers. Resources currently addressed include visual quality, ecology, forest health, timber, water, and wildlife. NED-2 expands on previous versions of NED applications by integrating treatment...
NED-2: a decision support system for integrated forest ecosystem management
Mark J. Twery; Peter D. Knopp; Scott A. Thomasma; H. Michael Rauscher; Donald E. Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mayukh Dass; Hajime Uchiyama; Astrid Glende; Robin E. Hoffman
2005-01-01
NED-2 is a Windows-based system designed to improve project-level planning and decision making by providing useful and scientifically sound information to natural resource managers. Resources currently addressed include visual quality, ecology, forest health, timber, water, and wildlife. NED-2 expands on previous versions of NED applications by integrating treatment...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The Fundamental Skills Training Project
2003-08-01
rejecting hypotheses. This ITS teaches ecology concepts in areas including biomes , abiotic factors of plant growth, biotic factors in ecosystems, human...Deserts, Temperate Deciduous Forests, Coniferous Forests, Tropical Rainforests, Polar Regions, Tundra, Fresh Water, Marine . Abiotic Factors...critical points in each workspace. Incorporating motivational features that address individual characteristics such as learning styles and interests
Alan Gallegos
2002-01-01
Watershed analyses and assessments for the Kings River Sustainable Forest Ecosystems Project were done on about 33,000 acres of the 45,500-acre Big Creek watershed and 32,000 acres of the 85,100-acre Dinkey Creek watershed. Following procedures developed for analysis of cumulative watershed effects (CWE) in the Pacific Northwest Region of the USDA Forest Service, the...
Drought enhances symbiotic dinitrogen fixation and competitive ability of a temperate forest tree
Nina Wurzburger; Chelcy Ford Miniat
2013-01-01
General circulation models project more intense and frequent droughts over the next century, but many questions remain about how terrestrial ecosystems will respond. Of particular importance, is to understand how drought will alter the species composition of regenerating temperate forests wherein symbiotic dinitrogen (N2)- fixing plants play a...
Nancy E. Fleenor
2002-01-01
A Landscape Analysis Plan (LAP) sets out broad guidelines for project development within boundaries of the Kings River Sustainable Forest Ecosystems Project. The plan must be a dynamic, living document, subject to change as new information arises over the course of this very long-term project (several decades). Two watersheds, each of 32,000 acres, were dedicated to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickler, R.A.; Fox, S.A.
The mission of the SGCP is to conduct research and monitoring in the southern region of the US; to determine the interactive responses among forest ecosystems, atmospheric pollution, and climate change; and to use this knowledge to manage and protect forest ecosystems. The first 5 years of research have emphasized the interactions and impacts of five stresses: CO{sub 2}, ozone, temperature, moisture, and nutrients in pine ecosystems. Hierarchial research approaches include correlational studies, experimental field and lab studies, and modeling Across individual-tree to regional levels. The results from 36 projects suggest: elevated CO{sub 2} increases carbon gain and suppress respirationmore » across site-resource conditions; genotypes are differentially affected by climate events; and competition and reproductive biology are likely to be impacted by climate change. An overview of five years of research results will be discussed.« less
Collected Data of The Boreal Ecosystem and Atmosphere Study (BOREAS)
NASA Technical Reports Server (NTRS)
Newcomer, J. (Editor); Landis, D. (Editor); Conrad, S. (Editor); Curd, S. (Editor); Huemmrich, K. (Editor); Knapp, D. (Editor); Morrell, A. (Editor); Nickerson, J. (Editor); Papagno, A. (Editor); Rinker, D. (Editor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) was a large-scale international interdisciplinary climate-ecosystem interaction experiment in the northern boreal forests of Canada. Its goal was to improve our understanding of the boreal forests -- how they interact with the atmosphere, how much CO2 they can store, and how climate change will affect them. BOREAS wanted to learn to use satellite data to monitor the forests, and to improve computer simulation and weather models so scientists can anticipate the effects of global change. This BOREAS CD-ROM set is a set of 12 CD-ROMs containing the finalized point data sets and compressed image data from the BOREAS Project. All point data are stored in ASCII text files, and all image and GIS products are stored as binary images, compressed using GZip. Additional descriptions of the various data sets on this CD-ROM are available in other documents in the BOREAS series.
Pamela H. Templer; Andrew F. Schiller; Nathan W. Fuller; Anne M. Socci; John L. Campbell; John E. Drake; Thomas H. Kunz
2012-01-01
Projected changes in climate for the northeastern USA over the next 100 years include a reduction in the depth and duration of the winter snowpack, which could affect soil temperatures and frost regimes. We conducted a snow-removal experiment in a northern hardwood forest at the Hubbard Brook Experimental Forest in central New Hampshire over 2 years to induce soil...
Tropical forest response to elevated CO2: Model-experiment integration at the AmazonFACE site.
NASA Astrophysics Data System (ADS)
Frankenberg, C.; Berry, J. A.; Guanter, L.; Joiner, J.
2014-12-01
The terrestrial biosphere's response to current and future elevated atmospheric carbon dioxide (eCO2) is a large source of uncertainty in future projections of the C cycle, climate and ecosystem functioning. In particular, the sensitivity of tropical rainforest ecosystems to eCO2 is largely unknown even though the importance of tropical forests for biodiversity, carbon storage and regional and global climate feedbacks is unambiguously recognized. The AmazonFACE (Free-Air Carbon Enrichment) project will be the first ecosystem scale eCO2 experiment undertaken in the tropics, as well as the first to be undertaken in a mature forest. AmazonFACE provides the opportunity to integrate ecosystem modeling with experimental observations right from the beginning of the experiment, harboring a two-way exchange, i.e. models provide hypotheses to be tested, and observations deliver the crucial data to test and improve ecosystem models. We present preliminary exploration of observed and expected process responses to eCO2 at the AmazonFACE site from the dynamic global vegetation model LPJ-GUESS, highlighting opportunities and pitfalls for model integration of tropical FACE experiments. The preliminary analysis provides baseline hypotheses, which are to be further developed with a follow-up multiple model inter-comparison. The analysis builds on the recently undertaken FACE-MDS (Model-Data Synthesis) project, which was applied to two temperate FACE experiments and exceeds the traditional focus on comparing modeled end-target output. The approach has proven successful in identifying well (and less well) represented processes in models, which are separated for six clusters also here; (1) Carbon fluxes, (2) Carbon pools, (3) Energy balance, (4) Hydrology, (5) Nutrient cycling, and (6) Population dynamics. Simulation performance of observed conditions at the AmazonFACE site (a.o. from Manaus K34 eddy flux tower) will highlight process-based model deficiencies, and aid the separation of uncertainties arising from general ecosystem responses and those responses related to eCO2.
Tropical forest response to elevated CO2: Model-experiment integration at the AmazonFACE site.
NASA Astrophysics Data System (ADS)
Fleischer, K.
2015-12-01
The terrestrial biosphere's response to current and future elevated atmospheric carbon dioxide (eCO2) is a large source of uncertainty in future projections of the C cycle, climate and ecosystem functioning. In particular, the sensitivity of tropical rainforest ecosystems to eCO2 is largely unknown even though the importance of tropical forests for biodiversity, carbon storage and regional and global climate feedbacks is unambiguously recognized. The AmazonFACE (Free-Air Carbon Enrichment) project will be the first ecosystem scale eCO2 experiment undertaken in the tropics, as well as the first to be undertaken in a mature forest. AmazonFACE provides the opportunity to integrate ecosystem modeling with experimental observations right from the beginning of the experiment, harboring a two-way exchange, i.e. models provide hypotheses to be tested, and observations deliver the crucial data to test and improve ecosystem models. We present preliminary exploration of observed and expected process responses to eCO2 at the AmazonFACE site from the dynamic global vegetation model LPJ-GUESS, highlighting opportunities and pitfalls for model integration of tropical FACE experiments. The preliminary analysis provides baseline hypotheses, which are to be further developed with a follow-up multiple model inter-comparison. The analysis builds on the recently undertaken FACE-MDS (Model-Data Synthesis) project, which was applied to two temperate FACE experiments and exceeds the traditional focus on comparing modeled end-target output. The approach has proven successful in identifying well (and less well) represented processes in models, which are separated for six clusters also here; (1) Carbon fluxes, (2) Carbon pools, (3) Energy balance, (4) Hydrology, (5) Nutrient cycling, and (6) Population dynamics. Simulation performance of observed conditions at the AmazonFACE site (a.o. from Manaus K34 eddy flux tower) will highlight process-based model deficiencies, and aid the separation of uncertainties arising from general ecosystem responses and those responses related to eCO2.
NASA Astrophysics Data System (ADS)
Gonzalez, P.; Eigenbrod, F.; Early, R.; Wang, F.; Notaro, M.; Williams, J. W.
2016-12-01
U.S. national parks conserve globally unique biodiversity. Yet, historical impacts of climate change and future vulnerabilities threaten species and ecosystems across this system of protected areas. Spatial analyses of historical climate and downscaled future climate projections show climate trends across the system. Spatial analyses of vegetation and wildfire (using a dynamic global vegetation model), habitat fragmentation (using remote sensing-derived land cover), and invasive species introduction and establishment show patterns of future vulnerability across the 50 U.S. states and 412 U.S. national parks. Results reveal high historical and projected temperature increases and precipitation changes, projected increases of wildfire across western U.S. national parks, high vulnerability to biome shifts and habitat fragmentation of up to one-third of National Park System area, and high vulnerability to invasive species of one-ninth of National Park System area. Ecosystems in the Sierra Nevada, Cascade Range, desert Southwest, and Laurentian Great Lakes are highly vulnerable to upslope and poleward shifts of the North America sequence of biomes: temperate shrubland - temperate broadleaf forest - temperate mixed forest - temperate conifer forest - subalpine and boreal forest - alpine and tundra. These areas include Grand Canyon, Mount Rainier, and Yosemite National Parks. The southwestern U.S., including Grand Canyon and Sequoia National Parks, is vulnerable to increases in wildfire. The eastern and midwestern U.S., including Great Smokey Mountains and Voyageurs National Parks, are highly vulnerable to invasive species. These results identify vulnerable areas and potential refugia to help prioritize areas for future natural resource management actions and biodiversity conservation in U.S. national parks.
NASA Astrophysics Data System (ADS)
Lapola, D. M.
2015-12-01
The existence, magnitude and duration of a supposed "CO2 fertilization" effect in tropical forests remains largely undetermined, despite being suggested for nearly 20 years as a key knowledge gap for understanding the future resilience of Amazonian forests and its impact on the global carbon cycle. Reducing this uncertainty is critical for assessing the future of the Amazon region as well as its vulnerability to climate change. The AmazonFACE (Free-Air CO2 Enrichment) research program is an integrated model-experiment initiative of unprecedented scope in an old-growth Amazon forest near Manaus, Brazil - the first of its kind in tropical forest. The experimental treatment will simulate an atmospheric CO2 concentration [CO2] of the future in order to address the question: "How will rising atmospheric CO2 affect the resilience of the Amazon forest, the biodiversity it harbors, and the ecosystem services it provides, in light of projected climatic changes?" AmazonFACE is divided into three phases: (I) pre-experimental ecological characterization of the research site; (II) pilot experiment comprised of two 30-m diameter plots, with one treatment plot maintained at elevated [CO2] (ambient +200 ppmv), and the other control plot at ambient [CO2]; and (III) a fully-replicated long-term experiment comprised of four pairs of control/treatment FACE plots maintained for 10 years. A team of scientists from Brazil, USA, Australia and Europe will employ state-of-the-art methods to study the forest inside these plots in terms of carbon metabolism and cycling, water use, nutrient cycling, forest community composition, and interactions with environmental stressors. All project phases also encompass ecosystem-modeling activities in a way such that models provide hypothesis to be verified in the experiment, which in turn will feed models to ultimately produce more accurate projections of the environment. Resulting datasets and analyses will be a valuable resource for a broad community, especially ecosystem and climate modelers, and policy-makers.
NASA Astrophysics Data System (ADS)
Lapola, David; Quesada, Carlos; Norby, Richard; Araújo, Alessandro; Domingues, Tomas; Hartley, Iain; Kruijt, Bart; Lewin, Keith; Meir, Patrick; Ometto, Jean; Rammig, Anja
2016-04-01
The existence, magnitude and duration of a supposed "CO2 fertilization" effect in tropical forests remains largely undetermined, despite being suggested for nearly 20 years as a key knowledge gap for understanding the future resilience of Amazonian forests and its impact on the global carbon cycle. Reducing this uncertainty is critical for assessing the future of the Amazon region as well as its vulnerability to climate change. The AmazonFACE (Free-Air CO2 Enrichment) research program is an integrated model-experiment initiative of unprecedented scope in an old-growth Amazon forest near Manaus, Brazil - the first of its kind in tropical forest. The experimental treatment will simulate an atmospheric CO2 concentration [CO2] of the future in order to address the question: "How will rising atmospheric CO2 affect the resilience of the Amazon forest, the biodiversity it harbors, and the ecosystem services it provides, in light of projected climatic changes?" AmazonFACE is divided into three phases: (I) pre-experimental ecological characterization of the research site; (II) pilot experiment comprised of two 30-m diameter plots, with one treatment plot maintained at elevated [CO2] (ambient +200 ppmv), and the other control plot at ambient [CO2]; and (III) a fully-replicated long-term experiment comprised of four pairs of control/treatment FACE plots maintained for 10 years. A team of scientists from Brazil, USA, Australia and Europe will employ state-of-the-art methods to study the forest inside these plots in terms of carbon metabolism and cycling, water use, nutrient cycling, forest community composition, and interactions with environmental stressors. All project phases also encompass ecosystem-modeling activities in a way such that models provide hypothesis to be verified in the experiment, which in turn will feed models to ultimately produce more accurate projections of the environment. Resulting datasets and analyses will be a valuable resource for a broad community, especially ecosystem and climate modelers, and policy-makers.
C. I. Millar; M. G. Barbour; D. L. Elliott-Fisk; J. R. Shevock; W. B. Woolfenden
1996-01-01
The Sierra Nevada Ecosystem Project mapped 945 areas in the Sierra Nevada of ecological, cultural, and geological significance. Theseareas contain outstanding features of unusual rarity, diversity, andrepresentativeness on national forest and national park lands. Morethan 70% of the areas were newly recognized during the SNEP project. Local agency specialists familiar...
Gustafson, Eric J; De Bruijn, Arjan M G; Pangle, Robert E; Limousin, Jean-Marc; McDowell, Nate G; Pockman, William T; Sturtevant, Brian R; Muss, Jordan D; Kubiske, Mark E
2015-02-01
Fundamental drivers of ecosystem processes such as temperature and precipitation are rapidly changing and creating novel environmental conditions. Forest landscape models (FLM) are used by managers and policy-makers to make projections of future ecosystem dynamics under alternative management or policy options, but the links between the fundamental drivers and projected responses are weak and indirect, limiting their reliability for projecting the impacts of climate change. We developed and tested a relatively mechanistic method to simulate the effects of changing precipitation on species competition within the LANDIS-II FLM. Using data from a field precipitation manipulation experiment in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) ecosystem in New Mexico (USA), we calibrated our model to measurements from ambient control plots and tested predictions under the drought and irrigation treatments against empirical measurements. The model successfully predicted behavior of physiological variables under the treatments. Discrepancies between model output and empirical data occurred when the monthly time step of the model failed to capture the short-term dynamics of the ecosystem as recorded by instantaneous field measurements. We applied the model to heuristically assess the effect of alternative climate scenarios on the piñon-juniper ecosystem and found that warmer and drier climate reduced productivity and increased the risk of drought-induced mortality, especially for piñon. We concluded that the direct links between fundamental drivers and growth rates in our model hold great promise to improve our understanding of ecosystem processes under climate change and improve management decisions because of its greater reliance on first principles. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
McNew, Lance; Handel, Colleen M.; Pearce, John; DeGange, Anthony R.; Holland-Bartels, Leslie; Whalen, Mary
2013-01-01
Arctic and boreal ecosystems provide important breeding habitat for more than half of North America’s migratory birds as well as many resident species. Northern landscapes are projected to experience more pronounced climate-related changes in habitat than most other regions. These changes include increases in shrub growth, conversion of tundra to forest, alteration of wetlands, shifts in species’ composition, and changes in the frequency and scale of fires and insect outbreaks. Changing habitat conditions, in turn, may have significant effects on the distribution and abundance of wildlife in these critical northern ecosystems. The U.S. Geological Survey (USGS) is conducting studies in the Boreal–Arctic transition zone of Alaska, an environment of accelerated change in this sensitive margin between Arctic tundra and boreal forest.
Charlie Luce; James M. Vose; Neil Pederson; John Campbell; Connie Millar; Patrick Kormos; Ross Woods
2016-01-01
Observations of increasing global forest die-off related to drought are leading to more questions about potential increases in drought occurrence, severity, and ecological consequence in the future. Dry soils and warm temperatures interact to affect trees during drought; so understanding shifting risks requires some understanding of changes in both temperature...
Development of an ecological classification system for the Wayne National Forest
David M. Hix; Andrea M. Chech
1993-01-01
In 1991, a collaborative research project was initiated to create an ecological classification system for the Wayne National Forest of southeastern Ohio. The work focuses on the ecological land type (ELT) level of ecosystem classification. The most common ELTs are being identified and described using information from intensive field sampling and multivariate data...
Monitoring the Health of Sugar Maple, "Acer Saccharum"
ERIC Educational Resources Information Center
Carlson, Martha
2013-01-01
The sugar maple, "Acer saccharum," is projected to decline and die in 88 to 100 percent of its current range in the United States. An iconic symbol of the northeastern temperate forest and a dominant species in this forest, the sugar maple is identified as the most sensitive tree in its ecosystem to rising temperatures and a warming…
Ecosystem productivity and the impact of climate change
Linda A. Joyce; Martha Nungesser
2000-01-01
Earlier analyses of the supply and demand of timber assumed the continuation of historical climate and thus, did not explicitly incorporate factors such as temperature or precipitation into the projections of timber growth. Forests are adapted to local climates and changes in these climates are likely to impact future forest growth and timber outputs. Within the...
J. Ortega; A. Turnipseed; A. B. Guenther; T. G. Karl; D. A. Day; D. Gochis; J. A. Huffman; A. J. Prenni; E. J. T. Levin; S. M. Kreidenweis; P. J. DeMott; Y. Tobo; E. G. Patton; A. Hodzic; Y. Y. Cui; P. C. Harley; R. S. Hornbrook; E. C. Apel; R. K. Monson; A. S. D. Eller; J. P. Greenberg; M. C. Barth; P. Campuzano-Jost; B. B. Palm; J. L. Jimenez; A. C. Aiken; M. K. Dubey; C. Geron; J. Offenberg; M. G. Ryan; P. J. Fornwalt; S. C. Pryor; F. N. Keutsch; J. P. DiGangi; A. W. H. Chan; A. H. Goldstein; G. M. Wolfe; S. Kim; L. Kaser; R. Schnitzhofer; A. Hansel; C. A. Cantrell; R. L. Mauldin; J. N. Smith
2014-01-01
The Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen (BEACHON) project seeks to understand the feedbacks and interrelationships between hydrology, biogenic emissions, carbon assimilation, aerosol properties, clouds and associated feedbacks within water-limited ecosystems. The Manitou Experimental Forest Observatory (MEFO) was...
Small mammal populations and ecology in the Kings River Sustainable Forest Ecosystems Project area
William F. Jr. Laudenslayer; Roberta J. Fargo
2002-01-01
Small mammals are important components of woodlands and forests. Since 1992, we have been studying several aspects of small mammal ecology in oak woodlands in western foothills of the southern Sierra Nevada. Assemblages of small, nocturnal mammal species are dominated by the brush mouse (Peromyscus boylii), California mouse (P. californicus...
Alamgir, Mohammed; Turton, Stephen M; Macgregor, Colin J; Pert, Petina L
2016-10-01
As ecosystem services supply from tropical forests is declining due to deforestation and forest degradation, much effort is essential to sustain ecosystem services supply from tropical forested landscapes, because tropical forests provide the largest flow of multiple ecosystem services among the terrestrial ecosystems. In order to sustain multiple ecosystem services, understanding ecosystem services capacity across heterogeneous forest types and identifying certain ecosystem services that could be managed to leverage positive effects across the wider bundle of ecosystem services are required. We sampled three forest types, tropical rainforests, sclerophyll forests, and rehabilitated plantation forests, over an area of 32,000m(2) from Wet Tropics bioregion, Australia, aiming to compare supply and evaluate interactions and patterns of eight ecosystem services (global climate regulation, air quality regulation, erosion regulation, nutrient regulation, cyclone protection, habitat provision, energy provision, and timber provision). On average, multiple ecosystem services were highest in the rainforests, lowest in sclerophyll forests, and intermediate in rehabilitated plantation forests. However, a wide variation was apparent among the plots across the three forest types. Global climate regulation service had a synergistic impact on the supply of multiple ecosystem services, while nutrient regulation service was found to have a trade-off impact. Considering multiple ecosystem services, most of the rehabilitated plantation forest plots shared the same ordination space with rainforest plots in the ordination analysis, indicating that rehabilitated plantation forests may supply certain ecosystem services nearly equivalent to rainforests. Two synergy groups and one trade-off group were identified. Apart from conserving rainforests and sclerophyll forests, our findings suggest two additional integrated pathways to sustain the supply of multiple ecosystem services from a heterogeneous tropical forest landscape: (i) rehabilitation of degraded forests aiming to provide global climate regulation and habitat provision ecosystem services and (ii) management intervention to sustain global climate regulation and habitat provision ecosystem services. Copyright © 2016 Elsevier B.V. All rights reserved.
DeGange, Anthony R.; Marcot, Bruce G.; Lawler, James; Jorgenson, Torre; Winfree, Robert
2014-01-01
We used a modeling framework and a recent ecological land classification and land cover map to predict how ecosystems and wildlife habitat in northwest Alaska might change in response to increasing temperature. Our results suggest modest increases in forest and tall shrub ecotypes in Northwest Alaska by the end of this century thereby increasing habitat for forest-dwelling and shrub-using birds and mammals. Conversely, we predict declines in several more open low shrub, tussock, and meadow ecotypes favored by many waterbird, shorebird, and small mammal species.
Impacts of Climate Change on Forest Isoprene Emission: Diversity Matters
NASA Astrophysics Data System (ADS)
Wang, B.; Shugart, H. H., Jr.; Lerdau, M.
2016-12-01
Many abiotic and biotic factors influence volatile organic compound (VOC) production and emission by plants; for example, climate warming is widely projected to enhance VOC emissions by stimulating their biosynthesis. The species-dependent nature of VOC production by plants indicates that changes in species abundances may play an important role in determining VOC production and emission at the ecosystem scale. To date, however, the role of species abundances in affecting VOC emissions has not been well studied. We examine the role of forest systems as sources of VOC's in terms of how species diversity and abundance influence isoprene emission under climate warming by using an individual-based forest VOC emission model—UVAFME-VOC 1.0—that can explicitly simulate forest compositional and structural change and VOC production/emission at the individual and canopy scales. We simulate isoprene emissions under two warming scenarios (warming by 2 and 4 °C) for temperate deciduous forests of the southeastern United States, where the dominant isoprene-emitting species are oaks (Quercus). The simulations show that, contrary to previous expectations, a warming by 2 °C does not affect isoprene emissions, while a further warming by 4 °C causes a large reduction of isoprene emissions. Interestingly, climate warming can directly enhance isoprene emission and simultaneously indirectly reduce it by lowering the abundance of isoprene-emitting species. Under gradual continuous warming, the indirect effect outweighs the direct effect, thus reducing overall forest isoprene emission. This modelling study shows that climate warming does not necessarily stimulate ecosystem VOC emissions and, more generally, that ecosystem diversity and composition can play a significant role in determining vegetation VOC emission capacity. Future earth system models and climate-chemistry models should better represent species diversity in projecting climate-air quality feedbacks and making management policy recommendations.
Projecting the spatiotemporal carbon dynamics of the Greater Yellowstone Ecosystem from 2006 to 2050
Huang, Shengli; Liu, Shuguang; Liu, Jinxun; Dahal, Devendra; Young, Claudia; Davis, Brian; Sohl, Terry L.; Hawbaker, Todd J.; Sleeter, Benjamin M.; Zhu, Zhiliang
2015-01-01
BackgroundClimate change and the concurrent change in wildfire events and land use comprehensively affect carbon dynamics in both spatial and temporal dimensions. The purpose of this study was to project the spatial and temporal aspects of carbon storage in the Greater Yellowstone Ecosystem (GYE) under these changes from 2006 to 2050. We selected three emission scenarios and produced simulations with the CENTURY model using three General Circulation Models (GCMs) for each scenario. We also incorporated projected land use change and fire occurrence into the carbon accounting.ResultsThe three GCMs showed increases in maximum and minimum temperature, but precipitation projections varied among GCMs. Total ecosystem carbon increased steadily from 7,942 gC/m2 in 2006 to 10,234 gC/m2 in 2050 with an annual rate increase of 53 gC/m2/year. About 56.6% and 27% of the increasing rate was attributed to total live carbon and total soil carbon, respectively. Net Primary Production (NPP) increased slightly from 260 gC/m2/year in 2006 to 310 gC/m2/year in 2050 with an annual rate increase of 1.22 gC/m2/year. Forest clear-cutting and fires resulted in direct carbon removal; however, the rate was low at 2.44 gC/m2/year during 2006–2050. The area of clear-cutting and wildfires in the GYE would account for 10.87% of total forested area during 2006–2050, but the predictive simulations demonstrated different spatial distributions in national forests and national parks.ConclusionsThe GYE is a carbon sink during 2006–2050. The capability of vegetation is almost double that of soil in terms of sequestering extra carbon. Clear-cutting and wildfires in GYE will affect 10.87% of total forested area, but direct carbon removal from clear-cutting and fires is 109.6 gC/m2, which accounts for only 1.2% of the mean ecosystem carbon level of 9,056 gC/m2, and thus is not significant.
Huang, Shengli; Liu, Shuguang; Liu, Jinxun; Dahal, Devendra; Young, Claudia; Davis, Brian; Sohl, Terry L; Hawbaker, Todd J; Sleeter, Ben; Zhu, Zhiliang
2015-12-01
Climate change and the concurrent change in wildfire events and land use comprehensively affect carbon dynamics in both spatial and temporal dimensions. The purpose of this study was to project the spatial and temporal aspects of carbon storage in the Greater Yellowstone Ecosystem (GYE) under these changes from 2006 to 2050. We selected three emission scenarios and produced simulations with the CENTURY model using three General Circulation Models (GCMs) for each scenario. We also incorporated projected land use change and fire occurrence into the carbon accounting. The three GCMs showed increases in maximum and minimum temperature, but precipitation projections varied among GCMs. Total ecosystem carbon increased steadily from 7,942 gC/m 2 in 2006 to 10,234 gC/m 2 in 2050 with an annual rate increase of 53 gC/m 2 /year. About 56.6% and 27% of the increasing rate was attributed to total live carbon and total soil carbon, respectively. Net Primary Production (NPP) increased slightly from 260 gC/m 2 /year in 2006 to 310 gC/m 2 /year in 2050 with an annual rate increase of 1.22 gC/m 2 /year. Forest clear-cutting and fires resulted in direct carbon removal; however, the rate was low at 2.44 gC/m 2 /year during 2006-2050. The area of clear-cutting and wildfires in the GYE would account for 10.87% of total forested area during 2006-2050, but the predictive simulations demonstrated different spatial distributions in national forests and national parks. The GYE is a carbon sink during 2006-2050. The capability of vegetation is almost double that of soil in terms of sequestering extra carbon. Clear-cutting and wildfires in GYE will affect 10.87% of total forested area, but direct carbon removal from clear-cutting and fires is 109.6 gC/m 2 , which accounts for only 1.2% of the mean ecosystem carbon level of 9,056 gC/m 2 , and thus is not significant.
NASA Astrophysics Data System (ADS)
Henrot, Alexandra-Jane; François, Louis; Dury, Marie; Hambuckers, Alain; Jacquemin, Ingrid; Minet, Julien; Tychon, Bernard; Heinesch, Bernard; Horemans, Joanna; Deckmyn, Gaby
2015-04-01
Eddy covariance measurements are an essential resource to understand how ecosystem carbon fluxes react in response to climate change, and to help to evaluate and validate the performance of land surface and vegetation models at regional and global scale. In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), vegetation dynamics and carbon fluxes of forest and grassland ecosystems simulated by the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) are evaluated and validated by comparison of the model predictions with eddy covariance data. Here carbon fluxes (e.g. net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RECO)) and evapotranspiration (ET) simulated with the CARAIB model are compared with the fluxes measured at several eddy covariance flux tower sites in Belgium and Western Europe, chosen from the FLUXNET global network (http://fluxnet.ornl.gov/). CARAIB is forced either with surface atmospheric variables derived from the global CRU climatology, or with in situ meteorological data. Several tree (e.g. Pinus sylvestris, Fagus sylvatica, Picea abies) and grass species (e.g. Poaceae, Asteraceae) are simulated, depending on the species encountered on the studied sites. The aim of our work is to assess the model ability to reproduce the daily, seasonal and interannual variablility of carbon fluxes and the carbon dynamics of forest and grassland ecosystems in Belgium and Western Europe.
Criterion 3: Maintenance of forest ecosystem health and vitality
Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield
2012-01-01
Forest ecosystem health depends on stable forest composition and structure and on sustainable ecosystem processes. Forest disturbances that push an ecosystem beyond the range of conditions considered normal can upset the balance among processes, exacerbate forest health problems, and increase mortality beyond historical norms. Sometimes forest ecosystems respond to...
Plant ecophysiology and forest response to global change.
Buchmann, N
2002-11-01
There are many ways of studying forest responses to global change. Most current national and international programs focus on net gas exchange of the terrestrial biosphere and are typically interdisciplinary, multi-scale projects. Key objectives of these programs are surprisingly similar to those of classical plant ecophysiology studies, i.e., to explore functional relationships of plant or plant community responses to environmental change. Thus, common research questions that link plant ecophysiology to ecosystem functioning can be identified for both research communities, promising complementarity and synergism for joint research projects. Although some well-established ecophysiological relationships, such as light responses or stomatal limitations of photosynthetic gas exchange, are currently employed in many ecosystem-scale net flux studies for gap-filling or modeling, only 14% (n = 27) of all eddy covariance flux studies in forests (n = 196; published between 1992 and April 2002) include plant ecophysiological measurements (n = 24) or biomass and growth estimates (n = 8). Generally, emphasis is on CO2 exchange measurements at various scales (foliage, shoots, branches; n = 14) and water relations measurements (n = 11). These measurements do not fully support the typical parameterization of stand and regional models, which often need information on canopy architecture and nitrogen nutrition. By means of a complementary research approach, valuable information can be acquired that is unobtainable by means of a single approach. This additional information is important for the identification of underlying biotic and environmental drivers, for the regulation of net ecosystem fluxes and their partitioning, and the independent validation of measured net ecosystem fluxes. Thus, combining micrometeorology and ecophysiology at flux sites is strongly recommended for ecosystem functioning studies.
Effects of Projected Transient Changes in Climate on Tennessee Forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, Virginia H; Tharp, M Lynn; Lannom, Karen O.
This study examines transient effects of projected climate change on the structure and species composition of forests in Tennessee. The climate change scenarios for 2030 and 2080 were provided by the National Center for Atmospheric Research (NCAR) from three General Circulation Models (GCMs) that simulate the range of potential climate conditions for the state. The precipitation and temperature projections from the three GCMs for 2030 and 2080 were related to changes in the ecoregions by using the monthly record of temperature and precipitation from 1980 to 1997 for each 1 km cell across the state as aggregated into the fivemore » ecological provinces. Temperatures are projected to increase in all ecological provinces in all months for all three GCMs for both 2030 and 2080. Precipitation patterns are more complex with one model projecting wetter summers and two models projecting drier summers. The forest ecosystem model LINKAGES was used to simulate conditions in forest stands for the five ecological provinces of Tennessee from 1989 to 2300. These model runs suggest there will be a change in tree diversity and species composition in all ecological provinces with the greatest changes occurring in the Southern Mixed Forest province. Most projections show a decline in total tree biomass followed by recovery as species replacement occurs in stands. The changes in forest biomass and composition, as simulated in this study, are likely to have implications on forest economy, tourism, understory conditions, wildlife habitat, mast provisioning, and other services provided by forest systems.« less
Linking national wood consumption with global biodiversity and ecosystem service losses.
Chaudhary, Abhishek; Carrasco, L Roman; Kastner, Thomas
2017-05-15
Identifying the global hotspots of forestry driven species, ecosystem services losses and informing the consuming nations of their environmental footprint domestically and abroad is essential to design demand side interventions and induce sustainable production methods. Here we first use countryside species area relationship model to project species extinctions of four vertebrate taxa (mammals, birds, amphibians and reptiles) due to forest land use in 174 countries. We combine the projected extinctions with a global database on the monetary value of ecosystem services provided by different biomes and with bilateral trade data of wood products to calculate species extinctions and ecosystem services losses inflicted by national wood consumption and international wood trade. Results show that globally a total of 485 species are projected to go extinct due to current forest land use. About 32% of this projected loss can be attributed to land use devoted for export production. However, under the counterfactual scenario with the same consumption levels but no international trade of wood products, an additional 334 species are projected to go extinct. Globally, we find that losses of ecosystem services worth $1.5trillion/year are embodied in the timber trade. Compared to high-income nations, tropical countries such as Philippines, Nicaragua, Sri Lanka, Gambia and Bolivia presented the highest net ecosystem services losses (>3000US$/ha/year) that could not be compensated through current land rents, indicating underpriced exports. Small tropical countries also gained much lower rents per species extinction suffered. These results can help internalize these costs into the global trade through financial compensation mechanisms such as REDD+ or through price premiums on wood sourced from these countries. Overall the results can provide valuable insights for devising national strategies to meet several of the global Aichi 2020 biodiversity targets and can also be useful for life cycle assessment and product labelling schemes. Copyright © 2017 Elsevier B.V. All rights reserved.
Atlantic tropical forest mapping in the northern coastal zone of Sao Paulo State, Brazil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simi, R. Jr.; Almeida, S.A.S.; Manso, A.P.
1997-06-01
The northern coastal zone of Sao Paulo State includes the cities of Ubatuba, Caraguatatuba, Sao Sebastiao and Ilha Bela. Large development projects, such as road and highway constructions and joint real estate exploration of susceptible coastal ecosystems have threatened the harmony and ecological stability of these ecosystems. Recently, the Atlantic tropical rain forest has been the most destructed ecosystem in the coastal zone in response to real estate investments in urban areas along the main roads. In the northern coastal zone of Sao Paulo State, 80% of the counties are included in the State Park of Serra do Mar. Asmore » tourism is a strong growing economical activity, as well as coastal production, it should be of interest to create a plan for sustainable development. The objective of this study is to map and characterize land use cover changes with emphasis on the Atlantic tropical rain forest degradation using Landsat TM images. Preliminary results for land use cover changes indicate that the Atlantic tropical rain forest was reduced by 6.1 % during the period of July 1992 and October 1995.« less
The Impact of Conflict on Forests in South Sudan
NASA Astrophysics Data System (ADS)
Gorsevski, V.; Kasischke, E. S.; Dempewolf, J.; Loboda, T. V.; Geores, M.
2014-12-01
The impacts of armed conflict on ecosystems are complex and difficult to assess due to restricted access to affected areas making satellite remote sensing a useful tool for studying direct and indirect effects of conflict on the landscape. The Imatong Central Forest Reserve (ICFR) in South Sudan together with the nearby Dongotana Hills and the Agoro-Agu Forest Reserve (AFR) in Northern Uganda share a boundary and encompass a biologically diverse montane ecosystem. This study used satellite data combined with general human population trends to examine the impact of armed conflict and its outcome on similar forest ecosystems both during and after hostilities. A Disturbance Index (DI) was used to investigate the location and extent of forest cover loss and gain in three areas for two key time periods. Results indicate that the rate of forest recovery was significantly higher than the rate of disturbance both during and after wartime in and around the ICFR. In contrast, the nearby Dongotana Hills experienced relatively high rates of disturbance during both periods; however, post war period losses were largely offset by some gains in forest cover. Discussions with local inhabitants confirmed these findings and provided further insights into the underlying causes impacting forest cover and wildlife. South Sudan is the latest nation to join the Global Environment Facility (GEF). While the GEF does not explicitly address conflict, many of the projects it supports occur in conflict and post-conflict zones with wide-ranging repercussions for both people and the environment. In an effort to assess best practices for working in conflict and post-conflict areas, the GEF Scientific and Technical Advisory Panel (STAP) will undertake an analysis of GEF-funded projects over the last two decades to identify where the GEF has promoted cooperation between groups and states, and/or made a positive contribution toward conflict avoidance resulting in shared environmental benefits.
NASA Astrophysics Data System (ADS)
Liang, N.; Kim, S.; Shimoyama, K.; Kim, Y.; Hirano, T.; Takagi, K.; Fujinuma, Y.; Mukai, H.; Takahashi, Y.; Kakubari, Y.; Wang, Q.; Nakane, K.
2007-12-01
Regional networks for measuring carbon sequestration or loss by terrestrial ecosystems on a year round basis have been in operation since the mid-1990s. However, continuous measurements of soil CO2 efflux, the largest component of ecosystem respiration have only been reported over similar time scales at a few of the sites. We have developed a multichannel automated chamber system that can be used for continuous measuring soil CO2 efflux. The system equips 8 to 24 large automated chambers (90*90*50 cm, L*W*H). Since 1997, we have installed the chamber systems in the tundra in west Siberia, boreal forest in Alaska, cool- temperate and temperate forests in Japan, Korea and China, tropical seasonal forest in Thailand, and tropical rainforest in Malaysia. Annual soil CO2 effluxes were estimated to be about 5-6 tC ha-1 y-1 in the boreal and cool-temperate forests, 10 tC ha-1 y-1 in the temperate forests, and 30 tC ha-1 y-1 in the tropical rainforests. Efflux showed significant seasonality in the boreal and temperate forest that corresponding with the seasonal soil temperature. However, the wavelike efflux rates in the tropical forests were correlated with the seasonality of soil moisture. From 2007, a big project that funded by Ministry of the Environment of Japan (MOE) has launched to evaluate the response and feedback of soil carbon dynamics of Japanese forest ecosystems to global change. We are installing another 6 chamber systems at the six of Japanese typical forests to conduct the soil warming experiments. For scaling-up the chamber experiments and understanding the mechanisms of soil organic matter (SOM) dynamics to global change, soil samples from about 100 forest ecosystems will be incubated for modeling development. Furthermore, the environmental (temperature and CO2) controlled large open-top chambers have been employed to investigate the balance of SOM (the input from litter falls and loss due to the decomposition) of forest ecosystems with global change.
Using Ecosystem Experiments to Improve Vegetation Models
Medlyn, Belinda; Zaehle, S; DeKauwe, Martin G.; ...
2015-05-21
Ecosystem responses to rising CO2 concentrations are a major source of uncertainty in climate change projections. Data from ecosystem-scale Free-Air CO2 Enrichment (FACE) experiments provide a unique opportunity to reduce this uncertainty. The recent FACE Model–Data Synthesis project aimed to use the information gathered in two forest FACE experiments to assess and improve land ecosystem models. A new 'assumption-centred' model intercomparison approach was used, in which participating models were evaluated against experimental data based on the ways in which they represent key ecological processes. Identifying and evaluating the main assumptions caused differences among models, and the assumption-centered approach produced amore » clear roadmap for reducing model uncertainty. We explain this approach and summarize the resulting research agenda. We encourage the application of this approach in other model intercomparison projects to fundamentally improve predictive understanding of the Earth system.« less
Steve Slaughter; Laura Ward; Michael Hillis; Jim Chew; Rebecca McFarlan
2004-01-01
Forest Service managers and researchers designed and evaluated alternative disturbance-based fire hazard reduction/ecosystem restoration treatments in a greatly altered low-elevation ponderosa pine/Douglas-fir/western larch wildland urban interface. Collaboratively planned improvement cutting and prescribed fire treatment alternatives were evaluated in simulations of...
Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska
Q. Zhuang; A. D. McGuire; K. P. O' Neill; J. W. Harden; V. E. Romanovsky; J. Yarie
2003-01-01
In this study, the dynamics of soil thermal, hydrologic, and ecosystem processes were coupled to project how the carbon budgets of boreal forests will respond to changes in atmospheric CO2, climate, and fire disturbance. The ability of the model to simulate gross primary production and ecosystem respiration was verified for a mature black spruce...
Temporal Forest Change Detection and Forest Health Assessment using Remote Sensing
NASA Astrophysics Data System (ADS)
Ya'acob, Norsuzila; Mohd Azize, Aziean Binti; Anis Mahmon, Nur; Laily Yusof, Azita; Farhana Azmi, Nor; Mustafa, Norfazira
2014-03-01
This paper presents the detection of Angsi and Berembun Reserve Forest change for years 1996 and 2013. Forest is an important part of our ecosystem. The main function is to absorb carbon oxide and produce oxygen in their cycle of photosynthesis to maintain a balance and healthy atmosphere. However, forest changes as time changes. Some changes are necessary as to give way for economic growth. Nevertheless, it is important to monitor forest change so that deforestation and development can be planned and the balance of ecosystem is still preserved. It is important because there are number of unfavorable effects of deforestation that include environmental and economic such as erosion of soil, loss of biodiversity and climate change. The forest change detection can be studied with reference of several satellite images using remote sensing application. Forest change detection is best done with remote sensing due to large and remote study area. The objective of this project is to detect forest change over time and to compare forest health indicated by Normalized Difference Vegetation Index (NDVI) using remote sensing and image processing. The forest under study shows depletion of forest area by 12% and 100% increment of deforestation activities. The NDVI value which is associated with the forest health also shows 13% of reduction.
Catherine Phillips
2002-01-01
Fire-return intervals were studied on six 1.4-ha plots in a 2,070-ha study area in the Dinkey Creek watershed. Stumps in mixed-conifer forest were examined for fire scars created from 1771 to 1994, with 1873 chosen as the end of the pre-Euro-American settlement period because the rate of fire events decreased on most plots after about that year. Mean intervals from...
A multi-scale metrics approach to forest fragmentation for Strategic Environmental Impact Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eunyoung, E-mail: eykim@kei.re.kr; Song, Wonkyong, E-mail: wksong79@gmail.com; Lee, Dongkun, E-mail: dklee7@snu.ac.kr
Forests are becoming severely fragmented as a result of land development. South Korea has responded to changing community concerns about environmental issues. The nation has developed and is extending a broad range of tools for use in environmental management. Although legally mandated environmental compliance requirements in South Korea have been implemented to predict and evaluate the impacts of land-development projects, these legal instruments are often insufficient to assess the subsequent impact of development on the surrounding forests. It is especially difficult to examine impacts on multiple (e.g., regional and local) scales in detail. Forest configuration and size, including forest fragmentationmore » by land development, are considered on a regional scale. Moreover, forest structure and composition, including biodiversity, are considered on a local scale in the Environmental Impact Assessment process. Recently, the government amended the Environmental Impact Assessment Act, including the SEA, EIA, and small-scale EIA, to require an integrated approach. Therefore, the purpose of this study was to establish an impact assessment system that minimizes the impacts of land development using an approach that is integrated across multiple scales. This study focused on forest fragmentation due to residential development and road construction sites in selected Congestion Restraint Zones (CRZs) in the Greater Seoul Area of South Korea. Based on a review of multiple-scale impacts, this paper integrates models that assess the impacts of land development on forest ecosystems. The applicability of the integrated model for assessing impacts on forest ecosystems through the SEIA process is considered. On a regional scale, it is possible to evaluate the location and size of a land-development project by considering aspects of forest fragmentation, such as the stability of the forest structure and the degree of fragmentation. On a local scale, land-development projects should consider the distances at which impacts occur in the vicinity of the forest ecosystem, and these considerations should include the impacts on forest vegetation and bird species. Impacts can be mitigated by considering the distances at which these influences occur. In particular, this paper presents an integrated environmental impact assessment system to be applied in the SEIA process. The integrated assessment system permits the assessment of the cumulative impacts of land development on multiple scales. -- Highlights: • The model is to assess the impact of forest fragmentation across multiple scales. • The paper suggests the type of forest fragmentation on a regional scale. • The type can be used to evaluate the location and size of a land development. • The paper shows the influence distance of land development on a local scale. • The distance can be used to mitigate the impact at an EIA process.« less
Logging impact in uneven-aged stands of the Missouri Ozark Forest Ecosystem Project
John P. Dwyer
1999-01-01
Today, there is keen interest in using alternative silvicultural systems like individual-tree selection, group openings and shelterwood because the general public feels these systems are more acceptable than clearcutting. Consequently, due to repeated entries into forest stands and the fact that residual crop trees have to be carried for a long period of time between...
