Alamgir, Mohammed; Turton, Stephen M; Macgregor, Colin J; Pert, Petina L
2016-10-01
As ecosystem services supply from tropical forests is declining due to deforestation and forest degradation, much effort is essential to sustain ecosystem services supply from tropical forested landscapes, because tropical forests provide the largest flow of multiple ecosystem services among the terrestrial ecosystems. In order to sustain multiple ecosystem services, understanding ecosystem services capacity across heterogeneous forest types and identifying certain ecosystem services that could be managed to leverage positive effects across the wider bundle of ecosystem services are required. We sampled three forest types, tropical rainforests, sclerophyll forests, and rehabilitated plantation forests, over an area of 32,000m(2) from Wet Tropics bioregion, Australia, aiming to compare supply and evaluate interactions and patterns of eight ecosystem services (global climate regulation, air quality regulation, erosion regulation, nutrient regulation, cyclone protection, habitat provision, energy provision, and timber provision). On average, multiple ecosystem services were highest in the rainforests, lowest in sclerophyll forests, and intermediate in rehabilitated plantation forests. However, a wide variation was apparent among the plots across the three forest types. Global climate regulation service had a synergistic impact on the supply of multiple ecosystem services, while nutrient regulation service was found to have a trade-off impact. Considering multiple ecosystem services, most of the rehabilitated plantation forest plots shared the same ordination space with rainforest plots in the ordination analysis, indicating that rehabilitated plantation forests may supply certain ecosystem services nearly equivalent to rainforests. Two synergy groups and one trade-off group were identified. Apart from conserving rainforests and sclerophyll forests, our findings suggest two additional integrated pathways to sustain the supply of multiple ecosystem services from a heterogeneous tropical forest landscape: (i) rehabilitation of degraded forests aiming to provide global climate regulation and habitat provision ecosystem services and (ii) management intervention to sustain global climate regulation and habitat provision ecosystem services. Copyright © 2016 Elsevier B.V. All rights reserved.
Dynamics of Ecosystem Services during Forest Transitions in Reventazón, Costa Rica.
Vallet, Améline; Locatelli, Bruno; Levrel, Harold; Brenes Pérez, Christian; Imbach, Pablo; Estrada Carmona, Natalia; Manlay, Raphaël; Oszwald, Johan
2016-01-01
The forest transition framework describes the temporal changes of forest areas with economic development. A first phase of forest contraction is followed by a second phase of expansion once a turning point is reached. This framework does not differentiate forest types or ecosystem services, and describes forests regardless of their contribution to human well-being. For several decades, deforestation in many tropical regions has degraded ecosystem services, such as watershed regulation, while increasing provisioning services from agriculture, for example, food. Forest transitions and expansion have been observed in some countries, but their consequences for ecosystem services are often unclear. We analyzed the implications of forest cover change on ecosystem services in Costa Rica, where a forest transition has been suggested. A review of literature and secondary data on forest and ecosystem services in Costa Rica indicated that forest transition might have led to an ecosystem services transition. We modeled and mapped the changes of selected ecosystem services in the upper part of the Reventazón watershed and analyzed how supply changed over time in order to identify possible transitions in ecosystem services. The modeled changes of ecosystem services is similar to the second phase of a forest transition but no turning point was identified, probably because of the limited temporal scope of the analysis. Trends of provisioning and regulating services and their tradeoffs were opposite in different spatial subunits of our study area, which highlights the importance of scale in the analysis of ecosystem services and forest transitions. The ecosystem services transition framework proposed in this study is useful for analyzing the temporal changes of ecosystem services and linking socio-economic drivers to ecosystem services demand at different scales.
Dynamics of Ecosystem Services during Forest Transitions in Reventazón, Costa Rica
Vallet, Améline; Locatelli, Bruno; Levrel, Harold; Brenes Pérez, Christian; Imbach, Pablo; Estrada Carmona, Natalia; Manlay, Raphaël; Oszwald, Johan
2016-01-01
The forest transition framework describes the temporal changes of forest areas with economic development. A first phase of forest contraction is followed by a second phase of expansion once a turning point is reached. This framework does not differentiate forest types or ecosystem services, and describes forests regardless of their contribution to human well-being. For several decades, deforestation in many tropical regions has degraded ecosystem services, such as watershed regulation, while increasing provisioning services from agriculture, for example, food. Forest transitions and expansion have been observed in some countries, but their consequences for ecosystem services are often unclear. We analyzed the implications of forest cover change on ecosystem services in Costa Rica, where a forest transition has been suggested. A review of literature and secondary data on forest and ecosystem services in Costa Rica indicated that forest transition might have led to an ecosystem services transition. We modeled and mapped the changes of selected ecosystem services in the upper part of the Reventazón watershed and analyzed how supply changed over time in order to identify possible transitions in ecosystem services. The modeled changes of ecosystem services is similar to the second phase of a forest transition but no turning point was identified, probably because of the limited temporal scope of the analysis. Trends of provisioning and regulating services and their tradeoffs were opposite in different spatial subunits of our study area, which highlights the importance of scale in the analysis of ecosystem services and forest transitions. The ecosystem services transition framework proposed in this study is useful for analyzing the temporal changes of ecosystem services and linking socio-economic drivers to ecosystem services demand at different scales. PMID:27390869
Balancing trade-offs between ecosystem services in Germany’s forests under climate change
NASA Astrophysics Data System (ADS)
Gutsch, Martin; Lasch-Born, Petra; Kollas, Chris; Suckow, Felicitas; Reyer, Christopher P. O.
2018-04-01
Germany’s forests provide a variety of ecosystem services. Sustainable forest management aims to optimize the provision of these services at regional level. However, climate change will impact forest ecosystems and subsequently ecosystem services. The objective of this study is to quantify the effects of two alternative management scenarios and climate impacts on forest variables indicative of ecosystem services related to timber, habitat, water, and carbon. The ecosystem services are represented through nine model output variables (timber harvest, above and belowground biomass, net ecosystem production, soil carbon, percolation, nitrogen leaching, deadwood, tree dimension, broadleaf tree proportion) from the process-based forest model 4C. We simulated forest growth, carbon and water cycling until 2045 with 4C set-up for the whole German forest area based on National Forest Inventory data and driven by three management strategies (nature protection, biomass production and a baseline management) and an ensemble of regional climate scenarios (RCP2.6, RCP 4.5, RCP 8.5). We provide results as relative changes compared to the baseline management and observed climate. Forest management measures have the strongest effects on ecosystem services inducing positive or negative changes of up to 40% depending on the ecosystem service in question, whereas climate change only slightly alters ecosystem services averaged over the whole forest area. The ecosystem services ‘carbon’ and ‘timber’ benefit from climate change, while ‘water’ and ‘habitat’ lose. We detect clear trade-offs between ‘timber’ and all other ecosystem services, as well as synergies between ‘habitat’ and ‘carbon’. When evaluating all ecosystem services simultaneously, our results reveal certain interrelations between climate and management scenarios. North-eastern and western forest regions are more suitable to provide timber (while minimizing the negative impacts on remaining ecosystem services) whereas southern and central forest regions are more suitable to fulfil ‘habitat’ and ‘carbon’ services. The results provide the base for future forest management optimizations at the regional scale in order to maximize ecosystem services and forest ecosystem sustainability at the national scale.
Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests.
Susaeta, Andres; Adams, Damian C; Carter, Douglas R; Dwivedi, Puneet
2016-09-01
Forests provide myriad ecosystem services that are vital to humanity. With climate change, we expect to see significant changes to forests that will alter the supply of these critical services and affect human well-being. To better understand the impacts of climate change on forest-based ecosystem services, we applied a data envelopment analysis method to assess plot-level efficiency in the provision of ecosystem services in Florida natural loblolly pine (Pinus taeda L.) forests. Using field data for n = 16 loblolly pine forest plots, including inputs such as site index, tree density, age, precipitation, and temperatures for each forest plot, we assessed the relative plot-level production of three ecosystem services: timber, carbon sequestered, and species richness. The results suggested that loblolly pine forests in Florida were largely inefficient in the provision of these ecosystem services under current climatic conditions. Climate change had a small negative impact on the loblolly pine forests efficiency in the provision of ecosystem services. In this context, we discussed the reduction of tree density that may not improve ecosystem services production.
Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests
NASA Astrophysics Data System (ADS)
Susaeta, Andres; Adams, Damian C.; Carter, Douglas R.; Dwivedi, Puneet
2016-09-01
Forests provide myriad ecosystem services that are vital to humanity. With climate change, we expect to see significant changes to forests that will alter the supply of these critical services and affect human well-being. To better understand the impacts of climate change on forest-based ecosystem services, we applied a data envelopment analysis method to assess plot-level efficiency in the provision of ecosystem services in Florida natural loblolly pine ( Pinus taeda L.) forests. Using field data for n = 16 loblolly pine forest plots, including inputs such as site index, tree density, age, precipitation, and temperatures for each forest plot, we assessed the relative plot-level production of three ecosystem services: timber, carbon sequestered, and species richness. The results suggested that loblolly pine forests in Florida were largely inefficient in the provision of these ecosystem services under current climatic conditions. Climate change had a small negative impact on the loblolly pine forests efficiency in the provision of ecosystem services. In this context, we discussed the reduction of tree density that may not improve ecosystem services production.
Aquatic biodiversity in forests: A weak link in ecosystem services resilience
Penaluna, Brooke E.; Olson, Deanna H.; Flitcroft, Rebecca L; Weber, Matthew A.; Bellmore, J. Ryan; Wondzell, Steven M.; Dunham, Jason B.; Johnson, Sherri L.; Reeves, Gordon H.
2017-01-01
The diversity of aquatic ecosystems is being quickly reduced on many continents, warranting a closer examination of the consequences for ecological integrity and ecosystem services. Here we describe intermediate and final ecosystem services derived from aquatic biodiversity in forests. We include a summary of the factors framing the assembly of aquatic biodiversity in forests in natural systems and how they change with a variety of natural disturbances and human-derived stressors. We consider forested aquatic ecosystems as a multi-state portfolio, with diverse assemblages and life-history strategies occurring at local scales as a consequence of a mosaic of habitat conditions and past disturbances and stressors. Maintaining this multi-state portfolio of assemblages requires a broad perspective of ecosystem structure, various functions, services, and management implications relative to contemporary stressors. Because aquatic biodiversity provides multiple ecosystem services to forests, activities that compromise aquatic ecosystems and biodiversity could be an issue for maintaining forest ecosystem integrity. We illustrate these concepts with examples of aquatic biodiversity and ecosystem services in forests of northwestern North America, also known as Northeast Pacific Rim. Encouraging management planning at broad as well as local spatial scales to recognize multi-state ecosystem management goals has promise for maintaining valuable ecosystem services. Ultimately, integration of information from socio-ecological ecosystems will be needed to maintain ecosystem services derived directly and indirectly from forest aquatic biota.
Paying for Forest Ecosystem Services: Voluntary Versus Mandatory Payments.
Roesch-McNally, Gabrielle E; Rabotyagov, Sergey S
2016-03-01
The emergence of new markets for forest ecosystem services can be a compelling opportunity for market diversification for private forest landowners, while increasing the provision of public goods from private lands. However, there is limited information available on the willingness-to-pay (WTP) for specific forest ecosystem services, particularly across different ecosystem market mechanisms. We utilize survey data from Oregon and Washington households to compare marginal WTP for forest ecosystem services and the total WTP for cost-effective bundles of forest ecosystem services obtained from a typical Pacific Northwest forest across two value elicitation formats representing two different ecosystem market mechanisms: an incentive-compatible choice experiment involving mandatory tax payments and a hypothetical private provision scenario modeled as eliciting contributions to the preferred forest management alternative via a provision point mechanism with a refund. A representative household's total WTP for the average forest management program was estimated at $217.59 per household/year under a mandatory tax mechanism and $160.44 per household/per year under a voluntary, crowdfunding-style, contribution mechanism; however, these estimates are not statistically different. Marginal WTP estimates were assessed for particular forest ecosystem service attributes including water quality, carbon storage, mature forest habitat, and public recreational access. This study finds that survey respondents place significant economic value on forest ecosystem services in both elicitation formats and that the distributions of the marginal WTP are not statistically significantly different.
Paying for Forest Ecosystem Services: Voluntary Versus Mandatory Payments
NASA Astrophysics Data System (ADS)
Roesch-McNally, Gabrielle E.; Rabotyagov, Sergey S.
2016-03-01
The emergence of new markets for forest ecosystem services can be a compelling opportunity for market diversification for private forest landowners, while increasing the provision of public goods from private lands. However, there is limited information available on the willingness-to-pay (WTP) for specific forest ecosystem services, particularly across different ecosystem market mechanisms. We utilize survey data from Oregon and Washington households to compare marginal WTP for forest ecosystem services and the total WTP for cost-effective bundles of forest ecosystem services obtained from a typical Pacific Northwest forest across two value elicitation formats representing two different ecosystem market mechanisms: an incentive-compatible choice experiment involving mandatory tax payments and a hypothetical private provision scenario modeled as eliciting contributions to the preferred forest management alternative via a provision point mechanism with a refund. A representative household's total WTP for the average forest management program was estimated at 217.59 per household/year under a mandatory tax mechanism and 160.44 per household/per year under a voluntary, crowdfunding-style, contribution mechanism; however, these estimates are not statistically different. Marginal WTP estimates were assessed for particular forest ecosystem service attributes including water quality, carbon storage, mature forest habitat, and public recreational access. This study finds that survey respondents place significant economic value on forest ecosystem services in both elicitation formats and that the distributions of the marginal WTP are not statistically significantly different.
[Ecological regulation services of Hainan Island ecosystem and their valuation].
Ouyang, Zhiyun; Zhao, Tongqian; Zhao, Jingzhu; Xiao, Han; Wang, Xiaoke
2004-08-01
Ecosystem services imply the natural environmental conditions on which human life relies for existence, and their effectiveness formed and sustained by ecosystem and its ecological processes. In newly research reports, they were divided into four groups, i. e., provisioning services, regulation services, cultural services, and supporting services. To assess and valuate ecosystem services is the foundation of regional environmental reserve and development. Taking Hainan Island as an example and based on the structure and processes of natural ecosystem, this paper discussed the proper methods for regulation services assessment. The ecosystems were classified into 13 types including valley rain forest, mountainous rain forest, tropical monsoon forest, mountainous coppice forest, mountainous evergreen forest, tropical coniferous forest, shrubs, plantation, timber forest, windbreak forest, mangrove, savanna, and cropland, and then, the regulation services and their economic values of Hainan Island ecosystem were assessed and evaluated by terms of water-holding, soil conservancy, nutrient cycle, C fixation, and windbreak function. The economic value of the regulation services of Hainan Island ecosystem was estimated as 2035.88 x 10(8)-2153.39 x 10(8) RMB yuan, 8 times higher to its provisioning services (wood and agricultural products) which were estimated as only 254.06 x 10(8) RMB yuan. The result implied that ecosystem regulation services played an even more important role in the sustainable development of society and economy in Hainan Island.
Dynamics of ecosystem services provided by subtropical ...
The trends in the provision of ecosystem services during restoration and succession of subtropical forests and plantations were quantified, in terms of both receiver and donor values, based on a case study of a 3-step secondary succession series that included a 400-year-old subtropical forest and a 23-year history of growth on 3 subtropical forest plantations in Southeastern China. The ‘People's Republic of China Forestry Standard: Forest Ecosystem Service Valuation Norms’ was revised and applied to quantify the receiver values of ecosystem services, which were then compared with the emergy-based, donor values of the services. The results revealed that the efficiencies of subtropical forests and plantations in providing ecosystem services were 2 orders of magnitude higher than similar services provided by the current China economic system, and these efficiencieskept increasing over the course of succession. As a result, we conclude that afforestation is an efficient way to accelerate both the ability and efficiency of subtropical forests to provide ecosystem services. This paper is significant because it examines the dynamics of the provision of ecosystem services by forests over a succession series that spans 400 years. The paper also examines the rate of increase of services during forest restoration over a period of 23 years. The emergy used in ecosystem services provision is compared to the provision of similar services by economic means in the Chinese e
Robert L. Deal; Nikola Smith; Joe Gates
2017-01-01
Ecosystem services are increasingly recognized as a way of framing and describing the broad suite of benefits that people receive from forests. The USDA Forest Service has been exploring use of an ecosystem services framework to describe forest values provided by federal lands and to attract and build partnerships with stakeholders to implement projects. Recently, the...
Impacts of forestry on boreal forests: An ecosystem services perspective.
Pohjanmies, Tähti; Triviño, María; Le Tortorec, Eric; Mazziotta, Adriano; Snäll, Tord; Mönkkönen, Mikko
2017-11-01
Forests are widely recognized as major providers of ecosystem services, including timber, other forest products, recreation, regulation of water, soil and air quality, and climate change mitigation. Extensive tracts of boreal forests are actively managed for timber production, but actions aimed at increasing timber yields also affect other forest functions and services. Here, we present an overview of the environmental impacts of forest management from the perspective of ecosystem services. We show how prevailing forestry practices may have substantial but diverse effects on the various ecosystem services provided by boreal forests. Several aspects of these processes remain poorly known and warrant a greater role in future studies, including the role of community structure. Conflicts among different interests related to boreal forests are most likely to occur, but the concept of ecosystem services may provide a useful framework for identifying and resolving these conflicts.
Estimation of biogeochemical climate regulation services in Chinese forest ecosystems
NASA Astrophysics Data System (ADS)
Zhang, Y.; Li, S.
2016-12-01
As the global climate is changing, the climate regulation service of terrestrial ecosystem has been widely studied. Forests, as one of the most important terrestrial ecosystem types, is the biggest carbon pool or sink on land and can regulate climate through both biophysical and biogeochemical means. China is a country with vast forested areas and a variety of forest ecosystems types. Although current studies have related the climate regulation service of forest in China with biophysical or biogeochemical mechanism, there is still a lack of quantitative estimation of climate regulation services, especially for the biogeochemical climate regulation service. The GHGV (greenhouse gas value) is an indicator that can quantify the biochemical climate regulation service using ecosystems' stored organic matter, annual greenhouse gas flux, and potential greenhouse gas exchange rates during disturbances over a multiple year time frame. Therefore, we used GHGV to estimate the contribution of China's ten main forest types to biogeochemical climate regulation and generate the pattern of biochemical climate regulation service in Chinese forest ecosystems.
[Evaluation of economic forest ecosystem services in China].
Wang, Bing; Lu, Shao-Wei
2009-02-01
This paper quantitatively evaluated the economic forest ecosystem services in the provinces of China in 2003, based on the long-term and continuous observations of economic forest ecosystems in this country, the sixth China national forest resources inventory data, and the price parameter data from the authorities in the world, and by applying the law of market value, the method of substitution of the expenses, and the law of the shadow project. The results showed that in 2003, the total value of economic forest ecosystem services in China was 11763.39 x 10(8) yuan, and the total value of the products from economic forests occupied 19.3% of the total ecosystem services value, which indicated that the economic forests not only provided society direct products, but also exhibited enormous eco-economic value. The service value of the functions of economic forests was in the order of water storage > C fixation and O2 release > biodiversity conservation > erosion control > air quality purification > nutrient cycle. The spatial pattern of economic forest ecosystem services in the provinces of China had the same trend with the spatial distribution of water and heat resources and biodiversity. To understand the differences of economic forest ecosystem services in the provinces of China was of significance in alternating the irrational arrangement of our present forestry production, diminishing the abuses of forest management, and establishing high grade, high efficient, and modernized economic forests.
Assessment and valuation of forest ecosystem services: State of the science review
Seth Binder; Robert G. Haight; Stephen Polasky; Travis Warziniack; Miranda H. Mockrin; Robert L. Deal; Greg Arthaud
2017-01-01
This review focuses on the assessment and economic valuation of ecosystem services from forest ecosystemsâthat is, our ability to predict changes in the quantity and value of ecosystem services as a result of specific forest management decisions. It is aimed at forest economists and managers and intended to provide a useful reference to those interested in developing...
Forest-land conversion, ecosystem services, and economic issues for policy: a review
Robert A. Smail; David J. Lewis
2009-01-01
The continued conversion and development of forest land pose a serious threat to the ecosystem services derived from forested landscapes. We argue that developing an understanding of the full range of consequences from forest conversion requires understanding the effects of such conversion on both components of ecosystem services: products and processes....
Forest ecosystem services: Carbon and air quality
David J. Nowak; Neelam C. Poudyal; Steve G. McNulty
2017-01-01
Forests provide various ecosystem services related to air quality that can provide substantial value to society. Through tree growth and alteration of their local environment, trees and forests both directly and indirectly affect air quality. Though forests affect air quality in numerous ways, this chapter will focus on five main ecosystem services or disservices...
Urban forests and pollution mitigation: analyzing ecosystem services and disservices.
Escobedo, Francisco J; Kroeger, Timm; Wagner, John E
2011-01-01
The purpose of this paper is to integrate the concepts of ecosystem services and disservices when assessing the efficacy of using urban forests for mitigating pollution. A brief review of the literature identifies some pollution mitigation ecosystem services provided by urban forests. Existing ecosystem services definitions and typologies from the economics and ecological literature are adapted and applied to urban forest management and the concepts of ecosystem disservices from natural and semi-natural systems are discussed. Examples of the urban forest ecosystem services of air quality and carbon dioxide sequestration are used to illustrate issues associated with assessing their efficacy in mitigating urban pollution. Development of urban forest management alternatives that mitigate pollution should consider scale, contexts, heterogeneity, management intensities and other social and economic co-benefits, tradeoffs, and costs affecting stakeholders and urban sustainability goals. Copyright © 2011 Elsevier Ltd. All rights reserved.
[Forest ecosystem service and its evaluation in China].
Fang, Jin; Lu, Shaowei; Yu, Xinxiao; Rao, Liangyi; Niu, Jianzhi; Xie, Yuanyuan; Zhag, Zhenming
2005-08-01
Facing the relative lag of forest ecosystem service and estimation in China, this paper proposed to quickly carry out the research on the evaluation of forest ecosystem service. On the basis of the classification of forest ecosystem types in China, the service of artificial and semi-artificial forest ecosystems was investigated, which was divided into eight types, i.e., timber and other products, recreation and eco-tourism, water storage, C fixation and O2 release, nutrient cycling, air quality purifying, erosion control, and habitat provision. According to the assessment index system for global ecosystem service proposed by Costanza et al., a series of assessment index system suitable for Chinese forest ecosystem service was set up, by which, the total value of forest ecosystem service in China was estimated to be 30 601.20 x 10(8) yuan x yr(-1), including direct and indirect economic value about 1 920.23 x 10(8) and 28 680.97 x 10(8) yuan x yr(-1), respectively. The indirect value was as 14.94 times as the direct one. The research aimed to bring natural resources and environment factors into the account system of national economy quickly, and to realize the green GDP at last, which would be helpful to realize sustainable development and environment protection.
A framework for developing urban forest ecosystem services and goods indicators
Cynnamon Dobbs; Francisco J. Escobedo; Wayne C. Zipperer
2011-01-01
The social and ecological processes impacting on urban forests have been studied at multiple temporal and spatial scales in order to help us quantify, monitor, and value the ecosystem services that benefit people. Few studies have comprehensively analyzed the full suite of ecosystem services, goods (ESG), and ecosystem disservices provided by an urban forest....
An Integrated Approach to Forest Ecosystem Services
José Joaquin Campos; Francisco Alpizar; Bastiaan Louman; John A. Parrotta
2005-01-01
Forest ecosystem services (FES) are fundamental for the Earthâs life support systems. This chapter discusses the different services provided by forest ecosystems and the effects that land use and forest management practices have on their provision. It also discusses the role of markets in providing an enabling environment for a sustainable and equitable provision of...
Davies, Helen J; Doick, Kieron J; Hudson, Malcolm D; Schreckenberg, Kate
2017-07-01
Urbanisation and a changing climate are leading to more frequent and severe flood, heat and air pollution episodes in Britain's cities. Interest in nature-based solutions to these urban problems is growing, with urban forests potentially able to provide a range of regulating ecosystem services such as stormwater attenuation, heat amelioration and air purification. The extent to which these benefits are realized is largely dependent on urban forest management objectives, the availability of funding, and the understanding of ecosystem service concepts within local governments, the primary delivery agents of urban forests. This study aims to establish the extent to which British local authorities actively manage their urban forests for regulating ecosystem services, and identify which resources local authorities most need in order to enhance provision of ecosystem services by Britain's urban forests. Interviews were carried out with staff responsible for tree management decisions in fifteen major local authorities from across Britain, selected on the basis of their urban nature and high population density. Local authorities have a reactive approach to urban forest management, driven by human health and safety concerns and complaints about tree disservices. There is relatively little focus on ensuring provision of regulating ecosystem services, despite awareness by tree officers of the key role that urban forests can play in alleviating chronic air pollution, flood risk and urban heat anomalies. However, this is expected to become a greater focus in future provided that existing constraints - lack of understanding of ecosystem services amongst key stakeholders, limited political support, funding constraints - can be overcome. Our findings suggest that the adoption of a proactive urban forest strategy, underpinned by quantified and valued urban forest-based ecosystem services provision data, and innovative private sector funding mechanisms, can facilitate a change to a proactive, ecosystem services approach to urban forest management. Copyright © 2017. Published by Elsevier Inc.
Maintaining ecosystem function and services in logged tropical forests.
Edwards, David P; Tobias, Joseph A; Sheil, Douglas; Meijaard, Erik; Laurance, William F
2014-09-01
Vast expanses of tropical forests worldwide are being impacted by selective logging. We evaluate the environmental impacts of such logging and conclude that natural timber-production forests typically retain most of their biodiversity and associated ecosystem functions, as well as their carbon, climatic, and soil-hydrological ecosystem services. Unfortunately, the value of production forests is often overlooked, leaving them vulnerable to further degradation including post-logging clearing, fires, and hunting. Because logged tropical forests are extensive, functionally diverse, and provide many ecosystem services, efforts to expand their role in conservation strategies are urgently needed. Key priorities include improving harvest practices to reduce negative impacts on ecosystem functions and services, and preventing the rapid conversion and loss of logged forests. Copyright © 2014 Elsevier Ltd. All rights reserved.
E. Paoletti; M. Schaub; R. Matyssek; G. Wieser; A. Augustaitis; A. M. Bastrup-Birk; A. Bytnerowicz; M. S. Gunthardt-Goerg; G. Muller-Starck; Y. Serengil
2010-01-01
Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of...
Forest Ecosystem Services and Eco-Compensation Mechanisms in China
NASA Astrophysics Data System (ADS)
Deng, Hongbing; Zheng, Peng; Liu, Tianxing; Liu, Xin
2011-12-01
Forests are a major terrestrial ecosystem providing multiple ecosystem services. However, the importance of forests is frequently underestimated from an economic perspective because of the externalities and public good properties of these services. Forest eco-compensation is a transfer mechanism that serves to internalize the externalities of forest ecosystem services by compensating individuals or companies for the losses or costs resulting from the provision of these services. China's current forest eco-compensation system is centered mainly on noncommercial forest. The primary measures associated with ecosystem services are (1) a charge on destructive activities, such as indiscriminate logging, and (2) compensation for individual or local activities and investments in forest conservation. The Compensation Fund System for Forest Ecological Benefits was first listed in the Forest Law of the People's Republic of China in 1998. In 2004, the Central Government Financial Compensation Fund, an important source for the Compensation Fund for Forest Ecological Benefits, was formally established. To improve the forest eco-compensation system, it is crucial to design and establish compensation criteria for noncommercial forests. These criteria should take both theoretical and practical concerns into account, and they should be based on the quantitative valuation of ecosystem services. Although some initial headway has been made on this task, the implementation of an effective forest eco-compensation system in China still has deficiencies and still faces problems. Implementing classification-based and dynamic management for key noncommercial forests and establishing an eco-compensation mechanism with multiple funding sources in the market economy are the key measures needed to conquer these problems and improve the forest eco-compensation system and China's forestry development in sequence.
Christin, Zachary; Bagstad, Kenneth J.; Verdone, Michael
2016-01-01
Restoring degraded forests and agricultural lands has become a global conservation priority. A growing number of tools can quantify ecosystem service tradeoffs associated with forest restoration. This evolving “tools landscape” presents a dilemma: more tools are available, but selecting appropriate tools has become more challenging. We present a Restoration Ecosystem Service Tool Selector (RESTS) framework that describes key characteristics of 13 ecosystem service assessment tools. Analysts enter information about their decision context, services to be analyzed, and desired outputs. Tools are filtered and presented based on five evaluative criteria: scalability, cost, time requirements, handling of uncertainty, and applicability to benefit-cost analysis. RESTS uses a spreadsheet interface but a web-based interface is planned. Given the rapid evolution of ecosystem services science, RESTS provides an adaptable framework to guide forest restoration decision makers toward tools that can help quantify ecosystem services in support of restoration.
Forest ecosystem services: Provisioning of non-timber forest products
James L. Chamberlain; Gregory E. Frey; C. Denise Ingram; Michael G. Jacobson; Cara Meghan Starbuck Downes
2017-01-01
The purpose of this chapter is to describe approaches to calculate a conservative and defensible estimate of the marginal value of forests for non-timber forest products (NTFPs). 'Provisioning" is one of four categories of benefits, or services that ecosystems provide to humans and was described by the Millennium Ecosystem Assessment as 'products...
Forest Ecosystem Services As Production Inputs
Subhrendu Pattanayak; David T. Butry
2003-01-01
Are we cutting down tropical forests too rapidly and too extensively? If so, why? Answers to both questions are obscured in some ways by insufficient and unreliable data on the economic worth of forest ecosystem services. It is clear, however, that rapid, excessive cutting of forests can irreversibly and substantively impair ecosystem functions, thereby endangering the...
Spatial complementarity of forests and farms: accounting for ecosystem services
Subhrendu K. Pattanayak; David T. Butry
2006-01-01
Our article considers the economic contributions of forest ecosystem services, using a case study from Flores, Indonesia, in which forest protection in upstream watersheds stabilize soil and hydrological flows in downstream farms. We focus on the demand for a weak complement to the ecosystem services--farm labor-- and account for spatial dependence due to economic...
Patrick T. Hurley; Marla R. Emery
2017-01-01
Scholarship on the ecosystem services provided by urban forests has focused on regulating and supporting services, with a growing body of research examining provisioning and cultural ecosystem services from farms and gardens in metropolitan areas. Using the case of New York, New York, USA, we propose a method to assess the supply of potential provisioning ecosystem...
NASA Astrophysics Data System (ADS)
Tekalign, Meron; Muys, Bart; Nyssen, Jan; Poesen, Jean
2014-05-01
In the central highlands of Ethiopia, deforestation and forest degradation are occurring and accelerating during the last century. The high population pressure is the most repeatedly mentioned reason. However, in the past 30 years researchers agreed that the absence of institutions, which could define the access rights to particular forest resources, is another underlying cause of forest depletion and loss. Changing forest areas into different land use types is affecting the biodiversity, which is manifested through not proper functioning of ecosystem services. Menagesha Suba forest, the focus of this study has been explored from various perspectives. However the social dimension and its interaction with the ecology have been addressed rarely. This research uses a combined theoretical framework of Ecosystem Services and that of Resilience thinking for understanding the complex social-ecological interactions in the forest and its influence on ecosystem services. For understanding the history and extent of land use land cover changes, in-depth literature review and a GIS and remote sensing analysis will be made. The effect of forest conversion into plantation and agricultural lands on soil and above ground carbon sequestration, fuel wood and timber products delivery will be analyzed with the accounting of the services on five land use types. The four ecosystem services to be considered are Supporting, Provisioning, Regulating, and Cultural services as set by the Millennium Ecosystem Assessment. A resilience based participatory framework approach will be used to analyze how the social and ecological systems responded towards the drivers of change that occurred in the past. The framework also will be applied to predict future uncertainties. Finally this study will focus on the possible interventions that could contribute to the sustainable management and conservation of the forest. An ecosystem services trade-off analysis and an environmental valuation of the water regulation and soil erosion control services will be made to propose solutions for increasing the social-ecological system resilience of Menagesha Suba forest.
Forest Ecosystem services: Water resources
Thomas P. Holmes; James Vose; Travis Warziniack; Bill Holman
2017-01-01
Since the publication of the Millennium Ecosystem Assessment (MEA 2005), awareness has steadily grown regarding the importance of maintaining natural capital. Forest vegetation is a valuable source of natural capital, and the regulation of water quantity and quality is among the most important forest ecosystem services in many regions around the world. Changes in...
Paoletti, E; Schaub, M; Matyssek, R; Wieser, G; Augustaitis, A; Bastrup-Birk, A M; Bytnerowicz, A; Günthardt-Goerg, M S; Müller-Starck, G; Serengil, Y
2010-06-01
Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered. Copyright 2009 Elsevier Ltd. All rights reserved.
Caputo, Jesse; Beier, Colin D; Groffman, Peter M; Burns, Douglas A.; Beall, Frederick D; Hazlett, Paul W.; Yorks, Thad E
2016-01-01
Demand for woody biomass fuels is increasing amidst concerns about global energy security and climate change, but there may be negative implications of increased harvesting for forest ecosystem functions and their benefits to society (ecosystem services). Using new methods for assessing ecosystem services based on long-term experimental research, post-harvest changes in ten potential benefits were assessed for ten first-order northern hardwood forest watersheds at three long-term experimental research sites in northeastern North America. As expected, we observed near-term tradeoffs between biomass provision and greenhouse gas regulation, as well as tradeoffs between intensive harvest and the capacity of the forest to remediate nutrient pollution. In both cases, service provision began to recover along with the regeneration of forest vegetation; in the case of pollution remediation, the service recovered to pre-harvest levels within 10 years. By contrast to these two services, biomass harvesting had relatively nominal and transient impacts on other ecosystem services. Our results are sensitive to empirical definitions of societal demand, including methods for scaling societal demand to ecosystem units, which are often poorly resolved. Reducing uncertainty around these parameters can improve confidence in our results and increase their relevance for decision-making. Our synthesis of long-term experimental studies provides insights on the social-ecological resilience of managed forest ecosystems to multiple drivers of change.
Aquatic biodiversity in forests: a weak link in ecosystem services resilience
Brooke E. Penaluna; Deanna H. Olson; Rebecca L. Flitcroft; Matthew A. Weber; J. Ryan Bellmore; Steven M. Wondzell; Jason B. Dunham; Sherri L. Johnson; Gordon H. Reeves
2017-01-01
The diversity of aquatic ecosystems is being quickly reduced on many continents, warranting a closer examination of the consequences for ecological integrity and ecosystem services. Here we describe intermediate and final ecosystem services derived from aquatic biodiversity in forests. We include a summary of the factors framing the assembly of aquatic biodiversity in...
Mapping tsunami impacts on land cover and related ecosystem service supply in Phang Nga, Thailand
NASA Astrophysics Data System (ADS)
Kaiser, G.; Burkhard, B.; Römer, H.; Sangkaew, S.; Graterol, R.; Haitook, T.; Sterr, H.; Sakuna-Schwartz, D.
2013-12-01
The 2004 Indian Ocean tsunami caused damages to coastal ecosystems and thus affected the livelihoods of the coastal communities who depend on services provided by these ecosystems. The paper presents a case study on evaluating and mapping the spatial and temporal impacts of the tsunami on land use and land cover (LULC) and related ecosystem service supply in the Phang Nga province, Thailand. The method includes local stakeholder interviews, field investigations, remote-sensing techniques, and GIS. Results provide an ecosystem services matrix with capacity scores for 18 LULC classes and 17 ecosystem functions and services as well as pre-/post-tsunami and recovery maps indicating changes in the ecosystem service supply capacities in the study area. Local stakeholder interviews revealed that mangroves, casuarina forest, mixed beach forest, coral reefs, tidal inlets, as well as wetlands (peat swamp forest) have the highest capacity to supply ecosystem services, while e.g. plantations have a lower capacity. The remote-sensing based damage and recovery analysis showed a loss of the ecosystem service supply capacities in almost all LULC classes for most of the services due to the tsunami. A fast recovery of LULC and related ecosystem service supply capacities within one year could be observed for e.g. beaches, while mangroves or casuarina forest needed several years to recover. Applying multi-temporal mapping the spatial variations of recovery could be visualised. While some patches of coastal forest were fully recovered after 3 yr, other patches were still affected and thus had a reduced capacity to supply ecosystem services. The ecosystem services maps can be used to quantify ecological values and their spatial distribution in the framework of a tsunami risk assessment. Beyond that they are considered to be a useful tool for spatial analysis in coastal risk management in Phang Nga.
Integrating neotropical migratory birds into Forest Service plans for ecosystem management
Deborah M. Finch; William M. Block; Reg A. Fletcher; Leon F. Fager
1993-01-01
The USDA Forest Service is undergoing a major change in focus in response to public interests, growing concern for sustaining natural resources, and new knowledge about wildlife, fisheries, forests and grasslands, and how they interact at the ecosystem level. This shift in direction affects how Forest Service lands are managed, what research is conducted, how resource...
A review of impacts by invasive exotic plants on forest ecosystem services
Kevin Devine; Songlin Fei
2011-01-01
Many of our forest ecosystems are at risk due to the invasion of exotic invasive plant species. Invasive plant species pose numerous threats to ecosystems by decreasing biodiversity, deteriorating ecosystem processes, and degrading ecosystem services. Literature on Kentucky's most invasive exotic plant species was examined to understand their potential impacts on...
Functional approach in estimation of cultural ecosystem services of recreational areas
NASA Astrophysics Data System (ADS)
Sautkin, I. S.; Rogova, T. V.
2018-01-01
The article is devoted to the identification and analysis of cultural ecosystem services of recreational areas from the different forest plant functional groups in the suburbs of Kazan. The study explored two cultural ecosystem services supplied by forest plants by linking these services to different plant functional traits. Information on the functional traits of 76 plants occurring in the forest ecosystems of the investigated area was collected from reference books on the biological characteristics of plant species. Analysis of these species and traits with the Ward clustering method yielded four functional groups with different potentials for delivering ecosystem services. The results show that the contribution of species diversity to services can be characterized through the functional traits of plants. This proves that there is a stable relationship between biodiversity and the quality and quantity of ecosystem services. The proposed method can be extended to other types of services (regulating and supporting). The analysis can be used in the socio-economic assessment of natural ecosystems for recreation and other uses.
Forest Service R&D — Invasive Insects: Visions for the Future
Kier D. Klepzig; Therese M. Poland; Nancy E. Gillette; Robert A. Haack; Melody A. Keena; Daniel R. Miller; Michael E. Montgomery; Steven J. Seybold; Patrick C. Tobin
2009-01-01
The Forest Service has identified invasive species as one of four significant threats to our Nationâs forest and rangeland ecosystems and likened the problem to a âcatastrophic wildfire in slow motion.â Forest Service Research and Development (R&D) has a crucial role in providing insight and options to protect trees, forests, and ecosystems from the threat of...
Robert L. Deal; Paul Hennon; Richard O' Hanlon; David D' Amore
2014-01-01
There is increasing interest worldwide in managing forests to maintain or improve biodiversity, enhance ecosystem services and assure long-term sustainability of forest resources. An important goal of forest management is to increase stand diversity, provide wildlife habitat and improve forest species diversity. We synthesize results from natural spruce forests in...
Ecosystem Services and Biodiversity in a Rapidly Transforming Landscape in Northern Borneo.
Labrière, Nicolas; Laumonier, Yves; Locatelli, Bruno; Vieilledent, Ghislain; Comptour, Marion
2015-01-01
Because industrial agriculture keeps expanding in Southeast Asia at the expense of natural forests and traditional swidden systems, comparing biodiversity and ecosystem services in the traditional forest-swidden agriculture system vs. monocultures is needed to guide decision making on land-use planning. Focusing on tree diversity, soil erosion control, and climate change mitigation through carbon storage, we surveyed vegetation and monitored soil loss in various land-use areas in a northern Bornean agricultural landscape shaped by swidden agriculture, rubber tapping, and logging, where various levels and types of disturbance have created a fine mosaic of vegetation from food crop fields to natural forest. Tree species diversity and ecosystem service production were highest in natural forests. Logged-over forests produced services similar to those of natural forests. Land uses related to the swidden agriculture system largely outperformed oil palm or rubber monocultures in terms of tree species diversity and service production. Natural and logged-over forests should be maintained or managed as integral parts of the swidden system, and landscape multifunctionality should be sustained. Because natural forests host a unique diversity of trees and produce high levels of ecosystem services, targeting carbon stock protection, e.g. through financial mechanisms such as Reducing Emissions from Deforestation and Forest Degradation (REDD+), will synergistically provide benefits for biodiversity and a wide range of other services. However, the way such mechanisms could benefit communities must be carefully evaluated to counter the high opportunity cost of conversion to monocultures that might generate greater income, but would be detrimental to the production of multiple ecosystem services.
Hou, Ying; Li, Bo; Müller, Felix; Chen, Weiping
2016-11-01
Watersheds provide multiple ecosystem services. Ecosystem service assessment is a promising approach to investigate human-environment interaction at the watershed scale. The spatial characteristics of ecosystem services are closely related to land use statuses in human-dominated watersheds. This study aims to investigate the effects of land use on the spatial variations of ecosystem services at the Dianchi Lake watershed in Southwest China. We investigated the spatial variations of six ecosystem services-food supply, net primary productivity (NPP), habitat quality, evapotranspiration, water yield, and nitrogen retention. These services were selected based on their significance at the Dianchi Lake watershed and the availability of their data. The quantification of these services was based on modeling, value transference, and spatial analysis in combination with biophysical and socioeconomic data. Furthermore, we calculated the values of ecosystem services provided by different land use types and quantified the correlations between ecosystem service values and land use area proportions. The results show considerable spatial variations in the six ecosystem services associated with land use influences in the Dianchi Lake watershed. The cropland and forest land use types had predominantly positive influences on food productivity and NPP, respectively. The rural residential area and forest land use types reduced and enhanced habitat quality, respectively; these influences were identical to those of evapotranspiration. Urban area and rural residential area exerted significantly positive influences on water yield. In contrast, water yield was negatively correlated with forest area proportion. Finally, cropland and forest had significantly positive and negative influences, respectively, on nitrogen retention. Our study emphasizes the importance of consideration of the influences from land use composition and distribution on ecosystem services for managing the ecosystems of human-dominated watersheds.
Ecosystem services: foundations, opportunities, and challenges for the forest products sector
Trista M. Patterson; Dana L. Coelho
2009-01-01
The ecosystem service concept has been proposed as a meaningful framework for natural resource management. In theory, it holds concomitant benefit and consequence for the forest product sector. However, numerous barriers impede practitioners from developing concrete and enduring responses to emerging ecosystem service markets, policies, and initiatives. Principal among...
Ecosystem Services Derived from Headwater Catchments
We used data from the USEPA’s wadeable streams assessment (WSA), US Forest Service’s forest inventory and analysis (FIA), and select USFS experimental forests (EF) to investigate potential ecosystems services derived from headwater catchments. C, N, and P inputs to these catchmen...
Evaluating tradeoffs among ecosystem services in the management of public lands
Jeffrey D. Kline; Marisa J. Mazzotta
2012-01-01
The U.S. Forest Service has adopted the concept and language of ecosystem services to describe the beneficial outcomes of national forest management. We review the economic theory of ecosystem services as it applies to public lands management, and consider what it implies about the types of biophysical and other data that are needed for characterizing management...
USDA Forest Service watershed analyses: A lesson in interdisciplinary natural resource management
Anthony S. DeFalco
1999-01-01
Abstract - Recent thinking in natural resource management has led federal land management agencies such as the U.S. Department of Agriculture's Forest Service (Forest Service) to adopt ecosystem management as its official land management policy. A pivotal aspect of ecosystem management is interdisciplinary analysis of complex land management problems....
Zheng, Jingming; Jiang, Fengqi; Zeng, Dehui
2003-06-01
To realize the sustainable management of forest ecosystems, we should explicitly clarify the types and differences of the ecosystem services provided by different ecosystems under different conditions, with rethinking about the value of forest ecosystems; then solid management strategies and measurements will be enacted and applied to achieve the objects. The broad-leaved Korean pine forest (BLKPF) in Changbai Mountain is a unique and important forest type in China, owing to its many important ecosystem services such as preventing soil erosion, regulating climates, nutrient cycling, providing wood and non-timber forest products, etc. This paper is a preliminary study on the management strategy of BLKPF on the basis of analyzing the characters of the ecosystems and the relative importance of services they provided in this region. Based on the latest research of ecosystem services of BLKPF in Changbai Mountain, an idea of eco-value level (EVL) was introduced, and accordingly, management strategies were summarized by adopting the advanced theories in ecosystem management science and by analyzing field survey data. EVL means the relative amount of the value of ecosystem services provided by certain ecosystem, which can indicate the difference between services in given objects. The EVL classification of BLKPF implies the relative amount of the eco-value of different ecosystems including virgin forest, secondary forest, forest with human disturbance, and man-made forest in the clear-cutting sites. Analytical Hierarchical Processing method was used to formulate the equation for EVL index. Eight factors, namely, slope, soil depth, stability of soil maternal material, coverage of above-ground canopy, species diversity, regeneration rate of the stand, life span of dominant tree species, and intensity of human disturbance were chosen to build the formula. These factors belonged to three aspects affecting ecosystem services including the physical environment, community, and disturbance regime, and their selection and scaling were based on the previous studies on the BLKPF. The equation of EVL index (EI) was expressed as: EI = 0.542A1 + 0.171A2 + 0.072A3 + 0.067B1 + 0.043B2 + 0.014B3 + 0.010B4 + 0.081C1. According to the range of EI, ecosystems were classified into three types: low EVL type with EI from 1.000 to 1.874, medium EVL type with EI 1.874-2.749, and high EVL type with EI 2.749-3.623. Typical plots were surveyed and scaled with EI, and the predominant characters of each EVL type were summarized. Most forests of high EVL type were those in sites at high risk of soil erosion and hard to recover after disrupted. Forests of medium EVL type were those with worse community structure and composition, and were disturbed by human activities in relative steep sites. Forest of low EVL type were those in plane site with serious disruption or some young man-made stands. Based on the analyses of the characters of these three types, different management strategies were put forward. For high EVL type forest, strictly protection is most important to maintain the forest in natural succession and its eco-services. For medium EVL type forest, the key points of management are restoring their health and vigor by regulating their composition and structure in a seminatural way. For low EVL type forest, some area could be used to extensive exploration for economic benefits, and the rests should be reconstructed towards the original stand in composition and structure, based on the 'shadow ecosystem' in a close-to-nature way to promote the capacity of providing more eco-services.
Beetles among us: Social and economic impacts of the MPB epidemic [Chapter 6
Krista Gebert; Greg Jones; Patty Champ; Mike Czaja; Chuck Oliver; Paul E. Cruz; Jessica Clement
2014-01-01
Healthy forest ecosystems provide many goods and services that are vital to human well-being. When forest ecosystems are impacted by disturbances, such as the widespread mountain pine beetle (MPB) epidemic, the services provided by these ecosystems are also affected. Likewise, management in response to large-scale forest disturbances impacts both the natural and human...
