Sample records for forest edge effects

  1. Edge and area effects on the occurrence of migrant forest songbirds

    USGS Publications Warehouse

    Parker, T.H.; Stansberry, B.M.; Becker, C.D.; Gipson, P.S.

    2005-01-01

    Concerns about forest fragmentation and its conservation implications have motivated numerous studies that investigate the influence of forest patch area and forest edge on songbird distribution patterns. The generalized effects of forest patch size and forest edge on animal distributions is still debatable because forest patch size and forest edge are often confounded and because of an incomplete synthesis of available data. To fill a portion of this gap, we incorporated all available published data (33 papers) in meta-analyses of forest edge and area effects on site occupancy patterns for 26 Neotropical migrant forest-nesting songbirds in eastern North America. All reported area effects are confounded or potentially confounded by edge effects, and we refer to these as "confounded" studies. The converse, however, is not true and most reported edge effects are independent of patch area. When considering only nonconfounded studies of edge effects, only 1 of 17 species showed significant edge avoidance and 3 had significant affinity for edges. In confounded studies, 12 of 22 species showed significant avoidance of small patches and edges, and 1 had an affinity for small patches and edges. Furthermore, average effect sizes averaged across studies or species tended to be higher for confounded studies than for edge studies. We discuss three possible reasons for differences in results between these two groups of studies. First, studies of edge effects tended to be carried out in landscapes with greater forest cover than studies of confounded effects; among confounded effects studies, as forest cover increased, we observed a nonsignificant trend towards decreasing strength of small patch or edge avoidance effects. Thus, the weaker effects in edge studies may be due to the fact that these studies were conducted in forest-dominated landscapes. Second, we may have detected strong effects only in confounded studies because area effects are much stronger than edge effects on bird occurrence, and area effects drive the results in confounded studies. Third, edge and area effects may interact in such a way that edge effects become more important as forest patch size decreases; thus, both edge and area effects are responsible for results in confounded studies. These three explanations cannot be adequately separated with existing data. Regardless, it is clear that fragmentation of forests into small patches is detrimental to many migrant songbird species. ??2005 Society for Conservation Biology.

  2. Forest edges: Effects on vegetation, environmental gradients and local avian communities in the Sierra Juarez, Oaxaca, Mexico

    NASA Astrophysics Data System (ADS)

    Burcsu, Theresa Katherine

    Edge effects are among the most serious threats to forest integrity because as global forest cover decreases overall, forest edge influence increases proportionally, driving habitat change and loss. Edge effects occur at the division between adjacent habitat types. Our understanding of edge effects comes mainly from tropical wet, temperate and boreal forests. Because forest structure in moisture-limited forests differs from wetter forest types, edge dynamics are likely to differ as well. Moreover, dry forests in the tropics have been nearly eliminated or exist only as forest fragments, making edge influence an important conservation and management concern for remaining dry forests. This study addresses this gap in the edge influence knowledge by examining created, regenerating edges associated with forest management in a seasonally dry pine-oak forest of Oaxaca, creating a new data point in edge effects research. In this study I used Landsat TM imagery and a modified semivariance analysis to estimate the distance of edge influence for vegetation. I also used field methods to characterize forest structure and estimate edge influence on canopy and subcanopy vegetation. To finalize the project I extended the study to bird assemblages to identify responses and habitat preferences to local-scale changes associated with regenerating edges created by group-selection timber harvest. Remote sensing analysis estimated that the distance of edge influence was 30-90 m from the edge. Vegetation analysis suggested that edge effects were weak relative to wetter forest types and that remote sensing data did not provide an estimate that was directly applicable to field-measured vegetative edge effects. The bird assemblages likewise responded weakly to habitat change associated with edge effect. Open canopy structure, simple vertical stratigraphy, and topographic variation create forest conditions in which small openings do not create a high contrast to undisturbed forest. Thus, in this seasonally dry, open forest, vegetation and bird communities respond less to small openings than they do in wetter, more closed-canopy forests. Management practices and historical land-use interact and interfere with the detectability of edge influence in our study area. These results support hypotheses proposed for open forest types and suggest that patterns in edge influence in wet forest types may not be applicable to dry sites.

  3. Discriminating the Drivers of Edge Effects on Nest Predation: Forest Edges Reduce Capture Rates of Ship Rats (Rattus rattus), a Globally Invasive Nest Predator, by Altering Vegetation Structure

    PubMed Central

    Ruffell, Jay; Didham, Raphael K.; Barrett, Paul; Gorman, Nic; Pike, Rhonda; Hickey-Elliott, Andrée; Sievwright, Karin; Armstrong, Doug P.

    2014-01-01

    Forest edges can strongly affect avian nest success by altering nest predation rates, but this relationship is inconsistent and context dependent. There is a need for researchers to improve the predictability of edge effects on nest predation rates by examining the mechanisms driving their occurrence and variability. In this study, we examined how the capture rates of ship rats, an invasive nest predator responsible for avian declines globally, varied with distance from the forest edge within forest fragments in a pastoral landscape in New Zealand. We hypothesised that forest edges would affect capture rates by altering vegetation structure within fragments, and that the strength of edge effects would depend on whether fragments were grazed by livestock. We measured vegetation structure and rat capture rates at 488 locations ranging from 0–212 m from the forest edge in 15 forest fragments, seven of which were grazed. Contrary to the vast majority of previous studies of edge effects on nest predation, ship rat capture rates increased with increasing distance from the forest edge. For grazed fragments, capture rates were estimated to be 78% lower at the forest edge than 118 m into the forest interior (the farthest distance for grazed fragments). This relationship was similar for ungrazed fragments, with capture rates estimated to be 51% lower at the forest edge than 118 m into the forest interior. A subsequent path analysis suggested that these ‘reverse’ edge effects were largely or entirely mediated by changes in vegetation structure, implying that edge effects on ship rats can be predicted from the response of vegetation structure to forest edges. We suggest the occurrence, strength, and direction of edge effects on nest predation rates may depend on edge-driven changes in local habitat when the dominant predator is primarily restricted to forest patches. PMID:25412340

  4. Discriminating the drivers of edge effects on nest predation: forest edges reduce capture rates of ship rats (Rattus rattus), a globally invasive nest predator, by altering vegetation structure.

    PubMed

    Ruffell, Jay; Didham, Raphael K; Barrett, Paul; Gorman, Nic; Pike, Rhonda; Hickey-Elliott, Andrée; Sievwright, Karin; Armstrong, Doug P

    2014-01-01

    Forest edges can strongly affect avian nest success by altering nest predation rates, but this relationship is inconsistent and context dependent. There is a need for researchers to improve the predictability of edge effects on nest predation rates by examining the mechanisms driving their occurrence and variability. In this study, we examined how the capture rates of ship rats, an invasive nest predator responsible for avian declines globally, varied with distance from the forest edge within forest fragments in a pastoral landscape in New Zealand. We hypothesised that forest edges would affect capture rates by altering vegetation structure within fragments, and that the strength of edge effects would depend on whether fragments were grazed by livestock. We measured vegetation structure and rat capture rates at 488 locations ranging from 0-212 m from the forest edge in 15 forest fragments, seven of which were grazed. Contrary to the vast majority of previous studies of edge effects on nest predation, ship rat capture rates increased with increasing distance from the forest edge. For grazed fragments, capture rates were estimated to be 78% lower at the forest edge than 118 m into the forest interior (the farthest distance for grazed fragments). This relationship was similar for ungrazed fragments, with capture rates estimated to be 51% lower at the forest edge than 118 m into the forest interior. A subsequent path analysis suggested that these 'reverse' edge effects were largely or entirely mediated by changes in vegetation structure, implying that edge effects on ship rats can be predicted from the response of vegetation structure to forest edges. We suggest the occurrence, strength, and direction of edge effects on nest predation rates may depend on edge-driven changes in local habitat when the dominant predator is primarily restricted to forest patches.

  5. Forests on the edge: Microenvironmental drivers of carbon cycle response to edge effects

    NASA Astrophysics Data System (ADS)

    Reinmann, A.; Hutyra, L.; Smith, I. A.; Thompson, J.

    2017-12-01

    Twenty percent of the world's forest is within 100 m of a forest edge, but much of our understanding of forest carbon (C) cycling comes from large, intact ecosystems, which creates an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest is the most heavily fragmented forest biome in the world and its growth and carbon storage responses to forest edge effects appear to be the opposite of those in the tropical and boreal regions. We used field measurements to quantify the drivers of temperate forest C cycling response to edge effects, characterizing vegetative growth, respiration, and forest structure. We find large gradients in air and soil temperature from the forest interior to edge (up to 4 and 10° C, respectively) and the magnitude of this gradient is inversely correlated to the size of the forest edge growth enhancement. Further, leaf area index increases with proximity to the forest edge. While we also find increases in soil respiration between the forest interior and edge, this flux is small relative to aboveground growth enhancement near the edge. These findings represent an important advancement in our understanding of forest C cycle response to edge effects and will greatly improve our capacity to constrain biogenic C fluxes in fragmented and heterogeneous landscapes.

  6. Piecing together the fragments: Elucidating edge effects on forest carbon dynamics

    NASA Astrophysics Data System (ADS)

    Hutyra, L.; Smith, I. A.; Reinmann, A.; Marrs, J.; Thompson, J.

    2017-12-01

    Forest fragmentation is pervasive throughout the world's forests, impacting growing conditions and carbon dynamics through edge effects that produce gradients in microclimate, biogeochemistry, and stand structure. Despite the majority of the world's forests being <1km from an edge, our understanding of forest carbon dynamics is largely derived from intact forest systems. In the northeastern USA, we find that over 23% of the current forest area is just 30m from an agricultural or developed edge. Edge effects on the carbon cycle vary in their magnitude by biome, but current forest carbon accounting methods and ecosystem models largely do not include edge effects, highlighting an important gap in our understanding of the terrestrial carbon cycle. Characterizing the role of forest fragmentation in regional and global biogeochemical cycles necessitates advancing our understanding of how shifts in microenvironment at the forest edge interact with local prevailing drivers of global change and limitations to microbial activity and forest growth. This study synthesizes the literature related to edge effects and the carbon cycle, considering how fragmentation affects the growing conditions of the world's remaining forests based on risks and opportunities for forests near the edge.

  7. Quantifying edge effect extent and its impacts on carbon stocks across a degraded landscape in the Amazon using airborne lidar.

    NASA Astrophysics Data System (ADS)

    dos-Santos, M. N.; Keller, M.; Morton, D. C.; Longo, M.; Scaranello, M. A., Sr.; Pinagé, E. R.; Correa Pabon, R.

    2017-12-01

    Ongoing tropical forest degradation and forest fragmentation increases forest edge area. Forest edges experience hotter, drier, and windier conditions and greater exposure to fires compared to interior areas, which elevate rates of tree mortality. Previous studies have suggested that forests within 100 m from the edge may lose 36% of biomass during the first two decades following fragmentation, although such estimates are based on a limited number of experimental plots. Degraded forests behave differently from intact forests and quantifying edge effect extension in a degraded forest landscape is more challenging compared to experimental studies. To overcome these limitations, we used airborne lidar data to quantify changes in forest structure near 91 edges in a heavily degraded tropical forest in Paragominas Municipality, eastern Brazilian Amazon. Paragominas was a center of timber production in the 1990s. Today, the landscape is a mosaic of different agricultural uses, degraded, secondary and unmanaged forests. A total of 3000 ha of high density (mean density of 17.9 points/m2) lidar data were acquired in August/September 2013 and June/July 2014 over 30 transects (200 x 5000m), systematically distributed over the study area, using the Optech Orion M-200 laser scanning system. We adopted lidar-measured forest heights as the edge effect criteria and found that mean extent of edge effect was highly variable across degraded forests (150 ± 354m) and secondary forest fragments (265 ± 365m). We related the extent of forest edges to the historical disturbances identified in Landsat imagery since 1984. Contrary to previous studies, we found that carbon stocks along forest edges were not significantly lower than forest core biomass when edges were defined by previously estimated range of 100 and 300m. In frontier forests, ecological edge effect may be masked by the cumulative impact of historic forest degradation - an anthropogenic edge effect that extends beyond the scale of changes in forest microclimate from fragmentation.

  8. Spatial and temporal patterns of microclimates at an urban forest edge and their management implications.

    PubMed

    Li, Yingnan; Kang, Wanmo; Han, Yiwen; Song, Youngkeun

    2018-01-23

    Fragmented forests generate a variety of forest edges, leading to microclimates in the edge zones that differ from those in the forest interior. Understanding microclimatic variation is an important consideration for managers because it helps when making decisions about how to restrict the extent of edge effects. Thus, our study attempted to characterize the changing microclimate features at an urban forest edge located on Mt. Gwanak, Seoul, South Korea. We examined edge effects on air temperature, relative humidity, soil temperature, soil moisture, and photosynthetically active radiation (PAR) during the hottest three consecutive days in August 2016. Results showed that each variable responded differently to the edge effects. This urban forest edge had an effect on temporal changes at a diurnal scale in all microclimate variables, except soil moisture. In addition, all variables except relative humidity were significantly influenced by the edge effect up to 15 m inward from the forest boundary. The relative humidity fluctuated the most and showed the deepest extent of the edge effect. Moreover, the edge widths calculated from the relative humidity and air temperature both peaked in the late afternoon (16:00 h). Our findings provide a reference for forest managers in designing urban forest zones and will contribute to the conservation of fragmented forests in urban areas.

  9. Comparison of forest edge effects on throughfall deposition in different forest types.

    PubMed

    Wuyts, Karen; De Schrijver, An; Staelens, Jeroen; Gielis, Leen; Vandenbruwane, Jeroen; Verheyen, Kris

    2008-12-01

    This study examined the influence of distance to the forest edge, forest type, and time on Cl-, SO4(2-), NO3(-), and NH4+ throughfall deposition in forest edges. The forests were dominated by pedunculate oak, silver birch, or Corsican/Austrian pine, and were situated in two regions of Flanders (Belgium). Along transects, throughfall deposition was monitored at distances of 0-128 m from the forest edge. A repeated-measures analysis demonstrated that time, forest type, and distance to the forest edge significantly influenced throughfall deposition of the ions studied. The effect of distance to the forest edge depended significantly on forest type in the deposition of Cl-, SO4(2-), and NO3(-): the edge effect was significantly greater in pine stands than in deciduous birch and oak stands. This finding supports the possibility of converting pine plantations into oak or birch forests in order to mitigate the input of nitrogen and potentially acidifying deposition.

  10. Temperate forest fragments maintain aboveground carbon stocks out to the forest edge despite changes in community composition.

    PubMed

    Ziter, Carly; Bennett, Elena M; Gonzalez, Andrew

    2014-11-01

    Edge effects are among the primary mechanisms by which forest fragmentation can influence the link between biodiversity and ecosystem processes, but relatively few studies have quantified these mechanisms in temperate regions. Carbon storage is an important ecosystem function altered by edge effects, with implications for climate change mitigation. Two opposing hypotheses suggest that aboveground carbon (AGC) stocks at the forest edge will (a) decrease due to increased tree mortality and compositional shifts towards smaller, lower wood density species (e.g., as seen in tropical systems) or, less often, (b) increase due to light/temperature-induced increases in diversity and productivity. We used field-based measurements, allometry, and mixed models to investigate the effects of proximity to the forest edge on AGC stocks, species richness, and community composition in 24 forest fragments in southern Quebec. We also asked whether fragment size or connectivity with surrounding forests altered these edge effects. AGC stocks remained constant across a 100 m edge-to-interior gradient in all fragment types, despite changes in tree community composition and stem density consistent with expectations of forest edge effects. We attribute this constancy primarily to compensatory effects of small trees at the forest edge; however, it is due in some cases to the retention of large trees at forest edges, likely a result of forest management. Our results suggest important differences between temperate and tropical fragments with respect to mechanisms linking biodiversity and AGC dynamics. Small temperate forest fragments may be valuable in conservation efforts based on maintaining biodiversity and multiple ecosystem services.

  11. Edge effects on moisture reduce wood decomposition rate in a temperate forest.

    PubMed

    Crockatt, Martha E; Bebber, Daniel P

    2015-02-01

    Forests around the world are increasingly fragmented, and edge effects on forest microclimates have the potential to affect ecosystem functions such as carbon and nutrient cycling. Edges tend to be drier and warmer due to the effects of insolation, wind, and evapotranspiration and these gradients can penetrate hundreds of metres into the forest. Litter decomposition is a key component of the carbon cycle, which is largely controlled by saprotrophic fungi that respond to variation in temperature and moisture. However, the impact of forest fragmentation on litter decay is poorly understood. Here, we investigate edge effects on the decay of wood in a temperate forest using an experimental approach, whereby mass loss in wood blocks placed along 100 m transects from the forest edge to core was monitored over 2 years. Decomposition rate increased with distance from the edge, and was correlated with increasing humidity and moisture content of the decaying wood, such that the decay constant at 100 m was nearly twice that at the edge. Mean air temperature decreased slightly with distance from the edge. The variation in decay constant due to edge effects was larger than that expected from any reasonable estimates of climatic variation, based on a published regional model. We modelled the influence of edge effects on the decay constant at the landscape scale using functions for forest area within different distances from edge across the UK. We found that taking edge effects into account would decrease the decay rate by nearly one quarter, compared with estimates that assumed no edge effect. © 2014 John Wiley & Sons Ltd.

  12. Inverted edge effects on carbon stocks in human-dominated landscapes

    NASA Astrophysics Data System (ADS)

    Romitelli, I.; Keller, M.; Vieira, S. A.; Metzger, J. P.; Reverberi Tambosi, L.

    2017-12-01

    Although the importance of tropical forests to regulate greenhouse gases is well documented, little is known about what factors affect the ability of these forests to store carbon in human-dominated landscapes. Among those factors, the landscape structure, particularly the amount of forest cover, the type of matrix and edge effects, can have important roles. We tested how carbon stock is influenced by a combination of factors of landscape composition (pasture and forest cover), landscape configuration (edge effect) and relief factors (slope, elevation and aspect). To test those relationships, we performed a robust carbon stock estimation with inventory and LiDAR data in human-dominated landscapes from the Brazilian Atlantic forest region. The study area showed carbon stock mean 45.49 ± 9.34 Mg ha-1. The interaction between forest cover, edge effect and slope was the best combination explanatory of carbon stock. We observed an inverted edge effect pattern where carbon stock is higher close to the edges of the studied secondary forests. This inverted edge effect observed contradicts the usual pattern reported in the literature for mature forests. We suppose this pattern is related with a positive effect that edge conditions can have stimulating forest regeneration, but the underlying processes to explain the observed pattern should still be tested. Those results suggest that Carbon stocks in human-dominated and fragmented landscapes can be highly affected by the landscape structure, and particularly that edges conditions can favor carbon sequestration in regenerating tropical forests.

  13. The influence of anthropogenic edge effects on primate populations and their habitat in a fragmented rainforest in Costa Rica.

    PubMed

    Bolt, Laura M; Schreier, Amy L; Voss, Kristofor A; Sheehan, Elizabeth A; Barrickman, Nancy L; Pryor, Nathaniel P; Barton, Matthew C

    2018-05-01

    When a forest is fragmented, this increases the amount of forest edge relative to the interior. Edge effects can lead to loss of animal and plant species and decreased plant biomass near forest edges. We examined the influence of an anthropogenic forest edge comprising cattle pasture, coconut plantations, and human settlement on the mantled howler (Alouatta palliata), white-faced capuchin (Cebus capucinus), Central American spider monkey (Ateles geoffroyi), and plant populations at La Suerte Biological Research Station (LSBRS), Costa Rica. We predicted that there would be lower monkey encounter rate, mean tree species richness, and diameter at breast height (DBH) in forest edge versus interior, and that monkeys would show species-specific responses to edge based on diet, body size, and canopy height preferences. Specifically, we predicted that howler monkeys would show positive or neutral edge effects due to their flexible folivorous diet, large body size, and preference for high canopy, capuchins would show positive edge effects due to their diverse diet, small body size, and preference for low to middle canopy, and spider monkeys would show negative edge effects due their reliance on ripe fruit, large body size, and preference for high upper canopy. We conducted population and vegetation surveys along edge and interior transects at LSBRS. Contrary to predictions, total monkey encounter rate did not vary between the forest edge and forest interior. Furthermore, all three species showed neutral edge effects with no significant differences in encounter rate between forest edge and interior. Interior transects had significantly higher mean tree species richness than edge transects, and interior trees had greater DBH than edge trees, although this difference was not significant. These results suggest that forest edges negatively impact plant populations at La Suerte but that the monkeys are able to withstand these differences in vegetation.

  14. Stemflow Acid Neutralization Capacity in a Broadleaved Deciduous Forest: The Role of Edge Effects

    NASA Astrophysics Data System (ADS)

    Levia, D. F., Jr.; Shiklomanov, A.

    2014-12-01

    The fragmentation of forests is occurring at an accelerated rate in parts of the United States. Forest fragmentation creates edge habitat that affects the biogeochemistry of forests. Atmospheric deposition is known to increase at the forest edge in comparison to the forest interior. Past research has demonstrated the critical role of edge effects on throughfall chemistry but no known work has examined the relationship between stemflow chemistry and edge effects. To fill this data gap, we quantified the stemflow acid neutralization capacity (ANC) of nineteen Liriodendron tulipifera L. (yellow poplar) trees between forest edge and interior locations in the Piedmont of the mid-Atlantic USA. ANC was measured directly by potentiometric titration. Both stemflow pH and ANC were higher for L. tulipifera trees on the forest edge as opposed to those in interior locations (p < 0.01), although marked variability was observed among individual trees. It is critical to note that the ANC of stemflow of edge trees is almost certainly contextual, depending on geographic locality. This is to say that stemflow from edge trees may neutralize acid inputs in some locations (as in our case) but lead to enhanced acidification of aqueous inputs to forest soils in other locales where the dry deposition of acid anions is high. The experimental results have ramifications for forest management schema seeking to increase or decrease the extent of edge habitat in forest fragments.

  15. Fragmentation impairs the microclimate buffering effect of tropical forests.

    PubMed

    Ewers, Robert M; Banks-Leite, Cristina

    2013-01-01

    Tropical forest species are among the most sensitive to changing climatic conditions, and the forest they inhabit helps to buffer their microclimate from the variable climatic conditions outside the forest. However, habitat fragmentation and edge effects exposes vegetation to outside microclimatic conditions, thereby reducing the ability of the forest to buffer climatic variation. In this paper, we ask what proportion of forest in a fragmented ecosystem is impacted by altered microclimate conditions driven by edge effects, and extrapolate these results to the whole Atlantic Forest biome, one of the most disturbed biodiversity hotspots. To address these questions, we collected above and below ground temperature for a full year using temperature sensors placed in forest fragments of different sizes, and at different distances from the forest edge. In the Atlantic forests of Brazil, we found that the buffering effect of forests reduced maximum outside temperatures by one third or more at ground level within a forest, with the buffering effect being stronger below-ground than one metre above-ground. The temperature buffering effect of forests was, however, reduced near forest edges with the edge effect extending up to 20 m inside the forest. The heavily fragmented nature of the Brazilian Atlantic forest means that 12% of the remaining biome experiences altered microclimate conditions. Our results add further information about the extent of edge effects in the Atlantic Forest, and we suggest that maintaining a low perimeter-to-area ratio may be a judicious method for minimizing the amount of forest area that experiences altered microclimatic conditions in this ecosystem.

  16. Fragmentation Impairs the Microclimate Buffering Effect of Tropical Forests

    PubMed Central

    Ewers, Robert M.; Banks-Leite, Cristina

    2013-01-01

    Background Tropical forest species are among the most sensitive to changing climatic conditions, and the forest they inhabit helps to buffer their microclimate from the variable climatic conditions outside the forest. However, habitat fragmentation and edge effects exposes vegetation to outside microclimatic conditions, thereby reducing the ability of the forest to buffer climatic variation. In this paper, we ask what proportion of forest in a fragmented ecosystem is impacted by altered microclimate conditions driven by edge effects, and extrapolate these results to the whole Atlantic Forest biome, one of the most disturbed biodiversity hotspots. To address these questions, we collected above and below ground temperature for a full year using temperature sensors placed in forest fragments of different sizes, and at different distances from the forest edge. Principal Findings In the Atlantic forests of Brazil, we found that the buffering effect of forests reduced maximum outside temperatures by one third or more at ground level within a forest, with the buffering effect being stronger below-ground than one metre above-ground. The temperature buffering effect of forests was, however, reduced near forest edges with the edge effect extending up to 20 m inside the forest. The heavily fragmented nature of the Brazilian Atlantic forest means that 12% of the remaining biome experiences altered microclimate conditions. Conclusions Our results add further information about the extent of edge effects in the Atlantic Forest, and we suggest that maintaining a low perimeter-to-area ratio may be a judicious method for minimizing the amount of forest area that experiences altered microclimatic conditions in this ecosystem. PMID:23483976

  17. Edge effects and their influence on lemur density and distribution in Southeast Madagascar.

    PubMed

    Lehman, Shawn M; Rajaonson, Andry; Day, Sabine

    2006-02-01

    Edge effects are caused by the penetration of abiotic and biotic conditions from the matrix into forest interiors. Although edge effects influence the biogeography of many tropical organisms, they have not been studied directly in primates. Edge effects are particularly relevant to lemurs due to the loss of 80-90% of forests in Madagascar. In this study, data are presented on how biotic edge effects influenced the distribution and density of lemurs in the Vohibola III Classified Forest in southeastern Madagascar. In total, 415 lemur surveys were conducted during June-October 2003 and May-September 2004 along six 1,250-m transects that ran perpendicular to the forest edge. Data were also collected on lemur food trees along the six transects (density, height, diameter at breast height, area, volume, and distance to forest edge). Four nocturnal species (Avahi laniger, Cheirogaleus major, Lepilemur microdon, and Microcebus rufus) and four diurnal species (Eulemur rubriventer, Eulemur fulvus rufus, Hapalemur grisesus griseus, and Propithecus diadema edwardsi) were sighted during surveys. Regression analyses of lemur densities as a function of distance to forest edge provided edge tolerances for A. laniger (edge-tolerant), M. rufus (edge-tolerant), E. rubriventer (edge-tolerant or omnipresent), and H. g. griseus (omnipresent). The density and distribution of M. rufus and their foods trees were correlated. Edge-related variations in food quality and predation pressures may also be influencing lemurs in Vohibola III. Tolerance for edge effects may explain, in part, how lemurs have survived extreme habitat loss and forest fragmentation in southeastern Madagascar.

  18. Roads as edges: Effects on birds in forested landscapes

    Treesearch

    Yvette K. Ortega; David E. Capen

    2002-01-01

    Numerous studies have documented that forest edges affect habitat use and reproductive success of forest birds, but few studies have considered edges created by narrow breaks in the forest canopy. We compared predation rates on artificial nests placed within forest habitat along edge transects, 10 m from unpaved roads, and along interior transects, 300 m from forest-...

  19. Variation in throughfall deposition across a deciduous beech (Fagus sylvatica L.) forest edge in Flanders.

    PubMed

    Devlaeminck, Rebecca; De Schrijver, An; Hermy, Martin

    2005-01-20

    Throughfall deposition and canopy exchange of acidifying and eutrophying compounds and major base cations were studied by means of throughfall analysis in a deciduous beech (Fagus sylvatica L.) forest edge in Belgium over a period of 1 year. Throughfall fluxes of Cl(-), NH(4)(+) and Na(+) were significantly elevated at the forest edge compared to the forest interior. As no edge effect on throughfall water volume could be detected, the observed edge enhancement effects were mainly due to dry deposition and canopy exchange patterns. Indeed, there was an elevated dry deposition of Cl(-), Na(+), K(+), Ca(2+) and Mg(2+) up to 50 m from the field/forest border. Within the forest, throughfall and dry deposition of SO(4)(2-) were highly variable and no significant differences were observed between the forest edge and the forest interior. Leaching of K(+) and Ca(2+) was reduced in the forest edge up to a distance of 30 m from the border. The measured nitrogen and acidic depositions far exceeded the current Flemish critical loads with respect to the protection of biodiversity in forests, especially at the forest edge. This points to an urgent need for controlling emissions as well as the need to consider the elevated deposition load in forest edges when calculating the critical loads in forests.

  20. Carbon emissions from deforestation and forest fragmentation in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Numata, Izaya; Cochrane, Mark A.; Souza, Carlos M., Jr.; Sales, Marcio H.

    2011-10-01

    Forest-fragmentation-related edge effects are one of the major causes of forest degradation in Amazonia and their spatio-temporal dynamics are highly influenced by annual deforestation patterns. Rapid biomass collapse due to edge effects in forest fragments has been reported in the Brazilian Amazon; however the collective impacts of this process on Amazonian carbon fluxes are poorly understood. We estimated biomass loss and carbon emissions from deforestation and forest fragmentation related to edge effects on the basis of the INPE (Brazilian National Space Research Institute) PRODES deforestation data and forest biomass volume data. The areas and ages of edge forests were calculated annually and the corresponding biomass loss and carbon emissions from these forest edges were estimated using published rates of biomass decay and decomposition corresponding to the areas and ages of edge forests. Our analysis estimated carbon fluxes from deforestation (4195 Tg C) and edge forest (126-221 Tg C) for 2001-10 in the Brazilian Amazon. The impacts of varying rates of deforestation on regional forest fragmentation and carbon fluxes were also investigated, with the focus on two periods: 2001-5 (high deforestation rates) and 2006-10 (low deforestation rates). Edge-released carbon accounted for 2.6-4.5% of deforestation-related carbon emissions. However, the relative importance of carbon emissions from forest fragmentation increased from 1.7-3.0% to 3.3-5.6% of the respective deforestation emissions between the two contrasting deforestation rates. Edge-related carbon fluxes are of increasing importance for basin-wide carbon accounting, especially as regards ongoing reducing emissions from deforestation and forest degradation (REDD) efforts in Brazilian Amazonia.

  1. Dynamic anthropogenic edge effects on the distribution and diversity of fungi in fragmented old-growth forests.

    PubMed

    Ruete, Alejandro; Snäll, Tord; Jönsson, Mari

    2016-07-01

    Diversity patterns and dynamics at forest edges are not well understood. We disentangle the relative importance of edge-effect variables on spatio-temporal patterns in species richness and occupancy of deadwood-dwelling fungi in fragmented old-growth forests. We related richness and log occupancy by 10 old-growth forest indicator fungi and by two common fungi to log conditions in natural and anthropogenic edge habitats of 31 old-growth Picea abies forest stands in central Sweden. We compared edge-to-interior gradients (100 m) to the forest interior (beyond 100 m), and we analyzed stand-level changes after 10 yr. Both richness and occupancy of logs by indicator species was negatively related to adjacent young clear-cut edges, but this effect decreased with increasing clear-cut age. The occupancy of logs by indicator species also increased with increasing distance to the natural edges. In contrast, the occupancy of logs by common species was positively related or unrelated to distance to clear-cut edges regardless of the edge age, and this was partly explained by fungal specificity to substrate quality. Stand-level mean richness and mean occupancy of logs did not change for indicator or common species over a decade. By illustrating the importance of spatial and temporal dimensions of edge effects, we extend the general understanding of the distribution and diversity of substrate-confined fungi in fragmented old-growth forests. Our results highlight the importance of longer forest rotation times adjacent to small protected areas and forest set-asides, where it may take more than 50 yr for indicator species richness levels to recover to occupancy levels observed in the forest interior. Also, non-simultaneous clear-cutting of surrounding productive forests in a way that reduces the edge effect over time (i.e., dynamic buffers) may increase the effective core area of small forest set-asides and improve their performance on protecting species of special concern for conservation. © 2016 by the Ecological Society of America.

  2. Edge effects on growth and biomass partitioning of an Amazonian understory herb (Heliconia acuminata; Heliconiaceae).

    PubMed

    Bruna, Emilio M; de Andrade, Ana Segalin

    2011-10-01

    After deforestation, environmental changes in the remaining forest fragments are often most intense near the forest edge, but few studies have evaluated plant growth or plasticity of plant growth in response to edge effects. In a 2-year common garden experiment, we compared biomass allocation and growth of Heliconia acuminata with identical genotypes grown in 50 × 35 m common gardens on a 25-year-old edge and in a forest interior site. Genetically identical plants transplanted to the forest edge and understory exhibited different patterns of growth and biomass allocation. However, individuals with identical genotypes in the same garden often had very different responses. Plants on forest edges also had higher growth rates and increased biomass at the end of the experiment, almost certainly due to the increased light on the forest edge. With over 70000 km of forest edge created annually in the Brazilian Amazon, phenotypic plasticity may play an important role in mediating plant responses to these novel environmental conditions.

  3. A model for managing edge effects in harvest scheduling using spatial optimization

    Treesearch

    Kai L. Ross; Sándor F. Tóth

    2016-01-01

    Actively managed forest stands can create new forest edges. If left unchecked over time and across space, forest operations such as clear-cuts can create complex networks of forest edges. Newly created edges alter the landscape and can affect many environmental factors. These altered environmental factors have a variety of impacts on forest growth and structure and can...

  4. Natural vegetation cover in the landscape and edge effects: differential responses of insect orders in a fragmented forest.

    PubMed

    González, Ezequiel; Salvo, Adriana; Valladares, Graciela

    2017-10-01

    Human activities have led to global simplification of ecosystems, among which Neotropical dry forests are some of the most threatened. Habitat loss as well as edge effects may affect insect communities. Here, we analyzed insects sampled with pan traps in 9 landscapes (at 5 scales, in 100-500 m diameter circles) comprising cultivated fields and Chaco Serrano forests, at overall community and taxonomic order level. In total 7043 specimens and 456 species of hexapods were captured, with abundance and richness being directly related to forest cover at 500 m and higher at edges in comparison with forest interior. Community composition also varied with forest cover and edge/interior location. Different responses were detected among the 8 dominant orders. Collembola, Hemiptera, and Orthoptera richness and/or abundance were positively related to forest cover at the larger scale, while Thysanoptera abundance increased with forest cover only at the edge. Hymenoptera abundance and richness were negatively related to forest cover at 100 m. Coleoptera, Diptera, and Hymenoptera were more diverse and abundant at the forest edge. The generally negative influence of forest loss on insect communities could have functional consequences for both natural and cultivated systems, and highlights the relevance of forest conservation. Higher diversity at the edges could result from the simultaneous presence of forest and matrix species, although "resource mapping" might be involved for orders that were richer and more abundant at edges. Adjacent crops could benefit from forest proximity since natural enemies and pollinators are well represented in the orders showing positive edge effects. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  5. Edge type affects leaf-level water relations and estimated transpiration of Eucalyptus arenacea.