Restoration of fire in managed forests: a model to prioritize landscapes and analyze tradeoffs
Alan A. Ager; Nicole M. Vaillant; Andrew McMahan
2013-01-01
Ongoing forest restoration on public lands in the western US is a concerted effort to counter the growing incidence of uncharacteristic wildfire in fire-adapted ecosystems. Restoration projects cover 725,000 ha annually, and include thinning and underburning to remove ladder and surface fuel, and seeding of fire-adapted native grasses and shrubs. The backlog of areas...
Chapter 11 - Post-hurricane fuel dynamics and implications for fire behavior (Project SO-EM-F-12-01)
Shanyue Guan; G. Geoff. Wang
2018-01-01
Hurricanes have long been a powerful and recurring disturbance in many coastal forest ecosystems. Intense hurricanes often produce a large amount of dead fuels in their affected forests. How the post-hurricane fuel complex changes with time, due todecomposition and management such as salvage, and its implications for fire behavior remain largely unknown....
Long-term ecological reflections: writers, philosophers, and scientists meet in the forest.
Jonathan Thompson
2008-01-01
Over the past 7 years, a strong collaboration has emerged between the H.J. Andrews Experimental Forest ecosystem research group and the Spring Creek Project for Ideas, Nature, and the Written Word, an independently funded program for nature writing based in the Department of Philosophy, Oregon State University. The program is called Long-Term Ecological Reflections and...
Hai Ren; Hongfang Lu; Weijun Shen; Charlie Huang; Qinfeng Guo; Zhi' an Li; Shuguang Jian
2010-01-01
By the end of 1990s when China initiated a 10-year mangrove reforestation project, the mangrove forest area had decreased from250,000 to 15,000 ha. Over 80% of current Chinese mangroves are degraded secondary forests or plantations. As an initial restoration and reforestation effort, Sonneratia apetala, a native of...
Restoring surface fire stabilizes forest carbon under extreme fire weather in the Sierra Nevada
Daniel J. Krofcheck; Matthew D. Hurteau; Robert M. Scheller; E. Louise Loudermilk
2017-01-01
Climate change in the western United States has increased the frequency of extreme fire weather events and is projected to increase the area burned by wildfire in the coming decades. This changing fire regime, coupled with increased high-severity fire risk from a legacy of fire exclusion, could destabilize forest carbon (C), decrease net ecosystem exchange (...
Incorporating climate into belowground carbon estimates in the national greenhouse gas inventory
Matthew B. Russell; Grant M. Domke; Christopher W. Woodall; Anthony W. D’Amato
2015-01-01
Refined estimation of carbon (C) stocks within forest ecosystems is a critical component of efforts to reduce greenhouse gas emissions and mitigate the effects of projected climate change through forest C management. Recent evidence has pointed to the importance of climate as a driver of belowground C stocks. This study describes an approach for adjusting allometric...
D. F. Karnosky; D. R. Zak; K. S. Pregitzer; C. S. Awmack; J. G. Bockheim; R. E. Dickson; G. R. Hendrey; G. E. Host; J. S. King; B. J. Kopper; E. L. Kruger; M. E. Kubiske; R. L. Lindroth; W. J. Mattson; E. P. McDonald; A. Noormets; E. Oksanen; W. F. J. Parsons; K. E. Percy; G. K. Podila; D. E. Riemenschneider; P. Sharma; R. Thakur; A. S& #244ber; J. S& #244ber; W. S. Jones; S. Anttonen; E. Vapaavuori; B. Mankovska; W. Heilman; J. G. Isebrands
2003-01-01
1. The impacts of elevated atmospheric CO2 and/or O3 have been examined over 4 years using an open-air exposure system in an aggrading northern temperate forest containing two different functional groups (the indeterminate, pioneer, 03-sensitive species Trembling Aspen, Populus tremuloides...
Simulated Long-term Effects of the MOFEP Cutting Treatments
David R. Larsen
1997-01-01
Changes in average basal area and volume per acre were simulated for a 35-year pertod using the treatments designated for sites 4, 5, and 6 of the Missouri Ozark Forest Ecosystem Project. A traditional growth and yield model (Central States TWIGS variant of the Forest Vegetation Simulator) was used with Landscape Management System Software to simulate and display...
NASA Astrophysics Data System (ADS)
Davidson, Eric; Nifong, Rachel
2017-04-01
While deforestation has declined since its peak, land-use change continues to modify Amazonian landscapes. The responses and feedbacks of biogeochemical cycles to these changes play an important role in determining possible future trajectories of ecosystem function and for land stewardship through effects on rates of secondary forest regrowth, soil emissions of greenhouse gases, inputs of nutrients to groundwater and streamwater, and nutrient management in agroecosystems. Here we present a new synthetic analyses of data from the NASA-supported LBA-ECO project and others datasets on nutrient cycling in cattle pastures, secondary forests, and mature forests at Paragominas, Pará, Brazil. We have developed a stoichiometric model relating C-N-P interactions during original forest clearing, extensive and intensive pasture management, and secondary forest regrowth, constrained by multiple observations of ecosystem stocks and fluxes in each land use. While P is conservatively cycled in all land uses, we demonstrate that pyrolyzation of N during pasture formation and during additional burns for pasture management depletes available-N pools, consistent with observations of lower rates of N leaching and trace gas emission and consistent with secondary forest growth responses to experimental N amendments. The soils store large stocks of N and P, and our parameterization of available forms of these nutrients for steady-state dynamics in the mature forest yield reasonable estimates of net N and P mineralization available for grasses and secondary forest species at rates consistent with observed biomass accumulation and productivity in these modified ecosystems. Because grasses and forests have much different demands for N relative to P, the land use has important biogeochemical impacts. The model demonstrates the need for periodic P inputs for sustainable pasture management and for a period of significant biological N fixation for early-to-mid-successional secondary forest regrowth. The model framework illustrates the relative magnitudes of changing stocks and flows of nutrients and attendant ecosystem functions through the phases of land use change experienced in eastern Amazonia.
Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha; Thompson, Jill; Zimmerman, Jess K; Murphy, Lora
2018-01-01
Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here, we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured interannual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including aboveground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate. © 2017 John Wiley & Sons Ltd.
Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha C.; Thompson, Jill; Zimmerman, Jess K.; Murphy, Lora
2018-01-01
Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured inter-annual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including above-ground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.
NASA Astrophysics Data System (ADS)
Lenihan, J.; Neilson, R.; Bachelet, D.; Drapek, R.
2005-12-01
The VINCERA project is an intercomparison among three dynamic general vegetation models (DGVMs) simulating the response of North American ecosystems to six new future climate scenarios. The scenarios were produced by three general circulation models, each using two different future trace gas emissions scenarios. All of the scenarios are near the warmer end of the Intergovernmental Panel on Climate Change's projected future temperature range. Here we present results from the MC1 DGVM. All major forested ecosystems in North America exhibit carbon sequestration until the late 20th or early 21st century, followed by a drought induced decline and loss of carbon to levels below those at 1900 in the absence of fire suppression. By the end of the 21st century, the entire continent will have lost from 10 to 30 Pg of carbon, depending on the scenario. However, fire suppression can significantly mitigate carbon losses and ecosystem declines, producing a net change in carbon from a loss of about 5 Pg to a gain of about 8 Pg under the different scenarios. Most of the suppression benefits are obtained by forests in the western U.S. Suppression also mitigates carbon losses and conversions to savanna or grassland in the eastern U.S., but forest decline still occurs in the east under all scenarios. Dieback is triggered by two mechanisms. Reduced regional precipitation, variable among the scenarios, is one. The second more pervasive mechanism is the influence of rising temperatures on evapotranspiration. Even with the benefits of enhanced water use efficiency from elevated CO2 and slight increases in precipitation, dramatic increases in temperature can produce widespread forest dieback, and increases in fire severity. The eastern United States appear to be particularly vulnerable, as does the central Canadian boreal forest because of the relative flatness of climate gradients near ecotones. Under some scenarios, dieback is also driven by both increasing temperatures and decreasing precipitation, most notably the southeastern and northwestern United States. Following a period of gradual carbon sequestration, the enhanced evapotranspiration appears to overtake the 'greening' processes producing a rapid dieback. The point of turnaround from greenup to dieback occurs about now for the temperate forests and about a decade from now in the boreal forests, initiating an extended period of rapid losses of ecosystem carbon. These results underscore the critical importance of addressing uncertainties with respect to ecosystem water balance and the direct effects of elevated CO2 concentrations.
NASA Astrophysics Data System (ADS)
Smith, B.; Wårlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S.
2013-11-01
The LPJ-GUESS dynamic vegetation model uniquely combines an individual- and patch-based representation of vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. We present an updated version that includes plant and soil N dynamics, analysing the implications of accounting for C-N interactions on predictions and performance of the model. Stand structural dynamics and allometric scaling of tree growth suggested by global databases of forest stand structure and development were well-reproduced by the model in comparison to an earlier multi-model study. Accounting for N cycle dynamics improved the goodness-of-fit for broadleaved forests. N limitation associated with low N mineralisation rates reduces productivity of cold-climate and dry-climate ecosystems relative to mesic temperate and tropical ecosystems. In a model experiment emulating free-air CO2 enrichment (FACE) treatment for forests globally, N-limitation associated with low N mineralisation rates of colder soils reduces CO2-enhancement of NPP for boreal forests, while some temperate and tropical forests exhibit increased NPP enhancement. Under a business-as-usual future climate and emissions scenario, ecosystem C storage globally was projected to increase by c. 10%; additional N requirements to match this increasing ecosystem C were within the high N supply limit estimated on stoichiometric grounds in an earlier study. Our results highlight the importance of accounting for C-N interactions not only in studies of global terrestrial C cycling, but to understand underlying mechanisms on local scales and in different regional contexts.
NASA Astrophysics Data System (ADS)
Smith, B.; Wårlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S.
2014-04-01
The LPJ-GUESS dynamic vegetation model uniquely combines an individual- and patch-based representation of vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. We present an updated version that includes plant and soil N dynamics, analysing the implications of accounting for C-N interactions on predictions and performance of the model. Stand structural dynamics and allometric scaling of tree growth suggested by global databases of forest stand structure and development were well reproduced by the model in comparison to an earlier multi-model study. Accounting for N cycle dynamics improved the goodness of fit for broadleaved forests. N limitation associated with low N-mineralisation rates reduces productivity of cold-climate and dry-climate ecosystems relative to mesic temperate and tropical ecosystems. In a model experiment emulating free-air CO2 enrichment (FACE) treatment for forests globally, N limitation associated with low N-mineralisation rates of colder soils reduces CO2 enhancement of net primary production (NPP) for boreal forests, while some temperate and tropical forests exhibit increased NPP enhancement. Under a business-as-usual future climate and emissions scenario, ecosystem C storage globally was projected to increase by ca. 10%; additional N requirements to match this increasing ecosystem C were within the high N supply limit estimated on stoichiometric grounds in an earlier study. Our results highlight the importance of accounting for C-N interactions in studies of global terrestrial N cycling, and as a basis for understanding mechanisms on local scales and in different regional contexts.
Long-term soil warming and Carbon Cycle Feedbacks to the Climate System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melillo, Jerry M.
2014-04-30
The primary objective of the proposed research was to quantify and explain the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem. The research was done at an established soil warming experiment at the Harvard Forest in central Massachusetts – Barre Woods site established in 2001. In the field, a series of plant and soil measurements were made to quantify changes in C storage in the ecosystem and to provide insights into the possible relationships between C-storage changes and nitrogen (N) cycling changes in the warmed plots. Fieldmore » measurements included: 1) annual woody increment; 2) litterfall; 3) carbon dioxide (CO2) efflux from the soil surface; 4) root biomass and respiration; 5) microbial biomass; and 6) net N mineralization and net nitrification rates. This research was designed to increase our understanding of how global warming will affect the capacity of temperate forest ecosystems to store C. The work explored how soil warming changes the interactions between the C and N cycles, and how these changes affect land-atmosphere feedbacks. This core research question framed the project – What are the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem? A second critical question was addressed in this research – What are the effects of a sustained in situ 5{degrees}C soil temperature increase on nitrogen (N) cycling in a northeastern deciduous forest ecosystem?« less
Climate change, fire management, and ecological services in the southwestern US
Hurteau, Matthew D.; Bradford, John B.; Fulé, Peter Z.; Taylor, Alan H.; Martin, Katherine L.
2014-01-01
The diverse forest types of the southwestern US are inseparable from fire. Across climate zones in California, Nevada, Arizona, and New Mexico, fire suppression has left many forest types out of sync with their historic fire regimes. As a result, high fuel loads place them at risk of severe fire, particularly as fire activity increases due to climate change. A legacy of fire exclusion coupled with a warming climate has led to increasingly large and severe wildfires in many southwest forest types. Climate change projections include an extended fire season length due to earlier snowmelt and a general drying trend due to rising temperatures. This suggests the future will be warmer and drier regardless of changes in precipitation. Hotter, drier conditions are likely to increase forest flammability, at least initially. Changes in climate alone have the potential to alter the distribution of vegetation types within the region, and climate-driven shifts in vegetation distribution are likely to be accelerated when coupled with stand-replacing fire. Regardless of the rate of change, the interaction of climate and fire and their effects on Southwest ecosystems will alter the provisioning of ecosystem services, including carbon storage and biodiversity. Interactions between climate, fire, and vegetation growth provide a source of great uncertainty in projecting future fire activity in the region, as post-fire forest recovery is strongly influenced by climate and subsequent fire frequency. Severe fire can be mitigated with fuels management including prescribed fire, thinning, and wildfire management, but new strategies are needed to ensure the effectiveness of treatments across landscapes. We review the current understanding of the relationship between fire and climate in the Southwest, both historical and projected. We then discuss the potential implications of climate change for fire management and examine the potential effects of climate change and fire on ecosystem services. We conclude with an assessment of the role of fire management in an increasingly flammable Southwest.
This mobile phone app provides an opportunity for citizens to participate in community-based research project. This unique hands-on experience will educate general public about the value of forest and natural ecosystems and the concept of sustainable development. The ...
Change in avian abundance predicted from regional forest inventory data
Twedt, Daniel J.; Tirpak, John M.; Jones-Farrand, D. Todd; Thompson, Frank R.; Uihlein, William B.; Fitzgerald, Jane A.
2010-01-01
An inability to predict population response to future habitat projections is a shortcoming in bird conservation planning. We sought to predict avian response to projections of future forest conditions that were developed from nationwide forest surveys within the Forest Inventory and Analysis (FIA) program. To accomplish this, we evaluated the historical relationship between silvicolous bird populations and FIA-derived forest conditions within 25 ecoregions that comprise the southeastern United States. We aggregated forest area by forest ownership, forest type, and tree size-class categories in county-based ecoregions for 5 time periods spanning 1963-2008. We assessed the relationship of forest data with contemporaneous indices of abundance for 24 silvicolous bird species that were obtained from Breeding Bird Surveys. Relationships between bird abundance and forest inventory data for 18 species were deemed sufficient as predictive models. We used these empirically derived relationships between regional forest conditions and bird populations to predict relative changes in abundance of these species within ecoregions that are anticipated to coincide with projected changes in forest variables through 2040. Predicted abundances of these 18 species are expected to remain relatively stable in over a quarter (27%) of the ecoregions. However, change in forest area and redistribution of forest types will likely result in changed abundance of some species within many ecosystems. For example, abundances of 11 species, including pine warbler (Dendroica pinus), brown-headed nuthatch (Sitta pusilla), and chuckwills- widow (Caprimulgus carolinensis), are projected to increase within more ecoregions than ecoregions where they will decrease. For 6 other species, such as blue-winged warbler (Vermivora pinus), Carolina wren (Thryothorus ludovicianus), and indigo bunting (Passerina cyanea), we projected abundances will decrease within more ecoregions than ecoregions where they will increase.
Carbon dynamics after forest harvest in Central Siberia: the ZOTTO footprint area
NASA Astrophysics Data System (ADS)
Panov, Alexey; Zrazhevskaya, Galina; Shibistova, Olga; Onuchin, Alexander; Heimann, Martin
2013-04-01
Temperate and boreal forests of the Northern Hemisphere have been recognized as important carbon sinks. Accurate calculation of forest carbon budget and estimation of the temporal variations of forest net carbon fluxes are important topics to elucidate the ''missing sink'' question and follow up the changing carbon dynamics in forests. In the frame of the ongoing Russian-German partner project the Zotino Tall Tower Observatory (ZOTTO; www.zottoproject.org) a unique international research platform for large-scale climatic observations is operational about 20 km west of the Yenisei river (60.8°N; 89.35°E). The data of the ongoing greenhouse gas and aerosol measurements at the tall tower are used in atmospheric inversions studies to infer the distribution of carbon sinks and sources over the whole Northern Eurasia. The tall tower footprint area estimates of carbon stocks and fluxes are highly demanded for bottom-up validation of inversion estimates. The ZOTTO site lies in a vast region of forests and wetlands, still relatively undisturbed by anthropogenic influences, but a moderate human impact on vegetation, represented mainly by logging activities, becomes essential. Therefore, accurate estimates of carbon pools in vegetation and soil following harvesting are essential to inversion studies for ZOTTO and critical to predictions of both local ecosystem sustainability and global C exchange with the atmosphere. We present our investigation of carbon dynamics after forest harvest in the tall tower footprint area (~1000 km2). The changes in C pools and annual sequestration were quantified among several clear-cut lichen pine (Pinus sylvestris Lamb.) stands representing various stages of secondary succession with a "space-for-time substitution" technique. When viewed as a chronosequence, these stands represent snapshots showing how the effects of logging may propagate through time. The study concluded that ecosystems during the first 15 yrs after forest harvest become C sources to the atmosphere which is attributed to increases in decomposition rates and decreases in litter inputs due to the ecosystem disturbed. Pine stands nearly 15-20-year-old after harvesting have been recognized as weak carbon sinks, and the ecosystem of 25-40-year-old represents a relatively strong C uptake. The work was supported financially by ISTC Project # 2757p "Biogeochemical Responses to Rapid Climate Changes in Eurasia".
Dynamics of Ecosystem Services during Forest Transitions in Reventazón, Costa Rica.
Vallet, Améline; Locatelli, Bruno; Levrel, Harold; Brenes Pérez, Christian; Imbach, Pablo; Estrada Carmona, Natalia; Manlay, Raphaël; Oszwald, Johan
2016-01-01
The forest transition framework describes the temporal changes of forest areas with economic development. A first phase of forest contraction is followed by a second phase of expansion once a turning point is reached. This framework does not differentiate forest types or ecosystem services, and describes forests regardless of their contribution to human well-being. For several decades, deforestation in many tropical regions has degraded ecosystem services, such as watershed regulation, while increasing provisioning services from agriculture, for example, food. Forest transitions and expansion have been observed in some countries, but their consequences for ecosystem services are often unclear. We analyzed the implications of forest cover change on ecosystem services in Costa Rica, where a forest transition has been suggested. A review of literature and secondary data on forest and ecosystem services in Costa Rica indicated that forest transition might have led to an ecosystem services transition. We modeled and mapped the changes of selected ecosystem services in the upper part of the Reventazón watershed and analyzed how supply changed over time in order to identify possible transitions in ecosystem services. The modeled changes of ecosystem services is similar to the second phase of a forest transition but no turning point was identified, probably because of the limited temporal scope of the analysis. Trends of provisioning and regulating services and their tradeoffs were opposite in different spatial subunits of our study area, which highlights the importance of scale in the analysis of ecosystem services and forest transitions. The ecosystem services transition framework proposed in this study is useful for analyzing the temporal changes of ecosystem services and linking socio-economic drivers to ecosystem services demand at different scales.
Dynamics of Ecosystem Services during Forest Transitions in Reventazón, Costa Rica
Vallet, Améline; Locatelli, Bruno; Levrel, Harold; Brenes Pérez, Christian; Imbach, Pablo; Estrada Carmona, Natalia; Manlay, Raphaël; Oszwald, Johan
2016-01-01
The forest transition framework describes the temporal changes of forest areas with economic development. A first phase of forest contraction is followed by a second phase of expansion once a turning point is reached. This framework does not differentiate forest types or ecosystem services, and describes forests regardless of their contribution to human well-being. For several decades, deforestation in many tropical regions has degraded ecosystem services, such as watershed regulation, while increasing provisioning services from agriculture, for example, food. Forest transitions and expansion have been observed in some countries, but their consequences for ecosystem services are often unclear. We analyzed the implications of forest cover change on ecosystem services in Costa Rica, where a forest transition has been suggested. A review of literature and secondary data on forest and ecosystem services in Costa Rica indicated that forest transition might have led to an ecosystem services transition. We modeled and mapped the changes of selected ecosystem services in the upper part of the Reventazón watershed and analyzed how supply changed over time in order to identify possible transitions in ecosystem services. The modeled changes of ecosystem services is similar to the second phase of a forest transition but no turning point was identified, probably because of the limited temporal scope of the analysis. Trends of provisioning and regulating services and their tradeoffs were opposite in different spatial subunits of our study area, which highlights the importance of scale in the analysis of ecosystem services and forest transitions. The ecosystem services transition framework proposed in this study is useful for analyzing the temporal changes of ecosystem services and linking socio-economic drivers to ecosystem services demand at different scales. PMID:27390869
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, Andrew J.; Zak, Donald R.; Kubiske, Mark E.
Two of the most important and pervasive greenhouse gases driving global change and impacting forests in the U.S. and around the world are atmospheric CO2 and tropospheric O3. As the only free air, large-scale manipulative experiment studying the interaction of elevated CO2 and O3 on forests, the Aspen FACE experiment was uniquely designed to address the long-term ecosystem level impacts of these two greenhouse gases on aspen-birch-maple forests, which dominate the richly forested Lake States region. The project was established in 1997 to address the overarching scientific question: “What are the effects of elevated [CO2] and [O3], alone and inmore » combination, on the structure and functioning of northern hardwood forest ecosystems?” From 1998 through the middle of the 2009 growing season, we examined the interacting effects of elevated CO2 and O3 on ecosystem processes in an aggrading northern forest ecosystem to compare the responses of early-successional, rapid-growing shade intolerant trembling aspen and paper birch to those of a late successional, slower growing shade tolerant sugar maple. Fumigations with elevated CO2 (560 ppm during daylight hours) and O3 (approximately 1.5 x ambient) were conducted during the growing season from 1998 to 2008, and in 2009 through harvest date. Response variables quantified during the experiment included growth, competitive interactions and stand dynamics, physiological processes, plant nutrient status and uptake, tissue biochemistry, litter quality and decomposition rates, hydrology, soil respiration, microbial community composition and respiration, VOC production, treatment-pest interactions, and treatment-phenology interactions. In 2009, we conducted a detailed harvest of the site. The harvest included detailed sampling of a subset of trees by component (leaves and buds, fine branches, coarse branches and stem, coarse roots, fine roots) and excavation of soil to a depth of 1 m. Throughout the experiment, aspen and birch photosynthesis increased with elevated CO2 and tended to decrease with elevated O3, compared to the control. In contrast to aspen and birch, maple photosynthesis was not enhanced by elevated CO2. Elevated O3 did not cause significant reductions in maximum photosynthesis in birch or maple. In addition, photosynthesis in ozone sensitive clones was affected to a much greater degree than that in ozone tolerant aspen clones. Treatment effects on photosynthesis contributed to CO2 stimulation of aboveground and belowground growth that was species and genotype dependent, with birch and aspen being most responsive and maple being least responsive. The positive effects of elevated CO2 on net primary productivity NPP were sustained through the end of the experiment, but negative effects of elevated O3 on NPP had dissipated during the final three years of treatments. The declining response to O3 over time resulted from the compensatory growth of O3-tolerant genotypes and species as the growth of O3-sensitive individuals declined over time. Cumulative NPP over the entire experiment was 39% greater under elevated CO2 and 10% lower under elevated O3. Enhanced NPP under elevated CO2 was sustained by greater root exploration of soil for growth-limiting N, as well as more rapid rates of litter decomposition and microbial N release during decay. Results from Aspen FACE clearly indicate that plants growing under elevated carbon dioxide, regardless of community type or ozone level, obtained significantly greater amounts of soil N. These results indicate that greater plant growth under elevated carbon dioxide has not led to “progressive N limitation”. If similar forests growing throughout northeastern North America respond in the same manner, then enhanced forest NPP under elevated CO2 may be sustained for a longer duration than previously thought, and the negative effect of elevated O3 may be diminished by compensatory growth of O3-tolerant plants as they begin to dominate forest communities. By the end of the experiment, elevated CO2 increased ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. Total ecosystem C content in the interaction treatment (elevated CO2 and O3) did not significantly differ from that of the control. Total ecosystem C content responded similarly to the treatments across the three forest communities. The treatment effects on ecosystem C content resulted from differences in tree biomass, particularly woody tissues (branches, stem, and coarse roots), and lower C content in the near-surface mineral soil. During its duration, the Aspen FACE project involved collaboration between scientists from 9 countries, and over the course of the experiment there were over 120 Aspen FACE scientific users. These scientists helped produce 75 publications during the most recent funding period (2008-2014) and 207 peer-reviewed publications (169 in refereed journals) since the beginning of the project.« less
NASA Astrophysics Data System (ADS)
Ollinger, S. V.; Ouimette, A.; Sullivan, F.; Sanders-DeMott, R.; Palace, M. W.; Xiao, J.; Braswell, B. H., Jr.; Lepine, L. C.
2017-12-01
The question of how biological diversity influences the functioning of ecosystems has been of interest for decades and represents a grand challenge question in ecology. In terrestrial ecosystems, most of the work on this topic has come from grasslands and other systems dominated by low stature vegetation that can be experimentally manipulated. Mature forests present a challenge because the size and lifespans of trees make it difficult to conduct manipulative diversity experiments. Although some studies have focused on previously established plantation forests, these opportunities are limited and often don't coincide with measurements of whole-ecosystem function. The accumulation of data from eddy covariance networks provides a unique opportunity in that the growing temporal coverage over a large number of sites should eventually make it feasible to examine the influence of diversity using statistical, as opposed to experimental, approaches. Realizing this potential will require new approaches to characterizing functional, as well as floristic, diversity of individual sites and methods for incorporating results in broad-scale syntheses. Here, we present early results from a project designed to examine forest canopy diversity in relation to ecosystem fluxes of carbon, water and energy over North American forests. In 2017, we focused on field and remote sensing measurements at the Bartlett Experimental Forest in New Hampshire, U.S.A. We conducted plot-scale measurements of physiological, biochemical and structural canopy traits and combined them with hyperspectral and lidar remote sensing, plot-based forest growth estimates and carbon fluxes from eddy covariance. Results will be presented with respect to inter-relations among structural and functional properties that influence C cycling and the potential to apply this approach in regional- or continental-scale analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Eric A.; Saleska, Scott; Savage, Kathleen
1. Project Summary and Objectives This project combines automated in situ observations of the isotopologues of CO 2 with root observations, novel experimental manipulations of belowground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. aboveground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: A. Partitioning of net ecosystem CO 2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics ; B. Investigation of the influence of vegetation phenology on the timing and magnitudemore » of carbon allocated belowground using measurements of root growth and indices of belowground autotrophic vs. heterotrophic respiration (via trenched plots and isotope measurements); C. Testing whether plant allocation of carbon belowground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and D. Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2).« less
NASA Astrophysics Data System (ADS)
Liu, Chunwei; Sun, Ge; McNulty, Steven G.; Noormets, Asko; Fang, Yuan
2017-01-01
The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient (Kc) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, Kc has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. This study aimed at deriving monthly Kc for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly Kc data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), Kc values had large seasonal variation across all land covers. The spatial variability of Kc was well explained by latitude, suggesting site factors are a major control on Kc. Seasonally, Kc increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly Kc in all land covers, except in EBF. During the peak growing season, forests had the highest Kc values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for Kc by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. The Kc models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chunwei; Sun, Ge; McNulty, Steven G.
The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient ( K c) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, K c has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. Thismore » study aimed at deriving monthly K c for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly K c data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), K c values had large seasonal variation across all land covers. The spatial variability of K c was well explained by latitude, suggesting site factors are a major control on K c. Seasonally, K c increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly K c in all land covers, except in EBF. During the peak growing season, forests had the highest K c values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for K c by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. Here, the K c models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.« less
Liu, Chunwei; Sun, Ge; McNulty, Steven G.; ...
2017-01-18
The evapotranspiration / potential evapotranspiration (AET / PET) ratio is traditionally termed as the crop coefficient ( K c) and has been generally used as ecosystem evaporative stress index. In the current hydrology literature, K c has been widely used as a parameter to estimate crop water demand by water managers but has not been well examined for other types of ecosystems such as forests and other perennial vegetation. Understanding the seasonal dynamics of this variable for all ecosystems is important for projecting the ecohydrological responses to climate change and accurately quantifying water use at watershed to global scales. Thismore » study aimed at deriving monthly K c for multiple vegetation cover types and understanding its environmental controls by analyzing the accumulated global eddy flux (FLUXNET) data. We examined monthly K c data for seven vegetation covers, including open shrubland (OS), cropland (CRO), grassland (GRA), deciduous broad leaf forest (DBF), evergreen needle leaf forest (ENF), evergreen broad leaf forest (EBF), and mixed forest (MF), across 81 sites. We found that, except for evergreen forests (EBF and ENF), K c values had large seasonal variation across all land covers. The spatial variability of K c was well explained by latitude, suggesting site factors are a major control on K c. Seasonally, K c increased significantly with precipitation in the summer months, except in EBF. Moreover, leaf area index (LAI) significantly influenced monthly K c in all land covers, except in EBF. During the peak growing season, forests had the highest K c values, while croplands (CRO) had the lowest. We developed a series of multivariate linear monthly regression models for K c by land cover type and season using LAI, site latitude, and monthly precipitation as independent variables. Here, the K c models are useful for understanding water stress in different ecosystems under climate change and variability as well as for estimating seasonal ET for large areas with mixed land covers.« less
NASA Astrophysics Data System (ADS)
Klooster, S.; Potter, C. S.; Genovese, V. B.; Gross, P. M.; Kumar, V.; Boriah, S.; Mithal, V.; Castilla-Rubio, J.
2009-12-01
Widely cited forest carbon values from look-up tables and statistical correlations with aboveground biomass have proven to be inadequate to discern details of national carbon stocks in forest pools. Similarly, global estimates based on biome-average (tropical, temperate, boreal, etc.) carbon measurements are generally insufficient to support REDD incentives (Reductions in Emission from Deforestation in Developing countries). The NASA-CASA (Carnegie-Ames-Stanford Approach) ecosystem model published by Potter et al. (1999 and 2003) offers several unique advantages for carbon accounting that cannot be provided by conventional inventory techniques. First, CASA uses continuous satellite observations to map land cover status and changes in vegetation on a monthly time interval over the past 25 years. NASA satellites observe areas that are too remote or rugged for conventional inventory-based techniques to measure. Second, CASA estimates both aboveground and belowground pools of carbon in all ecosystems (forests, shrublands, croplands, and rangelands). Carbon storage estimates for forests globally are currently being estimated for the Cisco Planetary Skin open collaborative platform (www.planetaryskin.org ) in a new series of CASA model runs using the latest input data from the NASA MODIS satellites, from 2000 to the present. We have also developed an approach for detection of large-scale ecosystem disturbance (LSED) events based on sustained declines in the same satellite greenness data used for CASA modeling. This approach is global in scope, covers more than a decade of observations, and encompasses all potential categories of major ecosystem disturbance - physical, biogenic, and anthropogenic, using advanced methods of data mining and analysis. In addition to quantifying forest areas at various levels of risk for loss of carbon storage capacity, our data mining approaches for LSED events can be adapted to detect and map biophysically unsuitable areas for deforestation worldwide and to develop carbon risk scoring algorithms that can enable large scale finance for conservation and reforestation efforts globally.
Heidi Asbjornsen; Lars Brudvig
2013-01-01
Savanna ecosystems were once a dominant feature of the Midwestern Corn Belt Plains ecoregion, occurring within the dynamic boundary between prairies to the west and forests to the east, and maintained in the landscape by complex interactions between fire, climate, topography, and human activities (Anderson 1998). Characterized by their continuous understory layer and...
Changes in land use, forest fragmentation, and policy responses.
Ralph J. Alig; David J. Lewis; Jennifer J. Swenson
2005-01-01
Land-use conversion is a primary determinant of environmental change in terrestrial ecosystems. Projections are for more than 50 million acres of U.S. forest to be converted to developed uses (e.g., parking lots) over the next 50 years (Alig et al. 2004, Alig and Plantinga 2004), as the population grows by more than 120 million people. Land use change can lead to...
Victoria J. Apsit; Rodney J. Dyer; Victoria L. Sork
2002-01-01
Contemporary gene flow is a major mechanism for the maintenance of genetic diversity. One component of gene flow is the mating system, which is a composite measure of selfing, mating with relatives, and outcrossing. Although both gene flow and mating patterns contribute to the ecological sustainability of populations, a focus of many forest management plans, these...
Future directions for forest restoration in Hawai'i
James B. Friday; Susan Cordell; Christian P. Giardina; Faith Inman-Narahari; Nicholas Koch; James J. K. Leary; Creighton M. Litton; Clay Trauernicht
2015-01-01
Hawaiâi has served as a model system for studies of nutrient cycling and conservation biology. The islands may also become a laboratory for exploring new approaches to forest restoration because of a common history of degradation and the growing number of restoration projects undertaken. Approximately half of the native ecosystems of Hawaiâi have been converted to non-...
Understanding forest ecology from the landscape to the project level
Ward McCaughey
2007-01-01
Several researchers in the Forestry Sciences Laboratory have been actively involved in BEMRP since its inception in the early 1990s. The recent research on the Trapper Bunkhouse Land Stewardship Project began in 2004. In ecosystem management, sometimes we need to look at the big picture, or the landscape scale, and sometimes we need to work on a more local, or project-...
Eric J. Greenfield; David J. Nowak
2013-01-01
Future projections of tree cover and climate change are useful to natural resource managers as they illustrate potential changes to our natural resources and the ecosystem services they provide. This report a) details three projections of tree cover change across the conterminous United States based on predicted land-use changes from 2000 to 2060; b) evaluates nine...
Enhancement of Terrestrial Carbon Sinks through the Reclamation of Abandoned Mined Lands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary Kronrad
2004-10-31
This project will determine the optimal forest management method to employ for each of the major commercial tree species so that profitability of timber production only or the combination of timber production and carbon sequestration is maximized. The goal of this project is to achieve DOE's long-term cost goal of sequestering carbon at $10 or less per ton. Because the potential of a forest ecosystem to sequester carbon depends on the species, site quality and management regimes utilized, this project will determine how to optimize carbon sequestration by determining how to optimally manage each species, given a range of sitemore » qualities and economic variables. This project also will determine the effects of a carbon credit market on the method and profitability of forest management, the cost of sequestering carbon, and the amount of carbon that can be sequestered. Information from this project will be used to produce user-friendly manuals which will contain economic and biological data for each of the species. These manuals will inform landowners and forest managers how to manage forests for timber and/or carbon credits, how to maximize financial returns, how much money can be earned, and how much carbon can be stored. Manuals will be disseminated through state and federal agricultural extension services and the forest service of each state, and will be published in forest landowner magazines.« less
Enhancement of Terrestrial Carbon Sinks through the Reclamation of Abandoned Mined Lands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary Kronrad
2006-01-31
This project will determine the optimal forest management method to employ for each of the major commercial tree species so that profitability of timber production only or the combination of timber production and carbon sequestration is maximized. The goal of this project is to achieve DOE's long-term cost goal of sequestering carbon at $10 or less per ton. Because the potential of a forest ecosystem to sequester carbon depends on the species, site quality and management regimes utilized, this project will determine how to optimize carbon sequestration by determining how to optimally manage each species, given a range of sitemore » qualities and economic variables. This project also will determine the effects of a carbon credit market on the method and profitability of forest management, the cost of sequestering carbon, and the amount of carbon that can be sequestered. Information from this project will be used to produce user-friendly manuals which will contain economic and biological data for each of the species. These manuals will inform landowners and forest managers how to manage forests for timber and/or carbon credits, how to maximize financial returns, how much money can be earned, and how much carbon can be stored. Manuals will be disseminated through state and federal agricultural extension services and the forest service of each state, and will be published in forest landowner magazines.« less
Enhancement of Terrestrial Carbon Sinks through the Reclamation of Abandoned Mined Lands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary Kronrad
2005-04-30
This project will determine the optimal forest management method to employ for each of the major commercial tree species so that profitability of timber production only or the combination of timber production and carbon sequestration is maximized. The goal of this project is to achieve DOE's long-term cost goal of sequestering carbon at $10 or less per ton. Because the potential of a forest ecosystem to sequester carbon depends on the species, site quality and management regimes utilized, this project will determine how to optimize carbon sequestration by determining how to optimally manage each species, given a range of sitemore » qualities and economic variables. This project also will determine the effects of a carbon credit market on the method and profitability of forest management, the cost of sequestering carbon, and the amount of carbon that can be sequestered. Information from this project will be used to produce user-friendly manuals which will contain economic and biological data for each of the species. These manuals will inform landowners and forest managers how to manage forests for timber and/or carbon credits, how to maximize financial returns, how much money can be earned, and how much carbon can be stored. Manuals will be disseminated through state and federal agricultural extension services and the forest service of each state, and will be published in forest landowner magazines.« less
Enhancement of Terrestrial Carbon Sinks throught the Reclamation of Abandoned Mined Lands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary Kronrad
2006-06-30
This project will determine the optimal forest management method to employ for each of the major commercial tree species so that profitability of timber production only or the combination of timber production and carbon sequestration is maximized. The goal of this project is to achieve DOE's long-term cost goal of sequestering carbon at $10 or less per ton. Because the potential of a forest ecosystem to sequester carbon depends on the species, site quality and management regimes utilized, this project will determine how to optimize carbon sequestration by determining how to optimally manage each species, given a range of sitemore » qualities and economic variables. This project also will determine the effects of a carbon credit market on the method and profitability of forest management, the cost of sequestering carbon, and the amount of carbon that can be sequestered. Information from this project will be used to produce user-friendly manuals which will contain economic and biological data for each of the species. These manuals will inform landowners and forest managers how to manage forests for timber and/or carbon credits, how to maximize financial returns, how much money can be earned, and how much carbon can be stored. Manuals will be disseminated through state and federal agricultural extension services and the forest service of each state, and will be published in forest landowner magazines.« less
NASA Astrophysics Data System (ADS)
Pungkul, S.; Suraswasdi, C.; Phonekeo, V.
2014-02-01
The Great Mekong Subregion (GMS) contains one of the world's largest tropical forests and plays a vital role in sustainable development and provides a range of economic, social and environmental benefits, including essential ecosystem services such as climate change mitigation and adaptation. However, the forest in this Subregion is experiencing deforestation rates at high level due to human activities. The reduction of the forest area has negative influence to the environmental and natural resources issues, particularly, more severe disasters have occurred due to global warming and the release of the greenhouse gases. Therefore, in order to conduct forest management in the Subregion efficiently, the Forest Cover and Carbon Mapping in Greater Mekong Subregion and Malaysia project was initialized by the Asia-Pacific Network for Sustainable Forest Management and Rehabilitation (APFNet) with the collaboration of various research institutions including Institute of Forest Resource Information Technique (IFRIT), Chinese Academy of Forestry (CAF) and the countries in Sub region and Malaysia comprises of Cambodia, the People's Republic of China (Yunnan province and Guangxi province), Lao People's Democratic Republic, Malaysia, Myanmar, Thailand, and Viet Nam. The main target of the project is to apply the intensive use of recent satellite remote sensing technology, establishing regional forest cover maps, documenting forest change processes and estimating carbon storage in the GMS and Malaysia. In this paper, the authors present the implementation of the project in Thailand and demonstrate the result of forest cover mapping in the whole country in 2005 and 2010. The result of the project will contribute towards developing efficient tools to support decision makers to clearly understand the dynamic change of the forest cover which could benefit sustainable forest resource management in Thailand and the whole Subregion.
Balancing trade-offs between ecosystem services in Germany’s forests under climate change
NASA Astrophysics Data System (ADS)
Gutsch, Martin; Lasch-Born, Petra; Kollas, Chris; Suckow, Felicitas; Reyer, Christopher P. O.
2018-04-01
Germany’s forests provide a variety of ecosystem services. Sustainable forest management aims to optimize the provision of these services at regional level. However, climate change will impact forest ecosystems and subsequently ecosystem services. The objective of this study is to quantify the effects of two alternative management scenarios and climate impacts on forest variables indicative of ecosystem services related to timber, habitat, water, and carbon. The ecosystem services are represented through nine model output variables (timber harvest, above and belowground biomass, net ecosystem production, soil carbon, percolation, nitrogen leaching, deadwood, tree dimension, broadleaf tree proportion) from the process-based forest model 4C. We simulated forest growth, carbon and water cycling until 2045 with 4C set-up for the whole German forest area based on National Forest Inventory data and driven by three management strategies (nature protection, biomass production and a baseline management) and an ensemble of regional climate scenarios (RCP2.6, RCP 4.5, RCP 8.5). We provide results as relative changes compared to the baseline management and observed climate. Forest management measures have the strongest effects on ecosystem services inducing positive or negative changes of up to 40% depending on the ecosystem service in question, whereas climate change only slightly alters ecosystem services averaged over the whole forest area. The ecosystem services ‘carbon’ and ‘timber’ benefit from climate change, while ‘water’ and ‘habitat’ lose. We detect clear trade-offs between ‘timber’ and all other ecosystem services, as well as synergies between ‘habitat’ and ‘carbon’. When evaluating all ecosystem services simultaneously, our results reveal certain interrelations between climate and management scenarios. North-eastern and western forest regions are more suitable to provide timber (while minimizing the negative impacts on remaining ecosystem services) whereas southern and central forest regions are more suitable to fulfil ‘habitat’ and ‘carbon’ services. The results provide the base for future forest management optimizations at the regional scale in order to maximize ecosystem services and forest ecosystem sustainability at the national scale.
Potential climate change impacts on temperate forest ecosystem processes
Peters, Emily B.; Wythers, Kirk R.; Zhang, Shuxia; Bradford, John B.; Reich, Peter B.
2013-01-01
Large changes in atmospheric CO2, temperature and precipitation are predicted by 2100, yet the long-term consequences for carbon, water, and nitrogen cycling in forests are poorly understood. We applied the PnET-CN ecosystem model to compare the long-term effects of changing climate and atmospheric CO2 on productivity, evapotranspiration, runoff, and net nitrogen mineralization in current Great Lakes forest types. We used two statistically downscaled climate projections, PCM B1 (warmer and wetter) and GFDL A1FI (hotter and drier), to represent two potential future climate and atmospheric CO2 scenarios. To separate the effects of climate and CO2, we ran PnET-CN including and excluding the CO2 routine. Our results suggest that, with rising CO2 and without changes in forest type, average regional productivity could increase from 67% to 142%, changes in evapotranspiration could range from –3% to +6%, runoff could increase from 2% to 22%, and net N mineralization could increase 10% to 12%. Ecosystem responses varied geographically and by forest type. Increased productivity was almost entirely driven by CO2 fertilization effects, rather than by temperature or precipitation (model runs holding CO2 constant showed stable or declining productivity). The relative importance of edaphic and climatic spatial drivers of productivity varied over time, suggesting that productivity in Great Lakes forests may switch from being temperature to water limited by the end of the century.
Assessing carbon storage in western U.S. ecosystems
NASA Astrophysics Data System (ADS)
Balcerak, Ernie
2013-01-01
Western U.S. ecosystems have the capacity to sequester about 91 million metric tons of carbon per year, according to a report released 5 December by the Department of the Interior. Entitled "Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes in Ecosystems of the Western United States" and written by U.S. Geological Survey (USGS) scientists, the report came out of a congressionally mandated study. It examines how much carbon can be stored naturally through biological activity in various ecosystems, including forests, grasslands, and wetlands, in the western United States, from the Rocky Mountains to the Pacific.
Impacts of Present and Future Climate Variability on Forest Ecosystem in Mediterranean Region
NASA Astrophysics Data System (ADS)
Ozcan, O.; Musaoglu, N.; Türkeş, M.