Edward Gage; David J. Cooper
2013-01-01
This document provides an overview of historical range of variation concepts and explores their application to wetland and riparian ecosystems in the US Forest Service Rocky Mountain Region (Region 2), which includes National Forests and National Grasslands occurring in the states of Colorado, Wyoming, Nebraska, Kansas, and South Dakota. For each of five ecosystem...
Introduction to watershed ecosystem services: Chapter 1
Hall, Jefferson S.; Stallard, Robert F.; Kirn, Vanessa
2015-01-01
Humans derive a great number of goods and services from terrestrial ecosystems (Millennium Ecosystem Assessment, 2003, 2005). Some, like timber, fruits, bush meat, and other forest based food stuffs, are evident but others are not so obvious. Increasingly policy makers have realized the importance of forests and other ecosystems in sequestering carbon, as clearing of once vibrant vegetation or draining of swamps releases carbon dioxide (U.S. DOE, 2012) and where planting trees – particularly in the tropics - takes carbon dioxide out of the atmosphere (Bala et al., 2007). Scientists and conservationists have long called our attention to the value of Neotropical landscapes for biodiversity conservation as forests and other ecosystems harbor vast numbers of species. In recent decades conservationists and policy makers have also highlighted the potential of forests and other ecosystems to regulate stream flows (Ibáñez et al., 2002, Laurance, 2007 but also see Calder et al., 2007) and play a role in assuring clean water (Uriarte et al., 2011). All of these goods and services are part of what is collectively referred to as ecosystem services or goods and services that are provided to humanity through the unimpeded natural function of the ecosystem.
Integrating forest products with ecosystem services: a global perspective
Robert L. Deal; Rachel White
2012-01-01
Around the world forests provide a broad range of vital ecosystem services. Sustainable forest management and forest products play an important role in global carbon management, but one of the major forestry concerns worldwide is reducing the loss of forestland from development. Currently, deforestation accounts for approximately 20% of total greenhouse gas emissions....
Kang, Haijun; Seely, Brad; Wang, Guangyu; Innes, John; Zheng, Dexiang; Chen, Pingliu; Wang, Tongli; Li, Qinglin
2016-07-01
Chinese fir (Cunninghamia lanceolata) is not only a valuable timber species, but also plays an important role in the provision of ecosystem services. Forest management decisions to increase the production of fiber for economic gain may have negative impacts on the long-term flow of ecosystem services from forest resources. Such tradeoffs should be taken into account to fulfill the requirements of sustainable forest management. Here we employed an established, ecosystem-based, stand-level model (FORECAST) in combination with a simplified harvest-scheduling model to evaluate the potential tradeoffs among indicators of provisional, regulating and supporting ecosystem services in a Chinese-fir-dominated landscape located in Fujian Province as a case study. Indicators included: merchantable volume harvested, biomass harvested, ecosystem carbon storage, CO2 fixation, O2 released, biomass nitrogen content, pollutant absorption, and soil fertility. A series of alternative management scenarios, representing different combinations of rotation length and harvest intensity, were simulated to facilitate the analysis. Results from the analysis were summarized in the form of a decision matrix designed to provide a method for forest managers to evaluate management alternatives and tradeoffs in the context of key indicators of ecosystem services. The scenario analysis suggests that there are considerable tradeoffs in terms of ecosystem services associated with stand and landscape-level management decisions. Longer rotations and increased retention tended to favor regulating and supporting services while the opposite was true for provisional services. Copyright © 2016 Elsevier B.V. All rights reserved.
Ecosystem Services and Biodiversity in a Rapidly Transforming Landscape in Northern Borneo
Labrière, Nicolas; Laumonier, Yves; Locatelli, Bruno; Vieilledent, Ghislain; Comptour, Marion
2015-01-01
Because industrial agriculture keeps expanding in Southeast Asia at the expense of natural forests and traditional swidden systems, comparing biodiversity and ecosystem services in the traditional forest–swidden agriculture system vs. monocultures is needed to guide decision making on land-use planning. Focusing on tree diversity, soil erosion control, and climate change mitigation through carbon storage, we surveyed vegetation and monitored soil loss in various land-use areas in a northern Bornean agricultural landscape shaped by swidden agriculture, rubber tapping, and logging, where various levels and types of disturbance have created a fine mosaic of vegetation from food crop fields to natural forest. Tree species diversity and ecosystem service production were highest in natural forests. Logged-over forests produced services similar to those of natural forests. Land uses related to the swidden agriculture system largely outperformed oil palm or rubber monocultures in terms of tree species diversity and service production. Natural and logged-over forests should be maintained or managed as integral parts of the swidden system, and landscape multifunctionality should be sustained. Because natural forests host a unique diversity of trees and produce high levels of ecosystem services, targeting carbon stock protection, e.g. through financial mechanisms such as Reducing Emissions from Deforestation and Forest Degradation (REDD+), will synergistically provide benefits for biodiversity and a wide range of other services. However, the way such mechanisms could benefit communities must be carefully evaluated to counter the high opportunity cost of conversion to monocultures that might generate greater income, but would be detrimental to the production of multiple ecosystem services. PMID:26466120
Don Hann
2006-01-01
The United States Forest Service is charged with managing extensive and varied ecosystems throughout the country. Under the rubric of âecosystem managementâ the goal has been to provide goods and services from Forest Service lands while maintaining ecological integrity. Recognizing that ecosystems are dynamic in nature, the concept of Historical Range of Variability (...
Delphin, S; Escobedo, F J; Abd-Elrahman, A; Cropper, W
2013-11-15
Information on the effect of direct drivers such as hurricanes on ecosystem services is relevant to landowners and policy makers due to predicted effects from climate change. We identified forest damage risk zones due to hurricanes and estimated the potential loss of 2 key ecosystem services: aboveground carbon storage and timber volume. Using land cover, plot-level forest inventory data, the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, and a decision tree-based framework; we determined potential damage to subtropical forests from hurricanes in the Lower Suwannee River (LS) and Pensacola Bay (PB) watersheds in Florida, US. We used biophysical factors identified in previous studies as being influential in forest damage in our decision tree and hurricane wind risk maps. Results show that 31% and 0.5% of the total aboveground carbon storage in the LS and PB, respectively was located in high forest damage risk (HR) zones. Overall 15% and 0.7% of the total timber net volume in the LS and PB, respectively, was in HR zones. This model can also be used for identifying timber salvage areas, developing ecosystem service provision and management scenarios, and assessing the effect of other drivers on ecosystem services and goods. Copyright © 2013 Elsevier Ltd. All rights reserved.
Michael A. Kilgore; Paul B. Ellefson; Travis J. Funk; Gregory E. Frey
2017-01-01
Financial incentives provided by State property tax programs are a means of promoting ecosystem services from private forest land. Identified by this 50-State 2015 review, categories of ecosystem services frequently promoted by such programs are open space and scenic resources, conservation of...
Francesc Baró; Lydia Chaparro; Erik Gómez-Baggethun; Johannes Langemeyer; David J. Nowak; Jaume Terradas
2014-01-01
Mounting research highlights the contribution of ecosystem services provided by urban forests to quality of life in cities, yet these services are rarely explicitly considered in environmental policy targets. We quantify regulating services provided by urban forests and evaluate their contribution to comply with policy targets of air quality and climate change...
Integrating ecosystem services into national Forest Service policy and operations
Robert Deal; Lisa Fong; Erin Phelps; Emily Weidner; Jonas Epstein; Tommie Herbert; Mary Snieckus; Nikola Smith; Tania Ellersick; Greg Arthaud
2017-01-01
The ecosystem services concept describes the many benefits people receive from nature. It highlights the importance of managing public and private lands sustainably to ensure these benefits continue into the future, and it closely aligns with the U.S. Forest Service (USFS) mission to âsustain the health, diversity, and productivity of the Nationâs forests and...
This EnviroAtlas web service contains layers depicting market-based programs and projects addressing ecosystem services protection in the United States. Layers include data collected via surveys and desk research conducted by Forest Trends' Ecosystem Marketplace from 2008 to 2016 on biodiversity (i.e., imperiled species/habitats; wetlands and streams), carbon, and water markets and enabling conditions that facilitate, directly or indirectly, market-based approaches to protecting and investing in those ecosystem services. This dataset was produced by Forest Trends' Ecosystem Marketplace for EnviroAtlas in order to support public access to and use of information related to environmental markets. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Z.L. Walton; N.C. Poudyal; J. Hepinstall; C. Johnson Gaither; B.B. Boley
2015-01-01
While the growing literature on forest ecosystem services has examined the value and significance of a range ofservices, our understanding of the health-related benefits of ecosystem services from forests is still limited. Tocharacterize the role of forest resources in reducing community vulnerability to the heat effects of climate...
Linda A. Joyce; Geoffry M. Blate; Jeremy S. Littell; Steven G. McNulty; Constance I. Millar; Susanne C. Moser; Ronald P. Neilson; Kathy O' Halloran; David L. Peterson
2008-01-01
The National Forest System (NFS) is composed of 155 national forests (NFs) and 20 national grasslands (NGs), which encompass a wide range of ecosystems, harbor much of the nationâs biodiversity, and provide myriad goods and services. The mission of the U.S. Forest Service (USFS), which manages the NFS, has broadened from water and timber to sustaining ecosystem health...
Robert L. Deal
2008-01-01
A primary mission of the U.S. Department of Agriculture Forest Service is multiple resource management, and one of the emerging themes is forest restoration. The National Silviculture Workshop, a biennial event co-sponsored by the Forest Service, was held May 7-10, 2007, in Ketchikan, Alaska, with the theme of "Integrated Restoration of Forested Ecosystems to...
NASA Astrophysics Data System (ADS)
Widicahyono, A.; Awang, S. A.; Maryudi, A.; Setiawan, M. A.; Rusdimi, A. U.; Handoko, D.; Muhammad, R. A.
2018-04-01
Over the last decade, deforestation in Indonesia has reduced the forest area down to more than 6 million hectares. There is conflict that the protected forest ecosystem service is still often perceived as public goods. Many of them went unrecognized in planning process and continue to be undervalued. The challenge lies in maintaining socioeconomic development and ecosystem services sustainability without overlooking the people’s opportunities and improving their livelihoods over the long term. An integrated approach is required to understand the comprehensive concept of protected forest ecosystem service. This research aims to formulate a scheme of payment for ecosystem service (PES) in a protected forest. It is a first step towards the attempt for the value of ecosystem services to be reflected in decision-making. Literatures, previous researches and secondary data are reviewed thoroughly to analyze the interrelated components by looking at the environment as a whole and recognize their linkages that have consequences to one another both positive and negative. The framework of implementation of PES schemes outlines the complexity of human-environment interconnecting relationships. It evaluates the contributing actors of different interest i.e. long term use and short term use. The concept of PES accommodates the fulfillment of both conservation and exploitation with an incentive scheme to the contributing parties who are willing to implement conservation and issuance of compensation expense for any exploitation means. The most crucial part in this concept is to have a good and effective communication between every policy makers concerning the forest ecosystem and local communities.
Katherine Williams; Kelly Biedenweg; Lee Cerveny
2017-01-01
Ecosystem services consistently group together both spatially and cognitively into âbundlesâ. Understanding socio-economic predictors of these bundles is essential to informing a management approach that emphasizes equitable distribution of ecosystem services. We received 1796 completed surveys from stakeholders of the Mt. Baker-Snoqualmie National Forest (WA, USA)...
Commoditization and the Origins of American Silviculture
ERIC Educational Resources Information Center
Caputo, Jesse
2012-01-01
Forest ecosystems provide a suite of goods and services, including wood products as well as an array of ecosystem services and other non-timber goods and services. Despite an increasing emphasis on managing forests as holistic systems providing a portfolio of goods and services, silvicultural research has focused on maximizing production of…
[Effects of small hydropower substitute fuel project on forest ecosystem services].
Yu, Hai Yan; Zha, Tong Gang; Nie, Li Shui; Lyu, Zhi Yuan
2016-10-01
Based on the Forest Ecosystem Services Assessment Standards (LY/T 1721-2008) issued by the State Forestry Administration, this paper evaluated four key functions of forest ecosystems, i.e., water conservation, soil conservation, carbon fixation and oxygen release, and nutrient accumulation. Focusing on the project area of Majiang County in Guizhou Province, this study provided some quantitative evidence that the implementation of the small hydropower substituting fuel project had positive effects on the values and material quantities of ecosystem service functions. The results showed that the small hydropower substituting fuel project had a significant effect on the increase of forest ecosystem services. Water conservation quantity of Pinus massoniana and Cupressus funebris plantations inside project area was 20662.04 m 3 ·hm -2 ·a -1 , 20.5% higher than outside project area, with soil conservation quantity of 119.1 t·hm -2 ·a -1 , 29.7% higher than outside project area, carbon fixation and oxygen release of 220.49 t·hm -2 ·a -1 , 40.2% higher than outside project area, and forest tree nutrition accumulation of 3.49 t·hm -2 ·a -1 , 48.5% higher than outside project area. Small hydropower substituting fuel project for increasing the quota of forest ecosystem service function value was in the order of carbon fixation and oxygen release function (71400 yuan·hm -2 ·a -1 ) > water conservation function (60100 yuan·hm -2 ·a -1 ) > tree nutrition accumulation function (13800 yuan·hm -2 ·a -1 ) > soil conservation function (8100 yuan·hm -2 ·a -1 ). Small hydropower substituting fuel project played an important role for improving the forest ecological service function value and realizing the sustainable development of forest.
Ecosystem services as a framework for forest stewardship: Deschutes National Forest overview
Nikola Smith; Robert Deal; Jeff Kline; Dale Blahna; Trista Patterson; Thomas A. Spies; Karen Bennett
2011-01-01
The concept of ecosystem services has emerged as a way of framing and describing the comprehensive set of benefits that people receive from nature. These include commonly recognized goods like timber and fresh water, as well as processes like climate regulation and water purification, and aesthetic, spiritual, and cultural benefits. The USDA Forest Service has been...
Svetlana A. (Kushch) Schroder; Sandor F. Toth; Robert L. Deal; Gregory J. Ettl
2016-01-01
Forest owners worldwide are increasingly interested in managing forests to provide a broad suite of Ecosystem services, balancing multiple objectives and evaluating management activities in terms of Potential tradeoffs. We describe a multi-objective mathematical programming model to quantify tradeoffs in expected sediment delivery and the preservation of Northern...
Baró, Francesc; Chaparro, Lydia; Gómez-Baggethun, Erik; Langemeyer, Johannes; Nowak, David J; Terradas, Jaume
2014-05-01
Mounting research highlights the contribution of ecosystem services provided by urban forests to quality of life in cities, yet these services are rarely explicitly considered in environmental policy targets. We quantify regulating services provided by urban forests and evaluate their contribution to comply with policy targets of air quality and climate change mitigation in the municipality of Barcelona, Spain. We apply the i-Tree Eco model to quantify in biophysical and monetary terms the ecosystem services "air purification," "global climate regulation," and the ecosystem disservice "air pollution" associated with biogenic emissions. Our results show that the contribution of urban forests regulating services to abate pollution is substantial in absolute terms, yet modest when compared to overall city levels of air pollution and GHG emissions. We conclude that in order to be effective, green infrastructure-based efforts to offset urban pollution at the municipal level have to be coordinated with territorial policies at broader spatial scales.
Ian D. Thompson; Joice Ferreira; Toby Gardner; Manuel Guariguata; Lian Pin Koh; Kimiko Okabe; Yude Pan; Christine B. Schmitt; Jason Tylianakis; Jos Barlow; Valerie Kapos; Werner A. Kurz; John A. Parrotta; Mark D. Spalding; Nathalie van Vliet
2012-01-01
REDD+ actions should be based on the best science and on the understanding that forests can provide more than a repository for carbon but also offer a wide range of services beneficial to people. Biodiversity underpins many ecosystem services, one of which is carbon sequestration, and individual speciesâ functional traits play an important role in determining...
Caring for our natural assets: an ecosystem services perspective.
2007-01-01
Global attention to climate change has advanced an awareness of human impacts on the environment. Progressing more slowly is recognition of the critical link between forest ecosystems and human welfare. Forests provide a number of societal benefits or ecosystem services, such as water purification, climate and flood regulation, recreational opportunities, and spiritual...
A conceptual framework of urban forest ecosystem vulnerability
James W.N. Steenberg; Andrew A. Millward; David J. Nowak; Pamela J. Robinson
2017-01-01
The urban environment is becoming the most common setting in which people worldwide will spend their lives. Urban forests, and the ecosystem services they provide, are becoming a priority for municipalities. Quantifying and communicating the vulnerability of this resource are essential for maintaining a consistent and equitable supply of these ecosystem services. We...
Applying the ecosystem services concept to public land management
Jeffrey D. Kline; Marisa J. Mazzota; Thomas A. Spies; Mark E. Harmon
2013-01-01
We examine challenges and opportunities involved in applying ecosystem services to public land management with an emphasis on national forests in the United States. We review historical forest management paradigms and related economic approaches, outline a conceptual framework defining the informational needs of forest managers, and consider the feasibility of its...
Stanley T. Asah; Dale J. Blahna; Clare M. Ryan
2012-01-01
The ecosystem services (ES) approach entails integrating people into public forest management and managing to meet their needs and wants. Managers must find ways to understand what these needs are and how they are met. In this study, we used small group discussions, in a case study of the Deschutes National Forest, to involve community members and forest staff in...
Stephen N. Matthews; Louis R. Iverson; Matthew P. Peters; Anantha M. Prasad; Sakthi Subburayalu
2014-01-01
Forests provide key ecosystem services (ES) and the extent to which the ES are realized varies spatially, with forest composition and cultural context, and in breadth, depending on the dominant tree species inhabiting an area. We address the question of how climate change may impact ES within the temperate and diverse forests of the eastern United States. We quantify...
Pinki Mondal; Brett J. Butler; David B. Kittredge; Warren K. Moser
2013-01-01
Private forests are a vital component of the natural ecosystem infrastructure of the United States, and provide critical ecosystem services including clean air and water, energy, wildlife habitat, recreational services, and wood fiber. These forests have been subject to conversion to developed uses due to increasing population pressures. This study examines the...
Constance I. Millar
1996-01-01
To assess the various ways organizations and people come together to manage Sierran ecosystems, SNEP conducted four case studies to examine the efficacy of different institutional arrangements:The Mammoth-June case study examines how a single national forest is attempting to implement the new Forest Service policy for ecosystem analysis...
Vegetation and environmental features of forest and range ecosystems
George A. Garrison; Ardell J. Bjugstad; Don A. Duncan; Mont E. Lewis; Dixie R. Smith
1977-01-01
This publication describes the 34 ecosystems into which all the land of the 48 contiguous states has been classified in the Forest-Range Environmental Study (FRES) of the Forest Service, U.S. Department of Agriculture. The description of each ecosystem discusses physiography, climate, vegetation, fauna, soils, and land use. For a number of the ecosystems, the...
The Kings River Sustainable Forest Ecosystems Project: inception, objectives, and progress
Jared Verner; Mark T. Smith
2002-01-01
The Kings River Sustainable Forest Ecosystems Project, a formal administrative study involving extensive and intensive collaboration between Forest Service managers and researchers, is a response to changes in the agencyâs orientation in favor of ecosystem approaches and to recent concern over issues associated with maintenance of late successional forest attributes...
Higher levels of multiple ecosystem services are found in forests with more tree species
Gamfeldt, Lars; Snäll, Tord; Bagchi, Robert; Jonsson, Micael; Gustafsson, Lena; Kjellander, Petter; Ruiz-Jaen, María C.; Fröberg, Mats; Stendahl, Johan; Philipson, Christopher D.; Mikusiński, Grzegorz; Andersson, Erik; Westerlund, Bertil; Andrén, Henrik; Moberg, Fredrik; Moen, Jon; Bengtsson, Jan
2013-01-01
Forests are of major importance to human society, contributing several crucial ecosystem services. Biodiversity is suggested to positively influence multiple services but evidence from natural systems at scales relevant to management is scarce. Here, across a scale of 400,000 km2, we report that tree species richness in production forests shows positive to positively hump-shaped relationships with multiple ecosystem services. These include production of tree biomass, soil carbon storage, berry production and game production potential. For example, biomass production was approximately 50% greater with five than with one tree species. In addition, we show positive relationships between tree species richness and proxies for other biodiversity components. Importantly, no single tree species was able to promote all services, and some services were negatively correlated to each other. Management of production forests will therefore benefit from considering multiple tree species to sustain the full range of benefits that the society obtains from forests. PMID:23299890
Divergence of ecosystem services in U.S. National Forests and Grasslands under a changing climate
Kai Duan; Ge Sun; Shanlei Sun; Peter V. Caldwell; Erika Cohen Mack; Steve McNulty; Heather D. Aldridge; Yang Zhang
2016-01-01
The 170 National Forests and Grasslands (NFs) in the conterminous United States are public lands that provide important ecosystem services such as clean water and timber supply to the American people. This study investigates the potential impacts of climate change on two key ecosystem functions (i.e., water yield and ecosystem productivity) using the most recent...
Defining an economics research program to describe and evaluate ecosystem services.
Jeffrey D. Kline
2007-01-01
Balancing societyâs multiple and sometimes competing objectives regarding forests calls for information describing the direct and indirect benefits resulting from forest policy and management, whether to address wildfire, loss of open space, unmanaged recreation, ecosystem restoration, or other objectives. The USDA Forest Service recently has proposed the concept of...
USDA-ARS?s Scientific Manuscript database
We developed a cost-based methodology to assess the value of forested watersheds to improve water quality in public water supplies. The developed methodology is applicable to other source watersheds to determine ecosystem services for water quality. We assess the value of forest land for source wate...
Belowground ecosystems [chapter 9
Carole Coe Klopatek
1995-01-01
The USDA Forest Service defined ecosystem management as "an ecological approach to achieve multiple-use management of national forests and grasslands by blending the needs of people and environmental values in such a way that national forests and grasslands represent diverse, healthy, productive, and sustainable ecosystems" (June 4, 1992, letter from Chief FS...
Restoring Forests and Associated Ecosystem Services on Appalachian Coal Surface Mines
NASA Astrophysics Data System (ADS)
Zipper, Carl E.; Burger, James A.; Skousen, Jeffrey G.; Angel, Patrick N.; Barton, Christopher D.; Davis, Victor; Franklin, Jennifer A.
2011-05-01
Surface coal mining in Appalachia has caused extensive replacement of forest with non-forested land cover, much of which is unmanaged and unproductive. Although forested ecosystems are valued by society for both marketable products and ecosystem services, forests have not been restored on most Appalachian mined lands because traditional reclamation practices, encouraged by regulatory policies, created conditions poorly suited for reforestation. Reclamation scientists have studied productive forests growing on older mine sites, established forest vegetation experimentally on recent mines, and identified mine reclamation practices that encourage forest vegetation re-establishment. Based on these findings, they developed a Forestry Reclamation Approach (FRA) that can be employed by coal mining firms to restore forest vegetation. Scientists and mine regulators, working collaboratively, have communicated the FRA to the coal industry and to regulatory enforcement personnel. Today, the FRA is used routinely by many coal mining firms, and thousands of mined hectares have been reclaimed to restore productive mine soils and planted with native forest trees. Reclamation of coal mines using the FRA is expected to restore these lands' capabilities to provide forest-based ecosystem services, such as wood production, atmospheric carbon sequestration, wildlife habitat, watershed protection, and water quality protection to a greater extent than conventional reclamation practices.
Forest Ecosystem services and development pressures
David N. Wear
2006-01-01
Ecosystem services from forests on private lands are often under-produced because landowners bear the cost of restoring, preserving, and managing their lands to produce ecological services that benefit all members of the community or larger society. Over the last two decades, a variety of federal and state programs have applied a combination of regulations, extension,...
Tree diversity does not always improve resistance of forest ecosystems to drought.
Grossiord, Charlotte; Granier, André; Ratcliffe, Sophia; Bouriaud, Olivier; Bruelheide, Helge; Chećko, Ewa; Forrester, David Ian; Dawud, Seid Muhie; Finér, Leena; Pollastrini, Martina; Scherer-Lorenzen, Michael; Valladares, Fernando; Bonal, Damien; Gessler, Arthur
2014-10-14
Climate models predict an increase in the intensity and frequency of drought episodes in the Northern Hemisphere. Among terrestrial ecosystems, forests will be profoundly impacted by drier climatic conditions, with drastic consequences for the functions and services they supply. Simultaneously, biodiversity is known to support a wide range of forest ecosystem functions and services. However, whether biodiversity also improves the resistance of these ecosystems to drought remains unclear. We compared soil drought exposure levels in a total of 160 forest stands within five major forest types across Europe along a gradient of tree species diversity. We assessed soil drought exposure in each forest stand by calculating the stand-level increase in carbon isotope composition of late wood from a wet to a dry year (Δδ(13)CS). Δδ(13)CS exhibited a negative linear relationship with tree species diversity in two forest types, suggesting that species interactions in these forests diminished the drought exposure of the ecosystem. However, the other three forest types were unaffected by tree species diversity. We conclude that higher diversity enhances resistance to drought events only in drought-prone environments. Managing forest ecosystems for high tree species diversity does not necessarily assure improved adaptability to the more severe and frequent drought events predicted for the future.
Koontz, Tomas M; Bodine, Jennifer
2008-02-01
Ecosystem management was formally adopted over a decade ago by many U.S. natural resource agencies, including the Forest Service and the Bureau of Land Management. This approach calls for management based on stakeholder collaboration; interagency cooperation; integration of scientific, social, and economic information; preservation of ecological processes; and adaptive management. Results of previous studies indicate differences in the extent to which particular components of ecosystem management would be implemented within the U.S. Forest Service and the Bureau of Land Management and suggest a number of barriers thought to impede implementation. Drawing on survey and interview data from agency personnel and stakeholders, we compared levels of ecosystem-management implementation in the Forest Service and Bureau of Land Management and identified the most important barriers to implementation. Agency personnel perceived similarly high levels of implementation on many ecosystem-management components, whereas stakeholders perceived lower levels. Agencies were most challenged by implementation of preservation of ecological processes, adaptive management, and integration of social and economic information, whereas the most significant barriers to implementation were political, cultural, and legal.
Wang, Yan; Gao, Jixi; Wang, Jinsheng; Qiu, Jie
2014-01-01
Changes in land use can cause significant changes in the ecosystem structure and process variation of ecosystem services. This study presents a detailed spatial, quantitative assessment of the variation in the value of ecosystem services based on land use change in national nature reserves of the Ningxia autonomous region in China. We used areas of land use types calculated from the remote sensing data and the adjusted value coefficients to assess the value of ecosystem services for the years 2000, 2005, and 2010, analyzing the fluctuations in the valuation of ecosystem services in response to land use change. With increases in the areas of forest land and water bodies, the value of ecosystem services increased from 182.3×107 to 223.8×107 US$ during 2000–2010. Grassland and forest land accounted for 90% of this increase. The values of all ecosystem services increased during this period, especially the value of ecosystem services for biodiversity protection and soil formation and protection. Ecological restoration in the reserves had a positive effect on the value of ecosystem services during 2000–2010. PMID:24586571
Bulgarian Rila mountain forest ecosystems study site: site description and SO42-, NO3- deposition
Karl Zeller; Christo Bojinov; Evgeny Donev; Nedialko Nikolov
1998-01-01
Bulgaria's forest ecosystems (31 percent of the country's area) are considered vulnerable to dry and wet pollution deposition. Coniferous forests that cover one-third of the total forest land are particularly sensitive to pollution loads. The USDA Forest Service, Sofia University, and the Bulgarian Forest Research Institute (FRI) established a cooperative...
Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services
Birch, Jennifer C.; Newton, Adrian C.; Aquino, Claudia Alvarez; Cantarello, Elena; Echeverría, Cristian; Kitzberger, Thomas; Schiappacasse, Ignacio; Garavito, Natalia Tejedor
2010-01-01
Although ecological restoration is widely used to combat environmental degradation, very few studies have evaluated the cost-effectiveness of this approach. We examine the potential impact of forest restoration on the value of multiple ecosystem services across four dryland areas in Latin America, by estimating the net value of ecosystem service benefits under different reforestation scenarios. The values of selected ecosystem services were mapped under each scenario, supported by the use of a spatially explicit model of forest dynamics. We explored the economic potential of a change in land use from livestock grazing to restored native forest using different discount rates and performed a cost–benefit analysis of three restoration scenarios. Results show that passive restoration is cost-effective for all study areas on the basis of the services analyzed, whereas the benefits from active restoration are generally outweighed by the relatively high costs involved. These findings were found to be relatively insensitive to discount rate but were sensitive to the market value of carbon. Substantial variation in values was recorded between study areas, demonstrating that ecosystem service values are strongly context specific. However, spatial analysis enabled localized areas of net benefits to be identified, indicating the value of this approach for identifying the relative costs and benefits of restoration interventions across a landscape. PMID:21106761
Birch, Jennifer C; Newton, Adrian C; Aquino, Claudia Alvarez; Cantarello, Elena; Echeverría, Cristian; Kitzberger, Thomas; Schiappacasse, Ignacio; Garavito, Natalia Tejedor
2010-12-14
Although ecological restoration is widely used to combat environmental degradation, very few studies have evaluated the cost-effectiveness of this approach. We examine the potential impact of forest restoration on the value of multiple ecosystem services across four dryland areas in Latin America, by estimating the net value of ecosystem service benefits under different reforestation scenarios. The values of selected ecosystem services were mapped under each scenario, supported by the use of a spatially explicit model of forest dynamics. We explored the economic potential of a change in land use from livestock grazing to restored native forest using different discount rates and performed a cost-benefit analysis of three restoration scenarios. Results show that passive restoration is cost-effective for all study areas on the basis of the services analyzed, whereas the benefits from active restoration are generally outweighed by the relatively high costs involved. These findings were found to be relatively insensitive to discount rate but were sensitive to the market value of carbon. Substantial variation in values was recorded between study areas, demonstrating that ecosystem service values are strongly context specific. However, spatial analysis enabled localized areas of net benefits to be identified, indicating the value of this approach for identifying the relative costs and benefits of restoration interventions across a landscape.
Sherrouse, Benson C.; Semmens, Darius J.
2014-01-01
With growing pressures on ecosystem services, social values attributed to them are increasingly important to land management decisions. Social values, defined here as perceived values the public ascribes to ecosystem services, particularly cultural services, are generally not accounted for through economic markets or considered alongside economic and ecological values in ecosystem service assessments. Social-values data can be elicited through public value and preference surveys; however, limitations prevent them from being regularly collected. These limitations led to our three study objectives: (1) demonstrate an approach for applying benefit transfer, a nonmarket-valuation method, to spatially explicit social values; (2) validate the approach; and (3) identify potential improvements. We applied Social Values for Ecosystem Services (SolVES) to survey data for three national forests in Colorado and Wyoming. Social-value maps and models were generated, describing relationships between the maps and various combinations of environmental variables. Models from each forest were used to estimate social-value maps for the other forests via benefit transfer. Model performance was evaluated relative to the locally derived models. Performance varied with the number and type of environmental variables used, as well as differences in the forests' physical and social contexts. Enhanced metadata and better social-context matching could improve model transferability.
Gerald J. Gottfried; Carleton B. Edminster
2005-01-01
The USDA Forest Serviceâs Southwestern Borderlands Ecosystem Management Project mission is to contribute to the scientific basis for developing and implementing a comprehensive ecosystem management plan to restore natural processes, improve the productivity and biological diversity of grasslands and woodlands, and sustain an open landscape with a viable rural economy...
Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India.
Schmerbeck, Joachim; Fiener, Peter
2015-08-01
This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km(2) (4.4%) of India, whereas according to the MODIS fire product about 2200 km(2) (1.4%) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.
Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India
NASA Astrophysics Data System (ADS)
Schmerbeck, Joachim; Fiener, Peter
2015-08-01
This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km2 (4.4 %) of India, whereas according to the MODIS fire product about 2200 km2 (1.4 %) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.
Sustainable management in crop monocultures: the impact of retaining forest on oil palm yield.
Edwards, Felicity A; Edwards, David P; Sloan, Sean; Hamer, Keith C
2014-01-01
Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ≈23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture.
Sustainable Management in Crop Monocultures: The Impact of Retaining Forest on Oil Palm Yield
Edwards, Felicity A.; Edwards, David P.; Sloan, Sean; Hamer, Keith C.
2014-01-01
Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ≈23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture. PMID:24638038
NASA Astrophysics Data System (ADS)
Gobbi, José; Deguillon, Marie
2017-04-01
Payments for ecosystem services (PES) aim to improve the supply of ecosystem services (ES) by making payments to service providers, which are conditional on the provision of those services. Payments cannot be conditional unless the service can be effectively monitored. Direct monitoring of ES to assess conditionality could be methodologically complex and operatively expensive. To overcome such constraints, the pilot "GEF-PES Project" of Northern Argentina has developed a set of five indicators on forest conservation status (CS) as a basis for estimating the amount of ES provided -considering a positive correlation between the CS of a forest and its level of provision of ecosystem services -and for operationalizing the PES. Field data indicate that selected indicators: (i) exhibit strong correlation with the amount of carbon and biodiversity provided by forests according to their CS, ii) are cost-effective to monitor ES conditionality and (iii) allow easy application of payment levels.
Biological invasions in forest ecosystems
Andrew M. Liebhold; Eckehard G. Brockerhoff; Susan Kalisz; Martin A. Nuñez; David A. Wardle; Michael J. Wingfield
2017-01-01
Forests play critical roles in global ecosystem processes and provide numerous services to society. But forests are increasingly affected by a variety of human influences, especially those resulting from biological invasions. Species invading forests include woody and herbaceous plants, many animal species including mammals and invertebrates, as well as a variety of...
William H. McWilliams; Brett J. Butler; Laurence E. Caldwell; Douglas M. Griffith; Michael L. Hoppus; Kenneth M. Laustsen; Andrew J. Lister; Tonya W. Lister; Jacob W. Metzler; Randall S. Morin; Steven A. Sader; Lucretia B. Stewart; James R. Steinman; James, A. Westfall; David A. Williams; Andrew Whitman; Christopher W. Woodall; Christopher W. Woodall
2005-01-01
In 1999, the Maine Forest Service and USDA Forest Service's Forest Inventory and Analysis program implemented a new system for inventorying and monitoring Maine's forests. The effects of the spruce budworm epidemic continue to affect the composition, structure, and distribution of Maine's forested ecosystems. The area of forest land in Maine has remained...
Ian D. Thompson; Kimiko Okabe; John A. Parrotta; David I. Forrester; Eckehard Brockerhoff; Hervé Jactel; Hisatomo Taki
2014-01-01
Planted forests are increasingly contributing wood products and other ecosystem services at a global scale. These forests will be even more important as carbon markets develop and REDD-plus forest programs (forests used specifically to reduce atmospheric emissions of CO2 through deforestation and forest degradation) become common. Restoring degraded and deforested...
Cloé Garnache; Lorie Srivastava; José J Sánchez; Frank Lupi
2018-01-01
This chapter examines recreation ecosystem services provided by chaparral dominated landscapes. Such areas are popular around the world amongst recreation users, including hikers, mountain bikers, campers, and nature enthusiasts. Yet, relatively few studies have documented the recreation services provided by chaparral landscapes such as national forests. For policy...
Trees at work: economic accounting for forest ecosystem services in the U.S.South
Erin O. Sills; Susan E. Moore; Frederick W. Cubbage; Kelley D. McCarter; Thomas P. Holmes; D. Evan Mercer
2017-01-01
Southern forests provide a variety of critical ecosystem services, from purification of water and air to recreational opportunities for millions of people. Because many of these services are public goods with no observable market value, they are not fully accounted for in land use and policy decisions. There have been several efforts to remedy this by...
Integrating ecosystem services in terrestrial conservation planning.
Yuan, Mei-Hua; Lo, Shang-Lien; Yang, Chih-Kai
2017-05-01
The purpose of this study is to estimate the benefits of ecosystem services for prioritization of land use conservation and to highlight the importance of ecosystem services by comparison between ecosystem service value and green GDP accounting. Based on land use pattern and benefit transfer method, this research estimated value of ecosystem services in Taiwan. Scientific information of land use and land cover change is accessed through multi-year satellite imagery moderate resolution imaging spectroradiometer (MODIS), and geographic information system (GIS) technology. Combined with benefit transfer method, this research estimated the ecosystem service valuation of forest, grassland, cropland, wetland, water, and urban for the period of 2000 to 2015 in Taiwan. It is found that forest made the greatest contribution and the significant increasing area of wetland has huge potential benefit for environmental conservation in Taiwan. We recommend placing maintaining wetland ecosystem in Taiwan with higher priority. This research also compared ecosystem service value with natural capital consumption which would essentially facilitate policy makers to understand the relationship between benefits gained from natural capital and the loss from human-made capital.
Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests.
Thom, Dominik; Seidl, Rupert
2016-08-01
In many parts of the world forest disturbance regimes have intensified recently, and future climatic changes are expected to amplify this development further in the coming decades. These changes are increasingly challenging the main objectives of forest ecosystem management, which are to provide ecosystem services sustainably to society and maintain the biological diversity of forests. Yet a comprehensive understanding of how disturbances affect these primary goals of ecosystem management is still lacking. We conducted a global literature review on the impact of three of the most important disturbance agents (fire, wind, and bark beetles) on 13 different ecosystem services and three indicators of biodiversity in forests of the boreal, cool- and warm-temperate biomes. Our objectives were to (i) synthesize the effect of natural disturbances on a wide range of possible objectives of forest management, and (ii) investigate standardized effect sizes of disturbance for selected indicators via a quantitative meta-analysis. We screened a total of 1958 disturbance studies published between 1981 and 2013, and reviewed 478 in detail. We first investigated the overall effect of disturbances on individual ecosystem services and indicators of biodiversity by means of independence tests, and subsequently examined the effect size of disturbances on indicators of carbon storage and biodiversity by means of regression analysis. Additionally, we investigated the effect of commonly used approaches of disturbance management, i.e. salvage logging and prescribed burning. We found that disturbance impacts on ecosystem services are generally negative, an effect that was supported for all categories of ecosystem services, i.e. supporting, provisioning, regulating, and cultural services (P < 0.001). Indicators of biodiversity, i.e. species richness, habitat quality and diversity indices, on the other hand were found to be influenced positively by disturbance (P < 0.001). Our analyses thus reveal a 'disturbance paradox', documenting that disturbances can put ecosystem services at risk while simultaneously facilitating biodiversity. A detailed investigation of disturbance effect sizes on carbon storage and biodiversity further underlined these divergent effects of disturbance. While a disturbance event on average causes a decrease in total ecosystem carbon by 38.5% (standardized coefficient for stand-replacing disturbance), it on average increases overall species richness by 35.6%. Disturbance-management approaches such as salvage logging and prescribed burning were neither found significantly to mitigate negative effects on ecosystem services nor to enhance positive effects on biodiversity, and thus were not found to alleviate the disturbance paradox. Considering that climate change is expected to intensify natural disturbance regimes, our results indicate that biodiversity will generally benefit from such changes while a sustainable provisioning of ecosystem services might come increasingly under pressure. This underlines that disturbance risk and resilience require increased attention in ecosystem management in the future, and that new approaches to addressing the disturbance paradox in management are needed. © 2015 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
NASA Astrophysics Data System (ADS)
Crosthwaite Eyre, Charles
2010-12-01
Payments for Ecosystem Services (PES) is an exciting and expanding opportunity for sustainably managed forests. PES are derived from a range of ecosystem benefits from forests including climate change mitigation through afforestation and avoided deforestation, green power generation, wetland and watershed rehabilitation, water quality improvement, marine flood defence and the reduction in desertification and soil erosion. Forests are also the ancestral home to many vulnerable communities which need protection. Sustainable forest management plays a key role in many of these services which generates a potentially critical source of finance. However, for forests to realise revenues from these PES, they must meet demanding standards of project validation and service verification. They also need geospatial data to manage and monitor operational risk. In many cases the data is difficult to collect on the ground - in some cases impossible. This will create a new demand for data that must be impartial, timely, area wide, accurate and cost effective. This presentation will highlight the unique capacity of EO to provide these geospatial inputs required in the generation of PES from forestry and demonstrate products with practical examples.
The Mammoth-June Ecosystem Management Project, Inyo National Forest
Connie Millar
1996-01-01
The Sierra Nevada Ecosystem Project (SNEP) case-study assessmentof the Mammoth-June Ecosystem Management Project(MJEMP) was undertaken to review and analyze the efficacy of alocal landscape analysis in achieving ecosystem-management objectivesin the Sierra Nevada. Of primary interest to SNEP was applicationof the new U.S. Forest Service (USFS) regional process...
Incorporating threat in hotspots and coldspots of biodiversity and ecosystem services.
Schröter, Matthias; Kraemer, Roland; Ceauşu, Silvia; Rusch, Graciela M
2017-11-01
Spatial prioritization could help target conservation actions directed to maintain both biodiversity and ecosystem services. We delineate hotspots and coldspots of two biodiversity conservation features and five regulating and cultural services by incorporating an indicator of 'threat', i.e. timber harvest profitability for forest areas in Telemark (Norway). We found hotspots, where high values of biodiversity, ecosystem services and threat coincide, ranging from 0.1 to 7.1% of the area, depending on varying threshold levels. Targeting of these areas for conservation follows reactive conservation approaches. In coldspots, high biodiversity and ecosystem service values coincide with low levels of threat, and cover 0.1-3.4% of the forest area. These areas might serve proactive conservation approaches at lower opportunity cost (foregone timber harvest profits). We conclude that a combination of indicators of biodiversity, ecosystem services and potential threat is an appropriate approach for spatial prioritization of proactive and reactive conservation strategies.
Human dimensions in ecosystem management: a USDA Forest Service perspective
Deborah S. Carr
1995-01-01
For many decades, the natural resource profession has approached the management of public lands as exclusively a natural science endeavor requiring purely technical solutions. With the adoption of an ecosystem management philosophy, the USDA Forest Service has acknowledged the centrality of people in land management policy and decision-making. This paper explores the...
A survey of innovative contracting for quality jobs and ecosystem management.
Cassandra Moseley
2002-01-01
This survey identifies and defines innovative contracting mechanisms developed in the Forest Service Pacific Northwest Region and northern California. A survey of nine case studies reveals that several new mechanisms have facilitated ecosystem management, quality jobs, and administrative efficiencies, but at times innovation was hampered by Forest Service institutional...
D. Andrew Scott; Robert J. Eaton; Julie A. Foote; Benjamin Vierra; Thomas W. Boutton; Gary B. Blank; Kurt Johnsen
2014-01-01
Site productivity has long been identified as the primary ecosystem service to be sustained in timberlands. However, soil C sequestration and ecosystem biodiversity have emerged as critical services provided by managed forest soils that must also be sustained. These ecosystem services were assessed in response to gradients of organic matter removal, soil compaction,...
A Guide to Assessing Urban Forests
David Nowak
2013-01-01
Urban forests provide numerous ecosystem services. To quantify these services and guide management to sustain these services for future generations, the structure or composition of the forest must be assessed. There are two basic ways of assessing the structure or composition of the urban forest: Bottom-up approach. Field-based assessments to measure the physical...
Seidl, Rupert; Spies, Thomas A.; Peterson, David L.; Stephens, Scott L.; Hicke, Jeffrey A.
2016-01-01
Summary 1. The provisioning of ecosystem services to society is increasingly under pressure from global change. Changing disturbance regimes are of particular concern in this context due to their high potential impact on ecosystem structure, function and composition. Resilience-based stewardship is advocated to address these changes in ecosystem management, but its operational implementation has remained challenging. 2. We review observed and expected changes in disturbance regimes and their potential impacts on provisioning, regulating, cultural and supporting ecosystem services, concentrating on temperate and boreal forests. Subsequently, we focus on resilience as a powerful concept to quantify and address these changes and their impacts, and present an approach towards its operational application using established methods from disturbance ecology. 3. We suggest using the range of variability concept – characterizing and bounding the long-term behaviour of ecosystems – to locate and delineate the basins of attraction of a system. System recovery in relation to its range of variability can be used to measure resilience of ecosystems, allowing inferences on both engineering resilience (recovery rate) and monitoring for regime shifts (directionality of recovery trajectory). 4. It is important to consider the dynamic nature of these properties in ecosystem analysis and management decision-making, as both disturbance processes and mechanisms of resilience will be subject to changes in the future. Furthermore, because ecosystem services are at the interface between natural and human systems, the social dimension of resilience (social adaptive capacity and range of variability) requires consideration in responding to changing disturbance regimes in forests. 5. Synthesis and applications. Based on examples from temperate and boreal forests we synthesize principles and pathways for fostering resilience to changing disturbance regimes in ecosystem management. We conclude that future work should focus on testing and implementing these pathways in different contexts to make ecosystem services provisioning more robust to changing disturbance regimes and advance our understanding of how to cope with change and uncertainty in ecosystem management. PMID:26966320
Contingent Valuation of Forest Ecosystem Protection
Randall A. Kramer; Thomas P. Holmes; Michelle Haefele
2003-01-01
In recent decades, concerns have arisen about the proper valuation of the world's forests. While some of these concerns have to do with market distortions for timber products or inadequate data on non-timber forest products, an additional challenge is to uncover the economic worth of non- market services provided by forest ecosystems (Kramer et al. 1997). This has...
Paul G. Schaberg; Donald H. DeHayes; Gary J. Hawley; Samuel E. Nijensohn
2008-01-01
Healthy forests provide many of the essential ecosystem services upon which all life depends. Genetic diversity is an essential component of long-term forest health because it provides a basis for adaptation and resilience to environmental stress and change. In addition to natural processes, numerous anthropogenic factors deplete forest genetic resources. Genetic...
The U.S. Environmental Protection Agency recently established the Ecosystem Services Research Program to help formulate methods and models for conducting comprehensive risk assessments that quantify how multiple ecosystem services interact and respond in concert to environmental ...
ERIC Educational Resources Information Center
Torkar, Gregor
2016-01-01
Alarming declines in biodiversity have encouraged scientists to begin promoting the idea of the services ecosystems offer to humans in order to gain support for conservation. The concept of ecosystem services is designed to communicate societal dependence on various natural ecosystems. Schools play an important role in educating students to be…
Counting all that matters: recognizing the value of ecosystem services.
Sussane Maleki
2008-01-01
Broadly defined, ecosystem services are the benefits healthy ecosystems provide to humans. Clean air, clean water, and flood control are just a few examples. Although the term is relatively new, the ecosystem services concept has long been a focus of natural resource and environmental economists. As the U.S. population increases and the forests and grasslands that...
Fedele, Giacomo; Locatelli, Bruno; Djoudi, Houria; Colloff, Matthew J
2018-01-01
Globally, anthropogenic environmental change is exacerbating the already vulnerable conditions of many people and ecosystems. In order to obtain food, water, raw materials and shelter, rural people modify forests and other ecosystems, affecting the supply of ecosystem services that contribute to livelihoods and well-being. Despite widespread awareness of the nature and extent of multiple impacts of land-use changes, there remains limited understanding of how these impacts affect trade-offs among ecosystem services and their beneficiaries across spatial scales. We assessed how rural communities in two forested landscapes in Indonesia have changed land uses over the last 20 years to adapt their livelihoods that were at risk from multiple hazards. We estimated the impact of these adaptation strategies on the supply of ecosystem services by comparing different benefits provided to people from these land uses (products, water, carbon, and biodiversity), using forest inventories, remote sensing, and interviews. Local people converted forests to rubber plantations, reforested less productive croplands, protected forests on hillsides, and planted trees in gardens. Our results show that land-use decisions were propagated at the landscape scale due to reinforcing loops, whereby local actors perceived that such decisions contributed positively to livelihoods by reducing risks and generating co-benefits. When land-use changes become sufficiently widespread, they affect the supply of multiple ecosystem services, with impacts beyond the local scale. Thus, adaptation implemented at the local-scale may not address development and climate adaptation challenges at regional or national scale (e.g. as part of UN Sustainable Development Goals or actions taken under the UNFCCC Paris Agreement). A better understanding of the context and impacts of local ecosystem-based adaptation is fundamental to the scaling up of land management policies and practices designed to reduce risks and improve well-being for people at different scales.