    PubMed

    Wright, Thomas E; Tausz, Michael; Kasel, Sabine; Volkova, Liubov; Merchant, Andrew; Bennett, Lauren T

    2012-03-01

    While edge effects on tree water relations are well described for closed forests, they remain under-examined in more open forest types. Similarly, there has been minimal evaluation of the effects of contrasting land uses on the water relations of open forest types in highly fragmented landscapes. We examined edge effects on the water relations and gas exchange of a dominant tree (Eucalyptus arenacea Marginson & Ladiges) in an open forest type (temperate woodland) of south-eastern Australia. Edge effects in replicate woodlands adjoined by cleared agricultural land (pasture edges) were compared with those adjoined by 7- to 9-year-old eucalypt plantation with a 25m fire break (plantation edges). Consistent with studies in closed forest types, edge effects were pronounced at pasture edges where photosynthesis, transpiration and stomatal conductance were greater for edge trees than interior trees (75m into woodlands), and were related to greater light availability and significantly higher branch water potentials at woodland edges than interiors. Nonetheless, gas exchange values were only ∼50% greater for edge than interior trees, compared with ∼200% previously found in closed forest types. In contrast to woodlands adjoined by pasture, gas exchange in winter was significantly lower for edge than interior trees in woodlands adjoined by plantations, consistent with shading and buffering effects of plantations on edge microclimate. Plantation edge effects were less pronounced in summer, although higher water use efficiency of edge than interior woodland trees indicated possible competition for water between plantation trees and woodland edge trees in the drier months (an effect that might have been more pronounced were there no firebreak between the two land uses). Scaling up of leaf-level water relations to stand transpiration using a Jarvis-type phenomenological model indicated similar differences between edge types. That is, transpiration was greater at pasture than plantation edges in summer months (most likely due to greater water availability at pasture edges), resulting in significantly greater estimates of annual transpiration at pasture than plantation edges (430 vs. 343lm(-2)year(-1), respectively). Our study highlights the need for landscape-level water flux models to account for edge effects on stand transpiration, particularly in highly fragmented landscapes.

  6. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle

    NASA Astrophysics Data System (ADS)

    Brinck, Katharina; Fischer, Rico; Groeneveld, Jürgen; Lehmann, Sebastian; Dantas de Paula, Mateus; Pütz, Sandro; Sexton, Joseph O.; Song, Danxia; Huth, Andreas

    2017-03-01

    Deforestation in the tropics is not only responsible for direct carbon emissions but also extends the forest edge wherein trees suffer increased mortality. Here we combine high-resolution (30 m) satellite maps of forest cover with estimates of the edge effect and show that 19% of the remaining area of tropical forests lies within 100 m of a forest edge. The tropics house around 50 million forest fragments and the length of the world's tropical forest edges sums to nearly 50 million km. Edge effects in tropical forests have caused an additional 10.3 Gt (2.1-14.4 Gt) of carbon emissions, which translates into 0.34 Gt per year and represents 31% of the currently estimated annual carbon releases due to tropical deforestation. Fragmentation substantially augments carbon emissions from tropical forests and must be taken into account when analysing the role of vegetation in the global carbon cycle.

  7. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest

    PubMed Central

    Catterall, Carla P.; Stork, Nigel E.

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges (<10 m) and interiors (> 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10–20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity. PMID:29494680

  8. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest.

    PubMed

    Stone, Marisa J; Catterall, Carla P; Stork, Nigel E

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges (<10 m) and interiors (> 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10-20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity.

  9. Arthropods on plants in a fragmented Neotropical dry forest: a functional analysis of area loss and edge effects.

    PubMed

    González, Ezequiel; Salvo, Adriana; Valladares, Graciela

    2015-02-01

    Loss and fragmentation of natural ecosystems are widely recognized as the most important threats to biodiversity conservation, with Neotropical dry forests among the most endangered ecosystems. Area and edge effects are major factors in fragmented landscapes. Here, we examine area and edge effects and their interaction, on ensembles of arthropods associated to native vegetation in a fragmented Chaco Serrano forest. We analyzed family richness and community composition of herbivores, predators, and parasitoids on three native plant species in 12 fragments of varying size and at edge/interior positions. We also looked for indicator families by using Indicator Species Analysis. Loss of family richness with the reduction of forest fragment area was observed for the three functional groups, with similar magnitude. Herbivores were richer at the edges without interaction between edge and area effects, whereas predators were not affected by edge/interior position and parasitoid richness showed an interaction between area and position, with a steeper area slope at the edges. Family composition of herbivore, predator, and parasitoid assemblages was also affected by forest area and/or edge/interior situation. We found three indicator families for large remnants and five for edges. Our results support the key role of forest area for conservation of arthropods taxonomic and functional diversity in a highly threatened region, and emphasize the need to understand the interactions between area and edge effects on such diversity. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  10. Landscape-level effects on aboveground biomass of tropical forests: A conceptual framework.

    PubMed

    Melito, Melina; Metzger, Jean Paul; de Oliveira, Alexandre A

    2018-02-01

    Despite the general recognition that fragmentation can reduce forest biomass through edge effects, a systematic review of the literature does not reveal a clear role of edges in modulating biomass loss. Additionally, the edge effects appear to be constrained by matrix type, suggesting that landscape composition has an influence on biomass stocks. The lack of empirical evidence of pervasive edge-related biomass losses across tropical forests highlights the necessity for a general framework linking landscape structure with aboveground biomass. Here, we propose a conceptual model in which landscape composition and configuration mediate the magnitude of edge effects and seed-flux among forest patches, which ultimately has an influence on biomass. Our model hypothesizes that a rapid reduction of biomass can occur below a threshold of forest cover loss. Just below this threshold, we predict that changes in landscape configuration can strongly influence the patch's isolation, thus enhancing biomass loss. Moreover, we expect a synergism between landscape composition and patch attributes, where matrix type mediates the effects of edges on species decline, particularly for shade-tolerant species. To test our conceptual framework, we propose a sampling protocol where the effects of edges, forest amount, forest isolation, fragment size, and matrix type on biomass stocks can be assessed both collectively and individually. The proposed model unifies the combined effects of landscape and patch structure on biomass into a single framework, providing a new set of main drivers of biomass loss in human-modified landscapes. We argue that carbon trading agendas (e.g., REDD+) and carbon-conservation initiatives must go beyond the effects of forest loss and edges on biomass, considering the whole set of effects on biomass related to changes in landscape composition and configuration. © 2017 John Wiley & Sons Ltd.

  11. Edge disturbance drives liana abundance increase and alteration of liana-host tree interactions in tropical forest fragments.

    PubMed

    Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Alamgir, Mohammed; Porolak, Gabriel; Mohandass, D; Laurance, William F

    2018-04-01

    Closed-canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species-conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree-species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0-100-m transect from edge to forest interior) on the liana community and liana-host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana-infested trees, and determinants of the rates of tree infestation within five forest fragments (23-58 ha in area) and five nearby intact-forest sites. Fragmented forests experienced considerable disturbance-induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small-sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low-disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.

  12. Spatial Variation in Transpiration Within a Small Forest Patch in Hoa Binh, Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Giambelluca, T. W.; Ziegler, A. D.; Nullet, M. A.; Dao, T. M.

    2001-12-01

    We conducted measurements of small-scale variations in microclimate and sapflow within and near a small forest patch in Ban Tat Hamlet, Hoa Binh, northern Vietnam. Our observations provide evidence of the influences of surrounding clearings on forest patch microclimate and transpiration. The effects of proximity to the forest edge can be seen in the gradients in temperature, humidity, wind, and soil moisture content. Sapflow measurements in sample trees strongly indicate that transpiration rates are higher near the edge of the patch (edge effect). This effect is seen in the averages for the whole study period, despite infrequent wind flow into the instrumented edge of the patch. Edge effect is observed during both dry and wet periods, but is most apparent on days when solar and net radiation are high, relative humidity is low, or wind direction is from the clearing into the forest edge. These conditions are conducive to high positive heat advection from the clearing to the forest edge. Transpiration in both edge and interior trees is highly correlated with conditions in the clearing. Our results suggest that greater land-cover fragmentation tends to increase regional evaporative flux, i.e. fragmentation of remaining forested areas partly reverses the reduction in regional evaporation due to deforestation. We can infer from the distance-to-edge dependency of transpiration that the magnitude of this regional effect depends on the size, shape, and spatial distribution of landscape patches. It is also likely that the replacement land cover and moisture status of the clearings affect this process. Although we found slightly greater edge effect during the dry period of our observations, it is possible that under more prolonged or severe dry conditions, the soil moisture storage at the forest edge would become depleted leading to a reversal the transpiration pattern. >http://webdata.soc.hawaii.edu/climate/Frags/Frags.html

  13. Variation in Local-Scale Edge Effects: Mechanisms and landscape Context

    Treesearch

    Therese M. Donovan; Peter W. Jones; Elizabeth M. Annand; Frank R. Thompson III

    1997-01-01

    Ecological processes near habitat edges often differ from processes away from edges. Yet, the generality of "edge effects" has been hotly debated because results vary tremendously. To understand the factors responsible for this variation, we described nest predation and cowbird distribution patterns in forest edge and forest core habitats on 36 randomly...

  14. Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

    PubMed

    Santos, Bráulio A; Arroyo-Rodríguez, Víctor; Moreno, Claudia E; Tabarelli, Marcelo

    2010-09-08

    Deforestation and forest fragmentation are known major causes of nonrandom extinction, but there is no information about their impact on the phylogenetic diversity of the remaining species assemblages. Using a large vegetation dataset from an old hyper-fragmented landscape in the Brazilian Atlantic rainforest we assess whether the local extirpation of tree species and functional impoverishment of tree assemblages reduce the phylogenetic diversity of the remaining tree assemblages. We detected a significant loss of tree phylogenetic diversity in forest edges, but not in core areas of small (<80 ha) forest fragments. This was attributed to a reduction of 11% in the average phylogenetic distance between any two randomly chosen individuals from forest edges; an increase of 17% in the average phylogenetic distance to closest non-conspecific relative for each individual in forest edges; and to the potential manifestation of late edge effects in the core areas of small forest remnants. We found no evidence supporting fragmentation-induced phylogenetic clustering or evenness. This could be explained by the low phylogenetic conservatism of key life-history traits corresponding to vulnerable species. Edge effects must be reduced to effectively protect tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

  15. Lemur responses to edge effects in the Vohibola III classified forest, Madagascar.

    PubMed

    Lehman, Shawn M; Rajaonson, Andry; Day, Sabine

    2006-03-01

    Forest edges are dynamic zones characterized by the penetration (to varying depths and intensities) of conditions from the surrounding environment (matrix) into the forest interior. Although edge effects influence many tropical organisms, they have not been studied directly in primates. Edge effects are particularly relevant to lemurs because of the highly fragmented forest landscapes found in Madagascar. In this study, data are presented regarding how the densities of six lemur species (Avahi laniger, Cheirogaleus major, Eulemur rubriventer, Hapalemur griseus griseus, Microcebus rufus, and Propithecus diadema edwardsi) varied between six 500-m interior transects and six 500-m edge transects in the Vohibola III Classified Forest in SE Madagascar. Diurnal (n = 433) and nocturnal (n = 128) lemur surveys were conducted during June-October 2003 and May-November 2004. A. laniger, E. rubriventer, and H. g. griseus exhibited a neutral edge response (no differences in densities between habitats). M. rufus and P. d. edwardsi had a positive edge response (higher densities in edge habitats), which may be related to edge-related variations in food abundance and quality. Positive edge responses by M. rufus and P. d. edwardsi may ultimately be detrimental due to edge-related anthropogenic factors (e.g., hunting by local people). The negative edge response exhibited by C. major (lower densities in edge habitats) may result from heightened ambient temperatures that inhibit torpor in edge habitats.

  16. Positive edge effects on forest-interior cryptogams in clear-cuts.

    PubMed

    Caruso, Alexandro; Rudolphi, Jörgen; Rydin, Håkan

    2011-01-01

    Biological edge effects are often assessed in high quality focal habitats that are negatively influenced by human-modified low quality matrix habitats. A deeper understanding of the possibilities for positive edge effects in matrix habitats bordering focal habitats (e.g. spillover effects) is, however, essential for enhancing landscape-level resilience to human alterations. We surveyed epixylic (dead wood inhabiting) forest-interior cryptogams (lichens, bryophytes, and fungi) associated with mature old-growth forests in 30 young managed Swedish boreal forest stands bordering a mature forest of high conservation value. In each young stand we registered species occurrences on coarse dead wood in transects 0-50 m from the border between stand types. We quantified the effect of distance from the mature forest on the occurrence of forest-interior species in the young stands, while accounting for local environment and propagule sources. For comparison we also surveyed epixylic open-habitat (associated with open forests) and generalist cryptogams. Species composition of epixylic cryptogams in young stands differed with distance from the mature forest: the frequency of occurrence of forest-interior species decreased with increasing distance whereas it increased for open-habitat species. Generalists were unaffected by distance. Epixylic, boreal forest-interior cryptogams do occur in matrix habitats such as clear-cuts. In addition, they are associated with the matrix edge because of a favourable microclimate closer to the mature forest on southern matrix edges. Retention and creation of dead wood in clear-cuts along the edges to focal habitats is a feasible way to enhance the long-term persistence of epixylic habitat specialists in fragmented landscapes. The proposed management measures should be performed in the whole stand as it matures, since microclimatic edge effects diminish as the matrix habitat matures. We argue that management that aims to increase habitat quality in matrix habitats bordering focal habitats should increase the probability of long-term persistence of habitat specialists.

  17. Positive Edge Effects on Forest-Interior Cryptogams in Clear-Cuts

    PubMed Central

    Caruso, Alexandro; Rudolphi, Jörgen; Rydin, Håkan

    2011-01-01

    Biological edge effects are often assessed in high quality focal habitats that are negatively influenced by human-modified low quality matrix habitats. A deeper understanding of the possibilities for positive edge effects in matrix habitats bordering focal habitats (e.g. spillover effects) is, however, essential for enhancing landscape-level resilience to human alterations. We surveyed epixylic (dead wood inhabiting) forest-interior cryptogams (lichens, bryophytes, and fungi) associated with mature old-growth forests in 30 young managed Swedish boreal forest stands bordering a mature forest of high conservation value. In each young stand we registered species occurrences on coarse dead wood in transects 0–50 m from the border between stand types. We quantified the effect of distance from the mature forest on the occurrence of forest-interior species in the young stands, while accounting for local environment and propagule sources. For comparison we also surveyed epixylic open-habitat (associated with open forests) and generalist cryptogams. Species composition of epixylic cryptogams in young stands differed with distance from the mature forest: the frequency of occurrence of forest-interior species decreased with increasing distance whereas it increased for open-habitat species. Generalists were unaffected by distance. Epixylic, boreal forest-interior cryptogams do occur in matrix habitats such as clear-cuts. In addition, they are associated with the matrix edge because of a favourable microclimate closer to the mature forest on southern matrix edges. Retention and creation of dead wood in clear-cuts along the edges to focal habitats is a feasible way to enhance the long-term persistence of epixylic habitat specialists in fragmented landscapes. The proposed management measures should be performed in the whole stand as it matures, since microclimatic edge effects diminish as the matrix habitat matures. We argue that management that aims to increase habitat quality in matrix habitats bordering focal habitats should increase the probability of long-term persistence of habitat specialists. PMID:22114728

  18. Analyzing the edge effects in a Brazilian seasonally dry tropical forest.

    PubMed

    Arruda, D M; Eisenlohr, P V

    2016-02-01

    Due to the deciduous nature of dry forests (widely known as seasonally dry tropical forests) they are subject to microclimatic conditions not experienced in other forest formations. Close examinations of the theory of edge effects in dry forests are still rare and a number of questions arise in terms of this topic. In light of this situation we examined a fragment of the dry forest to respond to the following questions: (I) Are there differences in canopy cover along the edge-interior gradient during the dry season? (II) How does the microclimate (air temperature, soil temperature, and relative humidity) vary along that gradient? (III) How does the microclimate influence tree species richness, evenness and abundance along that gradient? (IV) Are certain tree species more dominant closer to the forest edges? Regressions were performed to address these questions. Their coefficients did not significantly vary from zero. Apparently, the uniform openness of the forest canopy caused a homogeneous internal microclimate, without significant differentiation in habitats that would allow modifications in biotic variables tested. We conclude that the processes of edge effect commonly seen in humid forests, not was shared with the dry forest assessed.

  19. Edge effects on N2O, NO and CH4 fluxes in two temperate forests.

    PubMed

    Remy, Elyn; Gasche, Rainer; Kiese, Ralf; Wuyts, Karen; Verheyen, Kris; Boeckx, Pascal

    2017-01-01

    Forest ecosystems may act as sinks or sources of nitrogen (N) and carbon (C) compounds, such as the climate relevant trace gases nitrous oxide (N 2 O), nitric oxide (NO) and methane (CH 4 ). Forest edges, which catch more atmospheric deposition, have become important features in European landscapes and elsewhere. Here, we implemented a fully automated measuring system, comprising static and dynamic measuring chambers determining N 2 O, NO and CH 4 fluxes along an edge-to-interior transect in an oak (Q. robur) and a pine (P. nigra) forest in northern Belgium. Each forest was monitored during a 2-week measurement campaign with continuous measurements every 2h. NO emissions were 9-fold higher than N 2 O emissions. The fluxes of NO and CH 4 differed between forest edge and interior, but not for N 2 O. This edge effect was more pronounced in the oak than in the pine forest. In the oak forest, edges emitted less NO (on average 60%) and took up more CH 4 (on average 177%). This suggests that landscape structure can play a role in the atmospheric budgets of these climate relevant trace gases. Soil moisture variation between forest edge and interior was a key variable explaining the magnitude of NO and CH 4 fluxes in our measurement campaign. To better understand the environmental impact of N and C trace gas fluxes from forest edges, additional and long-term measurements in other forest edges are required. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Determining the dynamics of evapotranspiration from fragmented forests under drought in southwestern Amazonia using Landsat imagery

    NASA Astrophysics Data System (ADS)

    Numata, I.; Khand, K.; Kjaersgaard, J.; Cochrane, M. A.; Silva, S.

    2016-12-01

    Deforestation in the Amazon has resulted in massive amounts of forest biomass loss and also in extensive forest fragmentation across the region. Fragmented tropical forests are exposed to abrupt environmental changes and experience several biological and ecological changes across distances from forest edges. Extreme droughts in 2005 and 2010 have caused extensive tree mortality across this region. These events may exacerbate edge effects, where already water stressed forest fragments dry more rapidly potentially enabling other disturbances such as forest fire. We analyzed the effects of forest fragmentation and drought on forest evapotranspiration (ET) estimated using the energy balance-based model METRIC with Landsat imagery in Rondônia State in the southwestern Amazon. Forest ET estimates were produced for the dry seasons (June-August) of 2009-2011 thus including the 2010 drought event and pre- and post-event periods. METRIC ET data were combined with forest edge data with edge distances of 100m, 300m, 500m, 1000m, 5000m and >5000m (core forest), generated from Landsat land cover maps for spatiotemporal analysis of forest ET. METRIC ET estimates had an agreement with flux tower ET data from the field of R2 = 0.72. Within the study time period, the 2010 drought year showed the lowest average ET from core forest (2.5mm/day), followed by 2011 (3.0mm/day) and 2009 (3.6mm/day) in the month of August, the mid dry season, while no significant differences were noted among three study years earlier in the dry seasons. In terms of edge effects, the major changes in forest ET occur up to 300 m from the forest edges, with ET decreasees of 30 % at 100 m as compared to further distances. The magnitude of edge-related ET changes became even greater during August of the drought year (2010) and the post-drought year (2011). Annual (drought and non-drought) and seasonal (June-August) forest ET variations were highly significant (p<0.001), while the impact of distance from edge on forest ET was significant only in the drought year (p<0.05).

  1. Edge effects in the primate community of the biological dynamics of Forest Fragments Project, Amazonas, Brazil.

    PubMed

    Lenz, Bryan B; Jack, Katharine M; Spironello, Wilson R

    2014-11-01

    While much is known about abiotic and vegetative edge effects in tropical forests, considerably less is known about the impact of forest edges on large mammals. In this study, we examine edge effects in a primate community to determine: 1) the distance from the edge over which edge effects in primate density are detectable, 2) whether individual species exhibit edge effects in their density, and 3) whether biological characteristics can be used to predict primate presence in edge habitats. Given their importance to many primate species, we also examine the influence of the number of large trees. We found edge penetration distances of 150 m for the five species that experienced edge effects, suggesting that primates respond to edge-related changes in the plant community that are known to be strongest over the first 150 m. Four species had higher edge densities: Alouatta macconnelli (folivore-frugivore), Chiropotes chiropotes (frugivorous seed predator), Saguinus midas (frugivore-faunivore), and Sapajus apella apella (frugivore-faunivore); one species' density was lower: Ateles paniscus (frugivore); and the final species, Pithecia chrysocephala (frugivorous seed predator), did not show an edge-related pattern. The lone significant relationship between the biological characteristics examined (body weight, diet, group size, and home range size) and primate presence in edge habitats was a negative relationship with the amount of fruit consumed. Though we did not examine primate responses to edges that border a denuded matrix, we have shown that edges influence primate distribution even following decades of secondary forest regeneration at habitat edges. © 2014 Wiley Periodicals, Inc.

  2. Edge effects enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests

    PubMed Central

    Reinmann, Andrew B.; Hutyra, Lucy R.

    2017-01-01

    Forest fragmentation is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world’s remaining forest. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge, but ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance. To the extent that the findings from our research represent the forest of southern New England in the United States, we provide a preliminary estimate that edge growth enhancement could increase estimates of the region’s carbon uptake and storage by 13 ± 3% and 10 ± 1%, respectively. However, we also find that forest growth near the edge declines three times faster than that in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world’s other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest. PMID:27994137

  3. Edge effects enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests.

    PubMed

    Reinmann, Andrew B; Hutyra, Lucy R

    2017-01-03

    Forest fragmentation is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge, but ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance. To the extent that the findings from our research represent the forest of southern New England in the United States, we provide a preliminary estimate that edge growth enhancement could increase estimates of the region's carbon uptake and storage by 13 ± 3% and 10 ± 1%, respectively. However, we also find that forest growth near the edge declines three times faster than that in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.

  4. Shifts in Plant Assemblages Reduce the Richness of Galling Insects Across Edge-Affected Habitats in the Atlantic Forest.

    PubMed

    Souza, Danielle G; Santos, Jean C; Oliveira, Marcondes A; Tabarelli, Marcelo

    2016-10-01

    Impacts of habitat loss and fragmentation on specialist herbivores have been rarely addressed. Here we examine the structure of plant and galling insect assemblages in a fragmented landscape of the Atlantic forest to verify a potential impoverishment of these assemblages mediated by edge effects. Saplings and galling insects were recorded once within a 0.1-ha area at habitat level, covering forest interior stands, forest edges, and small fragments. A total of 1,769 saplings from 219 tree species were recorded across all three habitats, with differences in terms of sapling abundance and species richness. Additionally, edge-affected habitats exhibited reduced richness of both host-plant and galling insects at plot and habitat spatial scale. Attack levels also differed among forest types at habitat spatial scale (21.1% of attacked stems in forest interior, 12.4% in small fragments but only 8.5% in forest edges). Plot ordination resulted in three clearly segregated clusters: one formed by forest interior, one by small fragments, and another formed by edge plots. Finally, the indicator species analysis identified seven and one indicator plant species in forest interior and edge-affected habitats, respectively. Consequently, edge effects lead to formation of distinct taxonomic groups and also an impoverished assemblage of plants and galling insects at multiple spatial scales. The results of the present study indicate that fragmentation-related changes in plant assemblages can have a cascade effects on specialist herbivores. Accordingly, hyperfragmented landscapes may not be able to retain an expressive portion of tropical biodiversity. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Beyond edge effects: landscape controls on forest structure in the southeastern US

    NASA Astrophysics Data System (ADS)

    Fagan, M. E.; Morton, D. C.; Cook, B.; Masek, J. G.; Zhao, F. A.; Nelson, R.; Huang, C.

    2016-12-01

    The structure of forest canopies (i.e., their height and complexity) is known to be influenced by a variety of factors, including forest age, species composition, disturbance, edaphic and topographical conditions, and exposure to edge environments. The combined impact of each of these factors on canopy structure is not well characterized for most forest ecosystems, however, which limits our ability to predict the regional impacts of forest fragmentation. The objective of this study was to elucidate the main biophysical drivers of canopy structure across two dominant ecosystems in the southeastern U.S: natural mixed deciduous forests, and industrial conifer plantations. We analyzed spatial changes in canopy structure along aerial transects of LiDAR data ( 3,000 km in all). High-resolution (1 m) LiDAR data from Goddard's LiDAR, Hyperspectral, and Thermal Airborne Imager (G-LiHT) were combined with time series of Landsat imagery to quantify forest type, age, composition, and fragmentation. Forest structural metrics (height, gap fraction, and canopy roughness) were examined across forest types, ages, topography, and decreasing edge exposure. We hypothesized that 1) structural edge effects would be weak in both natural and plantation forest types, and 2) age, composition, and topography would be the dominant influences on natural forest structure. We analyzed all large (>4 ha) fragments from the 8562 distinct forests measured during G-LiHT data collections in 2011 across the southeastern U.S. In general, the relationship between forest structural metrics and edge exposure was highly variable in both natural forests and plantations. However, variability in all structural metrics decreased with distance from an edge. Forest age and topography were strong predictors of canopy structure in natural forests. However plantations tended to be located in sites with limited topographical variation, and thinning disturbances of conifer plantations decreased the strength of the age-structure relationship. We found that canopy structure in our region is influenced by edge effects, but other factors played a larger role in determining forest characteristics. Our results highlight the importance of endogenous, stand-specific processes for forest structure, biomass, and biodiversity in the southeastern U.S.

  6. Mechanisms Driving Galling Success in a Fragmented Landscape: Synergy of Habitat and Top-Down Factors along Temperate Forest Edges

    PubMed Central

    Kelch, Nina-S.; Neves, Frederico S.; Fernandes, G. Wilson

    2016-01-01

    Edge effects play key roles in the anthropogenic transformation of forested ecosystems and their biota, and are therefore a prime field of contemporary fragmentation research. We present the first empirical study to address edge effects on the population level of a widespread galling herbivore in a temperate deciduous forest. By analyzing edge effects on abundance and trophic interactions of beech gall midge (Mikiola fagi Htg.), we found 30% higher gall abundance in the edge habitat as well as lower mortality rates due to decreased top-down control, especially by parasitoids. Two GLM models with similar explanatory power (58%) identified habitat specific traits (such as canopy closure and altitude) and parasitism as the best predictors of gall abundance. Further analyses revealed a crucial influence of light exposure (46%) on top-down control by the parasitoid complex. Guided by a conceptual framework synthesizing the key factors driving gall density, we conclude that forest edge proliferation of M. fagi is due to a complex interplay of abiotic changes and trophic control mechanisms. Most prominently, it is caused by the microclimatic regime in forest edges, acting alone or in synergistic concert with top-down pressure by parasitoids. Contrary to the prevailing notion that specialists are edge-sensitive, this turns M. fagi into a winner species in fragmented temperate beech forests. In view of the increasing proportion of edge habitats and the documented benefits from edge microclimate, we call for investigations exploring the pest status of this galling insect and the modulators of its biological control. PMID:27310599

  7. Where the woodland ends: How edges affect landscape structure and physiological responses of Quercus agrifolia

    NASA Astrophysics Data System (ADS)

    de Chant, Timothy Paul

    Forests and woodlands are integral parts of ecosystems across the globe, but they are threatened by a variety of factors, including urbanization and introduced forest pathogens. These two forces are fundamentally altering ecosystems, both by removing forest cover and reshaping landscapes. Comprehending how these two processes have changed forest ecosystems is an important step toward understanding how the affected systems will function in the future. I investigated the range of edge effects that result from disturbance brought about by forest pathogens and urbanization in two coastal oak woodlands in Marin County, California. Oak woodlands are a dynamic part of California's landscape, reacting to changes in their biotic and abiotic environments across a range of spatial and temporal scales. Sudden Oak Death, caused by the introduced forest pathogen Phytophthora ramorum, has led to widespread mortality of many tree species in California's oak woodlands. I investigated how the remaining trees respond to such rapid changes in canopy structure (Chapter 2), and my results revealed a forest canopy quick to respond to the new openings. Urbanization, another disturbance regime, operates on a longer time scale. Immediately following urban development, forest edges are strikingly linear, but both forest processes and homeowner actions likely work in concert to disrupt the straight edge (Chapter 3). Forest edges grew more sinuous within 14 years of the initial disturbance, and continued to do so for the remainder of the study, another 21 years. Individual Quercus agrifolia trees also respond to urban edges decades after disturbance (Chapter 4), and their reaction is reflected in declining stable carbon isotope values (delta13C). This change suggests trees may have increased their stomatal conductance in response to greater water availability, reduced their photosynthetic rate as a result of stress, or some combination of both. Edges have far reaching and long lasting effects on forest structure and function. Investigations of their impacts on multiple spatial and temporal scales are important in determining the range of effects they have on forest ecosystems. Studies that combine remote sensing, geographic information systems, and field studies may help us understand the ecological consequences of forest edges.

  8. Local and landscape scale factors influencing edge effects on woodland salamanders.

    PubMed

    Moseley, Kurtis R; Ford, W Mark; Edwards, John W

    2009-04-01

    We examined local and landscape-scale variable influence on the depth and magnitude of edge effects on woodland salamanders in mature mixed mesophytic and northern hardwood forest adjacent to natural gas well sites maintained as wildlife openings. We surveyed woodland salamander occurrence from June-August 2006 at 33 gas well sites in the Monongahela National Forest, West Virginia. We used an information-theoretic approach to test nine a priori models explaining landscape-scale effects on woodland salamander capture proportion within 20 m of field edge. Salamander capture proportion was greater within 0-60 m than 61-100 m of field edges. Similarly, available coarse woody debris proportion was greater within 0-60 m than 61-100 m of field edge. Our ASPECT model, that incorporated the single variable aspect, received the strongest support for explaining landscape-scale effects on salamander capture proportion within 20 m of opening edge. The ASPECT model indicated that fewer salamanders occurred within 20 m of opening edges on drier, hotter southwestern aspects than in moister, cooler northeastern aspects. Our results suggest that forest habitat adjacent to maintained edges and with sufficient cover still can provide suitable habitat for woodland salamander species in central Appalachian mixed mesophytic and northern hardwood forests. Additionally, our modeling results support the contention that edge effects are more severe on southwesterly aspects. These results underscore the importance of distinguishing among different edge types as well as placing survey locations within a landscape context when investigating edge impacts on woodland salamanders.

  9. Wild pigs (Sus scrofa) mediate large-scale edge effects in a lowland tropical rainforest in Peninsular Malaysia.

    PubMed

    Fujinuma, Junichi; Harrison, Rhett D

    2012-01-01

    Edge-effects greatly extend the area of tropical forests degraded through human activities. At Pasoh, Peninsular Malaysia, it has been suggested that soil disturbance by highly abundant wild pigs (Sus scrofa), which feed in adjacent Oil Palm plantations, may have mediated the invasion of Clidemia hirta (Melastomataceae) into the diverse tropical lowland rain forest. To investigate this hypothesis, we established three 1 km transects from the forest/Oil Palm plantation boundary into the forest interior. We recorded the distribution of soil disturbance by wild pigs, C. hirta abundance, and environmental variables. These data were analyzed using a hierarchical Bayesian model that incorporated spatial auto-correlation in the environmental variables. As predicted, soil disturbance by wild pigs declined with distance from forest edge and C. hirta abundance was correlated with the level of soil disturbance. Importantly there was no effect of distance on C. hirta abundance, after controlling for the effect of soil disturbance. Clidemia hirta abundance was also correlated with the presence of canopy openings, but there was no significant association between the occurrence of canopy openings and distance from the edge. Increased levels of soil disturbance and C. hirta abundance were still detectable approximately 1 km from the edge, demonstrating the potential for exceptionally large-scale animal mediated edge effects.

  10. Wild Pigs (Sus scrofa) Mediate Large-Scale Edge Effects in a Lowland Tropical Rainforest in Peninsular Malaysia

    PubMed Central

    Fujinuma, Junichi; Harrison, Rhett D.

    2012-01-01

    Edge-effects greatly extend the area of tropical forests degraded through human activities. At Pasoh, Peninsular Malaysia, it has been suggested that soil disturbance by highly abundant wild pigs (Sus scrofa), which feed in adjacent Oil Palm plantations, may have mediated the invasion of Clidemia hirta (Melastomataceae) into the diverse tropical lowland rain forest. To investigate this hypothesis, we established three 1 km transects from the forest/Oil Palm plantation boundary into the forest interior. We recorded the distribution of soil disturbance by wild pigs, C. hirta abundance, and environmental variables. These data were analyzed using a hierarchical Bayesian model that incorporated spatial auto-correlation in the environmental variables. As predicted, soil disturbance by wild pigs declined with distance from forest edge and C. hirta abundance was correlated with the level of soil disturbance. Importantly there was no effect of distance on C. hirta abundance, after controlling for the effect of soil disturbance. Clidemia hirta abundance was also correlated with the presence of canopy openings, but there was no significant association between the occurrence of canopy openings and distance from the edge. Increased levels of soil disturbance and C. hirta abundance were still detectable approximately 1 km from the edge, demonstrating the potential for exceptionally large-scale animal mediated edge effects. PMID:22615977

  11. Edge effects and geometric constraints: a landscape-level empirical test.

    PubMed

    Ribeiro, Suzy E; Prevedello, Jayme A; Delciellos, Ana Cláudia; Vieira, Marcus Vinícius

    2016-01-01

    Edge effects are pervasive in landscapes yet their causal mechanisms are still poorly understood. Traditionally, edge effects have been attributed to differences in habitat quality along the edge-interior gradient of habitat patches, under the assumption that no edge effects would occur if habitat quality was uniform. This assumption was questioned recently after the recognition that geometric constraints tend to reduce population abundances near the edges of habitat patches, the so-called geometric edge effect (GEE). Here, we present the first empirical, landscape-level evaluation of the importance of the GEE in shaping abundance patterns in fragmented landscapes. Using a data set on the distribution of small mammals across 18 forest fragments, we assessed whether the incorporation of the GEE into the analysis changes the interpretation of edge effects and the degree to which predictions based on the GEE match observed responses. Quantitative predictions were generated for each fragment using simulations that took into account home range, density and matrix use for each species. The incorporation of the GEE into the analysis changed substantially the interpretation of overall observed edge responses at the landscape scale. Observed abundances alone would lead to the conclusion that the small mammals as a group have no consistent preference for forest edges or interiors and that the black-eared opossum Didelphis aurita (a numerically dominant species in the community) has on average a preference for forest interiors. In contrast, incorporation of the GEE suggested that the small mammal community as a whole has a preference for forest edges, whereas D. aurita has no preference for forest edges or interiors. Unexplained variance in edge responses was reduced by the incorporation of GEE, but remained large, varying greatly on a fragment-by-fragment basis. This study demonstrates how to model and incorporate the GEE in analyses of edge effects and that this incorporation is necessary to properly interpret edge effects in landscapes. It also suggests that geometric constraints alone are unlikely to explain the variability in edge responses of a same species among different areas, highlighting the need to incorporate other ecological factors into explanatory models of edge effects. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  12. Edge effects resulting from forest fragmentation enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests

    NASA Astrophysics Data System (ADS)

    Reinmann, A.; Hutyra, L.