2017-12-01
The concept of `climate change vulnerability' helps us to better comprehend the cause/effect relationships behind climate change and its impact on human societies, socioeconomic sectors, physiographical and ecological systems. Herein, multifactorial spatial modeling was applied to evaluate the vulnerability of a Mediterranean forest ecosystem to climate change. Thus, the geographical distribution of the final Environmental Vulnerability Areas (EVAs) of the forest ecosystem are based on the estimated final Environmental Vulnerability Index (EVI) values. This revealed that at current levels of environmental degradation, physical, geographical, policy enforcement and socioeconomic conditions, the area with a "very low" vulnerability degree covered mainly the town, its surrounding settlements and the agricultural lands found mainly over the low and flat travertine plateau and the plains at the east and southeast of the district. The spatial magnitude of the EVAs over the forest ecosystem under the current environmental degradation was also determined. This revealed that the EVAs classed as "very low" account for 21% of the total area of the forest ecosystem, those classed as "low" account for 36%, those classed as "medium" account for 20%, and those classed as "high" account for 24%. Based on regionally averaged future climate assessments and projected future climate indicators, both the study site and the western Mediterranean sub-region of Turkey will probably become associated with a drier, hotter, more continental and more water-deficient climate. This analysis holds true for all future scenarios, with the exception of RCP4.5 for the period from 2015 to 2030. However, the present dry-sub humid climate dominating this sub-region and the study area shows a potential for change towards more dry climatology and for it to become a semiarid climate in the period between 2031 and 2050 according to the RCP8.5 high emission scenario. All the observed and estimated results show clearly that the densest forest ecosystem in the southern part of the study site, which is characterized by mainly Mediterranean coniferous and some mixed forest and the maquis vegetation, will very likely be influenced by medium and high degrees of vulnerability to future environmental degradation, climate change and variability.
Ecological restoration of southwestern ponderosa pine ecosystems: A broad perspective
Allen, Craig D.; Savage, Melissa; Falk, Donald A.; Suckling, Kieran F.; Swetnam, Thomas W.; Schulke, Todd; Stacey, Peter B.; Morgan, Penelope; Hoffman, Martos; Klingel, Jon T.
2002-01-01
The purpose of this paper is to promote a broad and flexible perspective on ecological restoration of Southwestern (U.S.) ponderosa pine forests. Ponderosa pine forests in the region have been radically altered by Euro-American land uses, including livestock grazing, fire suppression, and logging. Dense thickets of young trees now abound, old-growth and biodiversity have declined, and human and ecological communities are increasingly vulnerable to destructive crown fires. A consensus has emerged that it is urgent to restore more natural conditions to these forests. Efforts to restore Southwestern forests will require extensive projects employing varying combinations of young-tree thinning and reintroduction of low-intensity fires. Treatments must be flexible enough to recognize and accommodate: high levels of natural heterogeneity; dynamic ecosystems; wildlife and other biodiversity considerations; scientific uncertainty; and the challenges of on-the-ground implementation. Ecological restoration should reset ecosystem trends toward an envelope of “natural variability,” including the reestablishment of natural processes. Reconstructed historic reference conditions are best used as general guides rather than rigid restoration prescriptions. In the long term, the best way to align forest conditions to track ongoing climate changes is to restore fire, which naturally correlates with current climate. Some stands need substantial structural manipulation (thinning) before fire can safely be reintroduced. In other areas, such as large wilderness and roadless areas, fire alone may suffice as the main tool of ecological restoration, recreating the natural interaction of structure and process. Impatience, overreaction to crown fire risks, extractive economics, or hubris could lead to widespread application of highly intrusive treatments that may further damage forest ecosystems. Investments in research and monitoring of restoration treatments are essential to refine restoration methods. We support the development and implementation of a diverse range of scientifically viable restoration approaches in these forests, suggest principles for ecologically sound restoration that immediately reduce crown fire risk and incrementally return natural variability and resilience to Southwestern forests, and present ecological perspectives on several forest restoration approaches.
Fire Regime and Ecosystem Effects of Climate-driven Changes in Rocky Mountains Hydrology
NASA Astrophysics Data System (ADS)
Westerling, A. L.; Das, T.; Lubetkin, K.; Romme, W.; Ryan, M. G.; Smithwick, E. A.; Turner, M.
2009-12-01
Western US Forest managers face more wildfires than ever before, and it is increasingly imperative to anticipate the consequences of this trend. Large fires in the northern Rocky Mountains have increased in association with warmer temperatures, earlier snowmelt, and longer fire seasons (1), and this trend is likely to continue with global warming (2). Increased wildfire occurrence is already a concern shared by managers from many federal land-management agencies (3). However, new analyses for the western US suggest that future climate could diverge even more rapidly from past climate than previously suggested. Current model projections suggest end-of-century hydroclimatic conditions like those of 1988 (the year of the well-known Yellowstone Fires) may represent close to the average year rather than an extreme year. The consequences of a shift of this magnitude for the fire regime, post-fire succession and carbon (C) balance of western forest ecosystems are well beyond what scientists have explored to date, and may fundamentally change the potential of western forests to sequester atmospheric C. We link hydroclimatic extremes (spring and summer temperature and cumulative water-year moisture deficit) to extreme fire years in northern Rockies forests, using large forest fire histories and 1/8-degree gridded historical hydrologic simulations (1950 - 2005) (4) forced with historical gridded temperature and precipitation (5). The frequency of extremes in hydroclimate associated with historic severe fire years in the northern Rocky Mountains is compared to those projected under a range of climate change projections, using global climate model runs for the A2 and B1 emissions pathways for three global climate models (NCAR PCM1, GFDL CM2.1, CNRM CM3). Coarse-scale climatic variables are downscaled to a 1/8 degree grid and used to force hydrologic simulations (6, 7). We will present preliminary results using these hydrologic simulations to model spatially explicit annual wildfire occurrence historically and under the above-cited future climate scenarios, and discuss how these results are being integrated with process-based ecosystem models and field data to model changes in carbon flux across the Greater Yellowstone Ecosystem landscape (8). 1. Westerling, Hidalgo, Cayan, Swetnam, Science 313, 940 (2006). 2. Tymstra, Flannigan, Armitage, Logan, Int’l J. Wildland Fire 16, 153 (2007). 3. U. S. G. A. O. GAO. (2007). 4. Liang, Lettenmaier, Wood, Burges. J. Geophys. Res. 99(D7), 14,415 (1994). 5. Maurer, Wood, Adam, Lettenmaier, Nijssen. J. Climate 15:3237 (2002). 6. Cayan, Maurer, Dettinger, Tyree, Hayhoe. Climatic Change 87(Suppl. 1) 21 (2008). 7. Hidalgo, Dettinger Cayan, CEC Report CEC-500-2007-123 (2008). 8. We acknowledge support from the Joint Fire Science Program (Project ID 09-3-01-47), the NOAA RISA program for California, and the US Forest Service.
Historical and Projected Trends in Landscape Drivers Affecting Carbon Dynamics in Alaska
Pastick, Neal J.; Duffy, Paul; Genet, Hélène; ...
2017-04-08
Modern climate change in Alaska has resulted in widespread thawing of permafrost, increased fire activity, and extensive changes in vegetation characteristics that have significant consequences for socio-ecological systems. Despite observations of the heightened sensitivity of these systems to change, there has not been a comprehensive assessment of factors that drive ecosystem changes throughout Alaska. In this paper, we present research that improves our understanding of the main drivers of the spatiotemporal patterns of carbon dynamics using in situ observations, remote sensing data, and an array of modeling techniques. In the last 60 years, Alaska has seen a large increase inmore » mean annual air temperature (1.7 °C), with the greatest warming occurring over winter and spring. Warming trends are projected to continue throughout the 21st century and will likely result in landscape-level changes to ecosystem structure and function. Wetlands, mainly bogs and fens, which are currently estimated to cover 12.5% of the landscape, strongly influence exchange of methane between Alaska's ecosystems and the atmosphere and are expected to be affected by thawing permafrost and shifts in hydrology. Simulations suggest the current proportion of near-surface (within 1 m) and deep (within 5 m) permafrost extent will be reduced by 9–74% and 33–55% by the end of the 21st century, respectively. Since 2000, an average of 678,595 ha/yr was burned, more than twice the annual average during 1950–1999. The largest increase in fire activity is projected for the boreal forest, which could result in a reduction in late-successional spruce forest (8–44%) and an increase in early-succession deciduous forest (25–113%) that would mediate future fire activity and weaken permafrost stability in the region. Climate warming will also affect vegetation communities across arctic regions, where the coverage of deciduous forest could increase (223–620%), shrub tundra may increase (4–21%), and graminoid tundra might decrease (10–24%). Finally, this study sheds light on the sensitivity of Alaska's ecosystems to change that has the potential to significantly affect local and regional carbon balance, but more research is needed to improve estimates of land-surface and subsurface properties, and to better account for ecosystem dynamics affected by a myriad of biophysical factors and interactions.« less
Historical and projected trends in landscape drivers affecting carbon dynamics in Alaska
Pastick, Neal J.; Duffy, Paul A.; Genet, Hélène; Rupp, T. Scott; Wylie, Bruce K.; Johnson, Kristofer; Jorgenson, M. Torre; Bliss, Norman B.; McGuire, Anthony David; Jafarov, Elchin; Knight, Joseph F.
2017-01-01
Modern climate change in Alaska has resulted in widespread thawing of permafrost, increased fire activity, and extensive changes in vegetation characteristics that have significant consequences for socioecological systems. Despite observations of the heightened sensitivity of these systems to change, there has not been a comprehensive assessment of factors that drive ecosystem changes throughout Alaska. Here we present research that improves our understanding of the main drivers of the spatiotemporal patterns of carbon dynamics using in situ observations, remote sensing data, and an array of modeling techniques. In the last 60 yr, Alaska has seen a large increase in mean annual air temperature (1.7°C), with the greatest warming occurring over winter and spring. Warming trends are projected to continue throughout the 21st century and will likely result in landscape-level changes to ecosystem structure and function. Wetlands, mainly bogs and fens, which are currently estimated to cover 12.5% of the landscape, strongly influence exchange of methane between Alaska's ecosystems and the atmosphere and are expected to be affected by thawing permafrost and shifts in hydrology. Simulations suggest the current proportion of near-surface (within 1 m) and deep (within 5 m) permafrost extent will be reduced by 9–74% and 33–55% by the end of the 21st century, respectively. Since 2000, an average of 678 595 ha/yr was burned, more than twice the annual average during 1950–1999. The largest increase in fire activity is projected for the boreal forest, which could result in a reduction in late-successional spruce forest (8–44%) and an increase in early-successional deciduous forest (25–113%) that would mediate future fire activity and weaken permafrost stability in the region. Climate warming will also affect vegetation communities across arctic regions, where the coverage of deciduous forest could increase (223–620%), shrub tundra may increase (4–21%), and graminoid tundra might decrease (10–24%). This study sheds light on the sensitivity of Alaska's ecosystems to change that has the potential to significantly affect local and regional carbon balance, but more research is needed to improve estimates of land-surface and subsurface properties, and to better account for ecosystem dynamics affected by a myriad of biophysical factors and interactions.
Zhu, Zhi-Liang; Reed, Bradley C.
2012-01-01
This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act (EISA) of 2007 and to improve understanding of carbon and greenhouse gas (GHG) fluxes in ecosystems of the Western United States. The assessment examined carbon storage, carbon fluxes, and other GHG fluxes (methane and nitrous oxide) in all major terrestrial ecosystems (forests, grasslands/shrublands, agricultural lands, and wetlands) and aquatic ecosystems (rivers, streams, lakes, reservoirs, and coastal waters) in two time periods: baseline (generally in the first half of the 2010s) and future (projections from baseline to 2050). The assessment was based on measured and observed data collected by the U.S. Geological Survey (USGS) and many other agencies and organizations and used remote sensing, statistical methods, and simulation models.
NASA Astrophysics Data System (ADS)
Trugman, A. T.; Fenton, N.; Bergeron, Y.; Xu, X.; Welp, L.; Medvigy, D.
2015-12-01
Soil organic layer dynamics strongly affect boreal forest development after fire. Field studies show that soil organic layer thickness exerts a species-specific control on propagule establishment in the North American boreal forest. On organic soils thicker than a few centimeters, all propagules are less able to recruit, but broadleaf trees recruit less effectively than needleleaf trees. In turn, forest growth controls organic layer accumulation through modulating litter input and litter quality. These dynamics have not been fully incorporated into models, but may be essential for accurate projections of ecosystem carbon storage. Here, we develop a data-constrained model for understanding boreal forest development after fire. We update the ED2 model to include new aspen and black spruce species-types, species-specific propagule survivorship dependent on soil organic layer depth, species-specific litter decay rates, dynamically accumulating moss and soil organic layers, and nitrogen fixation by cyanobacteria associated with moss. The model is validated against diverse observations ranging from monthly to centennial timescales and spanning a climate gradient in Alaska, central Canada, and Quebec. We then quantify differences in forest development that result from changes in organic layer accumulation, temperature, and nitrogen. We find that (1) the model accurately reproduces a range of observations throughout the North American boreal forest; (2) the presence of a thick organic layer results in decreased decomposition and decreased aboveground productivity, effects that can increase or decrease ecosystem carbon uptake depending on location-specific attributes; (3) with a mean warming of 4°C, some forests switch from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing ecosystem accumulation by ~30% after 300 years; (4) the availability of nitrogen regulates successional dynamics such than broadleaf species are less able to compete with needleleaf trees under low nitrogen regimes. We conclude that a joint regulation between the soil organic layer, temperature, and nitrogen will likely play an important role in influencing boreal forests development after fire in future climates, and should be represented in models.
D. Bachelet; J. Lenihan; R. Neilson; R. Drapek; T. Kittel
2005-01-01
The dynamic global vegetation model MC1 was used to examine climate, fire, and ecosystems interactions in Alaska under historical (1922-1996) and future (1997-2100) climate conditions. Projections show that by the end of the 21st century, 75%-90% of the area simulated as tundra in 1922 is replaced by boreal and temperate forest. From 1922 to 1996, simulation results...
Resistance of the boreal forest to high burn rates.
Héon, Jessie; Arseneault, Dominique; Parisien, Marc-André
2014-09-23
Boreal ecosystems and their large carbon stocks are strongly shaped by extensive wildfires. Coupling climate projections with records of area burned during the last 3 decades across the North American boreal zone suggests that area burned will increase by 30-500% by the end of the 21st century, with a cascading effect on ecosystem dynamics and on the boreal carbon balance. Fire size and the frequency of large-fire years are both expected to increase. However, how fire size and time since previous fire will influence future burn rates is poorly understood, mostly because of incomplete records of past fire overlaps. Here, we reconstruct the length of overlapping fires along a 190-km-long transect during the last 200 y in one of the most fire-prone boreal regions of North America to document how fire size and time since previous fire will influence future fire recurrence. We provide direct field evidence that extreme burn rates can be sustained by a few occasional droughts triggering immense fires. However, we also show that the most fire-prone areas of the North American boreal forest are resistant to high burn rates because of overabundant young forest stands, thereby creating a fuel-mediated negative feedback on fire activity. These findings will help refine projections of fire effect on boreal ecosystems and their large carbon stocks.
Resistance of the boreal forest to high burn rates
Héon, Jessie; Arseneault, Dominique; Parisien, Marc-André
2014-01-01
Boreal ecosystems and their large carbon stocks are strongly shaped by extensive wildfires. Coupling climate projections with records of area burned during the last 3 decades across the North American boreal zone suggests that area burned will increase by 30–500% by the end of the 21st century, with a cascading effect on ecosystem dynamics and on the boreal carbon balance. Fire size and the frequency of large-fire years are both expected to increase. However, how fire size and time since previous fire will influence future burn rates is poorly understood, mostly because of incomplete records of past fire overlaps. Here, we reconstruct the length of overlapping fires along a 190-km-long transect during the last 200 y in one of the most fire-prone boreal regions of North America to document how fire size and time since previous fire will influence future fire recurrence. We provide direct field evidence that extreme burn rates can be sustained by a few occasional droughts triggering immense fires. However, we also show that the most fire-prone areas of the North American boreal forest are resistant to high burn rates because of overabundant young forest stands, thereby creating a fuel-mediated negative feedback on fire activity. These findings will help refine projections of fire effect on boreal ecosystems and their large carbon stocks. PMID:25201981
NASA Astrophysics Data System (ADS)
Henne, P. D.; Hawbaker, T. J.; Berryman, E.
2017-12-01
Annual area burned in the Rocky Mountains varies with climatic conditions. However, projecting long-term changes in wildfire presents an enduring challenge because climate also constrains vegetation and fuel availability. We combined an aridity-threshold fire model with the Landis-II dynamic landscape vegetation model (NECN extension) to project climate change impacts on vegetation, area burned, and ecosystem carbon balance in the Greater Yellowstone Ecosystem (GYE). We developed a fire model that relates drought stress to area burned by quantifying an aridity threshold separating large and small years in 15 ecoregions in the Intermountain West. A significant positive correlation (r2 = 0.97) exists between mean fire-season aridity and ecoregion-specific aridity thresholds. We simulated vegetation and fire dynamics in the GYE at 250 m spatial resolution with Landis-II, using projections from five climate models and two emissions scenarios for the period 1980-2100 AD. We determined if each simulation year exceeded the regional aridity threshold, then randomly drew the number of fires and size of individual fires from fire-size distributions from large or small fire years. Burned area increases dramatically in most climate scenarios, especially after 2060, when most years exceed the aridity threshold. Productivity gains due to rising temperatures partially offset biomass lost to fire, but C stocks plateau or decline after 2060 in most simulations as burned area increases, and drought stress causes post-fire regeneration to decline at low elevations. However, species level changes (e.g. expansion by drought-tolerant Pseuodotsuga menziesii) help maintain productivity in sites where water becomes limiting. Fire-adapted Pinus contorta occupies less total area, but a greater proportion of remaining forests, and Picea engelmannii and Abies lasiocarpa significantly decline. Although fire and climate change will alter species distributions and forest structure, our results suggest that the GYE can maintain a C sink through 2100. However, C stocks will likely shift to higher elevations, and forests will be less resilient to disturbance, in a warmer future. Our landscape-level approach identifies regions likely to maintain high conservation value and ecosystem services under multiple climate scenarios.
Kaplan, J.O.; Bigelow, N.H.; Prentice, I.C.; Harrison, S.P.; Bartlein, P.J.; Christensen, T.R.; Cramer, W.; Matveyeva, N.V.; McGuire, A.D.; Murray, D.F.; Razzhivin, V.Y.; Smith, B.; Walker, D.A.; Anderson, P.M.; Andreev, A.A.; Brubaker, L.B.; Edwards, M.E.; Lozhkin, A.V.
2003-01-01
Large variations in the composition, structure, and function of Arctic ecosystems are determined by climatic gradients, especially of growing-season warmth, soil moisture, and snow cover. A unified circumpolar classification recognizing five types of tundra was developed. The geographic distributions of vegetation types north of 55??N, including the position of the forest limit and the distributions of the tundra types, could be predicted from climatology using a small set of plant functional types embedded in the biogeochemistry-biogeography model BIOME4. Several palaeoclimate simulations for the last glacial maximum (LGM) and mid-Holocene were used to explore the possibility of simulating past vegetation patterns, which are independently known based on pollen data. The broad outlines of observed changes in vegetation were captured. LGM simulations showed the major reduction of forest, the great extension of graminoid and forb tundra, and the restriction of low- and high-shrub tundra (although not all models produced sufficiently dry conditions to mimic the full observed change). Mid-Holocene simulations reproduced the contrast between northward forest extension in western and central Siberia and stability of the forest limit in Beringia. Projection of the effect of a continued exponential increase in atmospheric CO2 concentration, based on a transient ocean-atmosphere simulation including sulfate aerosol effects, suggests a potential for larger changes in Arctic ecosystems during the 21st century than have occurred between mid-Holocene and present. Simulated physiological effects of the CO2 increase (to > 700 ppm) at high latitudes were slight compared with the effects of the change in climate.
NASA Astrophysics Data System (ADS)
Zhu, Jie; Sun, Ge; Li, Wenhong; Zhang, Yu; Miao, Guofang; Noormets, Asko; McNulty, Steve G.; King, John S.; Kumar, Mukesh; Wang, Xuan
2017-12-01
The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, groundwater recharge, and wildlife habitat. However, these wetland ecosystems are dependent on local climate and hydrology, and are therefore at risk due to climate and land use change. This study develops site-specific empirical hydrologic models for five forested wetlands with different characteristics by analyzing long-term observed meteorological and hydrological data. These wetlands represent typical cypress ponds/swamps, Carolina bays, pine flatwoods, drained pocosins, and natural bottomland hardwood ecosystems. The validated empirical models are then applied at each wetland to predict future water table changes using climate projections from 20 general circulation models (GCMs) participating in Coupled Model Inter-comparison Project 5 (CMIP5) under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios. We show that combined future changes in precipitation and potential evapotranspiration would significantly alter wetland hydrology including groundwater dynamics by the end of the 21st century. Compared to the historical period, all five wetlands are predicted to become drier over time. The mean water table depth is predicted to drop by 4 to 22 cm in response to the decrease in water availability (i.e., precipitation minus potential evapotranspiration) by the year 2100. Among the five examined wetlands, the depressional wetland in hot and humid Florida appears to be most vulnerable to future climate change. This study provides quantitative information on the potential magnitude of wetland hydrological response to future climate change in typical forested wetlands in the southeastern US.
Sheng, Wenping; Yu, Guirui; Fang, Huajun; Jiang, Chunming; Yan, Junhua; Zhou, Mei
2014-01-01
We added the stable isotope 15N in the form of (15NH4)2SO4 and K15NO3 to forest ecosystems in eastern China under two different N deposition levels to study the fate of the different forms of deposited N. Prior to the addition of the 15N tracers, the natural 15N abundance ranging from −3.4‰ to +10.9‰ in the forest under heavy N deposition at Dinghushan (DHS), and from −3.92‰ to +7.25‰ in the forest under light N deposition at Daxinganling (DXAL). Four months after the tracer application, the total 15N recovery from the major ecosystem compartments ranged from 55.3% to 90.5%. The total 15N recoveries were similar under the (15NH4)2SO4 tracer treatment in both two forest ecosystems, whereas the total 15N recovery was significantly lower in the subtropical forest ecosystem at DHS than in the boreal forest ecosystem at DXAL under the K15NO3 tracer treatment. The 15N assimilated into the tree biomass represented only 8.8% to 33.7% of the 15N added to the forest ecosystems. In both of the tracer application treatments, more 15N was recovered from the tree biomass in the subtropical forest ecosystem at DHS than the boreal forest ecosystem at DXAL. The amount of 15N assimilated into tree biomass was greater under the K15NO3 tracer treatment than that of the (15NH4)2SO4 treatment in both forest ecosystems. This study suggests that, although less N was immobilized in the forest ecosystems under more intensive N deposition conditions, forest ecosystems in China strongly retain N deposition, even in areas under heavy N deposition intensity or in ecosystems undergoing spring freezing and thawing melts. Compared to ammonium deposition, deposited nitrate is released from the forest ecosystem more easily. However, nitrate deposition could be retained mostly in the plant N pool, which might lead to more C sequestration in these ecosystems. PMID:24586688
Sheng, Wenping; Yu, Guirui; Fang, Huajun; Jiang, Chunming; Yan, Junhua; Zhou, Mei
2014-01-01
We added the stable isotope (15)N in the form of ((15)NH4)2SO4 and K(15)NO3 to forest ecosystems in eastern China under two different N deposition levels to study the fate of the different forms of deposited N. Prior to the addition of the (15)N tracers, the natural (15)N abundance ranging from -3.4‰ to +10.9‰ in the forest under heavy N deposition at Dinghushan (DHS), and from -3.92‰ to +7.25‰ in the forest under light N deposition at Daxinganling (DXAL). Four months after the tracer application, the total (15)N recovery from the major ecosystem compartments ranged from 55.3% to 90.5%. The total (15)N recoveries were similar under the ((15)NH4)2SO4 tracer treatment in both two forest ecosystems, whereas the total (15)N recovery was significantly lower in the subtropical forest ecosystem at DHS than in the boreal forest ecosystem at DXAL under the K(15)NO3 tracer treatment. The (15)N assimilated into the tree biomass represented only 8.8% to 33.7% of the (15)N added to the forest ecosystems. In both of the tracer application treatments, more (15)N was recovered from the tree biomass in the subtropical forest ecosystem at DHS than the boreal forest ecosystem at DXAL. The amount of (15)N assimilated into tree biomass was greater under the K(15)NO3 tracer treatment than that of the ((15)NH4)2SO4 treatment in both forest ecosystems. This study suggests that, although less N was immobilized in the forest ecosystems under more intensive N deposition conditions, forest ecosystems in China strongly retain N deposition, even in areas under heavy N deposition intensity or in ecosystems undergoing spring freezing and thawing melts. Compared to ammonium deposition, deposited nitrate is released from the forest ecosystem more easily. However, nitrate deposition could be retained mostly in the plant N pool, which might lead to more C sequestration in these ecosystems.
Robert E. Keane; Matthew Rollins; Zhi-Liang Zhu
2007-01-01
Canopy and surface fuels in many fire-prone forests of the United States have increased over the last 70 years as a result of modern fire exclusion policies, grazing, and other land management activities. The Healthy Forest Restoration Act and National Fire Plan establish a national commitment to reduce fire hazard and restore fire-adapted ecosystems across the USA....
Debby K. Fantz; David A. Hamilton
1997-01-01
We surveyed the permanent Missouri Ozark Forest Ecosystem Project (MOFEP) forest vegetation cluster plots in 1994 and 1995 to determine pre-treatment frequency of occurrence, amount of vegetative cover, and number of berries for plants that produce soft mast. Mean percentage occurrence of selected plants for each site ranged from 0.1 to 33.0 for Vaccinium...
NASA Astrophysics Data System (ADS)
McIntire, C.; Vadeboncoeur, M. A.; Coble, A.; Jennings, K.; Asbjornsen, H.
2016-12-01
Climate change is likely to affect the Northern Forest region through the increased frequency and severity of drought events. However, our understanding of how the Northern Forest, which is adapted to humid temperate conditions, will respond to moderate to extreme droughts is limited. Given the important role that these forests play in protecting ecosystem services and in supplying forest products, enhancing our knowledge about impacts of drought is critical to ensuring effective forest management and adaptation to climate change. The Northern Forest DroughtNet project aims to simulate a four-year severe drought by removing 55% of the incoming throughfall; thus representing the 99th percentile of annual precipitation based on historic precipitation data in Durham, NH. This is accomplished using two replicated 900 m2 throughfall removal structures consisting of a network of gutters that capture and divert incoming precipitation away from the established treatment area. Data presented here will address the ecosystem response to the drought treatment over the course of the first year of the experiment as well as validate the effectiveness and artifacts of the throughfall removal structure. Response variables of interest include soil moisture content, above and below ground biomass production, litterfall, decomposition rates, leaf water potential, foliar gas exchange, and whole tree transpiration rates. Preliminary findings provide insight into the effectiveness of using throughfall manipulation experiments in a temperate forest ecosystem to simulate an extreme drought event, as well as initial tree physiological and growth responses in relation to soil moisture availability and the implications for future climate change impacts.
NASA Astrophysics Data System (ADS)
Rebmann, Corinna; Claudia, Schütze; Sara, Marañón-Jiménez; Sebastian, Gimper; Matthias, Zink; Luis, Samaniego; Matthias, Cuntz
2017-04-01
The reduction of greenhouse gas (GHG) emissions and the optimization of Carbon sequestration by ecosystems have become priority objectives for current climate change policies. In this context, the long term research project TERENO and the research infrastructure ICOS have been established. The eddy covariance technique allows obtaining an integrative estimate of the ecosystem carbon, water and energy balances at the ecosystem level. The relative contributions of evaporation and transpiration as well as carbon sources and sinks need, however, to be determined separately for thorough process understanding. Two different ecosystem observatories have recently been established in the Magdeburger Börde: a deciduous forest (Hohes Holz) and a meadow (Grosses Bruch). A comprehensive system of instrumentation provides continuous data for the evaluation of energy, water and carbon fluxes at the 1500 ha large forest site, including a 50 m high eddy covariance (EC) tower for micrometeorological investigations in different heights above and below canopy, throughfall and stem flow sensors, a soil moisture and temperature sensor network, soil respiration chambers, sap flow sensors, and ancillary analysis of trees such a dendrometer and leaf area index measurements. Eddy covariance measurements allow the assessment of the carbon (Net Ecosystem Exchange, NEE) and water balance at the ecosystem scale. To better understand the contributing processes we partition water und carbon fluxes of the forest ecosystem by different methods. Tower-based data of NEE are therefore complemented and validated by continuous automatic and manual campaign measurements of soil effluxes and their drivers. Water fluxes into the ecosystem are partitioned by stem flow and throughfall measurements and a distributed soil moisture network. Gap fraction in the forest has a strong influence on the distribution on the water fluxes and is therefore determined on a regular basis. Since the establishment of the flux sites, two abnormally dry years (2015 and 2016) occurred. Fluxes from these years are evaluated in detail here. These data are additionally used to evaluate the drought assessment of the German Drought Monitor (www.ufz.de/droughtmonitor).
Rustad, Lindsey; Campbell, John; Dukes, Jeffrey S.; Huntington, Thomas; Lambert, Kathy Fallon; Mohan, Jacqueline; Rodenhouse, Nicholas
2012-01-01
Decades of study on climatic change and its direct and indirect effects on forest ecosystems provide important insights for forest science, management, and policy. A synthesis of recent research from the northeastern United States and eastern Canada shows that the climate of the region has become warmer and wetter over the past 100 years and that there are more extreme precipitation events. Greater change is projected in the future. The amount of projected future change depends on the emissions scenarios used. Tree species composition of northeast forests has shifted slowly in response to climate for thousands of years. However, current human-accelerated climate change is much more rapid and it is unclear how forests will respond to large changes in suitable habitat. Projections indicate significant declines in suitable habitat for spruce-fir forests and expansion of suitable habitat for oak-dominated forests. Productivity gains that might result from extended growing seasons and carbon dioxide and nitrogen fertilization may be offset by productivity losses associated with the disruption of species assemblages and concurrent stresses associated with potential increases in atmospheric deposition of pollutants, forest fragmentation, and nuisance species. Investigations of links to water and nutrient cycling suggest that changes in evapotranspiration, soil respiration, and mineralization rates could result in significant alterations of key ecosystem processes. Climate change affects the distribution and abundance of many wildlife species in the region through changes in habitat, food availability, thermal tolerances, species interactions such as competition, and susceptibility to parasites and disease. Birds are the most studied northeastern taxa. Twenty-seven of the 38 bird species for which we have adequate long-term records have expanded their ranges predominantly in a northward direction. There is some evidence to suggest that novel species, including pests and pathogens, may be more adept at adjusting to changing climatic conditions, enhancing their competitive ability relative to native species. With the accumulating evidence of climate change and its potential effects, forest stewardship efforts would benefit from integrating climate mitigation and adaptation options in conservation and management plans.
Hisano, Masumi; Searle, Eric B; Chen, Han Y H
2018-02-01
Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. © 2017 Cambridge Philosophical Society.
Aquatic biodiversity in forests: A weak link in ecosystem services resilience
Penaluna, Brooke E.; Olson, Deanna H.; Flitcroft, Rebecca L; Weber, Matthew A.; Bellmore, J. Ryan; Wondzell, Steven M.; Dunham, Jason B.; Johnson, Sherri L.; Reeves, Gordon H.
2017-01-01
The diversity of aquatic ecosystems is being quickly reduced on many continents, warranting a closer examination of the consequences for ecological integrity and ecosystem services. Here we describe intermediate and final ecosystem services derived from aquatic biodiversity in forests. We include a summary of the factors framing the assembly of aquatic biodiversity in forests in natural systems and how they change with a variety of natural disturbances and human-derived stressors. We consider forested aquatic ecosystems as a multi-state portfolio, with diverse assemblages and life-history strategies occurring at local scales as a consequence of a mosaic of habitat conditions and past disturbances and stressors. Maintaining this multi-state portfolio of assemblages requires a broad perspective of ecosystem structure, various functions, services, and management implications relative to contemporary stressors. Because aquatic biodiversity provides multiple ecosystem services to forests, activities that compromise aquatic ecosystems and biodiversity could be an issue for maintaining forest ecosystem integrity. We illustrate these concepts with examples of aquatic biodiversity and ecosystem services in forests of northwestern North America, also known as Northeast Pacific Rim. Encouraging management planning at broad as well as local spatial scales to recognize multi-state ecosystem management goals has promise for maintaining valuable ecosystem services. Ultimately, integration of information from socio-ecological ecosystems will be needed to maintain ecosystem services derived directly and indirectly from forest aquatic biota.
Paying for Forest Ecosystem Services: Voluntary Versus Mandatory Payments.
Roesch-McNally, Gabrielle E; Rabotyagov, Sergey S
2016-03-01
The emergence of new markets for forest ecosystem services can be a compelling opportunity for market diversification for private forest landowners, while increasing the provision of public goods from private lands. However, there is limited information available on the willingness-to-pay (WTP) for specific forest ecosystem services, particularly across different ecosystem market mechanisms. We utilize survey data from Oregon and Washington households to compare marginal WTP for forest ecosystem services and the total WTP for cost-effective bundles of forest ecosystem services obtained from a typical Pacific Northwest forest across two value elicitation formats representing two different ecosystem market mechanisms: an incentive-compatible choice experiment involving mandatory tax payments and a hypothetical private provision scenario modeled as eliciting contributions to the preferred forest management alternative via a provision point mechanism with a refund. A representative household's total WTP for the average forest management program was estimated at $217.59 per household/year under a mandatory tax mechanism and $160.44 per household/per year under a voluntary, crowdfunding-style, contribution mechanism; however, these estimates are not statistically different. Marginal WTP estimates were assessed for particular forest ecosystem service attributes including water quality, carbon storage, mature forest habitat, and public recreational access. This study finds that survey respondents place significant economic value on forest ecosystem services in both elicitation formats and that the distributions of the marginal WTP are not statistically significantly different.
Paying for Forest Ecosystem Services: Voluntary Versus Mandatory Payments
NASA Astrophysics Data System (ADS)
Roesch-McNally, Gabrielle E.; Rabotyagov, Sergey S.
2016-03-01
The emergence of new markets for forest ecosystem services can be a compelling opportunity for market diversification for private forest landowners, while increasing the provision of public goods from private lands. However, there is limited information available on the willingness-to-pay (WTP) for specific forest ecosystem services, particularly across different ecosystem market mechanisms. We utilize survey data from Oregon and Washington households to compare marginal WTP for forest ecosystem services and the total WTP for cost-effective bundles of forest ecosystem services obtained from a typical Pacific Northwest forest across two value elicitation formats representing two different ecosystem market mechanisms: an incentive-compatible choice experiment involving mandatory tax payments and a hypothetical private provision scenario modeled as eliciting contributions to the preferred forest management alternative via a provision point mechanism with a refund. A representative household's total WTP for the average forest management program was estimated at 217.59 per household/year under a mandatory tax mechanism and 160.44 per household/per year under a voluntary, crowdfunding-style, contribution mechanism; however, these estimates are not statistically different. Marginal WTP estimates were assessed for particular forest ecosystem service attributes including water quality, carbon storage, mature forest habitat, and public recreational access. This study finds that survey respondents place significant economic value on forest ecosystem services in both elicitation formats and that the distributions of the marginal WTP are not statistically significantly different.
Continuous In-situ Measurements of Carbonyl Sulfide to Constrain Ecosystem Carbon and Water Exchange
NASA Astrophysics Data System (ADS)
Rastogi, B.; Kim, Y.; Berkelhammer, M. B.; Noone, D. C.; Lai, C. T.; Hollinger, D. Y.; Bible, K.; Leen, J. B.; Gupta, M.; Still, C. J.
2014-12-01
Understanding the processes that control the terrestrial exchange of carbon and water are critical for examining the role of forested ecosystems in changing climates. A small but increasing number of studies have identified Carbonyl Sulfide (OCS) as a potential tracer for photosynthesis. OCS is hydrolyzed by an irreversible reaction in leaf mesophyll cells that is catalyzed by the enzyme, carbonic anhydrase. Leaf-level field and greenhouse studies indicate that OCS uptake is controlled by stomatal activity and that the ratio of OCS and CO2 uptake is reasonably constant. Existing studies on ecosystem OCS exchange have been based on laboratory measurements or short field campaigns and therefore little information on OCS exchange in a natural ecosystem over longer timescales is available. The objective of this study is to further assess the stability of OCS as a tracer for canopy photosynthesis in an active forested ecosystem and also to assess its utility for constraining transpiration, since both fluxes are mediated by canopy stomatal conductance. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W). Canopy air was sampled from three heights to measure vertical gradients of OCS within the canopy, and OCS exchange between the forest and the atmosphere. Here we take advantage of simultaneous measurements of the stable isotopologues of H2O and CO2 at corresponding heights as well as NEE (Net Ecosystem Exchange) from eddy covariance measurements to compare GPP (Gross Primary Production) and transpiration estimates from a variety of independent techniques. Our findings seek to allow assessment of the environmental and ecophysicological controls on evapotranspiration rates, which are projected to change in coming decades, and are otherwise poorly constrained.
NASA Astrophysics Data System (ADS)
Mátyás, Csaba; Berki, Imre; Bidlo, Andras; Czimber, Kornel.; Gálos, Borbala; Gribovszki, Zoltan; Lakatos, Ferenc; Borovics, Attila; Csóka, György; Führer, Ernő; Illés, Gábor; Rasztovits, Ervin; Somogyi, Zoltán; Bartholy, Judit
2017-04-01
The rapid progress of site potential change, caused by the shift of climate zones is a serious problem of lowland management in Southeast Europe. In forestry, the resilience potential of main, climate-dependent tree species (e.g. spruce, beech, sessile oak) and ecosystems is limited at their lower (xeric) limits of distribution. A conventional mitigation measure for adaptive forest management is the return to nature-close management. Severe drought- and biotic impacts in forests indicate however the urgency of fundamental changes in forest policy. To provide assistance in selecting climate-tolerant provenances, species and adaptive technologies for future site conditions is therefore critical. A simplified Decision Support System has been developed for Hungary, keeping conventional elements of site potential assessment. Projections are specified for discrete site types. Processing forest inventory, landcover and geodata, the System provides GIS-supported site information and projections for individual forest compartments, options for tree species better tolerating future climate scenarios as well as their expected yield and risks. Data respectively projections are available for recent and current conditions, and for future reference periods until 2100. Also non-forest site conditions in the novel grassland (steppe) climate zone appear in projections. Experiences for proper management on these sites are however scarce.
Ren, Hai; Li, Linjun; Liu, Qiang; Wang, Xu; Li, Yide; Hui, Dafeng; Jian, Shuguang; Wang, Jun; Yang, Huai; Lu, Hongfang; Zhou, Guoyi; Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing
2014-01-01
Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993-2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices.
Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing
2014-01-01
Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993–2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices. PMID:25229628
NASA Astrophysics Data System (ADS)
Ibrom, A.
2012-04-01
Nitrogen (N) fertilization, both intended and unintended, interacts with carbon cycling in terrestrial ecosystems, because the major processes of carbon (C) turnover depend on enzymes and thus on N availability. Comparisons between annual carbon dioxide flux (CO2) budgets and wet N deposition in forests showed a very strong linear increase of CO2 sequestration with increased N deposition. After considering total rather than only wet N deposition the ratios between increased carbon uptake and atmospheric N input were closer to C/N that can be found in wood. This suggested that the observed ecosystems responses to enhanced N inputs were mainly driven by plant responses. Finally, looking at changes in soil organic matter changes indicated even lower sensitivities of carbon sequestration to N addition. The objective of this study is to describe the mechanisms of the responses and the fate of the N in the ecosystem based on results from intensively investigated forest sites. Within the European NitroEuope-IP project the annual fluxes and pool sizes of C and N were estimated in four so-called forest supersites, including temperate coniferous forests in Southern Germany (Höglwald) and in the Netherlands (Speulderbos), one temperate beech forest close to Sorø on Zealand in Denmark and a boreal pine forest (Hyytiälä, Southern Finland). Due to differences in vegetation, bedrock and climate history, soils differed in acidity, organic matter content and biological activity; the levels of atmospheric N deposition varied from very low (Hyytiälä) to high (the other sites). Comparisons of N and C budgets of plants and soils confirmed a simple and stoichiometric effect dCuptake/dNdep = constant and in the order of magnitude of (C/N)wood for plants but not for soils and thus not for the forest ecosystems as a whole. Differences in soil processes as indicated by the differing C/N of SOM, differing amounts of N stored in the soil and considerable differences in N leaching rates even at comparable N deposition levels, showed clearly that the diversity of soils play a large role in the N use for C sequestration and thus for the beneficial effects of additional N loads on climate change mitigation effects in forests. An important conclusion of the study for intended forest fertilization is to consider N leaching to the ground water, which might even enhance the greenhouse effect through increased N2O emissions from streams, estuaries and coasts rather than mitigating it via increased CO2 sequestration at the forest site. Acknowledgements This work has been funded by the European Commission via the NitroEurope and CarboEurope integrated projects.
Long-term boreal forest dynamics and disturbances: a multi-proxy approach
NASA Astrophysics Data System (ADS)
Stivrins, Normunds; Aakala, Tuomas; Kuuluvainen, Timo; Pasanen, Leena; Ilvonen, Liisa; Holmström, Lasse; Seppä, Heikki
2017-04-01
The boreal forest provides a variety of ecosystem services that are threatened under the ongoing climate warming. Along with the climate, there are several factors (fire, human-impact, pathogens), which influence boreal forest dynamics. Combination of short and long-term studies allowing complex assessment of forest response to natural abiotic and biotic stress factors is necessary for sustainable management of the boreal forest now and in the future. The ongoing EBOR (Ecological history and long-term dynamics of the boreal forest ecosystem) project integrates forest ecological and palaeoecological approaches to study boreal forest dynamics and disturbances. Using pollen, non-pollen palynomorphs, micro- and macrocharcoal, tree rings and fire scars, we analysed forest dynamics at stand-scale by sampling small forest hollows (small paludified depressions) and the surrounding forest stands in Finland and western Russia. Using charcoal data, we estimated a fire return interval of 320 years for the Russian sites, and, based on the fungi Neurospora that can grow on charred tree bark after a low-intensity fire, we were able to distinguish low- and high-intensity fire-events. In addition to the influence of fire events and/or fire regime changes, we further assessed potential relationships between tree species and herbivore presence and pathogens. As an example of such a relationship, our preliminary findings indicated a negative relationship between Picea and fungi Lasiosphaeria (caudata), which occurred during times of Picea decline.
NASA Astrophysics Data System (ADS)
Huang, M.; Xu, Y.; Longo, M.; Keller, M.; Knox, R. G.; Koven, C.; Fisher, R.
2017-12-01
Tropical forest degradation from logging, fire, and fragmentation not only alters carbon stocks and carbon fluxes, but also impacts physical land-surface properties such as albedo and roughness length. Such impacts are poorly quantified to date due to difficulties in accessing and maintaining observational infrastructures, and the lack of proper modeling tools for capturing the interactions among biophysical properties, ecosystem demography, and biogeochemical cycling in tropical forests. As a first step to address these limitations, we implemented a selective logging module into the Functional Assembled Terrestrial Ecosystem Simulator (FATES) and parameterized the model to reproduce the selective logging experiment at the Tapajos National Forest in Brazil. The model was spun up until it reached the steady state, and simulations with and without logging were compared with the eddy covariance flux towers located at the logged and intact sites. The sensitivity of simulated water, energy, and carbon fluxes to key plant functional traits (e.g. Vcmax and leaf longevity) were quantified by perturbing their values within their documented ranges. Our results suggest that the model can reproduce water and carbon fluxes in intact forests, although sensible heat fluxes were overestimated. The effects of logging intensity and techniques on fluxes were assessed by specifying different disturbance parameters in the models (e.g., size-dependent mortality rates associated with timber harvest, collateral damage, and mechanical damage for infrastructure construction). The model projections suggest that even though the degraded forests rapidly recover water and energy fluxes compared with old-growth forests, the recovery times for carbon stocks, forest structure and composition are much longer. In addition, the simulated recovery trajectories are highly dependent on choices of values for functional traits. Our study highlights the advantages of an Earth system modeling approach, constrained by observations, to quantify the complex interactions among forest degradation, ecosystem recovery, climate, and environmental factors. Our results also show the urgent need to improve the representations of key mechanisms and traits to better capture forest degradation dynamics in Earth System Models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolka, R., K.; Trettin, C., C.; Nelson, E., A.