Vulnerability to climate-induced changes in ecosystem services of boreal forests
NASA Astrophysics Data System (ADS)
Holmberg, Maria; Rankinen, Katri; Aalto, Tuula; Akujärvi, Anu; Nadir Arslan, Ali; Liski, Jari; Markkanen, Tiina; Mäkelä, Annikki; Peltoniemi, Mikko
2016-04-01
Boreal forests provide an array of ecosystem services. They regulate climate, and carbon, water and nutrient fluxes, and provide renewable raw material, food, and recreational possibilities. Rapid climate warming is projected for the boreal zone, and has already been observed in Finland, which sets these services at risk. MONIMET (LIFE12 ENV/FI/000409, 2.9.2013 - 1.9.2017) is a project funded by EU Life programme about Climate Change Indicators and Vulnerability of Boreal Zone Applying Innovative Observation and Modeling Techniques. The coordinating beneficiary of the project is the Finnish Meteorological Institute. Associated beneficiaries are the Natural Resources Institute Finland, the Finnish Environment Institute and the University of Helsinki. In the MONIMET project, we use state-of-the-art models and new monitoring methods to investigate the impacts of a warming climate on the provision of ecosystem services of boreal forests. This poster presents results on carbon storage in soil and assessment of drought indices, as a preparation for assessing the vulnerability of society to climate-induced changes in ecosystem services. The risk of decreasing provision of ecosystem services depends on the sensitivity of the ecosystem as well as its exposure to climate stress. The vulnerability of society, in turn, depends on the risk of decreasing provision of a certain service in combination with society's demand for that service. In the next phase, we will look for solutions to challenges relating to the quantification of the demand for ecosystem services and differences in spatial extent and resolution of the information on future supply and demand.
Randall S. Rosenberger; Eric M. White; Jeffrey D. Kline; Claire Cvitanovich
2017-01-01
Natural resource professionals are often tasked with weighing the benefits and costs of changes in ecosystem services associated with land management alternatives and decisions. In many cases, federal regulations even require land managers and planners to account for these values explicitly. Outdoor recreation is a key ecosystem service provided by national forests and...
Gerald J. Gottfried; Carleton B. Edminster
2005-01-01
The USDA Forest Service initiated the Southwestern Borderlands Ecosystem Management Project in 1994. The Project concentrates on the unique, relatively unfragmented landscape of exceptional biological diversity in southeastern Arizona and southwestern New Mexico. Its mission is to: "Contribute to the scientific basis for developing and implementing a comprehensive...
The trends in the provision of ecosystem services during restoration and succession of subtropical forests and plantations were quantified, in terms of both receiver and donor values, based on a case study of a 3-step secondary succession series that included a 400-year-old subtr...
77 FR 44144 - National Forest System Land Management Planning; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-27
... Management Planning; Correction AGENCY: Forest Service, USDA. ACTION: Correcting amendments. SUMMARY: The Department of Agriculture (USDA) published a National Forest System land management planning rule in the... document may be sent to the Director, Ecosystem Management Coordination Staff, USDA Forest Service, 1400...
Toral Patel-Weynand
2012-01-01
Scientific literature on the effects of climatic variability and change on forest ecosystems has increased significantly over the past decade, providing a foundation for establishing forest-climate relationships and projecting the effects of continued warming on a wide range of forest resources and ecosystem services. In addition, certainty about the nature of some of...
Improving scientific knowledge
James M. Vose; David L. Peterson
2012-01-01
Scientific literature on the effects of climatic variability and change on forest ecosystems has increased significantly over the past decade, providing a foundation for establishing forest-climate relationships and projecting the effects of continued warming on a wide range of forest resources and ecosystem services. In addition, certainty about the nature of some of...
Research Natural Areas of the Northern Region: Status and Needs Assessment
Steve W. Chadde; Shannon F. Kimball; Angela G. Evenden
1996-01-01
A major objective of the Forest Service Research Natural Area (RNA) program is to maintain a representative array of all significant natural ecosystems as baseline areas for research and monitoring (Forest Service Manual 4063, USDA Forest Service 1991). The National Forest Management Act of 1976 directs the agency to establish research natural areas typifying important...
The U.S. Environmental Protection Agency recently established the Ecosystem Services Research Program to help formulate methods and models for conducting comprehensive risk assessments that quantify how multiple ecosystem services interact and respond in concert to environmental ...
Determining the Ecosystem Services Important for Urban Landscapes
Urban ecosystems present special considerations and challenges in researching and evaluating ecosystem functions and services. A case study of nitrate retention and loss in forested, urban wetlands illustrates these challenges. Water table dynamics, in situ nitrogen cy...
Criterion 2: Maintenance of productive capacity of forest ecosystems
Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield
2012-01-01
People rely on forests, directly and indirectly, for a wide range of goods and services. Measures of forest productive capacity are indicators of the ability of forests to sustainably supply goods and services over time. An ongoing emphasis on maintaining productive capacity of forests can help ensure that utilization of forest resources does not impair long term...
The Eastern Non-industrial Private Forests
Gerard D. Hertel
The USDA Forest Service ?cares for the land and serves the people? under the framework of the Natural Resources Agenda (Watershed Health and Restoration; Sustainable Forest Ecosystems; Recreation; and Forest Roads). The National Forests comprise only 19 percent of the forestland (land that is at least 10% covered with trees) in the United States. The Forest Service has...
This EnviroAtlas dataset contains polygons depicting the geographic areas of market-based programs, referred to herein as markets, and projects addressing ecosystem services protection in the United States. Depending upon the type of market or project and data availability, polygons reflect market coverage areas, project footprints, or project primary impact areas in which ecosystem service markets and projects operate. The data were collected via surveys and desk research conducted by Forest Trends' Ecosystem Marketplace from 2008 to 2016 on biodiversity (i.e., imperiled species/habitats; wetlands and streams), carbon, and water markets. Additional biodiversity data were obtained from the Regulatory In-lieu Fee and Bank Information Tracking System (RIBITS) database in 2015. Attribute data include information regarding the methodology, design, and development of biodiversity, carbon, and water markets and projects. This dataset was produced by Forest Trends' Ecosystem Marketplace for EnviroAtlas in order to support public access to and use of information related to environmental markets. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about thi
Susan Will-Wolf; Randall S. Morin; Mark J. Ambrose; Kurt Riitters; Sarah Jovan
2014-01-01
Lichen community composition is well known for exhibiting response to air pollution, and to macroenvironmental and microenvironmental variables. Lichens are useful indicators of air quality impact, forest health, and forest ecosystem integrity across the United States (McCune 2000, reviews in Nimis and others 2002, USDA Forest Service 2007).
Wang, Jitao; Peng, Jian; Zhao, Mingyue; Liu, Yanxu; Chen, Yunqian
2017-01-01
Ecological restoration can mitigate human disturbance to the natural environment and restore ecosystem functions. China's Grain-for-Green Programme (GFGP) has been widely adopted in the last 15years and exerted significant impact on land-use and ecosystem services. North-western Yunnan is one of the key areas of GFGP implementation in the upper Yangtze River. Promotion of ecosystem services in this region is of great importance to the ecological sustainability of Yangtze River watershed. In this study, remote sensing and modelling techniques are applied to analyse the impact of GFGP on ecosystem services. Results show that the transformation from non-irrigated farmland to forestland could potentially improve soil conservation by 24.89%. Soil conservation of restored forest was 78.17% of retained forest while net primary production (NPP) already reached 88.65%, which suggested different recovery rates of NPP and soil conservation. Increasing extent of GFGP implementation improved soil conservation but decreased NPP and water yield at sub-watershed scale, which revealed trade-offs between ecosystem services under ecological restoration. Future ecosystem management and GFGP policy-making should consider trade-offs of ecosystem services in order to achieve sustainable provision of ecosystem services. Copyright © 2016 Elsevier B.V. All rights reserved.
Victor A. Rudis; John B. Tansey
1991-01-01
Information from plots surveyed by U.S.D.A., Forest Service, Forest Inventory and Analysis (FIA) units provides a basis for classifying human-dominated ecosystems at the regional scale of resolution.Attributes include forest stand measures, evidence of human influence, and other disturbances.Data from recent FIA surveys suggest that human influences are common to...
Urban forest ecosystem services: A case study in Corvallis,Oregon
Background/Questions/Methods One EPA research focus is quantifying ecosystem services, benefits that ecosystems provide to humans, in order to promote informed natural resource management decisions and to assess the effectiveness of existing environmental policies. A case study...
Urban Forest Ecosystem Service Optimization, Tradeoffs, and Disparities
NASA Astrophysics Data System (ADS)
Bodnaruk, E.; Kroll, C. N.; Endreny, T. A.; Hirabayashi, S.; Yang, Y.
2014-12-01
Urban land area and the proportion of humanity living in cities is growing, leading to increased urban air pollution, temperature, and stormwater runoff. These changes can exacerbate respiratory and heat-related illnesses and affect ecosystem functioning. Urban trees can help mitigate these threats by removing air pollutants, mitigating urban heat island effects, and infiltrating and filtering stormwater. The urban environment is highly heterogeneous, and there is no tool to determine optimal locations to plant or protect trees. Using spatially explicit land cover, weather, and demographic data within biophysical ecosystem service models, this research expands upon the iTree urban forest tools to produce a new decision support tool (iTree-DST) that will explore the development and impacts of optimal tree planting. It will also heighten awareness of environmental justice by incorporating the Atkinson Index to quantify disparities in health risks and ecosystem services across vulnerable and susceptible populations. The study area is Baltimore City, a location whose urban forest and environmental justice concerns have been studied extensively. The iTree-DST is run at the US Census block group level and utilizes a local gradient approach to calculate the change in ecosystem services with changing tree cover across the study area. Empirical fits provide ecosystem service gradients for possible tree cover scenarios, greatly increasing the speed and efficiency of the optimization procedure. Initial results include an evaluation of the performance of the gradient method, optimal planting schemes for individual ecosystem services, and an analysis of tradeoffs and synergies between competing objectives.
i-Tree and urban FIA—what's the connection?
David J. Nowak
2015-01-01
The i-Tree program (www.itreetools.org) was developed to assess ecosystem services and values from trees and forests based on measured forest data. The i-Tree program is currently being integrated with FIA data to assess various ecosystem services and values from urban FIA data. This presentation will overview the history and use of i-Tree; the various tools of i-Tree...
Chelcy Ford; Stephanie Laseter; Wayne Swank; James Vose
2011-01-01
Forested watersheds, an important provider of ecosystems services related to water supply, can have their structure, function, and resulting streamflow substantially altered by land use and land cover. Using a retrospective analysis and synthesis of long-term climate and streamflow data (75 years) from six watersheds differing in management histories we explored...
The role of the atmosphere in the provision of ecosystem services.
Cooter, Ellen J; Rea, Anne; Bruins, Randy; Schwede, Donna; Dennis, Robin
2013-03-15
Solving the environmental problems that we are facing today requires holistic approaches to analysis and decision making that include social and economic aspects. The concept of ecosystem services, defined as the benefits people obtain from ecosystems, is one potential tool to perform such assessments. The objective of this paper is to demonstrate the need for an integrated approach that explicitly includes the contribution of atmospheric processes and functions to the quantification of air-ecosystem services. First, final and intermediate air-ecosystem services are defined. Next, an ecological production function for clean and clear air is described, and its numerical counterpart (the Community Multiscale Air Quality model) is introduced. An illustrative numerical example is developed that simulates potential changes in air-ecosystem services associated with the conversion of evergreen forest land in Mississippi, Alabama and Georgia to commercial crop land. This one-atmosphere approach captures a broad range of service increases and decreases. Results for the forest to cropland conversion scenario suggest that although such change could lead to increased biomass (food) production services, there could also be coincident, seasonally variable decreases in clean and clear air-ecosystem services (i.e., increased levels of ozone and particulate matter) associated with increased fertilizer application. Metrics that support the quantification of these regional air-ecosystem changes require regional ecosystem production functions that fully integrate biotic as well as abiotic components of terrestrial ecosystems, and do so on finer temporal scales than are used for the assessment of most ecosystem services. Published by Elsevier B.V.
Update of Forest Service Research Data
Terence L. Wagner
2002-01-01
The U.S. Forest Service undertakes research to improve the protection of wood products against subterranean termite damage, define the role of termites in forest ecosystems, and understand their impact on forest health. Specifically, the Wood Products Insect Research Unit concentrates efforts on developing, refining, and assessing new and alternative compounds,...
Assessment of national biomass in complex forests and technical capacity scenarios
Matieu Henry; Javier G. P. Gamarra; Gael Sola; Luca Birigazzi; Emily Donegan; Julian Murillo; Tommaso Chiti; Nicolas Picard; Miguel Cifuentes-Jara; S Sandeep; Laurent Saint-André
2015-01-01
Understanding forest ecosystems is paramount for their sustainable management and for the livelihoods and ecosystem services which depend on them. However, the complexity and diversity of these systems poses a challenge to interpreting data patterns. The availability and accessibility of data and tools often determine the method selected for forest assessment. Capacity...
James B. Baker
1994-01-01
In August 1990, USDA Forest Service researchers from the Southern Forest Experiment Station and resource managers from the Ouachita and Ozark National Forests embarked on a major ecosystem management (then called New Perspectives) research program aimed at formulating, implementing, and evaluating partial cutting methods in shortleaf pine-hardwood stands as...
Emerald ash borer aftermath forests: the future of ash ecosystems
Kathleen S. Knight; Daniel A. Herms; John Cardina; Robert Long; Kamal J.K. Gandhi; Catharine P. Herms
2011-01-01
The effects of emerald ash borer (EAB) (Agrilus planipennis) on forest ecosystems are being studied through a collaborative research program between the U.S. Forest Service and The Ohio State University. We are monitoring ash demographics, understory light availability, EAB population dynamics, native and non-native plants, and effects of ash...
Summary of findings, management options, and interactions
James M. Vose; Shelby Gull Laird; Zanethia D. Choice; Kier D. Klepzig
2014-01-01
Forests in the Southern United States are likely to be very different in the coming decades as a result of climate change. Maintaining resilience and restoring forest ecosystems to ensure a continuing supply of ecosystem services will be a major challenge in the twenty-first century. Fortunately, most forests have inherent resistance and resilience to climatic...
Air pollution and watershed research in the central Sierra Nevada of California: nitrogen and ozone.
Hunsaker, Carolyn; Bytnerowicz, Andrzej; Auman, Jessica; Cisneros, Ricardo
2007-03-21
Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3) and nitrogenous (N) air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and deposition levels, as well as studies focused on understanding effects mechanisms, are essential for evaluation of risks associated with their presence. Such information is essential for development of proper management strategies for maintaining clean air, clean water, and healthy ecosystems on land managed by the Forest Service. We report on two years of research in the central Sierra Nevada of California, a semi-arid forest at elevations of 1100-2700 m. Information on O3 and N air pollutants is obtained from a network of 18 passive samplers. We relate the atmospheric N concentration to N concentrations in streams, shallow soil water, and bulk deposition collectors within the Kings River Experimental Watershed. This watershed also contains an intensive site that is part of a recent Forest Service effort to calculate critical loads for N, sulfur, and acidity to forest ecosystems. The passive sampler design allows for extensive spatial measurements while the watershed experiment provides intensive spatial data for future analysis of ecosystem processes.
The impact of logging on biodiversity and carbon sequestration in tropical forests
NASA Astrophysics Data System (ADS)
Cazzolla Gatti, R.
2012-04-01
Tropical deforestation is one of the most relevant environmental issues at planetary scale. Forest clearcutting has dramatic effect on local biodiversity, on the terrestrial carbon sink and atmospheric GHGs balance. In terms of protection of tropical forests selective logging is, instead, often regarded as a minor or even positive management practice for the ecosystem and it is supported by international certifications. However, few studies are available on changes in the structure, biodiversity and ecosystem services due to the selective logging of African forests. This paper presents the results of a survey on tropical forests of West and Central Africa, with a comparison of long-term dynamics, structure, biodiversity and ecosystem services (such as the carbon sequestration) of different types of forests, from virgin primary to selectively logged and secondary forest. Our study suggests that there is a persistent effect of selective logging on biodiversity and carbon stock losses in the long term (up to 30 years since logging) and after repeated logging. These effects, in terms of species richness and biomass, are greater than the expected losses from commercial harvesting, implying that selective logging in West and Central Africa is impairing long term (at least until 30 years) ecosystem structure and services. A longer selective logging cycle (>30 years) should be considered by logging companies although there is not yet enough information to consider this practice sustainable.
Cantarello, Elena; Newton, Adrian C; Martin, Philip A; Evans, Paul M; Gosal, Arjan; Lucash, Melissa S
2017-11-01
Resilience is increasingly being considered as a new paradigm of forest management among scientists, practitioners, and policymakers. However, metrics of resilience to environmental change are lacking. Faced with novel disturbances, forests may be able to sustain existing ecosystem services and biodiversity by exhibiting resilience, or alternatively these attributes may undergo either a linear or nonlinear decline. Here we provide a novel quantitative approach for assessing forest resilience that focuses on three components of resilience, namely resistance, recovery, and net change, using a spatially explicit model of forest dynamics. Under the pulse set scenarios, we explored the resilience of nine ecosystem services and four biodiversity measures following a one-off disturbance applied to an increasing percentage of forest area. Under the pulse + press set scenarios, the six disturbance intensities explored during the pulse set were followed by a continuous disturbance. We detected thresholds in net change under pulse + press scenarios for the majority of the ecosystem services and biodiversity measures, which started to decline sharply when disturbance affected >40% of the landscape. Thresholds in net change were not observed under the pulse scenarios, with the exception of timber volume and ground flora species richness. Thresholds were most pronounced for aboveground biomass, timber volume with respect to the ecosystem services, and ectomycorrhizal fungi and ground flora species richness with respect to the biodiversity measures. Synthesis and applications . The approach presented here illustrates how the multidimensionality of stability research in ecology can be addressed and how forest resilience can be estimated in practice. Managers should adopt specific management actions to support each of the three components of resilience separately, as these may respond differently to disturbance. In addition, management interventions aiming to deliver resilience should incorporate an assessment of both pulse and press disturbances to ensure detection of threshold responses to disturbance, so that appropriate management interventions can be identified.
Mapping ecosystem services for land use planning, the case of Central Kalimantan.
Sumarga, Elham; Hein, Lars
2014-07-01
Indonesia is subject to rapid land use change. One of the main causes for the conversion of land is the rapid expansion of the oil palm sector. Land use change involves a progressive loss of forest cover, with major impacts on biodiversity and global CO2 emissions. Ecosystem services have been proposed as a concept that would facilitate the identification of sustainable land management options, however, the scale of land conversion and its spatial diversity pose particular challenges in Indonesia. The objective of this paper is to analyze how ecosystem services can be mapped at the provincial scale, focusing on Central Kalimantan, and to examine how ecosystem services maps can be used for a land use planning. Central Kalimantan is subject to rapid deforestation including the loss of peatland forests and the provincial still lacks a comprehensive land use plan. We examine how seven key ecosystem services can be mapped and modeled at the provincial scale, using a variety of models, and how large scale ecosystem services maps can support the identification of options for sustainable expansion of palm oil production.
NASA Technical Reports Server (NTRS)
Johnson, Kiersten B.; Jacob, Anila; Brown, Molly Elizabeth
2013-01-01
Healthy forests provide human communities with a host of important ecosystem services, including the provision of food, clean water, fuel, and natural medicines. Yet globally, about 13 million hectares of forests are lost every year, with the biggest losses in Africa and South America. As biodiversity loss and ecosystem degradation due to deforestation continue at unprecedented rates, with concomitant loss of ecosystem services, impacts on human health remain poorly understood. Here, we use data from the 2010 Malawi Demographic and Health Survey, linked with satellite remote sensing data on forest cover, to explore and better understand this relationship. Our analysis finds that forest cover is associated with improved health and nutrition outcomes among children in Malawi. Children living in areas with net forest cover loss between 2000 and 2010 were 19% less likely to have a diverse diet and 29% less likely to consume vitamin A-rich foods than children living in areas with no net change in forest cover. Conversely, children living in communities with higher percentages of forest cover were more likely to consume vitamin A-rich foods and less likely to experience diarrhea. Net gain in forest cover over the 10-year period was associated with a 34% decrease in the odds of children experiencing diarrhea (P5.002). Given that our analysis relied on observational data and that there were potential unknown factors for which we could not account, these preliminary findings demonstrate only associations, not causal relationships, between forest cover and child health and nutrition outcomes. However, the findings raise concerns about the potential short- and long-term impacts of ongoing deforestation and ecosystem degradation on community health in Malawi, and they suggest that preventing forest loss and maintaining the ecosystems services of forests are important factors in improving human health and nutrition outcomes.
David P. Turner; William D. Ritts; Zhiqiang Yang; Robert E. Kennedy; Warren B. Cohen; Maureen V. Duane; Peter E. Thornton; Beverly E. Law
2011-01-01
Carbon sequestration is increasingly recognized as an ecosystem service, and forest management has a large potential to alter regional carbon fluxes, notably by way of harvest removals and related impacts on net ecosystem production (NEP). In the Pacific Northwest region of the US, the implementation of the Northwest Forest Plan (NWFP) in 1993 established a regional...
Plantation forests, climate change and biodiversity
S.M. Pawson; A. Brin; E.G. Brockerhoff; D. Lamb; T.W. Payn; A. Paquette; J.A. Parrotta
2013-01-01
Nearly 4 % of the worldâs forests are plantations, established to provide a variety of ecosystem services, principally timber and other wood products. In addition to such services, plantation forests provide direct and indirect benefits to biodiversity via the provision of forest habitat for a wide range of species, and by reducing negative impacts on natural forests...
Nicholas Bolton; Joseph Shannon; Joshua Davis; Matthew Grinsven; Nam Noh; Shon Schooler; Randall Kolka; Thomas Pypker; Joseph Wagenbrenner
2018-01-01
Emerald ash borer (EAB) continues to spread across North America, infesting native ash trees and changing the forested landscape. Black ash wetland forests are severely affected by EAB. As black ash wetland forests provide integral ecosystem services, alternative approaches to maintain forest cover on the landscape are needed. We implemented simulated EAB infestations...
Xiao, Yang; Xiao, Qiang
2018-03-29
Because natural ecosystems and ecosystem services (ES) are both critical to the well-being of humankind, it is important to understand their relationships and congruence for conservation planning. Spatial conservation planning is required to set focused preservation priorities and to assess future ecological implications. This study uses the combined measures of ES models and ES potential to estimate and analyze all four groups of ecosystem services to generate opportunities to maximize ecosystem services. Subsequently, we identify the key areas of conservation priorities as future forestation and conservation hotspot zones to improve the ecological management in Chongqing City, located in the upper reaches of the Three Gorges Reservoir Area, China. Results show that ecosystem services potential is extremely obvious. Compared to ecosystem services from 2000, we determined that soil conservation could be increased by 59.11%, carbon sequestration by 129.51%, water flow regulation by 83.42%, and water purification by 84.42%. According to our prioritization results, approximately 48% of area converted to forests exhibited high improvements in all ecosystem services (categorized as hotspot-1, hotspot-2, and hotspot-3). The hotspots identified in this study can be used as an excellent surrogate for evaluation ecological engineering benefits and can be effectively applied in improving ecological management planning.
Restoring a legacy: longleaf pine research at the Forest Service Escambia Experimental Forest
Kristina F. Connor; Dale G. Brockway; William D. Boyer
2014-01-01
Longleaf pine ecosystems are a distinct part of the forest landscape in the southeastern USA. These biologically diverse ecosystems, the native habitat of numerous federally listed species, once dominated more than 36.4 million ha but now occupy only 1.4 million ha of forested land in the region. The Escambia Experimental Forest was established in 1947 through a 99-...
Forest ecosystems: Vegetation, disturbance, and economics: Chapter 5
Littell, Jeremy S.; Hicke, Jeffrey A.; Shafer, Sarah L.; Capalbo, Susan M.; Houston, Laurie L.; Glick, Patty
2013-01-01
Forests cover about 47% of the Northwest (NW–Washington, Oregon, and Idaho) (Smith et al. 2009, fig. 5.1, table 5.1). The impacts of current and future climate change on NW forest ecosystems are a product of the sensitivities of ecosystem processes to climate and the degree to which humans depend on and interact with those systems. Forest ecosystem structure and function, particularly in relatively unmanaged forests where timber harvest and other land use have smaller effects, is sensitive to climate change because climate has a strong influence on ecosystem processes. Climate can affect forest structure directly through its control of plan physiology and life history (establishment, individual growth, productivity, and morality) or indirectly through its control of disturbance (fire, insects, disease). As climate changes, many forest processes will be affected, altering ecosystem services such as timber production and recreation. These changes have socioeconomic implications (e.g. for timber economies) and will require changes to current management of forests. Climate and management will interact to determine the forests of the future, and the scientific basis for adaptation to climate change in forests thus depends significantly on how forests will be affected.
Demand-based urban forest planning using high-resolution remote sensing and AHP
NASA Astrophysics Data System (ADS)
Kolanuvada, Srinivasa Raju; Mariappan, Muneeswaran; Krishnan, Vani
2016-05-01
Urban forest planning is important for providing better urban ecosystem services and conserve the natural carbon sinks inside the urban area. In this study, a demand based urban forest plan was developed for Chennai city by using Analytical Hierarchy Process (AHP) method. Population density, Tree cover, Air quality index and Carbon stocks are the parameters were considered in this study. Tree cover and Above Ground Biomass (AGB) layers were prepared at a resolution of 1m from airborne LiDAR and aerial photos. The ranks and weights are assigned by the spatial priority using AHP. The results show that, the actual status of the urban forest is not adequate to provide ecosystem services on spatial priority. From this perspective, we prepared a demand based plan for improving the urban ecosystem.
K.L. Larson; K.C. Nelson; S.R. Samples; S.J. Hall; N. Bettez; J. Cavender-Bares; P.M. Groffman; M. Grove; J.B. Heffernan; S.E. Hobbie; J. Learned; J.L. Morse; C. Neill; L.A. Ogden; Jarlath O' Neil-Dunne; D.E. Pataki; C. Polsky; R. Roy Chowdhury; M. Steele; T.L.E. Trammell
2016-01-01
Although ecosystem services have been intensively examined in certain domains (e.g., forests and wetlands), little research has assessed ecosystem services for the most dominant landscape type in urban ecosystemsânamely, residential yards. In this paper, we report findings of a cross-site survey of homeowners in six U.S. cities to 1) examine how residents subjectively...
Rupert Seidl; Thomas A. Spies; David L. Peterson; Scott L. Stephens; Jeffrey A. Hicke
2015-01-01
Summary 1. The provisioning of ecosystem services to society is increasingly under pressure from global change. Changing disturbance regimes are of particular concern in this context due to their high potential impact on ecosystem structure, function and composition. Resiliencebased stewardship is advocated to address these changes in ecosystem management,...
Funding Mechanisms for Ecosystem Services Projects
NASA Astrophysics Data System (ADS)
Russell, V.
2014-12-01
Ecosystem services projects ideally should be funded through commoditized markets. Where those markets do not exist financing directly from interested private sector parties can be a direct link between business interested in fulfilling sustainability goals and project implementers. Challenges exist, however in 1) linking those interests; 2) carefully quantifying the services produced, their true costs to implement and meeting protocol standards; 3) measuring the success of projects, especially over lengthy periods of time; and 4) balancing issues related to multiple spatial scales for projects and funding to make a difference. Examples from National Forest Foundation's experience implementing carbon and water projects with multiple private sector funders and the USDA Forest Service will highlight experiences and lessons learned in funding and implementing ecosystem service projects.
The water footprint of wood for lumber, pulp, paper, fuel and firewood
NASA Astrophysics Data System (ADS)
Schyns, Joep F.; Booij, Martijn J.; Hoekstra, Arjen Y.
2017-09-01
This paper presents the first estimate of global water use in the forestry sector related to roundwood production for lumber, pulp, paper, fuel and firewood. For the period 1961-2010, we estimate forest evaporation at a high spatial resolution level and attribute total water consumption to various forest products, including ecosystem services. Global water consumption for roundwood production increased by 25% over 50 years to 961 × 109 m3/y (96% green; 4% blue) in 2001-2010. The water footprint per m3 of wood is significantly smaller in (sub)tropical forests compared to temperate/boreal forests, because (sub)tropical forests host relatively more value next to wood production in the form of other ecosystem services. In terms of economic water productivity and energy yield from bio-ethanol per unit of water, roundwood is rather comparable with major food, feed and energy crops. Recycling of wood products could effectively reduce the water footprint of the forestry sector, thereby leaving more water available for the generation of other ecosystem services. Intensification of wood production can only reduce the water footprint per unit of wood if the additional wood value per ha outweighs the loss of value of other ecosystem services, which is often not the case in (sub)tropical forests. The results of this study contribute to a more complete picture of the human appropriation of water, thus feeding the debate on water for food or feed versus energy and wood.
Quantifying the Climate Impacts of Land Use Change (Invited)
NASA Astrophysics Data System (ADS)
Anderson-Teixeira, K. J.; Snyder, P. K.; Twine, T. E.
2010-12-01
Climate change mitigation efforts that involve land use decisions call for comprehensive quantification of the climate services of terrestrial ecosystems. This is particularly imperative for analyses of the climate impact of bioenergy production, as land use change is often the single most important factor in determining bioenergy’s sustainability. However, current metrics of the climate services of terrestrial ecosystems used for policy applications—including biofuels life cycle analyses—account only for biogeochemical climate services (greenhouse gas regulation), ignoring biophysical climate regulation services (regulation of water and energy balances). Policies thereby run the risk of failing to advance the best climate solutions. Here, we present a quantitative metric that combines biogeochemical and biophysical climate services of terrestrial ecosystems, the ‘climate regulation value’ (CRV), which characterizes the climate benefit of maintaining an ecosystem over a multiple-year time frame. Using a combination of data synthesis and modeling, we calculate the CRV for a variety of natural and managed ecosystem types within the western hemisphere. Biogeochemical climate services are generally positive in unmanaged ecosystems (clearing the ecosystem has a warming effect), and may be positive or negative (clearing the ecosystem has a cooling effect) for managed ecosystems. Biophysical climate services may be either positive (e.g., tropical forests) or negative (e.g., high latitude forests). When averaged on a global scale, biogeochemical services usually outweigh biophysical services; however, biophysical climate services are not negligible. This implies that effective analysis of the climate impacts of bioenergy production must consider the integrated effects of biogeochemical and biophysical ecosystem climate services.
NASA Astrophysics Data System (ADS)
Lee, S. J.; Lee, W. K.
2017-12-01
The study on the analysis of carbon storage capacity of urban green spaces with increasing urban forest. Modern cities have experienced rapid economic development since Industrial Revolution in the 18th century. The rapid economic growth caused an exponential concentration of population to the cities and decrease of green spaces due to the conversion of forest and agricultural lands to build-up areas with rapid urbanization. As green areas including forests, grasslands, and wetlands provide diverse economic, environmental, and cultural benefits, the decrease of green areas might be a huge loss. Also, the process of urbanization caused pressure on the urban environment more than its natural capacity, which accelerates global climate change. This study tries to see the relations between carbon budget and ecosystem services according to the urbanization. For calculating carbon dynamics, this study used VISIT(Vegetation Integrated Simulator for trace gases) model. And the value that ecosystem provides is explained with the concept of ecosystem service and calculated by InVEST model. Study sites are urban and peri-urban areas in Northeast Asia. From the result of the study, the effect of the urbanization can be understood in regard to carbon storage and ecosystem services.
Ecosystem Services and Opportunity Costs Shift Spatial Priorities for Conserving Forest Biodiversity
Schröter, Matthias; Rusch, Graciela M.; Barton, David N.; Blumentrath, Stefan; Nordén, Björn
2014-01-01
Inclusion of spatially explicit information on ecosystem services in conservation planning is a fairly new practice. This study analyses how the incorporation of ecosystem services as conservation features can affect conservation of forest biodiversity and how different opportunity cost constraints can change spatial priorities for conservation. We created spatially explicit cost-effective conservation scenarios for 59 forest biodiversity features and five ecosystem services in the county of Telemark (Norway) with the help of the heuristic optimisation planning software, Marxan with Zones. We combined a mix of conservation instruments where forestry is either completely (non-use zone) or partially restricted (partial use zone). Opportunity costs were measured in terms of foregone timber harvest, an important provisioning service in Telemark. Including a number of ecosystem services shifted priority conservation sites compared to a case where only biodiversity was considered, and increased the area of both the partial (+36.2%) and the non-use zone (+3.2%). Furthermore, opportunity costs increased (+6.6%), which suggests that ecosystem services may not be a side-benefit of biodiversity conservation in this area. Opportunity cost levels were systematically changed to analyse their effect on spatial conservation priorities. Conservation of biodiversity and ecosystem services trades off against timber harvest. Currently designated nature reserves and landscape protection areas achieve a very low proportion (9.1%) of the conservation targets we set in our scenario, which illustrates the high importance given to timber production at present. A trade-off curve indicated that large marginal increases in conservation target achievement are possible when the budget for conservation is increased. Forty percent of the maximum hypothetical opportunity costs would yield an average conservation target achievement of 79%. PMID:25393951
Schröter, Matthias; Rusch, Graciela M; Barton, David N; Blumentrath, Stefan; Nordén, Björn
2014-01-01
Inclusion of spatially explicit information on ecosystem services in conservation planning is a fairly new practice. This study analyses how the incorporation of ecosystem services as conservation features can affect conservation of forest biodiversity and how different opportunity cost constraints can change spatial priorities for conservation. We created spatially explicit cost-effective conservation scenarios for 59 forest biodiversity features and five ecosystem services in the county of Telemark (Norway) with the help of the heuristic optimisation planning software, Marxan with Zones. We combined a mix of conservation instruments where forestry is either completely (non-use zone) or partially restricted (partial use zone). Opportunity costs were measured in terms of foregone timber harvest, an important provisioning service in Telemark. Including a number of ecosystem services shifted priority conservation sites compared to a case where only biodiversity was considered, and increased the area of both the partial (+36.2%) and the non-use zone (+3.2%). Furthermore, opportunity costs increased (+6.6%), which suggests that ecosystem services may not be a side-benefit of biodiversity conservation in this area. Opportunity cost levels were systematically changed to analyse their effect on spatial conservation priorities. Conservation of biodiversity and ecosystem services trades off against timber harvest. Currently designated nature reserves and landscape protection areas achieve a very low proportion (9.1%) of the conservation targets we set in our scenario, which illustrates the high importance given to timber production at present. A trade-off curve indicated that large marginal increases in conservation target achievement are possible when the budget for conservation is increased. Forty percent of the maximum hypothetical opportunity costs would yield an average conservation target achievement of 79%.
Needs and Opportunities for Longleaf Pine Ecosystem Restoration in Florida
Kenneth W. Outcalt
1997-01-01
Data from permanent plots measured periodically by Forest Inventory and Analyses of the Southern Research Station, USDA Forest Service shows a continuing decline in the longleaf pine (Pinus pulustris Mill,) ecosystem in Florida from 1987 to 1995. Conversion to some other forest type resulted in a net loss of 58,000 ha natural stands of longleaf pine...
Andrew M. Liebhold; Eckehard G. Brockerhoff; Martin A. Nuñez
2017-01-01
The world's forests are crucial biological resources that provide a variety of ecosystem services such as nutrient cycling and provisioning of resources to society. But forests are particularly affected by biological invasions, with regions around the world experiencing invasions by species from virtually every kingdom. Many of these species have severely...
Unexpected ecological advances made possible by long-term data: A Coweeta example
C. Rhett Jackson; Jackson R. Webster; Jennifer D. Knoepp; Katherine J. Elliott; Ryan E. Emanuel; Peter V. Caldwell; Chelcy F. Miniat
2018-01-01
In the 1970s, Forest Service and academic researchers clearcut the forest in Watershed 7 in the Coweeta Basin to observe how far the perturbation would move the ecosystem and how quickly the ecosystem would return to its predisturbance state. Ourlong-term observations demonstrated that this view of resistance and resilience was too simplistic. Forest...
Decision Support for Ecosystem Management and Ecological Assessments (Chapter 12)
H. Michael Rauscher; Walter D. Potter
1999-01-01
In the face of mounting confrontation and after almost 20 years of increasingly contentious public unhappiness with the management of National Forests, the USDA Forest Service officially adopted ecosystem management as a land management paradigm (Overbay, 1992). Other federal forest land management agencies, such as the USDI Bureau of Land Management, the USDI National...
Water chemistry of Rocky Mountain Front Range aquatic ecosystems
Robert C. Musselman; Laura Hudnell; Mark W. Williams; Richard A. Sommerfeld
1996-01-01
A study of the water chemistry of Colorado Rocky Mountain Front Range alpine/subalpine lakes and streams in wilderness ecosystems was conducted during the summer of 1995 by the USDA Forest Service Arapaho and Roosevelt National Forests and Rocky Mountain Forest and Range Experiment Station, and the University of Colorado Institute of Alpine and Arctic Research. Data...
Stated Preference Methods for Valuation of Forest Attributes
Thomas P. Holmes; Kevin J. Boyle
2003-01-01
The valuation methods described in this chapter are based on the idea that forest ecosystems produce a wide variety of goods and services that are valued by people. Rather than focusing attention on the holistic value of forest ecosystems as is done in contingent valuation studies, attribute-based valuation methods (ABMs) focus attention on a set of attributes that...
Zong Bo Shang; Hong S. He; Weimin Xi; Stephen R. Shifley; Brian J. Palik
2012-01-01
Public forest management requires consideration of numerous objectives including protecting ecosystem health, sustaining habitats for native communities, providing sustainable forest products, and providing noncommodity ecosystem services. It is difficult to evaluate the long-term, cumulative effects and tradeoffs these and other associated management objectives. To...
FOREST SOIL CARBON SEQUESTRATION: ACCOUNTING FOR THIS VITAL ECOSYSTEM SERVICE
Forests play a crucial role in supplying many goods and services that society depends upon on a daily basis including water supply, production of oxygen, soil protection, building materials, wildlife habitat and recreation. Forests also provide a significant amount of carbon seq...
[Assessment on the changing conditions of ecosystems in key ecological function zones in China].
Huang, Lin; Cao, Wei; Wu, Dan; Gong, Guo-li; Zhao, Guo-song
2015-09-01
In this paper, the dynamics of ecosystem macrostructure, qualities and core services during 2000 and 2010 were analyzed for the key ecological function zones of China, which were classified into four types of water conservation, soil conservation, wind prevention and sand fixation, and biodiversity maintenance. In the water conservation ecological function zones, the areas of forest and grassland ecosystems were decreased whereas water bodies and wetland were increased in the past 11 years, and the water conservation volume of forest, grassland and wetland ecosystems increased by 2.9%. This region needs to reverse the decreasing trends of forest and grassland ecosystems. In the soil conservation ecological function zones, the area of farmland ecosystem was decreased, and the areas of forest, grassland, water bodies and wetland ecosystems were increased. The total amount of the soil erosion was reduced by 28.2%, however, the soil conservation amount of ecosystems increased by 38.1%. In the wind prevention and sand fixation ecological function zones, the areas of grassland, water bodies and wetland ecosystems were decreased, but forest and farmland ecosystems were increased. The unit amount of the soil. wind erosion was reduced and the sand fixation amount of ecosystems increased lightly. In this kind of region that is located in arid and semiarid areas, ecological conservation needs to reduce farmland area and give priority to the protection of the original ecological system. In the biodiversity maintenance ecological function zones, the areas of grassland and desert ecosystems were decreased and other types were increased. The human disturbances showed a weakly upward trend and needs to be reduced. The key ecological function zones should be aimed at the core services and the protecting objects, to assess quantitatively on the effectiveness of ecosystem conservation and improvement.
NASA Astrophysics Data System (ADS)
Missall, S.; Welp, M.; Thevs, N.; Abliz, A.; Halik, Ü.
2014-12-01
The city of Aksu, situated at the northern fringe of the Taklimakan Desert in the northwest of China, is exposed to periodic severe dust and sand storms. In 1986, local authorities decided to establish a peri-urban shelterbelt plantation, the so-called Kökyar Protection Forest. It was realised as a patchwork of poplar shelterbelts and orchards. The total area of the plantation reached 3800 ha in 2005. This endeavour was made possible by the annual mass mobilisation of Aksu citizens, based on the Chinese regulation of the "National Compulsory Afforestation Campaigns". Establishment costs amounted to ca. CNY 60 000 ha-1 (ca. USD 10 000 ha-1). The regulating ecosystem services provided by Kökyar Protection Forest clearly reduce dust and sand storm impacts on Aksu City. Permanent maintenance of the plantation is facilitated by leasing orchard plots to private fruit farmers. This system ensures forest tending, reduces government expenses, and provides incomes to farmers. From the perspective of the local economy, annual farming net benefits generated by Kökyar fruit farmers more than compensate annual government grants for maintenance, resulting in an overall monetary net benefit of at least CNY 10 500 ha-1 (ca. USD 1600 ha-1) on the long-term average. The intended regulating ecosystem services can thus be provided to the citizens of Aksu without payments for ecosystem services or other financial burdens. For a more complete understanding of Kökyar Protection Forest, future research should be directed towards quantifying the effect of its regulating ecosystem services, and on investigating the negative downstream consequences of its water consumption.
Understanding the Socioeconomic Effects of Wildfires on Western U.S. Public Lands
NASA Astrophysics Data System (ADS)
Sanchez, J. J.; Srivastava, L.; Marcos-Martinez, R.
2017-12-01
Climate change has resulted in the increased severity and frequency of forest disturbances due to wildfires, droughts, pests and diseases that compromise the sustainable provision of forest ecosystem services (e.g., water quantity and quality, carbon sequestration, recreation). A better understanding of the environmental and socioeconomic consequences of forest disturbances (i.e., wildfires) could improve the management and protection of public lands. We used a single-site benefit transfer function and spatially explicit information for demographic, socioeconomic, and site-specific characteristics to estimate the monetized value of market and non-market ecosystem services provided by forests on Western US public lands. These estimates are then used to approximate the costs of forest disturbances caused by wildfires of varying frequency and intensity, and across sites with heterogeneous characteristics and protection and management strategies. Our analysis provides credible estimates of the benefits of the forest for land management by the United States Forest Service, thereby assisting forest managers in planning resourcing and budgeting priorities.
This EnviroAtlas dataset contains points depicting the location of market-based programs, referred to herein as markets, and projects addressing ecosystem services protection in the United States. The data were collected via surveys and desk research conducted by Forest Trends' Ecosystem Marketplace from 2008 to 2016 on biodiversity (i.e., imperiled species/habitats; wetlands and streams), carbon, and water markets. Additional biodiversity data were obtained from the Regulatory In-lieu Fee and Bank Information Tracking System (RIBITS) database in 2015. Points represent the centroids (i.e., center points) of market coverage areas, project footprints, or project primary impact areas in which ecosystem service markets or projects operate. National-level markets are an exception to this norm with points representing administrative headquarters locations. Attribute data include information regarding the methodology, design, and development of biodiversity, carbon, and water markets and projects. This dataset was produced by Forest Trends' Ecosystem Marketplace for EnviroAtlas in order to support public access to and use of information related to environmental markets. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) o
Effects of forest management on productivity and carbon sequestration: A review and hypothesis
A. Noormets; D. Epron; J.C. Domec; S.G. McNulty; T. Fox; G. Sun; J.S. King
2015-01-01
With an increasing fraction of the worldâs forests being intensively managed for meeting humanityâs need for wood, fiber and ecosystem services, quantitative understanding of the functional changes in these ecosystems in comparison with natural forests is needed. In particular, the role of managed forests as long-term carbon (C) sinks and for mitigating climate change...
Assessing Dryland Ecosystem Services in Xinjiang, Northwest China
NASA Astrophysics Data System (ADS)
Siew, T. F.; Brauman, K. A.; Zuo, L.; Doll, P. M.
2014-12-01
Dryland ecosystems, including grassland, forest, and irrigated cropland, cover about 41% of earth's land area and are inhabited by over two billion people. In drylands, particularly arid and semiarid areas, the production of ecosystem services is primarily constrained by freshwater availability. Often, water allocated to production by one ecosystem or of one ecosystem service negatively impacts other ecosystems or ecosystem services (ESS). The challenge is to determine how much water should be allocated to which ecosystems (natural and manmade) such that multiple ESS are maximized, thus improving overall well-being. This strategic management decision must be supported by knowledge about spatial and temporal availability of water and its relationship to production (location and scale) of ESS that people receive. We assess the spatial and temporal relationships between water availability and ESS production in Xinjiang, Northwest China. We address four questions: (1) What services are produced by which ecosystems with water available? (2) Where are these services produced? (3) Who uses the services produced? (4) How the production of services changes with variability of water available? Using existing global, national, and regional spatial and statistical data, we assess food, fiber, livestock, and wood production as well as unique forest landscapes (as a proxy for aesthetic appreciation and habitats for unique animals and plants) and protection from dust storms. Irrigation is necessary for crop production in Xinjiang. The production of about 4.2 million tons of wheat and 500,000 tons of cotton requires more than 2 km3 of water each year. This is an important source of food and income for local residents, but the diverted water has negative and potentially costly impacts on downstream forests that potentially provide aesthetic services and protection from dust. Our analyses also show that cropland had increased by about 1.6 million ha from 1987 to 2010, while grassland and woodland had decreased by about 1.5 million ha and 33,000 ha, respectively. Cropland expansion had increased water need for irrigation and decreased services produced by other ecosystems. This assessment helps understand connections between water and ESS better and contributes to water and land management in dry regions, particularly China.
NASA Astrophysics Data System (ADS)
Damayanti, Irma; Nur Bambang, Azis; Retnaningsih Soeprobowati, Tri
2018-05-01
Petungkriyono is the last tropical forest in Java and provides biodiversity including rare flora and fauna that must be maintained, managed and utilized in order to give meaning for humanity and sustainability. Services of Forest Ecosystem in Petungkriyono are included such as goods supply, soil-water conservation, climate regulation, purification environment and flora fauna habitats. The approach of this study is the literature review from various studies before perceiving the influenced of economic valuation in determining the measurement conservation strategies of Petungkriyono Natural Forest Ecosystem in Pekalongan Regency. The aims of this study are to analyzing an extended benefit cost of natural forest ecosystems and internalizing them in decision making. The method of quantification and valuation of forest ecosystem is Cost and Benefit Analysis (CBA) which is a standard economic appraisal tools government in development economics. CBA offers the possibility capturing impact of the project. By using productivity subtitution value and extended benefit cost analysis any comodity such as Backwoods,Pine Woods, Puspa woods and Pine Gum. Water value, preventive buildings of landslide and carbon sequestration have total economic value of IDR.163.065.858.080, and the value of Extended Benefit Cost Ratio in Petungkriyono is 281.35 %. However, from the result is expected the local government of Pekalongan to have high motivation in preserve the existence of Petungkriyono forest.