    2016-12-01

    Forest fragmentation resulting from land use and land cover change is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. However, our understanding of forest carbon dynamics and their response to climate largely comes from unfragmented forest systems, which presents an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink, but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge. These ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance, but across southern New England, USA it increases carbon uptake and storage by 12.5 ± 2.9% and 9.6 ± 1.4%, respectively. However, we also find that forest growth near the edge declines three times faster than in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.

  13. Edge effects on morphometrics and body mass in two sympatric species of mouse lemurs in Madagascar.

    PubMed

    Burke, Ryan J; Lehman, Shawn M

    2014-01-01

    Edge effects are an inevitable and important consequence of forest loss and fragmentation. These effects include changes in species biology and biogeography. Here we examine variations in body mass and morphometrics for 2 sympatric species of mouse lemurs (Microcebus murinus and M. ravelobensis) between edge and interior habitats in the dry deciduous forest at Ankarafantsika National Park. Between May and August 2012, we conducted mark-recapture experiments on mouse lemurs trapped along edge and interior forest transects within continuous forest adjacent to a large savannah. Of the 34 M. murinus captured during our study, 82% (n = 28) were trapped in interior habitats. Conversely, 72% (n = 47) of M. ravelobensis were captured in edge habitats. We found that mean body mass of M. murinus and M. ravelobensis did not differ between edge and interior habitats. However, female M. ravelobensis weighed significantly more in edge habitats (56.09 ± 1.74 g) than in interior habitats (48.14 ± 4.44 g). Our study provides some of the first evidence of sex differences in edge responses for a primate species. © 2015 S. Karger AG, Basel.

  14. Historical harvests reduce neighboring old-growth basal area across a forest landscape.

    PubMed

    Bell, David M; Spies, Thomas A; Pabst, Robert

    2017-07-01

    While advances in remote sensing have made stand, landscape, and regional assessments of the direct impacts of disturbance on forests quite common, the edge influence of timber harvesting on the structure of neighboring unharvested forests has not been examined extensively. In this study, we examine the impact of historical timber harvests on basal area patterns of neighboring old-growth forests to assess the magnitude and scale of harvest edge influence in a forest landscape of western Oregon, USA. We used lidar data and forest plot measurements to construct 30-m resolution live tree basal area maps in lower and middle elevation mature and old-growth forests. We assessed how edge influence on total, upper canopy, and lower canopy basal area varied across this forest landscape as a function of harvest characteristics (i.e., harvest size and age) and topographic conditions in the unharvested area. Upper canopy, lower canopy, and total basal area increased with distance from harvest edge and elevation. Forests within 75 m of harvest edges (20% of unharvested forests) had 4% to 6% less live tree basal area compared with forest interiors. An interaction between distance from harvest edge and elevation indicated that elevation altered edge influence in this landscape. We observed a positive edge influence at low elevations (<800 m) and a negative edge influence at moderate to high elevations (>800 m). Surprisingly, we found no or weak effects of harvest age (13-60 yr) and harvest area (0.2-110 ha) on surrounding unharvested forest basal area, implying that edge influence was relatively insensitive to the scale of disturbance and multi-decadal recovery processes. Our study indicates that the edge influence of past clearcutting on the structure of neighboring uncut old-growth forests is widespread and persistent. These indirect and diffuse legacies of historical timber harvests complicate forest management decision-making in old-growth forest landscapes by broadening the traditional view of stand boundaries. Furthermore, the consequences of forest harvesting may reach across ownership boundaries, highlighting complex governance issues surrounding landscape management of old-growth forests. © 2017 by the Ecological Society of America.

  15. Urbanization impacts on mammals across urban-forest edges and a predictive model of edge effects.

    PubMed

    Villaseñor, Nélida R; Driscoll, Don A; Escobar, Martín A H; Gibbons, Philip; Lindenmayer, David B

    2014-01-01

    With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will allow scientists, managers and planners better understand and predict both species responses across edges and impacts of development in mosaic landscapes.

  16. Urbanization Impacts on Mammals across Urban-Forest Edges and a Predictive Model of Edge Effects

    PubMed Central

    Villaseñor, Nélida R.; Driscoll, Don A.; Escobar, Martín A. H.; Gibbons, Philip; Lindenmayer, David B.

    2014-01-01

    With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will allow scientists, managers and planners better understand and predict both species responses across edges and impacts of development in mosaic landscapes. PMID:24810286

  17. Effects of Forest Fragmentation on Human Risk of Lyme Disease

    EPA Science Inventory

    Percent forest-herbaceous edge repeatedly explained most of the variability in reported Lyme disease rates within a rural-to-urban study gradient across central Maryland and southeastern Pennsylvania. A one-percent increase in forest-herbaceous edge was associated with an increas...

  18. Breeding Guild Determines Frog Distributions in Response to Edge Effects and Habitat Conversion in the Brazil's Atlantic Forest.

    PubMed

    Ferreira, Rodrigo B; Beard, Karen H; Crump, Martha L

    2016-01-01

    Understanding the response of species with differing life-history traits to habitat edges and habitat conversion helps predict their likelihood of persistence across changing landscape. In Brazil's Atlantic Forest, we evaluated frog richness and abundance by breeding guild at four distances from the edge of a reserve: i) 200 m inside the forest, ii) 50 m inside the forest, iii) at the forest edge, and iv) 50 m inside three different converted habitats (coffee plantation, non-native Eucalyptus plantation, and abandoned pastures, hereafter matrix types). By sampling a dry and a wet season, we recorded 622 individual frogs representing 29 species, of which three were undescribed. Breeding guild (i.e. bromeliad, leaf-litter, and water-body breeders) was the most important variable explaining frog distributions in relation to edge effects and matrix types. Leaf-litter and bromeliad breeders decreased in richness and abundance from the forest interior toward the matrix habitats. Water-body breeders increased in richness toward the matrix and remained relatively stable in abundance across distances. Number of large trees (i.e. DBH > 15 cm) and bromeliads best explained frog richness and abundance across distances. Twenty species found in the interior of the forest were not found in any matrix habitat. Richness and abundance across breeding guilds were higher in the rainy season but frog distributions were similar across the four distances in the two seasons. Across matrix types, leaf-litter species primarily used Eucalyptus plantations, whereas water-body species primarily used coffee plantations. Bromeliad breeders were not found inside any matrix habitat. Our study highlights the importance of primary forest for bromeliad and leaf-litter breeders. We propose that water-body breeders use edge and matrix habitats to reach breeding habitats along the valleys. Including life-history characteristics, such as breeding guild, can improve predictions of frog distributions in response to edge effect and matrix types, and can guide more effective management and conservation actions.

  19. Breeding Guild Determines Frog Distributions in Response to Edge Effects and Habitat Conversion in the Brazil’s Atlantic Forest

    PubMed Central

    Ferreira, Rodrigo B.; Beard, Karen H.; Crump, Martha L.

    2016-01-01

    Understanding the response of species with differing life-history traits to habitat edges and habitat conversion helps predict their likelihood of persistence across changing landscape. In Brazil’s Atlantic Forest, we evaluated frog richness and abundance by breeding guild at four distances from the edge of a reserve: i) 200 m inside the forest, ii) 50 m inside the forest, iii) at the forest edge, and iv) 50 m inside three different converted habitats (coffee plantation, non-native Eucalyptus plantation, and abandoned pastures, hereafter matrix types). By sampling a dry and a wet season, we recorded 622 individual frogs representing 29 species, of which three were undescribed. Breeding guild (i.e. bromeliad, leaf-litter, and water-body breeders) was the most important variable explaining frog distributions in relation to edge effects and matrix types. Leaf-litter and bromeliad breeders decreased in richness and abundance from the forest interior toward the matrix habitats. Water-body breeders increased in richness toward the matrix and remained relatively stable in abundance across distances. Number of large trees (i.e. DBH > 15 cm) and bromeliads best explained frog richness and abundance across distances. Twenty species found in the interior of the forest were not found in any matrix habitat. Richness and abundance across breeding guilds were higher in the rainy season but frog distributions were similar across the four distances in the two seasons. Across matrix types, leaf-litter species primarily used Eucalyptus plantations, whereas water-body species primarily used coffee plantations. Bromeliad breeders were not found inside any matrix habitat. Our study highlights the importance of primary forest for bromeliad and leaf-litter breeders. We propose that water-body breeders use edge and matrix habitats to reach breeding habitats along the valleys. Including life-history characteristics, such as breeding guild, can improve predictions of frog distributions in response to edge effect and matrix types, and can guide more effective management and conservation actions. PMID:27272328

  20. Stemflow acid neutralization capacity in a broadleaved deciduous forest: the role of edge effects.

    PubMed

    Shiklomanov, Alexey N; Levia, Delphis F

    2014-10-01

    Atmospheric deposition is an important pathway for moisture, nutrient, and pollutant exchange among the atmosphere, forest, and soils. Previous work has shown the importance of proximity to the forest edge to chemical fluxes in throughfall, but far less research has considered stemflow. This study examined the difference in acid neutralization capacity (ANC) of stemflow of nineteen Liriodendron tulipifera L. (yellow poplar) trees between the forest edge and interior in a rural area of northeastern Maryland. We measured ANC directly via potentiometric titration. Stemflow from trees at the forest edge was found to have significantly higher and more variable pH and ANC than in the forest interior (p < 0.01). No mathematical trend between ANC and distance to the forest edge was observed, indicating the importance of individual tree characteristics in stemflow production and chemistry. These results reaffirm the importance of stemflow for acid neutralization by deciduous tree species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Landscape-moderated bird nest predation in hedges and forest edges

    NASA Astrophysics Data System (ADS)

    Ludwig, Martin; Schlinkert, Hella; Holzschuh, Andrea; Fischer, Christina; Scherber, Christoph; Trnka, Alfréd; Tscharntke, Teja; Batáry, Péter

    2012-11-01

    Landscape-scale agricultural intensification has caused severe declines in biodiversity. Hedges and forest remnants may mitigate biodiversity loss by enhancing landscape heterogeneity and providing habitat to a wide range of species, including birds. However, nest predation, the major cause of reproductive failure of birds, has been shown to be higher in forest edges than in forest interiors. Little is known about how spatial arrangement (configuration) of hedges affects the avian nest predation. We performed an experiment with artificial ground and elevated nests (resembling yellowhammer and whitethroat nests) baited with quail and plasticine eggs. Nests were placed in three habitat types with different degrees of isolation from forests: forest edges, hedges connected to forests and hedges isolated from forests. Nest predation was highest in forest edges, lowest in hedges connected to forests and intermediate in isolated hedges. In the early breeding season, we found similar nest predation on ground and elevated nests, but in the late breeding season nest predation was higher on ground nests than on elevated nests. Small mammals were the main predators of ground nests and appeared to be responsible for the increase in predation from early to late breeding season, whereas the elevated nests were mainly depredated by small birds and small mammals. High predation pressure at forest edges was probably caused by both forest and open-landscape predators. The influence of forest predators may be lower at hedges, leading to lower predation pressure than in forest edges. Higher predation pressure in isolated than connected hedges might be an effect of concentration of predators in these isolated habitats. We conclude that landscape configuration of hedges is important in nest predation, with connected hedges allowing higher survival than isolated hedges and forest edges.

  2. Are Scots pine forest edges particularly prone to drought-stress?

    NASA Astrophysics Data System (ADS)

    Buras, Allan; Schunk, Christian; Taeger, Steffen; Lemme, Hannes; Gößwein, Sebastian; Menzel, Annette

    2017-04-01

    In 2016, Scots pine (Pinus sylvestris L.) forests experienced a pronounced dieback in several regions across Germany. Being an economically important tree species, a thorough identification of the reasons for this dieback is of high interest. The dieback is likely to be associated with a record drought event which occurred in summer 2015. However, visual observations indicate that forest edges were particularly affected. This observation is supported by a study from Sweden which showed that Scots pine trees growing at a north-facing forest edge expressed a higher water use if compared to trees from the interior (Cienciala et al., 2002). We therefore hypothesize that Scots pine trees are more prone to drought-stress induced dieback when growing at the forest edge. To test this hypothesis, we investigated the growth performance of Scots pine across three affected stands in Franconia, southern Germany. The stands were selected to represent differing conditions along a gradient of forest fragmentation, ranging from the forest interior, over a forest edge situation, to a small forest island. By means of dendroclimatology and UAV-borne remote sensing, Scots pine growth performance and vitality was compared among the three stands. Our results revealed differing Scots pine growth reactions between the forest interior and forest edge as indicated by the identification of different responder groups (Buras et al., 2016). The forest edge and the forest island expressed significantly higher correlations with the drought-index SPEI (Vicente-Serrano et al., 2009) if compared to the forest interior. Moreover, NDVI of Scots Pine canopies significantly decreased towards the forest edge, this indicating lower vitality of corresponding trees. In conclusion, our results highlight Scots pine to be more prone to drought-stress when growing at the forest edge. This finding has important implications for forest management activities in the context of climate change adaptation, since foresters may need to revise concepts of Scots pine management at forest edges and in forest islands under an increasingly warmer and drier climate. 1. Cienciala, E. et al. The effect of a north-facing forest edge on tree water use in a boreal Scots pine stand. Can. J. For. Res. 32, 693-702 (2002). 2. Buras, A. et al. Tuning the Voices of a Choir: Detecting Ecological Gradients in Time-Series Populations. PLOS ONE 11, e0158346 (2016). 3. Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Climate 23, 1696-1718 (2009).

  3. Harvest-related edge effects on prey availability and foraging of hooded warblers in a bottomland hardwood forest

    Treesearch

    John C. Kilgo

    2005-01-01

    The effects of harvest-created canopy gaps in bottomland hardwood forests on arthropod abundance and, hence, the foraging ecology of birds are poorly understood. I predicted that arthropod abundance would be high near edges of group-selection harvest gaps and lower in the surrounding forest, and that male Hooded Warblers (Wilsonia citrina) foraging...

  4. Robustness of plant-insect herbivore interaction networks to climate change in a fragmented temperate forest landscape.

    PubMed

    Bähner, K W; Zweig, K A; Leal, I R; Wirth, R

    2017-10-01

    Forest fragmentation and climate change are among the most severe and pervasive forms of human impact. Yet, their combined effects on plant-insect herbivore interaction networks, essential components of forest ecosystems with respect to biodiversity and functioning, are still poorly investigated, particularly in temperate forests. We addressed this issue by analysing plant-insect herbivore networks (PIHNs) from understories of three managed beech forest habitats: small forest fragments (2.2-145 ha), forest edges and forest interior areas within three continuous control forests (1050-5600 ha) in an old hyper-fragmented forest landscape in SW Germany. We assessed the impact of forest fragmentation, particularly edge effects, on PIHNs and the resulting differences in robustness against climate change by habitat-wise comparison of network topology and biologically realistic extinction cascades of networks following scores of vulnerability to climate change for the food plant species involved. Both the topological network metrics (complexity, nestedness, trophic niche redundancy) and robustness to climate change strongly increased in forest edges and fragments as opposed to the managed forest interior. The nature of the changes indicates that human impacts modify network structure mainly via host plant availability to insect herbivores. Improved robustness of PIHNs in forest edges/small fragments to climate-driven extinction cascades was attributable to an overall higher thermotolerance across plant communities, along with positive effects of network structure. The impoverishment of PIHNs in managed forest interiors and the suggested loss of insect diversity from climate-induced co-extinction highlight the need for further research efforts focusing on adequate silvicultural and conservation approaches.

  5. Edge effects on foliar stable isotope values in a Madagascan tropical dry forest.

    PubMed

    Crowley, Brooke E; McGoogan, Keriann C; Lehman, Shawn M

    2012-01-01

    Edge effects represent an inevitable and important consequence of habitat loss and fragmentation. These effects include changes in microclimate, solar radiation, or temperature. Such abiotic effects can, in turn, impact biotic factors. They can have a substantial impact on species, communities, and ecosystems. Here we examine clinal variations in stable carbon and nitrogen isotope values for trees along an edge-interior gradient in the dry deciduous forest at Ankarafantsika National Park. We predicted that soil respiration and differences in solar irradiance would result in stratified δ¹³C values where leaves collected close to the forest floor would have lower δ¹³C values than those growing higher up in the canopy. We also anticipated that plants growing at the savannah-forest boundary would have higher δ¹³C and δ¹⁵N values than plants growing in the forest interior. As expected, we detected a small but significant canopy effect. Leaves growing below 2 m from the forest floor exhibit δ¹³C values that are, on average, 1.1‰ lower than those growing above this threshold. We did not, however, find any relationship between foliar δ¹³C and distance from the edge. Unpredictably, we detected a striking positive relationship between foliar δ¹⁵N values and increasing distance into the forest interior. Variability in physiology among species, anthropogenic influence, organic input, and rooting depth cannot adequately explain this trend. Instead, this unexpected relationship most likely reflects decreasing nutrient or water availability, or a shift in N-sources with increasing distance from the savannah. Unlike most forest communities, the trees at Ampijoroa are growing in nutrient-limited sands. In addition to being nutrient poor, these well-drained soils likely decrease the amount of soil water available to forest vegetation. Continued research on plant responses to edge effects will improve our understanding of the conservation biology of forest ecosystems in Madagascar.

  6. Edge Effects on Foliar Stable Isotope Values in a Madagascan Tropical Dry Forest

    PubMed Central

    Crowley, Brooke E.; McGoogan, Keriann C.; Lehman, Shawn M.

    2012-01-01

    Edge effects represent an inevitable and important consequence of habitat loss and fragmentation. These effects include changes in microclimate, solar radiation, or temperature. Such abiotic effects can, in turn, impact biotic factors. They can have a substantial impact on species, communities, and ecosystems. Here we examine clinal variations in stable carbon and nitrogen isotope values for trees along an edge-interior gradient in the dry deciduous forest at Ankarafantsika National Park. We predicted that soil respiration and differences in solar irradiance would result in stratified δ13C values where leaves collected close to the forest floor would have lower δ13C values than those growing higher up in the canopy. We also anticipated that plants growing at the savannah-forest boundary would have higher δ13C and δ15N values than plants growing in the forest interior. As expected, we detected a small but significant canopy effect. Leaves growing below 2 m from the forest floor exhibit δ13C values that are, on average, 1.1‰ lower than those growing above this threshold. We did not, however, find any relationship between foliar δ13C and distance from the edge. Unpredictably, we detected a striking positive relationship between foliar δ15N values and increasing distance into the forest interior. Variability in physiology among species, anthropogenic influence, organic input, and rooting depth cannot adequately explain this trend. Instead, this unexpected relationship most likely reflects decreasing nutrient or water availability, or a shift in N-sources with increasing distance from the savannah. Unlike most forest communities, the trees at Ampijoroa are growing in nutrient-limited sands. In addition to being nutrient poor, these well-drained soils likely decrease the amount of soil water available to forest vegetation. Continued research on plant responses to edge effects will improve our understanding of the conservation biology of forest ecosystems in Madagascar. PMID:22973460

  7. Rain forest fragmentation and the proliferation of successional trees.

    PubMed

    Laurance, William F; Nascimento, Henrique E M; Laurance, Susan G; Andrade, Ana C; Fearnside, Philip M; Ribeiro, José E L; Capretz, Robson L

    2006-02-01

    The effects of habitat fragmentation on diverse tropical tree communities are poorly understood. Over a 20-year period we monitored the density of 52 tree species in nine predominantly successional genera (Annona, Bellucia, Cecropia, Croton, Goupia, Jacaranda, Miconia, Pourouma, Vismia) in fragmented and continuous Amazonian forests. We also evaluated the relative importance of soil, topographic, forest dynamic, and landscape variables in explaining the abundance and species composition of successional trees. Data were collected within 66 permanent 1-ha plots within a large (approximately 1000 km2) experimental landscape, with forest fragments ranging from 1 to 100 ha in area. Prior to forest fragmentation, successional trees were uncommon, typically comprising 2-3% of all trees (> or =10 cm diameter at breast height [1.3 m above the ground surface]) in each plot. Following fragmentation, the density and basal area of successional trees increased rapidly. By 13-17 years after fragmentation, successional trees had tripled in abundance in fragment and edge plots and constituted more than a quarter of all trees in some plots. Fragment age had strong, positive effects on the density and basal area of successional trees, with no indication of a plateau in these variables, suggesting that successional species could become even more abundant in fragments over time. Nonetheless, the 52 species differed greatly in their responses to fragmentation and forest edges. Some disturbance-favoring pioneers (e.g., Cecropia sciadophylla, Vismia guianensis, V. amazonica, V. bemerguii, Miconia cf. crassinervia) increased by >1000% in density on edge plots, whereas over a third (19 of 52) of all species remained constant or declined in numbers. Species responses to fragmentation were effectively predicted by their median growth rate in nearby intact forest, suggesting that faster-growing species have a strong advantage in forest fragments. An ordination analysis revealed three main gradients in successional-species composition across our study area. Species gradients were most strongly influenced by the standlevel rate of tree mortality on each plot and by the number of nearby forest edges. Species-composition also varied significantly among different cattle ranches, which differed in their surrounding matrices and disturbance histories. These same variables were also the best predictors of total successional-tree abundance and species richness. Successional-tree assemblages in fragment interior plots (>150 m from edge), which are subjected to fragment area effects but not edge effects, did not differ significantly from those in intact forest, indicating that area effects per se had little influence on successional trees. Soils and topography also had little discernable effect on these species. Collectively, our results indicate that successional-tree species proliferate rapidly in fragmented Amazonian forests, largely as a result of chronically elevated tree mortality near forest edges and possibly an increased seed rain from successional plants growing in nearby degraded habitats. The proliferation of fast-growing successional trees and correlated decline of old-growth trees will have important effects on species composition, forest dynamics, carbon storage, and nutrient cycling in fragmented forests.

  8. Understanding Snow Depth Variability with Respect to the Canopy in Multiple Climates Using Airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Currier, W. R.; Giulia, M.; Pflug, J. M.; Jonas, T.; Jessica, L.

    2017-12-01

    Snow depth within a typical hydrologic model grid cell (150 m or 1 km) can vary from 0.5 meters to 6 meters, or more. This variability is driven by the meteorological conditions throughout the winter as well as the forest architecture. To better understand this variability, we used airborne LiDAR from Olympic National Park, WA, Yosemite National Park, CA, Jemez Caldera, NM, and Niwot Ridge, CO to determine unique spatial patterns of snow depth in forested regions. Specifically, we compared snow depth distributions along north facing forest edges and south facing forest edges to those in the open or directly under the canopy. When categorizing the north facing and south facing edges based on distance from the canopy, distances relative to tree height, and distances relative to the fraction of the sky that is visible (sky view factor) we found unique snow depth patterns for each of these regions. In all regions besides Olympic National Park, WA, north facing edges contained more snow than open areas, forested areas, or along the south facing edges. These snow distributions were relatively consistent regardless of the metric used to define the forest edge and the size of the domain (150 m through 1 km). The absence of the forest edge effect in Olympic National Park was attributed to the meteorological data and climate conditions, which showed significantly less incoming shortwave radiation and more incoming longwave radiation. Furthermore, this study evaluated the effect that wind speed and direction have on the spatial distribution of snow depth.

  9. Are Scots pine forest edges particularly prone to drought-induced mortality?

    NASA Astrophysics Data System (ADS)

    Buras, Allan; Schunk, Christian; Zeiträg, Claudia; Herrmann, Corinna; Kaiser, Laura; Lemme, Hannes; Straub, Christoph; Taeger, Steffen; Gößwein, Sebastian; Klemmt, Hans-Joachim; Menzel, Annette

    2018-02-01

    Climate change is expected to exacerbate the frequency of drought-induced tree mortality world-wide. To better predict the associated change of species composition and forest dynamics on various scales and develop adequate adaptation strategies, more information on the mechanisms driving the often observed patchiness of tree die-back is needed. Although forest-edge effects may play an important role within the given context, only few corresponding studies exist. Here, we investigate the regional die-back of Scots pine in Franconia, Germany, after a hot and dry summer in 2015, thereby emphasizing possible differences in mortality between forest edge and interior. By means of dendroecological investigations and close-range remote sensing, we assess long-term growth performance and current tree vitality along five different forest-edge distance gradients. Our results clearly indicate a differing growth performance between edge and interior trees, associated with a higher vulnerability to drought, increased mortality rates, and lower tree vitality at the forest edge. Prior long-lasting growth decline of dead trees compared to live trees suggests depletion of carbon reserves in course of a long-term drought persisting since the 1990s to be the cause of regional Scots pine die-back. These findings highlight the forest edge as a potential focal point of forest management adaptation strategies in the context of drought-induced mortality.

  10. Synergistic interactions between edge and area effects in a heavily fragmented landscape.

    PubMed

    Ewers, Robert M; Thorpe, Stephen; Didham, Raphael K

    2007-01-01

    Both area and edge effects have a strong influence on ecological processes in fragmented landscapes, but there is little understanding of how these two factors might interact to exacerbate local species declines. To test for synergistic interactions between area and edge effects, we sampled a diverse beetle community in a heavily fragmented landscape in New Zealand. More than 35,000 beetles of approximately 900 species were sampled over large gradients in habitat area (10(-2) 10(6) ha) and distance from patch edge (2(0)-2(10) m from the forest edge into both the forest and adjacent matrix). Using a new approach to partition variance following an ordination analysis, we found that a synergistic interaction between habitat area and distance to edge was a more important determinant of patterns in beetle community composition than direct edge or area effects alone. The strength of edge effects in beetle-species composition increased nonlinearly with increasing fragment area. One important consequence of the synergy is that the slopes of species area (SA) curves constructed from habitat islands depend sensitively on the distance from edge at which sampling is conducted. Surprisingly, we found negative SA curves for communities sampled at intermediate distances from habitat edges, caused by differential edge responses of matrix- vs. forest-specialist species in fragments of increasing area. Our data indicate that distance to habitat edge has a consistently greater impact on beetle community composition than habitat area and that variation in the strength of edge effects may underlie many patterns that are superficially related to habitat area.

  11. Edge effects on fern community in an Atlantic Forest remnant of Rio Formoso, PE, Brazil.

    PubMed

    Silva, I A A; Pereira, A F N; Barros, I C L

    2011-05-01

    We have investigated how edge effects influence the fern community of Jaguarão Forest (08º 35' 49" S and 35º 15' 39" W), located in the district of Rio Formoso, Pernambuco, Brazil. A comparative analysis was made of the interior and edge of the fragment of forest, regarding the richness, abundance and diversity of ferns in the two areas. Six plots of 10 × 20 m were chosen, three in each area. A total of 381 ferns were recorded, which were distributed among 25 species, 17 genera and 12 families. The two areas (edge and interior) were found to differ, with distinct relative air humidities and temperatures (p = 0.00254 and p = 0.00019, respectively). The interior showed higher diversity (t = 7.251 and p = 0.018) and richness (t = 6.379 and p = 0.023) than the edge area, but the same abundance (t = 1.728; p = 0.226) as the edge. Regarding the composition of the flora, it was clear that the interior is a habitat completely distinct from the edge with regard to the fern community, given that only one species, Adiantum petiolatum Desv., was common to both environments. It was concluded that the edge effect causes a decrease in richness and abundance of the fern species found in Jaguarão Forest, where the more sensitive species are being replaced by species that are tolerant to the disturbance caused by the creation of an edge.

  12. Boundaries in ground beetle (Coleoptera: Carabidae) and environmental variables at the edges of forest patches with residential developments

    PubMed Central

    Davis, Doreen E.

    2018-01-01

    Background Few studies of edge effects on wildlife objectively identify habitat edges or explore non-linear responses. In this paper, we build on ground beetle (Coleoptera: Carabidae) research that has begun to address these domains by using triangulation wombling to identify boundaries in beetle community structure and composition at the edges of forest patches with residential developments. We hypothesized that edges are characterized by boundaries in environmental variables that correspond to marked discontinuities in vegetation structure between maintained yards and forest. We expected environmental boundaries to be associated with beetle boundaries. Methods We collected beetles and measured environmental variables in 200 m by 200 m sampling grids centered at the edges of three forest patches, each with a rural, suburban, or urban context, in Charlotte, North Carolina, USA. We identified boundaries within each grid at two spatial scales and tested their significance and overlap using boundary statistics and overlap statistics, respectively. We complemented boundary delineation with k-means clustering. Results Boundaries in environmental variables, such as temperature, grass cover, and leaf litter depth, occurred at or near the edges of all three sites, in many cases at both scales. The beetle variables that exhibited the most pronounced boundary structure in relation to edges were total species evenness, generalist abundance, generalist richness, generalist evenness, and Agonum punctiforme abundance. Environmental and beetle boundaries also occurred within forest patches and residential developments, indicating substantial localized spatial variation on either side of edges. Boundaries in beetle and environmental variables that displayed boundary structure at edges significantly overlapped, as did boundaries on either side of edges. The comparison of boundaries and clusters revealed that boundaries formed parts of the borders of patches of similar beetle or environmental condition. Discussion We show that edge effects on ground beetle community structure and composition and environmental variation at the intersection of forest patches and residential developments can be described by boundaries and that these boundaries overlap in space. However, our results also highlight the complexity of edge effects in our system: environmental boundaries were located at or near edges whereas beetle boundaries related to edges could be spatially disjunct from them; boundaries incompletely delineated edges such that only parts of edges were well-described by sharp transitions in beetle and/or environmental variables; and the occurrence of boundaries related to edges was apparently influenced by individual property management practices, site-specific characteristics such as development geometry, and spatial scale. PMID:29333346

  13. Boundaries in ground beetle (Coleoptera: Carabidae) and environmental variables at the edges of forest patches with residential developments.

    PubMed

    Davis, Doreen E; Gagné, Sara A

    2018-01-01

    Few studies of edge effects on wildlife objectively identify habitat edges or explore non-linear responses. In this paper, we build on ground beetle (Coleoptera: Carabidae) research that has begun to address these domains by using triangulation wombling to identify boundaries in beetle community structure and composition at the edges of forest patches with residential developments. We hypothesized that edges are characterized by boundaries in environmental variables that correspond to marked discontinuities in vegetation structure between maintained yards and forest. We expected environmental boundaries to be associated with beetle boundaries. We collected beetles and measured environmental variables in 200 m by 200 m sampling grids centered at the edges of three forest patches, each with a rural, suburban, or urban context, in Charlotte, North Carolina, USA. We identified boundaries within each grid at two spatial scales and tested their significance and overlap using boundary statistics and overlap statistics, respectively. We complemented boundary delineation with k -means clustering. Boundaries in environmental variables, such as temperature, grass cover, and leaf litter depth, occurred at or near the edges of all three sites, in many cases at both scales. The beetle variables that exhibited the most pronounced boundary structure in relation to edges were total species evenness, generalist abundance, generalist richness, generalist evenness, and Agonum punctiforme abundance. Environmental and beetle boundaries also occurred within forest patches and residential developments, indicating substantial localized spatial variation on either side of edges. Boundaries in beetle and environmental variables that displayed boundary structure at edges significantly overlapped, as did boundaries on either side of edges. The comparison of boundaries and clusters revealed that boundaries formed parts of the borders of patches of similar beetle or environmental condition. We show that edge effects on ground beetle community structure and composition and environmental variation at the intersection of forest patches and residential developments can be described by boundaries and that these boundaries overlap in space. However, our results also highlight the complexity of edge effects in our system: environmental boundaries were located at or near edges whereas beetle boundaries related to edges could be spatially disjunct from them; boundaries incompletely delineated edges such that only parts of edges were well-described by sharp transitions in beetle and/or environmental variables; and the occurrence of boundaries related to edges was apparently influenced by individual property management practices, site-specific characteristics such as development geometry, and spatial scale.

  14. Effects of timber harvests and silvicultural edges on terrestrial salamanders.

    PubMed

    MacNeil, Jami E; Williams, Rod N

    2014-01-01

    Balancing timber production and conservation in forest management requires an understanding of how timber harvests affect wildlife species. Terrestrial salamanders are useful indicators of mature forest ecosystem health due to their importance to ecosystem processes and sensitivity to environmental change. However, the effects of timber harvests on salamanders, though often researched, are still not well understood. To further this understanding, we used artificial cover objects to monitor the relative abundance of terrestrial salamanders for two seasons (fall and spring) pre-harvest and five seasons post-harvest in six forest management treatments, and for three seasons post-harvest across the edge gradients of six recent clearcuts. In total, we recorded 19,048 encounters representing nine species of salamanders. We observed declines in mean encounters of eastern red-backed salamanders (Plethodon cinereus) and northern slimy salamanders (P. glutinosus) from pre- to post-harvest in group selection cuts and in clearcuts. However, we found no evidence of salamander declines at shelterwoods and forested sites adjacent to harvests. Edge effects induced by recent clearcuts influenced salamanders for approximately 20 m into the forest, but edge influence varied by slope orientation. Temperature, soil moisture, and canopy cover were all correlated with salamander counts. Our results suggest silvicultural techniques that remove the forest canopy negatively affect salamander relative abundance on the local scale during the years immediately following harvest, and that the depth of edge influence of clearcuts on terrestrial salamanders is relatively shallow (<20 m). Small harvests (<4 ha) and techniques that leave the forest canopy intact may be compatible with maintaining terrestrial salamander populations across a forested landscape. Our results demonstrate the importance of examining species-specific responses and monitoring salamanders across multiple seasons and years. Long-term monitoring will be necessary to understand the full impacts of forest management on terrestrial salamanders.