Kolka, R.K., C.C. Trettin, E.A. Nelson, C.D. Barton, and D.E. Fletcher. 2002. Application of the EPA Wetland Research Program Approach to a floodplain wetland restoration assessment. J. Env. Monitoring & Restoration 1(1):37-51. Forested wetland restoration assessment is difficult because of the timeframe necessary for the development of a forest ecosystem. The development of a forested wetland ecosystem includes the recovery of hydrology, soils, vegetation, and faunal communities. To assess forested wetland restoration projects, measures need to be developed that are sensitive to early changes in community development and are predictive of future conditions. In this study we apply the EPS'smore » Wetland Research Program's (WRP) approach to assess the recovery of two thermally altered riparian wetland systems in South Carolina. In one of the altered wetland systems, approximately 75% of the wetland was planted with bottomland tree seedlings in an effort to hasten recovery. Individual studies addressing hydrology, soils, vegetation, and faunal communities indicate variable recovery responses.« less
Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests.
Susaeta, Andres; Adams, Damian C; Carter, Douglas R; Dwivedi, Puneet
2016-09-01
Forests provide myriad ecosystem services that are vital to humanity. With climate change, we expect to see significant changes to forests that will alter the supply of these critical services and affect human well-being. To better understand the impacts of climate change on forest-based ecosystem services, we applied a data envelopment analysis method to assess plot-level efficiency in the provision of ecosystem services in Florida natural loblolly pine (Pinus taeda L.) forests. Using field data for n = 16 loblolly pine forest plots, including inputs such as site index, tree density, age, precipitation, and temperatures for each forest plot, we assessed the relative plot-level production of three ecosystem services: timber, carbon sequestered, and species richness. The results suggested that loblolly pine forests in Florida were largely inefficient in the provision of these ecosystem services under current climatic conditions. Climate change had a small negative impact on the loblolly pine forests efficiency in the provision of ecosystem services. In this context, we discussed the reduction of tree density that may not improve ecosystem services production.
Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests
NASA Astrophysics Data System (ADS)
Susaeta, Andres; Adams, Damian C.; Carter, Douglas R.; Dwivedi, Puneet
2016-09-01
Forests provide myriad ecosystem services that are vital to humanity. With climate change, we expect to see significant changes to forests that will alter the supply of these critical services and affect human well-being. To better understand the impacts of climate change on forest-based ecosystem services, we applied a data envelopment analysis method to assess plot-level efficiency in the provision of ecosystem services in Florida natural loblolly pine ( Pinus taeda L.) forests. Using field data for n = 16 loblolly pine forest plots, including inputs such as site index, tree density, age, precipitation, and temperatures for each forest plot, we assessed the relative plot-level production of three ecosystem services: timber, carbon sequestered, and species richness. The results suggested that loblolly pine forests in Florida were largely inefficient in the provision of these ecosystem services under current climatic conditions. Climate change had a small negative impact on the loblolly pine forests efficiency in the provision of ecosystem services. In this context, we discussed the reduction of tree density that may not improve ecosystem services production.
NITROGEN SATURATION IN TEMPERATE FOREST ECOSYSTEMS: HYPOTHESES REVISITED. (R825762)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
NASA Astrophysics Data System (ADS)
Zhang, K.; Castanho, A. D.; Moghim, S.; Bras, R. L.; Coe, M. T.; Costa, M. H.; Levine, N. M.; Longo, M.; McKnight, S.; Wang, J.; Moorcroft, P. R.
2012-12-01
Deforestation and drought have imposed regional-scale perturbations onto Amazonian ecosystems and are predicted to cause larger negative impacts on the Amazonian ecosystems and associated regional carbon dynamics in the 21st century. However, global climate models (GCMs) vary greatly in their projections of future climate change in Amazonia, giving rise to uncertainty in the expected fate of the Amazon over the coming century. In this study, we explore the possible eco-hydrological consequences of the Amazonian ecosystems under projected climate and land-use changes in the 21st century using two state-of-the-art terrestrial ecosystem models—Ecosystem Demography Model 2.1(ED2.1) and Integrated Biosphere Simulator model (IBIS)—driven by three representative, bias-corrected climate projections from three IPCC GCMs (NCARPCM1, NCARCCSM3 and HadCM3), coupled with two land-use change scenarios (a business-as-usual and a strict governance scenario). We also analyze the relative roles of climate change, CO2 fertilization, land-use change and fire in driving the projected composition and structure of the Amazonian ecosystems. Our results show that CO2 fertilization enhances vegetation productivity and above-ground biomass (AGB) in the region, while land-use change and fire cause AGB loss and the replacement of forests by the savanna-like vegetation. The impacts of climate change depend strongly on the direction and severity of projected precipitation changes in the region. In particular, when intensified water stress is superimposed on unregulated deforestation, both ecosystem models predict large-scale dieback of Amazonian rainforests.
Jeanne C. Chambers; Jerry R. Miller
2011-01-01
This report contains the results of a 6-year project conducted by the U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station and U.S. Environmental Protection Agency, Office of Research and Development on stream incision and meadow ecosystem degradation in the central Great Basin. The project included a coarse-scale assessment of 56 different...
Robert J. Marquis; Rebecca Forkner; John T. Lill; Josiane Le Corff
2002-01-01
We report the effects of two timber harvest methods, even-aged and uneven-aged harvest, versus no harvest on species accumulation curves for leaf-chewing herbivores of Quercus alba and Q. velutina in the Missouri Ozarks. The study was part of a larger project, the Missouri Ozark Forest Ecosystem Project (MOFEP). Herbivores were...
Forest loss in New England: A projection of recent trends
Thompson, Jonathan R.; Plisinski, Joshua S.; Olofsson, Pontus; Holden, Christopher E.; Duveneck, Matthew J.
2017-01-01
New England has lost more than 350,000 ha of forest cover since 1985, marking a reversal of a two-hundred-year trend of forest expansion. We a cellular land-cover change model to project a continuation of recent trends (1990–2010) in forest loss across six New England states from 2010 to 2060. Recent trends were estimated using a continuous change detection algorithm applied to twenty years of Landsat images. We addressed three questions: (1) What would be the consequences of a continuation of the recent trends in terms of changes to New England's forest cover mosaic? (2) What social and biophysical attributes are most strongly associated with recent trends in forest loss, and how do these vary geographically? (3) How sensitive are projections of forest loss to the reference period—i.e. how do projections based on the period spanning 1990-to-2000 differ from 2000-to-2010, or from the full period, 1990-to-2010? Over the full reference period, 8201 ha yr-1 and 468 ha yr-1 of forest were lost to low- and high-density development, respectively. Forest loss was concentrated in suburban areas, particularly near Boston. Of the variables considered, 'distance to developed land' was the strongest predictor of forest loss. The next most important predictor varied geographically: 'distance to roads' ranked second in the more developed regions in the south and 'population density' ranked second in the less developed north. The importance and geographical variation in predictor variables were relatively stable between reference periods. In contrast, there was 55% more forest loss during the 1990-to-2000 reference period compared to the 2000-to-2010 period, highlighting the importance of understanding the variation in reference periods when projecting land cover change. The projection of recent trends is an important baseline scenario with implications for the management of forest ecosystems and the services they provide. PMID:29240810
Forest loss in New England: A projection of recent trends.
Thompson, Jonathan R; Plisinski, Joshua S; Olofsson, Pontus; Holden, Christopher E; Duveneck, Matthew J
2017-01-01
New England has lost more than 350,000 ha of forest cover since 1985, marking a reversal of a two-hundred-year trend of forest expansion. We a cellular land-cover change model to project a continuation of recent trends (1990-2010) in forest loss across six New England states from 2010 to 2060. Recent trends were estimated using a continuous change detection algorithm applied to twenty years of Landsat images. We addressed three questions: (1) What would be the consequences of a continuation of the recent trends in terms of changes to New England's forest cover mosaic? (2) What social and biophysical attributes are most strongly associated with recent trends in forest loss, and how do these vary geographically? (3) How sensitive are projections of forest loss to the reference period-i.e. how do projections based on the period spanning 1990-to-2000 differ from 2000-to-2010, or from the full period, 1990-to-2010? Over the full reference period, 8201 ha yr-1 and 468 ha yr-1 of forest were lost to low- and high-density development, respectively. Forest loss was concentrated in suburban areas, particularly near Boston. Of the variables considered, 'distance to developed land' was the strongest predictor of forest loss. The next most important predictor varied geographically: 'distance to roads' ranked second in the more developed regions in the south and 'population density' ranked second in the less developed north. The importance and geographical variation in predictor variables were relatively stable between reference periods. In contrast, there was 55% more forest loss during the 1990-to-2000 reference period compared to the 2000-to-2010 period, highlighting the importance of understanding the variation in reference periods when projecting land cover change. The projection of recent trends is an important baseline scenario with implications for the management of forest ecosystems and the services they provide.
Guiding the Next Generation of Forest FACE Experiments with Lessons from the Past
NASA Astrophysics Data System (ADS)
Norby, Richard
2016-04-01
The free air CO2 enrichment (FACE) experiments that were initiated in forest ecosystems 20 years ago represented a large commitment of time and energy of many students, early career, and senior scientists, and they were a substantial investment of funding from government science agencies. The experiments produced hundreds of primary research papers and dozens of synthesis and review papers, so it is highly appropriate to ask: What did we learn from this enterprise about how trees and forests will respond to an ever increasing concentration of CO2 in the atmosphere? The diversity of sites and species preclude any single, simple answer. Nevertheless, the FACE experiments were successful in building upon earlier, smaller scale elevated CO2 experiments to provide the data needed to evaluate hypotheses derived from past results, and they provided novel insights into the ecological mechanisms controlling the cycling and storage of carbon in terrestrial ecosystems. Important lessons include: (1) Net primary productivity is increased by elevated CO2, but the response can diminish over time. (2) Carbon accumulation is driven by the distribution of carbon among plant and soil components with differing turnover rates and by interactions between the carbon and nitrogen cycles. (3) Plant community structure may change, but elevated CO2 has only minor effects on microbial community structure. However, despite these insights, the size and longevity of forests preclude experimental evaluation, even in decade-long experiments, of the critical global-scale issues associated with forest responses to rising atmospheric CO2 concentration and the feedbacks provided to the climate system. Instead, we must rely on models that simulate the exchange of carbon, water, and energy in the terrestrial biosphere. An important objective of FACE experiments has always been to provide data and evaluation tools for ecosystem models and thereby contribute to our ability to project how ecosystems will respond to future CO2 concentrations. The FACE model-data synthesis (FACE-MDS) project challenged 11 terrestrial ecosystem models with data from the Oak Ridge National Laboratory FACE experiment in Tennessee, USA, and Duke FACE in North Carolina, USA. This exercise was valuable in identifying critical model assumptions and evaluating whether the assumptions were supported by the experimental data, and it provided a framework to evaluate forest processes that occur over much longer time frames than the duration of the experiments. The next generation of forest FACE experiments will greatly expand the breadth of our knowledge base on responses to elevated CO2 by investigating responses of mature forest ecosystems in boreal to tropical biomes over a wide range of climatic and edaphic conditions. Our experience with the FACE-MDS has shown the value in initiating the model-data interaction as an integral part of experimental design. The FACE-MDS framework has led to a set of model-guided, cross-site science questions for new FACE experiments, including responses of mature forests; interactions with temperature, water stress, and phosphorus limitation; and the influence of biodiversity. This sets an exciting research agenda for the next decade.
Climate change impacts on forest fires: the stakeholders' perspective
NASA Astrophysics Data System (ADS)
Giannakopoulos, C.; Roussos, A.; Karali, A.; Hatzaki, M.; Xanthopoulos, G.; Chatzinikos, E.; Fyllas, N.; Georgiades, N.; Karetsos, G.; Maheras, G.; Nikolaou, I.; Proutsos, N.; Sbarounis, T.; Tsaggari, K.; Tzamtzis, I.; Goodess, C.
2012-04-01
In this work, we present a synthesis of the presentations and discussions which arose during a workshop on 'Impacts of climate change on forest fires' held in September 2011 at the National Observatory of Athens, Greece in the framework of EU project CLIMRUN. At first, a general presentation about climate change and extremes in the Greek territory provided the necessary background to the audience and highlighted the need for data and information exchange between scientists and stakeholders through climate services within CLIMRUN. Discussions and presentations that followed linked climate with forest science through the use of a meteorological index for fire risk and future projections of fire danger using regional climate models. The current situation on Greek forests was also presented, as well as future steps that should be taken to ameliorate the situation under a climate change world. A time series analysis of changes in forest fires using available historical data on forest ecosystems in Greece was given in this session. This led to the topic of forest fire risk assessment and fire prevention, stating all actions towards sustainable management of forests and effective mechanisms to control fires under climate change. Options for a smooth adaptation of forests to climate change were discussed together with the lessons learned on practical level on prevention, repression and rehabilitation of forest fires. In between there were useful interventions on sustainable hunting and biodiversity protection and on climate change impacts on forest ecosystems dynamics. The importance of developing an educational program for primary/secondary school students on forest fire management was also highlighted. The perspective of forest stakeholders on climate change and how this change can affect their current or future activities was addressed through a questionnaire they were asked to complete. Results showed that the majority of the participants consider climate variability to be important or very important and to influence their activities. Extreme climate events, desertification and drought were regarded as the most important environmental problems along with loss of biodiversity. Most of the participants answered that they use historical data for research, and would welcome climate data and services targeted to their sector if offered. Acknowledgement: This work was supported by the EU project CLIMRUN under contract FP7-ENV-2010- 265192.
Gauging leaf-level contributions to landscape-level water loss within a Western US dryland fores
NASA Astrophysics Data System (ADS)
Murphy, P.; Potts, D. L.; Minor, R. L.; Hamerlynck, E. P.; Sutter, L., Jr.; Barron-Gafford, G.
2017-12-01
Western US forests represent a large constituent of the North American water and carbon cycles, yet the primary controls on water loss from these ecosystems remains unknown. In dryland forests, such as those found in the Southwestern US, water availability is key to ecosystem function, and the timing and magnitude of water loss can have lasting effects on the health of these communities. One poorly defined part of the water balance in these forests is the partitioning of evapotranspiration (ET) into evaporation (E; blue flow) to transpiration (T; green flow). A study of water fluxes at multiple scales in a semiarid montane forest in Southern Arizona speaks to the partitioning of these two water flows. Within the footprint of an eddy covariance system, which estimates ecosystem ET, we have examined the impacts of variation in climate, species makeup, and topographic position on E and T. This was done using leaf-level measures of T, pedon-scale measures of E, and whole-tree water loss by way of sap flux sensors. Where available, we have examined E, T, and ET fluxes across multiple seasons and years of highly variable precipitation records. Understanding the partitioning of ET is crucial, considering that projected changes to dryland ecosystems include longer periods of drought separated by heavier precipitation events. At a moment when potential impacts of changing climate on dryland structure and function are poorly understood, a stronger comprehension of these blue and green water flows is necessary to forecast the productivity of Western US forests into the future.
This EnviroAtlas dataset contains polygons depicting the number of watershed-level market-based programs, referred to herein as markets, in operation per 8-digit HUC watershed throughout the United States. The data were collected via surveys and desk research conducted by Forest Trends' Ecosystem Marketplace during 2014 regarding markets operating to protect watershed ecosystem services. Utilizing these data, the number of water market coverage areas overlaying each HUC8 watershed were calculated to produce this dataset. Only water markets identified as operating at the watershed level (i.e., single or multiple watersheds define the market boundaries) were included in the count of water markets per HUC8 watershed. Excluded were water markets operating at the national, state, county, or federal lands level and all water projects. Attribute data include the watershed's 8-digit hydrologic unit code and name, in addition to the watershed-level water market count associated with the watershed. This dataset was produced by Forest Trends' Ecosystem Marketplace to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Addi
An imperative need for global change research in tropical forests.
Zhou, Xuhui; Fu, Yuling; Zhou, Lingyan; Li, Bo; Luo, Yiqi
2013-09-01
Tropical forests play a crucial role in regulating regional and global climate dynamics, and model projections suggest that rapid climate change may result in forest dieback or savannization. However, these predictions are largely based on results from leaf-level studies. How tropical forests respond and feedback to climate change is largely unknown at the ecosystem level. Several complementary approaches have been used to evaluate the effects of climate change on tropical forests, but the results are conflicting, largely due to confounding effects of multiple factors. Although altered precipitation and nitrogen deposition experiments have been conducted in tropical forests, large-scale warming and elevated carbon dioxide (CO2) manipulations are completely lacking, leaving many hypotheses and model predictions untested. Ecosystem-scale experiments to manipulate temperature and CO2 concentration individually or in combination are thus urgently needed to examine their main and interactive effects on tropical forests. Such experiments will provide indispensable data and help gain essential knowledge on biogeochemical, hydrological and biophysical responses and feedbacks of tropical forests to climate change. These datasets can also inform regional and global models for predicting future states of tropical forests and climate systems. The success of such large-scale experiments in natural tropical forests will require an international framework to coordinate collaboration so as to meet the challenges in cost, technological infrastructure and scientific endeavor.
Zhu, Zhi-Liang; Reed, Bradley C.; Zhu, Zhi-Liang; Reed, Bradley C.
2014-01-01
This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act of 2007 and to conduct a comprehensive national assessment of storage and flux (flow) of carbon and the fluxes of other greenhouse gases in ecosystems of the Eastern United States. These carbon and greenhouse gas variables were examined for major terrestrial ecosystems (forests, grasslands/shrublands, agricultural lands, and wetlands) and aquatic ecosystems (rivers, streams, lakes, estuaries, and coastal waters) in the Eastern United States in two time periods: baseline (from 2001 through 2005) and future (projections from the end of the baseline through 2050). The Great Lakes were not included in this assessment due to a lack of input data. The assessment was based on measured and observed data collected by the U.S. Geological Survey and many other agencies and organizations and used remote sensing, statistical methods, and simulation models.
Zhang, Ke; de Almeida Castanho, Andrea D; Galbraith, David R; Moghim, Sanaz; Levine, Naomi M; Bras, Rafael L; Coe, Michael T; Costa, Marcos H; Malhi, Yadvinder; Longo, Marcos; Knox, Ryan G; McKnight, Shawna; Wang, Jingfeng; Moorcroft, Paul R
2015-02-20
There is considerable interest in understanding the fate of the Amazon over the coming century in the face of climate change, rising atmospheric CO 2 levels, ongoing land transformation, and changing fire regimes within the region. In this analysis, we explore the fate of Amazonian ecosystems under the combined impact of these four environmental forcings using three terrestrial biosphere models (ED2, IBIS, and JULES) forced by three bias-corrected IPCC AR4 climate projections (PCM1, CCSM3, and HadCM3) under two land-use change scenarios. We assess the relative roles of climate change, CO 2 fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change are primarily determined by the direction and severity of projected changes in regional precipitation: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%. However, the models predict that CO 2 fertilization will enhance vegetation productivity and alleviate climate-induced increases in plant water stress, and, as a result, sustain high biomass forests, even under the driest climate scenario. Land-use change and climate-driven changes in fire frequency are predicted to cause additional aboveground biomass loss and reductions in forest extent. The relative impact of land use and fire dynamics compared to climate and CO 2 impacts varies considerably, depending on both the climate and land-use scenario, and on the terrestrial biosphere model used, highlighting the importance of improved quantitative understanding of all four factors - climate change, CO 2 fertilization effects, fire, and land use - to the fate of the Amazon over the coming century. © 2015 John Wiley & Sons Ltd.
Anne E. Black; Peter Landres
2011-01-01
Current fire policy to restore ecosystem function and resiliency and reduce buildup of hazardous fuels implies a larger future role for fire (both natural and human ignitions) (USDA and USDOI 2000). Yet some fire management (such as building fire line, spike camps, or heli-spots) potentially causes both short- and long-term impacts to forest health. In the short run,...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCollom, M.
1979-01-01
The existing terrestrial ecosystems at the plant site and impacts on them are described. The following are discussed for the fuelwood harvest region: forest soils, forest types and ecological succession, nutrient cycles in the forest ecosystem, fauna of the ecosystem, forest practices in the harvest region, and long-term productivity of the forest resource. (MHR)
Quantification of soil respiration in forest ecosystems across China
NASA Astrophysics Data System (ADS)
Song, Xinzhang; Peng, Changhui; Zhao, Zhengyong; Zhang, Zhiting; Guo, Baohua; Wang, Weifeng; Jiang, Hong; Zhu, Qiuan
2014-09-01
We collected 139 estimates of the annual forest soil CO2 flux and 173 estimates of the Q10 value (the temperature sensitivity) assembled from 90 published studies across Chinese forest ecosystems. We analyzed the annual soil respiration (Rs) rates and the temperature sensitivities of seven forest ecosystems, including evergreen broadleaf forests (EBF), deciduous broadleaf forests (DBF), broadleaf and needleleaf mixed forests (BNMF), evergreen needleleaf forests (ENF), deciduous needleleaf forests (DNF), bamboo forests (BF) and shrubs (SF). The results showed that the mean annual Rs rate was 33.65 t CO2 ha-1 year-1 across Chinese forest ecosystems. Rs rates were significantly different (P < 0.001) among the seven forest types, and were significantly and positively influenced by mean annual temperature (MAT), mean annual precipitation (MAP), and actual evapotranspiration (AET); but negatively affected by latitude and elevation. The mean Q10 value of 1.28 was lower than the world average (1.4-2.0). The Q10 values derived from the soil temperature at a depth of 5 cm varied among forest ecosystems by an average of 2.46 and significantly decreased with the MAT but increased with elevation and latitude. Moreover, our results suggested that an artificial neural network (ANN) model can effectively predict Rs across Chinese forest ecosystems. This study contributes to better understanding of Rs across Chinese forest ecosystems and their possible responses to global warming.
Sinfonevada: Dataset of Floristic diversity in Sierra Nevada forests (SE Spain)
Pérez-Luque, Antonio Jesús; Bonet, Francisco Javier; Pérez-Pérez, Ramón; Rut Aspizua; Lorite, Juan; Zamora, Regino
2014-01-01
Abstract The Sinfonevada database is a forest inventory that contains information on the forest ecosystem in the Sierra Nevada mountains (SE Spain). The Sinfonevada dataset contains more than 7,500 occurrence records belonging to 270 taxa (24 of these threatened) from floristic inventories of the Sinfonevada Forest inventory. Expert field workers collected the information. The whole dataset underwent a quality control by botanists with broad expertise in Sierra Nevada flora. This floristic inventory was created to gather useful information for the proper management of Pinus plantations in Sierra Nevada. This is the only dataset that shows a comprehensive view of the forest flora in Sierra Nevada. This is the reason why it is being used to assess the biodiversity in the very dense pine plantations on this massif. With this dataset, managers have improved their ability to decide where to apply forest treatments in order to avoid biodiversity loss. The dataset forms part of the Sierra Nevada Global Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this area. PMID:24843285
NASA Astrophysics Data System (ADS)
McCabe, T. D.; Flory, S. L.; Wiesner, S.; Dietze, M.
2017-12-01
Forested ecosystems are currently being disrupted by invasive species. One example is the invasive grass Imperata cylindrica (cogongrass), which is widespread in southeastern US pine forests. Pines forests dominate the forest cover of the southeast, and contribute to making the Southeast the United States' largest carbon sink. Cogongrass decreases the colonization of loblolly pine fine roots. If cogongrass continues to invade,this sink could be jeopardized. However, the effects of cogongrass invasion on carbon sequestration are largely unknown. We have projected the effects of elevated CO2 and changing climate on future cogongrass invasion. To test how pine stands are affected by cogongrass, cogongrass invasions were modeled using the Ecosystem Demography 2 (ED2) model, and parameterized using the Predictive Ecosystem Analyzer (PEcAn). ED2 takes into account local meteorological data, stand populations and succession, disturbance, and geochemical pools. PEcAn is a workflow that uses Bayesian sensitivity analyses and variance decomposition to quantify the uncertainty that each parameter contributes to overall model uncertainty. ED2 was run for four NEON and Ameriflux sites in the Southeast from the earliest available census of the site into 2010. These model results were compared to site measures to test for model accuracy and bias. To project the effect of elevated CO2 on cogongrass invasions, ED was run from 2006-2100 at four sites under four separate scenarios: 1) RPC4.5 CO2 and climate, 2) RPC4.5 climate only, with constant CO2 concentrations, 3) RPC4.5 Elevated CO2 only, with climate randomly selected from 2006-2026, 4) Present Day, made from randomly selected measures of CO2 and radiation from 2006-2026. Each scenario was run three times; once with cogongrass absent, once with a low cogongrass abundance, and once with a high cogongrass abundance. Model results suggest that many relevant parameters have high uncertainty due to lack of measurement. Further field work quantifying the carbon cycle, particularly belowground processes and respiration, could help constrain parameter uncertainty.
Lipatov, D N; Shcheglov, A I; Tsvetnova, O B
2007-01-01
The paper deals with a comparative study of 137Cs contamination in forest, old arable and cultivated soils of Tula Region. Initial interception of Chernobyl derived 137Cs is higher in forest ecosystems: oak-forest > birch-forest > pine-forest > agricultural ecosystems. Vertical migration of 137Cs in deeper layers of soils was intensive in agricultural ecosystems: cultivated soils > old arable soils > birch-forest soils > oak-forest soils > pine-forest soils. In study have been evaluated spatial variability of 137Cs in soil and asymmetrical distribution, that is a skew to the right. Spatial heterogeneity of 137Cs in agricultural soils is much lower than in forest soils. For cultivated soil are determined the rate of resuspension, which equal to 6.1 x 10(-4) day(-1). For forest soils are described the 137Cs concentration in litter of different ecosystems. The role of main accumulation and barrier of 137Cs retain higher layers of soils (horizon A1(A1E) in forest, horizon Ap in agricultural ecosystems) in long-term forecast after Chernobyl accident.
76 FR 65509 - Environmental Impact Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-21
... (MW) Concentrated Solar Thermal Power Plant and Ancillary Facilities on 3,702 Areas, Right-of- Way... Protect Essential Ecosystem Functions and Values, Implementation, Humboldt-Toiyabe National Forest... Access Roads Associated with the Echanis Wind Energy Project, Authorizing Right-of-Way Grant, Harney...
Kenneth W. Stolte
2001-01-01
The Forest Health Monitoring (FHM) and Forest Inventory and Analyses (FIA) programs are integrated bilogical monitoring systems that use nationally standardized methods to evaluate and report on the health and sustainability of forest ecosystems in the United States. Many of the anticipated changes in forest ecosystems from climate change were also issues addressed in...
INSECTS & PATHOGENS Regulators of Forest Ecosystems
Robert A. Haack; James W. Byler
1993-01-01
Today's forest managers are challenged by issues such as soil productivity, biodiversity, threatened and endangered species, and ecosystem sustainability; and ecosystem management has been proposed as a way to deal with them. The Society of American Foresters (1993) defines this term as keeping forest ecosystems functioning well over long periods of time in order...
A framework for assessment and monitoring of small mammals in a lowland tropical forest.
Solari, Sergio; Rodriguez, Juan José; Vivar, Elena; Velazco, Paul M
2002-05-01
Development projects in tropical forests can impact biodiversity. Assessment and monitoring programs based on the principles of adaptive management assist managers to identify and reduce such impacts. The small mammal community is one important component of a forest ecosystem that may be impacted by development projects. In 1996, a natural gas exploration project was initiated in a Peruvian rainforest. The Smithsonian Institution's Monitoring and Assessment of Biodiversity program cooperated with Shell Prospecting and Development Peru to establish an adaptive management program to protect the region's biodiversity. In this article, we discuss the role of assessing and monitoring small mammals in relation to the natural gas project. We outline the conceptual issues involved in establishing an assessment and monitoring program, including setting objectives, evaluating the results and making appropriate decisions. We also summarize the steps taken to implement the small mammal assessment, provide results from the assessment and discuss protocols to identify appropriate species for monitoring.
Huang, Lin; Cao, Wei; Xu, Xinliang; Fan, Jiangwen; Wang, Junbang
2018-09-15
The maintenance and improvement of ecosystem services on the Tibet Plateau are critical for national ecological security in China and are core objectives of ecological conservation in this region. In this paper, ecosystem service benefits of the Tibet Ecological Conservation Project were comprehensively assessed by estimating and mapping the spatiotemporal variation patterns of critical ecosystem services on the Tibet Plateau from 2000 to 2015. Furthermore, we linked the benefit assessment to the sustainable spatial planning of future ecological conservation strategies. Comparing the 8 years before and after the project, the water retention and carbon sink services of the forest, grassland and wetland ecosystems were slightly increased after the project, and the ecosystem sand fixation service has been steadily enhanced. The increasing forage supply service of grassland significantly reduced the grassland carrying pressure and eased the conflict between grassland and livestock. However, enhanced rainfall erosivity occurred due to increased rainfall, and root-layer soils could not recover in a short period of time, both factors have led to a decline in soil conservation service. The warm and humid climate is beneficial for the restoration of ecosystems on the Tibet Plateau, and the implementation of the Tibet Ecological Conservation Project has had a positive effect on the local improvement of ecosystem services. A new spatial planning strategy for ecological conservation was introduced and aims to establish a comprehensive, nationwide system to protect important natural ecosystems and wildlife, and to promote the sustainable use of natural resources. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kelly, A. E.; Goulden, M.; Fellows, A. W.
2013-12-01
California's Mediterranean climate supports a broad diversity of ecosystem types, including Sequoia forests in the mid-montane Sierra Nevada. Understanding how winter cold and summer drought interact to produce the lush forest in the Sierra is critical to predicting the impacts of projected climate change on California's ecosystems, water supply, and carbon cycling. We investigated how smooth gradients of temperature and water availability produced sharp thresholds in biomass, productivity, growing season, water use, and ultimately ecosystem type and function. We used the climate gradient of the western slope of the Sierra Nevada as a study system. Four eddy covariance towers were situated in the major ecosystem types of the Sierra Nevada at approximately 800-m elevation intervals. Eddy flux data were combined with remote sensing and direct measurements of biomass, productivity, soil available water, and evapotranspiration to understand how weather and available water control ecosystem production and function. We found that production at the high elevation lodgepole site at 2700 m was strongly limited by winter cold. Production at the low elevation oak woodland site at 400 m was strongly limited by summer drought. The yellow pine site at 1200 m was only 4 °C cooler than the oak woodland site, yet had an order of magnitude more biomass and productivity with year-round growth. The mixed conifer site at 2000 m is 3.5 °C warmer than the lodgepole forest, yet also has higher biomass, ten times higher productivity, and year-round growth. We conclude that there is a broad climatological 'sweet spot' within the Sierra Nevada, in which the Mediterranean climate can support large-statured forest with high growth rates. The range of the mid-elevation forest was sharply bounded by water limitation at the lower edge and cold limitation at the upper edge despite small differences in precipitation and temperature across these boundaries. Our results suggest that small changes in precipitation or winter warming could markedly alter ecosystem structure and function as well as carbon and water cycling in the Sierra Nevada.
Vulnerability of the global terrestrial ecosystems to climate change.
Li, Delong; Wu, Shuyao; Liu, Laibao; Zhang, Yatong; Li, Shuangcheng
2018-05-27
Climate change has far-reaching impacts on ecosystems. Recent attempts to quantify such impacts focus on measuring exposure to climate change but largely ignore ecosystem resistance and resilience, which may also affect the vulnerability outcomes. In this study, the relative vulnerability of global terrestrial ecosystems to short-term climate variability was assessed by simultaneously integrating exposure, sensitivity, and resilience at a high spatial resolution (0.05°). The results show that vulnerable areas are currently distributed primarily in plains. Responses to climate change vary among ecosystems and deserts and xeric shrublands are the most vulnerable biomes. Global vulnerability patterns are determined largely by exposure, while ecosystem sensitivity and resilience may exacerbate or alleviate external climate pressures at local scales; there is a highly significant negative correlation between exposure and sensitivity. Globally, 61.31% of the terrestrial vegetated area is capable of mitigating climate change impacts and those areas are concentrated in polar regions, boreal forests, tropical rainforests, and intact forests. Under current sensitivity and resilience conditions, vulnerable areas are projected to develop in high Northern Hemisphere latitudes in the future. The results suggest that integrating all three aspects of vulnerability (exposure, sensitivity, and resilience) may offer more comprehensive and spatially explicit adaptation strategies to reduce the impacts of climate change on terrestrial ecosystems. © 2018 John Wiley & Sons Ltd.
Earlier Snowmelt Changes the Ratio Between Early and Late Season Forest Productivity
NASA Astrophysics Data System (ADS)
Knowles, J. F.; Molotch, N. P.; Trujillo, E.; Litvak, M. E.
2017-12-01
Future projections of declining snowpack and increasing potential evaporation associated with climate warming are predicted to advance the timing of snowmelt in mountain ecosystems globally. This scenario has direct implications for snowmelt-driven forest productivity, but the net effect of temporally shifting moisture dynamics is unknown with respect to the annual carbon balance. Accordingly, this study uses both satellite- and tower-based observations to document the forest productivity response to snowpack and potential evaporation variability between 1989 and 2012 throughout the southern Rocky Mountain ecoregion, USA. These results show that a combination of low snow accumulation and record high potential evaporation in 2012 resulted in the 34-year minimum ecosystem productivity that could be indicative of future conditions. Moreover, early and late season productivity were significantly and inversely related, suggesting that future shifts toward earlier or reduced snowmelt could increase late-season moisture stress to vegetation and thus restrict productivity despite a longer growing season. This relationship was further subject to modification by summer precipitation, and the controls on the early/late season productivity ratio are explored within the context of ecosystem carbon storage in the future. Any perturbation to the carbon cycle at this scale represents a potential feedback to climate change since snow-covered forests represent an important global carbon sink.
Assessment of forest fuel loadings in Puerto Rico and the US Virgin Islands
Thomas J. Brandeis; Christopher W. Woodall
2008-01-01
Quantification of the downed woody materials that comprise forest fuels has gained importance in Caribbean forest ecosystems due to the increasing incidence and severity of wildfires on island ecosystems. Because large-scale assessments of forest fuels have rarely been conducted for these ecosystems, forest fuels were assessed at 121 US Department of Agriculture forest...
Hector, Andy; Philipson, Christopher; Saner, Philippe; Chamagne, Juliette; Dzulkifli, Dzaeman; O'Brien, Michael; Snaddon, Jake L.; Ulok, Philip; Weilenmann, Maja; Reynolds, Glen; Godfray, H. Charles J.
2011-01-01
Relatively, little is known about the relationship between biodiversity and ecosystem functioning in forests, especially in the tropics. We describe the Sabah Biodiversity Experiment: a large-scale, long-term field study on the island of Borneo. The project aims at understanding the relationship between tree species diversity and the functioning of lowland dipterocarp rainforest during restoration following selective logging. The experiment is planned to run for several decades (from seed to adult tree), so here we focus on introducing the project and its experimental design and on assessing initial conditions and the potential for restoration of the structure and functioning of the study system, the Malua Forest Reserve. We estimate residual impacts 22 years after selective logging by comparison with an appropriate neighbouring area of primary forest in Danum Valley of similar conditions. There was no difference in the alpha or beta species diversity of transect plots in the two forest types, probably owing to the selective nature of the logging and potential effects of competitive release. However, despite equal total stem density, forest structure differed as expected with a deficit of large trees and a surfeit of saplings in selectively logged areas. These impacts on structure have the potential to influence ecosystem functioning. In particular, above-ground biomass and carbon pools in selectively logged areas were only 60 per cent of those in the primary forest even after 22 years of recovery. Our results establish the initial conditions for the Sabah Biodiversity Experiment and confirm the potential to accelerate restoration by using enrichment planting of dipterocarps to overcome recruitment limitation. What role dipterocarp diversity plays in restoration only will become clear with long-term results. PMID:22006970
Hector, Andy; Philipson, Christopher; Saner, Philippe; Chamagne, Juliette; Dzulkifli, Dzaeman; O'Brien, Michael; Snaddon, Jake L; Ulok, Philip; Weilenmann, Maja; Reynolds, Glen; Godfray, H Charles J
2011-11-27
Relatively, little is known about the relationship between biodiversity and ecosystem functioning in forests, especially in the tropics. We describe the Sabah Biodiversity Experiment: a large-scale, long-term field study on the island of Borneo. The project aims at understanding the relationship between tree species diversity and the functioning of lowland dipterocarp rainforest during restoration following selective logging. The experiment is planned to run for several decades (from seed to adult tree), so here we focus on introducing the project and its experimental design and on assessing initial conditions and the potential for restoration of the structure and functioning of the study system, the Malua Forest Reserve. We estimate residual impacts 22 years after selective logging by comparison with an appropriate neighbouring area of primary forest in Danum Valley of similar conditions. There was no difference in the alpha or beta species diversity of transect plots in the two forest types, probably owing to the selective nature of the logging and potential effects of competitive release. However, despite equal total stem density, forest structure differed as expected with a deficit of large trees and a surfeit of saplings in selectively logged areas. These impacts on structure have the potential to influence ecosystem functioning. In particular, above-ground biomass and carbon pools in selectively logged areas were only 60 per cent of those in the primary forest even after 22 years of recovery. Our results establish the initial conditions for the Sabah Biodiversity Experiment and confirm the potential to accelerate restoration by using enrichment planting of dipterocarps to overcome recruitment limitation. What role dipterocarp diversity plays in restoration only will become clear with long-term results.
Overlaps among phenological phases in flood plain forest ecosystem
NASA Astrophysics Data System (ADS)
Bartošová, Lenka; Bauer, Zdeněk; Trnka, Miroslav; Možný, Martin; Štěpánek, Petr; Žalud, Zdeněk
2015-04-01
There is a growing concern that climate change has significant impacts on species phenology, seasonal population dynamics, and thus interaction (a)synchrony between species. Species that have historically undergone life history events on the same seasonal calendar may lose synchrony and therefore lose the ability to interact as they have in the past. In view of the match/mismatch hypothesis, the different extents or directions of the phenological shifts among interacting species may have significant implications for community structure and dynamics. That's why our principal goal of the study is to determine the phenological responses within the ecosystem of flood plain forest and analyzed the phenological overlapping among each phenological periods of given species. The phenological observations were done at flood-plain forest experimental site during the period 1961-2012. The whole ecosystem in this study create 17 species (15 plants and 2 bird species) and each species is composed of 2 phenological phases. Phenological periods of all species of ecosystem overlap each other and 43 of these overlapping were chosen and the length, trend and correlation with temperature were elaborated. The analysis of phenophases overlapping of chosen species showed that the length of overlay is getting significantly shorter in 1 case. On the other hand the situation when the length of overlaps is getting significantly longer arose in 4 cases. Remaining overlaps (38) of all phenological periods among various species is getting shorter or longer but with no significance or have not changed anyhow. This study was funded by project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248. and of projects no. LD13030 supporting participation of the Czech Republic in the COST action ES1106.
NASA Astrophysics Data System (ADS)
Ndebele-Murisa, M. R.
2015-12-01
This paper is a synthesis of eight studies which demonstrate the interface between disaster risk management (DRM) and adaptation. The studies; conducted from November 2011 to July 2012 included diverse ecosystems from forests, coastlines, rural areas to a lake region and showed that climate change/variability are major factors among other factors such as deforestation and land degradation, unsustainable land use practices, overharvesting of natural products and invasive species encroachment that are causing changes in ecosystems. The most common extreme events reported included shifts in and shorter rainfall seasons, extended droughts, increased temperatures, extreme heat, heavy rainfall, flooding, inundation, strong winds and sea level rises. As a result of these climate phenomena, adverse impacts on ecosystems and communities were reported as biodiversity loss, reduced fish catch, reduced water for forests/agriculture/consumption, increased rough waves, coastal erosion/sediment deposition and lastly land/mud slides in order of commonality. In response to these impacts communities are practicing coping and adaptation strategies but there is a huge gap between proper DRM and adaptation. This is mainly because the adaptation is practiced as an aftermath with very little effort propelled towards proactive DRM or preparedness. In addition, national level policies are archaic and do not address the current environmental changes. This was demonstrated in Togo where wood energy potential is deteriorating at an unprecedented rate but is projected to increase between 6.4% and 101% in the near and far future if the national forest action plans are implemented; preventing an energy crisis in the country. This shows that appropriate legal and policy frameworks and well planned responses to projected extreme events and climate changes are crucial in order to prevent disasters and to achieve sustainable utilisation of resources in the continent.
E. Paoletti; M. Schaub; R. Matyssek; G. Wieser; A. Augustaitis; A. M. Bastrup-Birk; A. Bytnerowicz; M. S. Gunthardt-Goerg; G. Muller-Starck; Y. Serengil
2010-01-01
Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of...
Regional Eco-hydrologic Sensitivity to Projected Amazonian Land Use Scenarios
NASA Astrophysics Data System (ADS)
Knox, R. G.; Longo, M.; Zhang, K.; Levine, N. M.; Moorcroft, P. R.; Bras, R. L.
2011-12-01
Given business as usual land-use practices, it is estimated that by 2050 roughly half of the Amazon's pre-anthropogenic closed-canopy forest stands would remain. Of this, eight of the Amazon's twelve major hydrologic basins would lose more than half of their forest cover to deforestation. With the availability of these land-use projections, we may start to question the associated response of the region's hydrologic climate to significant land-cover change. Here the Ecosystem-Demography Model 2 (EDM2, a dynamic and spatially distributed terrestrial model of plant structure and composition, succession, disturbance and thermodynamic transfer) is coupled with the Brazilian Regional Atmospheric Model (BRAMS, a three-dimensional limited area model of the atmospheric fluid momentum equations and physics parameterizations for closing the system of equations at the lower boundary, convection, radiative transfer, microphysics, etc). This experiment conducts decadal simulations, framed with high-reliability lateral boundary conditions of reanalysis atmospheric data (ERA-40 interim) and variable impact of land-use scenarios (SimAmazonia). This is done by initializing the regional ecosystem structure with both aggressive and conservationist deforestation scenarios, and also by differentially allowing and not-allowing dynamic vegetation processes. While the lateral boundaries of the simulation will not reflect the future climate in the region, reanalysis data has provided improved realism as compared to results derived from GCM boundary data. Therefore, the ecosystem response (forest composition and structure) and the time-space patterns of hydrologic information (soil moisture, rainfall, evapotranspiration) are objectively compared in the context of a sensitivity experiment, as opposed to a forecast. The following questions are addressed. How do aggressive and conservative scenarios of Amazonian deforestation effect the regional patterning of hydrologic information in the Amazon and South American Convergence Zone, and does forest response in these regions influence that patterning of hydrologic information?
The Hardwood Ecosystem Experiment: a framework for studying responses to forest management
Robert K. Swihart; Michael R. Saunders; Rebecca A. Kalb; G. Scott Haulton; Charles H., eds. Michler
2013-01-01
Conditions in forested ecosystems of southern Indiana are described before initiation of silvicultural treatments for the Hardwood Ecosystem Experiment (HEE). The HEE is a 100-year study begun in 2006 in Morgan-Monroe and Yellowwood State Forests to improve the sustainability of forest resources and quality of life of Indiana residents by understanding ecosystem and...
Northern Forest Ecosystem Dynamics Using Coupled Models and Remote Sensing
NASA Technical Reports Server (NTRS)
Ranson, K. J.; Sun, G.; Knox, R. G.; Levine, E. R.; Weishampel, J. F.; Fifer, S. T.
1999-01-01
Forest ecosystem dynamics modeling, remote sensing data analysis, and a geographical information system (GIS) were used together to determine the possible growth and development of a northern forest in Maine, USA. Field measurements and airborne synthetic aperture radar (SAR) data were used to produce maps of forest cover type and above ground biomass. These forest attribute maps, along with a conventional soils map, were used to identify the initial conditions for forest ecosystem model simulations. Using this information along with ecosystem model results enabled the development of predictive maps of forest development. The results obtained were consistent with observed forest conditions and expected successional trajectories. The study demonstrated that ecosystem models might be used in a spatial context when parameterized and used with georeferenced data sets.
NASA Astrophysics Data System (ADS)
Zhu, Z.; Bergamaschi, B. A.; Hawbaker, T. J.; Liu, S.; Sleeter, B. M.; Sohl, T. L.; Stackpoole, S. M.