Ian Thompson; Kimiko Okabe; Jason Tylianakis; Pushpam Kumar; Eckehard G. Brockerhoff; Nancy Schellhorn; John A. Parrotta; Robert Nasi
2011-01-01
Biodiversity is integral to almost all ecosystem processes, with some species playing key functional roles that are essential for maintaining the value of ecosystems to humans. However, many ecosystem services remain nonvalued, and decisionmakers rarely consider biodiversity in policy development, in part because the relationships between biodiversity and the provision...
Native and agricultural forests at risk to a changing climate in the Northern Plains
USDA-ARS?s Scientific Manuscript database
Native and agricultural forests in the Northern Plains provide ecosystem services that benefit human society—diversified agricultural systems, forest-based products, and rural vitality. The impacts of recent trends in temperature and disturbances are impairing the delivery of these services. Climate...
76 FR 44303 - De Soto Resource Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-25
... DEPARTMENT OF AGRICULTURE Forest Service De Soto Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The De Soto Resource Advisory Committee will meet in... ecosystems or restore and improve land health and water quality on the De Soto National Forest in Wayne and...
Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield
2012-01-01
Forests provide an array of products and services that maintain and enhance benefits to our society and economy. Benefits derived from forests may be categorized into wood products, nontimber products and services, and ecosystem services. The value and volume of these products and services indicate the importance of forests for a wide variety of uses.Tracking values,...
Applying the Ecosystem Services Concept to Public Land Management
We examine the challenges opportunities involved in applying ecosystem services to public lands management, with an emphasis on the work of the USDA Forest Service. We review the history of economics approaches to landscape management, outline a conceptual framework defining the ...
The Moquah Barrens Research Natural Area: Loss of a pine barrens ecosystem
Ribic, Christine
2017-01-01
The Moquah Barrens Research Natural Area (RNA) was established by the Chequamegon National Forest and the Lakes States Forest Experiment Station in 1935 with a research objective well-suited to the needs of the Forest Service and the scientific understanding of ecosystem function prevalent at the time of establishment. The original research plan was never implemented, which led to a joint Forest-Station decision in 1956 to disestablish the RNA. However, that decision was never implemented. A series of management decisions made after 1956 led to the loss of the pine barrens ecosystem originally encompassed by the RNA. This loss is not irretrievable and the work necessary to recover the original ecosystem is possible under existing RNA management guidelines. The experience of the Moquah Barrens RNA can be used by the Forest Service to improve overall management of the entire system of research natural areas. Two main areas of opportunity are identified: 1) implement an improved approach to managing official records associated with RNAs; and 2) adopt a management framework suitable for long-term ecological projects.
NASA Astrophysics Data System (ADS)
Osenga, E. C.; Cundiff, J.; Arnott, J. C.; Katzenberger, J.; Taylor, J. R.; Jack-Scott, E.
2015-12-01
An interactive tool called the Forest Health Index (FHI) has been developed for the Roaring Fork watershed of Colorado, with the purpose of improving public understanding of local forest management and ecosystem dynamics. The watershed contains large areas of White River National Forest, which plays a significant role in the local economy, particularly for recreation and tourism. Local interest in healthy forests is therefore strong, but public understanding of forest ecosystems is often simplified. This can pose challenges for land managers and researchers seeking a scientifically informed approach to forest restoration, management, and planning. Now in its second iteration, the FHI is a tool designed to help bridge that gap. The FHI uses a suite of indicators to create a numeric rating of forest functionality and change, based on the desired forest state in relation to four categories: Ecological Integrity, Public Health and Safety, Ecosystem Services, and Sustainable Use and Management. The rating is based on data derived from several sources including local weather stations, stream gauge data, SNOTEL sites, and National Forest Service archives. In addition to offering local outreach and education, this project offers broader insight into effective communication methods, as well as into the challenges of using quantitative analysis to rate ecosystem health. Goals of the FHI include its use in schools as a means of using local data and place-based learning to teach basic math and science concepts, improved public understanding of ecological complexity and need for ongoing forest management, and, in the future, its use as a model for outreach tools in other forested communities in the Intermountain West.
Ned B. Klopfenstein; Jennifer Juzwik; Michael E. Ostry; Mee-Sook Kim; Paul J. Zambino; Robert C. Venette; Bryce A. Richardson; John E. Lundquist; D. Jean Lodge; Jessie A. Glaeser; Susan J. Frankel; William J. Otrosina; Pauline Spaine; Brian W. Geils
2010-01-01
Invasive pathogens have caused immeasurable ecological and economic damage to forest ecosystems. Damage will undoubtedly increase over time due to increased introductions and evolution of invasive pathogens in concert with complex environmental disturbances, such as climate change. Forest Service Research and Development must fulfill critical roles and responsibilities...
Cassandra Moseley; Yolanda E. Reyes
2008-01-01
Conservation-based development programs have sought to create economic opportunities for people negatively affected by biological diversity protection. The USDA Forest Service, for example, developed policies and programs to create contracting opportunities for local communities to restore public lands to replace jobs lost from reduced timber harvest. This article...
An ecosystem services framework for multidisciplinary research in the Colorado River headwaters
Semmens, D.J.; Briggs, J.S.; Martin, D.A.
2009-01-01
A rapidly spreading Mountain Pine Beetle epidemic is killing lodgepole pine forest in the Rocky Mountains, causing landscape change on a massive scale. Approximately 1.5 million acres of lodgepoledominated forest is already dead or dying in Colorado, the infestation is still spreading rapidly, and it is expected that in excess of 90 percent of all lodgepole forest will ultimately be killed. Drought conditions combined with dramatically reduced foliar moisture content due to stress or mortality from Mountain Pine Beetle have combined to elevate the probability of large fires throughout the Colorado River headwaters. Large numbers of homes in the wildland-urban interface, an extensive water supply infrastructure, and a local economy driven largely by recreational tourism make the potential costs associated with such a fire very large. Any assessment of fire risk for strategic planning of pre-fire management actions must consider these and a host of other important socioeconomic benefits derived from the Rocky Mountain Lodgepole Pine Forest ecosystem. This paper presents a plan to focus U.S. Geological Survey (USGS) multidisciplinary fire/beetle-related research in the Colorado River headwaters within a framework that integrates a wide variety of discipline-specific research to assess and value the full range of ecosystem services provided by the Rocky Mountain Lodgepole Pine Forest ecosystem. Baseline, unburned conditions will be compared with a hypothetical, fully burned scenario to (a) identify where services would be most severely impacted, and (b) quantify potential economic losses. Collaboration with the U.S. Forest Service will further yield a distributed model of fire probability that can be used in combination with the ecosystem service valuation to develop comprehensive, distributed maps of fire risk in the Upper Colorado River Basin. These maps will be intended for use by stakeholders as a strategic planning tool for pre-fire management activities and can be updated and improved adaptively on an annual basis as tree mortality, climatic conditions, and management actions unfold.
Todd A. Schroeder; Sean P. Healey; Gretchen G. Moisen; Tracey S. Frescino; Warren B. Cohen; Chengquan Huang; Robert E. Kennedy; Zhiqiang Yang
2014-01-01
With earth's surface temperature and human population both on the rise a new emphasis has been placed on monitoring changes to forested ecosystems the world over. In the United States the U.S. Forest Service Forest Inventory and Analysis (FIA) program monitors the forested land base with field data collected over a permanent network of sample plots. Although these...
Ecosystem services: a new NRS-FIA analytical science initiative
Brian G. Tavernia; Mark D. Nelson; James D. Garner
2015-01-01
Forest ecosystem services (ES) are linked to sustaining human well-being. Recognizing an inappropriate economic valuation of ecosystem properties and processes, many ecologists, economists, and political scientists have pushed for an increasing awareness and appreciation of ES. Many definitions of ES include both direct and indirect benefits humans derive from...
The Moquah Barrens Research Natural Area: Loss of a pine barrens ecosystem
Christine A. Ribic; David J. Rugg; Deahn M. Donner; Albert J. Beck; BJ. Byers
2016-01-01
The Moquah Barrens Research Natural Area (RNA) was established by the Chequamegon National Forest and the Lakes States Forest Experiment Station in 1935 with a research objective well-suited to the needs of the Forest Service and the scientific understanding of ecosystem function prevalent at the time of establishment. The original research plan was never implemented,...
G. Chen; M.R. Metz; D.M. Rizzo; W.W. Dillon; R.K. Meentemeyer
2015-01-01
Forest ecosystems are subject to a variety of disturbances with increasing intensities and frequencies, which may permanently change the trajectories of forest recovery and disrupt the ecosystem services provided by trees. Fire and invasive species, especially exotic disease-causing pathogens and insects, are examples of disturbances that together could pose major...
Effects of climate change on ecosystem services in the Northern Rockies Region [Chapter 11
Travis Warziniack; Megan Lawson; S. Karen Dante-Wood
2018-01-01
In this chapter, we focus on the ecosystem services provided to people who visit, live adjacent to, or otherwise benefit from natural resources on public lands. Communities in the Forest Service, U.S. Department of Agriculture (USFS) Northern Region and the Greater Yellowstone Area (GYA), hereafter called the Northern Rockies region, are highly dependent on ecosystem...
Urban forest structure, ecosystem services and change in Syracuse, NY
David J. Nowak; Robert E. Hoehn; Allison R. Bodine; Eric J. Greenfield; Jarlath O' Neil-Dunne
2013-01-01
The tree population within the City of Syracuse was assessed using a random sampling of plots in 1999, 2001 and 2009 to determine how the population and the ecosystem services these trees provide have changed over time. Ecosystem services and values for carbon sequestration, air pollution removal and changes in building energy use were derived using the i-Tree Eco...
Using a terrestrial ecosystem survey to estimate the historical density of ponderosa pine trees
Scott R. Abella; Charles W. Denton; David G. Brewer; Wayne A. Robbie; Rory W. Steinke; W. Wallace Covington
2011-01-01
Maps of historical tree densities for project areas and landscapes may be useful for a variety of management purposes such as determining site capabilities and planning forest thinning treatments. We used the U.S. Forest Service Region 3 terrestrial ecosystem survey in a novel way to determine if the ecosystem classification is a useful a guide for estimating...
Shanlei Sun; Ge Sun; Peter Caldwell; Steve McNulty; Erika Cohen; Jingfeng Xiao; Yang Zhang
2015-01-01
The 781,000 km2 (193 million acre) United States National Forests and Grasslands system (NF) provides important ecosystem services such as clean water supply, timber production, wildlife habitat, and recreation opportunities to the American public. Quantifying the historical impacts of climate change and drought on ecosystem functions at the national scale is essential...
David N. Wear; Linda A. Joyce
2012-01-01
Human concerns about the effects of climate change on forests are related to the values that forests provide to human populations, that is, to the effects on ecosystem services derived from forests. Service values include the consumption of timber products, the regulation of climate and water quality, and aesthetic and spiritual values. Effects of climate change on...
Revenues from Forest Based Environmental Service
Evan Mercer
2011-01-01
This report is issued at a critical moment in time. The year 2011 is the International Year of the Forestâa time when people around the world are encouraged to pay special attention to the importance of forest ecosystems and the goods and ecological services they provide to sustain societies and economies. With the many threats facing forests today, this report...
Growing the urban forest: tree performance in response to biotic and abiotic land management
Emily E. Oldfield; Alexander J. Felson; D. S. Novem Auyeung; Thomas W. Crowther; Nancy F. Sonti; Yoshiki Harada; Daniel S. Maynard; Noah W. Sokol; Mark S. Ashton; Robert J. Warren; Richard A. Hallett; Mark A. Bradford
2015-01-01
Forests are vital components of the urban landscape because they provide ecosystem services such as carbon sequestration, storm-water mitigation, and air-quality improvement. To enhance these services, cities are investing in programs to create urban forests. A major unknown, however, is whether planted trees will grow into the mature, closed-canopied forest on which...
James M. Vose; Wayne T. Swank; Mary Beth Adams; Devendra Amatya; John Campbell; Sherri Johnson; Frederick J. Swanson; Randy Kolka; Ariel E. Lugo; Robert Musselman; Charles Rhoades
2014-01-01
Forest Service watershed-based Experimental Forests and Ranges (EFRs) have significantly advanced scientific knowledge on ecosystem structure and function through long-term monitoring and experimental research on hydrologic and biogeochemical cycling processes. Research conducted in the 1940s and 1950s began as âclassicâ paired watershed studies. The emergence of the...
Jared Verner
2002-01-01
Ecosystem management aligns different uses of the land with ecological parameters and goals of environmental quality. An important USDA Forest Service mission is to balance the multiple uses of its lands in an ecologically sustainable way. This objective has been particularly challenging for National Forests of the Sierra Nevada in the face of heated controversies over...
Shanlei Sun; Ge Sun; Peter Caldwell; Steven G. McNulty; Erika Cohen; Jingfeng Xiao; Yang Zhang
2015-01-01
Understanding and quantitatively evaluating the regional impacts of climate change and variability (e.g., droughts) on forest ecosystem functions (i.e., water yield, evapotranspiration, and productivity) and services (e.g., fresh water supply and carbon sequestration) is of great importance for developing climate change adaptation strategies for National Forests and...
Tara L. E. Trammell; Margaret M. Carreiro
2011-01-01
Urban forests adjacent to interstate corridors are understudied ecosystems across cities. Despite their small area, these forests may be strategically located to provide large ecosystem services due to their ability to act as a barrier against air pollutants and noise as well as to provide flood control. The woody vegetation composition and structure of forests...
[A review on disturbance ecology of forest].
Zhu, Jiaojun; Liu, Zugen
2004-10-01
More than 80% of terrestrial ecosystems have been influenced by natural disasters, human activities and the combination of both natural and human disturbances. Forest ecosystem, as one of the most important terrestrial ecosystems, has also been disturbed without exception. Under the disturbance from natural disasters and human activities, particularly from the unreasonable activities of human beings, forest decline or forest degradation has become more and more severe. For this reason, sustaining or recovering forest service functions is one of the current purposes for managing forest ecosystems. In recent decades, the studies on disturbed ecosystems have been carried out frequently, especially on their ecological processes and their responses to the disturbances. These studies play a very important role in the projects of natural forest conservation and the construction of ecological environment in China. Based on a wide range of literatures collection on forest disturbance research, this paper discussed the fundamental concepts of disturbance ecology, the relationships between forest management and disturbance, and the study contents of forest disturbance ecology. The major research topics of forest disturbance ecology may include: 1) the basic characteristics of disturbed forests; 2) the processes of natural and human disturbances; 3) the responses of forests ecosystem to the disturbances; 4) the main ecological processes or the consequential results of disturbed forests, including the change of biodiversity, soil nutrient and water cycle, eco-physiology and carbon cycle, regeneration mechanism of disturbed forests and so on; 5) the relationships between disturbances and forest management; and 6) the principles and techniques for the management of disturbed forests. This review may be helpful to the management of disturbed forest ecosystem, and to the projects of natural forest conservation in China.
Ecosystem processes at the watershed scale: mapping and modeling ecohydrological controls
Lawrence E. Band; T. Hwang; T.C. Hales; James Vose; Chelcy Ford
2012-01-01
Mountain watersheds are sources of a set of valuable ecosystem services as well as potential hazards. The former include high quality freshwater, carbon sequestration, nutrient retention, and biodiversity, whereas the latter include flash floods, landslides and forest fires. Each of these ecosystem services and hazards represents different elements of the integrated...
One recent research focus of EPA is quantifying a range of ecosystem services, the benefits that ecosystems provide to humans, in order to promote informed natural resource management decisions and to assess the effectiveness of existing environmental policies. A case study is u...
One recent research focus of EPA is quantifying a range of ecosystem services, the benefits that ecosystems provide to humans, in order to promote informed natural resource management decisions and to assess the effectiveness of existing environmental policies. A case study is u...
The Agua Salud Project, Central Panama
NASA Astrophysics Data System (ADS)
Stallard, R. F.; Elsenbeer, H.; Ogden, F. L.; Hall, J. S.
2007-12-01
The Agua Salud Project utilizes the Panama Canal's central role in world commerce to focus global attention on the ecosystem services provided by tropical forests. It will be the largest field experiment of its kind in the tropics aimed at quantifying the environmental services (water, carbon, and biodiversity) provided by tropical forests. The Agua Salud Watershed is our principal field site. This watershed and the headwaters of several adjacent rivers include both protected mature forests and a wide variety of land uses that are typical of rural Panama. Experiments at the scale of entire catchments will permit complete water and carbon inventories and exchanges for different landscape uses. The following questions will be addressed: (1) How do landscape treatments and management approaches affect ecosystem services such as carbon storage, water quality and quantity, dry- season water supply, and biodiversity? (2) Can management techniques be designed to optimize forest production along with ecosystem services during reforestation? (3) Do different tree planting treatments and landscape management approaches influence groundwater storage, which is thought to be critical to maintaining dry-season flow, thus insuring the full operation of the Canal during periods of reduced rainfall and severe climatic events such as El Niño. In addition we anticipate expanding this project to address biodiversity, social, and economic values of these forests.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
..., California, Grey's Mountain Ecosystem Restoration Project AGENCY: Forest Service, USDA. ACTION: Notice of... a series of ecological restoration treatments, north of the community of Bass Lake, California, south of Soquel Meadow, east of Nelder Grove Historical Area and west of Graham Mountain. Treatment...
Biomass is the main driver of changes in ecosystem process rates during tropical forest succession.
Lohbeck, Madelon; Poorter, Lourens; Martínez-Ramos, Miguel; Bongers, Frans
2015-05-01
Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity, actual litter decomposition, and potential litter decomposition) during secondary succession after shifting cultivation in wet tropical forest of Mexico. We test the importance of three alternative drivers of ecosystem processes: vegetation biomass (vegetation quantity hypothesis), community-weighted trait mean (mass ratio hypothesis), and functional diversity (niche complementarity hypothesis) using structural equation modeling. This allows us to infer the relative importance of different mechanisms underlying ecosystem process recovery. Ecosystem process rates changed during succession, and the strongest driver was aboveground biomass for each of the processes. Productivity of aboveground stem biomass and leaf litter as well as actual litter decomposition increased with initial standing vegetation biomass, whereas potential litter decomposition decreased with standing biomass. Additionally, biomass productivity was positively affected by community-weighted mean of specific leaf area, and potential decomposition was positively affected by functional divergence, and negatively by community-weighted mean of leaf dry matter content. Our empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession. Instead, simply, the amount of vegetation in a site is the major driver of changes, perhaps because there is a steep biomass buildup during succession that overrides more subtle effects of community functional properties on ecosystem processes. We recommend future studies in the field of biodiversity and ecosystem functioning to separate the effects of vegetation quality (community-weighted mean trait values and functional diversity) from those of vegetation quantity (biomass) on ecosystem processes and services.
Ecosystem services of woody crop production systems
Ronald S. Zalesny Jr.; John A. Stanturf; Emile S. Gardiner; James H. Perdue; Timothy M. Young; David R. Coyle; William L. Headlee; Gary S. Ba??uelos; Amir Hass
2016-01-01
Short-rotation woody crops are an integral component of regional and national energy portfolios, as well as providing essential ecosystem services such as biomass supplies, carbon sinks, clean water, and healthy soils. We review recent USDA Forest Service Research and Development efforts from the USDA Biomass Research Centers on the provisioning of these ecosystem...
Molnár, Zsolt; Gellény, Krisztina; Margóczi, Katalin; Biró, Marianna
2015-01-07
Previous studies showed an in-depth ecological understanding by traditional people of managing natural resources. We studied the landscape ethnoecological knowledge (LEEK) of Székelys on the basis of 16-19(th) century village laws. We analyzed the habitat types, ecosystem services and sustainable management types on which village laws had focused. Székelys had self-governed communities formed mostly of "noble peasants". Land-use was dominated by commons and regulated by village laws framed by the whole community. Seventy-two archival laws from 52 villages, resulting in 898 regulations, were analyzed using the DPSIR framework. Explicit and implicit information about the contemporary ecological knowledge of Székelys was extracted. We distinguished between responses that limited use and supported regeneration and those that protected produced/available ecosystem services and ensured their fair distribution. Most regulations referred to forests (674), arable lands (562), meadows (448) and pastures (134). Székelys regulated the proportion of arable land, pasture and forest areas consciously in order to maximize long-term exploitation of ecosystem services. The inner territory was protected against overuse by relocating certain uses to the outer territory. Competition for ecosystem services was demonstrated by conflicts of pressure-related (mostly personal) and response-related (mostly communal) driving forces. Felling of trees (oaks), grazing of forests, meadows and fallows, masting, use of wild apple/pear trees and fishing were strictly regulated. Cutting of leaf-fodder, grazing of green crops, burning of forest litter and the polluting of streams were prohibited. Marketing by villagers and inviting outsiders to use the ecosystem services were strictly regulated, and mostly prohibited. Székelys recognized at least 71 folk habitat types, understood ecological regeneration and degradation processes, the history of their landscape and the management possibilities of ecosystem services. Some aspects of LEEK were so well known within Székely communities that they were not made explicit in village laws, others remained implicit because they were not related to regulations. Based on explicit and implicit information, we argue that Székelys possessed detailed knowledge of the local ecological system. Moreover the world's first known explicit mention of ecosystem services ("Benefits that are provided by Nature for free") originated from this region from 1786.
CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change
Kristina J. Anderson-Teixeira; Stuart J. Davies; Amy C. Bennett; Erika B. Gonzalez-Akre; Helene C. Muller-Landau; S. Joseph Wright; Kamariah Abu Salim; Angélica M. Almeyda Zambrano; Alfonso Alonso; Jennifer L. Baltzer; Yves Basset; Norman A. Bourg; Eben N. Broadbent; Warren Y. Brockelman; Sarayudh Bunyavejchewin; David F. R. P. Burslem; Nathalie Butt; Min Cao; Dairon Cardenas; George B. Chuyong; Keith Clay; Susan Cordell; Handanakere S. Dattaraja; Xiaobao Deng; Matteo Detto; Xiaojun Du; Alvaro Duque; David L. Erikson; Corneille E.N. Ewango; Gunter A. Fischer; Christine Fletcher; Robin B. Foster; Christian P. Giardina; Gregory S. Gilbert; Nimal Gunatilleke; Savitri Gunatilleke; Zhanqing Hao; William W. Hargrove; Terese B. Hart; Billy C.H. Hau; Fangliang He; Forrest M. Hoffman; Robert W. Howe; Stephen P. Hubbell; Faith M. Inman-Narahari; Patrick A. Jansen; Mingxi Jiang; Daniel J. Johnson; Mamoru Kanzaki; Abdul Rahman Kassim; David Kenfack; Staline Kibet; Margaret F. Kinnaird; Lisa Korte; Kamil Kral; Jitendra Kumar; Andrew J. Larson; Yide Li; Xiankun Li; Shirong Liu; Shawn K.Y. Lum; James A. Lutz; Keping Ma; Damian M. Maddalena; Jean-Remy Makana; Yadvinder Malhi; Toby Marthews; Rafizah Mat Serudin; Sean M. McMahon; William J. McShea; Hervé R. Memiaghe; Xiangcheng Mi; Takashi Mizuno; Michael Morecroft; Jonathan A. Myers; Vojtech Novotny; Alexandre A. de Oliveira; Perry S. Ong; David A. Orwig; Rebecca Ostertag; Jan den Ouden; Geoffrey G. Parker; Richard P. Phillips; Lawren Sack; Moses N. Sainge; Weiguo Sang; Kriangsak Sri-ngernyuang; Raman Sukumar; I-Fang Sun; Witchaphart Sungpalee; Hebbalalu Sathyanarayana Suresh; Sylvester Tan; Sean C. Thomas; Duncan W. Thomas; Jill Thompson; Benjamin L. Turner; Maria Uriarte; Renato Valencia; Marta I. Vallejo; Alberto Vicentini; Tomáš Vrška; Xihua Wang; Xugao Wang; George Weiblen; Amy Wolf; Han Xu; Sandra Yap; Jess Zimmerman
2014-01-01
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses...
Ecosystem accounts define explicit and spatial trade-offs for managing natural resources.
Keith, Heather; Vardon, Michael; Stein, John A; Stein, Janet L; Lindenmayer, David
2017-11-01
Decisions about natural resource management are frequently complex and vexed, often leading to public policy compromises. Discord between environmental and economic metrics creates problems in assessing trade-offs between different current or potential resource uses. Ecosystem accounts, which quantify ecosystems and their benefits for human well-being consistent with national economic accounts, provide exciting opportunities to contribute significantly to the policy process. We advanced the application of ecosystem accounts in a regional case study by explicitly and spatially linking impacts of human and natural activities on ecosystem assets and services to their associated industries. This demonstrated contributions of ecosystems beyond the traditional national accounts. Our results revealed that native forests would provide greater benefits from their ecosystem services of carbon sequestration, water yield, habitat provisioning and recreational amenity if harvesting for timber production ceased, thus allowing forests to continue growing to older ages.
Ancona, Zachary H.; Semmens, Darius J.; Sherrouse, Benson C.
2016-03-25
Executive SummaryThe continued pressures of population growth on the life-sustaining, economic, and cultural ecosystem services provided by our national forests, particularly those located near rapidly growing urban areas, present ongoing challenges to forest managers. Achieving an effective assessment of these ecosystem services includes a proper accounting of the ecological, economic, and social values attributable to them. However, assessments of ecosystem goods and services notably lack information describing the spatial distribution and relative intensity of social values—the perceived, nonmarket values derived particularly from cultural ecosystem services. A geographic information system (GIS) tool developed to fill this need, Social Values for Ecosystem Services (SolVES; http://solves.cr.usgs.gov), now provides the capability to generate social-value maps at a range of spatial scales. This report presents some of the methods behind SolVES, procedures needed to apply the tool, the first formal map products resulting from its application at a regional scale, and a discussion of the management implications associated with this type of information.In this study, we use SolVES to identify the location and relative intensity of social values as derived from survey responses gathered from residents living in counties adjacent to Arapaho, Roosevelt, Medicine Bow, Routt, and White River National Forests. The results, presented as a series of social-value maps, represent the first publicly available spatial data on social-value intensity for the southern Rocky Mountain region. Our analysis identified high-value areas for social values including aesthetic, biodiversity, and life sustaining within wilderness areas. Other values, like recreation, show high-value areas both within wilderness and throughout the general forest areas, which can be attributed to people using the forests for a diverse set of recreational activities. The economic social-value type was lower within wilderness areas, which was an expected outcome because of the restrictions inside wilderness areas that preclude resource extraction, development, and motorized or mechanized recreation.Providing spatially explicit social-value information collected from residents in counties adjacent to these national forests can assist in facilitating the U.S. Department of Agriculture Forest Service’s Multiple-Use Sustained-Yield Act of 1960 (16 U.S.C. 528) note and the 2012 Forest Service Planning Rule (36 CFR Part 219), which encourage public participation in planning and management. By making these maps available to the public, we hope to encourage exploration of potential uses of these data for resource management and planning.
NASA Astrophysics Data System (ADS)
Band, Larry
2010-05-01
Mountain watersheds provide significant ecosystem services both locally and for surrounding regions, including the provision of freshwater, hydropower, carbon sequestration, habitat, forest products and recreational/aesthetic opportunities. The hydrologic connectivity along hillslopes in sloping terrain provides an upslope subsidy of water and nutrients to downslope ecosystem patches, producing characteristic ecosystem patterns of vegetation density and type, and soil biogeochemical cycling. Recent work suggests that optimal patterns of forest cover evolve along these flowpaths which maximize net primary productivity and carbon sequestration at the hillslope to catchment scale. These watersheds are under significant pressure from potential climate change, changes in forest management, increasing population and development, and increasing demand for water export. As water balance and flowpaths are altered by shifting weather patterns and new development, the spatial distribution and coupling of water, carbon and nutrient cycling will spur the evolution of different ecosystem patterns. These issues have both theoretical and practical implications for the coupling of water, carbon and nutrient cycling at the landscape level, and the potential to manage watersheds for bundled ecosystem services. If the spatial structure of the ecosystem spontaneously adjusts to maximize landscape level use of limiting resources, there may be trade-offs in the level of services provided. The well known carbon-for-water tradeoff reflects the growth of forests to maximize carbon uptake, but also transpiration which limits freshwater availability in many biomes. We provide examples of the response of bundled ecosystem services to climate and land use change in the Southern Appalachian Mountains of the United States. These mountains have very high net primary productivity, biodiversity and water yields, and provide significant freshwater resources to surrounding regions. There has been a significant increase in population in the Southern Appalachians, with new building of second homes in steep headwaters, requiring significant expansion in high altitude roads, in contrast with traditional valley bottom development. With additional increases in hydrologic extremes (heavy precipitation and drought), and progressive changes in forest composition there has been increases in hazard from flash flooding, landslide activity and degraded water quality. The evaluation of integrated watershed impacts of the expected changes in climate and land management requires an interdisciplinary approach including direct feedbacks between ecological, hydrological, geomorphic and atmospheric processes within the framework of an adapting social system. Advances in this type of interdisciplinary research require a network of ecohydrologic observatories generating long term, multi-dimensional data, and a science community working across the interface of multiple fields. Adding individual and institutional behavior as an input or interactive component of watershed ecosystems remains a challenge that spans ecological, hydrological and social science.
NASA Astrophysics Data System (ADS)
Lutz, D. A.; Burakowski, E. A.; Murphy, M. B.; Borsuk, M. E.; Niemiec, R. M.; Howarth, R. B.
2014-12-01
Albedo is an important physical property of the land surface which influences the total amount of incoming solar radiation that is reflected back into space. It is a critical ecosystem service that helps regulate the Earth's energy balance and, in the context of climate mitigation, has been shown to have a strong influence on the overall effectiveness of land management schemes designed to counteract climate change. Previously, we demonstrated that incorporating the physical effects of albedo into an ecological economic forest model of locations in the White Mountain National Forest, in New Hampshire, USA, leads to a substantially shorter optimal rotation period for forest harvest than under a carbon- and timber-only approach. In this study, we investigate similar tradeoffs at 565 sites across the entire state of New Hampshire in a variety of different forest types, latitudes, and elevations. Additionally, we use a regression tree approach to calculate the influence of biogeochemical and physical factors on the optimal rotation period. Our results suggest that in many instances, incorporating albedo may lead to optimal rotation times approaching zero, or, perpetual clear-cut. Overall, the difference between growing season and winter-time albedo for forested and harvested states was the most significant variable influencing the rotation period, followed by timber stumpage price, and biomass growth rate. These results provide an initial understanding of tradeoffs amongst these three ecosystem services and provide guidance for forest managers as to the relative important properties of their forests when these three services are incentivized economically.
Assessing the Impact of Landscape Development on Ecosystem Services Value in Tropical Watershed
NASA Astrophysics Data System (ADS)
Foo, Y. S.; Hashim, M.
2014-02-01
As development increases with demand, more forest lands are replaced with cropland, commercial plantation, and infrastructures for being able to accommodate the excessive growth in world's population. Environments were destroyed without considering their values in sustaining life on Earth.This phenomenon is still an ongoing scenario in most of the developing countries in the tropical region including Malaysia. Such unrestricted conversion may cause food or water crisis along with irreparable consequences to local and regional climate as the natural ecosystem is not only the main resources generator but also the climate stabilizer. Contrary to this, a study was conducted in Pahang Watershed, the largest watershed in Peninsular Malaysia with forest as the dominant land cover, to investigate the effect of landscape development on the ecosystem in terms of the erosion and ecosystem service value. Results of soil loss based on USLE indicated a direct relationship between development and total soil loss where total annual soil loss in year 2005 and 2010 showed a significant increase compare to year 2000. Meanwhile, developed and agricultural lands were discovered to be the main contributor whereas forest land produce the least soil loss (<10ton/ ha/yr). Apart from this, this study also reports a degrading trend in the overall ecological service value and goods (ESVG). Although oil palm had become the main commercial plantation in current years, the commercial profit brought by oil palm still insufficient to cover losses referring to overall estimated ESVG due to the forest clearance and soil degradation. In addition, for a destroyed ecosystem to be equilibrium again requires years. Therefore, ESVG of the tropical forest are expected to increase continuously in future which mean that the roles of the forest in conserving the environment stabilization and sustainability of life are getting more critical.
Using iTree Model in Clark County, Nevada
Ecosystem services are the services and benefits that human populations obtain from nature. Whether surrounded by a forested, coastal, or urban area, ecosystems provide recreation, food, shelter, cleaner air and water. As the climate and environment change due to human activity,...
David N. Wear; Robert Huggett; Ruhong Li; Benjamin Perryman; Shan Liu
2013-01-01
The 626 million acres of forests in the conterminous United States represent significant reserves of biodiversity and terrestrial carbon and provide substantial flows of highly valued ecosystem services, including timber products, watershed protection benefits, and recreation. This report describes forecasts of forest conditions for the conterminous United States in...
J.M. Bowker; C.M. Starbuck; D.B.K. English; J.C. Bergstrom; R.S. Rosenburger; D.C. McCollum
2009-01-01
The USDA Forest Service (FS) manages 193 million acres of public land in the United States. These public resources include vast quantities of natural resources including timber, wildlife, watersheds, air sheds, and ecosystems. The Forest Service was established in 1905, and the FS has been directed by Congress to manage the National Forests and Grasslands for the...
James M. Vose; Wayne T. Swank; Mary Beth Adams; Devendra Amatya; John Campbell; Sherri Johnson; Frederick J. Swanson; Randy Kolka; Ariel E. Lugo; Robert Musselman; Charles Rhoades
2014-01-01
Forest Service watershed-based Experimental Forests and Ranges (EFRs) have significantly advanced scientific knowledge on ecosystem structure and function through long-term monitoring and experimental research on hydrologic and biogeochemical cycling processes. Research conducted in the 1940s and 1950s began as âclassicâ paired watershed studies. The emergence of the...
Taking stock: payments for forest ecosystem services in the United States
D Evan Mercer; David Cooley; Katherine Hamilton
2011-01-01
Forests provide a variety of critical services to human societies, including carbon sequestration, water purification, and habitat for millions of species. Because landowners have traditionally not been paid for the services their land provides to society, financial incentives are usually too low to sustain production of services at optimal levels. To remedy this, a...
Kevin M. Potter; Christopher W. Woodall; Christopher M. Oswalt; Basil V. III Iannone; Songlin Fei
2015-01-01
Biodiversity is expected to convey numerous functional benefits to forested ecosystems, including increased productivity and resilience. When assessing biodiversity, however, statistics that account for evolutionary relationships among species may be more ecologically meaningful than traditional measures such as species richness. In three broad-scale studies, we...
Density-dependent vulnerability of forest ecosystems to drought
Alessandra Bottero; Anthony W. D' Amato; Brian J. Palik; John B. Bradford; Shawn Fraver; Mike A. Battaglia; Lance A. Asherin; Harald Bugmann
2017-01-01
Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary...
Approaches to Ecologically Based Forest Management on Private Lands
John Kotar
1997-01-01
The management philosophy advocated by many public agencies today has become known as "ecosystem management." Under this philosophy, maintenance of ecosystem structure and functions becomes the primary goal, while production of commodities and services is viewed as a useful byproduct. However, any effort to assure sustainability and health of American forests...
Keith Reynolds; Paul Hessburg; Joan O’Callaghan
2014-01-01
Human settlement and land management have radically altered the composition and structure of eastern Washington forests. Restoring high-functioning landscapes and habitat patterns have broad implications for the future sustainability of native species, ecosystem services, and ecosystem processes. Many land managers and scientists have turned their attention to whole...
Strong biotic influences on regional patterns of climate regulation services
NASA Astrophysics Data System (ADS)
Serna-Chavez, H. M.; Swenson, N. G.; Weiser, M. D.; van Loon, E. E.; Bouten, W.; Davidson, M. D.; van Bodegom, P. M.
2017-05-01
Climate regulation services from forests are an important leverage in global-change mitigation treaties. Like most ecosystem services, climate regulation is the product of various ecological phenomena with unique spatial features. Elucidating which abiotic and biotic factors relate to spatial patterns of climate regulation services advances our understanding of what underlies climate-mitigation potential and its variation within and across ecosystems. Here we quantify and contrast the statistical relations between climate regulation services (albedo and evapotranspiration, primary productivity, and soil carbon) and abiotic and biotic factors. We focus on 16,955 forest plots in a regional extent across the eastern United States. We find the statistical effects of forest litter and understory carbon on climate regulation services to be as strong as those of temperature-precipitation interactions. These biotic factors likely influence climate regulation through changes in vegetation and canopy density, radiance scattering, and decomposition rates. We also find a moderate relation between leaf nitrogen traits and primary productivity at this regional scale. The statistical relation between climate regulation and temperature-precipitation ranges, seasonality, and climatic thresholds highlights a strong feedback with global climate change. Our assessment suggests the expression of strong biotic influences on climate regulation services at a regional, temperate extent. Biotic homogenization and management practices manipulating forest structure and succession will likely strongly impact climate-mitigation potential. The identity, strength, and direction of primary influences differed for each process involved in climate regulation. Hence, different abiotic and biotic factors are needed to monitor and quantify the full climate-mitigation potential of temperate forest ecosystems.
Toward a social-ecological theory of forest macrosystems for improved ecosystem management
Kleindl, William J.; Stoy, Paul C.; Binford, Michael W.; Desai, Ankur R.; Dietze, Michael C.; Schultz, Courtney A.; Starr, Gregory; Staudhammer, Christina; Wood, David J. A.
2018-01-01
The implications of cumulative land-use decisions and shifting climate on forests, require us to integrate our understanding of ecosystems, markets, policy, and resource management into a social-ecological system. Humans play a central role in macrosystem dynamics, which complicates ecological theories that do not explicitly include human interactions. These dynamics also impact ecological services and related markets, which challenges economic theory. Here, we use two forest macroscale management initiatives to develop a theoretical understanding of how management interacts with ecological functions and services at these scales and how the multiple large-scale management goals work either in consort or conflict with other forest functions and services. We suggest that calling upon theories developed for organismal ecology, ecosystem ecology, and ecological economics adds to our understanding of social-ecological macrosystems. To initiate progress, we propose future research questions to add rigor to macrosystem-scale studies: (1) What are the ecosystem functions that operate at macroscales, their necessary structural components, and how do we observe them? (2) How do systems at one scale respond if altered at another scale? (3) How do we both effectively measure these components and interactions, and communicate that information in a meaningful manner for policy and management across different scales?
Melissa H Friedman; Michael G. Andreu; Wayne Zipperer; Rob J. Northrop; Amr Abd-Elrahman
2015-01-01
Natural communities near freshwater hydrological features provide important ecosystem functions and services. As human populations increase, forested landscapes become increasingly fragmented and deforested, which may result in a loss of the functions and services they provide. To investigate the current state of forested natural communities in the rapidly urbanizing...
Leaf area index (LAI) of loblolly pine and emergent vegetation following a harvest
D.A. Sampson; D.M. Amatya; C.D. Blanton Lawson; R.W. Skaggs
2011-01-01
Forests provide goods and services to society and, often, refugia for plants and animals; forest managers utilize silviculture to provide ecosystem services and to create habitat. On the Coastal Plain of North Carolina, forest management objectives typically include wood fiber production but may also include the maintenance of environmental quality and, sometimes,...
The role of the Forest Service in aquatic invasive species research
Susan B. Adams; Kelly M. Burnett; Peter Bisson; Bret Harvey; Keith H. Nislow; Bruce E. Rieman; John Rinne
2010-01-01
Aquatic ecosystems include the most imperiled taxa in the United States, and invasive species are the second leading contributor to this imperilment. The U.S. Department of Agriculture (USDA), Forest Service is legally mandated to sustainably manage aquatic habitats and native species on National Forest System (NFS) lands. Invasive species add complexity and...
Forest Service Global Change Research Strategy, 2009-2019
Allen Solomon; Richard Birdsey; Linda A. Joyce; Jennifer Hayes
2009-01-01
In keeping with the research goals of the U.S. Climate Change Science Program, the Research and Development agenda of the Forest Service, U.S. Department of Agriculture (USDA), helps define climate change policy and develop best management practices for forests (both rural and urban) and grasslands. These actions are taken to sustain ecosystem health, adjust management...
Bundling ecosystem services in the Panama Canal watershed
Simonit, Silvio; Perrings, Charles
2013-01-01
Land cover change in watersheds affects the supply of a number of ecosystem services, including water supply, the production of timber and nontimber forest products, the provision of habitat for forest species, and climate regulation through carbon sequestration. The Panama Canal watershed is currently being reforested to protect the dry-season flows needed for Canal operations. Whether reforestation of the watershed is desirable depends on its impacts on all services. We develop a spatially explicit model to evaluate the implications of reforestation both for water flows and for other services. We find that reforestation does not necessarily increase water supply, but does increase carbon sequestration and timber production. PMID:23690598
de Araujo Barbosa, Caio C; Atkinson, Peter M; Dearing, John A
2016-04-15
Estuaries hold major economic potential due their strategic location, close to seas and inland waterways, thereby supporting intense economic activity. The increasing pace of human development in coastal deltas over the past five decades has also strained local resources and produced extensive changes across both social and ecological systems. The Amazon estuary is located in the Amazon Basin, North Brazil, the largest river basin on Earth and also one of the least understood. A considerable segment of the population living in the estuary is directly dependent on the local extraction of natural resources for their livelihood. Areas sparsely inhabited may be exploited with few negative consequences for the environment. However, recent and increasing pressure on ecosystem services is maximised by a combination of factors such as governance, currency exchange rates, exports of beef and forest products. Here we present a cross methodological approach in identifying the political frontiers of forest cover change in the estuary with consequences for ecosystem services loss. We used a combination of data from earth observation satellites, ecosystem service literature, and official government statistics to produce spatially-explicit relationships linking the Green Vegetation Cover to the availability of ecosystems provided by forests in the estuary. Our results show that the continuous changes in land use/cover and in the economic state have contributed significantly to changes in key ecosystem services, such as carbon sequestration, climate regulation, and the availability of timber over the last thirty years. Copyright © 2016 Elsevier B.V. All rights reserved.
Divergence of ecosystem services in U.S. National Forests and Grasslands under a changing climate.
Duan, Kai; Sun, Ge; Sun, Shanlei; Caldwell, Peter V; Cohen, Erika C; McNulty, Steven G; Aldridge, Heather D; Zhang, Yang
2016-04-21
The 170 National Forests and Grasslands (NFs) in the conterminous United States are public lands that provide important ecosystem services such as clean water and timber supply to the American people. This study investigates the potential impacts of climate change on two key ecosystem functions (i.e., water yield and ecosystem productivity) using the most recent climate projections derived from 20 Global Climate Models (GCMs) of the Coupled Model Intercomparison Project phase 5 (CMIP5). We find that future climate change may result in a significant reduction in water yield but an increase in ecosystem productivity in NFs. On average, gross ecosystem productivity is projected to increase by 76 ~ 229 g C m(-2) yr(-1) (8% ~ 24%) while water yield is projected to decrease by 18 ~ 31 mm yr(-1) (4% ~ 7%) by 2100 as a result of the combination of increased air temperature (+1.8 ~ +5.2 °C) and precipitation (+17 ~ +51 mm yr(-1)). The notable divergence in ecosystem services of water supply and carbon sequestration is expected to intensify under higher greenhouse gas emission and associated climate change in the future, posing greater challenges to managing NFs for both ecosystem services.
Ferraro, Paul J; Hanauer, Merlin M; Miteva, Daniela A; Nelson, Joanna L; Pattanayak, Subhrendu K; Nolte, Christoph; Sims, Katharine R E
2015-06-16
Scholars have made great advances in modeling and mapping ecosystem services, and in assigning economic values to these services. This modeling and valuation scholarship is often disconnected from evidence about how actual conservation programs have affected ecosystem services, however. Without a stronger evidence base, decision makers find it difficult to use the insights from modeling and valuation to design effective policies and programs. To strengthen the evidence base, scholars have advanced our understanding of the causal pathways between conservation actions and environmental outcomes, but their studies measure impacts on imperfect proxies for ecosystem services (e.g., avoidance of deforestation). To be useful to decision makers, these impacts must be translated into changes in ecosystem services and values. To illustrate how this translation can be done, we estimated the impacts of protected areas in Brazil, Costa Rica, Indonesia, and Thailand on carbon storage in forests. We found that protected areas in these conservation hotspots have stored at least an additional 1,000 Mt of CO2 in forests and have delivered ecosystem services worth at least $5 billion. This aggregate impact masks important spatial heterogeneity, however. Moreover, the spatial variability of impacts on carbon storage is the not the same as the spatial variability of impacts on avoided deforestation. These findings lead us to describe a research program that extends our framework to study other ecosystem services, to uncover the mechanisms by which ecosystem protection benefits humans, and to tie cost-benefit analyses to conservation planning so that we can obtain the greatest return on scarce conservation funds.
Ferraro, Paul J.; Hanauer, Merlin M.; Miteva, Daniela A.; Nelson, Joanna L.; Pattanayak, Subhrendu K.; Nolte, Christoph; Sims, Katharine R. E.
2015-01-01
Scholars have made great advances in modeling and mapping ecosystem services, and in assigning economic values to these services. This modeling and valuation scholarship is often disconnected from evidence about how actual conservation programs have affected ecosystem services, however. Without a stronger evidence base, decision makers find it difficult to use the insights from modeling and valuation to design effective policies and programs. To strengthen the evidence base, scholars have advanced our understanding of the causal pathways between conservation actions and environmental outcomes, but their studies measure impacts on imperfect proxies for ecosystem services (e.g., avoidance of deforestation). To be useful to decision makers, these impacts must be translated into changes in ecosystem services and values. To illustrate how this translation can be done, we estimated the impacts of protected areas in Brazil, Costa Rica, Indonesia, and Thailand on carbon storage in forests. We found that protected areas in these conservation hotspots have stored at least an additional 1,000 Mt of CO2 in forests and have delivered ecosystem services worth at least $5 billion. This aggregate impact masks important spatial heterogeneity, however. Moreover, the spatial variability of impacts on carbon storage is the not the same as the spatial variability of impacts on avoided deforestation. These findings lead us to describe a research program that extends our framework to study other ecosystem services, to uncover the mechanisms by which ecosystem protection benefits humans, and to tie cost-benefit analyses to conservation planning so that we can obtain the greatest return on scarce conservation funds. PMID:26082549
DOT National Transportation Integrated Search
2001-03-15
Increased emphasis on ecosystem management and accountability by the United States : Department of Agriculture (USDA) Forest Service and other federal land management : agencies has led to the development of a series of strategic plans such as the Cl...
Criterion 8: Urban and community forests
Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield
2012-01-01
Urban and community forests are the trees and forests found in cities, towns, villages, and communities. This category of forest includes both forested stands and trees along streets, in residential lots, and parks. These trees within cities and communities provide many ecosystem services and values to both urban and rural populations.