  15. Effects of Timber Harvests and Silvicultural Edges on Terrestrial Salamanders

    PubMed Central

    MacNeil, Jami E.; Williams, Rod N.

    2014-01-01

    Balancing timber production and conservation in forest management requires an understanding of how timber harvests affect wildlife species. Terrestrial salamanders are useful indicators of mature forest ecosystem health due to their importance to ecosystem processes and sensitivity to environmental change. However, the effects of timber harvests on salamanders, though often researched, are still not well understood. To further this understanding, we used artificial cover objects to monitor the relative abundance of terrestrial salamanders for two seasons (fall and spring) pre-harvest and five seasons post-harvest in six forest management treatments, and for three seasons post-harvest across the edge gradients of six recent clearcuts. In total, we recorded 19,048 encounters representing nine species of salamanders. We observed declines in mean encounters of eastern red-backed salamanders (Plethodon cinereus) and northern slimy salamanders (P. glutinosus) from pre- to post-harvest in group selection cuts and in clearcuts. However, we found no evidence of salamander declines at shelterwoods and forested sites adjacent to harvests. Edge effects induced by recent clearcuts influenced salamanders for approximately 20 m into the forest, but edge influence varied by slope orientation. Temperature, soil moisture, and canopy cover were all correlated with salamander counts. Our results suggest silvicultural techniques that remove the forest canopy negatively affect salamander relative abundance on the local scale during the years immediately following harvest, and that the depth of edge influence of clearcuts on terrestrial salamanders is relatively shallow (<20 m). Small harvests (<4 ha) and techniques that leave the forest canopy intact may be compatible with maintaining terrestrial salamander populations across a forested landscape. Our results demonstrate the importance of examining species-specific responses and monitoring salamanders across multiple seasons and years. Long-term monitoring will be necessary to understand the full impacts of forest management on terrestrial salamanders. PMID:25517409

  16. The impact of edge effect on termite community (Blattodea: Isoptera) in fragments of Brazilian Atlantic Rainforest.

    PubMed

    Almeida, C S; Cristaldo, P F; Florencio, D F; Ribeiro, E J M; Cruz, N G; Silva, E A; Costa, D A; Araújo, A P A

    2017-01-01

    Habitat fragmentation is considered to be one of the biggest threats to tropical ecosystem functioning. In this region, termites perform an important ecological role as decomposers and ecosystem engineers. In the present study, we tested whether termite community is negatively affected by edge effects on three fragments of Brazilian Atlantic Rainforest. Termite abundance and vegetation structure were sampled in 10 transects (15 × 2 m), while termite richness, activity, and soil litter biomass were measured in 16 quadrants (5 × 2 m) at forest edge and interior of each fragment. Habitat structure (i.e. number of tree, diameter at breast height and soil litter biomass) did not differ between forest edge and interior of fragments. Termite richness, abundance and activity were not affected by edge effect. However, differences were observed in the β diversity between forest edge and interior as well as in the fragments sampled. The β diversity partitioning indicates that species turnover is the determinant process of termite community composition under edge effect. Our results suggest that conservation strategies should be based on the selection of several distinct sites instead of few rich sites (e.g. nesting).

  17. Harvest-related edge effects on prey availability and foraging of hooded warblers in a bottomland hardwood forest.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Kilgo

    2005-04-20

    The effects of harvest-created canopy gaps in bottomland hardwood forests on arthropod abundance and, hence, the foraging ecology of birds are poorly understood. I predicted that arthropod abundance would be high near edges of group-selection harvest gaps and lower in the surrounding forest, and that male Hooded Warblers (Wilsonia citrina) foraging near gaps would find more prey per unit time than those foraging in the surrounding forest. In fact, arthropod abundance was greater >100 m from a gap edge than at 0-30 m or 30-100 m from an edge, due to their abundance on switchcane (Arundinaria gigantea); arthropods did notmore » differ in abundance among distances from gaps on oaks (Quercus spp.) or red maple (Acer rubrum). Similarly, Hooded Warbler foraging attack rates were not higher near gap edges: when foraging for fledglings, attack rate did not differ among distances from gaps, but when foraging for themselves, attack rates actually were lower 0-30 m from gap edges than 30-100 m or >100 m from a gap edge. Foraging attack rate was positively associated with arthropod abundance. Hooded Warblers apparently encountered fewer prey and presumably foraged less efficiently where arthropods were least abundant, i.e., near gaps. That attack rates among birds foraging for fledglings were not affected by distance from gap (and hence arthropod abundance) suggests that prey availability may not be limiting at any location across the forest, despite the depressing effects of gaps on arthropod abundance.« less

  18. Effects of microhabitat on palm seed predation in two forest fragments in southeast Brazil

    NASA Astrophysics Data System (ADS)

    Fleury, Marina; Galetti, Mauro

    2004-12-01

    The establishment of plants depends crucially on where seeds are deposited in the environment. Some authors suggest that in forest understory seed predation is lower than in gaps, and higher than at the forest edge. However, most studies have been carried out in large forest patches and very little is known about the effects of microhabitat conditions on seed predation in forest fragments. We evaluated the effects of three microhabitats (gaps, forest edge, and understory) on seed predation of two palm species ( Euterpe edulis and Syagrus romanzoffiana) in two semi-deciduous forest fragments (230 and 2100 ha) in southeast Brazil. Our objective was to test two hypotheses: (1) Low rodent abundance in small fragments as a result of meso-predator action levels leads to lower seed predation in small fragments. (2) Most mammal species in small fragments are generalists with respect to diet and habitat, so that seed predation is similar in different microhabitats (gaps, forest edge and understory) in the small fragment, but not in the larger one. The study community of small fragments is usually composed of generalist species (in diet and habitat aspects), so we expected the same rate of seed predation among microhabitats (gaps, forest edge and understory) in the tested smaller fragment. The experiment was carried out in the dry season (for E. edulis) and in the wet season (for S. romanzoffiana) in 1999. We conclude that post-dispersal seed predation in forest fragments can be directly connected with mammal communities, reflecting their historical and ecological aspects.

  19. Influence of soil pathogens on early regeneration success of tropical trees varies between forest edge and interior.

    PubMed

    Krishnadas, Meghna; Comita, Liza S

    2018-01-01

    Soil fungi are key mediators of negative density-dependent mortality in seeds and seedlings, and the ability to withstand pathogens in the shaded understory of closed-canopy forests could reinforce light gradient partitioning by tree species. For four species of tropical rainforest trees-two shade-tolerant and two shade-intolerant-we conducted a field experiment to examine the interactive effects of fungal pathogens, light, and seed density on germination and early seedling establishment. In a fully factorial design, seeds were sown into 1 m 2 plots containing soil collected from underneath conspecific adult trees, with plots assigned to forest edge (high light) or shaded understory, high or low density, and fungicide or no fungicide application. We monitored total seed germination and final seedling survival over 15 weeks. Shade-intolerant species were strongly constrained by light; their seedlings survived only at the edge. Fungicide application significantly improved seedling emergence and/or survival for three of the four focal species. There were no significant interactions between fungicide and seed density, suggesting that pathogen spread with increased aggregation of seeds and seedlings did not contribute to pathogen-mediated mortality. Two species experienced significant edge-fungicide interactions, but fungicide effects in edge vs. interior forest varied with species and recruitment stage. Our results suggest that changes to plant-pathogen interactions could affect plant recruitment in human-impacted forests subject to fragmentation and edge-effects.

  20. Effects of even-aged management on forest birds at northern hardwood stand interfaces

    Treesearch

    Richard M. DeGraaf

    1992-01-01

    Breeding birds were counted along transects across edges of even-aged northern hardwood stands in the White Mountain National Forest, New Hampshire, U.S.A. Two replicate transects across each of 7 edge types representing 3 classes of contrast (abrupt, intermediate, and subtle) were sampled during June 1983-1985 to define species assemblages at stand edges and estimate...

  1. Drought and Fragmentation Impacts on Forest Evapotranspiration in Southwestern Amazonia

    NASA Astrophysics Data System (ADS)

    Numata, I.; Khand, K.; Kjaersgaard, J.

    2017-12-01

    We assessed the effects of forest fragmentation and drought on forest evapotranspiration (ET) estimated using the energy balance-based model METRIC with Landsat imagery in Rondônia and Acre in the southwestern Amazon. Forest ET estimates were produced for the dry seasons (June-August) of 2009-2011 thus including the 2010 drought period to quantify its impact by comparing to pre- and post-drought years. Furthermore, we tested forest edge distance, edge density, shape index, and area/edge ratio of forest fragments as fragmentation variables. The 2010 drought year showed the lowest monthly forest ET in August and September in both Rondônia and Acre within the study time period. However, part of the decline of forest ET in Acre during this period appeared to be due to less incoming solar radiation caused by atmospheric contamination from fires in addition to inadequate moisture availability. Lingering impacts of the drought on forest ET were observed in 2011, the post-drought year. Both sites showed lower forest ET in the late dry season in 2011 compared to 2009, the pre-drought year. Among forest fragmentation variables, edge distance presented significant impacts on forest ET in the drought and post-drought years (p<0.05), whereas the other variables were not significant. The magnitude of ET changes along edge distance becomes even greater in the drought year (2010) and the post-drought year (2011) in the month of August.

  2. Forest structure and downed woody debris in boreal, temperate, and tropical forest fragments.

    PubMed

    Gould, William A; González, Grizelle; Hudak, Andrew T; Hollingsworth, Teresa Nettleton; Hollingsworth, Jamie

    2008-12-01

    Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.

  3. Assessing Anthropogenic Influence and Edge Effect Influence on Forested Riparian Buffer Spatial Configuration and Structure: An Example Using Lidar Remote Sensing Methods

    NASA Astrophysics Data System (ADS)

    Wasser, L. A.; Chasmer, L. E.

    2012-12-01

    Forested riparian buffers (FRB) perform numerous critical ecosystem services. However, globally, FRB spatial configuration and structure have been modified by anthropogenic development resulting in widespread ecological degradation as seen in the Gulf of Mexico and the Chesapeake Bay. Riparian corridors within developed areas are particularly vulnerable to disturbance given two edges - the naturally occurring stream edge and the matrix edge. Increased edge length predisposes riparian vegetation to "edge effects", characterized by modified physical and environmental conditions at the interface between the forested buffer and the adjacent landuse, or matrix and forest fragment degradation. The magnitude and distance of edge influence may be further influenced by adjacent landuse type and the width of the buffer corridor at any given location. There is a need to quantify riparian buffer spatial configuration and structure over broad geographic extents and within multiple riparian systems in support of ecologically sound management and landuse decisions. This study thus assesses the influence of varying landuse types (agriculture, suburban development and undeveloped) on forested riparian buffer 3-dimensional structure and spatial configuration using high resolution Light Detection and Ranging (LiDAR) data collected within a headwater watershed. Few studies have assessed riparian buffer structure and width contiguously for an entire watershed, an integral component of watershed planning and restoration efforts such as those conducted throughout the Chesapeake Bay. The objectives of the study are to 1) quantify differences in vegetation structure at the stream and matrix influenced riparian buffer edges, compared to the forested interior and 2) assess continuous patterns of changes in vegetation structure throughout the buffer corridor beginning at the matrix edge and ending at the stream within buffers a) of varying width and b) that are adjacent to varying landuse types. Results suggest that 1) the spatial configuration of riparian forests has a strong influence on forest structure compared to a weaker association with adjacent landuse type 2) developed landuse types are often associated with increased understory vegetation density 3) that riparian vegetation canopy cover is dense regardless of corridor width or adjacent landuse type and 4) the degree to which edge effects propagate into the buffer corridor is most influenced by corridor width. The study further demonstrates the utility of automated algorithms that sample lidar data in watershed-wide ecological analysis. Results suggest that landuse regulations should encourage wider buffers which will in turn support a greater range of ecosystem services including improved wildlife habitat, stream shading and detrital inputs.

  4. Hooded Warbler Nesting Success Adjacent to Group-selection and Clearcut Edges in a Southeastern Bottomland Forest

    Treesearch

    Christopher E. Moorman; David C. Guynn; John C. Kilgo

    2002-01-01

    During the 1996, 1997, and 199X breeding seasons, WC located and monitored Hooded Warbler (Wilsonia citrina) nests in a bottomland forest and examined the effects of edge proximity, edge type, and nest-site vegetation on nesting success. SW- cessful Hooded Warbler nests were more concealed from below and were located in nest patches with a greater...

  5. Creation of forest edges has a global impact on forest vertebrates

    PubMed Central

    Peres, CA; Banks-Leite, C; Wearn, OR; Marsh, CJ; Butchart, SHM; Arroyo-Rodríguez, V; Barlow, J; Cerezo, A; Cisneros, L; D’Cruze, N; Faria, D; Hadley, A; Harris, S; Klingbeil, BT; Kormann, U; Lens, L; Medina-Rangel, GF; Morante-Filho, JC; Olivier, P; Peters, SL; Pidgeon, A; Ribeiro, DB; Scherber, C; Schneider-Maunory, L; Struebig, M; Urbina-Cardona, N; Watling, JI; Willig, MR; Wood, EM; Ewers, RM

    2017-01-01

    Summary Forest edges influence more than half the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. We assembled an unmatched global dataset on species responses to fragmentation and developed a new statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1673 vertebrate species. We show that 85% of species’ abundances are affected, either positively or negatively, by forest edges. Forest core species, which were more likely to be listed as threatened by the IUCN, only reached peak abundances at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale. PMID:29088701

  6. Effects of natural forest fragmentation on a Hawaiian spider community

    USGS Publications Warehouse

    Vandergast, Amy; Gillespie, Rosemary G.

    2004-01-01

    The kipuka system, a network of forest fragments surrounded by lava flows on the island of Hawaii, offers an opportunity to study the natural, long-term fragmentation of a native ecosystem. We examined the impacts of habitat edges upon the community structure of nocturnally active native spiders, primarily in the genus Tetragnatha. We measured plant and spider species distributions across the edges of four small fragments and one large continuously forested area that were surrounded by a lava flow in 1855. Results indicated that an ???20 m edge ecotone surrounds core forest habitat. Spider community structure changed across the edge, with a decrease in total species richness and diversity at the forest/lava boundary, and a change in the dominant taxon from native Tetragnatha (Tetragnathidae) to native Cyclosa (Araneidae). Severe habitat restrictions were found for some spider species. In addition, nearly all of the spiders captured were endemic species, and the few introduced species were limited to the younger and more open lava flows. Our results suggest that species responses to edges can vary, and that core habitat specialists may decline in fragmented conditions.

  7. Distribution of millipedes (Myriapoda, Diplopoda) along a forest interior - forest edge - grassland habitat complex.

    PubMed

    Bogyó, Dávid; Magura, Tibor; Nagy, Dávid D; Tóthmérész, Béla

    2015-01-01

    We studied the distribution of millipedes in a forest interior-forest edge-grassland habitat complex in the Hajdúság Landscape Protection Area (NE Hungary). The habitat types were as follows: (1) lowland oak forest, (2) forest edge with increased ground vegetation and shrub cover, and (3) mesophilous grassland. We collected millipedes by litter and soil sifting. There were overall 30 sifted litter and soil samples: 3 habitat types × 2 replicates × 5 soil and litter samples per habitats. We collected 9 millipede species; the most abundant species was Glomeristetrasticha, which was the most abundant species in the forest edge as well. The most abundant species in the forest interior was Kryphioiulusoccultus, while the most abundant species in the grassland was Megaphyllumunilineatum. Our result showed that the number of millipede species was significantly lower in the grassland than in the forest or in the edge, however there were no significant difference in the number of species between the forest interior and the forest edge. We found significantly the highest number of millipede individuals in the forest edge. There were differences in the composition of the millipede assemblages of the three habitats. The results of the DCCA showed that forest edge and forest interior habitats were clearly separated from the grassland habitats. The forest edge habitat was characterized by high air temperature, high soil moisture, high soil pH, high soil enzyme activity, high shrub cover and low canopy cover. The IndVal and the DCCA methods revealed the following character species of the forest edge habitats: Glomeristetrasticha and Leptoiuluscibdellus. Changes in millipede abundance and composition were highly correlated with the vegetation structure.

  8. Creation of forest edges has a global impact on forest vertebrates.

    PubMed

    Pfeifer, M; Lefebvre, V; Peres, C A; Banks-Leite, C; Wearn, O R; Marsh, C J; Butchart, S H M; Arroyo-Rodríguez, V; Barlow, J; Cerezo, A; Cisneros, L; D'Cruze, N; Faria, D; Hadley, A; Harris, S M; Klingbeil, B T; Kormann, U; Lens, L; Medina-Rangel, G F; Morante-Filho, J C; Olivier, P; Peters, S L; Pidgeon, A; Ribeiro, D B; Scherber, C; Schneider-Maunoury, L; Struebig, M; Urbina-Cardona, N; Watling, J I; Willig, M R; Wood, E M; Ewers, R M

    2017-11-09

    Forest edges influence more than half of the world's forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. Here we assembled a global dataset on species responses to fragmentation and developed a statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1,673 vertebrate species. We show that the abundances of 85% of species are affected, either positively or negatively, by forest edges. Species that live in the centre of the forest (forest core), that were more likely to be listed as threatened by the International Union for Conservation of Nature (IUCN), reached peak abundances only at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest-core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale.

  9. Creation of forest edges has a global impact on forest vertebrates

    NASA Astrophysics Data System (ADS)

    Pfeifer, M.; Lefebvre, V.; Peres, C. A.; Banks-Leite, C.; Wearn, O. R.; Marsh, C. J.; Butchart, S. H. M.; Arroyo-Rodríguez, V.; Barlow, J.; Cerezo, A.; Cisneros, L.; D'Cruze, N.; Faria, D.; Hadley, A.; Harris, S. M.; Klingbeil, B. T.; Kormann, U.; Lens, L.; Medina-Rangel, G. F.; Morante-Filho, J. C.; Olivier, P.; Peters, S. L.; Pidgeon, A.; Ribeiro, D. B.; Scherber, C.; Schneider-Maunoury, L.; Struebig, M.; Urbina-Cardona, N.; Watling, J. I.; Willig, M. R.; Wood, E. M.; Ewers, R. M.

    2017-11-01

    Forest edges influence more than half of the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. Here we assembled a global dataset on species responses to fragmentation and developed a statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1,673 vertebrate species. We show that the abundances of 85% of species are affected, either positively or negatively, by forest edges. Species that live in the centre of the forest (forest core), that were more likely to be listed as threatened by the International Union for Conservation of Nature (IUCN), reached peak abundances only at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest-core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale.

  10. Responses of Euglossine Bees (Hymenoptera, Apidae, Euglossina) to an Edge-Forest Gradient in a Large Tabuleiro Forest Remnant in Eastern Brazil.

    PubMed

    Coswosk, J A; Ferreira, R A; Soares, E D G; Faria, L R R

    2018-08-01

    Euglossine fauna of a large remnant of Brazilian Atlantic forest in eastern Brazil (Reserva Natural Vale) was assessed along an edge-forest gradient towards the interior of the fragment. To test the hypotheses that the structure of assemblages of orchid bees varies along this gradient, the following predictions were evaluated: (i) species richness is positively related to distance from the forest edge, (ii) species diversity is positively related to distance from the edge, (iii) the relative abundance of species associated with forest edge and/or open areas is inversely related to the distance from edge, and (iv) relative abundance of forest-related species is positively related to distance from the edge. A total of 2264 bees of 25 species was assessed at five distances from the edge: 0 m (the edge itself), 100 m, 500 m, 1000 m and 1500 m. Data suggested the existence of an edge-interior gradient for euglossine bees regarding species diversity and composition (considering the relative abundance of edge and forest-related species as a proxy for species composition) but not species richness.

  11. The impact of forest roads on understory plant diversity in temperate hornbeam-beech forests of Northern Iran.

    PubMed

    Deljouei, Azade; Abdi, Ehsan; Marcantonio, Matteo; Majnounian, Baris; Amici, Valerio; Sohrabi, Hormoz

    2017-08-01

    Forest roads alter the biotic and abiotic components of ecosystems, modifying temperature, humidity, wind speed, and light availability that, in turn, cause changes in plant community composition and diversity. We aim at investigating and comparing the diversity of herbaceous species along main and secondary forest roads in a temperate-managed hornbeam-beech forest, north of Iran. Sixteen transects along main and secondary forest roads were established (eight transects along main roads and eight along secondary roads). To eliminate the effect of forest type, all transects were located in Carpinetum-Fagetum forests, the dominant forest type in the study area. The total length of each transect was 200 m (100 m toward up slope and 100 m toward down slope), and plots were established along it at different distances from road edge. The diversity of herbaceous plant species was calculated in each plot using Shannon-Wiener index, species richness, and Pielou's index. The results showed that diversity index decreased when distance from road edge increases. This decreasing trend continued up to 60 m from forest road margin, and after this threshold, the index slightly increased. Depending on the type of road (main or secondary) as well as cut or fill slopes, the area showing a statistical different plant composition and diversity measured through Shannon-Wiener, species richness, and Pielou's index is up to 10 m. The length depth of the road edge effect found in main and secondary forest roads was small, but it could have cumulative effects on forest microclimate and forest-associated biota at the island scale. Forest managers should account for the effect of road buildings on plant communities.

  12. Amount of Future Forest Edge at a 2 Hectare Scale

    EPA Pesticide Factsheets

    Forests provide economic and ecological value. High amounts of forest edge indicates a highly fragmented forest, which generally diminishes those economic and ecological values. EDGE2 is the percent of forest that is classified as edge using a 2 ha scale. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  13. Amount of Future Forest Edge at a 65 Hectare scale

    EPA Pesticide Factsheets

    Forests provide economic and ecological value. High amounts of forest edge indicates a highly fragmented forest, which generally diminishes those economic and ecological values. EDGE65 is the percent of forest that is classified as edge using a 65 ha scale. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  14. Amount of Forest Edge at a 2 Hectare Scale

    EPA Pesticide Factsheets

    Forests provide economic and ecological value. High amounts of forest edge indicates a highly fragmented forest, which generally diminishes those economic and ecological values. EDGE2 is the percent of forest that is classified as edge using a 2 ha scale. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  15. Amount of Forest Edge at a 65 Hectare Scale

    EPA Pesticide Factsheets

    Forests provide economic and ecological value. High amounts of forest edge indicates a highly fragmented forest, which generally diminishes those economic and ecological values. EDGE65 is the percent of forest that is classified as edge using a 65 ha scale. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  16. Edge fires drive the shape and stability of tropical forests.

    PubMed

    Hébert-Dufresne, Laurent; Pellegrini, Adam F A; Bhat, Uttam; Redner, Sidney; Pacala, Stephen W; Berdahl, Andrew M

    2018-06-01

    In tropical regions, fires propagate readily in grasslands but typically consume only edges of forest patches. Thus, forest patches grow due to tree propagation and shrink by fires in surrounding grasslands. The interplay between these competing edge effects is unknown, but critical in determining the shape and stability of individual forest patches, as well the landscape-level spatial distribution and stability of forests. We analyze high-resolution remote-sensing data from protected Brazilian Cerrado areas and find that forest shapes obey a robust perimeter-area scaling relation across climatic zones. We explain this scaling by introducing a heterogeneous fire propagation model of tropical forest-grassland ecotones. Deviations from this perimeter-area relation determine the stability of individual forest patches. At a larger scale, our model predicts that the relative rates of tree growth due to propagative expansion and long-distance seed dispersal determine whether collapse of regional-scale tree cover is continuous or discontinuous as fire frequency changes. © 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  17. [Characterization of High Andean forest edges and implications for their ecological restoration (Colombia)].

    PubMed

    Montenegro, Alba Lucía; Vargas Ríos, Orlando

    2008-09-01

    The growth of a forest patch through colonization of the adjacent matrix is mostly determined by the particular characteristics of the edge zone. Knowing how these characteristics are related to a specific edge type and how they influence the regeneration process, is important for High Andean forest edges restoration. This study aimed to characterize three types of High Andean forest edge in Cogua Forest Reserve (Colombia): 1) edge of Chusquea scandens, 2) "paramizado", and 3) old edge, characterized for being in a later successional state. Two forest patches were chosen for each edge type and 13 criteria were analyzed; these were of topographic order, micro-environmental order, vegetation structure and species composition. In each patch the vegetation was evaluated by means of two 60 m transects perpendicular to the edge and along the matrix-edge-interior of the forest gradient. All woody plant species were identified and counted to determine their abundance. Environmental variables (air temperature, relative humidity, wind speed, and light radiation) were measured in one of the transects. Three of the 13 criteria were of little importance in shaping the type of edge habitat (slope, patch shape and area). The others were closely related with the micro-environmental conditions and in turn with the vegetation structure and composition; this relationship confers particular characteristics to each edge type. The microclimate and floristic edge limits coincided; edges extend between 10 and 20 m into the forest depending on the edge type. The paramizado edge has the smallest environmental self-regulation capacity and is more exposed to fluctuations of the studied variables, because of its greatest exposition to the wind action and loss of the tallest trees (between 10 and 15 m) which regulate the understorey microclimate. This low environmental buffer capacity prevents the establishing of mature forest species (for example, Schefflera sp. and Oreopanax bogotensis) although they are found in other areas within the same patch. All these results show that the paramizado edge needs the most intervention for its restoration. The Chusquea scandens edge forest is the most sheltered since this species acts as a protecting shield. However it still needs to be controlled to allow the adjacent matrix colonization by the forest species and natural regeneration, as it does in the old edge type forest, which moreover has an intermediate self-regulating capacity relative to the other two. The vegetation composition reveals that most of the edge species can also grow inside, beyond the forest edge.

  18. Mapping Forest Edge Using Aerial Lidar

    NASA Astrophysics Data System (ADS)

    MacLean, M. G.

    2014-12-01

    Slightly more than 60% of Massachusetts is covered with forest and this land cover type is invaluable for the protection and maintenance of our natural resources and is a carbon sink for the state. However, Massachusetts is currently experiencing a decline in forested lands, primarily due to the expansion of human development (Thompson et al., 2011). Of particular concern is the loss of "core areas" or the areas within forests that are not influenced by other land cover types. These areas are of significant importance to native flora and fauna, since they generally are not subject to invasion by exotic species and are more resilient to the effects of climate change (Campbell et al., 2009). However, the expansion of development has reduced the amount of this core area, but the exact amount is still unknown. Current methods of estimating core area are not particularly precise, since edge, or the area of the forest that is most influenced by other land cover types, is quite variable and situation dependent. Therefore, the purpose of this study is to devise a new method for identifying areas that could qualify as "edge" within the Harvard Forest, in Petersham MA, using new remote sensing techniques. We sampled along eight transects perpendicular to the edge of an abandoned golf course within the Harvard Forest property. Vegetation inventories as well as Photosynthetically Active Radiation (PAR) at different heights within the canopy were used to determine edge depth. These measurements were then compared with small-footprint waveform aerial LiDAR datasets and imagery to model edge depths within Harvard Forest.

  19. High-tech or field techs: Radio-telemetry is a cost-effective method for reducing bias in songbird nest searching

    USGS Publications Warehouse

    Peterson, Sean M.; Streby, Henry M.; Lehman, Justin A.; Kramer, Gunnar R.; Fish, Alexander C.; Andersen, David E.

    2015-01-01

    We compared the efficacy of standard nest-searching methods with finding nests via radio-tagged birds to assess how search technique influenced our determination of nest-site characteristics and nest success for Golden-winged Warblers (Vermivora chrysoptera). We also evaluated the cost-effectiveness of using radio-tagged birds to find nests. Using standard nest-searching techniques for 3 populations, we found 111 nests in locations with habitat characteristics similar to those described in previous studies: edges between forest and relatively open areas of early successional vegetation or shrubby wetlands, with 43% within 5 m of forest edge. The 83 nests found using telemetry were about half as likely (23%) to be within 5 m of forest edge. We spent little time searching >25 m into forest because published reports state that Golden-winged Warblers do not nest there. However, 14 nests found using telemetry (18%) were >25 m into forest. We modeled nest success using nest-searching method, nest age, and distance to forest edge as explanatory variables. Nest-searching method explained nest success better than nest age alone; we estimated that nests found using telemetry were 10% more likely to fledge young than nests found using standard nest-searching methods. Although radio-telemetry was more expensive than standard nest searching, the cost-effectiveness of both methods differed depending on searcher experience, amount of equipment owned, and bird population density. Our results demonstrate that telemetry can be an effective method for reducing bias in Golden-winged Warbler nest samples, can be cost competitive with standard nest-searching methods in some situations, and is likely to be a useful approach for finding nests of other forest-nesting songbirds.

  20. Degradation in carbon stocks near tropical forest edges.

    PubMed

    Chaplin-Kramer, Rebecca; Ramler, Ivan; Sharp, Richard; Haddad, Nick M; Gerber, James S; West, Paul C; Mandle, Lisa; Engstrom, Peder; Baccini, Alessandro; Sim, Sarah; Mueller, Carina; King, Henry

    2015-12-18

    Carbon stock estimates based on land cover type are critical for informing climate change assessment and landscape management, but field and theoretical evidence indicates that forest fragmentation reduces the amount of carbon stored at forest edges. Here, using remotely sensed pantropical biomass and land cover data sets, we estimate that biomass within the first 500 m of the forest edge is on average 25% lower than in forest interiors and that reductions of 10% extend to 1.5 km from the forest edge. These findings suggest that IPCC Tier 1 methods overestimate carbon stocks in tropical forests by nearly 10%. Proper accounting for degradation at forest edges will inform better landscape and forest management and policies, as well as the assessment of carbon stocks at landscape and national levels.

  1. Degradation in carbon stocks near tropical forest edges

    PubMed Central

    Chaplin-Kramer, Rebecca; Ramler, Ivan; Sharp, Richard; Haddad, Nick M.; Gerber, James S.; West, Paul C.; Mandle, Lisa; Engstrom, Peder; Baccini, Alessandro; Sim, Sarah; Mueller, Carina; King, Henry

    2015-01-01

    Carbon stock estimates based on land cover type are critical for informing climate change assessment and landscape management, but field and theoretical evidence indicates that forest fragmentation reduces the amount of carbon stored at forest edges. Here, using remotely sensed pantropical biomass and land cover data sets, we estimate that biomass within the first 500 m of the forest edge is on average 25% lower than in forest interiors and that reductions of 10% extend to 1.5 km from the forest edge. These findings suggest that IPCC Tier 1 methods overestimate carbon stocks in tropical forests by nearly 10%. Proper accounting for degradation at forest edges will inform better landscape and forest management and policies, as well as the assessment of carbon stocks at landscape and national levels. PMID:26679749

  2. Fragmentation, topography, and forest age modulate impacts of drought on a tropical forested landscape in eastern Puerto Rico

    NASA Astrophysics Data System (ADS)

    Uriarte, M.; Schwartz, N.; Budsock, A.

    2017-12-01

    Naturally regenerating second-growth forests account for ca. 50% of tropical forest cover and provide key ecosystem services. Understanding climate impacts on these ecosystems is critical for developing effective mitigation programs. Differences in environmental conditions and landscape context from old-growth forests may exacerbate climate impacts on second-growth stands. Nearly 70% of forest regeneration is occurring in hilly, upland, or mountain regions; a large proportion of second-growth forests are also fragmented. The effects of drought at the landscape scale, however, and the factors that modulate landscape heterogeneity in drought impacts remain understudied. Heterogeneity in soil moisture, light, and temperature in fragmented, topographically complex landscapes is likely to influence climate impacts on these forests. We examine impacts of a severe drought in 2015 on a forested landscape in Puerto Rico using two anomalies in vegetation indices. The study landscape is fragmented and topographically complex and includes old- and second-growth forests. We consider how topography (slope, aspect), fragmentation (distance to forest edge, patch size), and forest age (old- vs second-growth) modulate landscape heterogeneity of drought impacts and recovery from drought. Drought impacts were more severe in second-growth forests than in old-growth stands. Both topography and forest fragmentation influences the magnitude of drought impacts. Forest growing in steep areas, south facing slopes, small patches, and closer to forest edges exhibited more marked responses to drought. Forest recovery from drought was greater in second-growth forests and south facing slopes but slower in small patches and closer to forest edges. These findings are congruent with studies of drought impacts on tree growth in the study region. Together these results demonstrate the need for a multi-scalar approach to the study of drought impacts on tropical forests.

  3. The double-edged effects of annealing MgO underlayers on the efficient synthesis of single-wall carbon nanotube forests.

    PubMed

    Tsuji, Takashi; Hata, Kenji; Futaba, Don N; Sakurai, Shunsuke

    2017-11-16

    Recently, the millimetre-scale, highly efficient synthesis of single-wall carbon nanotube (SWCNT) forests from Fe catalysts has been reported through the annealing of the magnesia (MgO) underlayer. Here, we report the double-edged effects of underlayer annealing on the efficiency and structure of the SWCNT forest synthesis through a temperature-dependent examination. Our results showed that the efficiency of the SWCNT forests sharply increased with increased underlayer annealing temperatures from 600 °C up to 900 °C due to a temperature-dependent structural modification, characterized by increased grain size and reduced defects, of the MgO underlayer. Beyond this temperature, the SWCNT fraction also decreased as a result of further structural modification of the MgO underlayer. This exemplifies the double-edged effects of annealing. Specifically, for underlayer annealing below 600 °C, the catalyst subsurface diffusion was found to limit the growth efficiency, and for excessively high underlayer annealing temperatures (>900 °C), catalyst coalescence/ripening led to the formation of double-wall carbon nanotubes. As a result, three distinct regions of synthesis were observed: (i) a "low yield" region below a threshold temperature (∼600 °C); (ii) an "increased yield" region from 600 to 900 °C, and (iii) a "saturation" region above 900 °C. The efficient SWCNT forest synthesis could only occur within a specific annealing temperature window as a result of this double-edged effects of underlayer annealing.

  4. Ectoparasitism by Eutrombicula alfreddugesi larvae (Acari: Trombiculidae) on Liolaemus tenuis lizard in a Chilean fragmented temperate forest.