2012-12-01
A new assessment was conducted covering 2.66 million km2 in the Western United States extending from the Rockies to the Pacific coastal waters, in two time periods: baseline (the first half of the 2000s) and future (projections from baseline to 2050), using in-situ and remotely sensed data together with statistical methods and simulation models. The total carbon storage in the ecosystems of the Western United States in 2005 was approximately 13,920 TgC; distributed in live biomass (38%), soil organic carbon (39%), and woody debris and other surface carbon pools (23%). Estimated mean values of major flux terms included net ecosystem production (-127.2 TgC/yr), inland lateral flux (7.2 TgC/yr) from rivers/streams to coastal areas, emissions from inland water surfaces to the atmosphere (28.2 TgC/yr), and emissions form the wildland fires (10.0 TgC/yr). Average C sequestration rates for the region were estimated: -86.6 TgC/yr in net flux for all terrestrial ecosystems, -2.4 and -2.0 TgC/yr in net burial rates in lakes and reservoirs and in the Pacific coastal waters respectively, for a total sequestration rate of -90.9 TgC/yr across all of the major ecosystems. A negative sign denotes uptake, sequestration, or a carbon sink. Most of the net carbon flux is in forests (62.2%, -72.1 gC/m2/yr), followed by grasslands/shrublands (29.6%, -16.4 gC/m2/yr), agricultural lands (7.1%, -38.3 gC/m2/yr), and wetlands (0.96%, -82.1 gC/m2/yr). Projected on the basis of future land-use and land-cover scenarios and climate projections, the total amount of carbon that potentially could be stored in the ecosystems of the Western United States in 2050 was estimated to range from 13,743 to 19,407 TgC, an increase of 1,325-3,947 TgC (or 10.7 to 25.5 %) from baseline conditions of 2005. The potential mean (averaged between 2006 and 2050) annual net carbon flux in terrestrial ecosystems was projected to range from -113.9 TgC/yr to 2.9 TgC/yr. When compared to the baseline net carbon flux estimates, the projected future carbon-sequestration rates in the Western United States represent a potential decline by 16.5 to 49 TgC/yr. The projected decline is largely associated with grasslands/shrublands and forests in the Rockies. Under future projections of climate change, the GHG combustion emissions from wildfires were projected to increase by 28 to 56 percent, relative to baseline conditions.
Our Changing Planet: The U.S. Climate Change Science Program for Fiscal Year 2009
2008-07-01
forests of the southern Yucatan Peninsula form the largest expanse of this ecosystem type remaining in Mexico. It forms an ecocline between a drier...Calakmul Biosphere Reserve to preserve this unique forested area. The Southern Yucatan Peninsular Region Project is currently engaged in an assessment of the...Eastman, B.L. Turner II, S. Calme, R. Dickson, C. Pozo, and F. Sangermano, 2007: Land Change in the southern Yucatan and Calamul biosphere reserve
Elkin, Ché; Giuggiola, Arnaud; Rigling, Andreas; Bugmann, Harald
2015-06-01
In many regions of the world, drought is projected to increase under climate change, with potential negative consequences for forests and their ecosystem services (ES). Forest thinning has been proposed as a method for at least temporarily mitigating drought impacts, but its general applicability and longer-term impacts are unclear. We use a process-based forest model to upscale experimental data for evaluating the impacts of forest thinning in a drought-susceptible valley in the interior of the European Alps, with the specific aim of assessing (1) when and where thinning may be most effective and (2) the longer-term implications for forest dynamics. Simulations indicate that forests will be impacted by climate-induced increases in drought across a broad elevation range. At lower elevations, where drought is currently prevalent, thinning is projected to temporarily reduce tree mortality, but to have minor impacts on forest dynamics in the longer term. Thinning may be particularly useful at intermediate and higher elevations as a means of temporarily reducing mortality in drought-sensitive species such as Norway spruce and larch, which currently dominate these elevations. However, in the longer term, even intense thinning will likely not be sufficient to prevent a climate change induced dieback of these species, which is projected to occur under even moderate climate change. Thinning is also projected to have the largest impact on long-term forest dynamics at intermediate elevations, with the magnitude of the impact depending on the timing and intensity of thinning. More intense thinning that is done later is projected to more strongly promote a transition to more drought-tolerant species. We conclude that thinning is a viable option for temporarily reducing the negative drought impacts on forests, but that efficient implementation of thinning should be contingent on a site-specific evaluation of the near term risk of significant drought, and how thinning will impact the rate and direction of climate driven forest conversion.
Potential Carbon Stock Changes in Arizona's Ecosystems Due to Projected Climate Change
NASA Astrophysics Data System (ADS)
Finley, B. K.; Ironside, K.; Hungate, B. A.; Hurteau, M.; Koch, G. W.
2011-12-01
Climate change can alter the role of plants and soils as sources or sinks of atmospheric carbon dioxide and result in changes in long-term carbon storage. To understand the sensitivity of Arizona's ecosystems to climate change, we quantified the present carbon stocks in Arizona's major ecosystem types using the NASA-CASA (Carnegie Ames Stanford Approach) model. Carbon stocks for each vegetation type included surface mineral soil, dead wood litter, standing wood and live leaf biomass. The total Arizona ecosystem carbon stock is presently 1775 MMtC, 545 MMtC of which is in Pinus ponderosa and Pinus edulis forests and woodlands. Evergreen forest vegetation, predominately Pinus ponderosa, has the largest current C density at 11.3 kgC/m2, while Pinus edulis woodlands have a C density of 6.0 kgC/m2. A change in climate will impact the suitable range for each tree species, and consequentially the amount of C stored. Present habitat ranges for these tree species are projected to have widespread mortality and likely will be replaced by herbaceous species, resulting in a loss of C stored. We evaluated the C storage implications over the 2010 to 2099 period of climate change based on output from GCMs with contrasting projections for the southwestern US: MPI-ECHAM5, which projects warming and reduced precipitation, and UKMO-HadGEM, which projects warming and increased precipitation. These projected changes are end points of a spectrum of possible future climate scenarios. The vegetation distribution models used describe potential suitable habitat, and we assumed that the growth rate for each vegetation type would be one-third of the way to full C density for each 30 year period up to 2099. With increasing temperature and decreasing precipitation predictions under the MPI-ECHAM5 model, P. ponderosa and P. edulis vegetation show a decrease in carbon stored from 545 MMtC presently to 116 MMtC. With the combined increase in temperature and precipitation, C storage in these vegetation types is projected to increase to 808 MMtC. Our results indicate that future C storage in Arizona is highly dependent on precipitation. Given that most climate models for the Southwest predict a more arid future, it is likely that C storage will decrease in Arizona ecosystems, as it has in response to recent droughts, reducing mitigation of rising human emissions.
NASA Astrophysics Data System (ADS)
Moorcroft, P. R.; Zhang, K.; Castanho, A. D. D. A.; Galbraith, D.; Moghim, S.; Levine, N. M.; Bras, R. L.; Coe, M. T.; Costa, M. H.; Malhi, Y.; Longo, M.; Knox, R. G.; McKnight, S. L.; Wang, J.
2014-12-01
There is considerable interest and uncertainty regarding the expected fate of the Amazon over the coming century in face of the combined impacts of climate change, rising atmospheric CO2 levels, and on-going land transformation in the region. In this analysis, we explore the fate of Amazonian ecosystems under projected climate, CO2 and land-use change in the 21st century using three state-of-the-art terrestrial biosphere models (ED2, IBIS, and JULES) driven by three representative, bias-corrected GCM climate projections (PCM1, CCSM3, and HadCM3) under the SRES A2 scenario, coupled with two land-use change scenarios. We assess the relative roles of climate change, CO2 fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change depend strongly on the direction and severity of projected changes in precipitation regimes within the region: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%; however, the models predict that CO2 fertilization will enhance vegetation productivity and alleviate climate-induced increases in plant water stress, and as a result sustain high biomass forests, even under the driest climate scenario. Land-use change and changes in fire frequency are predicted cause additional aboveground live biomass loss and changes in forest extent. The relative impact of land-use and fire dynamics versus the impacts of climate and CO2 on the Amazon varies considerably, depending on both the climate and land-use scenarios used and on the terrestrial biosphere model, highlighting the importance of improved understanding of all four factors -- future climate, CO2 fertilization effects, fire and land-use -- to the fate of the Amazon over the coming century.
Magrach, Ainhoa; Ghazoul, Jaboury
2015-01-01
Coffee is highly sensitive to temperature and rainfall, making its cultivation vulnerable to geographic shifts in response to a changing climate. This could lead to the establishment of coffee plantations in new areas and potential conflicts with other land covers including natural forest, with consequent implications for biodiversity and ecosystem services. We project areas suitable for future coffee cultivation based on several climate scenarios and expected responses of the coffee berry borer, a principle pest of coffee crops. We show that the global climatically-suitable area will suffer marked shifts from some current major centres of cultivation. Most areas will be suited to Robusta coffee, demand for which could be met without incurring forest encroachment. The cultivation of Arabica, which represents 70% of consumed coffee, can also be accommodated in the future, but only by incurring some natural forest loss. This has corresponding implications for carbon storage, and is likely to affect areas currently designated as priority areas for biodiversity. Where Arabica coffee does encroach on natural forests, we project average local losses of 35% of threatened vertebrate species. The interaction of climate and coffee berry borer greatly influences projected outcomes. PMID:26177201
Forest ecosystems: Vegetation, disturbance, and economics: Chapter 5
Littell, Jeremy S.; Hicke, Jeffrey A.; Shafer, Sarah L.; Capalbo, Susan M.; Houston, Laurie L.; Glick, Patty
2013-01-01
Forests cover about 47% of the Northwest (NW–Washington, Oregon, and Idaho) (Smith et al. 2009, fig. 5.1, table 5.1). The impacts of current and future climate change on NW forest ecosystems are a product of the sensitivities of ecosystem processes to climate and the degree to which humans depend on and interact with those systems. Forest ecosystem structure and function, particularly in relatively unmanaged forests where timber harvest and other land use have smaller effects, is sensitive to climate change because climate has a strong influence on ecosystem processes. Climate can affect forest structure directly through its control of plan physiology and life history (establishment, individual growth, productivity, and morality) or indirectly through its control of disturbance (fire, insects, disease). As climate changes, many forest processes will be affected, altering ecosystem services such as timber production and recreation. These changes have socioeconomic implications (e.g. for timber economies) and will require changes to current management of forests. Climate and management will interact to determine the forests of the future, and the scientific basis for adaptation to climate change in forests thus depends significantly on how forests will be affected.
Acid Precipitation and the Forest Ecosystem
ERIC Educational Resources Information Center
Dochinger, Leon S.; Seliga, Thomas A.
1975-01-01
The First International Symposium on Acid Precipitation and the Forest Ecosystem dealt with the potential magnitude of the global effects of acid precipitation on aquatic ecosystems, forest soils, and forest vegetation. The problem is discussed in the light of atmospheric chemistry, transport, and precipitation. (Author/BT)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-11
... to predicted warmer temperatures and longer periods of depleted soil moisture. Stocking levels (stand... ecological processes, biodiversity, wildlife habitat, and structural heterogeneity. The impacts of past... culturally gathered plant material; Protect the historic values and characteristics of archaeological and...
Utilizing forest tree genetic diversity for an adaptation of forest to climate change
NASA Astrophysics Data System (ADS)
Schueler, Silvio; Lackner, Magdalena; Chakraborty, Debojyoti
2017-04-01
Since climate conditions are considered to be major determinants of tree species' distribution ranges and drivers of local adaptation, anthropogenic climate change (CC) is expected to modify the distribution of tree species, tree species diversity and the forest ecosystems connected to these species. The expected speed of environmental change is significantly larger than the natural migration and adaptation capacity of trees and makes spontaneous adjustment of forest ecosystems improbable. Planting alternative tree species and utilizing the tree species' intrinsic adaptive capacity are considered to be the most promising adaptation strategy. Each year about 900 million seedlings of the major tree species are being planted in Central Europe. At present, the utilization of forest reproductive material is mainly restricted to nationally defined ecoregions (seed/provenance zones), but when seedlings planted today become adult, they might be maladapted, as the climate conditions within ecoregions changed significantly. In the cooperation project SUSTREE, we develop transnational delineation models for forest seed transfer and genetic conservation based on species distribution models and available intra-specific climate-response function. These models are being connected to national registers of forest reproductive material in order support nursery and forest managers by selecting the appropriate seedling material for future plantations. In the long-term, European and national policies as well as regional recommendations for provenances use need to adapted to consider the challenges of climate change.
Longo, Marcos; Knox, Ryan G; Levine, Naomi M; Alves, Luciana F; Bonal, Damien; Camargo, Plinio B; Fitzjarrald, David R; Hayek, Matthew N; Restrepo-Coupe, Natalia; Saleska, Scott R; da Silva, Rodrigo; Stark, Scott C; Tapajós, Raphael P; Wiedemann, Kenia T; Zhang, Ke; Wofsy, Steven C; Moorcroft, Paul R
2018-05-22
The impact of increases in drought frequency on the Amazon forest's composition, structure and functioning remain uncertain. We used a process- and individual-based ecosystem model (ED2) to quantify the forest's vulnerability to increased drought recurrence. We generated meteorologically realistic, drier-than-observed rainfall scenarios for two Amazon forest sites, Paracou (wetter) and Tapajós (drier), to evaluate the impacts of more frequent droughts on forest biomass, structure and composition. The wet site was insensitive to the tested scenarios, whereas at the dry site biomass declined when average rainfall reduction exceeded 15%, due to high mortality of large-sized evergreen trees. Biomass losses persisted when year-long drought recurrence was shorter than 2-7 yr, depending upon soil texture and leaf phenology. From the site-level scenario results, we developed regionally applicable metrics to quantify the Amazon forest's climatological proximity to rainfall regimes likely to cause biomass loss > 20% in 50 yr according to ED2 predictions. Nearly 25% (1.8 million km 2 ) of the Amazon forests could experience frequent droughts and biomass loss if mean annual rainfall or interannual variability changed by 2σ. At least 10% of the high-emission climate projections (CMIP5/RCP8.5 models) predict critically dry regimes over 25% of the Amazon forest area by 2100. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Estimating the risk of Amazonian forest dieback.
Rammig, Anja; Jupp, Tim; Thonicke, Kirsten; Tietjen, Britta; Heinke, Jens; Ostberg, Sebastian; Lucht, Wolfgang; Cramer, Wolfgang; Cox, Peter
2010-08-01
*Climate change will very likely affect most forests in Amazonia during the course of the 21st century, but the direction and intensity of the change are uncertain, in part because of differences in rainfall projections. In order to constrain this uncertainty, we estimate the probability for biomass change in Amazonia on the basis of rainfall projections that are weighted by climate model performance for current conditions. *We estimate the risk of forest dieback by using weighted rainfall projections from 24 general circulation models (GCMs) to create probability density functions (PDFs) for future forest biomass changes simulated by a dynamic vegetation model (LPJmL). *Our probabilistic assessment of biomass change suggests a likely shift towards increasing biomass compared with nonweighted results. Biomass estimates range between a gain of 6.2 and a loss of 2.7 kg carbon m(-2) for the Amazon region, depending on the strength of CO(2) fertilization. *The uncertainty associated with the long-term effect of CO(2) is much larger than that associated with precipitation change. This underlines the importance of reducing uncertainties in the direct effects of CO(2) on tropical ecosystems.
Assessment and valuation of forest ecosystem services: State of the science review
Seth Binder; Robert G. Haight; Stephen Polasky; Travis Warziniack; Miranda H. Mockrin; Robert L. Deal; Greg Arthaud
2017-01-01
This review focuses on the assessment and economic valuation of ecosystem services from forest ecosystemsâthat is, our ability to predict changes in the quantity and value of ecosystem services as a result of specific forest management decisions. It is aimed at forest economists and managers and intended to provide a useful reference to those interested in developing...
NASA Astrophysics Data System (ADS)
Garneau, M.; van Bellen, S.
2016-12-01
Based on various databases, carbon stocks of terrestrial ecosystems in the boreal and arctic biomes of Quebec were quantified as part of an evaluation of their capacity to mitigate anthropogenic greenhouse gas (GHG) emissions and estimate their vulnerability with respect to recent climate change and land use changes. The results of this project are contributing to the establishment of the Strategy for Climate Change Adaptation as well as the 2013-2020 Climate Change Action Plan of the Quebec Ministry of Environment, which aim to adapt the Quebec society to the effects of climate change and the reduction of GHG emissions. The total carbon stock of the soils of the forest and peatland ecosystems of Quebec was quantified at 18.00 Gt C or 66.0 Gt CO2-equivalent, of which 95% corresponds to the boreal and arctic regions. The mean carbon mass per unit area (kg C m-2) of peatlands is about nine times higher than that of forests, with values of 100,0 kg C m-2 for peatlands and 10,9 kg C m-2 for forest stands. In 2013, total anthropogenic emissions in Quebec were quantified at 82.6 Mt CO2-equivalent (Environment Canada, 2015), or 1.25‰ of the total Quebec ecosystem carbon stock. The total stock thus represents the equivalent of about 800 years of anthropogenic emissions at the current rate, divided between 478 years for peatlands and 321 years for forest soils. Future GHG mitigation policies and sustainable land-use planning should be supported by scientific data on terrestrial ecosystems carbon stocks. An increase in investments in peatland, wetland and forest conservation, management and rehabilitation may contribute to limit greenhouse gas emissions. It is therefore essential, that, following the objectives of multiple international organisations, the management of terrestrial carbon stocks becomes part of the national engagement to reduce GHG emissions.
The 1990 forest ecosystem dynamics multisensor aircraft campaign
NASA Technical Reports Server (NTRS)
Williams, Darrel L.; Ranson, K. Jon
1991-01-01
The overall objective of the Forest Ecosystem Dynamics (FED) research activity is to develop a better understanding of the dynamics of forest ecosystem evolution over a variety of temporal and spatial scales. Primary emphasis is being placed on assessing the ecosystem dynamics associated with the transition zone between northern hardwood forests in eastern North America and the predominantly coniferous forests of the more northerly boreal biome. The approach is to combine ground-based, airborne, and satellite observations with an integrated forest pattern and process model which is being developed to link together existing models of forest growth and development, soil processes, and radiative transfer.
Interacting factors driving a major loss of large trees with cavities in a forest ecosystem.
Lindenmayer, David B; Blanchard, Wade; McBurney, Lachlan; Blair, David; Banks, Sam; Likens, Gene E; Franklin, Jerry F; Laurance, William F; Stein, John A R; Gibbons, Philip
2012-01-01
Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia--forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans). Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006-2009). Following a major wildfire in 2009, 79% of large living trees with cavities died and 57-100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1) the prolonged time required (>120 years) for initiation of cavities; and (2) repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide.
NASA Astrophysics Data System (ADS)
Hess, N. J.; Tfaily, M. M.; Heredia-Langnar, A.; Rodriguez, L.; Purvine, E.; Todd-Brown, K. E.
2016-12-01
In western Canada, the forest-prairie boundary corresponds to a hydrologically-defined ecosystem "tipping point" where long-term precipitation is barely sufficient to meet the water use requirements of healthy, closed-canopy forests. In the province of Alberta, the severe subcontinental drought of 2001-2002 heralded the beginning of a 15-year dry period, representing a northward incursion of prairie-like climates into boreal and cordilleran forests. This poses a significant concern for ecosystem functioning of these forests, given GCM projections for continued warming and drying under anthropogenic climate change during this century. Through a multi-scale monitoring approach, we have examined the regional-scale impacts of recent droughts and associated climatic drying on the productivity and health of two important boreal tree species: aspen (Populus tremuloides) and white spruce (Picea glauca). For aspen, the 2016 re-measurement of a regional network of 150 ground plots revealed that tree mortality has escalated, especially in stands exposed to the combined impacts of multi-year drought and insect defoliation. On average, mortality losses exceeded growth gains during 2000-2016 for the 54 aspen plots in Alberta, leading to a net multi-year decline in the aboveground biomass of these stands. For white spruce, tree-ring analysis of 40 stands across Alberta revealed that the prolonged dry period led to a 38% decline in average, tree-level growth in aboveground biomass. In both species, stand age was not a significant factor affecting forest sensitivity to drought and climatic drying, suggesting that these forests are at risk if the trend toward more frequent, severe drought continues in the region.
NASA Astrophysics Data System (ADS)
Hogg, E. H.; Michaelian, M.
2017-12-01
In western Canada, the forest-prairie boundary corresponds to a hydrologically-defined ecosystem "tipping point" where long-term precipitation is barely sufficient to meet the water use requirements of healthy, closed-canopy forests. In the province of Alberta, the severe subcontinental drought of 2001-2002 heralded the beginning of a 15-year dry period, representing a northward incursion of prairie-like climates into boreal and cordilleran forests. This poses a significant concern for ecosystem functioning of these forests, given GCM projections for continued warming and drying under anthropogenic climate change during this century. Through a multi-scale monitoring approach, we have examined the regional-scale impacts of recent droughts and associated climatic drying on the productivity and health of two important boreal tree species: aspen (Populus tremuloides) and white spruce (Picea glauca). For aspen, the 2016 re-measurement of a regional network of 150 ground plots revealed that tree mortality has escalated, especially in stands exposed to the combined impacts of multi-year drought and insect defoliation. On average, mortality losses exceeded growth gains during 2000-2016 for the 54 aspen plots in Alberta, leading to a net multi-year decline in the aboveground biomass of these stands. For white spruce, tree-ring analysis of 40 stands across Alberta revealed that the prolonged dry period led to a 38% decline in average, tree-level growth in aboveground biomass. In both species, stand age was not a significant factor affecting forest sensitivity to drought and climatic drying, suggesting that these forests are at risk if the trend toward more frequent, severe drought continues in the region.
NASA Astrophysics Data System (ADS)
di Porcia e Brugnera, M.; Longo, M.; Verbeek, H.
2017-12-01
Lianas are an important component of tropical forests, constituting up to 40% of the woody stems and about 35% of the woody species. Tropical forests have been experiencing large-scale structural changes, including an increase in liana abundance and biomass. This may eventually reduce the projected carbon sink of tropical forests. Despite their crucial role no single terrestrial ecosystem model has included lianas so far. Here, we present the very first implementation of lianas in the Ecosystem Demography model (ED2). ED2 is able to represent the competition for water and light between different vegetation types at the regional level. Our new implementation of ED2 is hence suitable to address important questions such as the impact of lianas on the tropical forest carbon balance. We validated the model against forest inventory and eddy covariance flux data at a dry seasonal site (Barro Colorado Island, Panama), and at a wet rainforest site (Paracou, French Guiana). The model was able to represent size structure and carbon accumulation rates. We also evaluated the impact of the unique allocation strategy of lianas on their competitive ability. Lianas invest only a small fraction of their carbon for structural tissues when compared to trees. As a result, lianas benefit from an extra amount of available carbon, however the trade-offs of low allocation on structural tissues are not yet well understood. We are currently investigating a number of hypotheses, including the possibility for lianas to have high turnover rates for leaves and fine roots, or to have high mortality rates due to the loss of structural support when trees die. As such our model allows us to get a better understanding of the role of lianas in the tropical forest carbon cycle.
NASA Astrophysics Data System (ADS)
Cooper, L. A.; Ballantyne, A.; Holden, Z. A.; Landguth, E.
2015-12-01
Disturbance plays an important role in the structure, composition, and nutrient cycling of forest ecosystems. Climate change is resulting in an increase in disturbance frequency and intensity, making it critical that we quantify the physical and chemical impacts of disturbances on forests. The impacts of disturbance are thought to vary widely depending on disturbance type, location, and climate. More specifically, fires, insect infestations, and other types of disturbances differ in their timing, extent, and intensity making it difficult to assess the true impact of disturbances on local energy budgets and carbon cycling. Here, we provide a regional analysis of the impacts of fire, insect attack, and other disturbances on land surface temperature (LST), carbon stocks, and gross primary productivity (GPP). Using disturbances detected with MODIS Enhanced Vegetation Index (EVI) time series between 2002 and 2012, we find that the impacts of disturbance on LST, carbon stocks, and GPP vary widely according to local climate, vegetation, and disturbance type and intensity. Fires resulted in the most distinct impacts on all response variables. Forest responses to insect epidemics were more varied in their magnitude and timing. The results of this study provide an important estimation of the variability of climate and ecosystem responses to disturbance across a large and heterogeneous landscape. With disturbance projected to increase in both frequency and intensity around the globe in the coming years, this information is vitally important to effectively manage forests into the future.
The Vulnerability of Forest Ecosystems of Armenia to the Global Climate Change
NASA Astrophysics Data System (ADS)
Khachatryan, S.
2009-05-01
Climate changes characterized as global warming can lead to irreversible effects on regional and global scales, such as drought, pest attacks, diseases, excessive forest fires, and climate driven extinction of numerous animal and plant species. We assess the issues that the development of forestry in Armenia faces, where the climate change is causing the landscape zone borders in the territory to shift. This will have a significant impact on the most vulnerable tree species in Armenia. An increase in climate aridity and intensification of desertification can be expected under the projected escalated temperatures and reduced precipitation. For example, we can consider average annual temperature of the Ijevan meteorological station (located in forestry region) for the period of 1936-2008. We analyze the vulnerability of forest ecosystems in Armenia to climatic and anthropogenic factors for the period of 1936-2008. Temperature and precipitation data from 25 meteorological stations in the territory of Armenia is studied for the period of 1936-2008. The dynamic of average temperature annual anomalies are revealed. The deviations of temperature and precipitation from the norms (average for 1961-1990) are evaluated for the period of study. We discuss the reasons for the abrupt increase in temperature and decrease in precipitation. Based on the dataset, the possible near future impact of global climate change on the Armenian forest ecosystems is discussed, and measures on the adaptation to the adverse consequences that climate change has on forests are offered.
A quantitative assessment of a terrestrial biosphere model's data needs across North American biomes
NASA Astrophysics Data System (ADS)
Dietze, Michael C.; Serbin, Shawn P.; Davidson, Carl; Desai, Ankur R.; Feng, Xiaohui; Kelly, Ryan; Kooper, Rob; LeBauer, David; Mantooth, Joshua; McHenry, Kenton; Wang, Dan
2014-03-01
Terrestrial biosphere models are designed to synthesize our current understanding of how ecosystems function, test competing hypotheses of ecosystem function against observations, and predict responses to novel conditions such as those expected under climate change. Reducing uncertainties in such models can improve both basic scientific understanding and our predictive capacity, but rarely are ecosystem models employed in the design of field campaigns. We provide a synthesis of carbon cycle uncertainty analyses conducted using the Predictive Ecosystem Analyzer ecoinformatics workflow with the Ecosystem Demography model v2. This work is a synthesis of multiple projects, using Bayesian data assimilation techniques to incorporate field data and trait databases across temperate forests, grasslands, agriculture, short rotation forestry, boreal forests, and tundra. We report on a number of data needs that span a wide array of diverse biomes, such as the need for better constraint on growth respiration, mortality, stomatal conductance, and water uptake. We also identify data needs that are biome specific, such as photosynthetic quantum efficiency at high latitudes. We recommend that future data collection efforts balance the bias of past measurements toward aboveground processes in temperate biomes with the sensitivities of different processes as represented by ecosystem models. ©2014. American Geophysical Union. All Rights Reserved.
2016-08-08
structure for RC-2117, the Liko Nā Pilina project. Table 2. List of sites where plant traits were collected. Table 3. Master list of species with... structure and ecosystem services. The Hawaiian name, Liko Nā Pilina, translates to growing/budding new relationships, and reflects the species...carbon (C) storage and minimize C turnover, provide the most benefits for native plant biodiversity, and allow for open understory structure with high
Ma, Jianyong; Shugart, Herman H; Yan, Xiaodong; Cao, Cougui; Wu, Shuang; Fang, Jing
2017-05-15
The carbon budget of forest ecosystems, an important component of the terrestrial carbon cycle, needs to be accurately quantified and predicted by ecological models. As a preamble to apply the model to estimate global carbon uptake by forest ecosystems, we used the CO 2 flux measurements from 37 forest eddy-covariance sites to examine the individual tree-based FORCCHN model's performance globally. In these initial tests, the FORCCHN model simulated gross primary production (GPP), ecosystem respiration (ER) and net ecosystem production (NEP) with correlations of 0.72, 0.70 and 0.53, respectively, across all forest biomes. The model underestimated GPP and slightly overestimated ER across most of the eddy-covariance sites. An underestimation of NEP arose primarily from the lower GPP estimates. Model performance was better in capturing both the temporal changes and magnitude of carbon fluxes in deciduous broadleaf forest than in evergreen broadleaf forest, and it performed less well for sites in Mediterranean climate. We then applied the model to estimate the carbon fluxes of forest ecosystems on global scale over 1982-2011. This application of FORCCHN gave a total GPP of 59.41±5.67 and an ER of 57.21±5.32PgCyr -1 for global forest ecosystems during 1982-2011. The forest ecosystems over this same period contributed a large carbon storage, with total NEP being 2.20±0.64PgCyr -1 . These values are comparable to and reinforce estimates reported in other studies. This analysis highlights individual tree-based model FORCCHN could be used to evaluate carbon fluxes of forest ecosystems on global scale. Copyright © 2017 Elsevier B.V. All rights reserved.
Sustainable development and use of ecosystems with non-forest trees
USDA-ARS?s Scientific Manuscript database
Non-forest trees are components of managed ecosystems including orchards and agroforestry systems and natural ecosystems such as savannas and riparian corridors. Each of these ecosystems includes trees but does not have a complete tree canopy or spatial extent necessary to create a true forest ecosy...
[Ecological regulation services of Hainan Island ecosystem and their valuation].
Ouyang, Zhiyun; Zhao, Tongqian; Zhao, Jingzhu; Xiao, Han; Wang, Xiaoke
2004-08-01
Ecosystem services imply the natural environmental conditions on which human life relies for existence, and their effectiveness formed and sustained by ecosystem and its ecological processes. In newly research reports, they were divided into four groups, i. e., provisioning services, regulation services, cultural services, and supporting services. To assess and valuate ecosystem services is the foundation of regional environmental reserve and development. Taking Hainan Island as an example and based on the structure and processes of natural ecosystem, this paper discussed the proper methods for regulation services assessment. The ecosystems were classified into 13 types including valley rain forest, mountainous rain forest, tropical monsoon forest, mountainous coppice forest, mountainous evergreen forest, tropical coniferous forest, shrubs, plantation, timber forest, windbreak forest, mangrove, savanna, and cropland, and then, the regulation services and their economic values of Hainan Island ecosystem were assessed and evaluated by terms of water-holding, soil conservancy, nutrient cycle, C fixation, and windbreak function. The economic value of the regulation services of Hainan Island ecosystem was estimated as 2035.88 x 10(8)-2153.39 x 10(8) RMB yuan, 8 times higher to its provisioning services (wood and agricultural products) which were estimated as only 254.06 x 10(8) RMB yuan. The result implied that ecosystem regulation services played an even more important role in the sustainable development of society and economy in Hainan Island.
Impacts of forestry on boreal forests: An ecosystem services perspective.
Pohjanmies, Tähti; Triviño, María; Le Tortorec, Eric; Mazziotta, Adriano; Snäll, Tord; Mönkkönen, Mikko
2017-11-01
Forests are widely recognized as major providers of ecosystem services, including timber, other forest products, recreation, regulation of water, soil and air quality, and climate change mitigation. Extensive tracts of boreal forests are actively managed for timber production, but actions aimed at increasing timber yields also affect other forest functions and services. Here, we present an overview of the environmental impacts of forest management from the perspective of ecosystem services. We show how prevailing forestry practices may have substantial but diverse effects on the various ecosystem services provided by boreal forests. Several aspects of these processes remain poorly known and warrant a greater role in future studies, including the role of community structure. Conflicts among different interests related to boreal forests are most likely to occur, but the concept of ecosystem services may provide a useful framework for identifying and resolving these conflicts.
Vasile A. Suchar; Nicholas L. Crookston
2010-01-01
The understory community is a critical component of many processes of forest ecosystems. Cover and biomass indices of shrubs and herbs of forested ecosystems of Northwestern United States are presented. Various forest data were recorded for 10,895 plots during a Current Vegetation Survey, over the National Forest lands of entire Pacific Northwest. No significant...
Assessment of forest fuel loadings in Puerto Rico and the U.S. Virgin Islands
Thomas Brandeis; Christopher Woodall
2009-01-01
Quantification of the downed woody materials that comprise forest fuels has gained importance in Caribbean forest ecosystems due to the increasing incidence and severity of wildfires on island ecosystems. Because large-scale assessments of forest fuels have rarely been conducted for these ecosystems, forest fuels were assessed at 121 U.S. Department of Agriculture,...
NASA Astrophysics Data System (ADS)
Dong, Z.; Driscoll, C. T.; Hayhoe, K.; Pourmokhtarian, A.; Stoner, A. M. K.
2015-12-01
The biogeochemical model, PnET-BGC, was applied to Watershed 2 in H. J. Andrews Experimental Forest, Oregon, to project ecosystem carbon and nitrogen responses under different future climate change scenarios. Downscaled climate change inputs derived from two IPCC scenarios (RCP 4.5 and RCP 8.5) were interpreted by four Atmosphere-Ocean General Circulation Models (AOGCMs) at Andrews Forest. Model results showed decreases in foliar production under high temperature/CO2 scenarios due to increasing vapor pressure deficit. Projections by PnET-BGC suggest that under future climate changes in primary production coupled with an increasing rate of decomposition may result in decreases in litterfall carbon and nitrogen and soil organic carbon and nitrogen. Such changes in soil organic carbon and nitrogen may cause wide range of changes in ecosystem processing of nitrogen and carbon, such as nitrogen mineralization, plant NH4+ uptake, and stream NH4+ and dissolved organic carbon concentrations depending on climate change scenario considered. Under most high emission scenarios, net nitrogen mineralization and plant NH4+ uptake are projected to increase until the end of this century as result of increasing temperature and associated higher rates of decomposition. An accumulation of nitrogen in plant tissue due to decreasing litterfall decreases plant demand for nitrogen. Such changes in nitrogen mineralization and uptake will result in increase in stream NH4+ concentrations under high emission scenarios. Under low emission scenarios, net nitrogen mineralization and plant NH4+ uptake are projected to increase up to mid-century, then slightly decrease until the end of the century.
Effects of climate change on forest vegetation [Chapter 6
Patrick N. Behrens; Robert E. Keane; David L. Peterson; Joanne J. Ho
2018-01-01
Projected rapid changes in climate will affect vegetation assemblages in the Intermountain Adaptation Partnership (IAP) region directly and indirectly. Direct effects include altered vegetation growth, mortality, and regeneration, and indirect effects include changes in disturbance regimes (Chapter 8) and interactions with altered ecosystem processes (e.g., hydrology,...
Lars A. Brudvig; Heidi Asbjornsen
2014-01-01
Savanna ecosystems historically comprised more than 10 million ha of the Midwestern United States, forming a transition zone between western prairies and eastern deciduous forest that extended from Texas into Canada (Nuzzo 1986).
Impact of Stand Management Practices on Beetle Diversity
Stephen P. Cook
2004-01-01
Abstract - Insects are useful indicators of change within ecosystems because of their abundance, richness and functional importance. Stand management practices impact the insect community within a forest. Therefore, the objective of the project is to determine the impact of various stand management practices on the diversity of beetles within...
Terrestrail indicators and measurements: Selection process and preliminary recommendations
USDA-ARS?s Scientific Manuscript database
The objective of this project is to identify a small set of core indicators and measurements that can be applied across rangeland, forest and riparian ecosystems managed by the BLM. A set of core indicators quantified using standardized measurements allows data to be integrated across field office, ...
Radioactive and Stable Cesium Distributions in Fukushima Forests
NASA Astrophysics Data System (ADS)
Ioshchenko, V.; Kivva, S.; Konoplev, A.; Nanba, K.; Onda, Y.; Takase, T.; Zheleznyak, M.
2015-12-01
Fukushima Dai-ichi NPP accident has resulted in release into the environment of large amounts of 134Cs and 137Cs and in radioactive contamination of terrestrial and aquatic ecosystems. In Fukushima prefecture up to 2/3 of the most contaminated territory is covered with forests, and understanding of its further fate in the forest ecosystems is essential for elaboration of the long-term forestry strategy. At the early stage, radiocesium was intercepted by the trees' canopies. Numerous studies reported redistribution of the initial fallout in Fukushima forests in the followed period due to litterfall and leaching of radiocesium from the foliage with precipitations. By now these processes have transported the major part of deposited radiocesium to litter and soil compartments. Future levels of radiocesium activities in the aboveground biomass will depend on relative efficiencies of the radiocesium root uptake and its return to the soil surface with litterfall and precipitations. Radiocesium soil-to-plant transfer factors for typical tree species, soil types and landscape conditions of Fukushima prefecture have not been studied well; moreover, they may change in time with approaching to the equilibrium between radioactive and stable cesium isotopes in the ecosystem. The present paper reports the results of several ongoing projects carried out by Institute of Environmental Radioactivity of Fukushima University at the experimental sites in Fukushima prefecture. For typical Japanese cedar (Cryptomeria japonica) forest, we determined distributions of radiocesium in the ecosystem and in the aboveground biomass compartments by the end of 2014; available results for 2015 are presented, too, as well as the results of test application of D-shuttle dosimeters for characterization of seasonal variations of radiocesium activity in wood. Based on the radiocesium activities in biomass we derived the upper estimates of its incorporation and root uptake fluxes, 0.7% and 3% of the total inventory in the ecosystem. Measurements of stable cesium concentrations in the biomass compartments enabled obtaining the more precise estimates. Return fluxes of both radioactive and stable cesium also were quantified, which forms the basis for modelling of the long-term redistribution of radiocesium in the studied ecosystem.
NASA Astrophysics Data System (ADS)
Helene, G.; Lara, M. J.; McGuire, A. D.; Euskirchen, E. S.; Bolton, W. R.; Romanovsky, V. E.
2017-12-01
Our capacity to project future ecosystem trajectories in northern permafrost regions depends on our ability to characterize complex interactions between climatic and ecological processes at play in the soil, the vegetation, and the atmosphere. We present a study that uses remote sensing analyses, field observations, and data synthesis to inform models for the prediction of ecosystem responses to climate change in the boreal zone of Alaska. Recent warming, altered precipitation and fire regimes are driving permafrost degradation, threatening to mobilize vast reservoirs of ancient carbon previously protected from decomposition. Although large scale, progressive, top-down permafrost thaw have been well studied and represented in high-latitude ecosystem models, the consequences of abrupt and local thermokarst disturbances (TK) are less well understood. To fill this gap, we conducted a detection analysis characterizing 60 years of land cover change in the Tanana Flats, a wetland complex subjected to TK disturbance in Interior Alaska, using aerial and satellite images. We observed a nonlinear loss of permafrost plateau forest associated with TK and driven by precipitation and forest fragmentation. The results of this analysis were integrated into the Alaska Thermokarst Model (ATM), a state-and-transition model that simulates land cover change associated with TK disturbance. Thermokarst-related land cover change was simulated from 2000 to 2100 across the Tanana Flats. By 2100, the model predicts a mean decrease of 7.4% (sd 1.8%) in permafrost plateau forests associated with an increase in TK fens and bogs. Transitions from permafrost plateau forests to TK wetlands are accompanied with changes in physical and biogeochemical processes affecting ecosystem carbon balance. We evaluated the consequences of TK disturbances on the regional carbon balance by coupling outputs from the ATM and from a process-based biogeochemical model. We used long-term field observations of vegetation and soil physical and biogeochemical attributes to develop new parameterizations for TK wetlands and permafrost plateau forest land cover types. Preliminary simulations from 2000 to 2100 estimate that the conversion of permafrost plateau forest to young TK wetlands would result in a 7.5% (sd 3.5%) decrease in Net Ecosystem Exchange.
NASA Astrophysics Data System (ADS)
Rastogi, B.; Still, C. J.; Noone, D. C.; Berkelhammer, M. B.; Whelan, M.; Lai, C. T.; Hollinger, D. Y.; Gupta, M.; Leen, J. B.; Huang, Y. W.
2015-12-01
Understanding the processes that control the terrestrial exchange of carbon and water are critical for examining the role of forested ecosystems in changing climates. A small but increasing number of studies have identified Carbonyl Sulfide (OCS) as a potential tracer for photosynthesis. OCS is hydrolyzed by an irreversible reaction in leaf mesophyll cells that is catalyzed by the enzyme, carbonic anhydrase. Leaf- level field and greenhouse studies indicate that OCS uptake is controlled by stomatal activity and that the ratio of OCS and CO2 uptake is reasonably constant. Existing studies on ecosystem OCS exchange have been based on laboratory measurements or short field campaigns and therefore little information on OCS exchange in a natural ecosystem over longer timescales is available. The objective of this study is to further assess the stability of OCS as a tracer for canopy photosynthesis in an active forested ecosystem and also to assess its utility for constraining transpiration, since both fluxes are mediated by canopy stomatal conductance. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W). Canopy air was sampled from four heights as well as the soil to measure vertical gradients of OCS within the canopy, and OCS exchange between the forest and the atmosphere for the growing season. Here we take advantage of simultaneous measurements of the stable isotopologues of H2O and CO2 at corresponding heights as well as NEE (Net Ecosystem Exchange) from eddy covariance measurements to compare GPP (Gross Primary Production) and transpiration estimates from a variety of independent techniques. Our findings also seek to allow assessment of the environmental and ecophysicological controls on evapotranspiration rates, which are projected to change in coming decades, and are otherwise poorly constrained.
NASA Astrophysics Data System (ADS)
Detto, M.; Wu, J.; Xu, X.; Serbin, S.; Rogers, A.
2017-12-01
A fundamental unanswered question for global change ecology is to determine the vulnerability of tropical forests to climate change, particularly with increasing intensity and frequency of drought events. This question, despite its apparent simplicity, remains difficult for earth system models to answer, and is controversial in remote sensing literature. Here, we leverage unique multi-scale remote sensing measurements (from leaf to crown) in conjunction with four-continuous-year (2013-2017) eddy covariance measurements of ecosystem carbon fluxes in a tropical forest in Panama to revisit this question. We hypothesize that drought impacts tropical forest photosynthesis through variation in abiotic drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with physiological traits that govern photosynthesis, and biotic variation in ecosystem photosynthetic capacity associated with changes in the traits themselves. Our study site, located in a seasonal tropical forest on Barro Colorado Island (BCI), Panama, experienced a significant drought in 2015. Local eddy covariance derived photosynthesis shows an abrupt increase during the drought year. Our specific goal here is to assess the relative impact of abiotic and biotic drivers of such photosynthesis response to interannual drought. To this goal, we derived abiotic drivers from eddy tower-based meteorological measurements. We will derive the biotic drivers using a recently developed leaf demography-ontogeny model, where ecosystem photosynthetic capacity can be described as the product of field measured, age-dependent leaf photosynthetic capacity and local tower-camera derived ecosystem-scale inter-annual variability in leaf age demography of the same time period (2013-2017). Lastly, we will use a process-based model to assess the separate and joint effects of abiotic and biotic drivers on eddy covariance derive photosynthetic interannual variability. Collectively, this novel multi-scale integrated study aims to improve ecophysiological understanding of tropical forest response to interannual climate variability, highlighting the importance to combine state-of-the-art technology and theories to improve future projections of carbon dynamics in the tropics.
Adapting forest to climate change in drylands: the Portuguese case-study
NASA Astrophysics Data System (ADS)
Branquinho, Cristina; Príncipe, Adriana; Nunes, Alice; Kobel, Melanie; Soares, Cristina; Vizinho, André; Serrano, Helena Cristina; Pinho, Pedro
2017-04-01
The recent expansion of the semiarid climate to all the region of the south of Portugal and the growing impact of climate change demands local adaptation. The growth of the native forest represents a strategy at the ecosystem level to adapt to climate change since it increases resilience and increases also de delivery of ecosystem services such as the increment of organic matter in the soil, carbon and nitrogen, biodiversity, water infiltration, etc. Moreover, decreases susceptibility to desertification. For that reason, large areas have been reforested in the south of Portugal with the native species holm oak and cork oak but with a low rate of effectiveness. Our goal in this work is to show how the cost-benefit relation of the actions intended to expand the forest of the Portuguese semiarid can be lowered by taking into account the microclimatic conditions and high spatial resolution management. The potential of forest regeneration was modelled at the local and regional level in the semiarid area using information concerning the Potential Solar Radiation. This model gives us the rate of native forest regeneration after a disturbance with high spatial resolution. Based on this model the territory was classified in: i) easy regeneration areas; ii) areas with the need of assisted reforestation, using methods that increase water and soil conservation; iii) areas of difficult reforestation because of the costs. Additionally, a summary of the success of reforestations was made in the historical semiarid since the 60s based on the evaluation of a series of case studies, where we quantified the ecosystem services currently delivered by the reforested ecosystems. We will discuss and propose a strategy for forests to adapt to climate change scenario in dryland Portugal. Acknowledgement: Programa Adapt: financed by EEA Grants and Fundo Português de Carbono and by FCT-MEC project PTDC/AAG-GLO/0045/2014.