Section summary: Remote sensing
Belinda Arunarwati Margono
2013-01-01
Remote sensing is an important data source for monitoring the change of forest cover, in terms of both total removal of forest cover (deforestation), and change of canopy cover, structure and forest ecosystem services that result in forest degradation. In the context of Intergovernmental Panel on Climate Change (IPCC), forest degradation monitoring requires information...
NASA Astrophysics Data System (ADS)
Wang, D. G.; Sun, L.; Tan, Y. H.; Shi, A. Q.; Cheng, J.
2017-08-01
Taking the mangrove ecosystem of Ximen Island National Marine Specially Protected Areas as the research object, the ecological service value of the mangrove forest was evaluated and analyzed using a market value method, an ecological value method and a carbon tax method. The results showed that the ecosystem service value of the mangrove forest on Ximen Island is worth a total of 16,104,000 CNY/a. Among the value of individual ecosystem services, the direct value of material production function and leisure function reached 1,385,000 CNY/a, with a ratio of 8.6%. The indirect value of disturbance regulation, gas regulation, water purification, habitat function and culture research reached 14,719,000 CNY/a, with a ratio of 91.4%. Among the above sub-items, the proportion of disturbance regulation value, habitat function value and cultural research function value reached 78.8%, which reflects the important scientific value and ecological value of the Ximen Island mangrove ecosystem, especially its vital importance in providing a habitat for birds and playing a role in disaster prevention and mitigation.
Schwenk, W. Scott; Donovan, Therese; Keeton, William S.; Nunery, Jared S.
2012-01-01
Increasingly, land managers seek ways to manage forests for multiple ecosystem services and functions, yet considerable challenges exist in comparing disparate services and balancing trade-offs among them. We applied multi-criteria decision analysis (MCDA) and forest simulation models to simultaneously consider three objectives: (1) storing carbon, (2) producing timber and wood products, and (3) sustaining biodiversity. We used the Forest Vegetation Simulator (FVS) applied to 42 northern hardwood sites to simulate forest development over 100 years and to estimate carbon storage and timber production. We estimated biodiversity implications with occupancy models for 51 terrestrial bird species that were linked to FVS outputs. We simulated four alternative management prescriptions that spanned a range of harvesting intensities and forest structure retention. We found that silvicultural approaches emphasizing less frequent harvesting and greater structural retention could be expected to achieve the greatest net carbon storage but also produce less timber. More intensive prescriptions would enhance biodiversity because positive responses of early successional species exceeded negative responses of late successional species within the heavily forested study area. The combinations of weights assigned to objectives had a large influence on which prescriptions were scored as optimal. Overall, we found that a diversity of silvicultural approaches is likely to be preferable to any single approach, emphasizing the need for landscape-scale management to provide a full range of ecosystem goods and services. Our analytical framework that combined MCDA with forest simulation modeling was a powerful tool in understanding trade-offs among management objectives and how they can be simultaneously accommodated.
Eric J. Gustafson; Melissa Lucash; Johannes Liem; Helen Jenny; Rob Scheller; Kelly Barrett; Brian R. Sturtevant
2016-01-01
Forest managers are increasingly considering how climate change may alter forests' capacity to provide ecosystem goods and services. But identifying potential climate change effects on forests is difficult because interactions among forest growth and mortality, climate change, management, and disturbances are complex and uncertain. Although forest landscape models...
7 CFR 625.11 - Easement participation requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES HEALTHY FORESTS RESERVE PROGRAM § 625.11... the restoration, protection, enhancement, maintenance, and management of habitat and forest ecosystem...
7 CFR 625.11 - Easement participation requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES HEALTHY FORESTS RESERVE PROGRAM § 625.11... the restoration, protection, enhancement, maintenance, and management of habitat and forest ecosystem...
7 CFR 625.11 - Easement participation requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES HEALTHY FORESTS RESERVE PROGRAM § 625.11... the restoration, protection, enhancement, maintenance, and management of habitat and forest ecosystem...
Obeng, Elizabeth Asantewaa; Aguilar, Francisco Xavier
2018-01-15
This research analyzed whether the three distinct value orientations posited under the Value-Belief-Norm (VBN) model determine willingness-to-pay (WTP) for a payment for ecosystem services (PES) program. A survey instrument gathered U.S. residents' knowledge and attitudes toward ecosystem services and PES, and elicited WTP for the restoration of a hypothetical degraded forest watershed for improved ecosystem services. Data from over 1000 respondents nationwide were analyzed using exploratory factor analysis (EFA) and ordered logistic regression. Urban respondents were more familiar with the concepts of ecosystem service and PES than rural respondents but familiarity did not yield statistically different WTP estimates. Based on results from the EFA, we posit that latent value orientations might be distinguished as 'detrimental', 'biospheric' and 'beneficial (egoistic)' - as compared to 'altruistic', 'biospheric' and 'egoistic' as suggested in the VBN's general awareness of consequences scale. Awareness of biospheric and detrimental consequences along with ascriptions to personal norms had positive and significant effects on stated WTP. Beneficial (egoistic) value orientation was negatively associated with WTP and carried a negative average WTP per household per year (US$ -30.48) for the proposed PES restoration program as compared with biospheric (US$ 15.53) and detrimental (US$ 3.96) orientations. Besides personal norms, awareness of detrimental consequences to human wellbeing from environmental degradation seems the stronger driver of WTP for the restoration and protection of forest watershed ecosystem services under a PES program. Copyright © 2017 Elsevier Ltd. All rights reserved.
Forest habitat conservation in Africa using commercially important insects.
Raina, Suresh Kumar; Kioko, Esther; Zethner, Ole; Wren, Susie
2011-01-01
African forests, which host some of the world's richest biodiversity, are rapidly diminishing. The loss of flora and fauna includes economically and socially important insects. Honey bees and silk moths, grouped under commercial insects, are the source for insect-based enterprises that provide income to forest-edge communities to manage the ecosystem. However, to date, research output does not adequately quantify the impact of such enterprises on buffering forest ecosystems and communities from climate change effects. Although diseases/pests of honey bees and silk moths in Africa have risen to epidemic levels, there is a dearth of practical research that can be utilized in developing effective control mechanisms that support the proliferation of these commercial insects as pollinators of agricultural and forest ecosystems. This review highlights the critical role of commercial insects within the environmental complexity of African forest ecosystems, in modern agroindustry, and with respect to its potential contribution to poverty alleviation and pollination services. It identifies significant research gaps that exist in understanding how insects can be utilized as ecosystem health indicators and nurtured as integral tools for important socioeconomic and industrial gains.
A 2 °C warmer world is not safe for ecosystem services in the European Alps.
Elkin, Ché; Gutiérrez, Alvaro G; Leuzinger, Sebastian; Manusch, Corina; Temperli, Christian; Rasche, Livia; Bugmann, Harald
2013-06-01
Limiting the increase in global average temperature to 2 °C is the objective of international efforts aimed at avoiding dangerous climate impacts. However, the regional response of terrestrial ecosystems and the services that they provide under such a scenario are largely unknown. We focus on mountain forests in the European Alps and evaluate how a range of ecosystem services (ES) are projected to be impacted in a 2 °C warmer world, using four novel regional climate scenarios. We employ three complementary forest models to assess a wide range of ES in two climatically contrasting case study regions. Within each climate scenario we evaluate if and when ES will deviate beyond status quo boundaries that are based on current system variability. Our results suggest that the sensitivity of mountain forest ES to a 2 °C warmer world depends heavily on the current climatic conditions of a region, the strong elevation gradients within a region, and the specific ES in question. Our simulations project that large negative impacts will occur at low and intermediate elevations in initially warm-dry regions, where relatively small climatic shifts result in negative drought-related impacts on forest ES. In contrast, at higher elevations, and in regions that are initially cool-wet, forest ES will be comparatively resistant to a 2 °C warmer world. We also found considerable variation in the vulnerability of forest ES to climate change, with some services such as protection against rockfall and avalanches being sensitive to 2 °C global climate change, but other services such as carbon storage being reasonably resistant. Although our results indicate a heterogeneous response of mountain forest ES to climate change, the projected substantial reduction of some forest ES in dry regions suggests that a 2 °C increase in global mean temperature cannot be seen as a universally 'safe' boundary for the maintenance of mountain forest ES. © 2013 Blackwell Publishing Ltd.
Divergent phenological response to hydroclimate variability in forested mountain watersheds
Taehee Hwang; Lawrence E. Band; Chelcy F. Miniat; Conghe Song; Paul V . Bolstad; James M. Vose; Jason P. Love
2014-01-01
Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep...
K. E. Skog; R. J. Barbour; J. E. Baumgras; A. Clark
1997-01-01
Using an ecosystem approach to forest management will change silvicultural practices, thus requiring utilization options to provide revenue and to help offset the costs of the silviculture treatments. The Forest Service, university cooperators, and several industry mills in the southern, western, and northeastern United States have been involved in a national...
Adaptation: Forests as water infrastructure in a changing climate
Todd Gartner; Heather McGray; James Mulligan; Jonas Epstein; Ayesha Dinshaw
2014-01-01
Natural ecosystems like forests and wetlands provide a suite of water-related services that are increasingly critical for communities as the impacts of climate change intensify. Yet, these natural ecosystems are increasingly lost or degraded. In the face of growing water-related challenges in an age of fiscal austerity, investing in the conservation, restoration, and...
Pro-B selection method for uneven-aged management of longleaf pine forests
Dale G. Brockway; Edward F. Loewenstein; Kenneth W. Outcalt
2015-01-01
Interest in uneven-aged silviculture has increased since advent of ecosystem management programs, which place greater emphasis on ecological values and ecosystem services while also harvesting timber from the forest. However, traditional uneven-aged approaches (e.g., BDq) are often criticized as too complex, costly, and requiring highly-trained staff. The Proportional-...
Charles K. McMahon; James P. Barnett
2000-01-01
In 1997, the USDA Forest Service Southern Research Station (SRS) published a Strategic Plan that formed a framework for addressing the Sustainability of Southern Forest Ecosystems. Six crosscutting themes were identified to facilitate research integration and partnership building among the widely dispersed SRS research work units. The Sustainability and Productivity of...
Analyzing growth and mortality in a subtropical urban forest ecosystem
Alicia B. Lawrence; Fancisco J. Escobedo; Christina L. Staudhammera; Wayne Zipperer Zipperer
2012-01-01
Information on urban tree growth, mortality and in-growth is currently being used to estimate urban forest structure changes and ecosystem services such as carbon sequestration. This study reports on tree diameter growth and mortality in 65 plots distributed among four land use categories, which were established in 2005/2006 in Gainesville, Florida, USA and were re-...
Applying ecosystem management to urban forestry
Wayne C. Zipperer
2007-01-01
During the 1990s, the United States Department of Agriculture Forest Service shifted from commodity production management to ecosystem-based management (Overbay, 1992). Although definitions of ecosystem-based management vary by objectives, the principle had four primary elements: (1) maintaining viable populations of native species, (2) representing native ecosystems...
NASA Technical Reports Server (NTRS)
McNeil, Brenden E.; deBeurs, Kirsten M.; Eshleman, Keith N.; Foster, Jane R.; Townsend, Philip A.
2007-01-01
Ephemeral disturbances, such as non-lethal insect defoliations and crown damage from meteorological events, can significantly affect the delivery of ecosystem services by helping maintain nitrogen (N) limitation in temperate forest ecosystems. However, the impacts of these disturbances are difficult to observe across the broad-scales at which they affect ecosystem function. Using remotely sensed measures and field data, we find support for the hypothesis that ephemeral disturbances help maintain landscape-wide ecosystem N limitation. Specifically, a phenology-based defoliation index derived from daily MODIS satellite imagery predicts three ecosystem responses from oak-dominated forested watersheds: elevated stream water N export (R(exp 2) = 0.48), decreased foliar N (R(exp 2) = 0.69, assessed with Hyperion imagery), and reduced vegetation growth vigor (R(exp 2) = 0.49, assessed with Landsat ETM+ imagery). The results indicate that ephemeral disturbances and other forest stressors may sustain N limitation by reducing the ability of trees to compete for--and retain--soil available N.
Science in the city: Urban trees, forests, and people
Kathleen L. Wolf
2016-01-01
The article, intended for professional and manager audiences, is an overview of current research in urban forestry. Topics include tree science, forest risks, forest management and assessment, ecosystem services, and urban socio-ecological systems (including governance and stewardship).
Pérez-Izquierdo, Leticia; Zabal-Aguirre, Mario; Flores-Rentería, Dulce; González-Martínez, Santiago C; Buée, Marc; Rincón, Ana
2017-04-01
Fungi provide relevant ecosystem services contributing to primary productivity and the cycling of nutrients in forests. These fungal inputs can be decisive for the resilience of Mediterranean forests under global change scenarios, making necessary an in-deep knowledge about how fungal communities operate in these ecosystems. By using high-throughput sequencing and enzymatic approaches, we studied the fungal communities associated with three genotypic variants of Pinus pinaster trees, in 45-year-old common garden plantations. We aimed to determine the impact of biotic (i.e., tree genotype) and abiotic (i.e., season, site) factors on the fungal community structure, and to explore whether structural shifts triggered functional responses affecting relevant ecosystem processes. Tree genotype and spatial-temporal factors were pivotal structuring fungal communities, mainly by influencing their assemblage and selecting certain fungi. Diversity variations of total fungal community and of that of specific fungal guilds, together with edaphic properties and tree's productivity, explained relevant ecosystem services such as processes involved in carbon turnover and phosphorous mobilization. A mechanistic model integrating relations of these variables and ecosystem functional outcomes is provided. Our results highlight the importance of structural shifts in fungal communities because they may have functional consequences for key ecosystem processes in Mediterranean forests. © 2017 Society for Applied Microbiology and John Wiley and Sons Ltd.
Beier, Colin M; Caputo, Jesse; Groffman, Peter M
2015-10-01
In this study, by coupling long-term ecological data with empirical proxies of societal demand for benefits, we measured the capacity of forest watersheds to provide ecosystem services over variable time periods, to different beneficiaries, and in response to discrete perturbations and drivers of change. We revisited one of the earliest ecosystem experiments in North America: the 1963 de-vegetation of a forested catchment at Hubbard Brook Experimental Forest in New Hampshire, USA. Potential benefits of the regulation of water flow, water quality, greenhouse gases, and forest growth were compared between experimental (WS 2) and reference (WS 6) watersheds over a 30-year period. Both watersheds exhibited similarly high capacity for flow regulation, in part because functional loads remained low (i.e., few major storm events) during the de-vegetation period. Drought mitigation capacity, or the maintenance of flows sufficient to satisfy municipal water consumption, was higher in WS 2 due to reduced evapotranspiration associated with loss of plant cover. We also assessed watershed capacity to regulate flows to satisfy different beneficiaries, including hypothetical flood averse and drought averse types. Capacity to regulate water quality was severely degraded during de-vegetation, as nitrate concentrations exceeded drinking water standards on 40% of measurement days. Once forest regeneration began, WS 2 rapidly recovered the capacity to provide safe drinking water, and subsequently mitigated the eutrophication potential of rainwater at a marginally higher level than WS 6. We estimated this additional pollution removal benefit would have to accrue for approximately 65-70 years to offset the net eutrophication cost incurred during forest removal. Overall, our results affirmed the critical role of forest vegetation in water regulation, but also indicated trade-offs associated with forest removal and recovery that partially depend on larger-scale exogenous changes in climate forcing and pollution inputs. We also provide a starting point for integrating long-term ecological research and modeling data into ecosystem services science.
Forest inventory and analysis program in the Western U.S.
Ashley Lehman
2015-01-01
The Pacific Northwest (PNW) Research Stationâs Forest Inventory and Analysis (FIA) program of the USDA Forest Service monitors and reports on the status and trends of the Pacific Islandâs forest resources and ecosystem services. Since 2001 the FIA program has partnered with State and Private Forestryâs, Region 5 and the local governments in the U.S. Affiliated Western...
Forest inventory and analysis program in the Western U.S
Ashley Lehman
2015-01-01
The Pacific Northwest (PNW) Research Stationâs Forest Inventory and Analysis (FIA) program of the USDA Forest Service monitors and reports on the status and trends of the Pacific Islandâs forest resources and ecosystem services. Since 2001 the FIA program has partnered with State and Private Forestryâs, Region 5 and the local governments in the U.S. Affiliated Western...
The Value of Forest and Pasture to Water Supply in Kona, HI
NASA Astrophysics Data System (ADS)
Brauman, K. A.; Daily, G. C.; Freyberg, D. L.
2007-12-01
By quantifying the supply and value of ecosystem services flowing from private land, we can provide a mechanism for sustaining ecosystem services by compensating landowners for their supply. In order for compensation to occur, however, both suppliers and users of ecosystem services require information about the way different land management scenarios will affect ecosystem service flows. This case study in Kona, HI, takes advantage of the direct link between upland water source areas and municipal drinking water users in Kailua-Kona to explore the value of one type of hydrologic service. By quantifying the difference in aquifer recharge under paired forest and pasture sites, we assess the impact of each land-cover type on the volume of water potentially available to municipal water users. We use a water balance approach - measuring rainfall interception and water use by plants, then calculating the balance to be aquifer recharge because of the absence of surface runoff. We aim to integrate these biophysical measurements with information, including costs of pumping, well construction, and land-cover maintenance, provided by the water utility and landowners to ascertain the value of forest and pasture to water supply. By determining the value to water users in Kailua-Kona of the increase or decrease in water quantity that would result from upland land-cover change, we aim both to protect drinking water quantity and to help landowners offset financial pressure to convert their land.
Overview of the forest health monitoring program
2000-01-01
This paper presents an overview of the Forest Health Monitoring Program (FHM), a partnership among the USDA Forest Service, State Foresters, universities, and the USDI Bureau of Land Management. The purpose of FHM is to annually assess the condition of the nation's forested ecosystems in a standardized way. There are four components of the program - Detection...
Overview of the Forest Health Monitoring Program
2000-01-01
This paper presents an overview of the Forest Health Monitoring Program (FHM), a partnership among the USDA Forest Service, State Foresters, universities, and the USDI Bureau of Land Management. The purpose of FHM is to annually assess the condition of the Nation's forested ecosystems in a standardized way. There are four components of the program-Detection...
Public and private forest ownership in the conterminous United States. Chapter 6.
Greg C. Liknes; Mark D. Nelson; Brett J. Butler
2010-01-01
Forests and the goods and services they provide are influenced by both the biophysical and human environments. To fully understand forest ecosystems, we need to understand the social context in which forests exist because landowners determine land use and management practice. To influence decisions related to the forests, we need to...
Managing Sierra Nevada forests
Malcolm North
2012-01-01
There has been widespread interest in applying new forest practices based on concepts presented in U.S. Forest Service General Technical Report PSW-GTR-220, "An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests." This collection of papers (PSW-GTR-237) summarizes the state of the science in some topics relevant to this forest management approach...
Predictive mapping for tree sizes and densities in southeast Alaska.
John P. Caouette; Eugene J. DeGayner
2005-01-01
The Forest Service has relied on a single forest measure, timber volume, to meet many management and planning information needs in southeast Alaska. This economic-based categorization of forest types tends to mask critical information relevant to other contemporary forest-management issues, such as modeling forest structure, ecosystem diversity, or wildlife habitat. We...
Comparison of proposed survey procedures for detection of forest carnivores
Kerry R. Foresman; Dean E. Pearson
1998-01-01
American marten (Martes americana), fisher (M. pennanti), wolverine (Gulo gulo), and lynx (Lynx lynx) are forest carnivores believed threatened by disturbance of late-successional forests. To manage forested ecosystems for these species, effective methods for their detection must be available. Recently, the U.S. Forest Service proposed standardized survey procedures...
NASA Astrophysics Data System (ADS)
Badola, Ruchi; Barthwal, Shivani; Hussain, Syed Ainul
2012-01-01
The ecological and economic importance of mangrove ecosystems is well established and highlighted by studies establishing a correlation between the protective function of mangroves and the loss of lives and property caused by coastal hazards. Nevertheless, degradation of this ecosystem remains a matter of concern, emphasizing the fact that effective conservation of natural resources is possible only with an understanding of the attitudes and perceptions of local communities. In the present study, we examined the attitudes and perceptions of local communities towards mangrove forests through questionnaire surveys in 36 villages in the Bhitarkanika Conservation Area, India. The sample villages were selected from 336 villages using hierarchical cluster analysis. The study revealed that local communities in the area had positive attitudes towards conservation and that their demographic and socio-economic conditions influenced people's attitudes. Local communities valued those functions of mangrove forests that were directly linked to their wellbeing. Despite human-wildlife conflict, the attitudes of the local communities were not altogether negative, and they were willing to participate in mangrove restoration. People agreed to adopt alternative resources if access to forest resources were curtailed. Respondents living near the forests, who could not afford alternatives, admitted that they would resort to pilfering. Hence, increasing their livelihood options may reduce the pressure on mangrove forests. In contrast with other ecosystems, the linkages of mangrove ecosystem services with local livelihoods and security are direct and tangible. It is therefore possible to develop strong local support for sustainable management of mangrove forests in areas where a positive attitude towards mangrove conservation prevails. The current debates on Reducing Emissions from Deforestation and Forest Degradation (REDD) and payment for ecosystem services provide ample scope for development of sustainable livelihood options for local communities from the conservation of critical ecosystems such as mangroves.
NASA Astrophysics Data System (ADS)
Smaill, Simeon J.; Bayne, Karen M.; Coker, Graham W. R.; Paul, Thomas S. H.; Clinton, Peter W.
2014-04-01
Stakeholders in plantation forestry are increasingly aware of the importance of the ecosystem services and non-market values associated with forests. In New Zealand, there is significant interest in establishing species other than Pinus radiata D. Don (the dominant plantation species) in the belief that alternative species are better suited to deliver these services. Significant risk is associated with this position as there is little objective data to support these views. To identify which species were likely to be planted to deliver ecosystem services, a survey was distributed to examine stakeholder perceptions. Stakeholders were asked which of 15 tree attributes contributed to the provision of five ecosystem services (amenity value, bioenergy production, carbon capture, the diversity of native habitat, and erosion control/water quality) and to identify which of 22 candidate tree species possessed those attributes. These data were combined to identify the species perceived most suitable for the delivery of each ecosystem service. Sequoia sempervirens (D.Don) Endl. closely matched the stakeholder derived ideotypes associated with all five ecosystem services. Comparisons to data from growth, physiological and ecological studies demonstrated that many of the opinions held by stakeholders were inaccurate, leading to erroneous assumptions regarding the suitability of most candidate species. Stakeholder perceptions substantially influence tree species selection, and plantations established on the basis of inaccurate opinions are unlikely to deliver the desired outcomes. Attitudinal surveys associated with engagement campaigns are essential to improve stakeholder knowledge, advancing the development of fit-for-purpose forest management that provides the required ecosystem services.
Smaill, Simeon J; Bayne, Karen M; Coker, Graham W R; Paul, Thomas S H; Clinton, Peter W
2014-04-01
Stakeholders in plantation forestry are increasingly aware of the importance of the ecosystem services and non-market values associated with forests. In New Zealand, there is significant interest in establishing species other than Pinus radiata D. Don (the dominant plantation species) in the belief that alternative species are better suited to deliver these services. Significant risk is associated with this position as there is little objective data to support these views. To identify which species were likely to be planted to deliver ecosystem services, a survey was distributed to examine stakeholder perceptions. Stakeholders were asked which of 15 tree attributes contributed to the provision of five ecosystem services (amenity value, bioenergy production, carbon capture, the diversity of native habitat, and erosion control/water quality) and to identify which of 22 candidate tree species possessed those attributes. These data were combined to identify the species perceived most suitable for the delivery of each ecosystem service. Sequoia sempervirens (D.Don) Endl. closely matched the stakeholder derived ideotypes associated with all five ecosystem services. Comparisons to data from growth, physiological and ecological studies demonstrated that many of the opinions held by stakeholders were inaccurate, leading to erroneous assumptions regarding the suitability of most candidate species. Stakeholder perceptions substantially influence tree species selection, and plantations established on the basis of inaccurate opinions are unlikely to deliver the desired outcomes. Attitudinal surveys associated with engagement campaigns are essential to improve stakeholder knowledge, advancing the development of fit-for-purpose forest management that provides the required ecosystem services.
NASA Astrophysics Data System (ADS)
Saenz, Edward J.
Forests provide vital ecosystem functions and services that maintain the integrity of our natural and human environment. Understanding the structural components of forests (extent, tree density, heights of multi-story canopies, biomass, etc.) provides necessary information to preserve ecosystem services. Increasingly, remote sensing resources have been used to map and monitor forests globally. However, traditional satellite and airborne multi-angle imagery only provide information about the top of the canopy and little about the forest structure and understory. In this research, we investigative the use of rapidly evolving lidar technology, and how the fusion of aerial and terrestrial lidar data can be utilized to better characterize forest stand information. We further apply a novel terrestrial lidar methodology to characterize a Hemlock Woolly Adelgid infestation in Harvard Forest, Massachusetts, and adapt a dynamic terrestrial lidar sampling scheme to identify key structural vegetation profiles of tropical rainforests in La Selva, Costa Rica.
LANDFIRE: Collaboration for National Fire Fuel Assessment
Zhu, Zhi-Liang
2006-01-01
The implementation of national fire management policies, such as the National Fire Plan and the Healthy Forest Restoration Act, requires geospatial data of vegetation types and structure, wildland fuels, fire risks, and ecosystem fire regime conditions. Presently, no such data sets are available that can meet these requirements. As a result, the U.S. Department of Agriculture (USDA) Forest Service and the Department of the Interior's land management bureaus (Bureau of Indian Affairs (BIA), Bureau of Land Management (BLM), Fish and Wildlife Service (FWS), and National Park Service (NPS)) have jointly sponsored LANDFIRE, a new research and development project. The primary objective of the project is to develop an integrated and repeatable methodology and produce vegetation, fire, and ecosystem information and predictive models for cost-effective national land management applications. The project is conducted collaboratively by the U.S. Geological Survey (USGS), the USDA Forest Service, and The Nature Conservancy.
The costs of climate change: ecosystem services and wildland fires
In this paper we use Habitat Equivalency Analysis (HEA) to monetize the avoided ecosystem services losses due to climate change-induced wildland fires in the U.S. Specifically, we use the U.S. Forest Service’s MC1 dynamic global vegetation model to forecast changes in wildland fi...
Lamsal, Pramod; Kumar, Lalit; Atreya, Kishor; Pant, Krishna Prasad
2017-12-01
Climate change (CC) threatens ecosystems in both developed and developing countries. As the impacts of CC are pervasive, global, and mostly irreversible, it is gaining worldwide attention. Here we review vulnerability and impacts of CC on forest and freshwater wetland ecosystems. We particularly look at investigations undertaken at different geographic regions in order to identify existing knowledge gaps and possible implications from such vulnerability in the context of Nepal along with available adaptation programs and national-level policy supports. Different categories of impacts which are attributed to disrupting structure, function, and habitat of both forest and wetland ecosystems are identified and discussed. We show that though still unaccounted, many facets of forest and freshwater wetland ecosystems of Nepal are vulnerable and likely to be impacted by CC in the near future. Provisioning ecosystem services and landscape-level ecosystem conservation are anticipated to be highly threatened with future CC. Finally, the need for prioritizing CC research in Nepal is highlighted to close the existing knowledge gap along with the implementation of adaptation measures based on existing location specific traditional socio-ecological system.
Li, Tan; Zhang, Qingguo; Zhang, Ying
2018-01-01
The assessment of forest ecosystem services can quantify the impact of these services on human life and is the main basis for formulating a standard of compensation for these services. Moreover, the calculation of the indirect value of forest ecosystem services should not be ignored, as has been the case in some previous publications. A low compensation standard and the lack of a dynamic coordination mechanism are the main problems existing in compensation implementation. Using comparison and analysis, this paper employed accounting for both the costs and benefits of various alternatives. The analytic hierarchy process (AHP) method and the Pearl growth-curve method were used to adjust the results. This research analyzed the contribution of each service value from the aspects of forest produce services, ecology services, and society services. We also conducted separate accounting for cost and benefit, made a comparison of accounting and evaluation methods, and estimated the implementation period of the compensation standard. The main conclusions of this research include the fact that any compensation standard should be determined from the points of view of both benefit and cost in a region. The results presented here allow the range between the benefit and cost compensation to be laid out more reasonably. The practical implications of this research include the proposal that regional decision-makers should consider a dynamic compensation method to meet with the local economic level by using diversified ways to raise the compensation standard, and that compensation channels should offer a mixed mode involving both the market and government. PMID:29561789
Li, Tan; Zhang, Qingguo; Zhang, Ying
2018-03-21
The assessment of forest ecosystem services can quantify the impact of these services on human life and is the main basis for formulating a standard of compensation for these services. Moreover, the calculation of the indirect value of forest ecosystem services should not be ignored, as has been the case in some previous publications. A low compensation standard and the lack of a dynamic coordination mechanism are the main problems existing in compensation implementation. Using comparison and analysis, this paper employed accounting for both the costs and benefits of various alternatives. The analytic hierarchy process (AHP) method and the Pearl growth-curve method were used to adjust the results. This research analyzed the contribution of each service value from the aspects of forest produce services, ecology services, and society services. We also conducted separate accounting for cost and benefit, made a comparison of accounting and evaluation methods, and estimated the implementation period of the compensation standard. The main conclusions of this research include the fact that any compensation standard should be determined from the points of view of both benefit and cost in a region. The results presented here allow the range between the benefit and cost compensation to be laid out more reasonably. The practical implications of this research include the proposal that regional decision-makers should consider a dynamic compensation method to meet with the local economic level by using diversified ways to raise the compensation standard, and that compensation channels should offer a mixed mode involving both the market and government.
Ordination of Woody Vegetation in a Ouachita National Forest Watershed
Denise Marion; George Malanson
2004-01-01
Abstract - Species response to competition and other environmental gradients has important implications for forest ecosystem managers who desire to both maintain diversity and provide a sustained flow of forest goods and services. Woody species on a 140-acre watershed in the Ouachita National Forest are ordinated with detrended correspondence...
Forest composition change in the eastern United States
Songlin Fei; Peilin. Yang
2011-01-01
Forest ecosystems in the eastern United States are believed to be experiencing a species composition change, but most evidence is anecdotal or localized. We used U.S. Forest Service Forest Inventory and Analysis data to quantify the annual changes of three common genera: Acer (maple), carya (hickory), and Quercus...
Francis Marion National Forest forest plan revision - ecosystems & restoration needs
Mark Danaher
2016-01-01
The Forest Service is currently revising the previous 1995 Forest Plan for the Francis Marion National Forest in Coastal South Carolina developed in the wake of Hurricane Hugo which devastated the forest in 1989. Since 1995, the human communities surrounding the Francis Marion National Forest have grown and changed significantly. The revised Francis Marion Forest Plan...
Scott D. Peckham; Stith T. Gower; Joseph Buongiorno
2012-01-01
Forests of the Midwest U.S. provide numerous ecosystem services. Two of these, carbon sequestration and wood production, are often portrayed as conflicting. Currently, carbon management and biofuel policies are being developed to reduce atmospheric CO2 and national dependence on foreign oil, and increase carbon storage in ecosystems. However, the biological and...
If a tree falls in the woods, who will measure it? DecAID decayed wood advisor.
Jonathan Thompson
2006-01-01
Decayed wood plays many critical roles in forest ecosystems. Standing dead trees, called snags, provide habitat for a suite of wildlife, including several species of birds, insects, bats, and other mammals. Down wood provides wildlife habitat and performs ecosystem services such as releasing humus, nitrogen, and phosphorus into the forest soil, storing pockets of...
Growth projection and valuation of restoration of the shortleaf pine-bluestem grass ecosystem
Difei Zhang; Michael M. Huebschmann; Thomas B. Lynch; James M. Guldin
2012-01-01
The fire-dependent shortleaf pineâbluestem grass ecosystem that existed prior to European settlement is being restored on approximately 62,700 ha in the Ouachita National Forest. The restoration effort's economic effects are not completely understood. This study will provide the Forest Service with a framework for better communicating the biological and economic...
Conservation of biological diversity
Brian G. Tavernia; Mark D. Nelson; Rachel Riemann; Brent Dickinson; W. Keith Moser; Barry T. (Ty) Wilson; James D. Garner
2016-01-01
People enjoy a variety of ecosystem services, or benefits, from forests, including water purification, recreation, income from tourism, timber products, and the cultural and economic benefits from hunting, fishing, and gathering (Shvidenko et al. 2005). Across the Northern United States, growing human populations will place increased service demands on forests for the...
John Innes; Linda A. Joyce; Seppo Kellomaki; Bastiaan Louman; Aynslie Ogden; Ian Thompson; Matthew Ayres; Chin Ong; Heru Santoso; Brent Sohngen; Anita Wreford
2009-01-01
This chapter develops a framework to explore examples of adaptation options that could be used to ensure that the ecosystem services provided by forests are maintained under future climates. The services are divided into broad areas within which managers can identify specific management goals for individual forests or landscapes. Adaptation options exist for the major...
Can we store carbon and have our timber and habitat too?
Andrea Watts; Thomas Spies; Jeffrey Kline; Warren Cohen
2017-01-01
With the passage of the Multiple Use Sustained Yield Act of 1960, the U.S. Forest Service has managed its 193 million acres of forest and grassland for multiple uses, including timber, watersheds, and wildlife. Using todayâs terminology, some of these purposes are considered ecosystem services, which encompass a breadth of benefits provided by forests, including their...
Environmental accounting of natural capital and ecosystem services for the US National Forest System
Elliot T. Campbell; Mark T. Brown; NO-VALUE
2012-01-01
The National Forests of the United States encompass 192.7 million acres (78 million hectares) of land, which is nearly five percent of the total land area of the nation. These lands are managed by the US Forest Service (USFS) for multiple uses, including extraction of timber, production of fossil fuels and minerals, public recreation, and the preservation of...
REDD and PINC: A new policy framework to fund tropical forests as global 'eco-utilities'
NASA Astrophysics Data System (ADS)
Trivedi, M. R.; Mitchell, A. W.; Mardas, N.; Parker, C.; Watson, J. E.; Nobre, A. D.
2009-11-01
Tropical forests are 'eco-utilities' providing critical ecosystem services that underpin food, energy, water and climate security at local to global scales. Currently, these services are unrecognised and unrewarded in international policy and financial frameworks, causing forests to be worth more dead than alive. Much attention is currently focused on REDD (Reducing Emissions from Deforestation and forest Degradation) and A/R (Afforestation and Reforestation) as mitigation options. In this article we propose an additional mechanism - PINC (Proactive Investment in Natural Capital) - that recognises and rewards the value of ecosystem services provided by standing tropical forests, especially from a climate change adaptation perspective. Using Amazonian forests as a case study we show that PINC could improve the wellbeing of rural and forest-dependent populations, enabling them to cope with the impacts associated with climate change and deforestation. By investing pro-actively in areas where deforestation pressures are currently low, the long-term costs of mitigation and adaptation will be reduced. We suggest a number of ways in which funds could be raised through emerging financial mechanisms to provide positive incentives to maintain standing forests. To develop PINC, a new research and capacity-building agenda is needed that explores the interdependence between communities, the forest eco-utility and the wider economy.
Ecosystem management in the Madrean Archipelago: a 10-year historical perspective
Leonard F. DeBano; Peter F. Ffolliott
2005-01-01
The USDA Forest Service implemented a more holistic form of ecosystem management than previously practiced in the early 1990s through several ecosystem programs implemented in the Western United States. The ecosystem program that concerns this conference was a collaboration on âAchieving Ecosystem Management in the Borderlands of the Southwestern United States through...
Sicard, Pierre; Augustaitis, Algirdas; Belyazid, Salim; Calfapietra, Carlo; de Marco, Alessandra; Fenn, Mark; Bytnerowicz, Andrzej; Grulke, Nancy; He, Shang; Matyssek, Rainer; Serengil, Yusuf; Wieser, Gerhard; Paoletti, Elena
2016-06-01
Research directions from the 27th conference for Specialists in Air Pollution and Climate Change Effects on Forest Ecosystems (2015) reflect knowledge advancements about (i) Mechanistic bases of tree responses to multiple climate and pollution stressors, in particular the interaction of ozone (O3) with nitrogen (N) deposition and drought; (ii) Linking genetic control with physiological whole-tree activity; (iii) Epigenetic responses to climate change and air pollution; (iv) Embedding individual tree performance into the multi-factorial stand-level interaction network; (v) Interactions of biogenic and anthropogenic volatile compounds (molecular, functional and ecological bases); (vi) Estimating the potential for carbon/pollution mitigation and cost effectiveness of urban and peri-urban forests; (vii) Selection of trees adapted to the urban environment; (viii) Trophic, competitive and host/parasite relationships under changing pollution and climate; (ix) Atmosphere-biosphere-pedosphere interactions as affected by anthropospheric changes; (x) Statistical analyses for epidemiological investigations; (xi) Use of monitoring for the validation of models; (xii) Holistic view for linking the climate, carbon, N and O3 modelling; (xiii) Inclusion of multiple environmental stresses (biotic and abiotic) in critical load determinations; (xiv) Ecological impacts of N deposition in the under-investigated areas; (xv) Empirical models for mechanistic effects at the local scale; (xvi) Broad-scale N and sulphur deposition input and their effects on forest ecosystem services; (xvii) Measurements of dry deposition of N; (xviii) Assessment of evapotranspiration; (xix) Remote sensing assessment of hydrological parameters; and (xx) Forest management for maximizing water provision and overall forest ecosystem services. Ground-level O3 is still the phytotoxic air pollutant of major concern to forest health. Specific issues about O3 are: (xxi) Developing dose-response relationships and stomatal O3 flux parameterizations for risk assessment, especially, in under-investigated regions; (xxii) Defining biologically based O3 standards for protection thresholds and critical levels; (xxiii) Use of free-air exposure facilities; (xxiv) Assessing O3 impacts on forest ecosystem services. Copyright © 2016 Elsevier Ltd. All rights reserved.
Robert L. Deal; Bobby Cochran; Gina LaRocco
2012-01-01
There has been increasing interest in the use of market-based approaches to add value for forestland and to assist with the conservation of natural resources. While markets for ecosystem services show potential for increasing forestland value, there is concern that the lack of an integrated program will simply add to the complexity of these services without generating...
[Evaluation of ecosystem provisioning service and its economic value].
Wu, Nan; Gao, Ji-Xi; Sudebilige; Ricketts, Taylor H; Olwero, Nasser; Luo, Zun-Lan
2010-02-01
Aiming at the fact that the current approaches of evaluating the efficacy of ecosystem provisioning service were lack of spatial information and did not take the accessibility of products into account, this paper established an evaluation model to simulate the spatial distribution of ecosystem provisioning service and its economic value, based on ArcGIS 9. 2 and taking the supply and demand factors of ecosystem products into account. The provision of timber product in Laojunshan in 2000 was analyzed with the model. In 2000, the total physical quantity of the timber' s provisioning service in Laojunshan was 11.12 x 10(4) m3 x a(-1), occupying 3.2% of the total increment of timber stock volume. The total provisioning service value of timber was 6669.27 x 10(4) yuan, among which, coniferous forest contributed most (90.41%). Due to the denser distribution of populations and roads in the eastern area of Laojunshan, some parts of the area being located outside of conservancy district, and forests being in scattered distribution, the spatial distribution pattern of the physical quantity of timber's provisioning service was higher in the eastern than in the western area.
Global Mapping of Provisioning Ecosystem Services
NASA Astrophysics Data System (ADS)
Bingham, Lisa; Straatsma, Menno; Karssenberg, Derek
2016-04-01
Attributing monetary value to ecosystem services for decision-making has become more relevant as a basis for decision-making. There are a number of problematic aspects of the calculations, including consistency of economy represented (e.g., purchasing price, production price) and determining which ecosystem subservices to include in a valuation. While several authors have proposed methods for calculating ecosystem services and calculations are presented for global and regional studies, the calculations are mostly broken down into biomes and regions without showing spatially explicit results. The key to decision-making for governments is to be able to make spatial-based decisions because a large spatial variation may exist within a biome or region. Our objective was to compute the spatial distribution of global ecosystem services based on 89 subservices. Initially, only the provisioning ecosystem service category is presented. The provisioning ecosystem service category was calculated using 6 ecosystem services (food, water, raw materials, genetic resources, medical resources, and ornaments) divided into 41 subservices. Global data sets were obtained from a variety of governmental and research agencies for the year 2005 because this is the most data complete and recent year available. All data originated either in tabular or grid formats and were disaggregated to 10 km cell length grids. A lookup table with production values by subservice by country were disaggregated over the economic zone (either marine, land, or combination) based on the spatial existence of the subservice (e.g. forest cover, crop land, non-arable land). Values express the production price in international dollars per hectare. The ecosystem services and the ecosystem service category(ies) maps may be used to show spatial variation of a service within and between countries as well as to specifically show the values within specific regions (e.g. countries, continents), biomes (e.g. coastal, forest), or hazardous regions (e.g. landslides, flood plains, war zones). A preliminary example of the provisioning ecosystem service category illustrates the valuation of deltaic regions and a second example illustrates the valuation of the subservice category of food production prices in flood zones. Future work of this research will spatially represent the calculations of the remaining three ecosystem service categories (regulating, habitat, cultural) and investigate the propagation of uncertainty of the input data to ecosystem service maps.
Yang, Wen-yan; Zhou, Zhong-xue
2014-12-01
With the urban eco-environment increasingly deteriorating, the ecosystem services provided by modern urban agriculture are exceedingly significant to maintain and build more suitable environment in a city. Taking Xi' an metropolitan as the study area, based on remote sensing data, DEM data and the economic and social statistics data, the water and soil conservation service of the agricultural ecosystems was valued employing the remote sensing and geographic information system method, covering the reduction values on land waste, soil fertility loss and sediment loss from 2000 to 2011, and analyzed its changes in time and space. The results showed that during the study period, the total value of water and soil conservation service provided by agricultural systems in Xi' an metropolitan was increased by 46,086 and 33.008 billion yuan respectively from period of 2000 to 2005 and from 2005 to 2011. The cultivated land (including grains, vegetables and other farming land), forest (including orchard) and grassland provided higher value on the water and soil conservation service than waters and other land use. Ecosystem service value of water and soil conserva- tion provided by agriculture was gradually decreasing from the southern to the northern in Xi' an metropolitan. There were significantly positive relationship between the ecosystem service value and the vegetation coverage. Forest, orchard and grassland distributed intensively in the southern which had higher vegetation coverage than in northern where covered by more cultivated land, sparse forest and scattered orchard. There were significantly negative correlation between the urbanization level and the value of water and soil conservation. The higher level of urbanization, the lower value there was from built-up area to suburban and to countryside within Xi' an metropolitan.
Consequences of climate change for biotic disturbances in North American forests
Aaron S. Weed; Matthew P. Ayres; Jeffrey A. Hicke
2013-01-01
About one-third of North America is forested. These forests are of incalculable value to human society in terms of harvested resources and ecosystem services and are sensitive to disturbance regimes. Epidemics of forest insects and diseases are the dominant sources of disturbance to North American forests. Here we review current understanding of climatic effects...
Estimating down deadwood from FIA forest inventory variables in Maine
David C. Chojnacky; Linda S. Heath
2002-01-01
Down deadwood (DDW) is a carbon component important in the function and structure of forest ecosystems, but estimating DDW is problematic because these data are not widely available in forest inventory databases. However, DDW data were collected on USDA Forest Service Forest Inventory and Analysis (FIA) plots during Maine's 1995 inventory. This study examines ways...
Estimating down dead wood from FIA forest inventory variables in Maine
David C. Chojnacky; Linda S. Heath
2002-01-01
Down deadwood (DDW) is a carbon component important in the function and structure of forest ecosystems, but estimating DDW is problematic because these data are not widely available in forest inventory databases. However, DDW data were collected on USDA Forest Service Forest Inventory and Analysis (FIA) plots during Maine's 1995 inventory. This study examines ways...
Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA
Michael J. Falkowski; Jeffrey S. Evans; Sebastian Martinuzzi; Paul E. Gessler; Andrew T. Hudak
2009-01-01
Quantifying forest structure is important for sustainable forest management, as it relates to a wide variety of ecosystem processes and services. Lidar data have proven particularly useful for measuring or estimating a suite of forest structural attributes such as canopy height, basal area, and LAI. However, the potential of this technology to characterize forest...
Introduction to proceedings of a workshop on science considerations in functional restoration
Carlos Rodriguez-Franco
2014-01-01
There has been a great deal of discussion in the scientific literature and in traditional forest management literature about forest restoration, ecological restoration, adaptive and active management for restoring forest ecosystems, and a variety of linked topics. The USDA Forest Service manages 193 million acres of forest and grasslands for a variety of uses, and...
Urban forest ecosystem analysis using fused airborne hyperspectral and lidar data
NASA Astrophysics Data System (ADS)
Alonzo, Mike Gerard
Urban trees are strategically important in a city's effort to mitigate their carbon footprint, heat island effects, air pollution, and stormwater runoff. Currently, the most common method for quantifying urban forest structure and ecosystem function is through field plot sampling. However, taking intensive structural measurements on private properties throughout a city is difficult, and the outputs from sample inventories are not spatially explicit. The overarching goal of this dissertation is to develop methods for mapping urban forest structure and function using fused hyperspectral imagery and waveform lidar data at the individual tree crown scale. Urban forest ecosystem services estimated using the USDA Forest Service's i-Tree Eco (formerly UFORE) model are based largely on tree species and leaf area index (LAI). Accordingly, tree species were mapped in my Santa Barbara, California study area for 29 species comprising >80% of canopy. Crown-scale discriminant analysis methods were introduced for fusing Airborne Visible Infrared Imaging Spectrometry (AVIRIS) data with a suite of lidar structural metrics (e.g., tree height, crown porosity) to maximize classification accuracy in a complex environment. AVIRIS imagery was critical to achieving an overall species-level accuracy of 83.4% while lidar data was most useful for improving the discrimination of small and morphologically unique species. LAI was estimated at both the field-plot scale using laser penetration metrics and at the crown scale using allometry. Agreement of the former with photographic estimates of gap fraction and the latter with allometric estimates based on field measurements was examined. Results indicate that lidar may be used reasonably to measure LAI in an urban environment lacking in continuous canopy and characterized by high species diversity. Finally, urban ecosystem services such as carbon storage and building energy-use modification were analyzed through combination of aforementioned methods and the i-Tree Eco modeling framework. The remote sensing methods developed in this dissertation will allow researchers to more precisely constrain urban ecosystem spatial analyses and equip cities to better manage their urban forest resource.
Thomas E. Lisle; Mary Beth Adams; Leslie M. Reid; Kelly Elder
2010-01-01
The importance of forests in providing reliable sources of clean water cannot be underestimated. Therefore, there is a pressing need to understand how hydrologic systems function in forested ecosystems, in response to a variety of traditional and novel stressors and environments. Long-term watershed research on Experimental Forests and Ranges (EFRs) of the Forest...
Phillip E. Farnes; Raymond C. Shearer; Ward W. McCaughey; Katherine J. Hansen
1995-01-01
There are two experimental forests in Montana established by the U.S. Department of Agriculture, Forest Service, Intermountain Research Station (INT). Both experimental forests are administered by INT's Research work Unit, RWU-4151, Silviculture of Subalpine Forest Ecosystems. Tenderfoot Creek Experimental Forest (TCEF) is east of the continental Divide and is...