    PubMed

    Rubio, André V; Simonetti, Javier A

    2009-02-01

    We compared parasite load (prevalence and mean intensity) of Eutrombicula alfreddugesi larvae on the lizard Liolaemus tenuis sampled during January 2006 and 2007 from the interior and edges of large forest tracts in the coastal Maulino Forest (35 degrees 59'S, 72 degrees 41'W) and from nearby forest fragments (1.5-20 ha). All lizards were parasitized by chiggers regardless of location (prevalence, 100%); however, mean intensity of infestation was significantly lower at forest fragment edges compared with either large forest interiors or forest edges. We attribute differences in mean intensity to differences in microclimate among localities; maximum air temperature was significantly higher and relative humidity significantly lower in fragment edges compared with either large forest tract interior or edges.

  5. Seed-deposition and recruitment patterns of Clusia species in a disturbed tropical montane forest in Bolivia

    NASA Astrophysics Data System (ADS)

    Saavedra, Francisco; Hensen, Isabell; Apaza Quevedo, Amira; Neuschulz, Eike Lena; Schleuning, Matthias

    2017-11-01

    Spatial patterns of seed dispersal and recruitment of fleshy-fruited plants in tropical forests are supposed to be driven by the activity of animal seed dispersers, but the spatial patterns of seed dispersal, seedlings and saplings have rarely been analyzed simultaneously. We studied seed deposition and recruitment patterns of three Clusia species in a tropical montane forest of the Bolivian Andes and tested whether these patterns changed between habitat types (forest edge vs. forest interior), distance to the fruiting tree and consecutive recruitment stages of the seedlings. We recorded the number of seeds deposited in seed traps to assess the local seed-deposition pattern and the abundance and distribution of seedlings and saplings to evaluate the spatial pattern of recruitment. More seeds were removed and deposited at the forest edge than in the interior. The number of deposited seeds decreased with distance from the fruiting tree and was spatially clustered in both habitat types. The density of 1-yr-old seedlings and saplings was higher at forest edges, whereas the density of 2-yr-old seedlings was similar in both habitat types. While seedlings were almost randomly distributed, seeds and saplings were spatially clustered in both habitat types. Our findings demonstrate systematic changes in spatial patterns of recruits across the plant regeneration cycle and suggest that the differential effects of biotic and abiotic factors determine plant recruitment at the edges and in the interior of tropical montane forests. These differences in the spatial distribution of individuals across recruitment stages may have strong effects on plant community dynamics and influence plant species coexistence in disturbed tropical forests.

  6. Influence of matrix type on tree community assemblages along tropical dry forest edges.

    PubMed

    Benítez-Malvido, Julieta; Gallardo-Vásquez, Julio César; Alvarez-Añorve, Mariana Y; Avila-Cabadilla, Luis Daniel

    2014-05-01

    • Anthropogenic habitat edges have strong negative consequences for the functioning of tropical ecosystems. However, edge effects on tropical dry forest tree communities have been barely documented.• In Chamela, Mexico, we investigated the phylogenetic composition and structure of tree assemblages (≥5 cm dbh) along edges abutting different matrices: (1) disturbed vegetation with cattle, (2) pastures with cattle and, (3) pastures without cattle. Additionally, we sampled preserved forest interiors.• All edge types exhibited similar tree density, basal area and diversity to interior forests, but differed in species composition. A nonmetric multidimensional scaling ordination showed that the presence of cattle influenced species composition more strongly than the vegetation structure of the matrix; tree assemblages abutting matrices with cattle had lower scores in the ordination. The phylogenetic composition of tree assemblages followed the same pattern. The principal plant families and genera were associated according to disturbance regimes as follows: pastures and disturbed vegetation (1) with cattle and (2) without cattle, and (3) pastures without cattle and interior forests. All habitats showed random phylogenetic structures, suggesting that tree communities are assembled mainly by stochastic processes. Long-lived species persisting after edge creation could have important implications in the phylogenetic structure of tree assemblages.• Edge creation exerts a stronger influence on TDF vegetation pathways than previously documented, leading to new ecological communities. Phylogenetic analysis may, however, be needed to detect such changes. © 2014 Botanical Society of America, Inc.

  7. Salamander abundance along road edges and within abandoned logging roads in Appalachian forests.

    PubMed

    Semlitsch, Raymond D; Ryan, Travis J; Hamed, Kevin; Chatfield, Matt; Drehman, Bethany; Pekarek, Nicole; Spath, Mike; Watland, Angie

    2007-02-01

    Roads may be one of the most common disturbances in otherwise continuous forested habitat in the southern Appalachian Mountains. Despite their obvious presence on the landscape, there is limited data on the ecological effects along a road edge or the size of the "road-effect zone." We sampled salamanders at current and abandoned road sites within the Nantahala National Forest, North Carolina (U.S.A.) to determine the road-effect zone for an assemblage of woodland salamanders. Salamander abundance near the road was reduced significantly, and salamanders along the edges were predominantly large individuals. These results indicate that the road-effect zone for these salamanders extended 35 m on either side of the relatively narrow, low-use forest roads along which we sampled. Furthermore, salamander abundance was significantly lower on old, abandoned logging roads compared with the adjacent upslope sites. These results indicate that forest roads and abandoned logging roads have negative effects on forest-dependent species such as plethodontid salamanders. Our results may apply to other protected forests in the southern Appalachians and may exemplify a problem created by current and past land use activities in all forested regions, especially those related to road building for natural-resource extraction. Our results show that the effect of roads reached well beyond their boundary and that abandonment or the decommissioning of roads did not reverse detrimental ecological effects; rather, our results indicate that management decisions have significant repercussions for generations to come. Furthermore, the quantity of suitable forested habitat in the protected areas we studied was significantly reduced: between 28.6% and 36.9% of the area was affected by roads. Management and policy decisions must use current and historical data on land use to understand cumulative impacts on forest-dependent species and to fully protect biodiversity on national lands.

  8. The Japanese Marten Favors Actinidia arguta, a Forest Edge Liane as a Directed Seed Disperser.

    PubMed

    Yasumoto, Yui; Takatsuki, Seiki

    2015-06-01

    This study demonstrates the potential of the Japanese marten (Martes melampus) to serve as a directed seed disperser of Actinidia arguta, a representative forest edge liane. Fecal compositions of the Japanese marten in a western part of Tokyo, Japan were analyzed by the point-frame method. It fed on fruits in autumn (73.1%) and winter (63.0%), and the seeds of A. arguta were most frequently eaten (47.4%). Although the vegetation in the study area was dominated by forest (95.5%), seeds found in the marten feces were dominated by those of forest edge plants (92.1%), suggesting a strong selective bias, both habitat and food, toward these species. The density of marten feces was also higher at forest edges than forest interiors. A. arguta plants were more abundant at forest edges than within the forest at Afan Wood, Nagano Prefecture. These results suggest that the Japanese marten selectively uses forest edges as a location for feeding and defecation and thus functions as a directed seed disperser of A. arguta.

  9. Effects of forest fragmentation on the beetle assemblage at the relict forest of Fray Jorge, Chile.

    PubMed

    Barbosa, Olga; Marquet, Pablo A

    2002-07-01

    Habitat fragmentation is recognized as one of the main factors associated with species extinction and is particularly acute in South American forest habitats. In this study, we examined the effects of forest fragmentation on the beetle assemblage at the relict temperate forest of Fray Jorge (Chile). We evaluated the following hypotheses: (1) there is a strong edge effect, so that the number of beetle species and individuals increases away from the edge, towards the inner part of each fragment, (2) this pattern should be apparent in the larger fragments but not in the smaller ones, where edge effects are expected to be stronger, and (3) there should be a significant interaction between number of species/individuals found inside and outside fragments (i.e., in the matrix) and season, because of an increase in aridity and water stress during austral summer months. We found that the relationship between the number of individuals and number of species vs distance from the matrix towards the forest interior was affected by fragment size and season. In general, both number of species and individuals tended to increase from the matrix towards the forest edge and then either decrease, increase or maintain a constant level, depending on fragment size and season. The result of an ANOVA analysis, which used season, size, and position (inside vs outside fragments) as factors and number of individuals as the response variable, showed a significant effect of fragment size, position, and season and a significant interaction between fragment size and season, season and position, and size and position. ANOVA analysis using number of species as the response variable showed that area, season, and position all had significant effects. The results also showed a significant interaction between size and season and between season and position. Our results emphasize the existence of strong fragment-size and seasonal effects modulating both the response of beetles to fragmentation and their abundance and distribution in temperate areas. Thus, seasonal dynamic effects can be of paramount importance to demonstrate and understand the effect of habitat fragmentation upon arthropod assemblages in temperate areas.

  10. Bird use of reforestation sites: Influence of location and vertical structure

    USGS Publications Warehouse

    Twedt, Daniel J.; Cooper, Robert

    2005-01-01

    In the Lower Mississippi Valley, more than 300,000 acres of agricultural land have been reforested in the last 10 years. Planning decisions on how and where to restore forest are complex and usually reflect landowner objectives. However, initial planning decisions may have a large influence on the value of restored stands for birds and other wildlife.Reforestation of small, isolated tracts will likely result in mature forests where reproductive output of breeding birds does not compensate for adult mortality (sink habitats). This may be due to factors such as lower reproductive success near edges (edge effects), insufficient area of habitat to attract colonizing birds (area effects), or restricted population mixing and mating opportunities because of limited dispersal among tracts (isolation effects).Conversely, reforestation adjacent to existing forest increases contiguous forest area and provides areas buffered from agricultural or urban habitats (interior forest core).Bottomland reforestation has historically focused on planting relatively slow-growing tree species, particularly oaks (Quercus spp.). Thus, restoration sites are often dominated by grasses and forbs for up to a decade after tree planting. Grassland birds are the first birds to colonize reforested sites. However, abundance and productivity of grassland birds is generally poor on sites associated with woody vegetation, such as sites adjacent to mature forest.As woody vegetation develops on reforested sites, birds preferring shrub-scrub habitat displace grassland species (Twedt et al. 2002) (fig. 1). Planting faster-growing trees compresses the time for colonization by shrub-scrub birds and the increased vertical stature of these trees attracts forest birds (Twedt and Portwood 1996). Additionally, planting next to existing mature forests creates transitional edges that reduce the detrimental effects of abrupt forest-agriculture interfaces.

  11. Landscape and vegetation effects on avian reproduction on bottomland forest restorations

    USGS Publications Warehouse

    Twedt, Daniel J.; Somershoe, Scott G.; Hazler, Kirsten R.; Cooper, Robert J.

    2010-01-01

    Forest restoration has been undertaken on >200,000 ha of agricultural land in the Mississippi Alluvial Valley, USA, during the past few decades. Decisions on where and how to restore bottomland forests are complex and dependent upon landowner objectives, but for conservation of silvicolous (forest-dwelling) birds, ecologists have espoused restoration through planting a diverse mix of densely spaced seedlings that includes fast-growing species. Application of this planting strategy on agricultural tracts that are adjacent to extant forest or within landscapes that are predominately forested has been advocated to increase forest area and enhance forested landscapes, thereby benefiting area-sensitive, silvicolous birds. We measured support for these hypothesized benefits through assessments of densities of breeding birds and reproductive success of 9 species on 36 bottomland forest restoration sites. Densities of thamnic (shrub-scrub dwelling) and silvicolous birds, such as yellow-breasted chat (Icteria virens), indigo bunting (Passerina cyanea), and white-eyed vireo (Vireo griseus) were positively associated with 1) taller trees, 2) greater stem densities, and 3) a greater proportion of forest within the landscape, whereas densities of birds associated with grasslands, such as dickcissel (Spiza americana) and red-winged blackbird (Agelaius phoeniceus), were negatively associated with these variables. Vegetation structure, habitat edge, and temporal effects had greater influence on nest success than did landscape effects. Taller trees, increased density of woody stems, greater vegetation density, and more forest within the landscape were often associated with greater nest success. Nest success of grassland birds was positively related to distance from forest edge but, for thamnic birds, success was greater near edges. Moreover, nest success and estimated fecundity of thamnic species suggested their populations are self-sustaining on forest restoration sites, whereas these sites are likely population sinks for grassland and open-woodland species. We recommend restoration strategies that promote rapid development of dense forest stands within largely forested landscapes to recruit breeding populations of thamnic and silvicolous birds that have reproductive success sufficient to sustain their populations.

  12. Interaction of gusts with forest edges

    NASA Astrophysics Data System (ADS)

    Ruck, Bodo; Tischmacher, Michael

    2012-05-01

    Experimental investigations in an atmospheric boundary layer wind tunnel were carried out in order to study the interaction of gusts with forest edges. Summarizing the state of knowledge in the field of forest damages generated by extreme storms, there is a strong indication that in many cases, windthrow of trees starts near the forest edge from where it spreads into the stand. The high-transient interaction between gusts and (porous) forest edges produce unsteady flow phenomena not known so far. From a fluid mechanical point of view, the flow type resembles a forward-facing porous step flow, which is significantly influenced by the characteristics of the oncoming atmospheric boundary layer flow and the shape and `porous properties' of the forest edge. The paper reports systematic investigations on the interaction of artificially generated gusts and forest edge models in an atmospheric boundary layer wind tunnel. The experimental investigations were carried out with a laser-based time-resolved PIV-system and high speed photography. Different flow phenomena like gust streching, vortex formation, Kelvin-Helmholtz instabilities or wake production of turbulence could be measured or visualized contributing to the understanding of the complex flow perfomance over the forest edge.

  13. Predation of Small Eggs in Artificial Nests: Effects of Nest Position, Edge, and Potential Predator Abundance in Extensive Forest

    Treesearch

    Richard M. DeGraaf; Thomas J. Maier; Todd K. Fuller

    1999-01-01

    After photographtc observations in the field and laboratory tests indicated that small rodents might be significant predators on small eggs, we conducted a field study in central Massachusetts to compare predation of House Sparrow (Passer domesticus) eggs in artificial nests near to (5-15 m) and far from (100-120 m) forest edges and between ground...

  14. [Vital traits of woody species in High Andean forest edges of the Cogua Forest Reserve (Colombia)].

    PubMed

    Montenegro, Alba Lucía; Vargas, Orlando

    2008-06-01

    The Cogua Forest Reserve was studied throughout eight months to detect the existence of functional species-groups associated with edge wood forest. A second goal was to determine which species were the most successful in edge areas and their particular vital traits. The regeneration and growth of the forest patches to the adjacent matrix depends on the establishment of these species and their tolerance to both habitats. Three types of High Andean edge forest were studied. Two forest patches were chosen for each of the three edge types: Chusquea scandens edge, "paramune" and old-edge; the name of the latter was given because of its advanced successional state. In each patch, the vegetation was evaluated in two 60 m transects perpendicular to the edge and along the matrix-edge-interior gradient of the forest. All woody species were identified and counted to determine their abundance. A total of nine species were chosen as representative of High Andean forest edges in the reserve, because of their high abundance in this environment, their presence in both patches of each edge type and their ability to colonize the adjacent matrix. Each species was evaluated using 20 vital attributes of individual, leaf, and reproductive traits. Six species groups were found through a Correspondence Analysis. However, all nine species have high variation and plasticity levels for the attributes, even inside the groups. This trend suggests that while they are not clearly differentiated functional groups, they probably are representing different strategies within a single functional group of great plasticity. Tibouchina grossa and Pentacalia Pulchella are found in all edge and matrix types; the other species are found in all edge types, except by Gaiadendron punctatum and Weinmannia tomentosa, absent in the Chusquea scandens edge. All nine species are important elements in the restoration of forest edges, mainly where they are more abundant, evidencing their success in the particular conditions of an edge type. Miconia ligustrina and M. squamulosa are the most relevant species in the Chusquea scandens edge and matrix; while G. punctatum, P. pulchella, W. tomentosa, W. balbisiana and especially Macleania rupestris, are more important in the paramune edge and matrix; Hedyosmum bonplandianum is more important in the edge than in the matrix regeneration, while T. grossa is the most successful edge and matrix regeneration species, because it is the most abundant and has high levels of tolerance, vegetative reproduction and litter production. These features are related with a high rate of tissue replacement, as well as a persistent seed bank with smaller and more numerous seeds, evidence of its high fecundity.

  15. Centennial impacts of fragmentation on the canopy structure of tropical montane forest

    Treesearch

    Nicholas Vaughn; Greg Asner; Christian Giardina

    2014-01-01

    Fragmentation poses one of the greatest threats to tropical forests with short-term changes to the structure of forest canopies affecting microclimate, tree mortality, and growth. Yet the long-term effects of fragmentation are poorly understood because (1) most effects require many decades to materialize, but long-term studies are very rare, (2) the effects of edges on...

  16. Effects of forest roads on habitat quality for Ovenbirds in a forested landscape

    Treesearch

    Yvette K. Ortega; David E. Capen

    1999-01-01

    Numerous studies have reported lower densities of breeding Ovenbirds (Seiurus aurocapillus) adjacent to forest edges. However, none of these studies has considered habitat use and reproductive success to address mechanisms underlying the observed pattern, and most were conducted in fragmented landscapes and ignored juxtapositions of forest with...

  17. Forest fragmentation in Massachusetts, USA: a town-level assessment using Morphological Spatial Pattern Analysis and affinity propagation

    Treesearch

    J. Rogan; T.M. Wright; J. Cardille; H. Pearsall; Y. Ogneva-Himmelberger; Rachel Riemann; Kurt Riitters; K. Partington

    2016-01-01

    Forest fragmentation has been studied extensively with respect to biodiversity loss, disruption of ecosystem services, and edge effects although the relationship between forest fragmentation and human activities is still not well understood. We classified the pattern of forests in Massachusetts using fragmentation indicators to address...

  18. Distance from forest edge affects bee pollinators in oilseed rape fields.

    PubMed

    Bailey, Samantha; Requier, Fabrice; Nusillard, Benoît; Roberts, Stuart P M; Potts, Simon G; Bouget, Christophe

    2014-02-01

    Wild pollinators have been shown to enhance the pollination of Brassica napus (oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter-Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig. 1). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policy-makers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services.

  19. Distance from forest edge affects bee pollinators in oilseed rape fields

    PubMed Central

    Bailey, Samantha; Requier, Fabrice; Nusillard, Benoît; Roberts, Stuart P M; Potts, Simon G; Bouget, Christophe

    2014-01-01

    Wild pollinators have been shown to enhance the pollination of Brassica napus (oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter-Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig. 1). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policy-makers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services. PMID:24634722

  20. [Edge effects of forest gap in Pinus massoniana plantations on the decomposition of leaf litter recalcitrant components of Cinnamomum camphora and Toona ciliata.

    PubMed

    Zhang, Yan; Zhang, Dan Ju; Li, Xun; Liu, Hua; Zhang, Ming Jin; Yang, Wan Qin; Zhang, Jian

    2016-04-22

    The objective of the study was to evaluate the dynamics of recalcitrant components during foliar litter decomposition under edge effects of forest gap in Pinus massoniana plantations in the low hilly land, Sichuan basin. A field litterbag experiment was conducted in seven forest gaps with different sizes (100, 225, 400, 625, 900, 1225, 1600 m 2 ) which were generated by thinning P. massoniana plantations. The degradation rate of four recalcitrant components, i.e., condensed tannins, total phenol, lignin and cellulose in foliar litter of two native species (Cinnamomum camphora and Toona ciliata) at the gap edge and under the closed canopy were measured. The results showed that the degradation rate of recalcitrant components in T. ciliata litter except for cellulose at the gap edge were significantly higher than that under the closed canopy. For C. camphora litter, only the degradation of lignin at the gap edge was higher than that under the closed canopy. After one-year decomposition, four recalcitrant components in two types of foliar litter exhibited an increment of degradation rate, and the degradation rate of condensed tannin was the fastest, followed by total phenol and cellulose, but the lignin degradation rate was the slowest. With the increase of gap size, except for cellulose, the degradation rate ofthe other three recalcitrant components of the T. ciliata at the edge of medium sized gaps (400 and 625 m 2 ) were significantly higher than at the edge of other gaps. However, lignin in the C. camphora litter at the 625 m 2 gap edge showed the greatest degradation rate. Both temperature and litter initial content were significantly correlated with litter recalcitrant component degradation. Our results suggested that medium sized gaps (400-625 m 2 ) had a more significant edge effect on the degradation of litter recalcitrant components in the two native species in P. massoniana plantations, however, the effect also depended on species.

  1. Response of Brown Creepers to elevation and forest edges in the southern Sierra Nevada, California

    Treesearch

    Kathryn Purcell; Craig Thompson; Douglas Drynan

    2012-01-01

    We studied the responses of the Brown Creeper (Certhia americana) to forest edges in the southern Sierra Nevada, California. We censused birds and monitored nests in four forest types over an elevational gradient. We identified habitat patches homogeneous in terms of forest type, seral stage, and canopy cover and rated edges between adjoining...

  2. Species-specific differences in relative eye size are related to patterns of edge avoidance in an Amazonian rainforest bird community

    PubMed Central

    Martínez-Ortega, Cristina; Santos, Eduardo SA; Gil, Diego

    2014-01-01

    Eye size shows a large degree of variation among species, even after correcting for body size. In birds, relatively larger eyes have been linked to predation risk, capture of mobile prey, and nocturnal habits. Relatively larger eyes enhance visual acuity and also allow birds to forage and communicate in low-light situations. Complex habitats such as tropical rain forests provide a mosaic of diverse lighting conditions, including differences among forest strata and at different distances from the forest edge. We examined in an Amazonian forest bird community whether microhabitat occupancy (defined by edge avoidance and forest stratum) was a predictor of relative eye size. We found that relative eye size increased with edge avoidance, but did not differ according to forest stratum. Nevertheless, the relationship between edge avoidance and relative eye size showed a nonsignificant positive trend for species that inhabit lower forest strata. Our analysis shows that birds that avoid forest edges have larger eyes than those living in lighter parts. We expect that this adaptation may allow birds to increase their active daily period in dim areas of the forest. The pattern that we found raises the question of what factors may limit the evolution of large eyes. PMID:25614788

  3. Local Plant Diversity Across Multiple Habitats Supports a Diverse Wild Bee Community in Pennsylvania Apple Orchards.

    PubMed

    Kammerer, Melanie A; Biddinger, David J; Rajotte, Edwin G; Mortensen, David A

    2016-02-01

    Wild pollinators supply essential, historically undervalued pollination services to crops and other flowering plant communities with great potential to ensure agricultural production against the loss of heavily relied upon managed pollinators. Local plant communities provision wild bees with crucial floral and nesting resources, but the distribution of floristic diversity among habitat types in North American agricultural landscapes and its effect on pollinators are diverse and poorly understood, especially in orchard systems. We documented floristic diversity in typical mid-Atlantic commercial apple (Malus domestica Borkh.) orchards including the forest and orchard-forest edge ("edge") habitats surrounding orchards in a heterogeneous landscape in south-central Pennsylvania, USA. We also assessed the correlation between plant richness and orchard pollinator communities. In this apple production region, edge habitats are the most species rich, supporting 146 out of 202 plant species recorded in our survey. Plant species richness in the orchard and edge habitats were significant predictors of bee species richness and abundance in the orchard, as well as landscape area of the forest and edge habitats. Both the quantity and quality of forest and edges close to orchards play a significant role in provisioning a diverse wild bee community in this agroecosystem. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Changes in habitat use at rainforest edges through succession: A case study of understory birds in the Brazilian Amazon

    Treesearch

    Luke L. Powell; Gustavo Zurita; Jared D.  Wolfe; Erik I.  Johnson; Philip C  Stouffer

    2015-01-01

    Primary tropical rain forests are being rapidly perforated with new edges via roads, logging, and pastures, and vast areas of secondary forest accumulate following abandonment of agricultural lands. To determine how insectivorous Amazonian understory birds respond to edges between primary rain forest and three age classes of secondary forest, we radio-tracked two...

  5. Conventional oil and gas development alters forest songbird communities

    Treesearch

    Emily H. Thomas; Margaret C. Brittingham; Scott H. Stoleson

    2014-01-01

    Energy extraction within forest habitat is increasing at a rapid rate throughout eastern North America from the combined presence of conventional oil and gas, shale gas, and wind energy. We examined the effects of conventional oil and gas development on forest habitat including amounts of core and edge forest, the abundance of songbird species and guilds, species...

  6. Environmental Impact Study of the Northern Section of the Upper Mississippi River. Pool 9.

    DTIC Science & Technology

    1973-11-01

    Poison Ivy are the most common shrub layer vegetation, although neither is abundant in the forest proper. Vine form Poison Ivy, Virginia Creeper...Parthenocissus sp.), Wild Grape (Vitis sp.) and Smilax sp. are the common woody vines . The high unshaded edges of running sloughs in the forest areas...the forest edge, or be succeeded by 1a shrub willow zone, which ends abruptly at the forest edge. The forest 4margin is most often dominated by red or

  7. Determining effective riparian buffer width for nonnative plant exclusion and habitat enhancement

    Treesearch

    Gavin Ferris; Vincent D' Amico; Christopher K. Williams

    2012-01-01

    Nonnative plants threaten native biodiversity in landscapes where habitats are fragmented. Unfortunately, in developed areas, much of the remaining forested habitat occurs in fragmented riparian corridors. Because forested corridors of sufficient width may allow forest interior specializing native species to retain competitive advantage over edge specialist and...

  8. Effects of edge contrast on redback salamander distribution in even-aged northern hardwoods

    Treesearch

    Richard M. DeGraaf; Mariko Yamasaki

    2002-01-01

    Terrestrial salamanders are sensitive to forest disturbance associated with even-aged management. We studied the distribution of redback salamanders (Plethodon cinereus) for 4 yr at edges between even-aged northern hardwood stands along three replicate transects in each of three edge contrast types: regeneration/mature, sapling/mature, and...

  9. The Effect of Herbivory by White-Tailed Deer and Additionally Swamp Rabbits in an Old-Growth Bottomland Hardwood Forest

    Treesearch

    Margaret S. Devall; Bernard R. Parresol; Winston P. Smith

    2001-01-01

    Forest openings create internal patchiness and offer different habitat qualities that attract wildlife, especially herbivores, that flourish along forest edges. But intense herbivory in these openings can reduce or eliminate herbaceous and woody species and thus influence local species composition and structure of the forest. This study in an old-growth bottomland...

  10. Edge Effects Are Important in Supporting Beetle Biodiversity in a Gravel-Bed River Floodplain

    PubMed Central

    Langhans, Simone D.; Tockner, Klement

    2014-01-01

    Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60–100 m, and 5 m within the riparian forest), and time of the year (February–November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct – yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity. PMID:25545280

  11. Edge effects are important in supporting beetle biodiversity in a gravel-bed river floodplain.

    PubMed

    Langhans, Simone D; Tockner, Klement

    2014-01-01

    Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60-100 m, and 5 m within the riparian forest), and time of the year (February-November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct--yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity.

  12. Edge effect on post-dispersal artificial seed predation in the southeastern Amazonia, Brazil.

    PubMed

    Penido, G; Ribeiro, V; Fortunato, D S

    2015-05-01

    This paper evaluates the post-dispersal artificial seed predation rates in two areas of the southeastern Amazon forest-savanna boundary, central Brazil. We conducted the survey in a disturbance regime controlled research site to verify if exists an edge effect in these rates and if the disturbance (in this case annual fire and no fire) affects seed predation. We placed 800 peanuts seeds in each area at regular distance intervals from the fragment`s edge. Data were analyzed by a likelihood ratio model selection in generalized linear models (GLM). The complete model (with effects from edge distance and site and its interaction) was significative (F3=4.43; p=0.005). Seeds had a larger predation rates in fragment's interior in both areas, but in the controlled area (no disturbance) this effect was less linear. This suggests an edge effect for post-dispersal seed predation, and that disturbances might alter these effects. Even if we exclude the site effect (grouping both areas together) there is still a strong edge effect on seed predation rates (F3=32.679; p>0.001). We did not verify predator's species in this study; however, the presence of several species of ants was extremely common in the seeds. The detection of an edge effect in only a short survey time suggests that there is heterogeneity in predation rates and that this variation might affect plant recruitment in fragmented areas of the Amazon forest. Henceforth, this seed predation should be taken in consideration in reforestation projects, where the main source of plants species is from seed distribution.

  13. Spatial and Temporal Relationships of Old-Growth and Secondary Forests in Indiana, USA

    Treesearch

    Martin A. Spetich; George R. Parker; Eric J. Gustafson

    1997-01-01

    We examined the spatial pattern of forests in Indiana to: (1) determine the extent, connectivity and percent edge of all forests, (2) examine the change in connectivity among these forests if all riparian zones were replanted to forest or other native vegetation, (3) determine the location, spatial dispersion and percent edge of current old-growth forest remnants, (4)...

  14. Genetic structure of tree and shrubby species among anthropogenic edges, natural edges, and interior of an atlantic forest fragment.

    PubMed

    Ramos, Flavio Nunes; de Lima, Paula Feliciano; Zucchi, Maria Imaculada; Colombo, Carlos Augusto; Solferini, Vera Nisaka

    2010-04-01

    Two species, Psychotria tenuinervis (shrub, Rubiaceae) and Guarea guidonia (tree, Meliaceae), were used as models to compare the genetic structure of tree and shrubby species among natural edges, anthropogenic edges, and a fragment interior. There were significant differences between two genetic markers. For isozymes, P. tenuinervis presented greater heterozygosity (expected and observed) and a higher percentage of polymorphic loci and median number of alleles than G. guidonia. For microsatellites, there was no difference in genetic variability between the species. Only P. tenuinervis, for isozymes, showed differences in genetic variability among the three habitats. There was no genetic structure (F (ST) < 0.05) among habitats in both plant species for both genetic markers. Isozymes showed great endogamy for both plant species, but not microsatellites. The forest fragmentation may have negative effects on both spatial (among edges and interior) and temporal genetic variability.

  15. Forests on the edge: evaluating contributions of and threats to America's private forest lands

    Treesearch

    Mark Hatfield; Ronald E. McRoberts; Dacia M. Meneguzzo; Mike Dechter; < i> et al< /i>

    2007-01-01

    The Forests on the Edge project, sponsored by the U.S. Department of Agriculture Forest Service, uses geographic information systems to construct and analyze maps depicting ecological, social, and economic contributions of America's private forest lands and threats to those contributions. Watersheds across the conterminous United States are ranked relative to the...

  16. Forest edge disturbance increases rattan abundance in tropical rain forest fragments.

    PubMed

    Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Laurance, Susan G; Alamgir, Mohammed; Porolak, Gabriel; Laurance, William F

    2017-07-20

    Human-induced forest fragmentation poses one of the largest threats to global diversity yet its impact on rattans (climbing palms) has remained virtually unexplored. Rattan is arguably the world's most valuable non-timber forest product though current levels of harvesting and land-use change place wild populations at risk. To assess rattan response to fragmentation exclusive of harvesting impacts we examined rattan abundance, demography and ecology within the forests of northeastern, Australia. We assessed the community abundance of rattans, and component adult (>3 m) and juvenile (≤3 m) abundance in five intact forests and five fragments (23-58 ha) to determine their response to a range of environmental and ecological parameters. Fragmented forests supported higher abundances of rattans than intact forests. Fragment size and edge degradation significantly increased adult rattan abundance, with more in smaller fragments and near edges. Our findings suggest that rattan increase within fragments is due to canopy disturbance of forest edges resulting in preferential, high-light habitat. However, adult and juvenile rattans may respond inconsistently to fragmentation. In managed forest fragments, a rattan abundance increase may provide economic benefits through sustainable harvesting practices. However, rattan increases in protected area forest fragments could negatively impact conservation outcomes.

  17. Forests on the edge: housing development on America’s private forests.

    Treesearch

    Ronald E. McRoberts; Ralph J. Alig; Mark D. Nelson; David M. Theobald; Mike Eley; Mike Dechter; Mary. Carr

    2005-01-01

    The private working land base of America’s forests is being converted to developed uses, with implications for the condition and management of affected private forests and the watersheds in which they occur. The Forests on the Edge project seeks to improve understanding of the processes and thresholds associated with increases in housing density in private forests and...

  18. Forest edge burning in the Brazilian Amazon promoted by escaping fires from managed pastures

    NASA Astrophysics Data System (ADS)

    Cano-Crespo, Ana; Oliveira, Paulo J. C.; Boit, Alice; Cardoso, Manoel; Thonicke, Kirsten

    2015-10-01

    Understanding to what extent different land uses influence fire occurrence in the Amazonian forest is particularly relevant for its conservation. We evaluate the relationship between forest fires and different anthropogenic activities linked to a variety of land uses in the Brazilian states of Mato Grosso, Pará, and Rondônia. We combine the new high-resolution (30 m) TerraClass land use database with Moderate Resolution Imaging Spectroradiometer burned area data for 2008 and the extreme dry year of 2010. Excluding the non-forest class, most of the burned area was found in pastures, primary and secondary forests, and agricultural lands across all three states, while only around 1% of the total was located in deforested areas. The trend in burned area did not follow the declining deforestation rates from 2001 to 2010, and the spatial overlap between deforested and burned areas was only 8% on average. This supports the claim of deforestation being disconnected from burning since 2005. Forest degradation showed an even lower correlation with burned area. We found that fires used in managing pastoral and agricultural lands that escape into the neighboring forests largely contribute to forest fires. Such escaping fires are responsible for up to 52% of the burned forest edges adjacent to burned pastures and up to 22% of the burned forest edges adjacent to burned agricultural fields, respectively. Our findings call for the development of control and monitoring plans to prevent fires from escaping from managed lands into forests to support effective land use and ecosystem management.

  19. 140-Year Dynamics of a Forest Ecotone Under Climate and Environmental Change

    NASA Astrophysics Data System (ADS)

    Thorne, J. H.; Kelsey, R.