Estimation of biogeochemical climate regulation services in Chinese forest ecosystems
NASA Astrophysics Data System (ADS)
Zhang, Y.; Li, S.
2016-12-01
As the global climate is changing, the climate regulation service of terrestrial ecosystem has been widely studied. Forests, as one of the most important terrestrial ecosystem types, is the biggest carbon pool or sink on land and can regulate climate through both biophysical and biogeochemical means. China is a country with vast forested areas and a variety of forest ecosystems types. Although current studies have related the climate regulation service of forest in China with biophysical or biogeochemical mechanism, there is still a lack of quantitative estimation of climate regulation services, especially for the biogeochemical climate regulation service. The GHGV (greenhouse gas value) is an indicator that can quantify the biochemical climate regulation service using ecosystems' stored organic matter, annual greenhouse gas flux, and potential greenhouse gas exchange rates during disturbances over a multiple year time frame. Therefore, we used GHGV to estimate the contribution of China's ten main forest types to biogeochemical climate regulation and generate the pattern of biochemical climate regulation service in Chinese forest ecosystems.
Urban forests and pollution mitigation: analyzing ecosystem services and disservices.
Escobedo, Francisco J; Kroeger, Timm; Wagner, John E
2011-01-01
The purpose of this paper is to integrate the concepts of ecosystem services and disservices when assessing the efficacy of using urban forests for mitigating pollution. A brief review of the literature identifies some pollution mitigation ecosystem services provided by urban forests. Existing ecosystem services definitions and typologies from the economics and ecological literature are adapted and applied to urban forest management and the concepts of ecosystem disservices from natural and semi-natural systems are discussed. Examples of the urban forest ecosystem services of air quality and carbon dioxide sequestration are used to illustrate issues associated with assessing their efficacy in mitigating urban pollution. Development of urban forest management alternatives that mitigate pollution should consider scale, contexts, heterogeneity, management intensities and other social and economic co-benefits, tradeoffs, and costs affecting stakeholders and urban sustainability goals. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Angelici, Gary; Popovici, Lidia; Skiles, Jay
1991-01-01
The Pilot Land Data System (PLDS) is a data and information system serving NASA-supported investigators in the land science community. The three nodes of the PLDS, one each at the Ames Research Center (ARC), the Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL), cooperate in providing consistent information describing the various data holding in the hardware and software (accessible via network and modem) that provide information about and access to PLDS-held data, which is available for distribution. A major new activity of the PLDS node at the Ames Research Center involves the interaction of the PLDS with an active NASA ecosystem science project, the Oregon Transect Ecosystems Research involves the management of, access to, and distribution of the large volume of widely-varying aircraft data collected by OTTER. The OTTER project, is managed by researchers at the Ames Research Center and Oregon State University. Its principal objective is to estimate major fluxes of carbon, nitrogen, and water of forest ecosystems using an ecosystem process model driven by remote sensing data. Ten researchers at NASA centers and universities are analyzing data for six sites along a temperature-moisture gradient across the western half of central Oregon (called the Oregon Transect). Sensors mounted on six different aircraft have acquired data over the Oregon Transect in support of the OTTER project.
Forest ecosystem services: Provisioning of non-timber forest products
James L. Chamberlain; Gregory E. Frey; C. Denise Ingram; Michael G. Jacobson; Cara Meghan Starbuck Downes
2017-01-01
The purpose of this chapter is to describe approaches to calculate a conservative and defensible estimate of the marginal value of forests for non-timber forest products (NTFPs). 'Provisioning" is one of four categories of benefits, or services that ecosystems provide to humans and was described by the Millennium Ecosystem Assessment as 'products...
Forest-land conversion, ecosystem services, and economic issues for policy: a review
Robert A. Smail; David J. Lewis
2009-01-01
The continued conversion and development of forest land pose a serious threat to the ecosystem services derived from forested landscapes. We argue that developing an understanding of the full range of consequences from forest conversion requires understanding the effects of such conversion on both components of ecosystem services: products and processes....
Forest Ecosystem Services As Production Inputs
Subhrendu Pattanayak; David T. Butry
2003-01-01
Are we cutting down tropical forests too rapidly and too extensively? If so, why? Answers to both questions are obscured in some ways by insufficient and unreliable data on the economic worth of forest ecosystem services. It is clear, however, that rapid, excessive cutting of forests can irreversibly and substantively impair ecosystem functions, thereby endangering the...
Forest ecosystem services: Carbon and air quality
David J. Nowak; Neelam C. Poudyal; Steve G. McNulty
2017-01-01
Forests provide various ecosystem services related to air quality that can provide substantial value to society. Through tree growth and alteration of their local environment, trees and forests both directly and indirectly affect air quality. Though forests affect air quality in numerous ways, this chapter will focus on five main ecosystem services or disservices...
Assessing North American Forest Disturbance from the Landsat Archive
NASA Technical Reports Server (NTRS)
Masek, Jeffrey G.; Wolfe, Robert; Hall, Forrest; Cohen, Warren; Kennedy, Robert; Powell, Scott; Goward, Samuel; Huang, Chengquan; Healey, Sean; Moisen, Gretchen
2007-01-01
Forest disturbances are thought to play a major role in controlling land-atmosphere fluxes of carbon. Under the auspices of the North American Carbon Program, the LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing System) and NACP-FIA projects have been analyzing the Landsat satellite record to assess rates of forest disturbance across North America. In the LEDAPS project, wall-to-wall Landsat imagery for the period 1975-2000 has been converted to surface reflectance and analyzed for decadal losses (disturbance) or gains (regrowth) in biomass using a spectral "disturbance index". The NACP-FIA project relies on a geographic sample of dense Landsat image time series, allowing both disturbance rates and recovery trends to be characterized. Preliminary results for the 1990's indicate high rates of harvest within the southeastern US, Eastern Canada, and the Pacific Northwest, with spatially averaged (approx.50x50 km) turnover periods as low as 25-40 years. Lower rates of disturbance are found in the Rockies and Northeastern US.
Tree mortality predicted from drought-induced vascular damage
Anderegg, William R.L.; Flint, Alan L.; Huang, Cho-ying; Flint, Lorraine E.; Berry, Joseph A.; Davis, Frank W.; Sperry, John S.; Field, Christopher B.
2015-01-01
The projected responses of forest ecosystems to warming and drying associated with twenty-first-century climate change vary widely from resiliency to widespread tree mortality1, 2, 3. Current vegetation models lack the ability to account for mortality of overstorey trees during extreme drought owing to uncertainties in mechanisms and thresholds causing mortality4, 5. Here we assess the causes of tree mortality, using field measurements of branch hydraulic conductivity during ongoing mortality in Populus tremuloides in the southwestern United States and a detailed plant hydraulics model. We identify a lethal plant water stress threshold that corresponds with a loss of vascular transport capacity from air entry into the xylem. We then use this hydraulic-based threshold to simulate forest dieback during historical drought, and compare predictions against three independent mortality data sets. The hydraulic threshold predicted with 75% accuracy regional patterns of tree mortality as found in field plots and mortality maps derived from Landsat imagery. In a high-emissions scenario, climate models project that drought stress will exceed the observed mortality threshold in the southwestern United States by the 2050s. Our approach provides a powerful and tractable way of incorporating tree mortality into vegetation models to resolve uncertainty over the fate of forest ecosystems in a changing climate.
Kershner, Jessi; Woodward, Andrea; Torregrosa, Alicia
2016-01-01
The rugged landscapes of northern Idaho and western Montana support biodiverse ecosystems, and provide a variety of natural resources and services for human communities. However, the benefits provided by these ecosystems may be at risk as changing climate magnifies existing stressors and allows new stressors to emerge. Preparation for and response to these potential changes can be most effectively addressed through multi-stakeholder partnerships, evaluating vulnerability of important resources to climate change, and developing response and preparation strategies for managing key natural resources in a changing world. This project will support climate-smart conservation and management across forests of northern Idaho and western Montana through three main components: (1) fostering partnerships among scientists, land managers, regional landowners, conservation practitioners, and the public; (2) assessing the vulnerability of a suite of regionally important resources to climate change and other stressors; and (3) creating a portfolio of adaptation strategies and actions to help resource managers prepare for and respond to the likely impacts of climate change. The results of this project will be used to inform the upcoming land management plan revisions for national forests, helping ensure that the most effective and robust conservation and management strategies are implemented to preserve our natural resources.
NASA Astrophysics Data System (ADS)
Griepentrog, Marco; Bodé, Samuel; Boudin, Mathieu; Dercon, Gerd; Doetterl, Sebastian; Matulanya, Machibya; Msigwa, Anna; Vermeir, Pieter; Boeckx, Pascal
2017-04-01
Terrestrial ecosystems are strongly influenced by climate change and soils are key compartments of the global carbon (C) cycle in terms of their potential to store or release significant amounts of C. This study is part of the interregional IAEA Technical Cooperation Project ``Assessing the Impact of Climate Change and its Effects on Soil and Water Resources in Polar and Mountainous Regions (INT5153)'' aiming to improve the understanding of climate change impacts on soil organic carbon (SOC) in fragile polar and high mountainous ecosystems at local and global scale for their better management and conservation. The project includes 13 benchmark sites situated around the world. Here we present novel data from altitudinal transects of three different mountain regions (Mount Kilimanjaro, Tanzania; Mount Gongga, China; Cordillera Blanca, Peru). All altitudinal transects cover a wide range of natural ecosystems under different climates and soil geochemistry. Bulk soil samples (four field replicates per ecosystem) were subjected to a combination of aggregate and particle-size fractionation followed by organic C, total nitrogen, stable isotope (13C, 15N) and radiocarbon (14C) analyses of all fractions. Bulk soils were further characterized for their geochemistry (Na, K, Ca, Mg, Al, Fe, Mn, Si, P) and incubated for 63 days to assess greenhouse gas emissions (CO2, CH4, NO, N2O). Further, stable C isotopic signature of CO2 was measured to determine the isotopic signature of soil respiration (using Keeling plots) and to estimate potential respiration sources. The following four ecosystems were sampled at an altitudinal transect on the (wet) southern slopes of Mount Kilimanjaro: savannah (920m), lower montane rain forests with angiosperm trees (2020m), upper montane cloud forest with gymnosperm trees (2680m), subalpine heathlands (3660m). Both forests showed highest C contents followed by subalpine and savannah. The largest part of SOC was found in particulate organic matter followed by microaggregates, except for the subalpine ecosystem which had most SOC stored in microaggregates. Silt and clay fractions stored the smallest fraction of SOC for all ecosystems. Cumulative soil CO2 emissions (normalized to SOC, gCO_2-C kgSOC-1) after 63 days of incubation were highest for savannah (15.2 ± 1.4) followed by subalpine (7.9 ± 0.5), upper forest (6.9 ± 1.0) and lower forest (4.8 ± 0.4). CO2 emissions were negatively correlated with soil C contents, showing that soils with lower C contents loose higher relative amounts of their SOC through soil respiration. Keeling plot intercept is a measure for the isotopic signature of respired CO2 and high offsets between Keeling plot intercepts and the isotopic signature of bulk SOC point towards labile (13C-depleted) SOC fractions as respiration sources. Highest offsets (and thus most labile respiration sources) were observed for savannah followed by subalpine, lower forest and upper forest and these were positively correlated with cumulative CO2 emissions, showing that in savannah soils, which have lowest C contents and respire highest amounts of CO2, mainly labile SOC is used as respiration source. Results from the other two altitudinal transects are currently under investigation and will be presented in conjunction with climatic and geochemical data.
Tree mortality from drought, insects, and their interactions in a changing climate
Anderegg, William R.L.; Hicke, Jeffrey A.; Fisher, Rosie A.; Allen, Craig D.; Aukema, Juliann E.; Bentz, Barbara; Hood, Sharon; Lichstein, Jeremy W.; Macalady, Alison K.; McDowell, Nate G.; Pan, Yude; Raffa, Kenneth; Sala, Anna; Shaw, John D.; Stephenson, Nathan L.; Tague, Christina L.; Zeppel, Melanie
2015-01-01
Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for determining the relative contribution of drought stress, insect attack, and their interactions, which is critical for modeling mortality in future climates. We outline a simple approach that identifies the mechanisms associated with two guilds of insects – bark beetles and defoliators – which are responsible for substantial tree mortality. We then discuss cross-biome patterns of insect-driven tree mortality and draw upon available evidence contrasting the prevalence of insect outbreaks in temperate and tropical regions. We conclude with an overview of tools and promising avenues to address major challenges. Ultimately, a multitrophic approach that captures tree physiology, insect populations, and tree–insect interactions will better inform projections of forest ecosystem responses to climate change.
NASA Astrophysics Data System (ADS)
Fang, F. J.
2017-12-01
Reconciling observations at fundamentally different scales is central in understanding the global carbon cycle. This study investigates a model-based melding of forest inventory data, remote-sensing data and micrometeorological-station data ("flux towers" estimating forest heat, CO2 and H2O fluxes). The individual tree-based model FORCCHN was used to evaluate the tree DBH increment and forest carbon fluxes. These are the first simultaneous simulations of the forest carbon budgets from flux towers and individual-tree growth estimates of forest carbon budgets using the continuous forest inventory data — under circumstances in which both predictions can be tested. Along with the global implications of such findings, this also improves the capacity for forest sustainable management and the comprehensive understanding of forest ecosystems. In forest ecology, diameter at breast height (DBH) of a tree significantly determines an individual tree's cross-sectional sapwood area, its biomass and carbon storage. Evaluation the annual DBH increment (ΔDBH) of an individual tree is central to understanding tree growth and forest ecology. Ecosystem Carbon flux is a consequence of key ecosystem processes in the forest-ecosystem carbon cycle, Gross and Net Primary Production (GPP and NPP, respectively) and Net Ecosystem Respiration (NEP). All of these closely relate with tree DBH changes and tree death. Despite advances in evaluating forest carbon fluxes with flux towers and forest inventories for individual tree ΔDBH, few current ecological models can simultaneously quantify and predict the tree ΔDBH and forest carbon flux.
NASA Astrophysics Data System (ADS)
WU, Y.; Liu, S.; Li, Z.; Young, C.; Werner, J.; Dahal, D.; Liu, J.; Schmidt, G.
2012-12-01
Climate and land cover changes may influence the capacity of the terrestrial ecosystems to be carbon sinks or sources. The objective of this study was to investigate the potential change of the carbon sequestration in the Marine West Coast Forests ecoregion in the Pacific Northwest United States using the General Ensemble Biogeochemical Modeling System (GEMS). In GEMS, the underlying biogeochemical model, Erosion and Deposition Carbon Model (EDCM), was used and calibrated using MODIS net primary production (NPP) and grain yield data during the baseline period from 2002 to 2005, and then validated with another four-year period from 2006 to 2009. GEMS-EDCM was driven using projected climate from three General Circulation Models (GCMs) under three IPCC scenarios (A2, A1B, and B1) and derived land cover data from the FORecasting SCEnarios (FORE-SCE) model under the same three IPCC scenarios for the period from 2006 to 2050. This ecoregion, two-thirds of which is covered by forest, was projected to continue to gain carbon from 2005 to 2050, with an annual carbon sequestration of about -3 Tg C. It was also predicted that live biomass and soil organic carbon (SOC) would contain about 48% and 33% of the total carbon storage by 2050, respectively. In addition, forest carbon sequestration (-2 Tg C yr-1) demonstrated to be the largest sink among all ecosystems, accounting for 73% of the total, followed by grass/shrub and agriculture. Overall, results about predicted dynamics of carbon storage and sequestration can be informative to policy makers for seeking mitigation plans to reduce greenhouse gases emissions.
NASA Astrophysics Data System (ADS)
Knowles, John F.; Molotch, Noah P.; Trujillo, Ernesto; Litvak, Marcy E.
2018-04-01
Future projections of declining snowpack and increasing potential evaporation are predicted to advance the timing of snowmelt in mountain ecosystems globally with unknown implications for snowmelt-driven forest productivity. Accordingly, this study combined satellite- and tower-based observations to investigate the forest productivity response to snowpack and potential evaporation variability between 1989 and 2012 throughout the Southern Rocky Mountain ecoregion, United States. Our results show that early and late season productivity were significantly and inversely related and that future shifts toward earlier and/or reduced snowmelt could decrease snowmelt water use efficiency and thus restrict productivity despite a longer growing season. This was explained by increasing snow aridity, which incorporated evaporative demand and snow water supply, and was modified by summer precipitation to determine total annual productivity. The combination of low snow accumulation and record high potential evaporation in 2012 resulted in the 34 year minimum ecosystem productivity that could be indicative of future conditions.
Schleuning, Matthias; Farwig, Nina; Peters, Marcell K; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Naumann, Clas M; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J Wolfgang; Böhning-Gaese, Katrin
2011-01-01
Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants.
Schleuning, Matthias; Farwig, Nina; Peters, Marcell K.; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W.; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H.; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J. Wolfgang; Böhning-Gaese, Katrin
2011-01-01
Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants. PMID:22114695
Maintaining ecosystem function and services in logged tropical forests.
Edwards, David P; Tobias, Joseph A; Sheil, Douglas; Meijaard, Erik; Laurance, William F
2014-09-01
Vast expanses of tropical forests worldwide are being impacted by selective logging. We evaluate the environmental impacts of such logging and conclude that natural timber-production forests typically retain most of their biodiversity and associated ecosystem functions, as well as their carbon, climatic, and soil-hydrological ecosystem services. Unfortunately, the value of production forests is often overlooked, leaving them vulnerable to further degradation including post-logging clearing, fires, and hunting. Because logged tropical forests are extensive, functionally diverse, and provide many ecosystem services, efforts to expand their role in conservation strategies are urgently needed. Key priorities include improving harvest practices to reduce negative impacts on ecosystem functions and services, and preventing the rapid conversion and loss of logged forests. Copyright © 2014 Elsevier Ltd. All rights reserved.
Temporal evolution of carbon budgets of the Appalachian forests in the U.S. from 1972 to 2000
Liu, J.; Liu, S.; Loveland, Thomas R.
2006-01-01
Estimating dynamic terrestrial ecosystem carbon (C) sources and sinks over large areas is difficult. The scaling of C sources and sinks from the field level to the regional level has been challenging due to the variations of climate, soil, vegetation, and disturbances. As part of an effort to estimate the spatial, temporal, and sectional dimensions of the United States C sources and sinks (the U.S. Carbon Trends Project), this study estimated the forest ecosystem C sequestration of the Appalachian region (186,000 km2) for the period of 1972–2000 using the General Ensemble Biogeochemical Modeling System (GEMS) that has a strong capability of assimilating land use and land cover change (LUCC) data. On 82 sampling blocks in the Appalachian region, GEMS used sequential 60 m resolution land cover change maps to capture forest stand-replacing events and used forest inventory data to estimate non-stand-replacing changes. GEMS also used Monte Carlo approaches to deal with spatial scaling issues such as initialization of forest age and soil properties. Ensemble simulations were performed to incorporate the uncertainties of input data. Simulated results show that from 1972 to 2000 the net primary productivity (NPP), net ecosystem productivity (NEP), and net biome productivity (NBP) averaged 6.2 Mg C ha−1 y−1 (±1.1), 2.2 Mg C ha−1 y−1 (±0.6), and 1.8 Mg C ha−1 y−1(±0.6), respectively. The inter-annual variability was driven mostly by climate. Detailed C budgets for the year 2000 were also calculated. Within a total 148,000 km2 forested area, average forest ecosystem C density was estimated to be 186 Mg C ha−1 (±20), of which 98 Mg C ha−1 (±12) was in biomass and 88 Mg C ha−1 (±13) was in litter and soil. The total simulated C stock of the Appalachian forests was estimated to be 2751 Tg C (±296), including 1454 Tg C (±178) in living biomass and 1297 Tg C (±192) in litter and soil. The total net C sequestration (i.e. NBP) of the forest ecosystem in 2000 was estimated to be 19.5 Tg C y−1 (±6.8).
Effects of repeated fires on ecosystem C and N stocks along a fire induced forest/grassland gradient
NASA Astrophysics Data System (ADS)
Cheng, Chih-Hsin; Chen, Yung-Sheng; Huang, Yu-Hsuan; Chiou, Chyi-Rong; Lin, Chau-Chih; Menyailo, Oleg V.
2013-03-01
Repeated fires might have different effect on ecosystem carbon storage than a single fire event, but information on repeated fires and their effects on forest ecosystems and carbon storage is scarce. However, changes in climate, vegetation composition, and human activities are expected to make forests more susceptible to fires that recur with relatively high frequency. In this study, the effects of repeated fires on ecosystem carbon and nitrogen stocks were examined along a fire-induced forest/grassland gradient wherein the fire events varied from an unburned forest to repeatedly burned grassland. Results from the study show repeated fires drastically decreased ecosystem carbon and nitrogen stocks along the forest/grassland gradient. The reduction began with the disappearance of living tree biomass, and followed by the loss of soil carbon and nitrogen. Within 4 years of the onset of repeated fires on the unburned forest, the original ecosystem carbon and nitrogen stocks were reduced by 42% and 21%, respectively. Subsequent fires caused cumulative reductions in ecosystem carbon and nitrogen stocks by 68% and 44% from the original ecosystem carbon and nitrogen stocks, respectively. The analyses of carbon budgets calculated by vegetation composition and stable isotopic δ13C values indicate that 84% of forest-derived carbon is lost at grassland, whereas the gain of grass-derived carbon only compensates 18% for this loss. Such significant losses in ecosystem carbon and nitrogen stocks suggest that the effects of repeated fires have substantial impacts on ecosystem and soil carbon and nitrogen cycling.
NASA Astrophysics Data System (ADS)
Wang, Shaoqiang
2014-05-01
Evidence is mounting that an increase in extreme climate events has begun to occur worldwide during the recent decades, which affect biosphere function and biodiversity. Ecosystems returned to its original structures and functions to maintain its sustainability, which was closely dependent on ecosystem resilience. Understanding the resilience and recovery capacity of ecosystem to extreme climate events is essential to predicting future ecosystem responses to climate change. Given the overwhelming importance of this region in the overall carbon cycle of forest ecosystems in China, south China suffered a destructive ice storm in 2008. In this study, we used the number of freezing day and a process-based model (Boreal Ecosystem Productivity Simulator, BEPS) to characterize the spatial distribution of ice storm region in southeastern China and explore the impacts on carbon cycle of forest ecosystem over the past decade. The ecosystem variables, i.e. Net primary productivity (NPP), Evapotranspiration (ET), and Water use efficiency (WUE, the ratio of NPP to ET) from the outputs of BEPS models were used to detect the resistance and resilience of forest ecosystem in southern China. The pattern of ice storm-induced forest productivity widespread decline was closely related to the number of freezing day during the ice storm period. The NPP of forest area suffered heavy ice storm returned to normal status after five months with high temperature and ample moisture, indicated a high resilience of subtropical forest in China. The long-term changes of forest WUE remain stable, behaving an inherent sensitivity of ecosystem to extreme climate events. In addition, ground visits suggested that the recovery of forest productivity was attributed to rapid growth of understory. Understanding the variability and recovery threshold of ecosystem following extreme climate events help us to better simulate and predict the variability of ecosystem structure and function under current and future climate change.
Benefits of investing in ecosystem restoration.
DE Groot, Rudolf S; Blignaut, James; VAN DER Ploeg, Sander; Aronson, James; Elmqvist, Thomas; Farley, Joshua
2013-12-01
Measures aimed at conservation or restoration of ecosystems are often seen as net-cost projects by governments and businesses because they are based on incomplete and often faulty cost-benefit analyses. After screening over 200 studies, we examined the costs (94 studies) and benefits (225 studies) of ecosystem restoration projects that had sufficient reliable data in 9 different biomes ranging from coral reefs to tropical forests. Costs included capital investment and maintenance of the restoration project, and benefits were based on the monetary value of the total bundle of ecosystem services provided by the restored ecosystem. Assuming restoration is always imperfect and benefits attain only 75% of the maximum value of the reference systems over 20 years, we calculated the net present value at the social discount rates of 2% and 8%. We also conducted 2 threshold cum sensitivity analyses. Benefit-cost ratios ranged from about 0.05:1 (coral reefs and coastal systems, worst-case scenario) to as much as 35:1 (grasslands, best-case scenario). Our results provide only partial estimates of benefits at one point in time and reflect the lower limit of the welfare benefits of ecosystem restoration because both scarcity of and demand for ecosystem services is increasing and new benefits of natural ecosystems and biological diversity are being discovered. Nonetheless, when accounting for even the incomplete range of known benefits through the use of static estimates that fail to capture rising values, the majority of the restoration projects we analyzed provided net benefits and should be considered not only as profitable but also as high-yielding investments. Beneficios de Invertir en la Restauración de Ecosistemas. © 2013 Society for Conservation Biology.
Paoletti, E; Schaub, M; Matyssek, R; Wieser, G; Augustaitis, A; Bastrup-Birk, A M; Bytnerowicz, A; Günthardt-Goerg, M S; Müller-Starck, G; Serengil, Y
2010-06-01
Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered. Copyright 2009 Elsevier Ltd. All rights reserved.
Dynamics of ecosystem services provided by subtropical ...
The trends in the provision of ecosystem services during restoration and succession of subtropical forests and plantations were quantified, in terms of both receiver and donor values, based on a case study of a 3-step secondary succession series that included a 400-year-old subtropical forest and a 23-year history of growth on 3 subtropical forest plantations in Southeastern China. The ‘People's Republic of China Forestry Standard: Forest Ecosystem Service Valuation Norms’ was revised and applied to quantify the receiver values of ecosystem services, which were then compared with the emergy-based, donor values of the services. The results revealed that the efficiencies of subtropical forests and plantations in providing ecosystem services were 2 orders of magnitude higher than similar services provided by the current China economic system, and these efficiencieskept increasing over the course of succession. As a result, we conclude that afforestation is an efficient way to accelerate both the ability and efficiency of subtropical forests to provide ecosystem services. This paper is significant because it examines the dynamics of the provision of ecosystem services by forests over a succession series that spans 400 years. The paper also examines the rate of increase of services during forest restoration over a period of 23 years. The emergy used in ecosystem services provision is compared to the provision of similar services by economic means in the Chinese e
Tree diversity does not always improve resistance of forest ecosystems to drought.
Grossiord, Charlotte; Granier, André; Ratcliffe, Sophia; Bouriaud, Olivier; Bruelheide, Helge; Chećko, Ewa; Forrester, David Ian; Dawud, Seid Muhie; Finér, Leena; Pollastrini, Martina; Scherer-Lorenzen, Michael; Valladares, Fernando; Bonal, Damien; Gessler, Arthur
2014-10-14
Climate models predict an increase in the intensity and frequency of drought episodes in the Northern Hemisphere. Among terrestrial ecosystems, forests will be profoundly impacted by drier climatic conditions, with drastic consequences for the functions and services they supply. Simultaneously, biodiversity is known to support a wide range of forest ecosystem functions and services. However, whether biodiversity also improves the resistance of these ecosystems to drought remains unclear. We compared soil drought exposure levels in a total of 160 forest stands within five major forest types across Europe along a gradient of tree species diversity. We assessed soil drought exposure in each forest stand by calculating the stand-level increase in carbon isotope composition of late wood from a wet to a dry year (Δδ(13)CS). Δδ(13)CS exhibited a negative linear relationship with tree species diversity in two forest types, suggesting that species interactions in these forests diminished the drought exposure of the ecosystem. However, the other three forest types were unaffected by tree species diversity. We conclude that higher diversity enhances resistance to drought events only in drought-prone environments. Managing forest ecosystems for high tree species diversity does not necessarily assure improved adaptability to the more severe and frequent drought events predicted for the future.
A framework for developing urban forest ecosystem services and goods indicators
Cynnamon Dobbs; Francisco J. Escobedo; Wayne C. Zipperer
2011-01-01
The social and ecological processes impacting on urban forests have been studied at multiple temporal and spatial scales in order to help us quantify, monitor, and value the ecosystem services that benefit people. Few studies have comprehensively analyzed the full suite of ecosystem services, goods (ESG), and ecosystem disservices provided by an urban forest....
Vegetation and environmental features of forest and range ecosystems
George A. Garrison; Ardell J. Bjugstad; Don A. Duncan; Mont E. Lewis; Dixie R. Smith
1977-01-01
This publication describes the 34 ecosystems into which all the land of the 48 contiguous states has been classified in the Forest-Range Environmental Study (FRES) of the Forest Service, U.S. Department of Agriculture. The description of each ecosystem discusses physiography, climate, vegetation, fauna, soils, and land use. For a number of the ecosystems, the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastick, Neal J.; Duffy, Paul; Genet, Hélène
Modern climate change in Alaska has resulted in widespread thawing of permafrost, increased fire activity, and extensive changes in vegetation characteristics that have significant consequences for socio-ecological systems. Despite observations of the heightened sensitivity of these systems to change, there has not been a comprehensive assessment of factors that drive ecosystem changes throughout Alaska. In this paper, we present research that improves our understanding of the main drivers of the spatiotemporal patterns of carbon dynamics using in situ observations, remote sensing data, and an array of modeling techniques. In the last 60 years, Alaska has seen a large increase inmore » mean annual air temperature (1.7 °C), with the greatest warming occurring over winter and spring. Warming trends are projected to continue throughout the 21st century and will likely result in landscape-level changes to ecosystem structure and function. Wetlands, mainly bogs and fens, which are currently estimated to cover 12.5% of the landscape, strongly influence exchange of methane between Alaska's ecosystems and the atmosphere and are expected to be affected by thawing permafrost and shifts in hydrology. Simulations suggest the current proportion of near-surface (within 1 m) and deep (within 5 m) permafrost extent will be reduced by 9–74% and 33–55% by the end of the 21st century, respectively. Since 2000, an average of 678,595 ha/yr was burned, more than twice the annual average during 1950–1999. The largest increase in fire activity is projected for the boreal forest, which could result in a reduction in late-successional spruce forest (8–44%) and an increase in early-succession deciduous forest (25–113%) that would mediate future fire activity and weaken permafrost stability in the region. Climate warming will also affect vegetation communities across arctic regions, where the coverage of deciduous forest could increase (223–620%), shrub tundra may increase (4–21%), and graminoid tundra might decrease (10–24%). Finally, this study sheds light on the sensitivity of Alaska's ecosystems to change that has the potential to significantly affect local and regional carbon balance, but more research is needed to improve estimates of land-surface and subsurface properties, and to better account for ecosystem dynamics affected by a myriad of biophysical factors and interactions.« less
An Integrated Approach to Forest Ecosystem Services
José Joaquin Campos; Francisco Alpizar; Bastiaan Louman; John A. Parrotta
2005-01-01
Forest ecosystem services (FES) are fundamental for the Earthâs life support systems. This chapter discusses the different services provided by forest ecosystems and the effects that land use and forest management practices have on their provision. It also discusses the role of markets in providing an enabling environment for a sustainable and equitable provision of...
Historical open forest ecosystems in the Missouri Ozarks: reconstruction and restoration targets
Brice B. Hanberry; D. Todd Jones-Farrand; John M. Kabrick
2014-01-01
Current forests no longer resemble historical open forest ecosystems in the eastern United States. In the absence of representative forest ecosystems under a continuous surface fire regime at a large scale, reconstruction of historical landscapes can provide a reference for restoration efforts. For initial expert-assigned vegetation phases ranging from prairie to...
Hatala, J.A.; Dietze, M.C.; Crabtree, R.L.; Kendall, Katherine C.; Six, D.; Moorcroft, P.R.
2011-01-01
The introduction of nonnative pathogens is altering the scale, magnitude, and persistence of forest disturbance regimes in the western United States. In the high-altitude whitebark pine (Pinus albicaulis) forests of the Greater Yellowstone Ecosystem (GYE), white pine blister rust (Cronartium ribicola) is an introduced fungal pathogen that is now the principal cause of tree mortality in many locations. Although blister rust eradication has failed in the past, there is nonetheless substantial interest in monitoring the disease and its rate of progression in order to predict the future impact of forest disturbances within this critical ecosystem.This study integrates data from five different field-monitoring campaigns from 1968 to 2008 to create a blister rust infection model for sites located throughout the GYE. Our model parameterizes the past rates of blister rust spread in order to project its future impact on high-altitude whitebark pine forests. Because the process of blister rust infection and mortality of individuals occurs over the time frame of many years, the model in this paper operates on a yearly time step and defines a series of whitebark pine infection classes: susceptible, slightly infected, moderately infected, and dead. In our analysis, we evaluate four different infection models that compare local vs. global density dependence on the dynamics of blister rust infection. We compare models in which blister rust infection is: (1) independent of the density of infected trees, (2) locally density-dependent, (3) locally density-dependent with a static global infection rate among all sites, and (4) both locally and globally density-dependent. Model evaluation through the predictive loss criterion for Bayesian analysis supports the model that is both locally and globally density-dependent. Using this best-fit model, we predicted the average residence times for the four stages of blister rust infection in our model, and we found that, on average, whitebark pine trees within the GYE remain susceptible for 6.7 years, take 10.9 years to transition from slightly infected to moderately infected, and take 9.4 years to transition from moderately infected to dead. Using our best-fit model, we project the future levels of blister rust infestation in the GYE at critical sites over the next 20 years.
NASA Astrophysics Data System (ADS)
Baker, B.; Ferschweiler, K.; Bachelet, D. M.; Sleeter, B. M.
2016-12-01
California's geographic location, topographic complexity and latitudinal climatic gradient give rise to great biological and ecological diversity. However, increased land use pressure, altered seasonal weather patterns, and changes in temperature and precipitation regimes are having pronounced effects on ecosystems and the multitude of services they provide for an increasing population. As a result, natural resource managers are faced with formidable challenges to maintain these critical services. The goals of this project were to better understand how projected 21st century climate and land-use change scenarios may alter ecosystem dynamics, the spatial distribution of various vegetation types and land-use patterns, and to provide a coarse scale "triage map" of where land managers may want to concentrate efforts to reduce ecological stress in order to mitigate the potential impacts of a changing climate. We used the MC2 dynamic global vegetation model and the LUCAS state-and-transition simulation model to simulate the potential effects of future climate and land-use change on ecological processes for the state of California. Historical climate data were obtained from the PRISM dataset and nine CMIP5 climate models were run for the RCP 8.5 scenario. Climate projections were combined with a business-as-usual land-use scenario based on local-scale land use histories. For ease of discussion, results from five simulation runs (historic, hot-dry, hot-wet, warm-dry, and warm-wet) are presented. Results showed large changes in the extent of urban and agricultural lands. In addition, several simulated potential vegetation types persisted in situ under all four future scenarios, although alterations in total area, total ecosystem carbon, and forest vigor (NPP/LAI) were noted. As might be expected, the majority of the forested types that persisted occurred on public lands. However, more than 78% of the simulated subtropical mixed forest and 26% of temperate evergreen needleleaf forest types persisted on private lands under all four future scenarios. Result suggest that building collaborations across management borders could be valuable tool to guide natural resource management actions into the future.
Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators
NASA Astrophysics Data System (ADS)
Krause, Andreas; Pugh, Thomas A. M.; Bayer, Anita D.; Doelman, Jonathan C.; Humpenöder, Florian; Anthoni, Peter; Olin, Stefan; Bodirsky, Benjamin L.; Popp, Alexander; Stehfest, Elke; Arneth, Almut
2017-11-01
Land management for carbon storage is discussed as being indispensable for climate change mitigation because of its large potential to remove carbon dioxide from the atmosphere, and to avoid further emissions from deforestation. However, the acceptance and feasibility of land-based mitigation projects depends on potential side effects on other important ecosystem functions and their services. Here, we use projections of future land use and land cover for different land-based mitigation options from two land-use models (IMAGE and MAgPIE) and evaluate their effects with a global dynamic vegetation model (LPJ-GUESS). In the land-use models, carbon removal was achieved either via growth of bioenergy crops combined with carbon capture and storage, via avoided deforestation and afforestation, or via a combination of both. We compare these scenarios to a reference scenario without land-based mitigation and analyse the LPJ-GUESS simulations with the aim of assessing synergies and trade-offs across a range of ecosystem service indicators: carbon storage, surface albedo, evapotranspiration, water runoff, crop production, nitrogen loss, and emissions of biogenic volatile organic compounds. In our mitigation simulations cumulative carbon storage by year 2099 ranged between 55 and 89 GtC. Other ecosystem service indicators were influenced heterogeneously both positively and negatively, with large variability across regions and land-use scenarios. Avoided deforestation and afforestation led to an increase in evapotranspiration and enhanced emissions of biogenic volatile organic compounds, and to a decrease in albedo, runoff, and nitrogen loss. Crop production could also decrease in the afforestation scenarios as a result of reduced crop area, especially for MAgPIE land-use patterns, if assumed increases in crop yields cannot be realized. Bioenergy-based climate change mitigation was projected to affect less area globally than in the forest expansion scenarios, and resulted in less pronounced changes in most ecosystem service indicators than forest-based mitigation, but included a possible decrease in nitrogen loss, crop production, and biogenic volatile organic compounds emissions.
Warren, Rachel
2011-01-13
The papers in this volume discuss projections of climate change impacts upon humans and ecosystems under a global mean temperature rise of 4°C above preindustrial levels. Like most studies, they are mainly single-sector or single-region-based assessments. Even the multi-sector or multi-region approaches generally consider impacts in sectors and regions independently, ignoring interactions. Extreme weather and adaptation processes are often poorly represented and losses of ecosystem services induced by climate change or human adaptation are generally omitted. This paper addresses this gap by reviewing some potential interactions in a 4°C world, and also makes a comparison with a 2°C world. In a 4°C world, major shifts in agricultural land use and increased drought are projected, and an increased human population might increasingly be concentrated in areas remaining wet enough for economic prosperity. Ecosystem services that enable prosperity would be declining, with carbon cycle feedbacks and fire causing forest losses. There is an urgent need for integrated assessments considering the synergy of impacts and limits to adaptation in multiple sectors and regions in a 4°C world. By contrast, a 2°C world is projected to experience about one-half of the climate change impacts, with concomitantly smaller challenges for adaptation. Ecosystem services, including the carbon sink provided by the Earth's forests, would be expected to be largely preserved, with much less potential for interaction processes to increase challenges to adaptation. However, demands for land and water for biofuel cropping could reduce the availability of these resources for agricultural and natural systems. Hence, a whole system approach to mitigation and adaptation, considering interactions, potential human and species migration, allocation of land and water resources and ecosystem services, will be important in either a 2°C or a 4°C world.
Projected land-use change impacts on ecosystem services in the United States.
Lawler, Joshua J; Lewis, David J; Nelson, Erik; Plantinga, Andrew J; Polasky, Stephen; Withey, John C; Helmers, David P; Martinuzzi, Sebastián; Pennington, Derric; Radeloff, Volker C
2014-05-20
Providing food, timber, energy, housing, and other goods and services, while maintaining ecosystem functions and biodiversity that underpin their sustainable supply, is one of the great challenges of our time. Understanding the drivers of land-use change and how policies can alter land-use change will be critical to meeting this challenge. Here we project land-use change in the contiguous United States to 2051 under two plausible baseline trajectories of economic conditions to illustrate how differences in underlying market forces can have large impacts on land-use with cascading effects on ecosystem services and wildlife habitat. We project a large increase in croplands (28.2 million ha) under a scenario with high crop demand mirroring conditions starting in 2007, compared with a loss of cropland (11.2 million ha) mirroring conditions in the 1990s. Projected land-use changes result in increases in carbon storage, timber production, food production from increased yields, and >10% decreases in habitat for 25% of modeled species. We also analyze policy alternatives designed to encourage forest cover and natural landscapes and reduce urban expansion. Although these policy scenarios modify baseline land-use patterns, they do not reverse powerful underlying trends. Policy interventions need to be aggressive to significantly alter underlying land-use change trends and shift the trajectory of ecosystem service provision.
[Forest ecosystem service and its evaluation in China].
Fang, Jin; Lu, Shaowei; Yu, Xinxiao; Rao, Liangyi; Niu, Jianzhi; Xie, Yuanyuan; Zhag, Zhenming
2005-08-01
Facing the relative lag of forest ecosystem service and estimation in China, this paper proposed to quickly carry out the research on the evaluation of forest ecosystem service. On the basis of the classification of forest ecosystem types in China, the service of artificial and semi-artificial forest ecosystems was investigated, which was divided into eight types, i.e., timber and other products, recreation and eco-tourism, water storage, C fixation and O2 release, nutrient cycling, air quality purifying, erosion control, and habitat provision. According to the assessment index system for global ecosystem service proposed by Costanza et al., a series of assessment index system suitable for Chinese forest ecosystem service was set up, by which, the total value of forest ecosystem service in China was estimated to be 30 601.20 x 10(8) yuan x yr(-1), including direct and indirect economic value about 1 920.23 x 10(8) and 28 680.97 x 10(8) yuan x yr(-1), respectively. The indirect value was as 14.94 times as the direct one. The research aimed to bring natural resources and environment factors into the account system of national economy quickly, and to realize the green GDP at last, which would be helpful to realize sustainable development and environment protection.
NASA Astrophysics Data System (ADS)
Drapek, R. J.; Kim, J. B.
2013-12-01
We simulated ecosystem response to climate change in the USA and Canada at a 5 arc-minute grid resolution using the MC1 dynamic global vegetation model and nine CMIP3 future climate projections as input. The climate projections were produced by 3 GCMs simulating 3 SRES emissions scenarios. We examined MC1 outputs for the conterminous USA by summarizing them by EPA level II and III ecoregions to characterize model skill and evaluate the magnitude and uncertainties of simulated ecosystem response to climate change. First, we evaluated model skill by comparing outputs from the recent historical period with benchmark datasets. Distribution of potential natural vegetation simulated by MC1 was compared with Kuchler's map. Above ground live carbon simulated by MC1 was compared with the National Biomass and Carbon Dataset. Fire return intervals calculated by MC1 were compared with maximum and minimum values compiled for the United States. Each EPA Level III Ecoregion was scored for average agreement with corresponding benchmark data and an average score was calculated for all three types of output. Greatest agreement with benchmark data happened in the Western Cordillera, the Ozark / Ouachita-Appalachian Forests, and the Southeastern USA Plains (EPA Level II Ecoregions). The lowest agreement happened in the Everglades and the Tamaulipas-Texas Semiarid Plain. For simulated ecosystem response to future climate projections we examined MC1 output for shifts in vegetation type, vegetation carbon, runoff, and biomass consumed by fire. Each ecoregion was scored for the amount of change from historical conditions for each variable and an average score was calculated. Smallest changes were forecast for Western Cordillera and Marine West Coast Forest ecosystems. Largest changes were forecast for the Cold Deserts, the Mixed Wood Plains, and the Central USA Plains. By combining scores of model skill for the historical period for each EPA Level 3 Ecoregion with scores representing the magnitude of ecosystem changes in the future, we identified high and low uncertainty ecoregions. The largest anticipated changes and the lowest measures of model skill coincide in the Central USA Plains and the Mixed Wood Plains. The combination of low model skill and high degree of ecosystem change elevate the importance of our uncertainty in this ecoregion. The highest projected changes coincide with relatively high model skill in the Cold Deserts. Climate adaptation efforts are the most likely to pay off in these regions. Finally, highest model skill and lowest anticipated changes coincide in the Western Cordillera and the Marine West Coast Forests. These regions may be relatively low-risk for climate change impacts when compared to the other ecoregions. These results represent only the first step in this type of analysis; there exist many ways to strengthen it. One, MC1 calibrations can be optimized using a structured optimization technique. Two, a larger set of climate projections can be used to capture a fuller range of GCMs and emissions scenarios. And three, employing an ensemble of vegetation models would make the analysis more robust.
NASA Astrophysics Data System (ADS)
Havránková, Kateřina; Taufarová, Klára; Šigut, Ladislav; McGloin, Ryan; Acosta, Manuel; Dušek, Jiří; Krupková, Lenka; Macálková-Mžourková, Lenka; Pavelka, Marian; Dařenová, Eva; Yadav, Shilpi; Nguyen, Vinh; Guerra, Carlos; Janous, Dalibor; Marek, Michal V.