Altered rangeland ecosystems in the interior Columbia basin.
Stephen C. Bunting; James L. Kingery; Miles A. Hemstrom; Michael A. Schroeder; Rebecca A. Gravenmier; Wendel J. Hann
2002-01-01
A workshop was held to address specific questions related to altered rangeland ecosystems within the interior Columbia basin. Focus was primarily on public lands administered by the Forest Service and Bureau of Land Management. Altered ecosystems were considered to be those where human induced or natural disturbances are of sufficient magnitude to affect ecosystem...
Status and prospects for renewable energy using wood pellets from the southeastern United States
Dale, Virginia H.; Kline, Keith L.; Parish, Esther S.; ...
2017-04-20
The ongoing debate about costs and benefits of wood-pellet based bioenergy production in the southeastern United States (SE USA) requires an understanding of the science and context influencing market decisions associated with its sustainability. Production of pellets has garnered much attention as US exports have grown from negligible amounts in the early 2000s to 4.6 million metric tonnes in 2015. Currently, 98% of these pellet exports are shipped to Europe to displace coal in power plants. We ask, 'How is the production of wood pellets in the SE USA affecting forest systems and the ecosystem services they provide?' To addressmore » this question, we review current forest conditions and the status of the wood products industry, how pellet production affects ecosystem services and biodiversity, and what methods are in place to monitor changes and protect vulnerable systems. Scientific studies provide evidence that wood pellets in the SE USA are a fraction of total forestry operations and can be produced while maintaining or improving forest ecosystem services. Ecosystem services are protected by the requirement to utilize loggers trained to apply scientifically based best management practices in planning and implementing harvest for the export market. Bioenergy markets supplement incomes to private rural landholders and provide an incentive for forest management practices that simultaneously benefit water quality and wildlife and reduce risk of fire and insect outbreaks. Bioenergy also increases the value of forest land to landowners, thereby decreasing likelihood of conversion to nonforest uses. Monitoring and evaluation are essential to verify that regulations and good practices are achieving goals and to enable timely responses if problems arise. Conducting rigorous research to understand how conditions change in response to management choices requires baseline data, monitoring, and appropriate reference scenarios. Furthermore, long-term monitoring data on forest conditions should be publicly accessible and utilized to inform adaptive management.« less
Status and prospects for renewable energy using wood pellets from the southeastern United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, Virginia H.; Kline, Keith L.; Parish, Esther S.
The ongoing debate about costs and benefits of wood-pellet based bioenergy production in the southeastern United States (SE USA) requires an understanding of the science and context influencing market decisions associated with its sustainability. Production of pellets has garnered much attention as US exports have grown from negligible amounts in the early 2000s to 4.6 million metric tonnes in 2015. Currently, 98% of these pellet exports are shipped to Europe to displace coal in power plants. We ask, 'How is the production of wood pellets in the SE USA affecting forest systems and the ecosystem services they provide?' To addressmore » this question, we review current forest conditions and the status of the wood products industry, how pellet production affects ecosystem services and biodiversity, and what methods are in place to monitor changes and protect vulnerable systems. Scientific studies provide evidence that wood pellets in the SE USA are a fraction of total forestry operations and can be produced while maintaining or improving forest ecosystem services. Ecosystem services are protected by the requirement to utilize loggers trained to apply scientifically based best management practices in planning and implementing harvest for the export market. Bioenergy markets supplement incomes to private rural landholders and provide an incentive for forest management practices that simultaneously benefit water quality and wildlife and reduce risk of fire and insect outbreaks. Bioenergy also increases the value of forest land to landowners, thereby decreasing likelihood of conversion to nonforest uses. Monitoring and evaluation are essential to verify that regulations and good practices are achieving goals and to enable timely responses if problems arise. Conducting rigorous research to understand how conditions change in response to management choices requires baseline data, monitoring, and appropriate reference scenarios. Furthermore, long-term monitoring data on forest conditions should be publicly accessible and utilized to inform adaptive management.« less
Bradford, John B.; Jensen, Nicholas R.; Domke, Grant M.; D’Amato, Anthony W.
2013-01-01
Forested ecosystems contain the majority of the world’s terrestrial carbon, and forest management has implications for regional and global carbon cycling. Carbon stored in forests changes with stand age and is affected by natural disturbance and timber harvesting. We examined how harvesting and disturbance interact to influence forest carbon stocks over the Superior National Forest, in northern Minnesota. Forest inventory data from the USDA Forest Service, Forest Inventory and Analysis program were used to characterize current forest age structure and quantify the relationship between age and carbon stocks for eight forest types. Using these findings, we simulated the impact of alternative management scenarios and natural disturbance rates on forest-wide terrestrial carbon stocks over a 100-year horizon. Under low natural mortality, forest-wide total ecosystem carbon stocks increased when 0% or 40% of planned harvests were implemented; however, the majority of forest-wide carbon stocks decreased with greater harvest levels and elevated disturbance rates. Our results suggest that natural disturbance has the potential to exert stronger influence on forest carbon stocks than timber harvesting activities and that maintaining carbon stocks over the long-term may prove difficult if disturbance frequency increases in response to climate change.
Climate and biodiversity effects on standing biomass in Puerto Rican forests
R. Muscarella; M. Uriarte; D.L. Erickson; N.G. Swenson; J.K. Zimmerman; W.J. Kress
2016-01-01
Carbon sequestration is a major ecosystem service provided by tropical forests. Especially in light of global climate change, understanding the drivers of forest productivity is of critical importance. Although abiotic conditions (e.g., precipitation) are known to influence forest productivity, ecological theory predicts that biodiversity may also have independent...
A framework for identifying carbon hotspots and forest management drivers
Nilesh Timilsina; Francisco J. Escobedo; Wendell P. Cropper; Amr Abd-Elrahman; Thomas Brandeis; Sonia Delphin; Samuel Lambert
2013-01-01
Spatial analyses of ecosystem system services that are directly relevant to both forest management decision making and conservation in the subtropics are rare. Also, frameworks that identify and map carbon stocks and corresponding forest management drivers using available regional, national, and international-level forest inventory datasets could provide insights into...
Carbon storage and accumulation in United States forest ecosystems
Richard A. Birdsey
1992-01-01
Historically, assessments of the forest resource situation have focused on timber supply, and the data used to support the assessments came from traditional forest inventories designed to provide reliable estimates of timber volume, growth, removals, and mortality (U.S. Department of Agriculture, Forest Service 1982). The most recent assessment included data and...
Inventory shows extent of non-native invasive plants in Minnesota forests
W. Keith Moser; Mark D. Nelson; Mark H. Hansen
2009-01-01
Readers are no doubt aware of the impact that non-native invasive plants (NNIP) present to Minnesota's ecosystems. The U.S. Forest Service's Northern Research Station (NRS) Forest Inventory and Analysis (FIA) Program is studying what determines where these plants are found, including forest type, tree density, disturbance, productivity, and topography.
J. Rogan; T.M. Wright; J. Cardille; H. Pearsall; Y. Ogneva-Himmelberger; Rachel Riemann; Kurt Riitters; K. Partington
2016-01-01
Forest fragmentation has been studied extensively with respect to biodiversity loss, disruption of ecosystem services, and edge effects although the relationship between forest fragmentation and human activities is still not well understood. We classified the pattern of forests in Massachusetts using fragmentation indicators to address...
36 CFR 292.48 - Grazing activities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Grazing activities. 292.48 Section 292.48 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE NATIONAL...; rare combinations of outstanding ecosystems, or the protection and enhancement of the values for which...
36 CFR 292.48 - Grazing activities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Grazing activities. 292.48 Section 292.48 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE NATIONAL...; rare combinations of outstanding ecosystems, or the protection and enhancement of the values for which...
36 CFR 292.48 - Grazing activities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Grazing activities. 292.48 Section 292.48 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE NATIONAL...; rare combinations of outstanding ecosystems, or the protection and enhancement of the values for which...
Jie Zhu; Ge Sun; Wenhong Li; Yu Zhang; Guofang Miao; Asko Noormets; Steve G. McNulty; John S. King; Mukesh Kumar; Xuan Wang
2017-01-01
The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, ground- water recharge, and wildlife habitat. However, these wet- land ecosystems are dependent on local climate and hydrol- ogy, and are therefore at risk due to climate and land use change. This study develops site-...
Monique E. Rocca; Chelcy Ford Miniat; Robert J. Mitchell
2014-01-01
Fires have influenced and shaped vegetation ever since the climate evolved to provide both ignition sources and oxygen (Bowman et al., 2009). Fire has been one of the most frequent and impactful disturbances to ecosystems globally, and thus one of the major regulators of forest composition, function and dynamics (Spurr and Barnes, 1973 and Bond and Keeley, 2005). Any...
Gregory Nowacki; Michael Ablutz; Dan Yaussy; Thomas Schuler; Dan Dey
2009-01-01
The U.S. Forest Service has recently completed an ecosystem restoration framework and enacted accompanying policy to help guide its nationwide efforts. The Eastern Region is in the midst of translating the general guidance set forth in these documents to actual on-the-ground restoration. We envision a set of coordinated field demonstrations that will initially focus on...
Sarah K. Mincey; Miranda Hutten; Burnell C. Fischer; Tom P. Evans; Susan I. Stewart; Jessica M. Vogt
2013-01-01
A decline in urban forest structure and function in the United States jeopardizes the current focus on developing sustainable cities. A number of social dilemmasâfor example, free-rider problemsârestrict the sustainable production of ecosystem services and the stock of urban trees from which they flow. However, institutions, or the rules, norms, and strategies that...
This EnviroAtlas dataset contains polygons depicting the number of watershed-level market-based programs, referred to herein as markets, in operation per 8-digit HUC watershed throughout the United States. The data were collected via surveys and desk research conducted by Forest Trends' Ecosystem Marketplace during 2014 regarding markets operating to protect watershed ecosystem services. Utilizing these data, the number of water market coverage areas overlaying each HUC8 watershed were calculated to produce this dataset. Only water markets identified as operating at the watershed level (i.e., single or multiple watersheds define the market boundaries) were included in the count of water markets per HUC8 watershed. Excluded were water markets operating at the national, state, county, or federal lands level and all water projects. Attribute data include the watershed's 8-digit hydrologic unit code and name, in addition to the watershed-level water market count associated with the watershed. This dataset was produced by Forest Trends' Ecosystem Marketplace to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Addi
NASA Astrophysics Data System (ADS)
Flórez, C. P.; León, J. D.; Villegas, J. C.; Betancur, T.; Suescún, D.; García-Leoz, V.; Cardona, A. I.; Martin, Á. M.
2014-12-01
In tropical mountain regions, the societal demands for ecosystem services has led to pressure over ecosystems that, in ocassions, may threaten the capacity of ecosystems to provide services. More specifically, global-change processes such as land use change and climate dynamics may lead to uncertainties about the stability of ecosystem functions on which services rely on. Of particular interest are the effects of land cover changes on the hydrological dynamics of the soil, that support multiple regulation and provision services, critical for a large portion of the population settled in mountain regions of the world. In this work, we present a protocol for the combined monitoring of ecohydrological, biogeochemical and sediment dynamics in a group of instrumented plots representing a typical gradient of human intervention in a tropical mountain ecosystem. Land cover categories include: a mature forest, secondary forest, early successional stage, recently abandoned agricultural field, a cattle pasture, permanent cropland, a high rotation cropland. On each plot, water fluxes from the top of the canopy to 1.5 m below soil surface are measured using a diverse array of instruments, along with measurements of sediment load in runoff waters and nutrient loads for all hydrologic compartments (measurements include Ca, Mg, K, P, NH4, NO3, Mn, Fe). Our preliminary results indicate that although rainfall does not vary significantly among plots, runoff generation does, with higher values ocurring in the pasture. Conversely, infiltration rates are highest in both types of forests, particularly for shallower layers of the soil. Chemical analysis indicate higher nutrient loads in runoff generating from croplands, highlighting the potential loss of soil fertility and potentially leading to eutrophication in water bodies downstream. After completion, our results will provide land managers tools to assess larger-scale effects of land use changes on the capacity of ecosystems to provide services to society.
Fire Restoration in the Northern Region, USDA Forest Service
Glenda Scott; Steve Shelly; Jim Olivarez
2005-01-01
Restoring native plant communities is a key objective in the maintenance of healthy ecosystems. Opportunities have increased following recent wildfires. This paper describes the policy and history behind the reforestation and restoration programs in the Northern Region (Region 1) of the USDA Forest Service, which focused primarily on meeting the objectives in the...
Implementing watershed investment programs to restore fire-adapted forests for watershed services
NASA Astrophysics Data System (ADS)
Springer, A. E.
2013-12-01
Payments for ecosystems services and watershed investment programs have created new solutions for restoring upland fire-adapted forests to support downstream surface-water and groundwater uses. Water from upland forests supports not only a significant percentage of the public water supplies in the U.S., but also extensive riparian, aquatic, and groundwater dependent ecosystems. Many rare, endemic, threatened, and endangered species are supported by the surface-water and groundwater generated from the forested uplands. In the Ponderosa pine forests of the Southwestern U.S., post Euro-American settlement forest management practices, coupled with climate change, has significantly impacted watershed functionality by increasing vegetation cover and associated evapotranspiration and decreasing runoff and groundwater recharge. A large Collaborative Forest Landscape Restoration Program project known as the Four Forests Restoration Initiative is developing landscape scale processes to make the forests connected to these watersheds more resilient. However, there are challenges in financing the initial forest treatments and subsequent maintenance treatments while garnering supportive public opinion to forest thinning projects. A solution called the Flagstaff Watershed Protection Project is utilizing City tax dollars collected through a public bond to finance forest treatments. Exit polling from the bond election documented the reasons for the 73 % affirmative vote on the bond measure. These forest treatments have included in their actions restoration of associated ephemeral stream channels and spring ecosystems, but resources still need to be identified for these actions. A statewide strategy for developing additional forest restoration resources outside of the federal financing is being explored by state and local business and governmental leaders. Coordination, synthesis, and modeling supported by a NSF Water Sustainability and Climate project has been instrumental in facilitating the forest restoration and watershed health decision making processes.
Invasibility of major forest types by non-native Chinese tallow in East Texas
Zhaofei Fan
2015-01-01
Non-native invasive Chinese tallow trees [Triadica sebifera (L.) Small,formerly Sapium sebiferum (L.) Roxb.] are rapidly spreading into natural ecosystems such as forests in the southeastern United States. Using the 2001-2010 USDA Forest Serviceâs Forest Inventory and Analysis (FIA) data and forest land cover data, we estimated the regional invasibility of major forest...
NASA Astrophysics Data System (ADS)
Lv, Xizhi; Zuo, Zhongguo; Xiao, Peiqing
2017-06-01
With increasing demand for water resources and frequently a general deterioration of local water resources, water conservation by forests has received considerable attention in recent years. To evaluate water conservation capacities of different forest ecosystems in mountainous areas of Loess Plateau, the landscape of forests was divided into 18 types in Loess Plateau. Under the consideration of the factors such as climate, topography, plant, soil and land use, the water conservation of the forest ecosystems was estimated by means of InVEST model. The result showed that 486417.7 hm2 forests in typical mountain areas were divided into 18 forest types, and the total water conservation quantity was 1.64×1012m3, equaling an average of water conversation quantity of 9.09×1010m3. There is a great difference in average water conversation capacity among various forest types. The water conservation function and its evaluation is crucial and complicated issues in the study of ecological service function in modern times.
Timothy Callahan; Devendra Amatya; Peter Stone
2017-01-01
Forests are receiving more attention for the ecosystem goods and services they provide and the potential change agents that may affect forest health and productivity. Highlighting case examples from coastal forests in South Carolina, USA, we describe groundwater processes with respect to stressors and potential responses of a wetland-rich forested landscape,...
Application of rangeland health indicators on forested plots on the Fishlake National Forest, Utah
Maggie G. Toone; Sara Goeking
2017-01-01
Typical indicators of rangeland health are used to describe health and functionality of a variety of rangeland ecosystems. Similar indicators may be applied to forested locations to examine ecological health at a local forest level. Four rangeland health indicators were adapted and applied to data compiled by the U.S. Department of Agriculture, Forest Service, Rocky...
William D. Dijak; Brice B. Hanberry; Jacob S. Fraser; Hong S. He; Wen J. Wang; Frank R. Thompson
2017-01-01
Context. Global climate change impacts forest growth and methods of modeling those impacts at the landscape scale are needed to forecast future forest species composition change and abundance. Changes in forest landscapes will affect ecosystem processes and services such as succession and disturbance, wildlife habitat, and production of forest...
Alexa J. Dugan; Richard A. Birdsey; Sean P. Healey; Christopher Woodall; Fangmin Zhang; Jing M. Chen; Alexander Hernandez; James B. McCarter
2015-01-01
Forested lands, representing the largest terrestrial carbon sink in the United States, offset 16% of total U.S. carbon dioxide emissions through carbon sequestration. Meanwhile, this carbon sink is threatened by deforestation, climate change and natural disturbances. As a result, U.S. Forest Service policies require that National Forests assess baseline carbon stocks...
Grant M. Domke; Christopher W. Woodall; James E. Smith; James A. Westfall; Ronald E. McRoberts
2012-01-01
Forest ecosystems are the largest terrestrial carbon sink on earth and their management has been recognized as a relatively cost-effective strategy for offsetting greenhouse gas emissions. Forest carbon stocks in the U.S. are estimated using data from the USDA Forest Service, Forest Inventory and Analysis (FIA) program. In an attempt to balance accuracy with...
Embrey, Sally; Remais, Justin V; Hess, Jeremy
2012-05-01
In the United States and Canada, pine forest ecosystems are being dramatically affected by an unprecedented pine beetle infestation attributed to climate change. Both decreased frequency of extremely cold days and warmer winter temperature averages have led to an enphytotic devastating millions of acres of pine forest. The associated ecosystem disruption has the potential to cause significant health impacts from a range of exposures, including increased runoff and water turbidity, forest fires, and loss of ecosystem services. We review direct and indirect health impacts and possible prevention strategies. The pine beetle infestation highlights the need for public health to adopt an ecological, systems-oriented view to anticipate the full range of potential health impacts from climate change and facilitate effective planned adaptation.
Nutrient controls on biocomplexity of mangrove ecosystems
McKee, Karen L.
2004-01-01
Mangrove forests are important coastal ecosystems that provide a variety of ecological and societal services. These intertidal, tree-dominated communities along tropical coastlines are often described as “simple systems,” compared to other tropical forests with larger numbers of plant species and multiple understory strata; however, mangrove ecosystems have complex trophic structures, and organisms exhibit unique physiological, morphological, and behavioral adaptations to environmental conditions characteristic of the land-sea interface. Biogeochemical functioning of mangrove forests is also controlled by interactions among the microbial, plant, and animal communities and feedback linkages mediated by hydrology and other forcing functions. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to understand more fully the impact of nutrient variability on these delicate and important ecosystems.
Remais, Justin V.; Hess, Jeremy
2012-01-01
In the United States and Canada, pine forest ecosystems are being dramatically affected by an unprecedented pine beetle infestation attributed to climate change. Both decreased frequency of extremely cold days and warmer winter temperature averages have led to an enphytotic devastating millions of acres of pine forest. The associated ecosystem disruption has the potential to cause significant health impacts from a range of exposures, including increased runoff and water turbidity, forest fires, and loss of ecosystem services. We review direct and indirect health impacts and possible prevention strategies. The pine beetle infestation highlights the need for public health to adopt an ecological, systems-oriented view to anticipate the full range of potential health impacts from climate change and facilitate effective planned adaptation. PMID:22420788
Forest restoration, biodiversity and ecosystem functioning.
Aerts, Raf; Honnay, Olivier
2011-11-24
Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but it also highlights that much remains to be understood, especially regarding the relation between forest functioning on the one side and genetic diversity and above-ground-below-ground species associations on the other. The strong emphasis of the BEF-approach on functional rather than taxonomic diversity may also be the beginning of a paradigm shift in restoration ecology, increasing the tolerance towards allochthonous species.
The Impacts of Climate-Induced Drought on Biogeochemical Cycles
NASA Astrophysics Data System (ADS)
Peng, C.
2014-12-01
Terrestrial ecosystems and, in particular, forests exert strong controls on the global biogeochemical cycles and influence regional hydrology and climatology directly through water and surface energy budgets. Recent studies indicated that forest mortality caused by rising temperature and drought from around the world have unexpectedly increased in the past decade and they collectively illustrate the vulnerability of many forested ecosystems to rapid increases in tree mortality due to warmer temperatures and more severe drought. Persistent changes in tree mortality rates can alter forest structure, composition, and ecosystem services (such as albedo and carbon sequestration). Quantifying potential impacts of tree mortality on ecosystem processes requires research into mortality effects on carbon, energy, and water budgets at both site and regional levels. Despite recent progress, the uncertainty around mortality responses still limits our ability to predict the likelihood and anticipate the impacts of tree die-off. Studies are needed that explore tree death physiology for a wide variety of functional types, connect patterns of mortality with climate events, and quantify the impacts on carbon, energy, and water flux. In this presentation, I will highlight recent research progress, and identify key research needs and future challenges to predict the consequence and impacts of drought-induced large-scale forest mortality on biogeochemical cycles. I will focus on three main forest ecosystems (tropic rainforest in Amazon, temperate forest in Western USA, and boreal forest in Canada) as detailed case studies.
Ecosystem services: Urban parks under a magnifying glass.
Mexia, Teresa; Vieira, Joana; Príncipe, Adriana; Anjos, Andreia; Silva, Patrícia; Lopes, Nuno; Freitas, Catarina; Santos-Reis, Margarida; Correia, Otília; Branquinho, Cristina; Pinho, Pedro
2018-01-01
Urban areas' population has grown during the last century and it is expected that over 60% of the world population will live in cities by 2050. Urban parks provide several ecosystem services that are valuable to the well-being of city-dwellers and they are also considered a nature-based solution to tackle multiple environmental problems in cities. However, the type and amount of ecosystem services provided will vary with each park vegetation type, even within same the park. Our main goal was to quantify the trade-offs in ecosystem services associated to different vegetation types, using a spatially detailed approach. Rather than relying solely on general vegetation typologies, we took a more ecologically oriented approach, by explicitly considering different units of vegetation structure and composition. This was demonstrated in a large park (44ha) located in the city of Almada (Lisbon metropolitan area, Portugal), where six vegetation units were mapped in detail and six ecosystem services were evaluated: carbon sequestration, seed dispersal, erosion prevention, water purification, air purification and habitat quality. The results showed that, when looking at the park in detail, some ecosystem services varied greatly with vegetation type. Carbon sequestration was positively influenced by tree density, independently of species composition. Seed dispersal potential was higher in lawns, and mixed forest provided the highest amount of habitat quality. Air purification service was slightly higher in mixed forest, but was high in all vegetation types, probably due to low background pollution, and both water purification and erosion prevention were high in all vegetation types. Knowing the type, location, and amount of ecosystem services provided by each vegetation type can help to improve management options based on ecosystem services trade-offs and looking for win-win situations. The trade-offs are, for example, very clear for carbon: tree planting will boost carbon sequestration regardless of species, but may not be enough to increase habitat quality. Moreover, it may also negatively influence seed dispersal service. Informed practitioners can use this ecological knowledge to promote the role of urban parks as a nature-based solution to provide multiple ecosystem services, and ultimately improve the design and management of the green infrastructure. This will also improve the science of Ecosystem Services, acknowledging that the type of vegetation matters for the provision of ecosystem services and trade-offs analysis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Modeling Sustainable Bioenergy Feedstock Production in the Alps
NASA Astrophysics Data System (ADS)
Kraxner, Florian; Leduc, Sylvain; Kindermann, Georg; Fuss, Sabine; Pietsch, Stephan; Lakyda, Ivan; Serrano Leon, Hernan; Shchepashchenko, Dmitry; Shvidenko, Anatoly
2016-04-01
Sustainability of bioenergy is often indicated by the neutrality of emissions at the conversion site while the feedstock production site is assumed to be carbon neutral. Recent research shows that sustainability of bioenergy systems starts with feedstock management. Even if sustainable forest management is applied, different management types can impact ecosystem services substantially. This study examines different sustainable forest management systems together with an optimal planning of green-field bioenergy plants in the Alps. Two models - the biophysical global forest model (G4M) and a techno-economic engineering model for optimizing renewable energy systems (BeWhere) are implemented. G4M is applied in a forward looking manner in order to provide information on the forest under different management scenarios: (1) managing the forest for maximizing the carbon sequestration; or (2) managing the forest for maximizing the harvestable wood amount for bioenergy production. The results from the forest modelling are then picked up by the engineering model BeWhere, which optimizes the bioenergy production in terms of energy demand (power and heat demand by population) and supply (wood harvesting potentials), feedstock harvesting and transport costs, the location and capacity of the bioenergy plant as well as the energy distribution logistics with respect to heat and electricity (e.g. considering existing grids for electricity or district heating etc.). First results highlight the importance of considering ecosystem services under different scenarios and in a geographically explicit manner. While aiming at producing the same amount of bioenergy under both forest management scenarios, it turns out that in scenario (1) a substantially larger area (distributed across the Alps) will need to be used for producing (and harvesting) the necessary amount of feedstock than under scenario (2). This result clearly shows that scenario (2) has to be seen as an "intensification scenario" under which more biomass feedstock can be produced and harvested, so that less area would be affected by harvesting and other management activities. Intensification through optimal forest management can lead to a substantial reduction of the area necessary for bioenergy feedstock supply. This in turn means that the "spared" area and the associated ecosystem services can be designated for conservation or other uses. This insight provides support to policy and decision makers in considering the optimal "mix" or "co-existence" of different ecosystem services and economic demands from a modern landscape management approach.
An ecological basis for managing giant sequoia ecosystems.
Piirto, Douglas D; Rogers, Robert R
2002-07-01
A strategy for management of giant sequoia groves is formulated using a conceptual framework for ecosystem management recently developed by Region Five of the USDA Forest Service. The framework includes physical, biological, and social dimensions. Environmental indicators and reference variability for key ecosystem elements are discussed in this paper. The selected ecosystem elements include: 1) attitudes, beliefs, and values; 2) economics and subsistence; 3) stream channel morphology; 4) sediment; 5) water; 6) fire; 7) organic debris; and 8) vegetation mosaic. Recommendations are made for the attributes of environmental indicators that characterize these elements. These elements and associated indicators will define and control management activities for the protection, preservation, and restoration of national forest giant sequoia ecosystems.
Disturbance processes and ecosystem management
Robert D. Averill; Louise Larson; Jim Saveland; Philip Wargo; Jerry Williams; Melvin Bellinger
1994-01-01
This paper is intended to broaden awareness and help develop consensus among USDA Forest Service scientists and resource managers about the role and significance of disturbance in ecosystem dynamics and, hence, resource management. To have an effective ecosystem management policy, resource managers and the public must understand the nature of ecological resiliency and...
Chapter 15: A desired future condition for Sierra Nevada Forests
M. North
2012-01-01
An unexpected outcome of U.S. Forest Service General Technical Report PSW-GTR 220, "An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests" (North et al. 2009), was how it generated discussion about a desired future condition for Sierra Nevada forests. The paper did not convey leading-edge research results or provide an exhaustive literature...
Combining fire and erosion modeling to target forest management activities
William J. Elliot; Mary Ellen Miller; Nic Enstice
2015-01-01
Forests deliver a number of important ecosystem services including clean water. When forests are disturbed by wildfire, the timing, quantity and quality of runoff are altered. A modeling study was carried out in a forested watershed in California to determine the risk of wildfire, and the potential post-fire sediment delivery from approximately 6-ha hillslope polygons...
Targeting forest management through fire and erosion modeling
William J. Elliot; Mary Ellen Miller; Nic Enstice
2016-01-01
Forests deliver a number of important ecosystem services, including clean water. When forests are disturbed by wildfire, the timing, quantity and quality of runoff are altered. A modelling study was conducted in a forested watershed in California, USA, to determine the risk of wildfire, and the potential post-fire sediment delivery from ~4-ha hillslope polygons within...
Standing dead tree resources in forests of the United States
Christopher W. Woodall; Karen L. Waddell; Christopher M. Oswalt; James E. Smith
2013-01-01
Given the importance of standing dead trees to numerous forest ecosystem attributes/ processes such as fuel loadings and wildlife habitat, the Forest Inventory and Analysis (FIA) Program of the Forest Service, U.S. Department of Agriculture, initiated a consistent nationwide inventory of standing dead trees in 1999. As the first cycle of annual standing dead tree...
Building partnerships to evaluate wood utilization options for improving forest health
Kenneth E. Skog; David Green; R. James Barbour; John E. Baumgras; Alexander Clark; Andrew Mason; David A. Meriwether; Gary C. Myers; Gary C. Myers
1995-01-01
Silvicultural practices used on national forests are changing as a result of the shift to ecosystem management. As a result, the species mix, size, quality, and quantity of woody material that may be removed are changing. In a combined, multidisciplinary effort, Forest Service research units at the Forest Products Laboratory, Pacific Northwest and Southern Research...
Mary Beth Adams; Jennifer D. Knoepp; Jackson R. Webster
2014-01-01
Because elevated N loading can impair both terrestrial and aquatic ecosystems, understanding the abiotic and biotic controls over retention and export of dissolved inorganic N (DIN) is crucial. Long-term research has been conducted on experimental watersheds at two U.S. Forest Service experimental forests in the Appalachian region: Fernow Experimental Forest (FEF) in...
Impacts of all terrain vehicles (ATV) on National Forest lands and grasslands [Abstract
Randy B. Foltz; Kristina A. Yanosek
2005-01-01
The US Forest Service has identified unmanaged all terrain vehicle (ATV) use as a threat to forested lands and grasslands. Some undesirable impacts include severely eroded soils, usercreated unplanned roads, disrupted wetland ecosystems, as well as general habitat destruction and degraded water quality throughout forested lands. More insight on how ATV use affects...
Long-term vegetation changes in a temperate forest impacted by climate change
Lauren E. Oakes; Paul E. Hennon; Kevin L. O' Hara; Rodolfo Dirzo
2014-01-01
Pervasive forest mortality is expected to increase in future decades as a result of increasing temperatures. Climate-induced forest dieback can have consequences on ecosystem services, potentially mediated by changes in forest structure and understory community composition that emerge in response to tree death. Although many dieback events around the world have been...
Michael M. Huebschmann; Daniel S. Tilley; Thomas B. Lynch; David K. Lewis; James M. Guldin
2002-01-01
The USDA Forest Service is restoring pre-European settlement forest conditions on about 10 percent (155,000 acres) of the Ouachita National Forest in western Arkansas. These conditions - characterized by large, scattered shortleaf pine and hardwoods maintained on 120-year rotations, with bluestem grass and associated herbaceous vegetation in the understory - are...
Xiaoping Zhou; Miles A. Hemstrom
2014-01-01
Forest land provides various ecosystem services, including timber, biomass, and carbon sequestration. Estimating trends in these ecosystem services is essential for assessing potential outcomes of landscape management scenarios. However, the state-and transition models used in the Integrated Landscape Assessment Project for simulating landscape changes over time do not...
Chapter 10: Geographic information system landscape analysis using GTR 220 concepts
M. North; R.M. Boynton; P.A. Stine; K.F. Shipley; E.C. Underwood; N.E. Roth; J.H. Viers; J.F. Quinn
2012-01-01
Forest Service General Technical Report "An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests" (hereafter GTR 220) (North et al. 2009) emphasizes increasing forest heterogeneity throughout a range of spatial scales including within-stand microsites, individual stands, watersheds, and entire landscapes. For fuels reduction, various landscape...
Chapter 7: Developing collaboration and cooperation
G. Bartlett
2012-01-01
Good forestry practices require onsite flexibility. A core concept in U.S. Forest Service General Technical Report PSW-GTR-220 "An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests" (North et al. 2009) is that management treatments and thinning intensity should differ depending on local forest conditions and topographic location. In the...
Crossing scales and disciplines to achieve forest sustainability
Michael J. Papaik; Brian Sturtevant; Christian Messier
2008-01-01
Forest land managers are faced with unprecedented global pressures to produce resources for human consumption (e.g., Liu and Diamond 2005), while still maintaining essential ecosystem services benefiting society at multiple spatial scales (Costanza et al. 1997). These global pressures alone present daunting challenges to sustainable forest management (SFM) worldwide (...
7 CFR 625.4 - Program requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF... ecosystem functions and values. Specific restoration, protection, enhancement, maintenance, and management... restoration, enhancement, and protection of forest ecosystem functions and values when considering the cost of...
7 CFR 625.4 - Program requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF... ecosystem functions and values. Specific restoration, protection, enhancement, maintenance, and management... restoration, enhancement, and protection of forest ecosystem functions and values when considering the cost of...
7 CFR 625.4 - Program requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF... ecosystem functions and values. Specific restoration, protection, enhancement, maintenance, and management... restoration, enhancement, and protection of forest ecosystem functions and values when considering the cost of...
Chapter 10: Establishing native trees on legacy surface mines
J.A. Burger; C.E. Zipper; P.N. Angel; N. Hall; J.G. Skousen; C.D. Barton; S. Eggerud
2017-01-01
More than 1 million acres have been surface mined for coal in the Appalachian region. Today, much of this land is unmanaged, unproductive, and covered with nonnative plants. Establishing productive forests on such lands will aid restoration of ecosystem services provided by forestsâservices such as watershed protection, water quality enhancement, carbon storage, and...
NASA Astrophysics Data System (ADS)
Brooks, P. D.; Harpold, A. A.; Biederman, J. A.; Litvak, M. E.; Broxton, P. D.; Gochis, D.; Molotch, N. P.; Troch, P. A.; Ewers, B. E.
2012-12-01
Unprecedented levels of insect induced tree mortality and massive wildfires both have spread through the forests of Western North America over the last decade. Warming temperatures and increased drought stress have been implicated as major factors in the increasing spatial extent and frequency of these forest disturbances, but it is unclear how simultaneous changes in forest structure and climate will interact to affect either downstream water resources or the regeneration and recovery of forested ecosystems. Because both streamflow and ecosystem productivity depend on seasonal snowmelt, a critical knowledge gap exists in how these disturbances will interact with a changing climate to control to the amount, timing, and the partitioning of seasonal snow cover This presentation will address this knowledge gap by synthesizing recent work on snowpack dynamics and ecosystem productivity from seasonally snow-covered forests along a gradient of snow depth and duration from Arizona to Montana. These include undisturbed sites, recently burned forests, and areas of extensive insect-induced forest mortality. Both before-after and control-impacted studies of forest disturbance on snow accumulation and ablation suggest that the spatial scale of snow distribution increases following disturbance, but net snow water input likely will not increase under a warming climate. While forest disturbance changes spatial scale of snowpack partitioning, the amount and especially the timing of snow cover accumulation and ablation are strongly related to interannual variability in ecosystem productivity with both earlier snowmelt and later snow accumulation associated with decreased carbon uptake. These observations suggest that the ecosystem services of water provision and carbon storage may be very different in the forests that regenerate after disturbance.
An analysis of forest land use, forest land cover, and change at policy-relevant scales
John W. Coulston; Greg Reams; Dave N. Wear; C. Kenneth Brewer
2014-01-01
Quantifying the amount of forest and change in the amount of forest are key to ensure that appropriate management practices and policies are in place to maintain the array of ecosystem services provided by forests. There are a range of analytical techniques and data available to estimate these forest parameters, however, not all âforestâ is the same and various...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irvine, Irina C.; Greaver, Tara; Phelan, Jennifer
Often termed “acid rain,” combined nitrogen and sulfur deposition can directly and indirectly impact the condition and health of forest ecosystems. Researchers use critical loads (CLs) to describe response thresholds, and recent studies on acid-sensitive biological indicators show that forests continue to be at risk from terrestrial acidification. However, rarely are impacts translated into changes in “ecosystem services” that impact human well-being. Further, the relevance of this research to the general public is seldom communicated in terms that can motivate action to protect valuable resources. To understand how changes in biological indicators affect human well-being, we used the STEPS (Stressor–Ecologicalmore » Production function–final ecosystem Services) Framework to quantitatively and qualitatively link CL exceedances to ecosystem service impacts. We specified the cause-and-effect ecological processes linking changes in biological indicators to final ecosystem services. The Final Ecosystem Goods and Services Classification System (FEGS-CS) was used within the STEPS Framework to classify the ecosystem component and the beneficiary class that uses or values the component. We analyzed two acid-sensitive tree species, balsam fir (Abies balsamea) and white ash (Fraxinus americana), that are common in northeastern USA. These well-known species provide habitat for animals and popular forest products that are relatable to a broad audience. We identified 160 chains with 10 classes of human beneficiaries for balsam fir and white ash combined, concluding that there are resources at risk that the public may value. Two stories resulting from these explorations into the cascading effects of acid rain on terrestrial resources are ideal for effective science communication: the relationship between (1) balsam fir as a popular Christmas tree and habitat for the snowshoe hare, a favorite of wildlife viewers, and (2) white ash because it is used for half of all baseball bats, fine wood products, and musical instruments. Thus, rather than focusing on biological indicators that may only be understood or appreciated by specific stakeholders or experts, this approach extends the analysis to include impacts on FEGS and humans. It also lays the foundation for developing stakeholder-specific narratives, quantitative measures of endpoints, and for conducting demand-based valuations of affected ecosystem services.« less
Irvine, Irina C.; Greaver, Tara; Phelan, Jennifer; ...
2017-06-22
Often termed “acid rain,” combined nitrogen and sulfur deposition can directly and indirectly impact the condition and health of forest ecosystems. Researchers use critical loads (CLs) to describe response thresholds, and recent studies on acid-sensitive biological indicators show that forests continue to be at risk from terrestrial acidification. However, rarely are impacts translated into changes in “ecosystem services” that impact human well-being. Further, the relevance of this research to the general public is seldom communicated in terms that can motivate action to protect valuable resources. To understand how changes in biological indicators affect human well-being, we used the STEPS (Stressor–Ecologicalmore » Production function–final ecosystem Services) Framework to quantitatively and qualitatively link CL exceedances to ecosystem service impacts. We specified the cause-and-effect ecological processes linking changes in biological indicators to final ecosystem services. The Final Ecosystem Goods and Services Classification System (FEGS-CS) was used within the STEPS Framework to classify the ecosystem component and the beneficiary class that uses or values the component. We analyzed two acid-sensitive tree species, balsam fir (Abies balsamea) and white ash (Fraxinus americana), that are common in northeastern USA. These well-known species provide habitat for animals and popular forest products that are relatable to a broad audience. We identified 160 chains with 10 classes of human beneficiaries for balsam fir and white ash combined, concluding that there are resources at risk that the public may value. Two stories resulting from these explorations into the cascading effects of acid rain on terrestrial resources are ideal for effective science communication: the relationship between (1) balsam fir as a popular Christmas tree and habitat for the snowshoe hare, a favorite of wildlife viewers, and (2) white ash because it is used for half of all baseball bats, fine wood products, and musical instruments. Thus, rather than focusing on biological indicators that may only be understood or appreciated by specific stakeholders or experts, this approach extends the analysis to include impacts on FEGS and humans. It also lays the foundation for developing stakeholder-specific narratives, quantitative measures of endpoints, and for conducting demand-based valuations of affected ecosystem services.« less
NASA Astrophysics Data System (ADS)
Sannigrahi, S.; Paul, S. K.; Sen, S.
2017-12-01
Human appropriation, especially unusual changes in land-use and land cover, significantly affects ecosystem services and functions. Driven by the growth of the population and the economy, human demands on earth's land surface have increased dramatically in the past 50 - 100 years. The area studied was divided into six major categories; cropland, mangrove forest, sparse vegetation, built-up urban area, water bodies and sandy coast, and the land coverage was calculated for the years 1973, 1988, 2002 and 2013. The spatial explicit value of the primary regulatory and supporting ecosystem services (climate regulation, raw material production, water regulation) were quantified through the indirect market valuation approach. A light use efficiency based ecosystem model, i.e. Carnegie- Ames-Stanford-Approach (CASA) was employed to estimate the carbon sequestration and oxygen production services of the ecosystem. The ArcGIS matrix transform approach calculated LULC dynamics among the classes. Investigation revealed that the built-up urban area increased from 42.9 km2 in 1973 to 308 km2 in 2013 with a 6.6 km2 yr-1 expansion rate. Similarly, water bodies (especially inland water bodies increased dramatically in the north central region) increased from 3392.1 sq.km in 1973 to 5420 sq.km in 2013 at the expense of semi-natural and natural land resulting in significant changes of ecological and ecosystem services. However, the area occupied by dense mangrove forest decreased substantially during the 40 years (1973 -2013); it was recorded to cover 2294 km2 in 1973 and 1820 km2 in 2013. The results showed that the estimated regulatory and supporting ecosystem services respond quite differently to human appropriation across the regions in both the economic and ecological dimensions. While evaluating the trade-of between human appropriation and ecosystem service changes, it has been estimated that the ecosystem service value of organic matter provision services decreased from 755 US ha-1 in 2000 to 608 US ha-1 in 2013. Therefore, the rigorous and centralised policy for sustainable and regionally balanced land-use planning has been essential in the recent era for economic viability, and ecosystem preservation, to prevent undesirable outcomes.
NASA Astrophysics Data System (ADS)
Drohan, Patrick; Brittingham, Margaret; Mortensen, David; Barlow, Kathryn; Langlois, Lillie
2017-04-01
Worldwide unconventional shale-gas development has the potential to cause substantial landscape disturbance. The northeastern U.S.A. Appalachian Mountains across the states of Pennsylvania, West Virginia, Ohio, and Kentucky, are experiencing rapid landscape change as unconventional gas development occurs. We highlight several years of our research from this region in order to demonstrate the unique effect unconventional development has had on forested ecosystems. Infrastructure development has had a wide-reaching and varied effect on forested ecosystems and their services, which has resulted in temporary disturbances and long-lasting ones altering habitats and their viability. Corridor disturbances, such as pipelines, are the most spatially extensive disturbance and have substantially fragmented forest cover. Core forest disturbance, especially, in upper watershed positions, has resulted in disproportionate disturbances to forested ecosystems and their wildlife, and suggests a need for adaptive land management strategies to minimize and mitigate the effects of gas development. Soil and water resources are most affected by surface disturbances; however, soil protection and restoration strategies are evolving as the gas play changes economically. Dynamic soil properties related to soil organic matter and water availability respond uniquely to unconventional gas development and new, flexible restoration strategies are required to support long-term ecosystem stability. While the focus of management and research to date has been on acute disturbances to forested ecosystems, unconventional gas development is clearly a greater chronic, long-term disturbance factor in the Appalachian Mountains. Effectively managing ecosystems where unconventional gas development is occurring is a complicated interplay between public, private and corporate interests.
NASA Astrophysics Data System (ADS)
Kauffman, J. B.; Bhomia, R. K.
2014-12-01
Mangroves provide a number of ecosystem services including habitats for many species of fish and shellfish, storm protection, influences on water quality, wood, aesthetics, and a source of nutrients and energy for adjacent marine ecosystems. C stocks of mangroves are among the highest of any forest type on Earth. We have measured the ecosystem carbon stocks in mangroves across the world and found them to range from 250 to >2000 Mg C/ha which is a CO2 equivalence of 917 to 7340 Mg/ha. Because the numerous values of mangroves are well known, it is ironic that rates of deforestation largely relating to land use/land cover change are among the highest of any forest type on earth exceeding that of tropical rain forests. Dominant causes of deforestation include conversion to aquaculture (shrimp), agricultural conversion, and coastal development. The carbon emissions arising from conversion of mangroves to other uses is exceptionally high. This is because vulnerability of the soil carbon stocks to losses with conversion. Emissions from conversion of mangrove to shrimp ponds range from about 800 to over 3000 Mg CO2e/ha. This places the carbon footprint of shrimp arising from such ponds as among the highest of any food product available. Of great interest is the potential value of mangroves in carbon marketing strategies and other financial incentives that are derived from the conservation of standing forests. This is because of the combination of high carbon stocks in intact mangroves, the high greenhouse gas emissions arising from their conversion, and the conservation of other valuable ecosystem services provided by intact mangroves.
Mangrove ecosystems under climate change
Jennerjahn, T.C.; Gilman, E.; Krauss, Ken W.; Lacerda, L.D.; Nordhaus, I.; Wolanski, E.
2017-01-01
This chapter assesses the response of mangrove ecosystems to possible outcomes of climate change, with regard to the following categories: (i) distribution, diversity, and community composition, (ii) physiology of flora and fauna, (iii) water budget, (iv) productivity and remineralization, (v) carbon storage in biomass and sediments, and (vi) the filter function for elements beneficial or harmful to life. These categories are then used to identify the regions most vulnerable to climate change. The four most important factors determining the response of mangrove ecosystems to climate change are sea level rise, an increase in frequency and/or intensity of storms, increases in temperature, and aridity. While these changes may be beneficial for some mangrove forests at latitudinal distribution limits, they will threaten forest structure and functions and related ecosystem services in most cases. The interaction of climate change with human interventions is discussed, as well as the effects on ecosystem services including possible adaptation and management options. The chapter closes with an outlook on knowledge gaps and priority research needed to fill these gaps.
Todd A. Schroeder; Sean P. Healey; Gretchen G. Moisen; Tracey S. Frescino; Warren B. Cohen; Chengquan Huang; Robert E. Kennedy; Zhiqiang Yang
2014-01-01
With earth's surface temperature and human population both on the rise a new emphasis has been placed on monitoring changes to forested ecosystems the world over. In the United States the U.S. Forest Service Forest Inventory and Analysis (FIA) program monitors the forested land base with field data collected over a permanent network of sample plots. Although these...
Susan Will-Wolf; Peter Neitlich
2010-01-01
Development of a regional lichen gradient model from community data is a powerful tool to derive lichen indexes of response to environmental factors for large-scale and long-term monitoring of forest ecosystems. The Forest Inventory and Analysis (FIA) Program of the U.S. Department of Agriculture Forest Service includes lichens in its national inventory of forests of...
Evolution of soil, ecosystem, and critical zone research at the USDA FS Calhoun Experimental Forest
Daniel deB Richter; Allan R. Bacon; Sharon A. Billings; Dan Binkley; Marilyn Buford; Mac Callaham; Amy E. Curry; Ryan L. Fimmen; A. Stuart Grandy; Paul R. Heine; Michael Hofmockel; Jason A. Jackson; Elisabeth LeMaster; Jianwei Li; Daniel Markewitz; Megan L. Mobley; Mary W. Morrison; Michael S. Strickland; Thomas Waldrop; Carol G. Wells
2015-01-01
The US Department of Agriculture (USDA) Forest Service Calhoun Experimental Forest was organized in 1947 on the southern Piedmont to engage in research that today is called restoration ecology, to improve soils, forests, and watersheds in a region that had been severely degraded by nearly 150 years farming. Today, this 2,050-ha research forest is managed by the Sumter...
Toby Thaler; Gwen Griffith; Nancy Gilliam
2014-01-01
Forest-based ecosystem services are at risk from human-caused stressors, including climate change. Improving governance and management of forests to reduce impacts and increase community resilience to all stressors is the objective of forest-related climate change adaptation. The Model Forest Policy Program (MFPP) has applied one method designed to meet this objective...