    2006-12-01

    Terrestrial plant species live within elevational limits. Response to climate change at the lower edge of a species' range can be quite different from response at its upper limits. Lower edge dynamics can sometimes lead to rapid shifts, if establishment conditions have changed. Under those circumstances, stand replacing disturbances can cause the local extirpation of the species because subsequent recruitment is ineffectual. We examined the position of lower edge of Pinus ponderosa forests in El Dorado County, California, where the tree occupies a broad elevational gradient. We found that over 140 years, this forest had shifted upslope over 500 meters. Minimum monthly air temperatures from stations forming an elevational transect in these mountains have warmed over the past 60 years by over 30 C. In the zone of the shift, this means that now no months are frozen, whereas 60 years ago December, January and February were below 00C. This warming is associated with advancing summer drought conditions, which set the stage for drought stress and reduced competitive abilities in the seedlings. We present an estimate for how much sooner summer drought conditions begin. Potential confounding factors: including grazing, agriculture, fires and urban expansion were found to occupy only 40% of the 540 km2 of forests lost since 1850 in the County. Forest change here is a disturbance initiated, recruitment limited system. Implications of this research include that the lower edge of coniferous systems are sensitive to climate change, via a combination of direct and indirect effects. A possible feedback between this edge and the lower limits of the snowline is discussed.

  20. Differential Effects of Roads and Traffic on Space Use and Movements of Native Forest-Dependent and Introduced Edge-Tolerant Species

    PubMed Central

    Chen, Hsiang Ling; Koprowski, John L.

    2016-01-01

    Anthropogenic infrastructure such as roads and non-native species are major causes of species endangerment. Understanding animal behavioral responses to roads and traffic provides insight into causes and mechanisms of effects of linear development on wildlife and aids effective mitigation and conservation. We investigated effects of roads and traffic on space use and movements of two forest-dwelling species: endemic, forest-dependent Mount Graham red squirrels (Tamiasciurus hudsonicus grahamensis) and introduced, edge-tolerant Abert’s squirrels (Sciurus aberti). To assess the effects of roads on space use and movement patterns, we compared the probability that a squirrel home range included roads and random lines in forests, and assessed effects of traffic intensity on rate of road crossing and movement patterns. Red squirrels avoided areas adjacent to roads and rarely crossed roads. In contrast, Abert’s squirrels were more likely to include roads in their home ranges compared to random lines in forests. Both red squirrels and Abert’s squirrels increased speed when crossing roads, compared to before and after road crossings. Increased hourly traffic volume reduced the rate of road crossings by both species. Behavioral responses of red squirrels to roads and traffic resemble responses to elevated predation risk, including reduced speed near roads and increased tortuosity of movement paths with increased traffic volume. In contrast, Abert’s squirrels appeared little affected by roads and traffic with tortuosity of movement paths reduced as distance to roads decreased. We found that species with similar body size category (<1 kg) but different habitat preference and foraging strategy responded to roads differently and demonstrated that behavior and ecology are important when considering effects of roads on wildlife. Our results indicate that roads restricted movements and space use of a native forest-dependent species while creating habitat preferred by an introduced, edge-tolerant species. PMID:26821366

  1. Differential Effects of Roads and Traffic on Space Use and Movements of Native Forest-Dependent and Introduced Edge-Tolerant Species.

    PubMed

    Chen, Hsiang Ling; Koprowski, John L

    2016-01-01

    Anthropogenic infrastructure such as roads and non-native species are major causes of species endangerment. Understanding animal behavioral responses to roads and traffic provides insight into causes and mechanisms of effects of linear development on wildlife and aids effective mitigation and conservation. We investigated effects of roads and traffic on space use and movements of two forest-dwelling species: endemic, forest-dependent Mount Graham red squirrels (Tamiasciurus hudsonicus grahamensis) and introduced, edge-tolerant Abert's squirrels (Sciurus aberti). To assess the effects of roads on space use and movement patterns, we compared the probability that a squirrel home range included roads and random lines in forests, and assessed effects of traffic intensity on rate of road crossing and movement patterns. Red squirrels avoided areas adjacent to roads and rarely crossed roads. In contrast, Abert's squirrels were more likely to include roads in their home ranges compared to random lines in forests. Both red squirrels and Abert's squirrels increased speed when crossing roads, compared to before and after road crossings. Increased hourly traffic volume reduced the rate of road crossings by both species. Behavioral responses of red squirrels to roads and traffic resemble responses to elevated predation risk, including reduced speed near roads and increased tortuosity of movement paths with increased traffic volume. In contrast, Abert's squirrels appeared little affected by roads and traffic with tortuosity of movement paths reduced as distance to roads decreased. We found that species with similar body size category (<1 kg) but different habitat preference and foraging strategy responded to roads differently and demonstrated that behavior and ecology are important when considering effects of roads on wildlife. Our results indicate that roads restricted movements and space use of a native forest-dependent species while creating habitat preferred by an introduced, edge-tolerant species.

  2. Edge-interior differences in the species richness and abundance of drosophilids in a semideciduous forest fragment.

    PubMed

    Penariol, Leiza V; Madi-Ravazzi, Lilian

    2013-12-01

    Habitat fragmentation is the main cause of biodiversity loss, as remnant fragments are exposed to negative influences that include edge effects, prevention of migration, declines in effective population sizes, loss of genetic variability and invasion of exotic species. The Drosophilidae (Diptera), especially species of the genus Drosophila, which are highly sensitive to environmental variation, have been used as bioindicators. A twelve-month field study was conducted to evaluate the abundance and richness of drosophilids in an edge-interior transect in a fragment of semideciduous forest in São Paulo State, Brazil. One objective of the study was to evaluate the applied methodology with respect to its potential use in future studies addressing the monitoring and conservation of threatened areas. The species abundance along the transect showed a clear gradient, with species associated with disturbed environments, such as Drosophila simulans, Scaptodrosophila latifasciaeformis and Zaprionus indianus, being collected at the fragment edge and the species D. willistoni and D. mediostriata being found in the fragment's interior. Replacement of these species occurred at approximately 60 meters from the edge, which may be a reflection of edge effects on species abundance and richness because the species found within the habitat fragment are more sensitive to variations in temperature and humidity than those sampled near the edge. The results support the use of this methodology in studies on environmental impacts.

  3. Threats to private forest lands in the U.S.A.: a forests on the edge study

    Treesearch

    Mark H. Hatfield; Ronald E. McRoberts; Dacia M. Meneguzzo; Sara Comas

    2010-01-01

    The Forests on the Edge project, sponsored by the USDA Forest Service, uses geographic information systems to construct and analyze maps depicting threats to the contributions of America’s private forest lands. For this study, watersheds across the conterminous United States are evaluated with respect to the amount of their private forest land. Watersheds with at least...

  4. Habitat corridors function as both drift fences and movement conduits for dispersing flies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, Joanna H.; Levey Douglas J.; Hogsette, Jerome A.

    2005-03-30

    Abstract Corridors connect otherwise isolated habitat patches and can direct movement of animals among such patches. In eight experimental landscapes, we tested two hypotheses of how corridors might affect dispersal behavior. The Traditional Corridor hypothesis posits that animals preferentially leave patches via corridors, following them into adjacent patches. The Drift Fence hypothesis posits that animals dispersing through matrix habitat are diverted into patches with corridors because they follow corridors when encountered. House flies (Musca domestica L.), a species that prefers the habitat of our patches and corridors, were released in a central patch (100•100 m) and recaptured in peripheral patchesmore » that were or were not connected by a corridor. Flies were captured more frequently in connected than unconnected patches, thereby supporting the Traditional Corridor hypothesis. The Drift Fence hypothesis was also supported, as flies were captured more frequently in unconnected patches with blind (dead end) corridors than in unconnected patches of equal area without blind corridors. A second experiment tested whether these results might be dependent on the type of patch-matrix boundary encountered by dispersing flies and whether edge-following behavior might be the mechanism underlying the observed corridor effect in the first experiment. We recorded dispersal patterns of flies released along forest edges with dense undergrowth in the forest (‘‘closed’’ edges) and along edges with little forest understory (‘‘open’’ edges). Flies were less likely to cross and more likely to follow closed edges than open edges, indicating that when patch and corridor edges are pronounced, edge-following behavior of flies may direct them along corridors into connected patches. Because edges in the first experiment were open, these results also suggest that corridor effects for flies in that experiment would have been even stronger if the edges around the source patches and corridors had been more closed. Taken together, our results suggest that corridors can affect dispersal of organisms in unappreciated ways (i.e., as drift fences) and that edge type can alter dispersal behavior.« less

  5. Meta-analysis of the effects of forest fragmentation on interspecific interactions.

    PubMed

    Magrach, Ainhoa; Laurance, William F; Larrinaga, Asier R; Santamaria, Luis

    2014-10-01

    Forest fragmentation dramatically alters species persistence and distribution and affects many ecological interactions among species. Recent studies suggest that mutualisms, such as pollination and seed dispersal, are more sensitive to the negative effects of forest fragmentation than antagonisms, such as predation or herbivory. We applied meta-analytical techniques to evaluate this hypothesis and quantified the relative contributions of different components of the fragmentation process (decreases in fragment size, edge effects, increased isolation, and habitat degradation) to the overall effect. The effects of fragmentation on mutualisms were primarily driven by habitat degradation, edge effects, and fragment isolation, and, as predicted, they were consistently more negative on mutualisms than on antagonisms. For the most studied interaction type, seed dispersal, only certain components of fragmentation had significant (edge effects) or marginally significant (fragment size) effects. Seed size modulated the effect of fragmentation: species with large seeds showed stronger negative impacts of fragmentation via reduced dispersal rates. Our results reveal that different components of the habitat fragmentation process have varying impacts on key mutualisms. We also conclude that antagonistic interactions have been understudied in fragmented landscapes, most of the research has concentrated on particular types of mutualistic interactions such as seed dispersal, and that available studies of interspecific interactions have a strong geographical bias (arising mostly from studies carried out in Brazil, Chile, and the United States). © 2014 Society for Conservation Biology.

  6. Contribution of insectivorous avifauna to top down control of Lindera benzoin herbivores at forest edge and interior habitats

    NASA Astrophysics Data System (ADS)

    Skoczylas, Daniel R.; Muth, Norris Z.; Niesenbaum, Richard A.

    2007-11-01

    Predation of herbivorous Lepidoptera larvae by insectivorous avifauna was estimated on Lindera benzoin in edge and interior habitats at two sites in eastern Pennsylvania (USA). Clay baits modeled after Epimecis hortaria (Geometridae) larvae, the primary herbivore of L. benzoin at our study sites, were used to estimate predation by birds. In both habitat types, models were placed on uninjured L. benzoin leaves as well as on leaves that had prior insect herbivore damage. Rates of model attack were greater, and model longevity reduced, in forest edge plots compared to interiors. Naturally occurring herbivore damage on L. benzoin was greater in forest interiors. However, model attack was not significantly greater on leaves with prior herbivory damage, suggesting that birds do not effectively use this type of leaf damage as a cue in their foraging. Our findings are consistent with a contribution of bird predation towards top-down control of herbivory in this system. We further discuss these results in a broader context considering the possible effects of habitat type on leaf quality, leaf defense, and herbivore performance.

  7. Hydraulic properties and fine root mass of Larix sibirica along forest edge-interior gradients

    NASA Astrophysics Data System (ADS)

    Chenlemuge, Tselmeg; Dulamsuren, Choimaa; Hertel, Dietrich; Schuldt, Bernhard; Leuschner, Christoph; Hauck, Markus

    2015-02-01

    At its southernmost distribution limit in Inner Asia, the boreal forest disintegrates into forest fragments on moist sites (e.g. north-facing slopes), which are embedded in grasslands. This landscape mosaic is characterized by a much higher forest edge-to-interior ratio than in closed boreal forests. Earlier work in the forest-steppe ecotone of Mongolia has shown that Larix sibirica trees at forest edges grow faster than in the forest interior, as the more xeric environment at the edge promotes self-thinning and edges are preferentially targeted by selective logging and livestock grazing. Lowered stand density reduces competition for water in these semi-arid forests, where productivity is usually limited by summer drought. We studied how branch and coarse root hydraulic architecture and xylem conductivity, fine root biomass and necromass, and fine root morphology of L. sibirica respond to sites differing in water availability. Studying forest edge-interior gradients in two regions of western Mongolia, we found a significant reduction of branch theoretical (Kp) and empirical conductivity (Ks) in the putatively more drought-affected forest interior in the Mongolian Altai (mean precipitation: 120 mm yr-1), while no branch xylem modification occurred in the moister Khangai Mountains (215 mm yr-1). Kp and Ks were several times larger in roots than in branches, but root hydraulics were not influenced by stand density or mean annual precipitation. Very low fine root biomass: necromass ratios at all sites, and in the forest interior in particular, suggest that L. sibirica seeks to maintain a relatively high root conductivity by producing large conduits, which results in high root mortality due to embolism during drought. Our results suggest that L. sibirica is adapted to the semi-arid climate at its southernmost distribution limit by considerable plasticity of the branch hydraulic system and a small but apparently dynamic fine root system.

  8. Carbon pool densities and a first estimate of the total carbon pool in the Mongolian forest-steppe.

    PubMed

    Dulamsuren, Choimaa; Klinge, Michael; Degener, Jan; Khishigjargal, Mookhor; Chenlemuge, Tselmeg; Bat-Enerel, Banzragch; Yeruult, Yolk; Saindovdon, Davaadorj; Ganbaatar, Kherlenchimeg; Tsogtbaatar, Jamsran; Leuschner, Christoph; Hauck, Markus

    2016-02-01

    The boreal forest biome represents one of the most important terrestrial carbon stores, which gave reason to intensive research on carbon stock densities. However, such an analysis does not yet exist for the southernmost Eurosiberian boreal forests in Inner Asia. Most of these forests are located in the Mongolian forest-steppe, which is largely dominated by Larix sibirica. We quantified the carbon stock density and total carbon pool of Mongolia's boreal forests and adjacent grasslands and draw conclusions on possible future change. Mean aboveground carbon stock density in the interior of L. sibirica forests was 66 Mg C ha(-1) , which is in the upper range of values reported from boreal forests and probably due to the comparably long growing season. The density of soil organic carbon (SOC, 108 Mg C ha(-1) ) and total belowground carbon density (149 Mg C ha(-1) ) are at the lower end of the range known from boreal forests, which might be the result of higher soil temperatures and a thinner permafrost layer than in the central and northern boreal forest belt. Land use effects are especially relevant at forest edges, where mean carbon stock density was 188 Mg C ha(-1) , compared with 215 Mg C ha(-1) in the forest interior. Carbon stock density in grasslands was 144 Mg C ha(-1) . Analysis of satellite imagery of the highly fragmented forest area in the forest-steppe zone showed that Mongolia's total boreal forest area is currently 73 818 km(2) , and 22% of this area refers to forest edges (defined as the first 30 m from the edge). The total forest carbon pool of Mongolia was estimated at ~ 1.5-1.7 Pg C, a value which is likely to decrease in future with increasing deforestation and fire frequency, and global warming. © 2015 John Wiley & Sons Ltd.

  9. On Wind Forces in the Forest-Edge Region During Extreme-Gust Passages and Their Implications for Damage Patterns

    NASA Astrophysics Data System (ADS)

    Gromke, Christof; Ruck, Bodo

    2018-03-01

    A damage pattern that is occasionally found after a period of strong winds shows an area of damaged trees inside a forest stand behind an intact stripe of trees directly at the windward edge. In an effort to understand the mechanism leading to this damage pattern, wind loading in the forest-edge region during passages of extreme gusts with different characteristics are investigated using a scaled forest model in the wind tunnel. The interaction of a transient extreme gust with the stationary atmospheric boundary layer (ABL) as a background flow at the forest edge leads to the formation of a vortex at the top of the canopy. This vortex intensifies when travelling downstream and subsequently deflects high-momentum air from above the canopy downwards resulting in increased wind loading on the tree crowns. Under such conditions, the decrease in wind loading in the streamwise direction can be relatively weak compared to stationary ABL approach flows. The resistance of trees with streamwise distance from the forest edge, however, is the result of adaptive growth to wind loading under stationary flow conditions and shows a rapid decline within two to three tree heights behind the windward edge. For some of the extreme gusts realized, an exceedance of the wind loading over the resistance of the trees is found at approximately three tree heights behind the forest edge, suggesting that the damage pattern described above can be caused by the interaction of a transient extreme gust with the stationary ABL flow.

  10. Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects.

    PubMed

    Qie, Lan; Lewis, Simon L; Sullivan, Martin J P; Lopez-Gonzalez, Gabriela; Pickavance, Georgia C; Sunderland, Terry; Ashton, Peter; Hubau, Wannes; Abu Salim, Kamariah; Aiba, Shin-Ichiro; Banin, Lindsay F; Berry, Nicholas; Brearley, Francis Q; Burslem, David F R P; Dančák, Martin; Davies, Stuart J; Fredriksson, Gabriella; Hamer, Keith C; Hédl, Radim; Kho, Lip Khoon; Kitayama, Kanehiro; Krisnawati, Haruni; Lhota, Stanislav; Malhi, Yadvinder; Maycock, Colin; Metali, Faizah; Mirmanto, Edi; Nagy, Laszlo; Nilus, Reuben; Ong, Robert; Pendry, Colin A; Poulsen, Axel Dalberg; Primack, Richard B; Rutishauser, Ervan; Samsoedin, Ismayadi; Saragih, Bernaulus; Sist, Plinio; Slik, J W Ferry; Sukri, Rahayu Sukmaria; Svátek, Martin; Tan, Sylvester; Tjoa, Aiyen; van Nieuwstadt, Mark; Vernimmen, Ronald R E; Yassir, Ishak; Kidd, Petra Susan; Fitriadi, Muhammad; Ideris, Nur Khalish Hafizhah; Serudin, Rafizah Mat; Abdullah Lim, Layla Syaznie; Saparudin, Muhammad Shahruney; Phillips, Oliver L

    2017-12-19

    Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha -1 per year (95% CI 0.14-0.72, mean period 1988-2010) above-ground live biomass. These results closely match those from African and Amazonian plot networks, suggesting that the world's remaining intact tropical forests are now en masse out-of-equilibrium. Although both pan-tropical and long-term, the sink in remaining intact forests appears vulnerable to climate and land use changes. Across Borneo the 1997-1998 El Niño drought temporarily halted the carbon sink by increasing tree mortality, while fragmentation persistently offset the sink and turned many edge-affected forests into a carbon source to the atmosphere.

  11. Woody lianas increase in dominance and maintain compositional integrity across an Amazonian dam-induced fragmented landscape

    PubMed Central

    Peres, Carlos A.; Benchimol, Maíra; Bunnefeld, Lynsey; Dent, Daisy H.

    2017-01-01

    Tropical forest fragmentation creates insular biological communities that undergo species loss and changes in community composition over time, due to area- and edge-effects. Woody lianas thrive in degraded and secondary forests, due to their competitive advantage over trees in these habitats. Lianas compete both directly and indirectly with trees, increasing tree mortality and turnover. Despite our growing understanding of liana-tree dynamics, we lack detailed knowledge of the assemblage-level responses of lianas themselves to fragmentation, particularly in evergreen tropical forests. We examine the responses of both sapling and mature liana communities to landscape-scale forest insularization induced by a mega hydroelectric dam in the Brazilian Amazon. Detailed field inventories were conducted on islands created during reservoir filling, and in nearby mainland continuous forest. We assess the relative importance of variables associated with habitat fragmentation such as area, isolation, surrounding forest cover, fire and wind disturbance, on liana community attributes including abundance, basal area, diversity, and composition. We also explore patterns of liana dominance relative to tree saplings and adults ≥10 cm diameter at breast height. We find that 1) liana community composition remains remarkably similar across mainland continuous forest and islands, regardless of extreme area- and edge- effects and the loss of vertebrate dispersers in the latter; and 2) lianas are increasing in dominance relative to trees in the sapling layer in the most degraded islands, with both the amount of forest cover surrounding islands and fire disturbance history predicting liana dominance. Our data suggest that liana communities persist intact in isolated forests, regardless of extreme area- and edge-effects; while in contrast, tree communities simultaneously show evidence of increased turnover and supressed recruitment. These processes may lead to lianas becoming a dominant component of this dam-induced fragmented landscape in the future, due to their competitive advantage over trees in degraded forest habitats. Additional loss of tree biomass and diversity brought about through competition with lianas, and the concurrent loss of carbon storage, should be accounted for in impact assessments of future dam development. PMID:29040272

  12. Woody lianas increase in dominance and maintain compositional integrity across an Amazonian dam-induced fragmented landscape.

    PubMed

    Jones, Isabel L; Peres, Carlos A; Benchimol, Maíra; Bunnefeld, Lynsey; Dent, Daisy H

    2017-01-01

    Tropical forest fragmentation creates insular biological communities that undergo species loss and changes in community composition over time, due to area- and edge-effects. Woody lianas thrive in degraded and secondary forests, due to their competitive advantage over trees in these habitats. Lianas compete both directly and indirectly with trees, increasing tree mortality and turnover. Despite our growing understanding of liana-tree dynamics, we lack detailed knowledge of the assemblage-level responses of lianas themselves to fragmentation, particularly in evergreen tropical forests. We examine the responses of both sapling and mature liana communities to landscape-scale forest insularization induced by a mega hydroelectric dam in the Brazilian Amazon. Detailed field inventories were conducted on islands created during reservoir filling, and in nearby mainland continuous forest. We assess the relative importance of variables associated with habitat fragmentation such as area, isolation, surrounding forest cover, fire and wind disturbance, on liana community attributes including abundance, basal area, diversity, and composition. We also explore patterns of liana dominance relative to tree saplings and adults ≥10 cm diameter at breast height. We find that 1) liana community composition remains remarkably similar across mainland continuous forest and islands, regardless of extreme area- and edge- effects and the loss of vertebrate dispersers in the latter; and 2) lianas are increasing in dominance relative to trees in the sapling layer in the most degraded islands, with both the amount of forest cover surrounding islands and fire disturbance history predicting liana dominance. Our data suggest that liana communities persist intact in isolated forests, regardless of extreme area- and edge-effects; while in contrast, tree communities simultaneously show evidence of increased turnover and supressed recruitment. These processes may lead to lianas becoming a dominant component of this dam-induced fragmented landscape in the future, due to their competitive advantage over trees in degraded forest habitats. Additional loss of tree biomass and diversity brought about through competition with lianas, and the concurrent loss of carbon storage, should be accounted for in impact assessments of future dam development.

  13. Factors affecting songbird nest survival in riparian forests in a Midwestern agricultural landscape

    Treesearch

    Rebecca G. Peak; Frank R. Thompson; Terry L. Shaffer

    2004-01-01

    We investigated factors affecting nest success of songbirds in riparian forest and buffers in northeastern Missouri. We used an information-theoretic approach to determine support for hypotheses concerning effects of nest-site, habitat-patch, edge, and temporal factors on nest success of songbirds in three narrow (55-95 m) and three wide (400-530 m) riparian forests...

  14. A sensitivity analysis of "Forests on the Edge: Housing Development on America's Private Forests."

    Treesearch

    Eric M. White; Ralph J. Alig; Lisa G. Mahal; David M. Theobald

    2009-01-01

    The original Forests on the Edge report (FOTE 1) indicated that 44.2 million acres of private forest land was projected to experience substantial increases in residential development in the coming decades. In this study, we examined the sensitivity of the FOTE 1 results to four factors: (1) use of updated private land and forest cover spatial data and a revised model...

  15. The impact of logging roads on dung beetle assemblages in a tropical rainforest reserve.

    PubMed

    Edwards, Felicity A; Finan, Jessica; Graham, Lucy K; Larsen, Trond H; Wilcove, David S; Hsu, Wayne W; Chey, V K; Hamer, Keith C

    2017-01-01

    The demand for timber products is facilitating the degradation and opening up of large areas of intact habitats rich in biodiversity. Logging creates an extensive network of access roads within the forest, yet these are commonly ignored or excluded when assessing impacts of logging on forest biodiversity. Here we determine the impact of these roads on the overall condition of selectively logged forests in Borneo, Southeast Asia. Focusing on dung beetles along > 40 km logging roads we determine: (i) the magnitude and extent of edge effects alongside logging roads; (ii) whether vegetation characteristics can explain patterns in dung beetle communities, and; (iii) how the inclusion of road edge forest impacts dung beetle assemblages within the overall logged landscape. We found that while vegetation structure was significantly affected up to 34 m from the road edge, impacts on dung beetle communities penetrated much further and were discernible up to 170 m into the forest interior. We found larger species and particularly tunnelling species responded more than other functional groups which were also influenced by micro-habitat variation. We provide important new insights into the long-term ecological impacts of tropical logging. We also support calls for improved logging road design both during and after timber extraction to conserve more effectively biodiversity in production forests, for instance, by considering the minimum volume of timber, per unit length of logging road needed to justify road construction. In particular, we suggest that governments and certification bodies need to highlight more clearly the biodiversity and environmental impacts of logging roads.

  16. Spatial variations in Eulemur fulvus rufus and Lepilemur mustelinus densities in Madagascar.

    PubMed

    Lehman, Shawn M

    2007-01-01

    I present data on variations in Eulemur fulvus rufus and Lepilemur mustelinus densities as well as tree characteristics (height, diameter and stem frequency) between edge and interior forest habitats in southeastern Madagascar. Line transect surveys were conducted from June 2003 to November 2005 in edge and interior forest habitats in the Vohibola III Classified Forest. Although E. f. rufus densities were significantly lower in edge habitats than in interior habitats, density estimates for L. mustelinus did not differ significantly between habitats. Trees in edge habitats were significantly shorter, had smaller diameters and had lower stem frequencies (for those >25 cm in diameter) than trees in interior habitats. Spatial characteristics of food abundance and quality may explain lemur density patterns in Vohibola III. Low E. f. rufus densities may reduce seed dispersal in edge habitats, which has important consequences for the long-term viability of forest ecosystems in Madagascar. Copyright (c) 2007 S. Karger AG, Basel.

  17. Road networks predict human influence on Amazonian bird communities

    PubMed Central

    Ahmed, Sadia E.; Lees, Alexander C.; Moura, Nárgila G.; Gardner, Toby A.; Barlow, Jos; Ferreira, Joice; Ewers, Robert M.

    2014-01-01

    Road building can lead to significant deleterious impacts on biodiversity, varying from direct road-kill mortality and direct habitat loss associated with road construction, to more subtle indirect impacts from edge effects and fragmentation. However, little work has been done to evaluate the specific effects of road networks and biodiversity loss beyond the more generalized effects of habitat loss. Here, we compared forest bird species richness and composition in the municipalities of Santarém and Belterra in Pará state, eastern Brazilian Amazon, with a road network metric called ‘roadless volume (RV)’ at the scale of small hydrological catchments (averaging 3721 ha). We found a significant positive relationship between RV and both forest bird richness and the average number of unique species (species represented by a single record) recorded at each site. Forest bird community composition was also significantly affected by RV. Moreover, there was no significant correlation between RV and forest cover, suggesting that road networks may impact biodiversity independently of changes in forest cover. However, variance partitioning analysis indicated that RV has partially independent and therefore additive effects, suggesting that RV and forest cover are best used in a complementary manner to investigate changes in biodiversity. Road impacts on avian species richness and composition independent of habitat loss may result from road-dependent habitat disturbance and fragmentation effects that are not captured by total percentage habitat cover, such as selective logging, fire, hunting, traffic disturbance, edge effects and road-induced fragmentation. PMID:25274363

  18. The Problem of the Edge.

    ERIC Educational Resources Information Center

    Faatz, Judith A.

    1998-01-01

    Describes a field study in a local ecosystem which allows high school students to investigate the edge effect, where a meadow and a forest meet. Students measure soil moisture content, soil temperature, air temperature, relative humidity, wind intensity, and illumination level. Teachers can help students apply their findings to understand problems…

  19. Upland Forest Linkages to Seasonal Wetlands: Litter Flux, Processing, and Food Quality

    Treesearch

    Brian J. Palik; Darold P. Batzer; Christel Kern

    2005-01-01

    The flux of materials across ecosystem boundaries has significant effects on recipient systems. Because of edge effects, seasonal wetlands in upland forest are good systems to explore these linkages. The purpose of this study was to examine flux of coarse particulate organic matter as litter fall into seasonal wetlands in Minnesota, and the relationship of this flux to...

  20. Forests on the Edge: A GIS-based Approach to Projecting Housing Development on Private Forests

    Treesearch

    Ron McRoberts; Mark Nelson; David Theobald; Mike Eley; Mike Dechter

    2006-01-01

    The private working land base of America’s forests, farms, and ranches is being converted at the rate of nearly 1,620 ha (4,000 acres) per day with tremendous economic, ecological, and social impacts. The United States Department of Agriculture (USDA) Forest Service is sponsoring the “Forests on the Edge” project to develop a better understanding of the contributions...

  1. Spatial and Temporal Habitat Use of an Asian Elephant in Sumatra

    PubMed Central

    Sitompul, Arnold F.; Griffin, Curtice R.; Rayl, Nathaniel D.; Fuller, Todd K.

    2013-01-01

    Simple Summary A wild Sumatran elephant radio-monitored near a conservation center from August 2007–May 2008 used medium- and open-canopy land cover more than expected, but closed canopy forests were used more during the day than at night. When in closed canopy forests, elephants spent more time near the forest edge. Effective elephant conservation strategies in Sumatra need to focus on forest restoration of cleared areas and providing a forest matrix that includes various canopy types. Abstract Increasingly, habitat fragmentation caused by agricultural and human development has forced Sumatran elephants into relatively small areas, but there is little information on how elephants use these areas and thus, how habitats can be managed to sustain elephants in the future. Using a Global Positioning System (GPS) collar and a land cover map developed from TM imagery, we identified the habitats used by a wild adult female elephant (Elephas maximus sumatranus) in the Seblat Elephant Conservation Center, Bengkulu Province, Sumatra during 2007–2008. The marked elephant (and presumably her 40–60 herd mates) used a home range that contained more than expected medium canopy and open canopy land cover. Further, within the home range, closed canopy forests were used more during the day than at night. When elephants were in closed canopy forests they were most often near the forest edge vs. in the forest interior. Effective elephant conservation strategies in Sumatra need to focus on forest restoration of cleared areas and providing a forest matrix that includes various canopy types. PMID:26479527

  2. Effect of forest fragmentation on bird populations

    USGS Publications Warehouse

    Robbins, C.S.

    1979-01-01

    Many of the insectivorous songbird species that winter in the tropics are dependent on large unbroken tracts of forest during the breeding season. These species are disappearing from localities where forests are becoming fragmented. By long-range planning, managers can prevent local extinctions of these area-sensitive birds through use of such techniques as management in large units, retention of connecting corridors, and prevention of excessive isolation of forest fragments. Edge conditions can be provided, where appropriate to meet the needs of upland game species.

  3. The harvested side of edges: effect of retained forests on the re-establishement of biodiversity in adjacent harvested areas

    Treesearch

    Susan C. Baker; Thomas A. Spies; Timothy J. Wardlaw; Jayne Balmer; Jerry F. Franklin

    2013-01-01

    Most silvicultural methods have been developed with the principal aim of ensuring adequate regeneration of commercial tree species after harvesting. Much less effort has been directed towards developing methods that benefit the re-establishment of all forest biodiversity. The concept of ‘forest influence’ relates the probability of species re-establishment to the...

  4. The aftermath of an invasion: Structure and composition of Central Appalachian hemlock forests following establishment of the hemlock woolly adelgid, Adelges tsugae

    Treesearch

    Heather L. Spaulding; Lynne K. Rieske

    2010-01-01

    As the highly invasive hemlock woolly adelgid, Adelges tsugae, continues to expand its distribution in eastern North America, affected forests will incur drastic changes in composition and structure. While these changes have been well-studied in dense hemlock forests in the Northeast, relatively little work is known about the effects of the adelgid at the western edge...

  5. Islands on the edge: housing development and other threats to America's Pacific and Caribbean Island forests: a Forests on the Edge report

    Treesearch

    Susan M. Stein; Mary A. Carr; Greg C. Liknes; Sara J. Comas

    2014-01-01

    This report provides an overview of expected housing density changes and related impacts to private forests on America's islands in the Pacific and Caribbean, specifically Hawaii, Guam, American Samoa, the Commonwealth of the Northern Mariana Islands, Puerto Rico, and the U.S. Virgin Islands. We discuss the vulnerability of island forests to conversion for housing...

  6. Road networks predict human influence on Amazonian bird communities.

    PubMed

    Ahmed, Sadia E; Lees, Alexander C; Moura, Nárgila G; Gardner, Toby A; Barlow, Jos; Ferreira, Joice; Ewers, Robert M

    2014-11-22

    Road building can lead to significant deleterious impacts on biodiversity, varying from direct road-kill mortality and direct habitat loss associated with road construction, to more subtle indirect impacts from edge effects and fragmentation. However, little work has been done to evaluate the specific effects of road networks and biodiversity loss beyond the more generalized effects of habitat loss. Here, we compared forest bird species richness and composition in the municipalities of Santarém and Belterra in Pará state, eastern Brazilian Amazon, with a road network metric called 'roadless volume (RV)' at the scale of small hydrological catchments (averaging 3721 ha). We found a significant positive relationship between RV and both forest bird richness and the average number of unique species (species represented by a single record) recorded at each site. Forest bird community composition was also significantly affected by RV. Moreover, there was no significant correlation between RV and forest cover, suggesting that road networks may impact biodiversity independently of changes in forest cover. However, variance partitioning analysis indicated that RV has partially independent and therefore additive effects, suggesting that RV and forest cover are best used in a complementary manner to investigate changes in biodiversity. Road impacts on avian species richness and composition independent of habitat loss may result from road-dependent habitat disturbance and fragmentation effects that are not captured by total percentage habitat cover, such as selective logging, fire, hunting, traffic disturbance, edge effects and road-induced fragmentation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. [Effects of forest gap size and within-gap position on the microclimate in Pinus koraiensis-dominated broadleaved mixed forest].

    PubMed

    Feng, Jing; Duan, Wen-Biao; Chen, Li-Xin

    2012-07-01

    HOBO automatic weather stations were installed in the central parts and at the south, north, east, and west edges of large, medium, and small gaps in a Pinus koraiensis-dominated broadleaved mixed forest in Xiaoxing' anling Mountains to measure the air temperature, relative humidity, and photosynthetic photon flux density (PPFD) in these locations and the total radiation and precipitation in the gap centres from June to September 2010, taking the closed forest stand and open field as the controls. The differences in the microclimate between various size forest gaps and between the gap centers and their edges as well as the variations of the microclimatic factors over time were analyzed, and the effects of sunny and overcast days on the diurnal variations of the microclimatic factors within forest gaps were compared, aimed to offer basic data and practice reference for gap regeneration and sustainable management of Pinus koraiensis-dominated broadleaved mixed forest. The PPFD was decreased in the order of large gap, medium gap, and small gap. For the same gaps, the PPFD in gap centre was greater than that in gap edge. The mean monthly air temperature and total radiation in gap centres were declined in the sequence of July, June, August, and September, and the amplitudes of the two climatic factors were decreased in the order of open field, large gap, medium gap, small gap, and closed forest stand. The mean monthly relative humidity in gap centres dropped in the order of August, July, September, and June, and the amplitude of this climatic factor was decreased in the sequence of closed forest stand, small gap, medium gap, large gap, and open field. The total and monthly precipitations for the three different size gaps and open field during measurement period generally decreased in the order of open field, large gap, medium gap, small gap, and closed forest stand. In sunny days, the variations of PPFD, air temperature, and relative humidity were greater in large gap than in small gap, but in overcast days, it was in opposite.