2017-04-01
The Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe) have established a well-equipped network of ecosystem stations, with modern instrumentation for eco-physiological, plant physiological and micrometeorological studies, and estimation of GHG emissions. The network of stations (CzeCOS) covers the main terrestrial ecosystems of the Czech Republic (young and old coniferous forest, deciduous forest, mixed floodplain forest, grassland, wetland and cropland). The ecosystem stations are equipped with eddy covariance systems, soil and stem chamber systems for CO2 efflux and instruments for making micrometeorological measurements. The network enables detailed research to be conducted on topics such as: the carbon balance of different ecosystems, energy balance closure, the impact of current climate conditions on production and ecosystem disturbances during extreme weather conditions (drought, floods, winter storms, etc.) at regional, national and international scales. As a part of global networks (Fluxnet, ANAEe, ICOS), CzeCOS participates in evaluating and predicting environmental change and helps in the proposal of mitigation measures. Another important issue studied at some of the CzeCOS sites is the use of the eddy covariance method in sloping terrain in order to improve eddy covariance data processing for sites in this kind of terrain. Here we show specific results from the sites and outline the importance of the regional/national network for improving our knowledge about the exchange of matter and energy fluxes at different ecosystems. This study was supported by the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPU I), grant number LO1415 and LD 15040. Computational resources were provided by the CESNET LM2015042 and the CERIT Scientific Cloud LM2015085, provided under the programme "Projects of Large Research, Development, and Innovations Infrastructures".
Smith, W Brad; Cuenca Lara, Rubí Angélica; Delgado Caballero, Carina Edith; Godínez Valdivia, Carlos Isaías; Kapron, Joseph S; Leyva Reyes, Juan Carlos; Meneses Tovar, Carmen Lourdes; Miles, Patrick D; Oswalt, Sonja N; Ramírez Salgado, Mayra; Song, Xilong Alex; Stinson, Graham; Villela Gaytán, Sergio Armando
2018-05-21
Forests cannot be managed sustainably without reliable data to inform decisions. National Forest Inventories (NFI) tend to report national statistics, with sub-national stratification based on domestic ecological classification systems. It is becoming increasingly important to be able to report statistics on ecosystems that span international borders, as global change and globalization expand stakeholders' spheres of concern. The state of a transnational ecosystem can only be properly assessed by examining the entire ecosystem. In global forest resource assessments, it may be useful to break national statistics down by ecosystem, especially for large countries. The Inventory and Monitoring Working Group (IMWG) of the North American Forest Commission (NAFC) has begun developing a harmonized North American Forest Database (NAFD) for managing forest inventory data, enabling consistent, continental-scale forest assessment supporting ecosystem-level reporting and relational queries. The first iteration of the database contains data describing 1.9 billion ha, including 677.5 million ha of forest. Data harmonization is made challenging by the existence of definitions and methodologies tailored to suit national circumstances, emerging from each country's professional forestry development. This paper reports the methods used to synchronize three national forest inventories, starting with a small suite of variables and attributes.
Monitoring Forest and Rangeland Change in the United States Using Landsat Time Series Data
NASA Astrophysics Data System (ADS)
Vogelmann, J.; Tolk, B.; Xian, G. Z.; Homer, C.
2011-12-01
The LANDFIRE project produces spatial data layers for fire management applications. As part of the project, 2000 vintage Landsat Thematic Mapper and Enhanced Thematic Mapper plus data sets were used to generate detailed vegetation type data sets for the entire United States. We are currently using several approaches to update this information, including incorporation of (1) Landsat-derived historic fire burn information, (2) forest harvest information from Landsat time series data using the Vegetation Change Tracker, and (3) data sets that capture subtle and gradual intra-state disturbances, such as those related to insects and disease as well as succession. The primary focus of this presentation will be on of the detection and characterization of gradual change occurring in forest and rangeland ecosystems, and how to incorporate this information in the LANDFIRE updating process. Landsat data acquired over the previous 25+ years are being used to assess status and trends of forest and rangeland condition. Current study areas are located in the southwestern US, western Nebraska, western Wyoming, western South Dakota, northeastern US and the central Appalachian Mountains. Trends of changing vegetation index values derived from Landsat time series data stacks are the foundation for the gradual change information being developed. Thus far we have found evidence of gradual systematic change in all areas that we have examined. Many of the conifer forests in the southwestern US are showing declining conditions related to insects and drought, and very few of the examined areas are showing evidence of increased canopy cover or greenness. While sagebrush communities are showing decreases in greenness related to fire, mining, and drought, few of these communities are showing evidence of increased greenness or "improving" conditions. However, there is evidence that some forest communities are expanding and that canopy cover density is increasing at some locations. In Nebraska, increases in canopy cover appear to be mostly related to expansion of eastern red cedar. In the White Mountains of New Hampshire, observed increases in forest canopy appear to be related to understory balsam fir expansion, most likely related to release of forest suppression resulting from the thinning of the upper forest canopy. Continued analyses of time series data using multi-spatial scenes and covering multiple years are required in order to develop accurate impressions and representations of the changing ecosystem patterns and trends that are occurring. The approach demonstrates that Landsat time series data can be used operationally for assessing gradual ecosystem change across large areas. This information complements the information derived from other time-series change detection used for LANDFIRE.
Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests.
Peres, Carlos A; Emilio, Thaise; Schietti, Juliana; Desmoulière, Sylvain J M; Levi, Taal
2016-01-26
Tropical forests are the global cornerstone of biological diversity, and store 55% of the forest carbon stock globally, yet sustained provisioning of these forest ecosystem services may be threatened by hunting-induced extinctions of plant-animal mutualisms that maintain long-term forest dynamics. Large-bodied Atelinae primates and tapirs in particular offer nonredundant seed-dispersal services for many large-seeded Neotropical tree species, which on average have higher wood density than smaller-seeded and wind-dispersed trees. We used field data and models to project the spatial impact of hunting on large primates by ∼ 1 million rural households throughout the Brazilian Amazon. We then used a unique baseline dataset on 2,345 1-ha tree plots arrayed across the Brazilian Amazon to model changes in aboveground forest biomass under different scenarios of hunting-induced large-bodied frugivore extirpation. We project that defaunation of the most harvest-sensitive species will lead to losses in aboveground biomass of between 2.5-5.8% on average, with some losses as high as 26.5-37.8%. These findings highlight an urgent need to manage the sustainability of game hunting in both protected and unprotected tropical forests, and place full biodiversity integrity, including populations of large frugivorous vertebrates, firmly in the agenda of reducing emissions from deforestation and forest degradation (REDD+) programs.
A global map of mangrove forest soil carbon at 30 m spatial resolution
NASA Astrophysics Data System (ADS)
Sanderman, Jonathan; Hengl, Tomislav; Fiske, Greg; Solvik, Kylen; Adame, Maria Fernanda; Benson, Lisa; Bukoski, Jacob J.; Carnell, Paul; Cifuentes-Jara, Miguel; Donato, Daniel; Duncan, Clare; Eid, Ebrahem M.; Ermgassen, Philine zu; Ewers Lewis, Carolyn J.; Macreadie, Peter I.; Glass, Leah; Gress, Selena; Jardine, Sunny L.; Jones, Trevor G.; Ndemem Nsombo, Eugéne; Mizanur Rahman, Md; Sanders, Christian J.; Spalding, Mark; Landis, Emily
2018-05-01
With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer scale variability that would be required to inform local decisions on siting protection and restoration projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove soil carbon measurements and developed a novel machine-learning based statistical model of the distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model, which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of 10.9 kg m‑3). Of the local variables, total suspended sediment load and Landsat imagery were the most important variable explaining soil carbon density. Projecting this model across the global mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil with an 86–729 Mg C ha‑1 range across all pixels. By utilizing remotely-sensed mangrove forest cover change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30–122 Tg C with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products from this work are intended to serve nations seeking to include mangrove habitats in payment-for- ecosystem services projects and in designing effective mangrove conservation strategies.
Davies, Helen J; Doick, Kieron J; Hudson, Malcolm D; Schreckenberg, Kate
2017-07-01
Urbanisation and a changing climate are leading to more frequent and severe flood, heat and air pollution episodes in Britain's cities. Interest in nature-based solutions to these urban problems is growing, with urban forests potentially able to provide a range of regulating ecosystem services such as stormwater attenuation, heat amelioration and air purification. The extent to which these benefits are realized is largely dependent on urban forest management objectives, the availability of funding, and the understanding of ecosystem service concepts within local governments, the primary delivery agents of urban forests. This study aims to establish the extent to which British local authorities actively manage their urban forests for regulating ecosystem services, and identify which resources local authorities most need in order to enhance provision of ecosystem services by Britain's urban forests. Interviews were carried out with staff responsible for tree management decisions in fifteen major local authorities from across Britain, selected on the basis of their urban nature and high population density. Local authorities have a reactive approach to urban forest management, driven by human health and safety concerns and complaints about tree disservices. There is relatively little focus on ensuring provision of regulating ecosystem services, despite awareness by tree officers of the key role that urban forests can play in alleviating chronic air pollution, flood risk and urban heat anomalies. However, this is expected to become a greater focus in future provided that existing constraints - lack of understanding of ecosystem services amongst key stakeholders, limited political support, funding constraints - can be overcome. Our findings suggest that the adoption of a proactive urban forest strategy, underpinned by quantified and valued urban forest-based ecosystem services provision data, and innovative private sector funding mechanisms, can facilitate a change to a proactive, ecosystem services approach to urban forest management. Copyright © 2017. Published by Elsevier Inc.
Water and the Ecosystems of the Luquillo Experimental Forest
Ariel E. Lugo
1986-01-01
Water dynamics, water balance, and water requirements of the ecosystems and aquatic organisms of the Luquillo Experimental Forest (aka Caribbean National Forest) are reviewed. Objective is to draw attention to research needs and to highlight importance of freshwater allocations to natural ecosystems.
Modeling carbon and nitrogen biogeochemistry in forest ecosystems
Changsheng Li; Carl Trettin; Ge Sun; Steve McNulty; Klaus Butterbach-Bahl
2005-01-01
A forest biogeochemical model, Forest-DNDC, was developed to quantify carbon sequestration in and trace gas emissions from forest ecosystems. Forest-DNDC was constructed by integrating two existing moels, PnET and DNDC, with several new features including nitrification, forest litter layer, soil freezing and thawing etc, PnET is a forest physiological model predicting...
Hemiboreal forest: natural disturbances and the importance of ecosystem legacies to management
Kalev Jogiste; Henn Korjus; John Stanturf; Lee E. Frelich; Endijs Baders; Janis Donis; Aris Jansons; Ahto Kangur; Kajar Koster; Diana Laarmann; Tiit Maaten; Vitas Marozas; Marek Metslaid; Kristi Nigul; Olga Polyachenko; Tiit Randveer; Floortje Vodde
2017-01-01
The condition of forest ecosystems depends on the temporal and spatial pattern of management interventions and natural disturbances. Remnants of previous conditions persisting after disturbances, or ecosystem legacies, collectively comprise ecosystem memory. Ecosystem memory in turn contributes to resilience and possibilities of ecosystem reorganization...
CO2 flux studies of different hemiboreal forest ecosystems
NASA Astrophysics Data System (ADS)
Krasnova, Alisa; Krasnov, Dmitrii; Noe, Steffen M.; Uri, Veiko; Mander, Ülo; Niinemets, Ülo; Soosaar, Kaido
2017-04-01
Hemiboreal zone is a transition between boreal and temperate zones characterized by the combination of climatic and edaphic conditions inherent in both zones. Hemiboreal forests are typically presented by mixed forests types with different ratios of deciduous and conifer tree species. Dominating tree species composition affects the functioning of forest ecosystem and its influence on biogeochemical cycles. We present the result of ecosystem scale CO2 eddy-covariance fluxes research conducted in 4 ecosystems (3 forests sites and 1 clear-cut area) of hemiboreal zone in Estonia. All 4 sites were developing under similar climatic conditions, but different forest management practices resulted in different composition of dominating tree species: pine forest with spruce trees as a second layer (Soontaga site); spruce/birch forest with single alder trees (Liispõllu site); forest presented by sectors of pine, spruce, birch and clearcut areas (SMEAR Estonia site); 5-years old clearcut area (Kõnnu site).
Urban tree mortality: a primer on demographic approaches
Lara A. Roman; John J. Battles; Joe R. McBride
2016-01-01
Realizing the benefits of tree planting programs depends on tree survival. Projections of urban forest ecosystem services and cost-benefit analyses are sensitive to assumptions about tree mortality rates. Long-term mortality data are needed to improve the accuracy of these models and optimize the public investment in tree planting. With more accurate population...
William M. Ford; M. Alex Menzel; David W. McGill; Joshua Laerm; Timothy S. McCay
1999-01-01
As part of the Wine Spring Creek ecosystem management project on the Nantahala National forest, North Carolina, we assessed effects of a community restoration fire on small mammals and herpetofauna in the upper slope pitch pine (Pinus rigida) stands, neighboring midslope oak (Quercus spp.) stands and rhododendron (...
Following the fate of harvest-damaged trees 13 years after harvests
Randy G. Jensen; John M. Kabrick
2014-01-01
Logging damage to residual trees during harvest operations can reduce the future volume, quality, and value of wood products. Timber harvests in 1996 on the Missouri Ozark Forest Ecosystem Project (MOFEP) provided a rare opportunity to follow the fate of trees wounded by felling or by skidding with rubber-tired skidders.
Use of chemical soil additives to stabilize off-road vehicle trails
J.N. Davis; J.E. Baier; J.P. Fulton; D.A. Brown; T.P. McDonald
2007-01-01
Off‐road vehicle (ORV) use is an increasingly popular form of outdoor recreation throughout the United States. This form of motorized recreation, however, can sometimes lead to serious erosion of trail running surfaces, with resulting export of sediment into forested ecosystems causing environmental degradation. This project was conducted to determine the...
Landforms, Geology, and Soils of the MOFEP Study Area
Dennis Meinert; Tim Nigh; John Kabrick
1997-01-01
We summarize important landform, geological, and soil characteristics that affect the distribution of plants and animals at the MOFEP sites and that can potentially affect the observed response to MOFEP experimental treatments. The Missouri Ozark Forest Ecosystem Project (MOFEP) is located within the Current River Hills Subsection of the Ozark Highlands Section. The...
Restoring whitebark pine ecosystems in the face of climate change
Robert E. Keane; Lisa M. Holsinger; Mary F. Mahalovich; Diana F. Tomback
2017-01-01
Whitebark pine (Pinus albicaulis) forests have been declining throughout their range in western North America from the combined effects of mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the exotic disease white pine blister rust (Cronartium ribicola). Projected warming and drying trends in climate may exacerbate this decline;...
Silviculture in special places: proceedings of the 2003 National Silviculture Workshop
Wayne D. Shepperd; Lane G. Eskew
2004-01-01
This proceedings presents a compilation of 20 manuscripts and five posters summarizing results of research studies and management projects conducted throughout the United States in areas with special natural resource values. Topics include the restoration of various fire dependent forest ecosystems, studies of historical ecology, use of genetics in silviculture,...
Characteristics of gaps and natural regeneration in mature longleaf pine flatwoods ecosystems
Jennifer L. Gagnon; Eric J. Jokela; W.K. Moser; Dudley A. Huber
2004-01-01
Developing uneven-aged structure in mature stands of longleaf pine requires scientifically based silvicultural systems that are reliable, productive and sustainable. Understanding seedling responses to varying levels of site resource availability within forest gaps is essential for effectively converting even-aged stands to uneven-aged stands. A project was initiated...
A multi-model analysis of risk of ecosystem shifts under climate change
NASA Astrophysics Data System (ADS)
Warszawski, Lila; Friend, Andrew; Ostberg, Sebastian; Frieler, Katja; Lucht, Wolfgang; Schaphoff, Sibyll; Beerling, David; Cadule, Patricia; Ciais, Philippe; Clark, Douglas B.; Kahana, Ron; Ito, Akihiko; Keribin, Rozenn; Kleidon, Axel; Lomas, Mark; Nishina, Kazuya; Pavlick, Ryan; Tito Rademacher, Tim; Buechner, Matthias; Piontek, Franziska; Schewe, Jacob; Serdeczny, Olivia; Schellnhuber, Hans Joachim
2013-12-01
Climate change may pose a high risk of change to Earth’s ecosystems: shifting climatic boundaries may induce changes in the biogeochemical functioning and structures of ecosystems that render it difficult for endemic plant and animal species to survive in their current habitats. Here we aggregate changes in the biogeochemical ecosystem state as a proxy for the risk of these shifts at different levels of global warming. Estimates are based on simulations from seven global vegetation models (GVMs) driven by future climate scenarios, allowing for a quantification of the related uncertainties. 5-19% of the naturally vegetated land surface is projected to be at risk of severe ecosystem change at 2 ° C of global warming (ΔGMT) above 1980-2010 levels. However, there is limited agreement across the models about which geographical regions face the highest risk of change. The extent of regions at risk of severe ecosystem change is projected to rise with ΔGMT, approximately doubling between ΔGMT = 2 and 3 ° C, and reaching a median value of 35% of the naturally vegetated land surface for ΔGMT = 4 °C. The regions projected to face the highest risk of severe ecosystem changes above ΔGMT = 4 °C or earlier include the tundra and shrublands of the Tibetan Plateau, grasslands of eastern India, the boreal forests of northern Canada and Russia, the savanna region in the Horn of Africa, and the Amazon rainforest.
Forest Ecosystem Services and Eco-Compensation Mechanisms in China
NASA Astrophysics Data System (ADS)
Deng, Hongbing; Zheng, Peng; Liu, Tianxing; Liu, Xin
2011-12-01
Forests are a major terrestrial ecosystem providing multiple ecosystem services. However, the importance of forests is frequently underestimated from an economic perspective because of the externalities and public good properties of these services. Forest eco-compensation is a transfer mechanism that serves to internalize the externalities of forest ecosystem services by compensating individuals or companies for the losses or costs resulting from the provision of these services. China's current forest eco-compensation system is centered mainly on noncommercial forest. The primary measures associated with ecosystem services are (1) a charge on destructive activities, such as indiscriminate logging, and (2) compensation for individual or local activities and investments in forest conservation. The Compensation Fund System for Forest Ecological Benefits was first listed in the Forest Law of the People's Republic of China in 1998. In 2004, the Central Government Financial Compensation Fund, an important source for the Compensation Fund for Forest Ecological Benefits, was formally established. To improve the forest eco-compensation system, it is crucial to design and establish compensation criteria for noncommercial forests. These criteria should take both theoretical and practical concerns into account, and they should be based on the quantitative valuation of ecosystem services. Although some initial headway has been made on this task, the implementation of an effective forest eco-compensation system in China still has deficiencies and still faces problems. Implementing classification-based and dynamic management for key noncommercial forests and establishing an eco-compensation mechanism with multiple funding sources in the market economy are the key measures needed to conquer these problems and improve the forest eco-compensation system and China's forestry development in sequence.
Indicator 1.04: Number of native forest-associated species
C. H. Flather; M. S Knowles; C. H. Sieg
2011-01-01
This indicator provides information on the health of forest ecosystems through the number of native forest-associated species. Because one of the more general signs of ecosystem stress is a reduction in the variety of organisms inhabiting a given locale, species counts are often used in assessing ecosystem well-being. The count of forest-associated species in a region...
Michael P. Amaranthus
1998-01-01
Ectomycorrhizal fungi (EMF) consist of about 5,000 species and profoundly affect forest ecosystems by mediating nutrient and water uptake, protecting roots from pathogens and environmental extremes, and maintaining soil structure and forest food webs. Diversity of EMF likely aids forest ecosystem resilience in the face of changing environmental factors such as...
Predicting Fire Susceptibility in the Forests of Amazonia
NASA Technical Reports Server (NTRS)
Nepstad, Daniel C.; Brown, I. Foster; Setzer, Alberto
2000-01-01
Although fire is the single greatest threat to the ecological integrity of Amazon forests, our ability to predict the occurrence of Amazon forest fires is rudimentary. Part of the difficulty encountered in making such predictions is the remarkable capacity of Amazon forests to tolerate drought by tapping moisture stored in deep soil. These forests can avoid drought-induced leaf shedding by withdrawing moisture to depths of 8 meters and more. Hence, the absorption of deep soil moisture allows these forests to maintain their leaf canopies following droughts of several months duration, thereby maintaining the deep shade and high relative humidity of the forest interior that prevents these ecosystems from burning. But the drought- and fire-avoidance that is conferred by this deep-rooting phenomenon is not unlimited. During successive years of drought, such as those provoked by El Nino episodes, deep soil moisture can be depleted, and drought-induced leaf shedding begins. The goal of this project was to incorporate this knowledge of Amazon forest fire ecology into a predictive model of forest flammability.
NASA Astrophysics Data System (ADS)
Wu, J.; van der Linden, L.; Lasslop, G.; Carvalhais, N.; Pilegaard, K.; Beier, C.; Ibrom, A.
2012-04-01
The ecosystem carbon balance is affected by both external climatic forcing (e.g. solar radiation, air temperature and humidity) and internal dynamics in the ecosystem functional properties (e.g. canopy structure, leaf photosynthetic capacity and carbohydrate reserve). In order to understand to what extent and at which temporal scale, climatic variability and functional changes regulated the interannual variation (IAV) in the net ecosystem exchange of CO2 (NEE), data-driven analysis and semi-empirical modelling (Lasslop et al. 2010) were performed based on a 13 year NEE record in a temperate deciduous forest (Pilegaard et al 2011, Wu et al. 2012). We found that the sensitivity of carbon fluxes to climatic variability was significantly higher at shorter than at longer time scales and changed seasonally. This implied that the changing distribution of climate anomalies during the vegetation period could have stronger impacts on future ecosystem carbon balances than changes in average climate. At the annual time scale, approximately 80% of the interannual variability in NEE was attributed to the variation in the model parameters, indicating the observed IAV in the carbon dynamics at the investigated site was dominated by changes in ecosystem functioning. In general this study showed the need for understanding the mechanisms of ecosystem functional change. The method can be applied at other sites to explore ecosystem behavior across different plant functional types and climate gradients. Incorporating ecosystem functional change into process based models will reduce the uncertainties in long-term predictions of ecosystem carbon balances in global climate change projections. Acknowledgements. This work was supported by the EU FP7 project CARBO-Extreme, the DTU Climate Centre and the Danish national project ECOCLIM (Danish Council for Strategic Research).
Wang, Hsiao-Hsuan; Wonkka, Carissa L; Grant, William E; Rogers, William E
2016-01-01
Non-native plant invasions and changing management activities have dramatically altered the structure and composition of forests worldwide. Invasive shrubs and fire suppression have led to increased densification and biomass accumulation in forest ecosystems of the southeastern USA. Notably, Chinese and European privets are rapid growing, shade-tolerant shrubs which number among the most aggressive invasive species in these forests. Privet encroachment has caused losses of native diversity, alteration of ecosystem processes and changes in community structure. The latter has become manifest through decreases in fine herbaceous fuels concurrent with increases in coarse woody fuels in forest understoreys. These alterations in fuel structure will potentially lead to less frequent, but more severe forest fires, which threaten important forest resources during extreme weather conditions. Drawing on extensive data sets compiled by the US Forest Service, we integrated statistical forecasting and analytical techniques within a spatially explicit, agent-based, simulation framework to predict potential range expansion of Chinese and European privet (Ligustrum sinenseandL. vulgare) and the associated increase in crown fire risk over the next two decades in forestlands of Mississippi and Alabama. Our results indicate that probability of invasion is positively associated with elevation, adjacency (within 300 m) to water bodies, mean daily maximum temperature, site productivity and private land ownership, and is negatively associated with slope, stand age, artificial regeneration, distance to the nearest road and fire disturbance. Our projections suggest the total area invaded will increase from 1.36 to ≈31.39% of all forestlands in Mississippi and Alabama (≈7 million hectares) and the annual frequency of crown fires in these forestlands will approximately double within the next two decades. Such time series projections of annual range expansions and crown fire frequency should provide land managers and restoration practitioners with an invasion chronology upon which to base proactive management plans. Published by Oxford University Press on behalf of the Annals of Botany Company.
Urgent need for warming experiments in tropical forests
Calaveri, Molly A.; Reed, Sasha C.; Smith, W. Kolby; Wood, Tana E.
2015-01-01
Although tropical forests account for only a fraction of the planet's terrestrial surface, they exchange more carbon dioxide with the atmosphere than any other biome on Earth, and thus play a disproportionate role in the global climate. In the next 20 years, the tropics will experience unprecedented warming, yet there is exceedingly high uncertainty about their potential responses to this imminent climatic change. Here, we prioritize research approaches given both funding and logistical constraints in order to resolve major uncertainties about how tropical forests function and also to improve predictive capacity of earth system models. We investigate overall model uncertainty of tropical latitudes and explore the scientific benefits and inevitable trade-offs inherent in large-scale manipulative field experiments. With a Coupled Model Intercomparison Project Phase 5 analysis, we found that model variability in projected net ecosystem production was nearly 3 times greater in the tropics than for any other latitude. Through a review of the most current literature, we concluded that manipulative warming experiments are vital to accurately predict future tropical forest carbon balance, and we further recommend the establishment of a network of comparable studies spanning gradients of precipitation, edaphic qualities, plant types, and/or land use change. We provide arguments for long-term, single-factor warming experiments that incorporate warming of the most biogeochemically active ecosystem components (i.e. leaves, roots, soil microbes). Hypothesis testing of underlying mechanisms should be a priority, along with improving model parameterization and constraints. No single tropical forest is representative of all tropical forests; therefore logistical feasibility should be the most important consideration for locating large-scale manipulative experiments. Above all, we advocate for multi-faceted research programs, and we offer arguments for what we consider the most powerful and urgent way forward in order to improve our understanding of tropical forest responses to climate change.
Wang, Hsiao-Hsuan; Wonkka, Carissa L.; Grant, William E.; Rogers, William E.
2016-01-01
Non-native plant invasions and changing management activities have dramatically altered the structure and composition of forests worldwide. Invasive shrubs and fire suppression have led to increased densification and biomass accumulation in forest ecosystems of the southeastern USA. Notably, Chinese and European privets are rapid growing, shade-tolerant shrubs which number among the most aggressive invasive species in these forests. Privet encroachment has caused losses of native diversity, alteration of ecosystem processes and changes in community structure. The latter has become manifest through decreases in fine herbaceous fuels concurrent with increases in coarse woody fuels in forest understoreys. These alterations in fuel structure will potentially lead to less frequent, but more severe forest fires, which threaten important forest resources during extreme weather conditions. Drawing on extensive data sets compiled by the US Forest Service, we integrated statistical forecasting and analytical techniques within a spatially explicit, agent-based, simulation framework to predict potential range expansion of Chinese and European privet (Ligustrum sinense and L. vulgare) and the associated increase in crown fire risk over the next two decades in forestlands of Mississippi and Alabama. Our results indicate that probability of invasion is positively associated with elevation, adjacency (within 300 m) to water bodies, mean daily maximum temperature, site productivity and private land ownership, and is negatively associated with slope, stand age, artificial regeneration, distance to the nearest road and fire disturbance. Our projections suggest the total area invaded will increase from 1.36 to ≈31.39% of all forestlands in Mississippi and Alabama (≈7 million hectares) and the annual frequency of crown fires in these forestlands will approximately double within the next two decades. Such time series projections of annual range expansions and crown fire frequency should provide land managers and restoration practitioners with an invasion chronology upon which to base proactive management plans. PMID:26903488
Urgent need for warming experiments in tropical forests.
Cavaleri, Molly A; Reed, Sasha C; Smith, W Kolby; Wood, Tana E
2015-06-01
Although tropical forests account for only a fraction of the planet's terrestrial surface, they exchange more carbon dioxide with the atmosphere than any other biome on Earth, and thus play a disproportionate role in the global climate. In the next 20 years, the tropics will experience unprecedented warming, yet there is exceedingly high uncertainty about their potential responses to this imminent climatic change. Here, we prioritize research approaches given both funding and logistical constraints in order to resolve major uncertainties about how tropical forests function and also to improve predictive capacity of earth system models. We investigate overall model uncertainty of tropical latitudes and explore the scientific benefits and inevitable trade-offs inherent in large-scale manipulative field experiments. With a Coupled Model Intercomparison Project Phase 5 analysis, we found that model variability in projected net ecosystem production was nearly 3 times greater in the tropics than for any other latitude. Through a review of the most current literature, we concluded that manipulative warming experiments are vital to accurately predict future tropical forest carbon balance, and we further recommend the establishment of a network of comparable studies spanning gradients of precipitation, edaphic qualities, plant types, and/or land use change. We provide arguments for long-term, single-factor warming experiments that incorporate warming of the most biogeochemically active ecosystem components (i.e. leaves, roots, soil microbes). Hypothesis testing of underlying mechanisms should be a priority, along with improving model parameterization and constraints. No single tropical forest is representative of all tropical forests; therefore logistical feasibility should be the most important consideration for locating large-scale manipulative experiments. Above all, we advocate for multi-faceted research programs, and we offer arguments for what we consider the most powerful and urgent way forward in order to improve our understanding of tropical forest responses to climate change. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Jin, Jiaxin; Wang, Ying
2017-04-01
Climate change has significantly influenced the productivity of terrestrial ecosystems through water cycles. Understanding the phenological regulation mechanisms underlying coupled carbon-water cycles is important for improving ecological assessments and projecting terrestrial ecosystem responses and feedback to climate change. In this study, we present an analysis of the interannual relationships among flux-based spring phenological transitions (referred as photosynthetic onset) and water use efficiency (WUE) in North America and Europe using 166 site-years of data from 22 flux sites, including 10 deciduous broadleaf forest (DBF) and 12 evergreen needleleaf forest (ENF) ecosystems. We found that the WUE responses to variations in spring phenological transitions differed substantially across plant functional types (PFTs) and growth periods. During the early spring (defined as one month from spring onset) in the DBF ecosystem, photosynthetic onset dominated changes in WUE by dominating gross primary production (GPP), with one day of advanced onset increasing the WUE by 0.037 gC kg-1H2O in early spring. For the ENF sites, although advanced photosynthetic onset also significantly promoted GPP, earlier onset did not have a significant positive impact on WUE in early spring because it was not significantly correlated to evapotranspiration (ET), which is a more dominant factor for WUE than GPP across the ENF sites. Statistically significant correlations were not observed between interannual variability in photosynthetic onset and WUE for either the DBF or ENF ecosystems following a prolonged period after photosynthetic onset. For the DBF sites, the interannual variability of photosynthetic onset provided a better explanation of the variations in WUE (ca. 51.4%) compared with climatic factors, although this was only applicable to the early spring. For the ENF sites, photosynthetic onset variations did not provide a better explanation of the interannual WUE variations compared with climatic factors within any growth period. Notably, the negative correlation between the interannual variability of early spring WUE and photosynthetic onset gradually declined from boreal forests (r = -0.73) to subtropical Mediterranean forests (r = 0.35), indicating that the positive effect of earlier spring phenological transitions decreased or even reversed from cold climates to warm climates. This result suggests that the effect of the phenological regulatory mechanism on coupled carbon-water cycles is not only determined by the PFT but also by the habitat climate of an ecosystem. These observed differences between the ENF and DBF ecosystems will likely influence future phenological shifts related to competition for water and other resources in mixed species stands.
NASA Astrophysics Data System (ADS)
Zurek, Anna; Witczak, Stanislaw; Kania, Jaroslaw; Wachniew, Przemyslaw; Rozanski, Kazimierz; Dulinski, Marek; Jench, Olga
2013-04-01
Thorough understanding of the link between terrestrial ecosystems and underlying groundwater reservoirs is an important element of sustainable management of groundwater resources in the light of ever growing anthropogenic pressure on groundwater reserves, both with respect to quantity and quality of this vital resource. While association of terrestrial ecosystems with surface water (rivers, streams, lakes, etc.) is visible and recognized, their link to underground components of the hydrological cycle is often forgotten and not appreciated. The presented study was aimed at investigating possible adverse effects of intensive exploitation of porous sandy aquifer on groundwater dependent terrestrial ecosystem (GDTE) consisting of a valuable forest stand and associated wetlands. The Bogucice Sands aquifer and the associated GDTE (Niepolomice Forest) are located in the south of Poland. The principal economic role of the aquifer, consisting of two water-bearing strata is to provide potable water for public and private users. Eastern part of the shallow phreatic aquifer is occupied by Niepolomice Forest. The Niepolomice Forest is a lowland forest covering around 110 km2. It is protected as a Natura 2000 Special Protection Area "Puszcza Niepołomicka" (PLB120002) which supports bird populations of European importance. Additionally, a fen in the western part of the forest comprises a separate Natura 2000 area "Torfowisko Wielkie Bloto" (PLH120080), a significant habitat of endangered butterfly species associated with wet meadows. Dependence of the Niepolomice Forest stands on groundwater is enhanced by low available water capacity and low capillary rise of soils. Groundwater conditions in the Niepolomice Forest, including Wielkie Bloto fen have been affected by meliorations carried out mostly after the Second World War and by forest management. In September 2009 a cluster of new pumping wells (Wola Batorska well-field) has been set up close to the northern boundary of Niepolomice Forest. There is a growing concern that continued exploitation of those wells may lead to lowering water table in the Niepolomice Forest area and, as a consequence, may trigger drastic changes in this unique ecosystem. A dedicated study was launched with the main aim to quantify the interaction between Niepolomice Forest, with the focus the Wielkie Bloto fen, and the underlying Bogucice Sands aquifer. The work was pursued along three major lines: (i) vertical profiling of the Wielkie Bloto fen aimed at characterizing chemical and isotope contrast in the shallow groundwater occupying the Quaternary cover in order to identify upward leakage of deeper groundwater in the investigated area, (ii) regular monitoring of flow rate, chemistry and environmental isotopes of the Dluga Woda stream draining the Wielkie Bloto fen, and (iii) 3D modeling of groundwater flow in the vicinity of the Wielkie Bloto fen focusing on quantifying the impact of the Wola Batorska well field on the regional groundwater flow patterns. The results of isotope and chemical analyses confirmed existence of upward seepage of groundwater from the Bogucice Sands aquifer in the area of Wielkie Bloto fen. Preliminary assessment of the water balance of Dluga Woda catchment indicates that the baseflow originating from groundwater seepage is equal approximately 16% of the annual precipitation. Results of 3D flow model applied to the study area indicate that prolonged operation of the well-field Wola Batorska at maximum capacity may lead to substantial lowering of water table in the Niepolomice Forest area and, as a consequence, endanger further existence of this unique GDTE. Acknowledgements. Partial financial support of this work through GENESIS project (http:/www.thegenesisproject.eu) funded by the European Commission 7FP contract 226536, and through statutory funds of the AGH University of Science and Technology (projects No.11.11.140.026 and 11.11.220.01) is kindly acknowledged.
The effects of atmospheric nitrogen deposition on terrestrial and freshwater biodiversity
Baron, Jill S.; Barber, Mary C.; Adams, Mark; Agboola, Julius I.; Allen, Edith B.; Bealey, William J.; Bobbink, Roland; Bobrovsky, Maxim V.; Bowman, William D.; Branquinho, Cristina; Bustamente, Mercedes M. C.; Clark, Christopher M.; Cocking, Edward C.; Cruz, Cristina; Davidson, Eric A.; Denmead, O. Tom; Dias, Teresa; Dise, Nancy B.; Feest, Alan; Galloway, James N.; Geiser, Linda H.; Gilliam, Frank S.; Harrison, Ian J.; Khanina, Larisa G.; Lu, Xiankai; Manrique, Esteban; Ochoa-Hueso, Raul; Ometto, Jean P. H. B.; Payne, Richard; Scheuschner, Thomas; Sheppard, Lucy J.; Simpson, Gavin L.; Singh, Y. V.; Stevens, Carly J.; Strachan, Ian; Sverdrup, Harald; Tokuchi, Naoko; van Dobben, Hans; Woodin, Sarah
2014-01-01
This chapter reports the findings of a Working Group on how atmospheric nitrogen (N) deposition affects both terrestrial and freshwater biodiversity. Regional and global scale impacts on biodiversity are addressed, together with potential indicators. Key conclusions are that: the rates of loss in biodiversity are greatest at the lowest and initial stages of N deposition increase; changes in species compositions are related to the relative amounts of N, carbon (C) and phosphorus (P) in the plant soil system; enhanced N inputs have implications for C cycling; N deposition is known to be having adverse effects on European and North American vegetation composition; very little is known about tropical ecosystem responses, while tropical ecosystems are major biodiversity hotspots and are increasingly recipients of very high N deposition rates; N deposition alters forest fungi and mycorrhyzal relations with plants; the rapid response of forest fungi and arthropods makes them good indicators of change; predictive tools (models) that address ecosystem scale processes are necessary to address complex drivers and responses, including the integration of N deposition, climate change and land use effects; criteria can be identified for projecting sensitivity of terrestrial and aquatic ecosystems to N deposition. Future research and policy-relevant recommendations are identified.
NASA Astrophysics Data System (ADS)
Masiello, C. A.; Hockaday, W. C.; Gallagher, M. E.; Calligan, L.
2009-12-01
Ecosystem net primary productivity (NPP) can vary significantly with annual variations in precipitation and temperature. These climate variations can also drive changes in plant carbon allocation patterns. Shifting allocation patterns can lead to variation in net ecosystem biochemical stocks (e.g. kg cellulose, lignin, protein, and lipid/ha), which can in turn lead to shifts in ecosystem oxidative ratio (OR). OR is the molar ratio of O2 released : CO2 fixed during biosynthesis. Major plant biochemicals vary substantially in oxidative ratio, ranging from average organic acid OR values of 0.75 to average lipid OR values of 1.37 (Masiello et al., 2008). OR is a basic property of ecosystem biochemistry, and is also an essential variable needed to constrain the size of the terrestrial biospheric carbon sink (Keeling et al., 1996). OR is commonly assumed to be 1.10 (e.g. Prentice et al., 2001), but small variations in net ecosystem OR can drive large errors in estimates of the size of the terrestrial carbon sink (Randerson et al., 2006). We hypothesized that interannual changes in climate may drive interannual variation in ecosystem OR values. Working at Kellogg Biological Station NSF LTER, we measured the annual average OR of coniferous and deciduous forests, an early successional forest, and croplands under both corn and soy. There are clear distinctions between individual ecosystems (e.g., the soy crops have a higher OR than the corn crops, and the coniferous forests have a higher OR than the deciduous forests), but the ecosystems themselves retained remarkably constant annual OR values between 1998 and 2008.
Unearthing Secrets of the Forest
Beldin, Sarah I.; Perakis, Steven S.
2009-01-01
Forests are a defining feature for large areas of the Pacific northwestern United States from northern California to Alaska. Coniferous temperate rainforests in the western Cascade and coastal mountain ranges are appreciated for their aesthetic value and abundant natural resources. Few people recognize the riches beneath the forest floor; yet, soil is a key ecosystem component that makes each type of forest unique. Soils harbor immense biological diversity and control the release of water and nutrients that support life above ground. Understanding how carbon and nutrients cycle in forests, known as forest biogeochemistry, is crucial for evaluating forest productivity, composition, diversity, and change. At the U.S. Geological Survey (USGS) Forest and Rangeland Ecosystem Science Center, research in the Terrestrial Ecosystems Laboratory focuses on nutrient cycling in five themes: climate change, nutrition and sustainability, fire effects, restoration, and forest-stream linkages. This research is essential to understand the entire forest ecosystem and to use the best science available to make informed policy and management decisions.
Forest Modeling of Jack Pine Trees for BOREAS
NASA Technical Reports Server (NTRS)
Moghhadam, Mahta; Saatchi, Sasan
1994-01-01
As a part of the intensive field campaign for the Boreal forest ecosystem-atmosphere research (BOREAS) project in August 1993, the NASA/JPL AIRSAR covered an area of about 100 km by 100 km near the Prince Albert National Park in Saskatchewan, Canada. At the same time, ground-truth measurements were made in several stands which have been selected as the primary study sites, as well as in some auxiliary sites. This paper focuses on an area including Jack Pine stands in the Nipawin area near the park.
Disturbance dynamics and ecosystem-based forest management
Kalev Jogiste; W. Keith Moser; Malle Mandre
2005-01-01
Ecosystem-based management is intended to balance ecological, social and economic values of sustainable resource management. The desired future state of forest ecosystem is usually defined through productivity, biodiversity, stability or other terms. However, ecosystem-based management may produce an unbalanced emphasis on different components. Although ecosystem-based...
Vegetation dynamics under fire exclusion and logging in a Rocky Mountain watershed, 1856-1996
Gallant, Alisa L.; Hansen, A.J.; Councilman, J.S.; Monte, D.K.; Betz, D.W.
2003-01-01
How have changes in land management practices affected vegetation patterns in the greater Yellowstone ecosystem? This question led us to develop a deterministic, successional, vegetation model to “turn back the clock” on a study area and assess how patterns in vegetation cover type and structure have changed through different periods of management. Our modeling spanned the closing decades of use by Native Americans, subsequent Euro-American settlement, and associated indirect methods of fire suppression, and more recent practices of fire exclusion and timber harvest. Model results were striking, indicating that the primary forest dynamic in the study area is not fragmentation of conifer forest by logging, but the transition from a fire-driven mosaic of grassland, shrubland, broadleaf forest, and mixed forest communities to a conifer-dominated landscape. Projections for conifer-dominated stands showed an increase in areal coverage from 15% of the study area in the mid-1800s to ∼50% by the mid-1990s. During the same period, projections for aspen-dominated stands showed a decline in coverage from 37% to 8%. Substantial acreage previously occupied by a variety of age classes has given way to extensive tracts of mature forest. Only 4% of the study area is currently covered by young stands, all of which are coniferous. While logging has replaced wildfire as a mechanism for cycling younger stands into the landscape, the locations, species constituents, patch sizes, and ecosystem dynamics associated with logging do not mimic those associated with fire. It is also apparent that the nature of these differences varies among biophysical settings, and that land managers might consider a biophysical class strategy for tailoring management goals and restoration efforts.
Managing forest ecosystems to conserve fungus diversity and sustain wild mushroom harvests.
D. Pilz; R. Molina
1996-01-01
Ecosystem management is the dominant paradigm for managing the forests of the Pacific Northwest. It integrates biological, ecological, geophysical, and silvicultural information to develop adaptive management practices that conserve biological diversity and maintain ecosystem functioning while meeting human needs for the sustainable production of forest products. Fungi...
The forgotten stage of forest succession: early-successional ecosystems on forest sites
Mark E. Swanson; Jerry F. Franklin; Robert L. Beschta; Charles M. Crisafulli; Dominick A. DellaSala; Richard L. Hutto; David B. Lindenmayer; Frederick J. Swanson
2010-01-01
Early-successional forest ecosystems that develop after stand-replacing or partial disturbances are diverse in species, processes, and structure. Post-disturbance ecosystems are also often rich in biological legacies, including surviving organisms and organically derived structures, such as woody debris. These legacies and postdisturbance plant communities provide...
Belowground ecosystems [chapter 9
Carole Coe Klopatek
1995-01-01
The USDA Forest Service defined ecosystem management as "an ecological approach to achieve multiple-use management of national forests and grasslands by blending the needs of people and environmental values in such a way that national forests and grasslands represent diverse, healthy, productive, and sustainable ecosystems" (June 4, 1992, letter from Chief FS...
7 CFR 625.6 - Establishing priority for enrollment in HFRP.
Code of Federal Regulations, 2012 CFR
2012-01-01
... contribution of non-Federal funds; (6) Significance of forest ecosystem functions and values; (7) Estimated... place higher priority on certain forest ecosystems based regions of the State or multi-State area where... is essential to the successful restoration of the forest ecosystem and those adjacent landowners are...
7 CFR 625.6 - Establishing priority for enrollment in HFRP.
Code of Federal Regulations, 2013 CFR
2013-01-01
... contribution of non-Federal funds; (6) Significance of forest ecosystem functions and values; (7) Estimated... place higher priority on certain forest ecosystems based regions of the State or multi-State area where... is essential to the successful restoration of the forest ecosystem and those adjacent landowners are...
7 CFR 625.6 - Establishing priority for enrollment in HFRP.
Code of Federal Regulations, 2014 CFR
2014-01-01
... contribution of non-Federal funds; (6) Significance of forest ecosystem functions and values; (7) Estimated... place higher priority on certain forest ecosystems based regions of the State or multi-State area where... is essential to the successful restoration of the forest ecosystem and those adjacent landowners are...