Facing uncertainty in ecosystem services-based resource management.
Grêt-Regamey, Adrienne; Brunner, Sibyl H; Altwegg, Jürg; Bebi, Peter
2013-09-01
The concept of ecosystem services is increasingly used as a support for natural resource management decisions. While the science for assessing ecosystem services is improving, appropriate methods to address uncertainties in a quantitative manner are missing. Ignoring parameter uncertainties, modeling uncertainties and uncertainties related to human-environment interactions can modify decisions and lead to overlooking important management possibilities. In this contribution, we present a new approach for mapping the uncertainties in the assessment of multiple ecosystem services. The spatially explicit risk approach links Bayesian networks to a Geographic Information System for forecasting the value of a bundle of ecosystem services and quantifies the uncertainties related to the outcomes in a spatially explicit manner. We demonstrate that mapping uncertainties in ecosystem services assessments provides key information for decision-makers seeking critical areas in the delivery of ecosystem services in a case study in the Swiss Alps. The results suggest that not only the total value of the bundle of ecosystem services is highly dependent on uncertainties, but the spatial pattern of the ecosystem services values changes substantially when considering uncertainties. This is particularly important for the long-term management of mountain forest ecosystems, which have long rotation stands and are highly sensitive to pressing climate and socio-economic changes. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xin, Z.; Chen, X.; Fu, G.; Li, C.
2017-12-01
Landscapes differ in their capacities to provide ecosystem good and services, which are the benefits humans obtain from nature. Valuation of ecosystem services is recognized as one effective way for improving the recognition and implementation for disposition of land resource and ecosystem protection. In this content, this study aims to reveal the changes in provision of ecosystem services induced by land use changes in both temporal and spatial scales in Dalian, China. Land use changes were firstly characterized based on Landsat TM images from 1984 to 2013. Results showed a severe increase in urban area, with an average increasing rate of 39.5%. Dry land occupied the largest portion of the total area which is mainly developed on the expenses of forest loss; meanwhile, policies of water-saving irrigation has promoted a conversion of paddy fields to dry land. Other categories including water, wetland, brush grass and salting were found to have relative small contrition to the total area. Assigning ecosystem service value (ESV) coefficient to each land use category, changes in ESV of the study area were assessed. Results indicated that the total ESV decreased by 21 billion from 1984 to 2013. Forest, dry land and water are the primary contributors. As for ecosystem functions, the regulation service is the most prominent which contributed to 60% of the total ESV, followed by support, supply and culture services. In addition, ESV changes were found to have a spatial variability, which shows a maximum decreasing rate in the central city, and a highest net value in the surrounding islands. The changes and distributions in land use pattern and ESV were further linked with the local city landscape planning, which has provided implications on city landscape policy making for sustaining the provision of ecosystem services and achieving sustainable development goals.
Ajaz Ahmed, Mukhtar Ahmed; Abd-Elrahman, Amr; Escobedo, Francisco J; Cropper, Wendell P; Martin, Timothy A; Timilsina, Nilesh
2017-09-01
Understanding ecosystem processes and the influence of regional scale drivers can provide useful information for managing forest ecosystems. Examining more local scale drivers of forest biomass and water yield can also provide insights for identifying and better understanding the effects of climate change and management on forests. We used diverse multi-scale datasets, functional models and Geographically Weighted Regression (GWR) to model ecosystem processes at the watershed scale and to interpret the influence of ecological drivers across the Southeastern United States (SE US). Aboveground forest biomass (AGB) was determined from available geospatial datasets and water yield was estimated using the Water Supply and Stress Index (WaSSI) model at the watershed level. Our geostatistical model examined the spatial variation in these relationships between ecosystem processes, climate, biophysical, and forest management variables at the watershed level across the SE US. Ecological and management drivers at the watershed level were analyzed locally to identify whether drivers contribute positively or negatively to aboveground forest biomass and water yield ecosystem processes and thus identifying potential synergies and tradeoffs across the SE US region. Although AGB and water yield drivers varied geographically across the study area, they were generally significantly influenced by climate (rainfall and temperature), land-cover factor1 (Water and barren), land-cover factor2 (wetland and forest), organic matter content high, rock depth, available water content, stand age, elevation, and LAI drivers. These drivers were positively or negatively associated with biomass or water yield which significantly contributes to ecosystem interactions or tradeoff/synergies. Our study introduced a spatially-explicit modelling framework to analyze the effect of ecosystem drivers on forest ecosystem structure, function and provision of services. This integrated model approach facilitates multi-scale analyses of drivers and interactions at the local to regional scale. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rates, drivers and impacts of reforestation and afforestation in Western Rwanda.
NASA Astrophysics Data System (ADS)
Arakwiye, B.; Rogan, J.; Eastman, R.
2017-12-01
Within East-Africa, Rwanda is the most heavily populated, predominantly rural country where 85% of the population heavily depends on smallholder agriculture and natural resources. The biodiversity-rich, high elevation western region of Rwanda has historically experienced unprecedented forest loss and degradation, resulting in major losses of wildlife habitat, biodiversity and ecosystem services. Forest loss peaked during the 1990s civil wars and genocide when forests sheltered both civilians and combatants or were cleared to resettle refugees. Since the 2000s, national and international initiatives have encouraged reforestation and afforestation activities aiming to reconnect remnant fragments and improve environmental resiliency. However, consistent spatially- and temporally-explicit regional assessments of these afforestation and reforestation activities are still lacking. This study links satellite and in situ socio-ecological data to document the rates and drivers of reforestation and afforestation in Western Rwanda. Random Forest classification was used to map the extent of forests using multitemporal Landsat-5, -7 and -8 images covering the period from 1986 to 2016. Semi-structured interviews with stakeholders were used to identify the potential drivers of afforestation and reforestation. Preliminary results show a net increase of 0.05% in forest cover from 2001 to 2016, predominantly occurring on former croplands and pasture/grasslands. Around 90% of afforested and reforested areas are patchy monocultures of Eucalyptus and Alnus species, valued for timber and wood by-products but with relatively low potential to provide other ecosystem services compared to native tree species. These results highlight the need for an integrated approach to afforestation and reforestation to ensure the sustainable provision of diverse ecosystem services.
Bird and bat predation services in tropical forests and agroforestry landscapes.
Maas, Bea; Karp, Daniel S; Bumrungsri, Sara; Darras, Kevin; Gonthier, David; Huang, Joe C-C; Lindell, Catherine A; Maine, Josiah J; Mestre, Laia; Michel, Nicole L; Morrison, Emily B; Perfecto, Ivette; Philpott, Stacy M; Şekercioğlu, Çagan H; Silva, Roberta M; Taylor, Peter J; Tscharntke, Teja; Van Bael, Sunshine A; Whelan, Christopher J; Williams-Guillén, Kimberly
2016-11-01
Understanding distribution patterns and multitrophic interactions is critical for managing bat- and bird-mediated ecosystem services such as the suppression of pest and non-pest arthropods. Despite the ecological and economic importance of bats and birds in tropical forests, agroforestry systems, and agricultural systems mixed with natural forest, a systematic review of their impact is still missing. A growing number of bird and bat exclosure experiments has improved our knowledge allowing new conclusions regarding their roles in food webs and associated ecosystem services. Here, we review the distribution patterns of insectivorous birds and bats, their local and landscape drivers, and their effects on trophic cascades in tropical ecosystems. We report that for birds but not bats community composition and relative importance of functional groups changes conspicuously from forests to habitats including both agricultural areas and forests, here termed 'forest-agri' habitats, with reduced representation of insectivores in the latter. In contrast to previous theory regarding trophic cascade strength, we find that birds and bats reduce the density and biomass of arthropods in the tropics with effect sizes similar to those in temperate and boreal communities. The relative importance of birds versus bats in regulating pest abundances varies with season, geography and management. Birds and bats may even suppress tropical arthropod outbreaks, although positive effects on plant growth are not always reported. As both bats and birds are major agents of pest suppression, a better understanding of the local and landscape factors driving the variability of their impact is needed. © 2015 Cambridge Philosophical Society.
The spatial extent of change in tropical forest ecosystem services in the Amazon delta
NASA Astrophysics Data System (ADS)
de Araujo Barbosa, C. C.; Atkinson, P.; Dearing, J.
2014-12-01
Deltas hold major economic potential due their strategic location, close to seas and inland waterways, thereby supporting intense economic activity. The increasing pace of human development activities in coastal deltas over the past five decades has also strained environmental resources and produced extensive economic and sociocultural impacts. The Amazon delta is located in the Amazon Basin, North Brazil, the largest river basin on Earth and also one of the least understood. A considerable segment of the population living in the Amazon delta is directly dependent on the local extraction of natural resources for their livelihood. Areas sparsely inhabited may be exploited with few negative consequences for the environment. However, increasing pressure on ecosystem services is amplified by large fluxes of immigrants from other parts of the country, especially from the semi-arid zone in Northeast Brazil to the lowland forests of the Amazon delta. Here we present partial results from a bigger research project. Therefore, the focus will be on presenting an overview of the current state, and the extent of changes on forest related ecosystem services in the Amazon delta over the last three decades. We aggregated a multitude of datasets, from a variety of sources, for example, from satellite imagery such as the Advanced Very High Resolution Radiometer (AVHRR), the Global Inventory Modelling and Mapping Studies (GIMMS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and climate datasets at meteorological station level from the Brazilian National Institute of Meteorology (INMET) and social and economic statistics data from the Brazilian Institute of Geography and Statistics (IBGE) and from the Brazilian Institute of Applied Economic Research (IPEA). Through analysis of socioeconomic and satellite earth observation data we were able to produce and present spatially-explicit information with the current state and transition in forest cover and its impacts to forest ecosystem services providing units in the Amazon delta.
Chen, Jing; Sun, Bo-Ming; Chen, Dan; Wu, Xin; Guo, Long-Zhu; Wang, Gang
2014-01-01
The small Sanjiang plain is one of the most important commodity grain production bases and the largest fresh water wetland in China. Due to the rapid expansion of agricultural activities in the past 30 years, the contradiction between economic development and the loss of ecosystem services has become an issue of increasing concern in the area. In this study, we analysed land use changes and the loss of ecosystem services value caused by these changes. We found that cropland sprawl was predominant and occurred in forest, wetland, and grassland areas in the small Sanjiang plain from 1980 to 2010. Using a model to evaluate ecosystem services value, we calculated that the decreased values of ecosystem services were 169.88 × 10(8) Yuan from 1980 to 2000 and 120.00 × 10(8) Yuan from 2000 to 2010. All of the ecosystem services were diminished from 1980 to 2010 except for food production. Therefore, the loss of ecosystem services value should be considered by the policymakers of land use and development.
Vegetation management and protection research: Disturbance processes and ecosystem management
Robert D. Averill; Louise Larson; Jim Saveland; Philip Wargo; Jerry Williams; Melvin Bellinger
1994-01-01
This paper is intended to broaden awareness and help develop consensus among USDA Forest Service scientists and resource managers about the role and significance of disturbance in ecosystem dynamics and, hence, resource management. To have an effective ecosystem management policy, resource managers and the public must understand the nature of ecological resiliency and...
Ecosystem carbon stocks of micronesian mangrove forests
J. Boone Kauffman; Chris Heider; Thomas G. Cole; Kathleen A. Dwire; Daniel C. Donato
2011-01-01
Among the least studied ecosystem services of mangroves is their value as global carbon (C) stocks. This is significant as mangroves are subject to rapid rates of deforestation and therefore could be significant sources of atmospheric emissions. Mangroves could be key ecosystems in strategies addressing the mitigation of climate change though reduced deforestation. We...
A synthesis of evaluation monitoring projects by the forest health monitoring program (1998-2007)
William A. Bechtold; Michael J. Bohne; Barbara L. Conkling; Dana L. Friedman
2012-01-01
The national Forest Health Monitoring Program of the Forest Service, U.S. Department of Agriculture, has funded over 200 Evaluation Monitoring projects. Evaluation Monitoring is designed to verify and define the extent of deterioration in forest ecosystems where potential problems have been identified. This report is a synthesis of results from over 150 Evaluation...
T. D. Ramsfield; Barbara Bentz; M. Faccoli; H. Jactel; E. G. Brockerhoff
2016-01-01
Forests and trees throughout the world are increasingly affected by factors related to global change. Expanding international trade has facilitated invasions of numerous insects and pathogens into new regions. Many of these invasions have caused substantial forest damage, economic impacts and losses of ecosystem goods and services provided by trees. Climate...
Introduction to special issue on remote sensing for advanced forest inventory
Andrew T. Hudak; E. Louise Loudermilk; Joanne C. White
2016-01-01
Information needs associated with sustainable forest management are evolving rapidly as the forest sector works to satisfy an increasingly complex set of economic, environmental, and social policy goals. A barrier to the sustainable management of forests and the provision of ecosystem goods and services under these new pressures is a lack of up-to-date and detailed...
Hydrometeorological database for Hubbard Brook Experimental Forest: 1955-2000
Amey Schenck Bailey; James W. Hornbeck; John L. Campbell; Christopher Eagar
2003-01-01
The 3,160-ha Hubbard Brook Experimental Forest (HBEF) in New Hampshire has been a prime area of research on forest and stream ecosystems since its establishment by the USDA Forest Service in 1955. Streamflow and precipitation have been measured continuously on the HBEF, and long-term datasets exist for air and soil temperature, snow cover, soil frost, solar radiation,...
Soil carbon in arid and semiarid forest ecosystems [Chapter 18
Daniel G. Neary; Steven T. Overby; Stephen C. Hart
2002-01-01
Forests of the semiarid and arid zones of the interior western United States (US) are some of the most unique in North America. They occupy 11 to 34% of the landscape at mostly higher elevations (USDA Forest Service, 1981). These forests are characterized by a high diversity of flora, fauna, climates, elevations, soils, geology, hydrology, and productivity. Within the...
Jeff Kline; Mark E. Harmon; Thomas A. Spies; Anita T. Morzillo; Robert J. Pabst; Brenda C. McComb; Frank Schnekenburger; Keith A. Olsen; Blair Csuti; Jody C. Vogeler
2016-01-01
Forest policymakers and managers have long sought ways to evaluate the capability of forest landscapes to jointly produce timber, habitat, and other ecosystem services in response to forest management. Currently, carbon is of particular interest as policies for increasing carbon storage on federal lands are being proposed. However, a challenge in joint production...
Greener cities: U.S. Forest Service software package helps cities manage their urban treescape
Jim Kling; Greg Featured: McPherson
2008-01-01
Urban forests don't get the recognition that natural forests do. They don't encompass sweeping vistas and magnificent views and they don't provide critical habitat to endangered species. Nevertheless, they are vital. More than 90 percent of all Californians live, work, and play in urban forests. Trees in the urban landscape provide vital ecosystem...
[Environmental impact assessment of the land use change in china based on ecosystem service value].
Ran, Sheng-hong; Lü, Chang-he; Jia, Ke-jing; Qi, Yong-hua
2006-10-01
The environmental impact of land use change is long-term and cumulative. The ecosystem service change results from land use change. Therefore, the ecosystem service function change is the key object in the environmental impact assessment of land use change. According to the specific situation of China, this paper adjusted the unit ecosystem service value of different land use types. Based on this, the ecosystem service value change of different provinces in China resulted from the land use change since the implementation of the last plan of land use (1997-2010) was analyzed. The results show that the ecosystem service value in China increased 0.91% from 1996 to 2004. Thereinto, Tianjin is the province that the ecosystem service value increased most quickly, which was 5.69% from 1996 to 2004, while Shanghai is the province that the value decreased most quickly, which was 9.79%. Furthermore, the change of 17 types of ecosystem services was analyzed. Among them, the climate regulation function enhanced 3.43% from 1996 to 2004 and the biology resource control was weakened by 2.26% in this period. The results also indicate that the increase of the area of water surface and forest is the main reason for why the ecosystem service value increased in China in that period.
David J. Nowak; Eric J. Greenfield
2016-01-01
Trees and forests are resources that significantly affect the health and well-being of people who live in urban areas where more than 80 percent of the U.S. population resides. These trees within our cities and communities provide many ecosystem services and values to both urban and rural populations. Healthy urban and rural forests are critical for sustaining quality...
Emerald ash borer impacts on visual preferences for urban forest recreation settings
Arne Arnberger; Ingrid E. Schneider; Martin Ebenberger; Renate Eder; Robert C. Venette; Stephanie A. Snyder; Paul H. Gobster; Ami Choi; Stuart Cottrell
2017-01-01
Extensive outbreaks of the emerald ash borer (Agrilus planipennis; EAB), an invasive forest insect, are having serious impacts on the cultural ecosystem services of urban forests in the United States and other countries. Limited experience with how such outbreaks might affect recreational opportunities prompted this investigation of visitors to a...
An annotated bibliography of scientific literature on managing forests for carbon benefits
Sarah J. Hines; Linda S. Heath; Richard A. Birdsey
2010-01-01
Managing forests for carbon benefits is a consideration for climate change, bioenergy, sustainability, and ecosystem services. A rapidly growing body of scientific literature on forest carbon management includes experimental, modeling, and synthesis approaches, at the stand- to landscape- to continental-level. We conducted a search of the scientific literature on the...
Michaeleen Gerken Golay; Janette Thompson; Randall Kolka; Kris Verheyen
2016-01-01
Question: Herbaceous plant communities in hardwood forests are important for maintaining biodiversity and associated ecosystem services, such as nutrient storage. Are there differences in herbaceous layer nutrient storage for urban park and state preserve forests, and is there seasonal variation? Location:...
Fire effects on temperate forest soil C and N storage
Lucas E. Nave; Eric D. Vance; Christopher W. Swanston; Peter S. Curtis
2011-01-01
Temperate forest soils store globally significant amounts of carbon (C) and nitrogen (N). Understanding how soil pools of these two elements change in response to disturbance and management is critical to maintaining ecosystem services such as forest productivity, greenhouse gas mitigation, and water resource protection. Fire is one of the principal disturbances acting...
Mapping urban forest structure and function using hyperspectral imagery and lidar data
Michael Alonzo; Joseph P. McFadden; David J. Nowak; Dar A. Roberts
2016-01-01
Cities measure the structure and function of their urban forest resource to optimize forest managementand the provision of ecosystem services. Measurements made using plot sampling methods yield useful results including citywide or land-use level estimates of species counts, leaf area, biomass, and air pollution reduction. However, these quantities are statistical...
Janine Rice; Tim Bardsley; Pete Gomben; Dustin Bambrough; Stacey Weems; Sarah Leahy; Christopher Plunkett; Charles Condrat; Linda A. Joyce
2017-01-01
Watersheds on the Uinta-Wasatch-Cache and Ashley National Forests provide many ecosystem services, and climate change poses a risk to these services. We developed a watershed vulnerability assessment to provide scientific information for land managers facing the challenge of managing these watersheds. Literature-based information and expert elicitation is used to...
Keith Reynolds; Barry Bollenbacher; Chip Fisher; Melissa Hart; Mary Manning; Eric Henderson; Bruce Sims
2016-01-01
This report documents a decision-support process developed in the U.S. Department of Agriculture, Forest Service, Northern Region to assess management opportunities as part of an ecosystem-based approach to management that emphasizes ecological resilience. The decision-support system described in this work implements what is known as the Integrated Restoration and...
Forest Service Nurseries: 100 years of ecosystem restoration
R. Kasten Dumroese; Thomas D. Landis; James P. Barnett; Frank Burch
2005-01-01
The USDA Forest Service broke ground on its first nursery in 1902 and since then its nurseries have adapted to many changes in scope and direction: from fire restoration to conservation, to reforestation, and back to restoration. In addition to providing a reliable source of native plant material, they have also been a source of research and technology transfer in...
Historic and Contemporary Land Use in Southwestern Grassland Ecosystems
Carol Raish
2004-01-01
This chapter encompasses the lands of the Southwest as defined by Region 3 of the USDA Forest Service (USFS): Arizona, New Mexico, and portions of western Oklahoma and the Texas Panhandle. I examine human use and modification of the grasslands/rangelands of this region, with an emphasis on those areas managed by the Forest Service. Because the majority of publications...
Forests and Their Canopies: Achievements and Horizons in Canopy Science.
Nakamura, Akihiro; Kitching, Roger L; Cao, Min; Creedy, Thomas J; Fayle, Tom M; Freiberg, Martin; Hewitt, C N; Itioka, Takao; Koh, Lian Pin; Ma, Keping; Malhi, Yadvinder; Mitchell, Andrew; Novotny, Vojtech; Ozanne, Claire M P; Song, Liang; Wang, Han; Ashton, Louise A
2017-06-01
Forest canopies are dynamic interfaces between organisms and atmosphere, providing buffered microclimates and complex microhabitats. Canopies form vertically stratified ecosystems interconnected with other strata. Some forest biodiversity patterns and food webs have been documented and measurements of ecophysiology and biogeochemical cycling have allowed analyses of large-scale transfer of CO 2 , water, and trace gases between forests and the atmosphere. However, many knowledge gaps remain. With global research networks and databases, and new technologies and infrastructure, we envisage rapid advances in our understanding of the mechanisms that drive the spatial and temporal dynamics of forests and their canopies. Such understanding is vital for the successful management and conservation of global forests and the ecosystem services they provide to the world. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Temporal changes in potential regulating ecosystem services driven by urbanization
NASA Astrophysics Data System (ADS)
Ferreira, Carla; Amorim, Inês; Pires, Evanilton; Kalantari, Zahra; Walsh, Rory; Ferreira, António
2017-04-01
Ecosystem services (ES) are understood to be the capacity of the landscape of a particular area to provide goods and services to society. In terms of human benefits, four categories of ES are usually considered: provisioning (e.g. seafood), regulating (e.g. climate regulation, air quality, water purification and natural hazard protection), supporting (e.g. maintenance of biodiversity), and cultural (e.g. recreation). The potential supply of ecosystem services has receive increasing interest as a tool for natural resource management. Nevertheless, the capacity to supply ES depends on biophysical conditions, as well as climate and land-use changes, induced by human activities. This study aims to investigate the potential for regulating ecosystem service supply of a Portuguese peri-urban catchment, and attempts to understand the temporal changes in ES over the last decades driven by urbanization. The study was developed in Ribeira dos Covões catchment (6.2 km2), in Portugal. Due to its proximity to Coimbra, a major city in the central region of Portugal, the catchment has undergone major land-use changes over the last half-century. Since 1958, the agricultural area, comprising mainly olives and arable land, has declined from 48% to 4%, due to increases in urban land (from 8% to 40%) and forest (from 44% to 53%), as well as a temporary creation of open spaces (from 0% to 3%). The nature of forest cover also changed, from native species, such as oaks (Quercus sp.), to commercial timber plantations, mostly of Pinus pinaster L. and Eucaliptus globulus L.. Urbanization became more pronounced after 1973, exhibiting a discontinuous pattern until 1995, and then later more continuous urban areas through the infilling of areas between the earlier urban cores. Quantification of regulating ES in the study catchment was achieved using GIS techniques, in order to gain a spatial dimension of ES distribution (Burkhard et al., 2009). Mapping ecosystem service capacities at a 5×5m resolution involved the use of CORINE land cover data and aerial photographs, available for the years 1958, 1973, 1979, 1990, 1995, 2002, 2007 and 2012. The resulting land-use maps include 11 land cover classes: equipment and infrastructure, discontinuous urban fabric, continuous urban fabric, natural areas with shrubs and herbaceous plants, softwoods, hardwoods, mixed forest, permanent crops, arable land, bare soil and water bodies. Quantitative assessment of regulating services of these land-use classes was achieved based on interviews with 31 experts. Each expert prepared a matrix using a scale from "0" to "5", where "0" refers to the land cover as having no capacity to provide regulating services, while 5 indicates that the land cover provides a wide range of ecosystem services. A final matrix was prepared based on mean values of all the experts. This matrix was then integrated with the land-use maps of different years to generate a spatially explicit potential ecosystem service supply model. The results showed decreasing ecosystem regulation services over time, mainly due to increasing urban area but also changes on forest types. The methodology used can be easily applied to test distinct urbanization scenarios, thus, providing a valuable support for urban planning.
Preliminary Survey on TRY Forest Traits and Growth Index Relations - New Challenges
NASA Astrophysics Data System (ADS)
Lyubenova, Mariyana; Kattge, Jens; van Bodegom, Peter; Chikalanov, Alexandre; Popova, Silvia; Zlateva, Plamena; Peteva, Simona
2016-04-01
Forest ecosystems provide critical ecosystem goods and services, including food, fodder, water, shelter, nutrient cycling, and cultural and recreational value. Forests also store carbon, provide habitat for a wide range of species and help alleviate land degradation and desertification. Thus they have a potentially significant role to play in climate change adaptation planning through maintaining ecosystem services and providing livelihood options. Therefore the study of forest traits is such an important issue not just for individual countries but for the planet as a whole. We need to know what functional relations between forest traits exactly can express TRY data base and haw it will be significant for the global modeling and IPBES. The study of the biodiversity characteristics at all levels and functional links between them is extremely important for the selection of key indicators for assessing biodiversity and ecosystem services for sustainable natural capital control. By comparing the available information in tree data bases: TRY, ITR (International Tree Ring) and SP-PAM the 42 tree species are selected for the traits analyses. The dependence between location characteristics (latitude, longitude, altitude, annual precipitation, annual temperature and soil type) and forest traits (specific leaf area, leaf weight ratio, wood density and growth index) is studied by by multiply regression analyses (RDA) using the statistical software package Canoco 4.5. The Pearson correlation coefficient (measure of linear correlation), Kendal rank correlation coefficient (non parametric measure of statistical dependence) and Spearman correlation coefficient (monotonic function relationship between two variables) are calculated for each pair of variables (indexes) and species. After analysis of above mentioned correlation coefficients the dimensional linear regression models, multidimensional linear and nonlinear regression models and multidimensional neural networks models are built. The strongest dependence between It and WD was obtained. The research will support the work on: Strategic Plan for Biodiversity 2011-2020, modelling and implementation of ecosystem-based approaches to climate change adaptation and disaster risk reduction. Key words: Specific leaf area (SLA), Leaf weight ratio (LWR), Wood density (WD), Growth index (It)
Roger A. Sedjo
2014-01-01
Climate change is expected to affect forests into the future. Although forests have an inherent resiliency that allows them to adapt to various disturbances, including past climate change, concerns are expressed that the rate of change of current and future climate may be more rapid than the ability of many forests to adapt. This paper examines the background of forest...
Modeling soil conservation, water conservation and their tradeoffs: a case study in Beijing.
Bai, Yang; Ouyang, Zhiyun; Zheng, Hua; Li, Xiaoma; Zhuang, Changwei; Jiang, Bo
2012-01-01
Natural ecosystems provide society with important goods and services. With the rapid increase in human populations and excessive utilization of natural resources, humans frequently enhance the production of some services at the expense of the others. Although the need for tradeoffs between conservation and development is urgent, the lack of efficient methods to assess such tradeoffs has impeded progress. Three land use strategy scenarios (development scenario, plan trend scenario and conservation scenario) were created to forecast potential changes in ecosystem services from 2007 to 2050 in Beijing, China. GIS-based techniques were used to map spatial and temporal distribution and changes in ecosystem services for each scenario. The provision of ecosystem services differed spatially, with significant changes being associated with different scenarios. Scenario analysis of water yield (as average annual yield) and soil retention (as retention rate per unit area) for the period 2007 to 2050 indicated that the highest values for these parameters were predicted for the forest habitat under all three scenarios. Annual yield/retention of forest, shrub, and grassland ranked the highest in the conservation scenario. Total water yield and soil retention increased in the conservation scenario and declined dramatically in the other two scenarios, especially the development scenario. The conservation scenario was the optimal land use strategy, resulting in the highest soil retention and water yield. Our study suggests that the evaluation and visualization of ecosystem services can effectively assist in understanding the tradeoffs between conservation and development. Results of this study have implications for planning and monitoring future management of natural capital and ecosystem services, which can be integrated into land use decision-making.
Amazon Forest maintenance as a source of environmental services.
Fearnside, Philip M
2008-03-01
Amazonian forest produces environmental services such as maintenance of biodiversity, water cycling and carbon stocks. These services have a much greater value to human society than do the timber, beef and other products that are obtained by destroying the forest. Yet institutional mechanisms are still lacking to transform the value of the standing forest into the foundation of an economy based on maintaining rather than destroying this ecosystem. Forest management for commodities such as timber and non-timber forest products faces severe limitations and inherent contradictions unless income is supplemented based on environmental services. Amazon forest is threatened by deforestation, logging, forest fires and climate change. Measures to avoid deforestation include repression through command and control, creation of protected areas, and reformulation of infrastructure decisions and development policies. An economy primarily based on the value of environmental services is essential for long-term maintenance of the forest. Much progress has been made in the decades since I first proposed such a transition, but many issues also remain unresolved. These include theoretical issues regarding accounting procedures, improved quantification of the services and of the benefits of different policy options, and effective uses of the funds generated in ways that maintain both the forest and the human population.
NASA Astrophysics Data System (ADS)
Odeh, I. A.; Zou, X. L.
2015-12-01
In terms of total terrestrial sequestered carbon, the global soils and forests are recognized as the predominant C sinks. Even though urban forests stored a relatively small proportion of the total terrestrial C, they also provide other important ecosystem services such as improving air quality, cooling effect in buildings and aesthetics. Thus in view of these environmental services the quantification of urban tree is increasingly viewed as essential to the understanding of how these ecosystem services can be optimized. The aims of this paper are to: i) quantify the spatial-temporal distribution of urban forests in Northwest Sydney using remote sensing techniques; ii) determine the total urban C-storage over many decades; iii) apply UFORE model to estimate air pollutant removal ability of urban forest. The results revealed the estimated total trees in Northwest Sydney in 2011was approximately 2.3 million. These urban forests potentially store an estimated 1.3 million tons of carbon in various forms such as biomass, soil carbon, etc. The relative carbon sequestration rate of these trees was estimated to be about 20,500 tC/yr (equivalent to AUD 467,000/year). Furthermore, the results show that trees near buildings can potentially avoid AUD 12.9 million of energy cost every year and 70000 tons of carbon emission, the latter which is equivalent to additional savings of nearly AUD 1.6 million per year. We also estimated that urban forests in the study area could potentially remove about 44,600 tons of pollutants (mainly greenhouse gases) annually equivalent to a saving of about AUD 409 million per year. Thus the results reveal the spatial-temporal variation of urban vegetation in the last twenty year between 1991 and 2011. The study has showcased the importance and potential role of urban forests in preserving carbon and thus reducing GHG emissions into atmosphere. Furthermore, these results highlight the significant value of urban forests in term of pollutant removal. The significance of these outcomes, if extrapolated to other cities of Australia and the world, is huge.
Erin O. Sills; R. David Simpson; E. Evan Mercer
2017-01-01
This concluding chapter recommends a standardized approach to accounting for forest ecosystem services in the SouthernStates. First, we synthesize 10 principles from the preceding chapters. Next, we present a template for State forest ecosystemservice assessments, recommending a staged approach with five outputs.
Deborah M. Finch; Douglas A. Boyce; Jeanne C. Chambers; Chris J. Colt; Kas Dumroese; Stanley G. Kitchen; Clinton McCarthy; Susan E. Meyer; Bryce A. Richardson; Mary M. Rowland; Mark A. Rumble; Michael K. Schwartz; Monica S. Tomosy; Michael J. Wisdom
2016-01-01
Sagebrush ecosystems are among the largest and most threatened ecosystems in North America. Greater sage-grouse has served as the bellwether for species conservation in these ecosystems and has been considered for listing under the Endangered Species Act eight times. In September 2015, the decision was made not to list greater sage-grouse, but to reevaluate its status...
Smale, Dan A; Burrows, Michael T; Moore, Pippa; O'Connor, Nessa; Hawkins, Stephen J
2013-01-01
Kelp forests along temperate and polar coastlines represent some of most diverse and productive habitats on the Earth. Here, we synthesize information from >60 years of research on the structure and functioning of kelp forest habitats in European waters, with particular emphasis on the coasts of UK and Ireland, which represents an important biogeographic transition zone that is subjected to multiple threats and stressors. We collated existing data on kelp distribution and abundance and reanalyzed these data to describe the structure of kelp forests along a spatial gradient spanning more than 10° of latitude. We then examined ecological goods and services provided by kelp forests, including elevated secondary production, nutrient cycling, energy capture and flow, coastal defense, direct applications, and biodiversity repositories, before discussing current and future threats posed to kelp forests and identifying key knowledge gaps. Recent evidence unequivocally demonstrates that the structure of kelp forests in the NE Atlantic is changing in response to climate- and non-climate-related stressors, which will have major implications for the structure and functioning of coastal ecosystems. However, kelp-dominated habitats along much of the NE Atlantic coastline have been chronically understudied over recent decades in comparison with other regions such as Australasia and North America. The paucity of field-based research currently impedes our ability to conserve and manage these important ecosystems. Targeted observational and experimental research conducted over large spatial and temporal scales is urgently needed to address these knowledge gaps. PMID:24198956
Smale, Dan A; Burrows, Michael T; Moore, Pippa; O'Connor, Nessa; Hawkins, Stephen J
2013-10-01
Kelp forests along temperate and polar coastlines represent some of most diverse and productive habitats on the Earth. Here, we synthesize information from >60 years of research on the structure and functioning of kelp forest habitats in European waters, with particular emphasis on the coasts of UK and Ireland, which represents an important biogeographic transition zone that is subjected to multiple threats and stressors. We collated existing data on kelp distribution and abundance and reanalyzed these data to describe the structure of kelp forests along a spatial gradient spanning more than 10° of latitude. We then examined ecological goods and services provided by kelp forests, including elevated secondary production, nutrient cycling, energy capture and flow, coastal defense, direct applications, and biodiversity repositories, before discussing current and future threats posed to kelp forests and identifying key knowledge gaps. Recent evidence unequivocally demonstrates that the structure of kelp forests in the NE Atlantic is changing in response to climate- and non-climate-related stressors, which will have major implications for the structure and functioning of coastal ecosystems. However, kelp-dominated habitats along much of the NE Atlantic coastline have been chronically understudied over recent decades in comparison with other regions such as Australasia and North America. The paucity of field-based research currently impedes our ability to conserve and manage these important ecosystems. Targeted observational and experimental research conducted over large spatial and temporal scales is urgently needed to address these knowledge gaps.
Carrasco, L R; Papworth, S K
2014-12-15
Deforestation in tropical regions causes 15% of global anthropogenic carbon emissions and reduces the mitigation potential of carbon sequestration services. A global market failure occurs as the value of many ecosystem services provided by forests is not recognised by the markets. Identifying the contribution of individual countries to tropical carbon stocks and sequestration might help identify responsibilities and facilitate debate towards the correction of the market failure through international payments for ecosystem services. We compare and rank tropical countries' contributions by estimating carbon sequestration services vs. emissions disservices. The annual value of tropical carbon sequestration services in 2010 from 88 tropical countries was estimated to range from $2.8 to $30.7 billion, using market and social prices of carbon respectively. Democratic Republic of Congo, India and Sudan contribute the highest net carbon sequestration, whereas Brazil, Nigeria and Indonesia are the highest net emitters. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ecological and socioeconomic effects of China's policies for ecosystem services.
Liu, Jianguo; Li, Shuxin; Ouyang, Zhiyun; Tam, Christine; Chen, Xiaodong
2008-07-15
To address devastating environmental crises and to improve human well-being, China has been implementing a number of national policies on payments for ecosystem services. Two of them, the Natural Forest Conservation Program (NFCP) and the Grain to Green Program (GTGP), are among the biggest programs in the world because of their ambitious goals, massive scales, huge payments, and potentially enormous impacts. The NFCP conserves natural forests through logging bans and afforestation with incentives to forest enterprises, whereas the GTGP converts cropland on steep slopes to forest and grassland by providing farmers with grain and cash subsidies. Overall ecological effects are beneficial, and socioeconomic effects are mostly positive. Whereas there are time lags in ecological effects, socioeconomic effects are more immediate. Both the NFCP and the GTGP also have global implications because they increase vegetative cover, enhance carbon sequestration, and reduce dust to other countries by controlling soil erosion. The future impacts of these programs may be even bigger. Extended payments for the GTGP have recently been approved by the central government for up to 8 years. The NFCP is likely to follow suit and receive renewed payments. To make these programs more effective, we recommend systematic planning, diversified funding, effective compensation, integrated research, and comprehensive monitoring. Effective implementation of these programs can also provide important experiences and lessons for other ecosystem service payment programs in China and many other parts of the world.
Robert M. Jetton; W. Andrew Whittier; William S. Dvorak; Gary R. Hodge; Barbara S. Crane; James “Rusty” Rhea
2017-01-01
The southern United States is home to some of the worldâs most biologically diverse temperate forests. These forests range from the Atlantic and Gulf coastal plains to the Southern Appalachian Mountains and are home to more than 140 tree species which provide a number of ecosystem services, including clean air and water, carbon storage, recreational opportunities, wood...
Forest health and global change.
Trumbore, S; Brando, P; Hartmann, H
2015-08-21
Humans rely on healthy forests to supply energy, building materials, and food and to provide services such as storing carbon, hosting biodiversity, and regulating climate. Defining forest health integrates utilitarian and ecosystem measures of forest condition and function, implemented across a range of spatial scales. Although native forests are adapted to some level of disturbance, all forests now face novel stresses in the form of climate change, air pollution, and invasive pests. Detecting how intensification of these stresses will affect the trajectory of forests is a major scientific challenge that requires developing systems to assess the health of global forests. It is particularly critical to identify thresholds for rapid forest decline, because it can take many decades for forests to restore the services that they provide. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Dolan, K. A.
2015-12-01
Disturbance plays a critical role in shaping the structure and function of forested ecosystems as well as the ecosystem services they provide, including but not limited to: carbon storage, biodiversity habitat, water quality and flow, and land atmosphere exchanges of energy and water. In addition, recent studies suggest that disturbance rates may increase in the future under altered climate and land use scenarios. Thus understanding how vulnerable forested ecosystems are to potential changes in disturbance rates is of high importance. This study calculated the theoretical threshold rate of disturbance for which forest ecosystems could no longer be sustained (λ*) across the Coterminous U.S. using an advanced process based ecosystem model (ED). Published rates of disturbance (λ) in 50 study sites were obtained from the North American Forest Disturbance (NAFD) program. Disturbance distance (λ* - λ) was calculated for each site by differencing the model based threshold under current climate conditions and average observed rates of disturbance over the last quarter century. Preliminary results confirm all sample forest sites have current average rates of disturbance below λ*, but there were interesting patterns in the recorded disturbance distances. In general western sites had much smaller disturbance distances, suggesting higher vulnerability to change, while eastern sites showed larger buffers. Ongoing work is being conducted to assess the vulnerability of these sites in the context of potential future changes by propagating scenarios of future climate and land-use change through the analysis.
Ozone injury to forests across the northeast and north central United States, 1994 - 2010
Gretchen C. Smith; Randall S. Morin; George L. McCaskill
2012-01-01
Ozone is a highly toxic air contaminant that has been shown to decrease tree growth and cause significant disturbance to forested ecosystems. Ozone also causes distinct foliar injury symptoms to certain species (bioindicator plants) that can be used to detect and monitor ozone stress (biomonitoring) in the forest environment. In the early 1990s, the U.S. Forest Service...
David C. Chojnacky; Thomas M. Schuler
2004-01-01
Fallen or down dead wood is a key element in healthy forest ecosystems. Although the amount of down wood and shrubs can provide critical information to forest resource managers for assessing fire fuel build up, data on biomass of down woody materials (DWM) are not readily accessible using existing databases. We summarized data collected by the USDA Forest Service'...
Joseph L. Ganey; Scott C. Vojta
2012-01-01
Down logs provide important ecosystem services in forests and affect surface fuel loads and fire behavior. Amounts and kinds of logs are influenced by factors such as forest type, disturbance regime, forest man-agement, and climate. To quantify potential short-term changes in log populations during a recent global- climate-change type drought, we sampled logs in mixed-...
P. N. Manley; B. Van Horne
2006-01-01
The U.S. Forest Service manages approximately 76 million ha (191 million acres) of National Forest System (NFS) lands. The National Forest Management Act (1976) recognizes the importance of maintaining species and ecosystem diversity on NFS lands as a critical component of our ecological and cultural heritage. Information on the condition of populations and habitats of...
James M. Vose; David L. Peterson; Toral Patel-Weynand
2012-01-01
This report is a scientific assessment of the current condition and likely future condition of forest resources in the United States relative to climatic variability and change. It serves as the U.S. Forest Service forest sector technical report for the National Climate Assessment and includes descriptions of key regional issues and examples of a risk-based framework...
Habitat types of the Tenderfoot Creek Experimental Forest
David M. Ondov
1975-01-01
In May 1974, a review draft of the Forest Habitat Types of Montana (Pfister et al. 1974) was released for use by Forest Service personnel and others requiring a method of ecosystem classification as a means to stratify forest environments in Montana. With the use of this review draft in mind, an objective was outlined to develop a vegetation map of the Tenderfoot Creek...
David Rogers Tilley; Wayne T. Swank
2003-01-01
Emergy (with an 'm') synthesis was used to assess the balance between nature and humanity and the equity among forest outcomes of a US Forest Service ecosystem management demonstration project on the Wine Spring Creek watershed, a high-elevation (1600 m), temperate forest located in the southern Appalachian mountains of North Carolina, USA. EM embraces a...
Climate profoundly shapes forests. Forest species composition, productivity, availability of goods and services, disturbance regimes, and location on the landscape are all regulated by climate. Much research attention has focused on the problem of predicting the response of fores...
National Forest management options in response to climate change
Forest Service U.S. Department of Agriculture
2009-01-01
The effect of climate change on ecosystem structure, function, and services will depend on the ecosystem's degree of sensitivity to climate change, the natural ability of plants and animals to adapt, and the availability of effective management options. Sensitivity to climate change is a function of ecosystem health and environmental stresses such as air pollution...
Carbon storage in mangrove and peatland ecosystems: A preliminary account from plots in Indonesia
Daniel Murdiyarso; Daniel Donato; J. Boone Kauffman; Sofyan Kurnianto; Melanie Stidham; Markku Kanninen
2009-01-01
Tropical mangroves and peat swamp forests provide numerous ecosystem services, including nutrient cycling, sediment trapping, protection from cyclones and tsunamis, habitat for numerous organisms (many economically important) and wood for lumber and fuel (Ellison 2008). Among the most important of these functions--but poorly quantified--is ecosystem carbon (C) storage...
Spatial Assessment of Forest Ecosystem Functions and Services using Human Relating Factors for SDG
NASA Astrophysics Data System (ADS)
Song, C.; Lee, W. K.; Jeon, S. W.; Kim, T.; Lim, C. H.
2015-12-01
Application of ecosystem service concept in environmental related decision making could be numerical and objective standard for policy maker between preserving and developing perspective of environment. However, pursuing maximum benefit from natural capital through ecosystem services caused failure by losing ecosystem functions through its trade-offs. Therefore, difference between ecosystem functions and services were demonstrated and would apply human relating perspectives. Assessment results of ecosystem functions and services can be divided 3 parts. Tree growth per year set as the ecosystem function factor and indicated through so called pure function map. After that, relating functions can be driven such as water conservation, air pollutant purification, climate change regulation, and timber production. Overall process and amount are numerically quantified. These functional results can be transferred to ecosystem services by multiplying economic unit value, so function reflecting service maps can be generated. On the other hand, above services, to implement more reliable human demand, human reflecting service maps are also be developed. As the validation, quantified ecosystem functions are compared with former results through pixel based analysis. Three maps are compared, and through comparing difference between ecosystem function and services and inversed trends in function based and human based service are analysed. In this study, we could find differences in PF, FRS, and HRS in relation to based ecosystem conditions. This study suggests that the differences in PF, FRS, and HRS should be understood in the decision making process for sustainable management of ecosystem services. Although the analysis is based on in sort existing process separation, it is important to consider the possibility of different usage of ecosystem function assessment results and ecosystem service assessment results in SDG policy making. Furthermore, process based functional approach can suggest environmental information which is reflected the other kinds of perspective.
A mangrove creek restoration plan utilizing hydraulic modeling
Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. As a result, the restoration of mangrove forests has become an important topic of research. Urban development has been a primary cause for mangrove destruction and d...
soil carbon pools within oak forest is endangered by global climate change in central mexico
NASA Astrophysics Data System (ADS)
García-Oliva, Felipe; Merino, Agustín; González-Rodriguez, Antonio; Chávez-Vergara, Bruno; Tapia-Torres, Yunuen; Oyama, Ken
2016-04-01
Forest soil represents the main C pool in terrestrial ecosystems. In particular, temperate forest ecosystems play an important role in the C budget among tropical countries, such as Mexico. For example, the temperate forest ecosystem contains higher C contents on average (295 Mg C ha-1) than the soil C associated with other ecosystems in Mexico (between 56 to 287 Mg C ha-1). At a regional scale, oak forest has the highest C content (460 Mg C ha-1) among the forest ecosystem in Michoacán State at Central Mexico. At the local scale, the soil C content is strongly affected by the composition of organic matter produced by the plant species. The oak species are very diverse in Mexico, distributed within two sections: Quercus sensu stricto and Lobatae. The oak species from Quercus s.s. section produced litterfall with lower concentrations of recalcitrant and thermostable compounds than oak species from Lobatae section, therefore the soil under the former species had higher microbial activity and nutrient availability than the soil under the later species. However, the forest fragment with higher amount of oak species from Quercus s.s. section increases the amount of soil C contents. Unfortunately, Quercus species distribution models for the central western region of Mexico predict a decrease of distribution area of the majority of oak species by the year 2080, as a consequence of higher temperatures and lower precipitation expected under climate change scenarios. Additionally to these scenarios, the remnant oak forest fragments suffer strong degradation due to uncontrolled wood extraction and deforestation. For this reason, the conservation of oak forest fragments is a priority to mitigate the greenhouse gases emission to the atmosphere. In order to enhance the protection of these forest fragments it is required that the society identify the ecosystem services that are provided by these forest fragments.
Shifts in tree functional composition amplify the response of forest biomass to climate
NASA Astrophysics Data System (ADS)
Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W.
2018-04-01
Forests have a key role in global ecosystems, hosting much of the world’s terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.
Shifts in tree functional composition amplify the response of forest biomass to climate.
Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W
2018-04-05
Forests have a key role in global ecosystems, hosting much of the world's terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.
Forest cover change, climate variability, and hydrological responses
Xiaohua Wei; Rita Winkler; Ge Sun
2017-01-01
Understanding ecohydrological response to environmental change is critical for protecting watershed functions, sustaining clean water supply, and other ecosystem services, safeguarding public safety, floods mitigation, and drought response. Understanding ecohyhdrological processes and their implications to forest and water management has become increasingly important...
The role of a peri-urban forest on air quality improvement in the Mexico City megalopolis.