  8. Edge-effect interactions in fragmented and patchy landscapes.

    PubMed

    Porensky, Lauren M; Young, Truman P

    2013-06-01

    Ecological edges are increasingly recognized as drivers of landscape patterns and ecosystem processes. In fragmented and patchy landscapes (e.g., a fragmented forest or a savanna with scattered termite mounds), edges can become so numerous that their effects pervade the entire landscape. Results of recent studies in such landscapes show that edge effects can be altered by the presence or proximity of other nearby edges. We considered the theoretical significance of edge-effect interactions, illustrated various landscape configurations that support them and reviewed existing research on this topic. Results of studies from a variety of locations and ecosystem types show that edge-effect interactions can have significant consequences for ecosystems and conservation, including higher tree mortality rates in tropical rainforest fragments, reduced bird densities in grassland fragments, and bush encroachment and reduced wildlife densities in a tropical savanna. To clarify this underappreciated concept and synthesize existing work, we devised a conceptual framework for edge-effect interactions. We first worked to reduce terminological confusion by clarifying differences among terms such as edge intersection and edge interaction. For cases in which nearby edge effects interact, we proposed three possible forms of interaction: strengthening (presence of a second edge causes stronger edge effects), weakening (presence of a second edge causes weaker edge effects), and emergent (edge effects change completely in the presence of a second edge). By clarifying terms and concepts, this framework enables more precise descriptions of edge-effect interactions and facilitates comparisons of results among disparate study systems and response variables. A better understanding of edge-effect interactions will pave the way for more appropriate modeling, conservation, and management in complex landscapes. © 2013 Society for Conservation Biology.

  9. CO2 deficit in temperate forest soils receiving high atmospheric N-deposition.

    PubMed

    Fleischer, Siegfried

    2003-02-01

    Evidence is provided for an internal CO2 sink in forest soils, that may have a potential impact on the global CO2-budget. Lowered CO2 fraction in the soil atmosphere, and thus lowered CO2 release to the aboveground atmosphere, is indicated in high N-deposition areas. Also at forest edges, especially of spruce forest, where additional N-deposition has occurred, the soil CO2 is lowered, and the gradient increases into the closed forest. Over the last three decades the capacity of the forest soil to maintain the internal sink process has been limited to a cumulative supply of approximately 1000 and 1500 kg N ha(-1). Beyond this limit the internal soil CO2 sink becomes an additional CO2 source, together with nitrogen leaching. This stage of "nitrogen saturation" is still uncommon in closed forests in southern Scandinavia, however, it occurs in exposed forest edges which receive high atmospheric N-deposition. The soil CO2 gradient, which originally increases from the edge towards the closed forest, becomes reversed.

  10. Herpetofaunal abundance in forested edge and interior locations of West Virginia

    Treesearch

    James T. Anderson; Amy B. Solis; Joseph D. Osbourne

    2013-01-01

    The diversity of forest types in the Central Appalachians provides important habitat for amphibians and reptiles. As development continues, increased fragmentation is evident on the landscape. The objectives of our study were to determine the influence of location within a forest (edge or interior) and landscape position (riparian and upland) on West Virginia...

  11. Coherent structures and trace gases fluxes and concentrations in and above a heterogeneous spruce forest (Invited)

    NASA Astrophysics Data System (ADS)

    Foken, T.

    2013-12-01

    Near the FLUXNET site DE-Bay (Waldstein-Weidenbrunnen) three intensive measuring periods took place in 2007, 2008, and 2011 within the EGER project (ExchanGE processes in mountainous Regions). The main focus of all three experiments was the investigation of turbulent structures and their influence on the energy exchange and trace gas fluxes as well as trace gas reactions. Due to a tornado-like storm event an approximately 300 m long forest edge between a 25 m high spruce forest and a clearing was generated about 150 m south of the DE-Bay site. The investigation of processes at these forest edge was the main issue of the 2011 experiment. A main topic of all experiments was the investigation of the coupling between the atmosphere, the crowns and the trunk space as well as the horizontal coupling. This coupling algorithm is based on the analysis of coherent structures at three levels. While a complete coupling was only observed during daytime, at night well-coupled events were found in connection with low-level jets. The change of inert (CO2) or reactive (O3, NO, NO2, HONO) trace gas concentration could be explained with the coupling situation. It was also found that at the forest edge, coherent structures contribute less to total turbulent flux than within the forest. Accordingly, these coherent motions do not ensure that there is better vertical coupling between the forest stand and the overlying atmosphere at the forest edge. The relative contributions of sweeps and ejections to coherent flux reveal that there might be even larger circulations that cause better ventilation at the forest edge. Ejections dominate during the daytime, whereas sweeps contribute more during nighttime. Thus, there is systematic outflow during the daytime and inflow of fresh air directly at the forest edge during the nighttime. To underline these findings perpendicular to the edge, a mobile measuring system investigated the horizontal gradients of temperature, moisture, radiation, carbon dioxide and ozone concentrations. The data analysis was coupled with a higher order closure modelling and a typical K-approach modelling. The first showed the best agreement with experimental data and differences between both model types could be explained by the degree of coupling. An LES simulation and comparison with the experimental data is ongoing.

  12. 18 Years of Recovery: Spatial Variation and Structure of a Secondary Forest Analyzed with Airborne Lidar Data in the Brazilian Atlantic Forest

    NASA Astrophysics Data System (ADS)

    dos-Santos, M. N.; Keller, M. M.; Scaranello, M. A., Sr.; Longo, M.; Daniel, P.

    2016-12-01

    Ongoing forest fragmentation in the tropics severely reduces the ability of remaining forests to store carbon and provide ecosystem services, however, secondary regeneration could offset the impacts of forest degradation. Previous plot-based forest inventory studies have shown that secondary regeneration is promoted at remnant forest edges. However, this process has not been studied at landscape scale. We used over 450 ha of lidar data to study the forest structure and spatial variation of secondary growth forest 18 years after swidden cultivation abandonment in Serra do Conduro State Park. Lidar data was acquired in December 2015 with a density of 93 points per square meter using an airborne scanning laser system (Optech Orion M-300). Serra do Conduru, a 10 000 ha State Park in Bahia was created in 1997 as part of a network of forest reserves with both old-growth forest and secondary forest aiming at establishing a central corridor of the Atlantic forest. The Brazilian Atlantic forest is a highly human modified and fragmented forest landscape reduced to 12.5% of its original extent. Prior to the establishment of the State Park, the area was a mosaic of forest and agricultural area. We created 10m wide buffers from the edge of the remnant forest into the secondary forest and generated lidar metrics for each strip in order to ask: does the distance from the remnant forest create a gradient effect on the secondary forest structure? We cross-compared the lidar metrics of the samples. Results demonstrate that distance from old-growth forest promotes spatial variation in forest recovery and forest structure.

  13. Effects of Land Cover on the Movement of Frugivorous Birds in a Heterogeneous Landscape.

    PubMed

    Da Silveira, Natalia Stefanini; Niebuhr, Bernardo Brandão S; Muylaert, Renata de Lara; Ribeiro, Milton Cezar; Pizo, Marco Aurélio

    2016-01-01

    Movement is a key spatiotemporal process that enables interactions between animals and other elements of nature. The understanding of animal trajectories and the mechanisms that influence them at the landscape level can yield insight into ecological processes and potential solutions to specific ecological problems. Based upon optimal foraging models and empirical evidence, we hypothesized that movement by thrushes is highly tortuous (low average movement speeds and homogeneous distribution of turning angles) inside forests, moderately tortuous in urban areas, which present intermediary levels of resources, and minimally tortuous (high movement speeds and turning angles next to 0 radians) in open matrix types (e.g., crops and pasture). We used data on the trajectories of two common thrush species (Turdus rufiventris and Turdus leucomelas) collected by radio telemetry in a fragmented region in Brazil. Using a maximum likelihood model selection approach we fit four probability distribution models to average speed data, considering short-tailed, long-tailed, and scale-free distributions (to represent different regimes of movement variation), and one distribution to relative angle data. Models included land cover type and distance from forest-matrix edges as explanatory variables. Speed was greater farther away from forest edges and increased faster inside forest habitat compared to urban and open matrices. However, turning angle was not influenced by land cover. Thrushes presented a very tortuous trajectory, with many displacements followed by turns near 180 degrees. Thrush trajectories resembled habitat and edge dependent, tortuous random walks, with a well-defined movement scale inside each land cover type. Although thrushes are habitat generalists, they showed a greater preference for forest edges, and thus may be considered edge specialists. Our results reinforce the importance of studying animal movement patterns in order to understand ecological processes such as seed dispersal in fragmented areas, where the percentage of remaining habitat is dwindling.

  14. Are Protected Areas Required to Maintain Functional Diversity in Human-Modified Landscapes?

    PubMed Central

    Cottee-Jones, H. Eden W.; Matthews, Thomas J.; Bregman, Tom P.; Barua, Maan; Tamuly, Jatin; Whittaker, Robert J.

    2015-01-01

    The conversion of forest to agriculture across the world’s tropics, and the limited space for protected areas, has increased the need to identify effective conservation strategies in human-modified landscapes. Isolated trees are believed to conserve elements of ecological structure, providing micro-sites for conservation in matrix landscapes, and facilitating seed dispersal and forest restoration. Here we investigate the role of isolated Ficus trees, which are of critical importance to tropical forest ecosystems, in conserving frugivore composition and function in a human-modified landscape in Assam, India. We surveyed the frugivorous birds feeding at 122 isolated Ficus trees, 33 fruit trees, and 31 other large trees across a range of 32 km from the nearest intact forest. We found that Ficus trees attracted richer and more abundant assemblages of frugivores than the other tree categories. However, incidence function estimates revealed that forest specialist species decreased dramatically within the first kilometre of the forest edge. Despite this, species richness and functional diversity remained consistent across the human-modified landscape, as habitat generalists replaced forest-dependent frugivores, and accounted for most of the ecological function found in Ficus trees near the forest edge. We recommend that isolated Ficus trees are awarded greater conservation status, and suggest that their conservation can support ecologically functional networks of frugivorous bird communities. PMID:25946032

  15. Effects of dam-induced landscape fragmentation on amazonian ant-plant mutualistic networks.

    PubMed

    Emer, Carine; Venticinque, Eduardo Martins; Fonseca, Carlos Roberto

    2013-08-01

    Mutualistic networks are critical to biological diversity maintenance; however, their structures and functionality may be threatened by a swiftly changing world. In the Amazon, the increasing number of dams poses a large threat to biological diversity because they greatly alter and fragment the surrounding landscape. Tight coevolutionary interactions typical of tropical forests, such as the ant-myrmecophyte mutualism, where the myrmecophyte plants provide domatia nesting space to their symbiotic ants, may be jeopardized by the landscape changes caused by dams. We analyzed 31 ant-myrmecophyte mutualistic networks in undisturbed and disturbed sites surrounding Balbina, the largest Central Amazonian dam. We tested how ant-myrmecophyte networks differ among dam-induced islands, lake edges, and undisturbed forests in terms of species richness, composition, structure, and robustness (number of species remaining in the network after partner extinctions). We also tested how landscape configuration in terms of area, isolation, shape, and neighborhood alters the structure of the ant-myrmecophyte networks on islands. Ant-myrmecophytic networks were highly compartmentalized in undisturbed forests, and the compartments had few strongly connected mutualistic partners. In contrast, networks at lake edges and on islands were not compartmentalized and were negatively affected by island area and isolation in terms of species richness, density, and composition. Habitat loss and fragmentation led to coextinction cascades that contributed to the elimination of entire ant-plant compartments. Furthermore, many myrmecophytic plants in disturbed sites lost their mutualistic ant partners or were colonized by opportunistic, nonspecialized ants. Robustness of ant-myrmecophyte networks on islands was lower than robustness near lake edges and in undisturbed forest and was particularly susceptible to the extinction of plants. Beyond the immediate habitat loss caused by the building of large dams in Amazonia, persistent edge effects and habitat fragmentation associated with dams had large negative effects on animal-plant mutualistic networks. © 2013 Society for Conservation Biology.

  16. Species-area relations of song birds in the Black Hills, South Dakota

    Treesearch

    Mark A. Rumble; Brian L. Dykstra; Lester D. Flake

    2000-01-01

    We investigated the effects of stand size resulting from current logging practices on occurrence and species richness of song birds in the Black Hills. Richness of forest interior and forest interior/edge songbirds was not related to stand area (P > 0.40) in stands of ponderosa pine (Pinus ponderosa) in the Black Hills. Brown creepers (...

  17. Oil palm plantations fail to support mammal diversity.

    PubMed

    Yue, Sam; Brodie, Jedediah F; Zipkin, Elise F; Bernard, Henry

    2015-12-01

    Agricultural expansion is the largest threat to global biodiversity. In particular, the rapid spread of tree plantations is a primary driver of deforestation in hyperdiverse tropical regions. Plantations tend to support considerably lower biodiversity than native forest, but it remains unclear whether plantation traits affect their ability to sustain native wildlife populations, particularly for threatened taxa. If animal diversity varies across plantations with different characteristics, these traits could be manipulated to make plantations more "wildlife friendly." The degree to which plantations create edge effects that degrade habitat quality in adjacent forest also remains unclear, limiting our ability to predict wildlife persistence in mixed-use landscapes. We used systematic camera trapping to investigate mammal occurrence and diversity in oil palm plantations and adjacent forest in Sabah, Malaysian Borneo. Mammals within plantations were largely constrained to locations near native forest; the occurrence of most species and overall species richness declined abruptly with decreasing forest proximity from an estimated 14 species at the forest ecotone to -1 species 2 km into the plantation. Neither tree height nor canopy cover within plantations strongly affected mammal diversity or occurrence, suggesting that manipulating tree spacing or planting cycles might not make plantations more wildlife friendly. Plantations did not appear to generate strong edge effects; mammal richness within forest remained high and consistent up to the plantation ecotone. Our results suggest that land-sparing strategies, as opposed to efforts to make plantations more wildlife-friendly, are required for regional wildlife conservation in biodiverse tropical ecosystems.

  18. Challenges of reforestation in a water limited world under climate change

    NASA Astrophysics Data System (ADS)

    Mátyás, Csaba; Sun, Ge

    2014-05-01

    The debate on the ecological benefits of planted forests at the sensitive lower edge of the closed forest belt (at the "xeric limits") is still unresolved. Forests sequester atmospheric carbon dioxide, control water erosion and dust storms, reduce river sedimentation, and mitigate small floods. However, planting trees in areas previously predominantly occupied by grassland or agriculture can dramatically alter the energy and water balance at multiple scales. The forest/grassland transition zone is especially vulnerable to projected drastic temperature and precipitation shifts under future climate change and variability due to its high ecohydrological sensitivity. The study investigates some of the relevant aspects of the ecological and climatic role of plantation forests and potential impacts at the dryland edges of the temperate zone, using case studies from three countries/regions on three continents. We found that, contrary to popular expectations, the effect of forest cover on regional climate might be limited and the influence of reforestation on water resources might turn into negative. Planted forests generally reduce stream flow and lower groundwater table level because of higher water use than previous land cover types. Increased evaporation potential due to global warming and/or extreme drought events likely reduce areas that are appropriate for tree growth and forest establishment. Ecologically conscious forest policy on management, silviculture and reforestation planning requires the consideration of local hydrologic conditions, future climatic conditions, and also of non-forest alternatives of land use. Keywords: drylands, xeric limits, trailing limits, ecohydrology, climate forcing, land use change, forest policy

  19. Examining shifts in Carabidae assemblages across a forest-agriculture ecotone.

    PubMed

    Leslie, T W; Biddinger, D J; Rohr, J R; Hulting, A G; Mortensen, D A; Fleischer, S J

    2014-02-01

    Northeastern U.S. farms are often situated adjacent to forestland due to the heterogeneous nature of the landscape. We investigated how forested areas influence Carabidae diversity within nearby crop fields by establishing transects of pitfall traps. Trapping extended across a forest-agriculture ecotone consisting of maize, an intermediate mowed grass margin, and a forest edge. Carabidae diversity was compared among the three habitats, and community and population dynamics were assessed along the transect. We used a principal response curve to examine and visualize community change across a spatial gradient. The highest levels of richness and evenness were observed in the forest community, and carabid assemblages shifted significantly across the ecotone, especially at the forest-grass interface. Despite strong ecotone effects, population distributions showed that some species were found in all three habitats and seemed to thrive at the ecotone. Based on similarity indices, carabid assemblages collected in maize adjacent to forest differed from carabid assemblages in maize not adjacent to forest. We conclude that forest carabid assemblages exhibit high degrees of dissimilarity with those found in agricultural fields and forested areas should thus be retained in agricultural landscapes to increase biodiversity at the landscape scale. However, ecotone species found at forest edges can still noticeably influence carabid community composition within neighboring agricultural fields. Further studies should determine how these shifts in carabid assemblages influence agroecosystem services in relation to ecosystem services observed in fields embedded in an agricultural matrix.

  20. Evolution of Canada’s Boreal Forest Spatial Patterns as Seen from Space

    PubMed Central

    Pickell, Paul D.; Coops, Nicholas C.; Gergel, Sarah E.; Andison, David W.; Marshall, Peter L.

    2016-01-01

    Understanding the development of landscape patterns over broad spatial and temporal scales is a major contribution to ecological sciences and is a critical area of research for forested land management. Boreal forests represent an excellent case study for such research because these forests have undergone significant changes over recent decades. We analyzed the temporal trends of four widely-used landscape pattern indices for boreal forests of Canada: forest cover, largest forest patch index, forest edge density, and core (interior) forest cover. The indices were computed over landscape extents ranging from 5,000 ha (n = 18,185) to 50,000 ha (n = 1,662) and across nine major ecozones of Canada. We used 26 years of Landsat satellite imagery to derive annualized trends of the landscape pattern indices. The largest declines in forest cover, largest forest patch index, and core forest cover were observed in the Boreal Shield, Boreal Plain, and Boreal Cordillera ecozones. Forest edge density increased at all landscape extents for all ecozones. Rapidly changing landscapes, defined as the 90th percentile of forest cover change, were among the most forested initially and were characterized by four times greater decrease in largest forest patch index, three times greater increase in forest edge density, and four times greater decrease in core forest cover compared with all 50,000 ha landscapes. Moreover, approximately 18% of all 50,000 ha landscapes did not change due to a lack of disturbance. The pattern database results provide important context for forest management agencies committed to implementing ecosystem-based management strategies. PMID:27383055

  1. Evolution of Canada's Boreal Forest Spatial Patterns as Seen from Space.

    PubMed

    Pickell, Paul D; Coops, Nicholas C; Gergel, Sarah E; Andison, David W; Marshall, Peter L

    2016-01-01

    Understanding the development of landscape patterns over broad spatial and temporal scales is a major contribution to ecological sciences and is a critical area of research for forested land management. Boreal forests represent an excellent case study for such research because these forests have undergone significant changes over recent decades. We analyzed the temporal trends of four widely-used landscape pattern indices for boreal forests of Canada: forest cover, largest forest patch index, forest edge density, and core (interior) forest cover. The indices were computed over landscape extents ranging from 5,000 ha (n = 18,185) to 50,000 ha (n = 1,662) and across nine major ecozones of Canada. We used 26 years of Landsat satellite imagery to derive annualized trends of the landscape pattern indices. The largest declines in forest cover, largest forest patch index, and core forest cover were observed in the Boreal Shield, Boreal Plain, and Boreal Cordillera ecozones. Forest edge density increased at all landscape extents for all ecozones. Rapidly changing landscapes, defined as the 90th percentile of forest cover change, were among the most forested initially and were characterized by four times greater decrease in largest forest patch index, three times greater increase in forest edge density, and four times greater decrease in core forest cover compared with all 50,000 ha landscapes. Moreover, approximately 18% of all 50,000 ha landscapes did not change due to a lack of disturbance. The pattern database results provide important context for forest management agencies committed to implementing ecosystem-based management strategies.

  2. Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland

    Treesearch

    Jan U.H. Eitel; Lee A. Vierling; Marcy E. Litvak; Dan S. Long; Urs Schulthess; Alan A. Ager; Dan J. Krofcheck; Leo Stoscheck

    2011-01-01

    Multiple plant stresses can affect the health, esthetic condition, and timber harvest value of conifer forests. To monitor spatial and temporal dynamic forest stress conditions, timely, accurate, and cost-effective information is needed that could be provided by remote sensing. Recently, satellite imagery has become available via the RapidEye satellite constellation to...

  3. Habitat loss and modification due to gas development in the Fayetteville shale.

    PubMed

    Moran, Matthew D; Cox, A Brandon; Wells, Rachel L; Benichou, Chloe C; McClung, Maureen R

    2015-06-01

    Hydraulic fracturing and horizontal drilling have become major methods to extract new oil and gas deposits, many of which exist in shale formations in the temperate deciduous biome of the eastern United States. While these technologies have increased natural gas production to new highs, they can have substantial environmental effects. We measured the changes in land use within the maturing Fayetteville Shale gas development region in Arkansas between 2001/2002 and 2012. Our goal was to estimate the land use impact of these new technologies in natural gas drilling and predict future consequences for habitat loss and fragmentation. Loss of natural forest in the gas field was significantly higher compared to areas outside the gas field. The creation of edge habitat, roads, and developed areas was also greater in the gas field. The Fayetteville Shale gas field fully developed about 2% of the natural habitat within the region and increased edge habitat by 1,067 linear km. Our data indicate that without shale gas activities, forest cover would have increased slightly and edge habitat would have decreased slightly, similar to patterns seen recently in many areas of the southern U.S. On average, individual gas wells fully developed about 2.5 ha of land and modified an additional 0.5 ha of natural forest. Considering the large number of wells drilled in other parts of the eastern U.S. and projections for new wells in the future, shale gas development will likely have substantial negative effects on forested habitats and the organisms that depend upon them.

  4. Field type, trap type and field-edge characteristics affect Rhagoletis mendax captures in lowbush blueberries.

    PubMed

    Renkema, Justin M; Cutler, G Christopher; Gaul, Sonia O

    2014-11-01

    Blueberry maggot, Rhagoletis mendax Curran (Diptera: Tephritidae), is the most important pest of blueberries in eastern North America. Insecticide use in fruit-bearing lowbush blueberry fields could be reduced with management strategies focused on vegetative fields. Fly distribution and fruit infestation levels were assessed where fruit-bearing and vegetative fields adjoin and along forested edges of vegetative fields. Along adjoining edges, immature female flies were captured in fruiting fields and mature females in vegetative fields throughout the season. Male fly captures and fruit infestation levels were greater at 5 m than at 30 m from the edge. Along forested edges, fly captures were best predicted by densities of ripe lowbush blueberries and large coniferous trees. Maggot infestation level in lowbush blueberries was best predicted by blueberry density and small deciduous trees. Bunchberry, Cornus canadensis L., was the only non-crop host in which blueberry maggot was found. We have shown that relatively high numbers of flies occur in vegetative fields and at edges of fruiting fields. Ripe blueberries and certain vegetation in forested edges affect fly distribution and probably maintain populations. These results may help to predict where controls for blueberry maggot should be targeted and suggest that management strategies focused on vegetative fields and field edges may be worthwhile. © 2013 Society of Chemical Industry.

  5. Living on the edge: roads and edge effects on small mammal populations.

    PubMed

    Fuentes-Montemayor, Elisa; Cuarón, Alfredo D; Vázquez-Domínguez, Ella; Benítez-Malvido, Julieta; Valenzuela-Galván, David; Andresen, Ellen

    2009-07-01

    1. Roads may affect wildlife populations through habitat loss and disturbances, as they create an abrupt linear edge, increasing the proportion of edge exposed to a different habitat. Three types of edge effects have been recognized: abiotic, direct biotic, and indirect biotic. 2. We explored the direct biotic edge effects of 3- to 4-m wide roads, and also a previously unrecognized type of edge effect: social. We live-trapped two threatened endemic rodents from Cozumel Island (Oryzomys couesi cozumelae and Reithrodontomys spectabilis) in 16 plots delimited by roads on two sides, to compare edge effects between two adjacent edges (corners), single-edge and interior forest, on life history and social variables. 3. No significant edge effects were observed on the life-history variables, with the exception of differences in body condition between males and females of O. c. cozumelae near edges. Both species showed significant and contrasting effects on their social variables. 4. O. c. cozumelae was distributed according to its age and sex: the proportion of adults and males was higher in interior than near edges, while juveniles and females were more abundant near edges. More nonreproductive females were present in corners than in single-edge and interior, while the opposite distribution was observed for nonreproductive males. 5. The distribution of R. spectabilis was related to its age and reproductive condition, but not to its sex. The proportion of adults was significantly higher in corners, while juveniles were only caught in single-edge and interior quadrants. The proportion of reproductive individuals was higher in edge than interior quadrants, while reproductive females were only present in edge quadrants. 6. We found significant differences between the quadrants with the greatest edge exposure in comparison with other quadrants. The social edge effects we identified complement the typology of edge effects recognized in ecological literature. Our study provides insight into the effects that sharp road edges have on biological and social characteristics of small mammal populations, highlighting how such effects vary among species. Our findings have important conservation implications for these threatened species, but are also applicable in a broader context wherever there are abrupt edges caused by linear landscape features.

  6. Fire reinforces structure of pondcypress (Taxodium distichum var. imbricarium) domes in a wetland landscape

    USGS Publications Warehouse

    Watts, Adam C.; Kobziar, Leda N.; Snyder, James R.

    2012-01-01

    Fire periodically affects wetland forests, particularly in landscapes with extensive fire-prone uplands. Rare occurrence and difficulty of access have limited efforts to understand impacts of wildfires fires in wetlands. Following a 2009 wildfire, we measured tree mortality and structural changes in wetland forest patches. Centers of these circular landscape features experienced lower fire severity, although no continuous patch-size or edge effect was evident. Initial survival of the dominant tree, pondcypress (Taxodium distichum var. imbricarium), was high (>99%), but within one year of the fire approximately 23% of trees died. Delayed mortality was correlated with fire severity, but unrelated to other hypothesized factors such as patch size or edge distance. Tree diameter and soil elevation were important predictors of mortality, with smaller trees and those in areas with lower elevation more likely to die following severe fire. Depressional cypress forests typically exhibit increasing tree size towards their interiors, and differential mortality patterns were related to edge distance. These patterns result in the exaggeration of a dome-shaped profile. Our observations quantify roles of fire and hydrology in determining cypress mortality in these swamps, and imply the existence of feedbacks that maintain the characteristic shape of cypress domes.

  7. Natural forest expansion on reclaimed coal mines in Northern Spain: the role of native shrubs as suitable microsites.

    PubMed

    Alday, Josu G; Zaldívar, Pilar; Torroba-Balmori, Paloma; Fernández-Santos, Belén; Martínez-Ruiz, Carolina

    2016-07-01

    The characterization of suitable microsites for tree seedling establishment and growth is one of the most important tasks to achieve the restoration of native forest using natural processes in disturbed sites. For that, we assessed the natural Quercus petraea forest expansion in a 20-year-old reclaimed open-cast mine under sub-Mediterranean climate in northern Spain, monitoring seedling survival, growth, and recruitment during 5 years in three contrasting environments (undisturbed forest, mine edge, and mine center). Seedling density and proportion of dead branches decreased greatly from undisturbed forest towards the center of the mine. There was a positive effect of shrubs on Q. petraea seedling establishment in both mine environments, which increase as the environment undergoes more stress (from the mine edge to the center of the mine), and it was produced by different shrub structural features in each mine environment. Seedling survival reduction through time in three environments did not lead to a density reduction because there was a yearly recruitment of new seedlings. Seedling survival, annual growth, and height through time were greater in mine sites than in the undisturbed forest. The successful colonization patterns and positive neighbor effect of shrubs on natural seedlings establishment found in this study during the first years support the use of shrubs as ecosystem engineers to increase heterogeneity in micro-environmental conditions on reclaimed mine sites, which improves late-successional Quercus species establishment.

  8. Survival and home-range size of Northern Spotted Owls in southwestern Oregon

    USGS Publications Warehouse

    Schilling, Jason W.; Dugger, Katie M.; Anthony, Robert G.

    2013-01-01

    In the Klamath province of southwestern Oregon, Northern Spotted Owls (Strix occidentalis caurina) occur in complex, productive forests that historically supported frequent fires of variable severity. However, little is known about the relationships between Spotted Owl survival and home-range size and the characteristics of fire-prone, mixed-conifer forests of the Klamath province. Thus, the objectives of this study were to estimate monthly survival rates and home-range size in relation to habitat characteristics for Northern Spotted Owls in southwestern Oregon. Home-range size and survival of 15 Northern Spotted Owls was monitored using radiotelemetry in the Ashland Ranger District of the Rogue River–Siskiyou National Forest from September 2006 to October 2008. Habitat classes within Spotted Owl home ranges were characterized using a remote-sensed vegetation map of the study area. Estimates of monthly survival ranged from 0.89 to 1.0 and were positively correlated with the number of late-seral habitat patches and the amount of edge, and negatively correlated with the mean nearest neighbor distance between late-seral habitats. Annual home-range size varied from to 189 to 894 ha ( x =  576; SE  =  75), with little difference between breeding and nonbreeding home ranges. Breeding-season home-range size increased with the amount of hard edge, and the amount of old and mature forest combined. Core area, annual and nonbreeding season home-range sizes all increased with increased amounts of hard edge, suggesting that increased fragmentation is associated with larger core and home-range sizes. Although no effect of the amount of late-seral stage forest on either survival or home-range size was detected, these results are the first to concurrently demonstrate increased forest fragmentation with decreased survival and increased home-range size of Northern Spotted Owls.

  9. Natural fertility and heavy metals in the soil in border areas of Atlantic Forest located in an urban area

    NASA Astrophysics Data System (ADS)

    Longo, R. M.; Ribeiro, A. I.

    2017-12-01

    Regina Márcia Longo2, Deborah Regina Mendes2, Admilson Irio Ribeiro31 Part of the project funded by the Foundation of the State of São Paulo Research - Brazil (FAPESP - process 2012 / 14423-8)2 Pontifícal Catholic University of Campinas - Brazil; email: regina.longo@puc-campinas.edu.br 3 Paulista State University (UNESP-Sorocaba - Brazil)Due to the disorderly growth of cities, especially in tropical areas, it is observed that the destruction or fragmentation of natural ecosystems has presented itself as one of the great problems of the present time. The forest fragments, although important for the maintenance of microclimate, genetic variety and species diversity, are increasingly impacted due to the activities that are developed in their environment. The present work had as main objective to quantify the level of natural fertility and the presence of heavy metals in the soil in border areas of a forest remnant located in an urban area in the city of Campinas / SP - Brazil in order to verify possible interferences of the anthropic actions carried out in adjacent areas. Soil composite samples were collected at 40 points equidistant at 200 m along the edge. In the samples were determined the contents of: pH (CaCl2); organic matter (OM); phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg), Cation Exchange Capacity (CEC), base sum (SB) and percentage saturation of bases in addition to heavy metals lead (Pb), chromium (Cr) and nickel (Ni). The results indicated that the nutritional quality of the soil was adequate for the tropical regions. In relation to micronutrients, high levels of copper, zinc and manganese were observed. Regarding the metals, it was observed that iron was the one that accused the most irregularities along the edge, while the lead had higher indices for all the edges evaluated. In general, the presented results indicated that the forest remnant presents its border areas under external pressures, presenting several factors of degradation as real estate occupation, presence of access roads and traffic of vehicles and people, of the production of sugar cane, fire and deposition of solid waste, or other degradation factor that directly interfere in the areas of the edges of this important remnant of Atlantic Forest. Key words: forest remnants, tropical soils, edge effect

  10. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses

    PubMed Central

    Silvério, Divino V.; Brando, Paulo M.; Balch, Jennifer K.; Putz, Francis E.; Nepstad, Daniel C.; Oliveira-Santos, Claudinei; Bustamante, Mercedes M. C.

    2013-01-01

    Changes in climate and land use that interact synergistically to increase fire frequencies and intensities in tropical regions are predicted to drive forests to new grass-dominated stable states. To reveal the mechanisms for such a transition, we established 50 ha plots in a transitional forest in the southwestern Brazilian Amazon to different fire treatments (unburned, burned annually (B1yr) or at 3-year intervals (B3yr)). Over an 8-year period since the commencement of these treatments, we documented: (i) the annual rate of pasture and native grass invasion in response to increasing fire frequency; (ii) the establishment of Brachiaria decumbens (an African C4 grass) as a function of decreasing canopy cover and (iii) the effects of grass fine fuel on fire intensity. Grasses invaded approximately 200 m from the edge into the interiors of burned plots (B1yr: 4.31 ha; B3yr: 4.96 ha) but invaded less than 10 m into the unburned plot (0.33 ha). The probability of B. decumbens establishment increased with seed availability and decreased with leaf area index. Fine fuel loads along the forest edge were more than three times higher in grass-dominated areas, which resulted in especially intense fires. Our results indicate that synergies between fires and invasive C4 grasses jeopardize the future of tropical forests. PMID:23610179

  11. Herbivorous insect response to group selection cutting in a southeastern bottomland hardwood forest.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael D. Ulyshen; James L. Hanula; Scott Horn

    2005-04-01

    ABSTRACT Malaise and pitfall traps were used to sample herbivorous insects in canopy gaps created by group-selection cutting in a bottomland hardwood forest in South Carolina. The traps were placed at the centers, edges, and in the forest adjacent to gaps of different sizes (0.13, 0.26, and 0.50 ha) and ages (1 and 7 yr old) during four sampling periods in 2001. Overall, the abundance and species richness of insect herbivores were greater at the centers of young gaps than at the edge of young gaps or in the forest surrounding young gaps. There were no differences in abundance ormore » species richness among old gap locations (i.e., centers, edges, and forest), and we collected significantly more insects in young gaps than old gaps. The insect communities in old gaps were more similar to the forests surrounding them than young gap communities were to their respective forest locations, but the insect communities in the two forests locations (surrounding young and old gaps) had the highest percent similarity of all. Although both abundance and richness increased in the centers of young gaps with increasing gap size, these differences were not significant.Weattribute the increased numbers of herbivorous insects to the greater abundance of herbaceous plants available in young gaps.« less

  12. Exploring the Relationship Between Reflectance Red Edge and Chlorophyll Content in Slash Pine

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Dungan, Jennifer L.; Gholz, Henry L.