7 CFR 625.6 - Establishing priority for enrollment in HFRP.
Code of Federal Regulations, 2011 CFR
2011-01-01
... contribution of non-Federal funds; (6) Significance of forest ecosystem functions and values; (7) Estimated... place higher priority on certain forest ecosystems based regions of the State or multi-State area where... is essential to the successful restoration of the forest ecosystem and those adjacent landowners are...
Forest Ecosystem services: Water resources
Thomas P. Holmes; James Vose; Travis Warziniack; Bill Holman
2017-01-01
Since the publication of the Millennium Ecosystem Assessment (MEA 2005), awareness has steadily grown regarding the importance of maintaining natural capital. Forest vegetation is a valuable source of natural capital, and the regulation of water quantity and quality is among the most important forest ecosystem services in many regions around the world. Changes in...
Assessment and monitoring of forest ecosystem structure
Oscar A. Aguirre Calderón; Javier Jiménez Pérez; Horst Kramer
2006-01-01
Characterization of forest ecosystems structure must be based on quantitative indices that allow objective analysis of human influences or natural succession processes. The objective of this paper is the compilation of diverse quantitative variables to describe structural attributes from the arboreal stratum of the ecosystem, as well as different methods of forest...
NASA Astrophysics Data System (ADS)
Słowiński, Michał; Lamentowicz, Mariusz; Łuców, Dominika; Kołaczek, Piotr; Tjallingii, Rik; Noryśkiewicz, Agnieszka M.; Zawiska, Izabela; Lane, Christine; Rzodkiewicz, Monika; Słowińska, Sandra; Kramkowski, Mateusz; Płóciennik, Mateusz; Tyszkowski, Sebastian; Łokas, Edyta; Kordowski, Jarosław; Brauer, Achim
2017-04-01
An increase in extreme weather phenomena has been observed over the last decades as a result of global climate warming. This project aims to investigate the effects of tornado events on the lake and peatland ecosystems of the Tuchola Pinewoods, Northern Poland. Deforestation by tornado events can cause severe perturbations of the soil hydrology and erosion that, in turn, affects adjacent lakes and peatlands. The Tuchola Pinewoods provide an exceptional possibility of studying the impact of such extreme events as it was struck by a tornado in 2012. This project focuses on lake - peatlands ecosystems that were directly affected by this tornado, with respect to the general transformation of the vegetation (mainly forests) over the last 300 years. Extensive clearing of the forest occurred in the nineteenth century due-to human agricultural activity, and we compare this with the impact of the 2012 tornado. Accurate reconstructions will rely on a broad range of palaeoecological techniques such as Cladocera, Chironomidae, diatoms, pollen, macroremains, testate amoebae, but also on geochemistry, i.e. μXRF scanning. We plan to analyses sediments of Kałębie and Martwe Lakes, as well as the adjacent Martwe peatland located along the path of the tornado. The chorology of the records collected will be based on 210Pb, 137Cs and radiocarbon dating as well as relative (crypto)tephra markers of the Eyjafjöll (2010) and Askja (1875) eruptions. This research addresses the emerging issue of the impact of extreme phenomena and more general climate changes on lake and peatland ecosystems, which potentially helps to adaptations to the environmental consequences of extreme events in the future. This project is funded by the Polish National Science Centre (No. 2015/17/B/ST10/03430) and is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analyses - ICLEA - of the Helmholtz Association and Science and Research Funds for 2015-2016, allocated to a co-financed international project (No. 3500/ICLEA/15/2016/0).
Latent heat exchange in the boreal and arctic biomes.
Kasurinen, Ville; Alfredsen, Knut; Kolari, Pasi; Mammarella, Ivan; Alekseychik, Pavel; Rinne, Janne; Vesala, Timo; Bernier, Pierre; Boike, Julia; Langer, Moritz; Belelli Marchesini, Luca; van Huissteden, Ko; Dolman, Han; Sachs, Torsten; Ohta, Takeshi; Varlagin, Andrej; Rocha, Adrian; Arain, Altaf; Oechel, Walter; Lund, Magnus; Grelle, Achim; Lindroth, Anders; Black, Andy; Aurela, Mika; Laurila, Tuomas; Lohila, Annalea; Berninger, Frank
2014-11-01
In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need to take into account vegetation type and phenology in energy exchange modeling. © 2014 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick Gonzalez; Antonio Lara; Jorge Gayoso
Deforestation of temperate rainforests in Chile has decreased the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation can restore those ecosystem services. Greenhouse gas policies that offer financing for the carbon emissions avoided by preventing deforestation require a projection of future baseline carbon emissions for an area if no forest conservation occurs. For a proposed 570 km{sup 2} conservation area in temperate rainforest around the rural community of Curinanco, Chile, we compared three methods to project future baseline carbon emissions: extrapolation from Landsat observations, Geomod, and Forest Restoration Carbon Analysis (FRCA). Analyses of forestmore » inventory and Landsat remote sensing data show 1986-1999 net deforestation of 1900 ha in the analysis area, proceeding at a rate of 0.0003 y{sup -1}. The gross rate of loss of closed natural forest was 0.042 y{sup -1}. In the period 1986-1999, closed natural forest decreased from 20,000 ha to 11,000 ha, with timber companies clearing natural forest to establish plantations of non-native species. Analyses of previous field measurements of species-specific forest biomass, tree allometry, and the carbon content of vegetation show that the dominant native forest type, broadleaf evergreen (bosque siempreverde), contains 370 {+-} 170 t ha{sup -1} carbon, compared to the carbon density of non-native Pinus radiata plantations of 240 {+-} 60 t ha{sup -1}. The 1986-1999 conversion of closed broadleaf evergreen forest to open broadleaf evergreen forest, Pinus radiata plantations, shrublands, grasslands, urban areas, and bare ground decreased the carbon density from 370 {+-} 170 t ha{sup -1} carbon to an average of 100 t ha{sup -1} (maximum 160 t ha{sup -1}, minimum 50 t ha{sup -1}). Consequently, the conversion released 1.1 million t carbon. These analyses of forest inventory and Landsat remote sensing data provided the data to evaluate the three methods to project future baseline carbon emissions. Extrapolation from Landsat change detection uses the observed rate of change to estimate change in the near future. Geomod is a software program that models the geographic distribution of change using a defined rate of change. FRCA is an integrated spatial analysis of forest inventory, biodiversity, and remote sensing that produces estimates of forest biodiversity and forest carbon density, spatial data layers of future probabilities of reforestation and deforestation, and a projection of future baseline forest carbon sequestration and emissions for an ecologically-defined area of analysis. For the period 1999-2012, extrapolation from Landsat change detection estimated a loss of 5000 ha and 520,000 t carbon from closed natural forest; Geomod modeled a loss of 2500 ha and 250 000 t; FRCA projected a loss of 4700 {+-} 100 ha and 480,000 t (maximum 760,000 t, minimum 220,000 t). Concerning labor time, extrapolation for Landsat required 90 actual days or 120 days normalized to Bachelor degree level wages; Geomod required 240 actual days or 310 normalized days; FRCA required 110 actual days or 170 normalized days. Users experienced difficulties with an MS-DOS version of Geomod before turning to the Idrisi version. For organizations with limited time and financing, extrapolation from Landsat change provides a cost-effective method. Organizations with more time and financing could use FRCA, the only method where that calculates the deforestation rate as a dependent variable rather than assuming a deforestation rate as an independent variable. This research indicates that best practices for the projection of baseline carbon emissions include integration of forest inventory and remote sensing tasks from the beginning of the analysis, definition of an analysis area using ecological characteristics, use of standard and widely used geographic information systems (GIS) software applications, and the use of species-specific allometric equations and wood densities developed for local species.« less
NASA Astrophysics Data System (ADS)
Phinn, S. R.; Armston, J.; Scarth, P.; Johansen, K.; Schaefer, M.; Suarez, L.; Soto-Berelov, M.; Muir, J.; Woodgate, W.; Jones, S.; Held, A. A.
2015-12-01
Vegetation structural information is critical for environmental monitoring, management and compliance assessment. In this context we refer to vegetation structural properties as vertical, horizontal and volumetric dimensions, including: canopy height; amount and distribution of vegetation by height; foliage projective cover (FPC); leaf area index (LAI); and above ground biomass. Our aim was to determine if there were significant differences between vegetation structural properties across 11 ecosystem types in Australia as measured by terrestrial laser scanner (TLS) structure metrics. The ecosystems sampled included: mesophyll vineforest, wet-dry tropical savannah, mallee woodland, subtropical eucalypt forest, mulga woodland/grassland, wet eucalypt forest, dry eucalypt forest, tall and wet eucalypt forest, and desert grassland/shrublands. Canopy height, plant area-height profiles and LAI were calculated from consistently processed TLS data using Australia's Terrestrial Ecosystem Research Network's (TERN) Supersites by the TERN AusCover remote sensing field teams from 2012-2015. The Supersites were sampled using standardised field protocols within a core set of 1 ha plots as part of a 5 km x 5 km uniform area using a RIEGL-VZ400 waveform recording TLS. Four to seven scans were completed per plot, with one centre point and then at 25 m away from the centre point along transect lines at 0o, 60o and 240o. Individual foliage profiles were sensitive to spatial variation in the distribution of plant materials. Significant differences were visible between each of the vegetation communities assessed when aggregated to plot and ecosystem type scales. Several of the communities exhibited simple profiles with either grass and shrubs (e.g. desert grassland) or grass and trees (e.g. mallee woodland). Others had multiple vegetation forms at different heights, contributing to the profile (e.g. wet eucalypt forest). The TLS data provide significantly more detail about the relative vertical and horizontal distribution of plant materials. TLS data are providing a step change in satellite image based vegetation mapping, and refining our knowledge of vegetation structure and its phenological variability. Open access plot scale TLS measurements are available through the TERN Auscover data portal.
Gao, Qingzhu; Guo, Yaqi; Xu, Hongmei; Ganjurjav, Hasbagen; Li, Yue; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Liu, Shuo
2016-06-01
Changes in climate have caused impacts on ecosystems on all continents scale, and climate change is also projected to be a stressor on most ecosystems even at the rate of low- to medium-range warming scenarios. Alpine ecosystem in the Qinghai-Tibetan Plateau is vulnerable to climate change. To quantify the climate change impacts on alpine ecosystems, we simulated the vegetation distribution and net primary production in the Qinghai-Tibetan Plateau for three future periods (2020s, 2050s and 2080s) using climate projection for RCPs (Representative Concentration Pathways) RCP4.5 and RCP8.5 scenarios. The modified Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ model) was parameter and test to make it applicable to the Qinghai-Tibetan Plateau. Climate projections that were applied to LPJ model in the Qinghai-Tibetan Plateau showed trends toward warmer and wetter conditions. Results based on climate projections indicated changes from 1.3°C to 4.2°C in annual temperature and changes from 2% to 5% in annual precipitation. The main impacts on vegetation distribution was increase in the area of forests and shrubs, decrease in alpine meadows which mainly replaced by shrubs which dominated the eastern plateau, and expanding in alpine steppes to the northwest dominated the western and northern plateau. The NPP was projected to increase by 79% and 134% under the RCP4.5 and RCP8.5. The projected NPP generally increased about 200gC·m(-2)·yr(-1) in most parts of the plateau with a gradual increase from the eastern to the western region of the Qinghai-Tibetan Plateau at the end of this century. Copyright © 2016 Elsevier B.V. All rights reserved.
Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity
NASA Astrophysics Data System (ADS)
Pellegrini, Adam F. A.; Ahlström, Anders; Hobbie, Sarah E.; Reich, Peter B.; Nieradzik, Lars P.; Staver, A. Carla; Scharenbroch, Bryant C.; Jumpponen, Ari; Anderegg, William R. L.; Randerson, James T.; Jackson, Robert B.
2018-01-01
Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.
Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity.
Pellegrini, Adam F A; Ahlström, Anders; Hobbie, Sarah E; Reich, Peter B; Nieradzik, Lars P; Staver, A Carla; Scharenbroch, Bryant C; Jumpponen, Ari; Anderegg, William R L; Randerson, James T; Jackson, Robert B
2018-01-11
Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.
The spatial extent of change in tropical forest ecosystem services in the Amazon delta
NASA Astrophysics Data System (ADS)
de Araujo Barbosa, C. C.; Atkinson, P.; Dearing, J.
2014-12-01
Deltas hold major economic potential due their strategic location, close to seas and inland waterways, thereby supporting intense economic activity. The increasing pace of human development activities in coastal deltas over the past five decades has also strained environmental resources and produced extensive economic and sociocultural impacts. The Amazon delta is located in the Amazon Basin, North Brazil, the largest river basin on Earth and also one of the least understood. A considerable segment of the population living in the Amazon delta is directly dependent on the local extraction of natural resources for their livelihood. Areas sparsely inhabited may be exploited with few negative consequences for the environment. However, increasing pressure on ecosystem services is amplified by large fluxes of immigrants from other parts of the country, especially from the semi-arid zone in Northeast Brazil to the lowland forests of the Amazon delta. Here we present partial results from a bigger research project. Therefore, the focus will be on presenting an overview of the current state, and the extent of changes on forest related ecosystem services in the Amazon delta over the last three decades. We aggregated a multitude of datasets, from a variety of sources, for example, from satellite imagery such as the Advanced Very High Resolution Radiometer (AVHRR), the Global Inventory Modelling and Mapping Studies (GIMMS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and climate datasets at meteorological station level from the Brazilian National Institute of Meteorology (INMET) and social and economic statistics data from the Brazilian Institute of Geography and Statistics (IBGE) and from the Brazilian Institute of Applied Economic Research (IPEA). Through analysis of socioeconomic and satellite earth observation data we were able to produce and present spatially-explicit information with the current state and transition in forest cover and its impacts to forest ecosystem services providing units in the Amazon delta.
E.M. Goheen; S.J. Frankel
2009-01-01
The fourth meeting of the International Union of Forest Research Organizations (IUFRO) Working Party S07.02.09, Phytophthoras in Forests and Natural Ecosystems provided a forum for current research on Phytophthora species worldwide. Seventy-eight submissions describing papers and posters on recent developments in Phytophthora diseases of trees and natural ecosystems in...
Restoring Forested Wetland Ecosystems
John A. Stanturf; Emile S. Gardiner; Melvin L. Warren
2003-01-01
Forests as natural systems are intrinsically linked to the sustainability of fresh-water systems. Efforts worldwide to restore forest ecosystems seek to counteract centuries of forest conversion to agriculture and other uses. Afforestation, the practice of regenerating forests on land deforested for agriculture or other uses, is occurring at an intense pace in the...
Oliveira, Rafael S.; Eller, Cleiton B.; Bittencourt, Paulo R. L.; Mulligan, Mark
2014-01-01
Background Tropical montane cloud forests (TMCFs) are characterized by a unique set of biological and hydroclimatic features, including frequent and/or persistent fog, cool temperatures, and high biodiversity and endemism. These forests are one of the most vulnerable ecosystems to climate change given their small geographic range, high endemism and dependence on a rare microclimatic envelope. The frequency of atmospheric water deficits for some TMCFs is likely to increase in the future, but the consequences for the integrity and distribution of these ecosystems are uncertain. In order to investigate plant and ecosystem responses to climate change, we need to know how TMCF species function in response to current climate, which factors shape function and ecology most and how these will change into the future. Scope This review focuses on recent advances in ecophysiological research of TMCF plants to establish a link between TMCF hydrometeorological conditions and vegetation distribution, functioning and survival. The hydraulic characteristics of TMCF trees are discussed, together with the prevalence and ecological consequences of foliar uptake of fog water (FWU) in TMCFs, a key process that allows efficient acquisition of water during cloud immersion periods, minimizing water deficits and favouring survival of species prone to drought-induced hydraulic failure. Conclusions Fog occurrence is the single most important microclimatic feature affecting the distribution and function of TMCF plants. Plants in TMCFs are very vulnerable to drought (possessing a small hydraulic safety margin), and the presence of fog and FWU minimizes the occurrence of tree water deficits and thus favours the survival of TMCF trees where such deficits may occur. Characterizing the interplay between microclimatic dynamics and plant water relations is key to foster more realistic projections about climate change effects on TMCF functioning and distribution. PMID:24759267
Projecting future impacts of hurricanes on the carbon balance of eastern U.S. forests
NASA Astrophysics Data System (ADS)
Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K.; Flanagan, S.; Rourke, O.; Negron Juarez, R. I.
2011-12-01
In U.S. Atlantic coastal areas, hurricanes are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial recent progress has been made to estimate the biomass loss and resulting carbon emissions caused by hurricanes impacting the U.S. Additionally, efforts to evaluate the net effects of hurricanes on the regional carbon balance have demonstrated the importance of viewing large disturbance events in the broader context of recovery from a mosaic of past events. Viewed over sufficiently long time scales and large spatial scales, regrowth from previous storms may largely offset new emissions; however, changes in number, strength or spatial distribution of extreme disturbance events will result in changes to the equilibrium state of the ecosystem and have the potential to result in a lasting carbon source or sink. Many recent studies have linked climate change to changes in the frequency and intensity of hurricanes. In this study, we use a mechanistic ecosystem model, the Ecosystem Demography (ED) model, driven by scenarios of future hurricane activity based on historic activity and future climate projections, to evaluate how changes in hurricane frequency, intensity and spatial distribution could affect regional carbon storage and flux over the coming century. We find a non-linear response where increased storm activity reduces standing biomass stocks reducing the impacts of future events. This effect is highly dependent on the spatial pattern and repeat interval of future hurricane activity. Developing this kind of predictive modeling capability that tracks disturbance events and recovery is key to our understanding and ability to predict the carbon balance of forests.
NASA Astrophysics Data System (ADS)
Bachelet, D. M.
2014-12-01
Climate change is projected to jeopardize ecosystems in the Pacific Northwest. Managing ecosystems for future resilience requires collaboration, innovation and communication. The abundance of data and documents describing the uncertainty around both climate change projections and impacts has become challenging to managers who have little funding and limited time to digest and incorporate these materials into planning and implementation documents. We worked with US Forest Service and BLM managers to help them develop vulnerability assessments and identify on-the-ground strategies to address climate change challenges on the federal lands in northwest Oregon (Siuslaw, Willamette and Mt. Hood National Forests; Eugene and Salem BLM Districts). We held workshops to promote dialogue about climate change, which were particularly effective in fostering discussions between the managers who often do not have the time to share their knowledge and compare experiences across administrative boundaries. We used the Adaptation for Conservation Targets (ACT) framework to identify measurable management objectives and rapidly assess local vulnerabilities. We used databasin.org to centralize usable information, including state-of-the-art CMIP5 climate projections, for the mandated assessments of vulnerability and resilience. We introduced participants to a decision support framework providing opportunities to develop more effective adaptation strategies. We built a special web page to hold the information gathered at the workshops and provide easy access to climate change information. We are now working with several Landscape Conservation Cooperatives (LCCs) to design gateways - conservation atlases - to their relevant data repositories on databasin.org and working with them to develop web tools that can provide usable information for their own vulnerability assessments.
NASA Astrophysics Data System (ADS)
Mayer, Paul M.
2008-03-01
Identifying the biotic (e.g. decomposers, vegetation) and abiotic (e.g. temperature, moisture) mechanisms controlling litter decomposition is key to understanding ecosystem function, especially where variation in ecosystem structure due to successional processes may alter the strength of these mechanisms. To identify these controls and feedbacks, I measured mass loss and N flux in herbaceous, leaf, and wood litter along a successional gradient of ecosystem types (old field, transition forest, old-growth forest) while manipulating detritivore access to litter. Ecosystem type, litter type, and decomposers contributed directly and interactively to decomposition. Litter mass loss and N accumulation was higher while litter C:N remained lower in old-growth forests than in either old fields or transition forest. Old-growth forests influenced litter dynamics via microclimate (coolest and wettest) but also, apparently, through a decomposer community adapted to consuming the large standing stocks of leaf litter, as indicated by rapid leaf litter loss. In all ecosystem types, mass loss of herbaceous litter was greater than leaf litter which, in turn was greater than wood. However, net N loss from wood litter was faster than expected, suggesting localized N flux effects of wood litter. Restricting detritivore access to litter reduced litter mass loss and slowed the accumulation of N in litter, suggesting that macro-detritivores affect both physical and chemical characteristics of litter through selective grazing. These data suggest that the distinctive litter loss rates and efficient N cycling observed in old-growth forest ecosystems are not likely to be realized soon after old fields are restored to forested ecosystems.
Monitoring and Modeling Carbon Dynamics at a Network of Intensive Sites in the USA and Mexico
NASA Astrophysics Data System (ADS)
Birdsey, R.; Wayson, C.; Johnson, K. D.; Pan, Y.; Angeles, G.; De Jong, B. H.; Andrade, J. L.; Dai, Z.
2013-05-01
The Forest Services of the USA and Mexico, supported by NASA and USAID, have begun to establish a network of intensive forest carbon monitoring sites. These sites are used for research and teaching, developing forest management practices, and forging links to the needs of communities. Several of the sites have installed eddy flux towers to basic meteorology data and daily estimates of forest carbon uptake and release, the processes that determine forest growth. Field sampling locations at each site provide estimates of forest biomass and carbon stocks, and monitor forest dynamic processes such as growth and mortality rates. Remote sensing facilitates scaling up to the surrounding landscapes. The sites support information requirements for implementing programs such as Reducing Emissions from Deforestation and Forest Degradation (REDD+), enabling communities to receive payments for ecosystem services such as reduced carbon emissions or improved forest management. In addition to providing benchmark data for REDD+ projects, the sites are valuable for validating state and national estimates from satellite remote sensing and the national forest inventory. Data from the sites provide parameters for forest models that support strategic management analysis, and support student training and graduate projects. The intensive monitoring sites may be a model for other countries in Latin America. Coordination among sites in the USA, Mexico and other Latin American countries can ensure harmonization of approaches and data, and share experiences and knowledge among countries with emerging opportunities for implementing REDD+ and other conservation programs.
Bulgarian Rila mountain forest ecosystems study site: site description and SO42-, NO3- deposition
Karl Zeller; Christo Bojinov; Evgeny Donev; Nedialko Nikolov
1998-01-01
Bulgaria's forest ecosystems (31 percent of the country's area) are considered vulnerable to dry and wet pollution deposition. Coniferous forests that cover one-third of the total forest land are particularly sensitive to pollution loads. The USDA Forest Service, Sofia University, and the Bulgarian Forest Research Institute (FRI) established a cooperative...
Modelling impacts of second generation bioenergy production on Ecosystem Services in Europe
NASA Astrophysics Data System (ADS)
Henner, Dagmar N.; Smith, Pete; Davies, Christian; McNamara, Niall P.
2015-04-01
Bioenergy crops are an important source of renewable energy and are a possible mechanism to mitigate global climate warming, by replacing fossil fuel energy with higher greenhouse gas emissions. There is, however, uncertainty about the impacts of the growth of bioenergy crops on ecosystem services. This uncertainty is further enhanced by the unpredictable climate change currently going on. The goal of this project is to develop a comprehensive model that covers as many ecosystem services as possible at a Continental level including biodiversity, water, GHG emissions, soil, and cultural services. The distribution and production of second generation energy crops, such as Miscanthus, Short Rotation Coppice (SRC) and Short Rotation Forestry (SRF), is currently being modelled, and ecosystem models will be used to examine the impacts of these crops on ecosystem services. The project builds on models of energy crop production, biodiversity, soil impacts, greenhouse gas emissions and other ecosystem services, and on work undertaken in the UK on the ETI-funded ELUM project (www.elum.ac.uk). In addition, methods like water footprint tools, tourism value maps and ecosystem valuation tools and models (e.g. InVest, TEEB database, GREET LCA Model, World Business Council for Sustainable Development corporate ecosystem valuation, Millennium Ecosystem Assessment and the Ecosystem Services Framework) will be utilised. Research will focus on optimisation of land use change feedbacks on ecosystem services and biodiversity, and weighting of the importance of the individual ecosystem services. Energy crops will be modelled using low, medium and high climate change scenarios for the years between 2015 and 2050. We will present first results for GHG emissions and soil organic carbon change after different land use change scenarios (e.g. arable to Miscanthus, forest to SRF), and with different climate warming scenarios. All this will be complemented by the presentation of a matrix including all the factors and ecosystem services influenced by land use change to bioenergy crop production under different climate change scenarios.
NASA Astrophysics Data System (ADS)
Giambelluca, T. W.; Mudd, R. G.; Huang, M.; Nullet, M.; Asner, G. P.; Martin, R.; Ostertag, R.; Miyazawa, Y.; Litton, C. M.
2016-12-01
Uncertainty about the local and regional effects of global climate warming on terrestrial ecosystems and their ability to produce ecosystem goods and services is a serious constraint for land-based natural resource managers. In Hawai`i and other Pacific Islands, this issue is complicated by the presence of numerous and widespread non-native invasive species, including invasive trees. As warming continues and other climate variables change in response to temperature increases, how will native- and non-native-dominated ecosystems respond? To address this question, eddy covariance flux towers were established and operated for approximately a decade over native forest and at a site invaded by a non-native tree. Flux data were analyzed to determine the sensitivity of carbon exchange rates to fluctuations in ambient CO2 concentration, temperature (T), humidity, photosynthetically active radiation (PAR), and soil moisture (SM). At both sites, gross primary production (GPP) is strongly controlled by PAR and to a lesser extent by T. Ecosystem respiration (Re) responds to T and SM at both sites, as expected. Net ecosystem carbon exchange (NEE) is predominantly controlled by PAR at both sites. Higher temperature is associated with higher rates of photosynthesis and greater Re, thereby canceling the net effect of temperature on carbon exchange. Hence, no significant effect of temperature on NEE was found at either site. These results suggest that the direct effects of future warming will be small in relation to the effects of any changes in cloud cover that affect incident solar radiation. Cloud cover in Hawai`i could be affected by projected increases in atmospheric stability (reduced cloud cover) and increases in humidity (increased cloud cover). Light response (GPP sensitivity to PAR) was found to be significantly greater at the non-native site, suggesting that a future decrease in cloud cover would favor the non-native ecosystem, while increased cloudiness would cause a greater reduction in carbon uptake in the non-native forest.
Don Helmbrecht; Julie Gilbertson-Day; Joe H. Scott; LaWen Hollingsworth
2016-01-01
The Island Park Sustainable Fire Community (IPSFC) Project is a collaborative working group of citizens, businesses, non-profit organizations, and local, state, and federal government agencies (www.islandparkfirecommunity.com) working to create fire-resilient ecosystems in and around the human communities of West Yellowstone, Montana and Island Park, Idaho....
Conservation of ectomycorrhizal fungi: green-tree retention preserves species diversity
Joyce L. Eberhart; Daniel L. Luoma
2013-01-01
Th e Demonstration of Ecosystem Management Options (DEMO) project is a large, interdisciplinary study designed to test the biological and silvicultural eff ects of green-tree retention in Douglas-fi r (Pseudotsuga menziesii) forests. Six treatments were replicated on six blocks in Washington and Oregon, USA: no harvest, 75 percent aggregated, 40 percent (dispersed and...
Crown Health of Reserve Hardwood Trees Following Reproduction Cutting in the Ouachita Mountains
Dale A. Starkey; James M. Guldin
2004-01-01
Abstract - Monitoring the health of reserve hardwood trees is being performed as part of the Ecosystem Management Research Project on the Ouachita and Ozark National Forests in Arkansas. A suite of crown variables (diameter, live crown ratio, density, dieback, and foliage transparency) was used to detect significant changes in reserve tree health...
Chapter 12 - Impacts of laurel wilt disease on native Persea ecosystems (Project SO-EM-B-12-05).
Timothy M. Shearman; G. Geoff. Wang
2018-01-01
Although mostly occurring as associate tree species in forest communities, Persea has a wide native distribution in southeast coastal plains (Shearman and others 2015). Laurel wilt disease (LWD) is a lethal vascular infection of trees in the laurel family (Lauraceae) caused by the fungus Raffaelea lauricola (Fraedrich and...
The Ned IIS project - forest ecosystem management
W. Potter; D. Nute; J. Wang; F. Maier; Michael Twery; H. Michael Rauscher; P. Knopp; S. Thomasma; M. Dass; H. Uchiyama
2002-01-01
For many years we have held to the notion that an Intelligent Information System (IIS) is composed of a unified knowledge base, database, and model base. The main idea behind this notion is the transparent processing of user queries. The system is responsible for "deciding" which information sources to access in order to fulfil a query regardless of whether...
Zhaofei Fan; Daniel C. Dey
2014-01-01
Fire in the Ozark Highlands was historically used by Native Americans (Guyette and others 2002). Early European settlers continued to burn the landscape to manage livestock forage. In the late 1800s, people began to harvest timber, cutting first pine trees and later oak (Flader 2008).
Historical and projected climate in the Northern Rockies Region [Chapter 3
Linda A. Joyce; Marian Talbert; Darrin Sharp; Jeffrey Morisette; John Stevenson
2018-01-01
Climate influences the ecosystem services we obtain from forest and rangelands. Climate is described by the long-term characteristics of precipitation, temperature, wind, snowfall, and other measures of weather that occur over a long period in a particular place, and is typically expressed as long-term average conditions. Resource management practices are implemented...
Victoria L. Sork; Peter E. Smouse; Victoria J. Apsit; Rodney J. Dyer; Robert D. Westfall
2005-01-01
Anthropogenic landscape change can disrupt gene flow. As part of the Missouri Ozark Forest Ecosystem Project, this study examined whether silvicultural practices influence pollen-mediated gene movement in the insect-pollinated species, Cornus florida L., by comparing pollen pool structure (ΦST) among clear-cutting,...
Rochelle B. Renken
1997-01-01
I examined the species composition, species richness, and relative abundance of herpetofaunal communities on southwest-facing and northeast-facing slopes on the MOFEP sites. For the landscape-scale investigations, herpetofaunal communities on southwest- facing slopes were relatively similar, averaged 23.4 species/site, and had relative abundance estimates ranging from...
Managing redwood ecosystems using Sudden Oak Death as a silvicultural tool
Frederick D. Euphrat
2015-01-01
In response to the wave of sudden oak death (SOD), caused by Phytophthora ramorum, sweeping the redwood forest ecosystems of California's North Coast, the role of foresters and other ecosystem managers is being tested. On Bear Flat Tree Farm, near Healdsburg, California, Forest, Soil & Water, Inc. (FSW) has conducted a multi-year,...
Carbon allocation in forest ecosystems
Creighton M. Litton; James W. Raich; Michael G. Ryan
2007-01-01
Carbon allocation plays a critical role in forest ecosystem carbon cycling. We reviewed existing literature and compiled annual carbon budgets for forest ecosystems to test a series of hypotheses addressing the patterns, plasticity, and limits of three components of allocation: biomass, the amount of material present; flux, the flow of carbon to a component per unit...
Using DCOM to support interoperability in forest ecosystem management decision support systems
W.D. Potter; S. Liu; X. Deng; H.M. Rauscher
2000-01-01
Forest ecosystems exhibit complex dynamics over time and space. Management of forest ecosystems involves the need to forecast future states of complex systems that are often undergoing structural changes. This in turn requires integration of quantitative science and engineering components with sociopolitical, regulatory, and economic considerations. The amount of data...
Boreal forest health and global change.
Gauthier, S; Bernier, P; Kuuluvainen, T; Shvidenko, A Z; Schepaschenko, D G
2015-08-21
The boreal forest, one of the largest biomes on Earth, provides ecosystem services that benefit society at levels ranging from local to global. Currently, about two-thirds of the area covered by this biome is under some form of management, mostly for wood production. Services such as climate regulation are also provided by both the unmanaged and managed boreal forests. Although most of the boreal forests have retained the resilience to cope with current disturbances, projected environmental changes of unprecedented speed and amplitude pose a substantial threat to their health. Management options to reduce these threats are available and could be implemented, but economic incentives and a greater focus on the boreal biome in international fora are needed to support further adaptation and mitigation actions. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Din, Abdullah Muhaimin Mohammad; Yaakop, Salmah; Hazmi, Izfa Riza
2015-09-01
Dung beetles has known for its bioindicator characteristic. Sensitive towards forest disturbance, dung beetles population and diversity will be less in disturbed and modified area. The objective of this study is to evaluate the diversity and distribution of dung beetles in different type of ecosystems in Peninsular Malaysia. Fifteen baited pitfall traps aligned in three transects were used in this study. Samples were collected after 24 h and repeated three time collections and identified afterwards. Two ecosystem types were selected, which are forested and agricultural ecosystem (livestock and plantation). A total of 4249 individuals, 47 species, in 11 genera was successfully collected from all localities. The H' index for Fraser Hill, Langkawi, Bangi Reserve Forest, Selangor (HSB), Sungkai Reserve Forest, Perak (SRF), Chini Lake, Bera Lake, chicken farm, goat farm, Longan plantation, and palm oil plantation were 1.58, 1.74, 2.17, 2.63, 1.80, 1.52, 1.63, 0.46, 0.00 and 1.98 respectively.Forest ecosystem, SRF shows the highest abundance (1486 individuals) and diversity, while for agricultural ecosystem,palm oil plantation shows the highest with 273 individuals and 16 species. Based onDetrended Correspondence Analysis (DCA) shows two groups that separate forest ecosystem with the agricultural ecosystem, with palm oil is the nearest to the forest. Palm oil ecosystem can sustain a dung beetles population due to the area can provide the requirements for the dung beetles to survive, such as food which comes from local domestic cows, shade from sunlight provide by the palm oil trees, and ground cover from small plants and shrubs.Even though modified ecosystem should have lower diversity of dung beetles, but some factors must be measured as well in order to have a better point of view.
Interacting Factors Driving a Major Loss of Large Trees with Cavities in a Forest Ecosystem
Lindenmayer, David B.; Blanchard, Wade; McBurney, Lachlan; Blair, David; Banks, Sam; Likens, Gene E.; Franklin, Jerry F.; Laurance, William F.; Stein, John A. R.; Gibbons, Philip
2012-01-01
Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia – forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans). Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006–2009). Following a major wildfire in 2009, 79% of large living trees with cavities died and 57–100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1) the prolonged time required (>120 years) for initiation of cavities; and (2) repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide. PMID:23071486
Zheng, Jingming; Jiang, Fengqi; Zeng, Dehui
2003-06-01
To realize the sustainable management of forest ecosystems, we should explicitly clarify the types and differences of the ecosystem services provided by different ecosystems under different conditions, with rethinking about the value of forest ecosystems; then solid management strategies and measurements will be enacted and applied to achieve the objects. The broad-leaved Korean pine forest (BLKPF) in Changbai Mountain is a unique and important forest type in China, owing to its many important ecosystem services such as preventing soil erosion, regulating climates, nutrient cycling, providing wood and non-timber forest products, etc. This paper is a preliminary study on the management strategy of BLKPF on the basis of analyzing the characters of the ecosystems and the relative importance of services they provided in this region. Based on the latest research of ecosystem services of BLKPF in Changbai Mountain, an idea of eco-value level (EVL) was introduced, and accordingly, management strategies were summarized by adopting the advanced theories in ecosystem management science and by analyzing field survey data. EVL means the relative amount of the value of ecosystem services provided by certain ecosystem, which can indicate the difference between services in given objects. The EVL classification of BLKPF implies the relative amount of the eco-value of different ecosystems including virgin forest, secondary forest, forest with human disturbance, and man-made forest in the clear-cutting sites. Analytical Hierarchical Processing method was used to formulate the equation for EVL index. Eight factors, namely, slope, soil depth, stability of soil maternal material, coverage of above-ground canopy, species diversity, regeneration rate of the stand, life span of dominant tree species, and intensity of human disturbance were chosen to build the formula. These factors belonged to three aspects affecting ecosystem services including the physical environment, community, and disturbance regime, and their selection and scaling were based on the previous studies on the BLKPF. The equation of EVL index (EI) was expressed as: EI = 0.542A1 + 0.171A2 + 0.072A3 + 0.067B1 + 0.043B2 + 0.014B3 + 0.010B4 + 0.081C1. According to the range of EI, ecosystems were classified into three types: low EVL type with EI from 1.000 to 1.874, medium EVL type with EI 1.874-2.749, and high EVL type with EI 2.749-3.623. Typical plots were surveyed and scaled with EI, and the predominant characters of each EVL type were summarized. Most forests of high EVL type were those in sites at high risk of soil erosion and hard to recover after disrupted. Forests of medium EVL type were those with worse community structure and composition, and were disturbed by human activities in relative steep sites. Forest of low EVL type were those in plane site with serious disruption or some young man-made stands. Based on the analyses of the characters of these three types, different management strategies were put forward. For high EVL type forest, strictly protection is most important to maintain the forest in natural succession and its eco-services. For medium EVL type forest, the key points of management are restoring their health and vigor by regulating their composition and structure in a seminatural way. For low EVL type forest, some area could be used to extensive exploration for economic benefits, and the rests should be reconstructed towards the original stand in composition and structure, based on the 'shadow ecosystem' in a close-to-nature way to promote the capacity of providing more eco-services.
Repeated wildfires alter forest recovery of mixed-conifer ecosystems.
Stevens-Rumann, Camille; Morgan, Penelope
2016-09-01
Most models project warmer and drier climates that will contribute to larger and more frequent wildfires. However, it remains unknown how repeated wildfires alter post-fire successional patterns and forest structure. Here, we test the hypothesis that the number of wildfires, as well as the order and severity of wildfire events interact to alter forest structure and vegetation recovery and implications for vegetation management. In 2014, we examined forest structure, composition, and tree regeneration in stands that burned 1-18 yr before a subsequent 2007 wildfire. Three important findings emerged: (1) Repeatedly burned forests had 15% less woody surface fuels and 31% lower tree seedling densities compared with forests that only experienced one recent wildfire. These repeatedly burned areas are recovering differently than sites burned once, which may lead to alternative ecosystem structure. (2) Order of burn severity (high followed by low severity compared with low followed by high severity) did influence forest characteristics. When low burn severity followed high, forests had 60% lower canopy closure and total basal area with 92% fewer tree seedlings than when high burn severity followed low. (3) Time between fires had no effect on most variables measured following the second fire except large woody fuels, canopy closure and tree seedling density. We conclude that repeatedly burned areas meet many vegetation management objectives of reduced fuel loads and moderate tree seedling densities. These differences in forest structure, composition, and tree regeneration have implications not only for the trajectories of these forests, but may reduce fire intensity and burn severity of subsequent wildfires and may be used in conjunction with future fire suppression tactics. © 2016 by the Ecological Society of America.
A review of impacts by invasive exotic plants on forest ecosystem services
Kevin Devine; Songlin Fei
2011-01-01
Many of our forest ecosystems are at risk due to the invasion of exotic invasive plant species. Invasive plant species pose numerous threats to ecosystems by decreasing biodiversity, deteriorating ecosystem processes, and degrading ecosystem services. Literature on Kentucky's most invasive exotic plant species was examined to understand their potential impacts on...
Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems
Nathaly R. Guerrero-Ramírez; Dylan Craven; Peter B. Reich; John J. Ewel; Forest Isbell; Julia Koricheva; John A. Parrotta; Harald Auge; Heather E. Erickson; David I. Forrester; Andy Hector; Jasmin Joshi; Florencia Montagnini; Cecilia Palmborg; Daniel Piotto; Catherine Potvin; Christiane Roscher; Jasper van Ruijven; David Tilman; Brian Wilsey; Nico Eisenhauer
2017-01-01
The effects of biodiversity on ecosystem functioning generally increase over time, but the underlying processes remain unclear. Using 26 long-term grassland and forest experimental ecosystems, we demonstrate that biodiversityâecosystem functioning relationships strengthen mainly by greater increases in functioning in high-diversity communities in grasslands and forests...
NASA Astrophysics Data System (ADS)
Goetz, S. J.; Rogers, B. M.; Mack, M. C.; Goulden, M.; Pastick, N. J.; Berner, L. T.; Fisher, J.
2017-12-01
The Arctic and boreal forest biomes have global significance in terms of climate feedbacks associated with land surface interactions with the atmosphere. Changes in Arctic tundra and boreal forest ecosystem productivity and fire disturbance feedbacks have been well documented in recent years, but findings are often only locally relevant and are sometimes inconsistent among research teams. Part of these inconsistencies lie in utilization of different data sets and time periods considered. Integrated approaches are thus needed to adequately address changes in these ecosystems in order to assess consistency and variability of change, as well as ecosystem vulnerability and resiliency across spatial and temporal scales. Ultimately this can best be accomplished via multiple lines of evidence including remote sensing, field measurements and various types of data-constrained models. We will discuss some recent results integrating multiple lines of evidence for directional ecosystem change in the Arctic and boreal forest biomes of North America. There is increasing evidence for widespread spatial and temporal variability in Arctic and boreal ecosystem productivity changes that are strongly influenced by cycles of changing fire disturbance severity and its longer-term implications (i.e legacy effects). Integrated, multi-approach research, like that currently underway as part of the NASA-led Arctic Boreal Vulnerability Experiment (above.nasa.gov), is an effective way to capture the complex mechanisms that drive patterns and directionality of ecosystem structure and function, and ultimately determine feedbacks to environmental change, particularly in the context of global climate change. Additional ongoing ABoVE research will improve our understanding of the consequences of environmental changes underway, as well as increase our confidence in making projections of the ecosystem responses, vulnerability and resilience to change. ABoVE will also build a lasting legacy of collaboration through an expanded knowledge base, provision of key datasets to a broader network of researchers and resource managers, and the development of data products and knowledge designed to foster decision support and applied research partnerships with broad societal relevance.
Projected land-use change impacts on ecosystem services in the United States
Lawler, Joshua J.; Lewis, David J.; Nelson, Erik; Plantinga, Andrew J.; Polasky, Stephen; Withey, John C.; Helmers, David P.; Martinuzzi, Sebastián; Pennington, Derric; Radeloff, Volker C.
2014-01-01
Providing food, timber, energy, housing, and other goods and services, while maintaining ecosystem functions and biodiversity that underpin their sustainable supply, is one of the great challenges of our time. Understanding the drivers of land-use change and how policies can alter land-use change will be critical to meeting this challenge. Here we project land-use change in the contiguous United States to 2051 under two plausible baseline trajectories of economic conditions to illustrate how differences in underlying market forces can have large impacts on land-use with cascading effects on ecosystem services and wildlife habitat. We project a large increase in croplands (28.2 million ha) under a scenario with high crop demand mirroring conditions starting in 2007, compared with a loss of cropland (11.2 million ha) mirroring conditions in the 1990s. Projected land-use changes result in increases in carbon storage, timber production, food production from increased yields, and >10% decreases in habitat for 25% of modeled species. We also analyze policy alternatives designed to encourage forest cover and natural landscapes and reduce urban expansion. Although these policy scenarios modify baseline land-use patterns, they do not reverse powerful underlying trends. Policy interventions need to be aggressive to significantly alter underlying land-use change trends and shift the trajectory of ecosystem service provision. PMID:24799685
The 2008 South China Freeze and its Impact on the Forests
NASA Astrophysics Data System (ADS)
Zhou, B.; Ai, C.; Wang, Y.; Li, Z.; Cao, Y.; Wang, X.
2008-12-01
An unprecedented calamity caused by snow and freezing rain occurred in South China in 2008. This freeze was closely related to the La Nina phenomenon according to a report from the World Meteorological Organization. The freeze stroke 19 provinces in China, and damaged forests of 19.33 million ha with a standing volume loss of 371 million m3. It is estimated that the direct economic loss in the form of destroyed forests is over $8 billion. The indirect loss in the form of impaired ecological functions, such as water and soil conservation, water resources conservancy, biodiversity and forest carbon pool etc is enormous. The calamity of snow and freezing rain affected the structure and function of forest ecosystems. The snow load and freezing rain caused mechanical damage to the trees, with the species of Pinus massoniana, Cunninghamia lanceolata, Pinus elliottii and Phyllostachys pubescens etc. being the most seriously affected. The cold weather could also cause the physiological hurt to the trees. The change of the biotic components leads to the change of abiotic components in the ecosystems. The sunlight under the canopy was intensified due to the opening up of the canopy. The air temperature in the forest, the nutrient and microorganism in soil, the litterfall dynamic were also affected. The alteration of the forest ecosystem structure brought in the alteration of its functions. The damage of the ecosystem structure weakened the capacity of the water and soil conservation, water resources conservancy and reduced the biodiversity in forest ecosystems. Forest gaps allow more sunlight into the freeze-damaged ecosystem, inducing the invasion of more masculine species. The direction and progress of the community succession was therefore altered. At the same time, the freeze made a great impact on the stability and health of the forest ecosystem, increasing the potential risk of outbreak of forest fire and plant diseases/insect pests. Some suggestions on the rebuilding and recovery of damaged forest were given in this paper.