Baumgardner, Darrel; Varela, Sebastian; Escobedo, Francisco J; Chacalo, Alicia; Ochoa, Carlos
2012-04-01
Air quality improvement by a forested, peri-urban national park was quantified by combining the Urban Forest Effects (UFORE) and the Weather Research and Forecasting coupled with Chemistry (WRF-Chem) models. We estimated the ecosystem-level annual pollution removal function of the park's trees, shrub and grasses using pollution concentration data for carbon monoxide (CO), ozone (O(3)), and particulate matter less than 10 microns in diameter (PM(10)), modeled meteorological and pollution variables, and measured forest structure data. Ecosystem-level O(3) and CO removal and formation were also analyzed for a representative month. Total annual air quality improvement of the park's vegetation was approximately 0.02% for CO, 1% for O(3,) and 2% for PM(10), of the annual concentrations for these three pollutants. Results can be used to understand the air quality regulation ecosystem services of peri-urban forests and regional dynamics of air pollution emissions from major urban areas. Copyright © 2011 Elsevier Ltd. All rights reserved.
Temporal and Spatial Variations in Soil CO2 Effluxes of Different Ecosystems
NASA Astrophysics Data System (ADS)
Liang, N.; Kim, S.; Shimoyama, K.; Kim, Y.; Hirano, T.; Takagi, K.; Suto, H.; Fujinuma, Y.; Inoue, G.
2005-12-01
Regional networks for measuring carbon sequestration or loss by terrestrial ecosystems on a year round basis have been in operation since the mid-1990s. However, continuous measurements of soil CO2 efflux, the largest component of ecosystem respiration have only been reported over similar time scales at a few of the sites. Reasons include the lack of automated measurement systems that are commercially available, and the need for frequent servicing to ensure accurate measurements. We have developed a multichannel automated chamber system that can be used for continuous measuring soil CO2 efflux during snow-free seasons. We installed the chamber systems in boreal forest in Alaska, tundra in west Siberia, temperate and cool-temperate forests in Japan and Korea, tropical seasonal forest in Thailand, and tropical rainforest in Malaysia. Annual soil CO2 efflux were measured to be about 5-6 tC ha-1 y-1 in the boreal and cool-temperate forests, 10 tC ha-1 y-1 in the temperate forests, and 26 tC ha-1 y-1 in the tropical rainforests. Efflux showed significant seasonality in the boreal and temperate forest that corresponding with the seasonal soil temperature. However, the wavelike efflux rates in the tropical forests were correlated with the seasonality of soil moisture. Soil CO2 efflux of forest ecosystems showed large spatial variation and was correlated with vegetation type and the chamber size.
Validation and application of a forest gap model to the southern Rocky Mountains
Adrianna C. Foster; Jacquelyn K. Shuman; Herman H. Shugart; Kathleen A. Dwire; Paula J. Fornwalt; Jason Sibold; Jose Negron
2017-01-01
Rocky Mountain forests are highly important for their part in carbon cycling and carbon storage as well as ecosystem services such as water retention and storage and recreational values. These forests are shaped by complex interactions among vegetation, climate, and disturbances. Thus, climate change and shifting disturbances may lead to significant changes in species...
Testing a Landsat-based approach for mapping disturbance causality in U.S. forests
Todd A. Schroeder; Karen G. Schleeweis; Gretchen G. Moisen; Chris Toney; Warren B. Cohen; Elizabeth A. Freeman; Zhiqiang Yang; Chengquan Huang
2017-01-01
In light of Earth's changing climate and growing human population, there is an urgent need to improve monitoring of natural and anthropogenic disturbanceswhich effect forests' ability to sequester carbon and provide other ecosystem services. In this study, a two-step modeling approach was used to map the type and timing of forest disturbances occurring...
Traditional knowledge for sustainable forest management and provision of ecosystem services
John Parrotta; Yeo-Chang Youn; Leni D. Camacho
2016-01-01
Forests, and the people who depend on them, are under enormous pressure worldwide. Deforestation in many parts of the world continues at an alarming pace, the result of agricultural conversion for food and industrial crops such as oil palm, livestock production, mining, and energy and industrial infrastructure development. Forest degradation is even more widespread,...
James H. Miller; Dawn Lemke; John Coulston
2013-01-01
Key FindingsInvasive plants continue to escape into and spread through southern forests to eventually form exclusive infestations, and replace native communities to the detriment of forest productivity, biodiversity, ecosystem services, and human use potential.Over a 300-year period, invasive plants have been increasingly...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollinger, David Y.; Davidson, Eric A.; Richardson, Andrew D.
2013-03-25
Summary of research carried out under Interagency Agreement DE-AI02-07ER64355 with the USDA Forest Service at the Howland Forest AmeriFlux site in central Maine. Includes a list of publications resulting in part or whole from this support.
Mangroves among the most carbon-rich forests in the tropics
Daniel. C. Donato; J. Boone Kauffman; Daniel Murdiyarso; Sofyan Kurnianto; Melanie Stidham; Markku Kanninen
2011-01-01
Mangrove forests occur along ocean coastlines throughout the tropics, and support numerous ecosystem services, including fisheries production and nutrient cycling. However, the areal extent of mangrove forests has declined by 30â50% over the past half century as a result of coastal development, aquaculture expansion and over-harvesting. Carbon emissions resulting from...
Experimental forests and ranges as a network for for long-term data
Martin Vavra; John Mitchell
2010-01-01
In the new millennium, national leaders and policymakers are facing profound issues regarding people and the environment. Experimental Forests and Ranges (EFRs), managed by the Forest Service, U.S. Department of Agriculture (USDA), form a network of locations amenable to the development of long-term data collection across many major ecosystems of the continental United...
Economic Impacts of Non-Native Forest Insects in the Continental United States
Juliann E. Aukema; Brian Leung; Kent Kovacs; Corey Chivers; Jeffrey Englin; Susan J. Frankel; Robert G. Haight; Thomas P. Holmes; Andrew M. Liebhold; Deborah G. McCullough; Betsy Von Holle
2011-01-01
Reliable estimates of the impacts and costs of biological invasions are critical to developing credible management, trade and regulatory policies. Worldwide, forests and urban trees provide important ecosystem services as well as economic and social benefits, but are threatened by non-native insects. More than 450 non-native forest insects are established in the United...
An optimization approach to selecting research natural areas in National Forests
Stephanie A. Snyder; Lucy E. Tyrrell; Robert G. Haight
1999-01-01
The USDA Forest Service has a long-established program to identify areas in national forests for designation as protected Research Natural Areas (RNAs). One of the goals is to protect high quality examples of regional ecosystems for the purposes of maintaining biological diversity, conducting nonmanipulative research and monitoring, and fostering education. When RNA...
Allometric equations for urban ash trees (Fraxinus spp.) in Oakville, Southern Ontario, Canada
Paula J. Peper; Claudia P. Alzate; John W. McNeil; Jalil Hashemi
2014-01-01
Tree growth equations are an important and common tool used to effectively assess the yield and determine management practices in forest plantations. Increasingly, they are being developed for urban forests, providing tools to assist urban forest managers with species selection, placement, and estimation of management costs and ecosystem services. This study describes...
Developing and evaluating rapid field methods to estimate peat carbon
Rodney A. Chimner; Cassandra A. Ott; Charles H. Perry; Randall K. Kolka
2014-01-01
Many international protocols (e.g., REDD+) are developing inventories of ecosystem carbon stocks and fluxes at country and regional scales, which can include peatlands. As the only nationally implemented field inventory and remeasurement of forest soils in the US, the USDA Forest Service Forest Inventory and Analysis Program (FIA) samples the top 20 cm of organic soils...
Urban forest sustainability in the United States
David J. Nowak
2017-01-01
Urban forests in the United States provide numerous ecosystem services that vary in magnitude across the country and are valued in the billions of dollars per year. Urban tree cover has been on the decline in recent years. Numerous forces for change will continue to alter urban forests in the coming years (i.e., development, climate change, insects and diseases,...
Steven J. Presley; Michael R. Willig; Wunderle Jr. Joseph M.; Luis Nélio Saldanha
2008-01-01
1.As human population size increases, demand for natural resources will increase. Logging pressure related to increasing demands continues to threaten remote areas of Amazonian forest. A harvest protocol is required to provide renewable timber resources that meet consumer needs while minimizing negative effects on biodiversity and ecosystem services. Reduced-impact...
Kirk M. Stueve; Ian W. Housman; Patrick L. Zimmerman; Mark D. Nelson; Jeremy B. Webb; Charles H. Perry; Robert A. Chastain; Dale D. Gormanson; Chengquan Huang; Sean P. Healey; Warren B. Cohen
2011-01-01
Accurate landscape-scale maps of forests and associated disturbances are critical to augment studies on biodiversity, ecosystem services, and the carbon cycle, especially in terms of understanding how the spatial and temporal complexities of damage sustained from disturbances influence forest structure and function. Vegetation change tracker (VCT) is a highly automated...
Nicole M. Vaillant; Elizabeth D. Reinhardt
2017-01-01
The National Cohesive Wildland Fire Management Strategy recognizes that wildfire is a necessary natural process in many ecosystems and strives to reduce conflicts between fire-prone landscapes and people. In an effort to mitigate potential negative wildfire impacts proactively, the Forest Service fuels program reduces wildland fuels. As part of an internal program...
A. González-Cabán
2011-01-01
Wildfires are a significant social problem affecting millions of people worldwide and causing major economic impacts at all levels. In the US, the severe fires of 1910 in Idaho and Montana galvanized a fire policy excluding fire from the ecosystem by the U.S.Department of Agriculture Forest Service (USDAFS). Fire management policy changed in 1935, 1978,1995, and 2001....
David N. Wear
2011-01-01
Accurately forecasting future forest conditions and the implications for ecosystem services depends on understanding land use dynamics. In support of the 2010 Renewable Resources Planning Act (RPA) Assessment, we forecast changes in land uses for the coterminous United States in response to three scenarios. Our land use models forecast urbanization in response to the...
Vidal-Abarca, M R; Santos-Martín, F; Martín-López, B; Sánchez-Montoya, M M; Suárez Alonso, M L
2016-06-01
We explored the capacity of the biological and hydromorphological indices used in the Water Framework Directive (WFD) to assess ecosystem services by evaluating the ecological status of Spanish River Basins. This analysis relies on an exhaustive bibliography review which showed scientific evidence of the interlinkages between some ecosystem services and different hydromorphological and biological elements which have been used as indices in the WFD. Our findings indicate that, of a total of 38 ecosystem services analyzed, biological and hydromorphological indices can fully evaluate four ecosystem services. In addition, 18 ecosystem services can be partly evaluated by some of the analyzed indices, while 11 are not related with the indices. While Riparian Forest Quality was the index that was able to assess the largest number of ecosystem services (N = 12), the two indices of macrophytes offered very poor guarantees. Finally, biological indices related to diatoms and aquatic invertebrates and the Fluvial Habitat Index can be related with 7, 6, and 6 ecosystem services, respectively. Because the WFD indices currently used in Spain are not able to assess most of the ecosystem services analyzed, we suggest that there is potential to develop the second phase of the WFD implementation taking this approach into consideration. The incorporation of the ecosystem services approach into the WFD could provide the framework for assess the impacts of human activities on the quality of fluvial ecosystems and could give insights for water and watershed management in order to guarantee the delivery of multiple ecosystem services.
NASA Astrophysics Data System (ADS)
Creed, I. F.; Webster, K. L.; Kreutzweiser, D. P.; Beall, F.
2014-12-01
Canada's boreal forest supports many aquatic ecosystem services (AES) due to the intimate linkage between aquatic systems and their surrounding terrestrial watersheds in forested landscapes. There is an increasing risk to AES because natural development activities (forest management, mining, energy) have resulted in disruptions that deteriorate aquatic ecosystems at local (10s of km2) to regional (100s of km2) scales. These activities are intensifying and expanding, placing at risk the healthy aquatic ecosystems that provide AES and may threaten the continued development of the energy, forest, and mining sectors. Remarkably, we know little about the consequences of these activities on AES. The idea that AES should be explicitly integrated into modern natural resource management regulations is gaining broad acceptance. A major need is the ability to measure cumulative effects and determine thresholds (the points where aquatic ecosystems and their services cannot recover to a desired state within a reasonable time frame) in these cumulative effects. However, there is no single conceptual approach to assessing cumulative effects that is widely accepted by both scientists and managers. We present an integrated science-policy framework that enables the integration of AES into forest management risk assessment and prevention/mitigation strategies. We use this framework to explore the risk of further deterioration of AES by (1) setting risk criteria; (2) using emerging technologies to map process-based indicators representing causes and consequences of risk events to the deterioration of AES; (3) assessing existing prevention and mitigation policies in place to avoid risk events; and (4) identifying priorities for policy change needed to reduce risk event. Ultimately, the success of this framework requires that higher value be placed on AES, and in turn to improve the science and management of the boreal forest.
NASA Astrophysics Data System (ADS)
Tarigan, Suria; Wiegand, Kerstin; Sunarti; Slamet, Bejo
2018-01-01
In many tropical regions, the rapid expansion of monoculture plantations has led to a sharp decline in forest cover, potentially degrading the ability of watersheds to regulate water flow. Therefore, regional planners need to determine the minimum proportion of forest cover that is required to support adequate ecosystem services in these watersheds. However, to date, there has been little research on this issue, particularly in tropical areas where monoculture plantations are expanding at an alarming rate. Therefore, in this study, we investigated the influence of forest cover and oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis) plantations on the partitioning of rainfall into direct runoff and subsurface flow in a humid, tropical watershed in Jambi Province, Indonesia. To do this, we simulated streamflow with a calibrated Soil and Water Assessment Tool (SWAT) model and observed several watersheds to derive the direct runoff coefficient (C) and baseflow index (BFI). The model had a strong performance, with Nash-Sutcliffe efficiency values of 0.80-0.88 (calibration) and 0.80-0.85 (validation) and percent bias values of -2.9-1.2 (calibration) and 7.0-11.9 (validation). We found that the percentage of forest cover in a watershed was significantly negatively correlated with C and significantly positively correlated with BFI, whereas the rubber and oil palm plantation cover showed the opposite pattern. Our findings also suggested that at least 30 % of the forest cover was required in the study area for sustainable ecosystem services. This study provides new adjusted crop parameter values for monoculture plantations, particularly those that control surface runoff and baseflow processes, and it also describes the quantitative association between forest cover and flow indicators in a watershed, which will help regional planners in determining the minimum proportion of forest and the maximum proportion of plantation to ensure that a watershed can provide adequate ecosystem services.
Divergent phenological response to hydroclimate variability in forested mountain watersheds.
Hwang, Taehee; Band, Lawrence E; Miniat, Chelcy F; Song, Conghe; Bolstad, Paul V; Vose, James M; Love, Jason P
2014-08-01
Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins' Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate-resolution imaging spectro-radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape-induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape-induced phenological patterns are easily observed over wide areas and may be used as a unique diagnostic for sources of ecosystem vulnerability and sensitivity to hydroclimate change. © 2014 John Wiley & Sons Ltd.
Bagstad, Kenneth J.; Reed, James; Semmens, Darius J.; Sherrouse, Ben C.; Troy, Austin
2016-01-01
Through extensive research, ecosystem services have been mapped using both survey-based and biophysical approaches, but comparative mapping of public values and those quantified using models has been lacking. In this paper, we mapped hot and cold spots for perceived and modeled ecosystem services by synthesizing results from a social-values mapping study of residents living near the Pike–San Isabel National Forest (PSI), located in the Southern Rocky Mountains, with corresponding biophysically modeled ecosystem services. Social-value maps for the PSI were developed using the Social Values for Ecosystem Services tool, providing statistically modeled continuous value surfaces for 12 value types, including aesthetic, biodiversity, and life-sustaining values. Biophysically modeled maps of carbon sequestration and storage, scenic viewsheds, sediment regulation, and water yield were generated using the Artificial Intelligence for Ecosystem Services tool. Hotspots for both perceived and modeled services were disproportionately located within the PSI’s wilderness areas. Additionally, we used regression analysis to evaluate spatial relationships between perceived biodiversity and cultural ecosystem services and corresponding biophysical model outputs. Our goal was to determine whether publicly valued locations for aesthetic, biodiversity, and life-sustaining values relate meaningfully to results from corresponding biophysical ecosystem service models. We found weak relationships between perceived and biophysically modeled services, indicating that public perception of ecosystem service provisioning regions is limited. We believe that biophysical and social approaches to ecosystem service mapping can serve as methodological complements that can advance ecosystem services-based resource management, benefitting resource managers by showing potential locations of synergy or conflict between areas supplying ecosystem services and those valued by the public.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... DEPARTMENT OF AGRICULTURE Forest Service Beaver Creek Landscape Management Project, Ashland Ranger... manner that increases resiliency of the Beaver Creek Landscape Management Project area ecosystem to... requirements to require. The Beaver Creek Landscape Management Project includes treatments previously proposed...
Monitoring tree mortality in mature Douglas-fir forests: size and species matter
Background/Question/MethodsA regional increase in tree mortality rates associated with climate change will influence forest health and ecosystem services, including water quality and quantity. In recent decades, accelerated tree mortality has occurred in some, but not all, fores...
Ranius, Thomas; Hämäläinen, Aino; Egnell, Gustaf; Olsson, Bengt; Eklöf, Karin; Stendahl, Johan; Rudolphi, Jörgen; Sténs, Anna; Felton, Adam
2018-03-01
We review the consequences for biodiversity and ecosystem services from the industrial-scale extraction of logging residues (tops, branches and stumps from harvested trees and small-diameter trees from thinnings) in managed forests. Logging residue extraction can replace fossil fuels, and thus contribute to climate change mitigation. The additional biomass and nutrients removed, and soils and other structures disturbed, have several potential environmental impacts. To evaluate potential impacts on ecosystem services and biodiversity we reviewed 279 scientific papers that compared logging residue extraction with non-extraction, the majority of which were conducted in Northern Europe and North America. The weight of available evidence indicates that logging residue extraction can have significant negative effects on biodiversity, especially for species naturally adapted to sun-exposed conditions and the large amounts of dead wood that are created by large-scaled forest disturbances. Slash extraction may also pose risks for future biomass production itself, due to the associated loss of nutrients. For water quality, reindeer herding, mammalian game species, berries, and natural heritage the results were complicated by primarily negative but some positive effects, while for recreation and pest control positive effects were more consistent. Further, there are initial negative effects on carbon storage, but these effects are transient and carbon stocks are mostly restored over decadal time perspectives. We summarize ways of decreasing some of the negative effects of logging residue extraction on specific ecosystem services, by changing the categories of residue extracted, and site or forest type targeted for extraction. However, we found that suggested pathways for minimizing adverse outcomes were often in conflict among the ecosystem services assessed. Compensatory measures for logging residue extraction may also be used (e.g. ash recycling, liming, fertilization), though these may also be associated with adverse environmental impacts. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Jesse L. Morris; Stuart Cottrell; Chris Fettig; Winslow D. Hansen; Rosemary L. Sherriff; Vachel A. Carter; Jennifer L. Clear; Jessica Clement; R. Justin DeRose; Jeffrey A. Hicke; Philip E. Higuera; Katherine M. Mattor; Alistair W. R. Seddon; Heikki T. Sepp; John D. Stednick; Steven J. Seybold
2016-01-01
1. Recent bark beetle outbreaks in North America and Europe have impacted forested landscapes and the provisioning of critical ecosystem services. The scale and intensity of many recent outbreaks are widely believed to be unprecedented. 2. The effects of bark beetle outbreaks on ecosystems are often measured in terms of area affected, host tree mortality rates, and...
Robert L. Deal; Crystal Raymond; David L. Peterson; Cindy Glick
2010-01-01
There are a number of misunderstandings about âecosystem servicesâ and âclimate changeâ and these terms are often used incorrectly to describe different concepts. These concepts address different issues and objectives but have some important integrating themes relating to carbon and carbon sequestration. In this paper, we provide definitions and distinctions between...
7 CFR 625.8 - Compensation for easements and 30-year contracts.
Code of Federal Regulations, 2013 CFR
2013-01-01
... easement payment will be made based on final determination of acreage. (f) Ecosystem Services Credits for... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES HEALTHY FORESTS RESERVE PROGRAM... is the landowner's responsibility to discuss those matters with the Internal Revenue Service. NRCS...
7 CFR 625.8 - Compensation for easements and 30-year contracts.
Code of Federal Regulations, 2014 CFR
2014-01-01
... easement payment will be made based on final determination of acreage. (f) Ecosystem Services Credits for... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES HEALTHY FORESTS RESERVE PROGRAM... is the landowner's responsibility to discuss those matters with the Internal Revenue Service. NRCS...
7 CFR 625.8 - Compensation for easements and 30-year contracts.
Code of Federal Regulations, 2012 CFR
2012-01-01
... easement payment will be made based on final determination of acreage. (f) Ecosystem Services Credits for... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES HEALTHY FORESTS RESERVE PROGRAM... is the landowner's responsibility to discuss those matters with the Internal Revenue Service. NRCS...
7 CFR 625.8 - Compensation for easements and 30-year contracts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... easement payment will be made based on final determination of acreage. (f) Ecosystem Services Credits for... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES HEALTHY FORESTS RESERVE PROGRAM... is the landowner's responsibility to discuss those matters with the Internal Revenue Service. NRCS...
NASA Astrophysics Data System (ADS)
Gu, Huan
Urban forests play an important role in the urban ecosystem by providing a range of ecosystem services. Characterization of forest structure, species variation and growth in urban forests is critical for understanding the status, function and process of urban ecosystems, and helping maximize the benefits of urban ecosystems through management. The development of methods and applications to quantify urban forests using remote sensing data has lagged the study of natural forests due to the heterogeneity and complexity of urban ecosystems. In this dissertation, I quantify and map forest structure, species gradients and forest growth in an urban area using discrete-return lidar, airborne imaging spectroscopy and thermal infrared data. Specific objectives are: (1) to demonstrate the utility of leaf-off lidar originally collected for topographic mapping to characterize and map forest structure and associated uncertainties, including aboveground biomass, basal area, diameter, height and crown size; (2) to map species gradients using forest structural variables estimated from lidar and foliar functional traits, vegetation indices derived from AVIRIS hyperspectral imagery in conjunction with field-measured species data; and (3) to identify factors related to relative growth rates in aboveground biomass in the urban forests, and assess forest growth patterns across areas with varying degree of human interactions. The findings from this dissertation are: (1) leaf-off lidar originally acquired for topographic mapping provides a robust, potentially low-cost approach to quantify spatial patterns of forest structure and carbon stock in urban areas; (2) foliar functional traits and vegetation indices from hyperspectral data capture gradients of species distributions in the heterogeneous urban landscape; (3) species gradients, stand structure, foliar functional traits and temperature are strongly related to forest growth in the urban forests; and (4) high uncertainties in our ability to map forest structure, species gradient and growth rate occur in residential neighborhoods and along forest edges. Maps generated from this dissertation provide estimates of broad-scale spatial variations in forest structure, species distributions and growth to the city forest managers. The associated maps of uncertainty help managers understand the limitations of the maps and identify locations where the maps are more reliable and where more data are needed.
Zhaofei Fan; W. Keith Moser; Michael K. Crosby; Weiming Yu
2012-01-01
Non-native invasive plants (NNIP) are rapidly spreading into natural ecosystems such as forests in the Upper Midwest. Using the strategic inventory data from the 2005-2006 U.S. Department of Agriculture, Forest Serviceâs Forest Inventory and Analysis (FIA) program and forest land cover data, we estimated the regional-invasibility patterns of NNIPs for major...
The nature of scientific investigation involving hypothesis testing dictates the need to conduct controlled experiments, limiting the number of independent variables in order to identify cause and effect relationships. Single or two-factor studies are useful to identify potentia...
Kathleen S. Knight; Daniel A. Herms; John Cardina; Robert Long; Joanne Rebbeck; Kamal J.K. Gandhi; Annemarie Smith; Wendy S. Klooster; Catherine P. Herms; Alejandro A. Royo
2010-01-01
The effects of emerald ash borer (EAB) (Agrilus planipennis) on forest ecosystems are being studied through a collaborative research program involving the U.S. Forest Service's Northern Research Station and The Ohio State University. We are monitoring the decline and mortality of >4,500 ash trees and saplings, EAB population density, changes...
Development of Analytical Methods for Escort Herbicide in Forest Environment Samples
Joseph Fischer; Jerry Michael
1990-01-01
The USDA Forest Service laboratory in Auburn, Alabama, is engaged in research to determine the environmental fate and ecosystem inipadts of forestry herbicides. Much of the effort is associated with the conduct of field dissipation studies in which herbicides are applied to forest sites and then monitored over time in a variety of environmental matrices (soil, water,...
F. Rodríguez y Silva; J.R. Molina Martínez; Armando González-Cabán
2014-01-01
Traditional uses of the forest (timber, forage) have been giving way to other uses more in demand (recreation, ecosystem services). An observable consequence of this process of forest land use conversion is an increase in more difficult and extreme wildfires. Wildland forest management and protection program budgets are limited, and managers are requesting help in...
Devendra M. Amatya; Carl C. Trettin; R. Wayne Skaggs; T.J. Callahan; Ge Sun; J.E. Nettles; J.E. Parsons; M. Miwa
2005-01-01
The U.S. Department of Agriculture Forest Service Center for Forested Wetlands Research has conducted or cooperated in studies designed to improve understanding of fundamental hydrologic and biogeochemical processes that link aquatic and terrestrial ecosystems. Five of these studies are discussed here. The first is based on observations made on long-term experimental...
US Forest Service bark beetle research in the western United States: Looking toward the future
Jose F. Negron; Barbara J. Bentz; Christopher J. Fettig; Nancy Gillette; E. Matthew Hansen; Jane L. Hayes; Rick G. Kelsey; John E. Lundquist; Ann M. Lynch; Robert A. Progar; Steven J. Seybold
2008-01-01
Bark beetles cause extensive tree mortality in coniferous forests of western North America and play an important role in the disturbance ecology of these ecosystems. Recently, elevated populations of bark beetles have been observed in all conifer forest types across the western United States. This has heightened public awareness of the issue and triggered legislation...
Brent Mitchell; Mike Walterman; Tom Mellin; Craig Wilcox; Ann M. Lynch; John Anhold; Donald A. Falk; John Koprowski; Denise Laes; Don Evans; Haans Fisk
2012-01-01
Understanding forest structure and how it is affected by management practices and natural events is a critical part of managing natural resources within the Forest Service, U.S. Department of Agriculture. The Pinaleno Mountains of southeastern Arizona represent a Madrean sky island ecosystem and the last remaining habitat for the Mt. Graham red squirrel. This unique...
The zero inflation of standing dead tree carbon stocks
Christopher W. Woodall; David W. MacFarlane
2012-01-01
Given the importance of standing dead trees in numerous forest ecosystem attributes/processes such as carbon (C) stocks, the USDA Forest Serviceâs Forest Inventory and Analysis (FIA) program began consistent nationwide sampling of standing dead trees in 1999. Modeled estimates of standing dead tree C stocks are currently used as the official C stock estimates for the...
Andrew N. Gray; Joel L. Thompson; Gary J. Lettman
2015-01-01
Conversion of forest, range, and agricultural resource lands to residential and commercial uses affects the available land base, management practices on remaining resource lands, habitat quality, and ecosystem services. The Forest Inventory and Analysis program (FIA) mandate includes monitoring changes in the land area in forest use, and this has proved valuable for...
On the road to national mapping and attribution of the processes underlying U.S
Karen Schleeweis; Gretchen G. Moisen; Todd A. Schroeder; Chris Toney; Elizabeth A. Freeman
2015-01-01
Questions regarding the impact of natural and anthropogenic forest change events (temporary and persisting) on energy, water and nutrient cycling, forest sustainability and resilience, and ecosystem services call for a full suite of information on the spatial and temporal trends of forest dynamics. Temporal and spatial patterns of change along with their magnitude and...
Robert Deal; Ewa Orlikowska; David D’Amore; Paul Hennon
2017-01-01
There is worldwide interest in managing forests to improve biodiversity, enhance ecosystem services and assure long-term sustainability of forest resources. An increasingly important goal of forest management is to increase stand diversity and improve wildlife and aquatic habitat. Well-planned silvicultural systems containing a mixture of broadleaf-conifer species have...
Lisa Whitcomb; Dennis Parker; Bob Carr; Paul Gobster; Herb Schroeder
2002-01-01
Forest Service landscape architects sought a method for determining if people showed a preference for certain landscape-scale ecosystems and if ecological classification units could be used in visual resource management. A study was conducted on the Chippewa National Forest to test whether there was a systematic relationship between dispersed campsite locations and...
Restoring biodiversity and forest ecosystem services in degraded tropical landscapes
John A. Parrotta
2010-01-01
Over the past century, an estimated 850 million ha of the worldâs tropical forests have been lost or severely degraded, with serious impacts on local and regional biodiversity. A significant proportion of these lands were originally cleared of their forest cover for agricultural development or other economic uses. Today, however, they provide few if any environmental...
Expanding the vision of the Experimental Forest and Range network to urban areas
J. Morgan Grove
2014-01-01
After 100 years, the USDA Forest Service has emerging opportunities to expand the Experimental Forest and Range (EFR) network to urban areas. The purpose of this expansion would be to broaden the types of ecosystems studied, interdisciplinary approaches used, and relevance to society of the EFR network through long-term and large-scale social-ecological projects in...
A ground-based method of assessing urban forest structure and ecosystem services
David J. Nowak; Daniel E. Crane; Jack C. Stevens; Robert E. Hoehn; Jeffrey T. Walton; Jerry Bond
2008-01-01
To properly manage urban forests, it is essential to have data on this important resource. An efficient means to obtain this information is to randomly sample urban areas. To help assess the urban forest structure (e.g., number of trees, species composition, tree sizes, health) and several functions (e.g., air pollution removal, carbon storage and sequestration), the...
Coarse woody debris assay in northern Arizona mixed-conifer and ponderosa pine forests
Joseph L. Ganey; Scott C. Vojta
2010-01-01
Coarse woody debris (CWD) provides important ecosystem services in forests and affects fire behavior, yet information on amounts and types of CWD typically is limited. To provide such information, we sampled logs and stumps in mixed-conifer and ponderosa pine (Pinus ponderosa) forests in north-central Arizona. Spatial variability was prominent for all CWD parameters....
Air pollution and watershed research in the central Sierra Nevada of California: nitrogen and ozone
Carolyn Hunsaker; Andrzej Bytnerowicz; Jessica Auman; Ricardo Cisneros
2007-01-01
Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3) and nitrogenous (N) air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and...
Klein, Alexandra-Maria; Steffan-Dewenter, Ingolf; Tscharntke, Teja
2006-03-01
1. Human alteration of natural ecosystems to agroecosystems continues to accelerate in tropical countries. The resulting world-wide decline of rain forest causes a mosaic landscape, comprising simple and complex agroecosystems and patchily distributed rain forest fragments of different quality. Landscape context and agricultural management can be expected to affect both species diversity and ecosystem services by trophic interactions. 2. In Central Sulawesi, Indonesia, 24 agroforestry systems, differing in the distance to the nearest natural forest (0-1415 m), light intensity (37.5-899.6 W/m(-2)) and number of vascular plant species (7-40 species) were studied. Ten standardized trap nests for bees and wasps, made from reed and knotweed internodes, were exposed in each study site. Occupied nests were collected every month, over a period totalling 15 months. 3. A total of 13,617 brood cells were reared to produce adults of 14 trap-nesting species and 25 natural enemy species, which were mostly parasitoids. The total number of species was affected negatively by increasing distance from forest and increased with light intensity of agroforestry systems. The parasitoids in particular appeared to benefit from nearby forests. Over a 500-m distance, the number of parasitoid species decreased from eight to five, and parasitism rates from 12% to 4%. 4. The results show that diversity and parasitism, as a higher trophic interaction and ecosystem service, are enhanced by (i) improved connectivity of agroecosystems with natural habitats such as agroforestry adjacent to rain forest and (ii) management practices to increase light availability in agroforestry, which also enhances richness of flowering plants in the understorey.
Density-dependent vulnerability of forest ecosystems to drought
Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Bradford, John B.; Fraver, Shawn; Battaglia, Mike A.; Asherin, Lance A.
2017-01-01
1. Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary driver of competitive intensity among trees, which influences tree growth and mortality. Manipulating tree population density may be a mechanism for moderating drought-induced stress and growth reductions, although the relationship between tree population density and tree drought vulnerability remains poorly quantified, especially across climatic gradients.2. In this study, we examined three long-term forest ecosystem experiments in two widely distributed North American pine species, ponderosa pine Pinus ponderosa (Lawson & C. Lawson) and red pine Pinus resinosa (Aiton), to better elucidate the relationship between tree population density, growth and drought. These experiments span a broad latitude and aridity range and include tree population density treatments that have been purposefully maintained for several decades. We investigated how tree population density influenced resistance (growth during drought) and resilience (growth after drought compared to pre-drought growth) of stand-level growth during and after documented drought events.3. Our results show that relative tree population density was negatively related to drought resistance and resilience, indicating that trees growing at lower densities were less vulnerable to drought. This result was apparent in all three forest ecosystems, and was consistent across species, stand age and drought intensity.4. Synthesis and applications. Our results highlighted that managing pine forest ecosystems at low tree population density represents a promising adaptive strategy for reducing the adverse impacts of drought on forest growth in coming decades. Nonetheless, the broader applicability of our findings to other types of forest ecosystems merits additional investigation.
Tree species diversity mitigates disturbance impacts on the forest carbon cycle.
Silva Pedro, Mariana; Rammer, Werner; Seidl, Rupert
2015-03-01
Biodiversity fosters the functioning and stability of forest ecosystems and, consequently, the provision of crucial ecosystem services that support human well-being and quality of life. In particular, it has been suggested that tree species diversity buffers ecosystems against the impacts of disturbances, a relationship known as the "insurance hypothesis". Natural disturbances have increased across Europe in recent decades and climate change is expected to amplify the frequency and severity of disturbance events. In this context, mitigating disturbance impacts and increasing the resilience of forest ecosystems is of growing importance. We have tested how tree species diversity modulates the impact of disturbance on net primary production and the total carbon stored in living biomass for a temperate forest landscape in Central Europe. Using the simulation model iLand to study the effect of different disturbance regimes on landscapes with varying levels of tree species richness, we found that increasing diversity generally reduces the disturbance impact on carbon storage and uptake, but that this effect weakens or even reverses with successional development. Our simulations indicate a clear positive relationship between diversity and resilience, with more diverse systems experiencing lower disturbance-induced variability in their trajectories of ecosystem functioning. We found that positive effects of tree species diversity are mainly driven by an increase in functional diversity and a modulation of traits related to recolonization and resource usage. The results of our study suggest that increasing tree species diversity could mitigate the effects of intensifying disturbance regimes on ecosystem functioning and improve the robustness of forest carbon storage and the role of forests in climate change mitigation.
2012-01-01
Background Forests of the Midwest U.S. provide numerous ecosystem services. Two of these, carbon sequestration and wood production, are often portrayed as conflicting. Currently, carbon management and biofuel policies are being developed to reduce atmospheric CO2 and national dependence on foreign oil, and increase carbon storage in ecosystems. However, the biological and industrial forest carbon cycles are rarely studied in a whole-system structure. The forest system carbon balance is the difference between the biological (net ecosystem production) and industrial (net emissions from forest industry) forest carbon cycles, but to date this critical whole system analysis is lacking. This study presents a model of the forest system, uses it to compute the carbon balance, and outlines a methodology to maximize future carbon uptake in a managed forest region. Results We used a coupled forest ecosystem process and forest products life cycle inventory model for a regional temperate forest in the Midwestern U.S., and found the net system carbon balance for this 615,000 ha forest was positive (2.29 t C ha-1 yr-1). The industrial carbon budget was typically less than 10% of the biological system annually, and averaged averaged 0.082 t C ha-1 yr-1. Net C uptake over the next 100-years increased by 22% or 0.33 t C ha-1 yr-1 relative to the current harvest rate in the study region under the optized harvest regime. Conclusions The forest’s biological ecosystem current and future carbon uptake capacity is largely determined by forest harvest practices that occurred over a century ago, but we show an optimized harvesting strategy would increase future carbon sequestration, or wood production, by 20-30%, reduce long transportation chain emissions, and maintain many desirable stand structural attributes that are correlated to biodiversity. Our results for this forest region suggest that increasing harvest over the next 100 years increases the strength of the carbon sink, and that carbon sequestration and wood production are not conflicting for this particular forest ecosystem. The optimal harvest strategy found here may not be the same for all forests, but the methodology is applicable anywhere sufficient forest inventory data exist. PMID:22713794
Giannini, Tereza C; Tambosi, Leandro R; Acosta, André L; Jaffé, Rodolfo; Saraiva, Antonio M; Imperatriz-Fonseca, Vera L; Metzger, Jean Paul
2015-01-01
Ecosystem services provided by mobile agents are increasingly threatened by the loss and modification of natural habitats and by climate change, risking the maintenance of biodiversity, ecosystem functions, and human welfare. Research oriented towards a better understanding of the joint effects of land use and climate change over the provision of specific ecosystem services is therefore essential to safeguard such services. Here we propose a methodological framework, which integrates species distribution forecasts and graph theory to identify key conservation areas, which if protected or restored could improve habitat connectivity and safeguard ecosystem services. We applied the proposed framework to the provision of pollination services by a tropical stingless bee (Melipona quadrifasciata), a key pollinator of native flora from the Brazilian Atlantic Forest and important agricultural crops. Based on the current distribution of this bee and that of the plant species used to feed and nest, we projected the joint distribution of bees and plants in the future, considering a moderate climate change scenario (following IPPC). We then used this information, the bee's flight range, and the current mapping of Atlantic Forest remnants to infer habitat suitability and quantify local and regional habitat connectivity for 2030, 2050 and 2080. Our results revealed north to south and coastal to inland shifts in the pollinator distribution during the next 70 years. Current and future connectivity maps unraveled the most important corridors, which if protected or restored, could facilitate the dispersal and establishment of bees during distribution shifts. Our results also suggest that coffee plantations from eastern São Paulo and southern Minas Gerais States could suffer a pollinator deficit in the future, whereas pollination services seem to be secured in southern Brazil. Landowners and governmental agencies could use this information to implement new land use schemes. Overall, our proposed methodological framework could help design novel conservational and agricultural practices that can be crucial to conserve ecosystem services by buffering the joint effect of habitat configuration and climate change.
Desired future conditions for pinon-juniper ecosystems
Douglas W. Shaw; Earl. F. Aldon; Carol LoSapio
1995-01-01
The purpose of this symposium was to assist the USDA Forest Service, other federal land management agencies, and the Arizona State Land Office in managing pinon-juniper ecosystems in the Southwest. Authors assessed the current state of knowledge about the pinon-juniper resource and helped develop desired future conditions.
Future socio-economic impacts and vulnerabilities
Balgis Osman-Elasha; Neil Adger; Maria Brockhaus; Carol J. Pierce Colfer; Brent Sohngen; Tallaat Dafalla; Linda A. Joyce; Nkem Johnson; Carmenza Robledo
2009-01-01
The projected impacts of climate change are significant, and despite the uncertainties associated with current climate and ecosystem model projections, the associated changes in the provision of forest ecosystem services are expected to be substantial in many parts of the world. These impacts will present significant social and economic challenges for affected...
A. Dennis Lemly
2001-01-01
Beginning in 1996, selenium associated with phosphate mining on Caribou National Forest (CNF) was implicated as the cause of death to horses and sheep grazing on private land adjacent to the national forest. In response to these concerns, the Forest Service began a monitoring study to determine selenium concentrations in and around the mine sites. By 1998, the study...
NASA Astrophysics Data System (ADS)
Leigh, David
2016-04-01
The southern Blue Ridge (USA) and French western Pyrenees both are humid-temperate mountains where native woodlands have been cleared on soils formed in residuum and colluvium on hillslopes. Forest removal increased rates of erosion and sediment yield that drove both negative and positive ecosystem services. For example, the supportive ecosystem service of soil formation was diminished on eroded hillslopes, but may have been enhanced by accumulation of sediment on bottomlands far downstream from the highland source areas. Negative effects on provisional ecosystem services (e.g. water supply) resulted in aggraded bottomlands by increasing the depth to the water table. Legacy effects linger on hillslopes that reforested (diminished soil properties), and ongoing alteration of pedogenic and hydrologic processes affect pastures that persisted from cleared woodlands. Beyond those general similarities, pastures of the two regions exhibit very different pedogenic pathways and ecosystem service outcomes. Soils of the Blue Ridge pastures adhere to a typical degradation scenario of erosion, compaction, and reduced infiltration capacities, whereas Pyrenees pastures exhibit soil qualities trending in the opposite direction and arguably now are better quality soils than their forested predecessors. Major differences in temporal duration and management styles apparently have led to such contrasts in soil quality. The Blue Ridge pastures are only tens to hundreds of years old, whereas Pyrenees pastures are thousands of years old. Blue Ridge pastures are maintained by mowing with tractors and year-round grazing primarily with beef cattle, whereas Pyrenees pastures (outfields) lack tractors and are only grazed seasonally (summer), primarily with sheep. Fire is rarely used as a management tool in the Blue Ridge, while Pyrenees pastures frequently are burned. Such management practices, and their influence on pedogenic and hydrologic processes, generally have resulted in negative ecosystem services in the Blue Ridge (degraded soils and water holding capacity) versus some positive ecosystem services in the Pyrenees. That is, the soils of the Pyrenees pastures store more carbon and provide equal or better water infiltration and storage capacity than their native forested predecessors, while that is not the case in the Blue Ridge. Stratigraphic proxies from colluvial deposits in the Pyrenees attest to a past when the management practices were erosional and degradational, (within the Bronze Age through Roman times), but more recent management practices appear to be sustainable and have resulted in improved soil quality. Both mountain ranges share some negative impacts, but the Pyrenees offer an example of anthropic landscape conversion where certain pedogenic and hydrologic processes have been enhanced and result in some positive ecosystem services and sustainable outcomes.
Gong, Jian; Yang, Jianxin; Tang, Wenwu
2017-01-01
Exploration of land use and land cover change (LULCC) and its impacts on ecosystem services in Tibetan plateau is valuable for landscape and environmental conservation. In this study, we conduct spatial analysis on empirical land use and land cover data in the Qinghai Lake region for 1990, 2000, and 2010 and simulate land cover patterns for 2020. We then evaluate the impacts of LULCC on ecosystem service value (ESV), and analyze the sensitivity of ESV to LULCC to identify the ecologically sensitive area. Our results indicate that, from 1990 to 2010, the area of forest and grassland increased while the area of unused land decreased. Simulation results suggest that the area of grassland and forest will continue to increase and the area of cropland and unused land will decrease for 2010–2020. The ESV in the study area increased from 694.50 billion Yuan in 1990 to 714.28 billion Yuan in 2000, and to 696.72 billion Yuan in 2020. Hydrology regulation and waste treatment are the top two ecosystem services in this region. The towns surrounding the Qinghai Lake have high ESVs, especially in the north of the Qinghai Lake. The towns with high ESV sensitivity to LULCC are located in the northwest, while the towns in the north of the Qinghai Lake experienced substantial increase in sensitivity index from 2000–2010 to 2010–2020, especially for three regulation services and aesthetic landscape provision services. PMID:28754029
Gong, Jian; Li, Jingye; Yang, Jianxin; Li, Shicheng; Tang, Wenwu
2017-07-21
Exploration of land use and land cover change (LULCC) and its impacts on ecosystem services in Tibetan plateau is valuable for landscape and environmental conservation. In this study, we conduct spatial analysis on empirical land use and land cover data in the Qinghai Lake region for 1990, 2000, and 2010 and simulate land cover patterns for 2020. We then evaluate the impacts of LULCC on ecosystem service value (ESV), and analyze the sensitivity of ESV to LULCC to identify the ecologically sensitive area. Our results indicate that, from 1990 to 2010, the area of forest and grassland increased while the area of unused land decreased. Simulation results suggest that the area of grassland and forest will continue to increase and the area of cropland and unused land will decrease for 2010-2020. The ESV in the study area increased from 694.50 billion Yuan in 1990 to 714.28 billion Yuan in 2000, and to 696.72 billion Yuan in 2020. Hydrology regulation and waste treatment are the top two ecosystem services in this region. The towns surrounding the Qinghai Lake have high ESVs, especially in the north of the Qinghai Lake. The towns with high ESV sensitivity to LULCC are located in the northwest, while the towns in the north of the Qinghai Lake experienced substantial increase in sensitivity index from 2000-2010 to 2010-2020, especially for three regulation services and aesthetic landscape provision services.
Alan A. Ager; Michelle A. Day; Kevin Vogler
2016-01-01
We used spatial optimization to analyze alternative restoration scenarios and quantify tradeoffs for a large, multifaceted restoration program to restore resiliency to forest landscapes in the western US. We specifically examined tradeoffs between provisional ecosystem services, fire protection, and the amelioration of key ecological stressors. The results...
QUANTIFYING THE ORGANIC CARBON HELD IN FORESTED SOILS OF THE UNITED STATES AND PUERTO RICO
Forested ecosystems provide a number of important services to humans. In addition to wood, fiber food and fuel production they also provide habitat for wildlife and a substantial reservoir of above- and belowground C. With the intense international focus on increasing atmospher...
American elm in mine land reforestation
M.B. Adams; P. Angel; C. Barton; J. Slavicek
2015-01-01
Reforestation of mined land in the Appalachians realizes many important benefits and provides important ecosystem services. Because much of the reclaimed mine lands in Appalachia were previously in forest, reclaiming these drastically disturbed areas to forests is desirable, feasible and cost-effective. The Forestry Reclamation Approach (FRA) provides a five-step...
Sherrouse, Benson C.; Semmens, Darius J.; Clement, Jessica M.
2014-01-01
Despite widespread recognition that social-value information is needed to inform stakeholders and decision makers regarding trade-offs in environmental management, it too often remains absent from ecosystem service assessments. Although quantitative indicators of social values need to be explicitly accounted for in the decision-making process, they need not be monetary. Ongoing efforts to map such values demonstrate how they can also be made spatially explicit and relatable to underlying ecological information. We originally developed Social Values for Ecosystem Services (SolVES) as a tool to assess, map, and quantify nonmarket values perceived by various groups of ecosystem stakeholders. With SolVES 2.0 we have extended the functionality by integrating SolVES with Maxent maximum entropy modeling software to generate more complete social-value maps from available value and preference survey data and to produce more robust models describing the relationship between social values and ecosystems. The current study has two objectives: (1) evaluate how effectively the value index, a quantitative, nonmonetary social-value indicator calculated by SolVES, reproduces results from more common statistical methods of social-survey data analysis and (2) examine how the spatial results produced by SolVES provide additional information that could be used by managers and stakeholders to better understand more complex relationships among stakeholder values, attitudes, and preferences. To achieve these objectives, we applied SolVES to value and preference survey data collected for three national forests, the Pike and San Isabel in Colorado and the Bridger–Teton and the Shoshone in Wyoming. Value index results were generally consistent with results found through more common statistical analyses of the survey data such as frequency, discriminant function, and correlation analyses. In addition, spatial analysis of the social-value maps produced by SolVES provided information that was useful for explaining relationships between stakeholder values and forest uses. Our results suggest that SolVES can effectively reproduce information derived from traditional statistical analyses while adding spatially explicit, social-value information that can contribute to integrated resource assessment, planning, and management of forests and other ecosystems.