    1990-01-01

    Chlorophyll is a key indicator of the physiological status of a forest canopy. However, its distribution may vary greatly in time and space, so that the estimation of chlorophyll content of canopies or branches by extrapolation from leaf values obtained by destructive sampling is labor intensive and potentially inaccurate. Chlorophy11 content is related positively to the point of maximum slope in vegetation reflectance spectra which occurs at wavelengths between 690-740 nm and is known as the "red edge." The red edge of needles on individual slash pine (Piniis elliottii Engelm.) branches and in whole forest canopies was measured with a spectroradiometer. Branches were measured on the ground against a spectrally flat reflectance target and canopies were measured from observation towers against a spectrally variable understory and forest floor. There was a linear relationship between red edge and chlorophyll content of branches (R(exp 2) = 0.91). Measurements of the red edge and this relationship were used to estimate the chlorophyll content of other branches with an error that was lower than that associated with the colorimetric (laboratory) method. There was no relationship between the red edge and the chlorophyll content of whole canopies. This can be explained by the overriding influence of the understory and forest floor, an influence that was illustrated by spectral mixture modeling. The results suggest that the red edge could be used to estimate the chlorophyll content in branches but it is unlikely to be of value for the estimation of chlorophyll content in canopies unless the canopy cover is high.

  13. Using classified Landsat Thematic Mapper data for stratification in a statewide forest inventory

    Treesearch

    Mark H. Hansen; Daniel G. Wendt

    2000-01-01

    The 1998 Indiana/Illinois forest inventory (USDA Forest Service, Forest Inventory and Analysis (FIA)) used Landsat Thematic Mapper (TM) data for stratification. Classified images made by the National Gap Analysis Program (GAP) stratified FIA plots into four classes (nonforest, nonforest/ forest, forest/nonforest, and forest) based on a two pixel forest edge buffer zone...

  14. Using Classified Landsat Thematic Mapper Data for Stratification in a Statewide Forest Inventory

    Treesearch

    Mark H. Hansen; Daniel G. Wendt

    2000-01-01

    The 1998 Indiana/Illinois forest inventory (USDA Forest Service, Forest Inventory and Analysis (FIA)) used Landsat Thematic Mapper (TM} data for stratification. Classified images made by the National Gap Analysis Program (GAP) stratified FIA plots into four classes (nonforest, nonforest/forest, forest/nonforest, and forest) based on a two pixel forest edge buffer zone...

  15. Response of a boreal forest to canopy opening: assessing vertical and lateral tree growth with multi-temporal lidar data.

    PubMed

    Vepakomma, Udayalakshmi; St-Onge, Benoit; Kneeshaw, Daniel

    2011-01-01

    Fine-scale height-growth response of boreal trees to canopy openings is difficult to measure from the ground, and there are important limitations in using stereophotogrammetry in defining gaps and determining individual crowns and height. However, precise knowledge on height growth response to different openings is critical for refining partial harvesting techniques. In this study, we question whether conifers and hardwoods respond equally in terms of sapling growth or lateral growth to openings. We also ask to what distance gaps affect tree growth into the forest. We use multi-temporal lidar to characterize tree/sapling height and lateral growth responses over five years to canopy openings and high resolution images to identify conifers and hardwoods. Species-class-wise height-growth patterns of trees/saplings in various neighborhood contexts were determined across a 6-km matrix of Canadian boreal mixed deciduous coniferous forests. We then use statistical techniques to probe how these growth responses vary by spatial location with respect to the gap edge. Results confirm that both mechanisms of gap closure contribute to the closing of canopies at a rate of 1.2% per annum. Evidence also shows that both hardwood and conifer gap edge trees have a similar lateral growth (average of 22 cm/yr) and similar rates of height growth irrespective of their location and initial height. Height growth of all saplings, however, was strongly dependent on their position within the gap and the size of the gap. Results suggest that hardwood and softwood saplings in gaps have greatest growth rates at distances of 0.5-2 m and 1.5-4 m from the gap edge and in openings smaller than 800 m2 and 250 m2, respectively. Gap effects on the height growth of trees in the intact forest were evident up to 30 m and 20 m from gap edges for hardwood and softwood overstory trees, respectively. Our results thus suggest that foresters should consider silvicultural techniques that create many small openings in mixed coniferous deciduous boreal forests to maximize the growth response of both residual and regenerating trees.

  16. Depth image super-resolution via semi self-taught learning framework

    NASA Astrophysics Data System (ADS)

    Zhao, Furong; Cao, Zhiguo; Xiao, Yang; Zhang, Xiaodi; Xian, Ke; Li, Ruibo

    2017-06-01

    Depth images have recently attracted much attention in computer vision and high-quality 3D content for 3DTV and 3D movies. In this paper, we present a new semi self-taught learning application framework for enhancing resolution of depth maps without making use of ancillary color images data at the target resolution, or multiple aligned depth maps. Our framework consists of cascade random forests reaching from coarse to fine results. We learn the surface information and structure transformations both from a small high-quality depth exemplars and the input depth map itself across different scales. Considering that edge plays an important role in depth map quality, we optimize an effective regularized objective that calculates on output image space and input edge space in random forests. Experiments show the effectiveness and superiority of our method against other techniques with or without applying aligned RGB information

  17. [Dynamics of Quercus variabilis seed rain and soil seed bank in different habitats on the north slope of Qinling Mountains].

    PubMed

    Wu, Min; Zhang, Wen-Hui; Zhou, Jian-Yun; Ma, Chuang; Ma, Li-Wei

    2011-11-01

    In order to explore the dynamics of Quercus variabilis seed rain and soil seed bank in different habitats on the north slope of Qinling Mountains, three kinds of micro-habitats (understory, forest gap, and forest edge) were selected, with the seed rain quantity and quality of Q. variabilis, seed amount and viability in soil seed bank, as well as the seedling development of Q. variabilis studied. The seed rain of Q. variabilis started from mid August, reached the peak in mid September-early October, and ended at the beginning of November, and there existed differences in the dissemination process, occurrence time, and composition of the seed rain among the three micro-habitats. The seed rain had the maximum intensity (39.55 +/- 5.56 seeds x m(-2)) in understory, the seeds had the earliest landing time, the longest lasting duration, and the highest viability in forest gap, and the mature seeds had the largest proportion in forest edge, accounting for 58.7% of the total. From the ending time of seed rain to next August, the total reserve of soil seed bank was the largest in understory and the smallest in forest edge. In the three habitats, the amount of mature and immature seeds, that of seeds eaten by animals, and the seed viability in soil seed bank all decreased with time. In contrast, the number of moldy seeds increased. The seeds were mainly concentrated in litter layer, a few of them were in 0-2 cm soil layer, and few were in 2-5 cm soil layer. The density of the seedlings varied with habitats, being the largest in forest gap, followed by in forest edge, and the least in understory, which suggested that forest gap was more suitable for the seed germination and seedling growth of Q. variabilis, and thus, appropriate thinning should be taken to increase forest gap to provide favorable conditions for the natural regeneration of Q. variabilis forest.

  18. The effect of altitude, patch size and disturbance on species richness and density of lianas in montane forest patches

    NASA Astrophysics Data System (ADS)

    Mohandass, Dharmalingam; Campbell, Mason J.; Hughes, Alice C.; Mammides, Christos; Davidar, Priya

    2017-08-01

    The species richness and density of lianas (woody vines) in tropical forests is determined by various abiotic and biotic factors. Factors such as altitude, forest patch size and the degree of forest disturbance are known to exert strong influences on liana species richness and density. We investigated how liana species richness and density were concurrently influenced by altitude (1700-2360 m), forest patch size, forest patch location (edge or interior) and disturbance intensity in the tropical montane evergreen forests, of the Nilgiri and Palni hills, Western Ghats, southern India. All woody lianas (≥1 cm dbh) were enumerated in plots of 30 × 30 m in small, medium and large forest patches, which were located along an altitudinal gradient ranging from 1700 to 2360 m. A total of 1980 individual lianas were recorded, belonging to 45 species, 32 genera and 21 families, from a total sampling area of 13.86 ha (across 154 plots). Liana species richness and density decreased significantly with increasing altitude and increased with increasing forest patch size. Within forest patches, the proportion of forest edge or interior habitat influenced liana distribution and succession especially when compared across the patch size categories. Liana species richness and density also varied along the altitudinal gradient when examined using eco-physiological guilds (i.e. shade tolerance, dispersal mode and climbing mechanism). The species richness and density of lianas within these ecological guilds responded negatively to increasing altitude and positively to increasing patch size and additionally displayed differing sensitivities to forest disturbance. Importantly, the degree of forest disturbance significantly altered the relationship between liana species richness and density to increasing altitude and patches size, and as such is likely the primary influence on liana response to montane forest succession. Our findings suggest that managing forest disturbance in the examined montane forests would assist in conserving local liana diversity across the examined altitudinal range.

  19. Forest-climate interactions in fragmented tropical landscapes.

    PubMed

    Laurance, William F

    2004-03-29

    In the tropics, habitat fragmentation alters forest-climate interactions in diverse ways. On a local scale (less than 1 km), elevated desiccation and wind disturbance near fragment margins lead to sharply increased tree mortality, thus altering canopy-gap dynamics, plant community composition, biomass dynamics and carbon storage. Fragmented forests are also highly vulnerable to edge-related fires, especially in regions with periodic droughts or strong dry seasons. At landscape to regional scales (10-1000 km), habitat fragmentation may have complex effects on forest-climate interactions, with important consequences for atmospheric circulation, water cycling and precipitation. Positive feedbacks among deforestation, regional climate change and fire could pose a serious threat for some tropical forests, but the details of such interactions are poorly understood.

  20. Landscape and local effects on occupancy and densities of an endangered wood-warbler in an urbanizing landscape

    USGS Publications Warehouse

    Reidy, Jennifer; Thompson III, Frank R.; Amundson, Courtney L.; O'Donnell, Lisa

    2015-01-01

    Landscape composition and habitat structure were important determinants of warbler occupancy and density, and the large intact patches of juniper and mixed forest on BCP (>2100 ha) supported a high density of warblers. Increasing urbanization and fragmentation in the surrounding landscape will likely result in lower breeding density due to loss of juniper and mixed forest and increasing urban land cover and edge.

  1. Observational evidence for cloud cover enhancement over western European forests.

    PubMed

    Teuling, Adriaan J; Taylor, Christopher M; Meirink, Jan Fokke; Melsen, Lieke A; Miralles, Diego G; van Heerwaarden, Chiel C; Vautard, Robert; Stegehuis, Annemiek I; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau

    2017-01-11

    Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas.

  2. Observational evidence for cloud cover enhancement over western European forests

    PubMed Central

    Teuling, Adriaan J.; Taylor, Christopher M.; Meirink, Jan Fokke; Melsen, Lieke A.; Miralles, Diego G.; van Heerwaarden, Chiel C.; Vautard, Robert; Stegehuis, Annemiek I.; Nabuurs, Gert-Jan; de Arellano, Jordi Vilà-Guerau

    2017-01-01

    Forests impact regional hydrology and climate directly by regulating water and heat fluxes. Indirect effects through cloud formation and precipitation can be important in facilitating continental-scale moisture recycling but are poorly understood at regional scales. In particular, the impact of temperate forest on clouds is largely unknown. Here we provide observational evidence for a strong increase in cloud cover over large forest regions in western Europe based on analysis of 10 years of 15 min resolution data from geostationary satellites. In addition, we show that widespread windthrow by cyclone Klaus in the Landes forest led to a significant decrease in local cloud cover in subsequent years. Strong cloud development along the downwind edges of larger forest areas are consistent with a forest-breeze mesoscale circulation. Our results highlight the need to include impacts on cloud formation when evaluating the water and climate services of temperate forests, in particular around densely populated areas. PMID:28074840

  3. California Spotted Owl (Strix occidentalis occidentalis) habitat use patterns in a burned landscape

    USGS Publications Warehouse

    Eyes, Stephanie; Roberts, Susan L.; Johnson, Matthew D.

    2017-01-01

    Fire is a dynamic ecosystem process of mixed-conifer forests of the Sierra Nevada, but there is limited scientific information addressing wildlife habitat use in burned landscapes. Recent studies have presented contradictory information regarding the effects of stand-replacing wildfires on Spotted Owls (Strix occidentalis) and their habitat. While fire promotes heterogeneous forest landscapes shown to be favored by owls, high severity fire may create large canopy gaps that can fragment the closed-canopy habitat preferred by Spotted Owls. We used radio-telemetry to determine whether foraging California Spotted Owls (S. o. occidentalis) in Yosemite National Park, California, USA, showed selection for particular fire severity patch types within their home ranges. Our results suggested that Spotted Owls exhibited strong habitat selection within their home ranges for locations near the roost and edge habitats, and weak selection for lower fire severity patch types. Although owls selected high contrast edges with greater relative probabilities than low contrast edges, we did not detect a statistical difference between these probabilities. Protecting forests from stand-replacing fires via mechanical thinning or prescribed fire is a priority for management agencies, and our results suggest that fires of low to moderate severity can create habitat conditions within California Spotted Owls' home ranges that are favored for foraging.

  4. Predation of Artificial Nests in Hardwood Fragments Enclosed by Pine and Agricultural Habitats

    Treesearch

    Robert A. Sargent; John C. Kilgo; Briand R. Chapman; Karl V. Miller

    1998-01-01

    Nesting success of songbirds often is poor in edge-dominated habitats. Because the spatial juxtaposition of forest fragments relative to other habitats may influence nest success, we tested the hypothesis that the depredation rate for bird nests in small hardwood forests would decrease if the degree of edge contrast with adjoining habitats was reduced. Over 4 trials,...

  5. Avian nest success in midwestern forests fragmented by agriculture

    USGS Publications Warehouse

    Knutson, M.G.; Niemi, G.J.; Newton, W.E.; Friberg, M.A.

    2004-01-01

    We studied how forest-bird nest success varied by landscape context from 1996 to 1998 in an agricultural region of southeastern Minnesota, southwestern Wisconsin, and northeastern Iowa. Nest success was 48% for all nests, 82% for cavity-nesting species, and 42% for cup-nesting species. Mayfield-adjusted nest success for five common species ranged from 23% for the American Redstart (Setophaga ruticilla) to 43% for the Eastern Wood-Pewee (Contopus virens). Nest success was lowest for open-cup nesters, species that reject Brown-headed Cowbird (Molothrus ater) eggs, species that nest near forest edges, and Neo-tropical migrants. The proportion of forest core area in a 5-km radius around the plot had a weakly negative relationship with daily survival rate of nests for all species pooled and for medium or high canopy nesters, species associated with interior and edge habitats, open-cup nesters, and nests located between 75 and 199 m from an edge. The proportion of forest core area was positively related to daily survival rate only for ground and low nesters. Our findings are in contrast to a number of studies from the eastern United States reporting strong positive associations between forest area and nesting success. Supported models of habitat associations changed with the spatial scale of analysis and included variables not often considered in studies of forest birds, including the proportion of water, shrubs, and grasslands in the landscape. Forest area may not be a strong indicator of nest success in landscapes where all the available forests are fragmented.

  6. Edge effects enhance selfing and seed harvesting efforts in the insect-pollinated Neotropical tree Copaifera langsdorffii (Fabaceae)

    PubMed Central

    Tarazi, R; Sebbenn, A M; Kageyama, P Y; Vencovsky, R

    2013-01-01

    Edge effects may affect the mating system of tropical tree species and reduce the genetic diversity and variance effective size of collected seeds at the boundaries of forest fragments because of a reduction in the density of reproductive trees, neighbour size and changes in the behaviour of pollinators. Here, edge effects on the genetic diversity, mating system and pollen pool of the insect-pollinated Neotropical tree Copaifera langsdorffii were investigated using eight microsatellite loci. Open-pollinated seeds were collected from 17 seed trees within continuous savannah woodland (SW) and were compared with seeds from 11 seed trees at the edge of the savannah remnant. Seeds collected from the SW had significantly higher heterozygosity levels (Ho=0.780; He=0.831) than seeds from the edge (Ho=0.702; He=0.800). The multilocus outcrossing rate was significantly higher in the SW (tm=0.859) than in the edge (tm=0.759). Pollen pool differentiation was significant, however, it did not differ between the SW (=0.105) and the edge (=0.135). The variance effective size within the progenies was significantly higher in the SW (Ne=2.65) than at the edge (Ne=2.30). The number of seed trees to retain the reference variance effective size of 500 was 189 at the SW and 217 at the edge. Therefore, it is preferable that seed harvesting for conservation and environmental restoration strategies be conducted in the SW, where genetic diversity and variance effective size within progenies are higher. PMID:23486081

  7. Edge effects enhance selfing and seed harvesting efforts in the insect-pollinated Neotropical tree Copaifera langsdorffii (Fabaceae).

    PubMed

    Tarazi, R; Sebbenn, A M; Kageyama, P Y; Vencovsky, R

    2013-06-01

    Edge effects may affect the mating system of tropical tree species and reduce the genetic diversity and variance effective size of collected seeds at the boundaries of forest fragments because of a reduction in the density of reproductive trees, neighbour size and changes in the behaviour of pollinators. Here, edge effects on the genetic diversity, mating system and pollen pool of the insect-pollinated Neotropical tree Copaifera langsdorffii were investigated using eight microsatellite loci. Open-pollinated seeds were collected from 17 seed trees within continuous savannah woodland (SW) and were compared with seeds from 11 seed trees at the edge of the savannah remnant. Seeds collected from the SW had significantly higher heterozygosity levels (Ho=0.780; He=0.831) than seeds from the edge (Ho=0.702; He=0.800). The multilocus outcrossing rate was significantly higher in the SW (tm=0.859) than in the edge (tm=0.759). Pollen pool differentiation was significant, however, it did not differ between the SW (=0.105) and the edge (=0.135). The variance effective size within the progenies was significantly higher in the SW (Ne=2.65) than at the edge (Ne=2.30). The number of seed trees to retain the reference variance effective size of 500 was 189 at the SW and 217 at the edge. Therefore, it is preferable that seed harvesting for conservation and environmental restoration strategies be conducted in the SW, where genetic diversity and variance effective size within progenies are higher.

  8. Breeding system and pollination of a narrowly endemic herb of the Lower Florida Keys: impacts of the urban-wildland interface.

    PubMed

    Liu, Hong; Koptur, Suzanne

    2003-08-01

    We examined the breeding system and pollination of Chamaecrista keyensis Pennell (Fabaceae: Caesalpinioideae) and the effects of urban edge and mosquito control on reproduction of this rare endemic herb of the Lower Florida Keys. Controlled hand-pollination treatments were applied to plants in the field. Although C. keyensis flowers are self-compatible, they are not capable of automatic selfing. Inbreeding depression was observed in both seed set and percentage seed germination. Bees of seven genera were observed visiting C. keyensis flowers during the peak flowering season (June to July). Only Xylocopa micans and Melissodes spp. may be effective pollinators for C. keyensis, as they were the only bees that "buzz pollinate" this species, which has poricidal anther dehiscence. Chamaecrista keyensis received substantially more visits by X. micans, but fewer visits from Melissodes spp. in urban-edge vs. forest sites. Aerial mosquito spraying may exacerbate the existing pollinator limitation suffered by C. keyensis by reducing the number of visits by the buzz-pollinating bees. Individuals of C. keyensis at urban edges produced fewer seeds per fruit than did individuals in a pristine forest mainly because of greater insect seed predation.

  9. Forest structure and downed woody debris in boreal temperate, and tropical forest fragments

    Treesearch

    William A. Gould; Grizelle Gonzalez; Andrew T. Hudak; Teresa Nettleton Hollingsworth; Jamie Hollingsworth

    2008-01-01

    Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve...

  10. Simulation of Sentinel-2A Red Edge Bands with RPAS Based Multispectral Data

    NASA Astrophysics Data System (ADS)

    Davids, Corine; Storvold, Rune; Haarpaintner, Jorg; Arnason, Kolbeinn

    2016-08-01

    Very high spatial and spectral resolution multispectral data was collected over the Hallormstađur test site in eastern Iceland using a fixed wing remotely piloted aerial system as part of the EU FP7 project North State (www.northstatefp7.eu). The North State project uses forest variable estimates derived from optical and radar satellite data as either input or validation for carbon flux models. The RPAS data from the Hallormsstađur forest test site in Iceland is here used to simulate Landsat and Sentinel-2A data and to explore the advantages of the new Sentinel-2A red edge bands for forest vegetation mapping. Simple supervised classification shows that the inclusion of the red edge bands improves the tree species classification considerably.

  11. Foliar fungal communities strongly differ between habitat patches in a landscape mosaic

    PubMed Central

    Robin, Cécile; Capdevielle, Xavier; Delière, Laurent; Vacher, Corinne

    2016-01-01

    Background Dispersal events between habitat patches in a landscape mosaic can structure ecological communities and influence the functioning of agrosystems. Here we investigated whether short-distance dispersal events between vineyard and forest patches shape foliar fungal communities. We hypothesized that these communities homogenize between habitats over the course of the growing season, particularly along habitat edges, because of aerial dispersal of spores. Methods We monitored the richness and composition of foliar and airborne fungal communities over the season, along transects perpendicular to edges between vineyard and forest patches, using Illumina sequencing of the Internal Transcribed Spacer 2 (ITS2) region. Results In contrast to our expectation, foliar fungal communities in vineyards and forest patches increasingly differentiate over the growing season, even along habitat edges. Moreover, the richness of foliar fungal communities in grapevine drastically decreased over the growing season, in contrast to that of forest trees. The composition of airborne communities did not differ between habitats. The composition of oak foliar fungal communities change between forest edge and centre. Discussion These results suggest that dispersal events between habitat patches are not major drivers of foliar fungal communities at the landscape scale. Selective pressures exerted in each habitat by the host plant, the microclimate and the agricultural practices play a greater role, and might account for the differentiation of foliar fugal communities between habitats. PMID:27833817

  12. Spatial and temporal dimensions of landscape fragmentation across the Brazilian Amazon.

    PubMed

    Rosa, Isabel M D; Gabriel, Cristina; Carreiras, Joāo M B

    2017-01-01

    The Brazilian Amazon in the past decades has been suffering severe landscape alteration, mainly due to anthropogenic activities, such as road building and land clearing for agriculture. Using a high-resolution time series of land cover maps (classified as mature forest, non-forest, secondary forest) spanning from 1984 through 2011, and four uncorrelated fragmentation metrics (edge density, clumpiness index, area-weighted mean patch size and shape index), we examined the temporal and spatial dynamics of forest fragmentation in three study areas across the Brazilian Amazon (Manaus, Santarém and Machadinho d'Oeste), inside and outside conservation units. Moreover, we compared the impacts on the landscape of: (1) different land uses (e.g. cattle ranching, crop production), (2) occupation processes (spontaneous vs. planned settlements) and (3) implementation of conservation units. By 2010/2011, municipalities located along the Arc of Deforestation had more than 55% of the remaining mature forest strictly confined to conservation units. Further, the planned settlement showed a higher rate of forest loss, a more persistent increase in deforested areas and a higher relative incidence of deforestation inside conservation units. Distinct agricultural activities did not lead to significantly different landscape structures; the accessibility of the municipality showed greater influence in the degree of degradation of the landscapes. Even with a high proportion of the landscapes covered by conservation units, which showed a strong inhibitory effect on forest fragmentation, we show that dynamic agriculturally driven economic activities, in municipalities with extensive road development, led to more regularly shaped, heavily fragmented landscapes, with higher densities of forest edge.

  13. Not seeing the forest for the trees: size of the minimum spanning trees (MSTs) forest and branch significance in MST-based phylogenetic analysis.

    PubMed

    Teixeira, Andreia Sofia; Monteiro, Pedro T; Carriço, João A; Ramirez, Mário; Francisco, Alexandre P

    2015-01-01

    Trees, including minimum spanning trees (MSTs), are commonly used in phylogenetic studies. But, for the research community, it may be unclear that the presented tree is just a hypothesis, chosen from among many possible alternatives. In this scenario, it is important to quantify our confidence in both the trees and the branches/edges included in such trees. In this paper, we address this problem for MSTs by introducing a new edge betweenness metric for undirected and weighted graphs. This spanning edge betweenness metric is defined as the fraction of equivalent MSTs where a given edge is present. The metric provides a per edge statistic that is similar to that of the bootstrap approach frequently used in phylogenetics to support the grouping of taxa. We provide methods for the exact computation of this metric based on the well known Kirchhoff's matrix tree theorem. Moreover, we implement and make available a module for the PHYLOViZ software and evaluate the proposed metric concerning both effectiveness and computational performance. Analysis of trees generated using multilocus sequence typing data (MLST) and the goeBURST algorithm revealed that the space of possible MSTs in real data sets is extremely large. Selection of the edge to be represented using bootstrap could lead to unreliable results since alternative edges are present in the same fraction of equivalent MSTs. The choice of the MST to be presented, results from criteria implemented in the algorithm that must be based in biologically plausible models.

  14. Forest fragmentation in the Pacific Northwest: quantification and correlations

    Treesearch

    Brett J. Butler; Jennifer J. Swenson; Ralph J. Alig

    2004-01-01

    A forest fragmentation index was produced for western Oregon and western Washington that combined measures of forested area, percentage edge, and interspersion. While natural, human land-cover, and human land-use processes contribute to forest fragmentation in the region, the drivers of these processes are categorically different. Here we examine forest fragmentation...

  15. Fragmentation of forest communities in the eastern United States

    Treesearch

    Kurt Riitters; John Coulston; James Wickham

    2011-01-01

    Forest fragmentation threatens the sustainability of forest communities in the eastern United States. Forest communities exhibiting either a low total area or low percentage of intact forest are subject to relatively higher risk of shifts in stand composition towards edge-adapted and invasive species. Such changes in stand composition could result in local extirpation...

  16. Functional traits variation explains the distribution of Aextoxicon punctatum (Aextoxicaceae) in pronounced moisture gradients within fog-dependent forest fragments.

    PubMed

    Salgado-Negret, Beatriz; Canessa, Rafaella; Valladares, Fernando; Armesto, Juan J; Pérez, Fernanda

    2015-01-01

    Climate change and fragmentation are major threats to world forests. Understanding how functional traits related to drought tolerance change across small-scale, pronounced moisture gradients in fragmented forests is important to predict species' responses to these threats. In the case of Aextoxicon punctatum, a dominant canopy tree in fog-dependent rain forest patches in semiarid Chile, we explored how the magnitude, variability and correlation patterns of leaf and xylem vessel traits and hydraulic conductivity varied across soil moisture (SM) gradients established within and among forest patches of different size, which are associated with differences in tree establishment and mortality patterns. Leaf traits varied across soil-moisture gradients produced by fog interception. Trees growing at drier leeward edges showed higher leaf mass per area, trichome and stomatal density than trees from the wetter core and windward zones. In contrast, xylem vessel traits (vessels diameter and density) did not vary producing loss of hydraulic conductivity at drier leeward edges. We also detected higher levels of phenotypic integration and variability at leeward edges. The ability of A. punctatum to modify leaf traits in response to differences in SM availability established over short distances (<500 m) facilitates its persistence in contrasting microhabitats within forest patches. However, xylem anatomy showed limited plasticity, which increases cavitation risk at leeward edges. Greater patch fragmentation, together with fluctuations in irradiance and SM in small patches, could result in higher risk of drought-related tree mortality, with profound impacts on hydrological balances at the ecosystem scale.

  17. Functional traits variation explains the distribution of Aextoxicon punctatum (Aextoxicaceae) in pronounced moisture gradients within fog-dependent forest fragments

    PubMed Central

    Salgado-Negret, Beatriz; Canessa, Rafaella; Valladares, Fernando; Armesto, Juan J.; Pérez, Fernanda

    2015-01-01

    Climate change and fragmentation are major threats to world forests. Understanding how functional traits related to drought tolerance change across small-scale, pronounced moisture gradients in fragmented forests is important to predict species’ responses to these threats. In the case of Aextoxicon punctatum, a dominant canopy tree in fog-dependent rain forest patches in semiarid Chile, we explored how the magnitude, variability and correlation patterns of leaf and xylem vessel traits and hydraulic conductivity varied across soil moisture (SM) gradients established within and among forest patches of different size, which are associated with differences in tree establishment and mortality patterns. Leaf traits varied across soil-moisture gradients produced by fog interception. Trees growing at drier leeward edges showed higher leaf mass per area, trichome and stomatal density than trees from the wetter core and windward zones. In contrast, xylem vessel traits (vessels diameter and density) did not vary producing loss of hydraulic conductivity at drier leeward edges. We also detected higher levels of phenotypic integration and variability at leeward edges. The ability of A. punctatum to modify leaf traits in response to differences in SM availability established over short distances (<500 m) facilitates its persistence in contrasting microhabitats within forest patches. However, xylem anatomy showed limited plasticity, which increases cavitation risk at leeward edges. Greater patch fragmentation, together with fluctuations in irradiance and SM in small patches, could result in higher risk of drought-related tree mortality, with profound impacts on hydrological balances at the ecosystem scale. PMID:26257746

  18. The influece of forest gaps on some properties of humus in a managed beech forest, northern Iran

    NASA Astrophysics Data System (ADS)

    Vajari, K. A.

    2015-10-01

    The present research focuses on the effect of eight-year-old artificially created gaps on some properties of humus in managed beech-dominated stand in Hyrcanian forest of northern Iran. In this study, six-teen gaps were sampled in site and were classified into four classes (small, medium, large, and very large) with four replications for each. Humus sampling was carried out at the centre and at the cardinal points within each gap as well as in the adjacent closed stand, separately, as composite samples. The variables of organic carbon, P, K, pH, and total N were measured for each sample. It was found that the gap size had significant effect only on total N (%) and organic carbon (%) in beech stand. The amount of potassium clearly differed among three positions in beech forest. The adjacent stand had higher significantly potassium than center and edge of gaps. Different amount of potassium was detected in gap center and gap edge. Comparison of humus properties between gaps and its adjacent stand pointed to the higher amount of potassium in adjacent stand than that in gaps but there was no difference between them regarding other humus properties. According to the results, it can be concluded that there is relatively similar condition among gaps and closed adjacent stands in terms of humus properties eight years after logging in the beech stand.

  19. National forests on the edge: development pressures on America's National Forest system.

    Treesearch

    Eric M. White; Ralph J. Alig

    2007-01-01

    Nationwide, the national forest system covers 192 million acres and contains 155 national forests and 20 national grasslands. These national forest system lands provide a variety of social, cultural, and economic benefits to society. An increasing number of housing units are now located along and near the boundaries of national forests, resulting from desires to reside...

  20. Are optical indices good proxies of seasonal changes in carbon fluxes and stress-related physiological status in a beech forest?

    PubMed

    Nestola, E; Scartazza, A; Di Baccio, D; Castagna, A; Ranieri, A; Cammarano, M; Mazzenga, F; Matteucci, G; Calfapietra, C

    2018-01-15

    This study investigates the functionality of a Mediterranean-mountain beech forest in Central Italy using simultaneous determinations of optical measurements, carbon (C) fluxes, leaf eco-physiological and biochemical traits during two growing seasons (2014-2015). Meteorological variables showed significant differences between the two growing seasons, highlighting a heat stress coupled with a reduced water availability in mid-summer 2015. As a result, a different C sink capacity of the forest was observed between the two years of study, due to the differences in stressful conditions and the related plant physiological status. Spectral indices related to vegetation (VIs, classified in structural, chlorophyll and carotenoid indices) were computed at top canopy level and used to track CO 2 fluxes and physiological changes. Optical indices related to structure (EVI 2, RDVI, DVI and MCARI 1) were found to better track Net Ecosystem Exchange (NEE) variations for 2014, while indices related to chlorophylls (SR red edge, CL red edge, MTCI and DR) provided better results for 2015. This suggests that when environmental conditions are not limiting for forest sink capacity, structural parameters are more strictly connected to C uptake, while under stress conditions indices related to functional features (e.g., chlorophyll content) become more relevant. Chlorophyll indices calculated with red edge bands (SR red edge, NDVI red edge, DR, CL red edge) resulted to be highly correlated with leaf nitrogen content (R 2 >0.70), while weaker, although significant, correlations were found with chlorophyll content. Carotenoid indices (PRI and PSRI) were strongly correlated with both chlorophylls and carotenoids content, suggesting that these indices are good proxies of the shifting pigment composition related to changes in soil moisture, heat stress and senescence. Our work suggests the importance of integrating different methods as a successful approach to understand how changing climatic conditions in the Mediterranean mountain region will impact on forest conditions and functionality. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Breeding biology of an afrotropical forest understory bird community in northeastern Tanzania

    USGS Publications Warehouse

    Mkongewa, Victor J.; Newmark, William D.; Stanley, Thomas R.

    2013-01-01

    Many aspects of the breeding biology of Afrotropical forest birds are poorly known. Here we provide a description based on the monitoring of 1461 active nests over eight breeding seasons about one or more aspects of the breeding biology for 28 coexisting understory bird species on the Amani Plateau in the East Usambara Mountains, Tanzania. Mean nest height and mean distance of nest from forest edge varied widely among species with most species constructing nests across a broad vertical and forest edge to interior gradient. However, there were important exceptions with all sunbird species and several dove and waxbill species constructing nests in close proximity to the forest edge. For 17 common species for which we recorded two or more active nests, mean clutch size across species was 1.9 eggs per clutch, the lowest site-specific mean clutch size yet reported for a tropical forest bird community. For nine bird species, a subset of the 17 common species, length of breeding season, defined as the difference between the earliest and latest recorded incubation onset date, ranged from 88–139 days. Most of these nine species displayed a unimodal distribution in incubation onset dates across a breeding season which extended from the end of August through middle January. In summary, a wide variation exists in most aspects of the breeding biology within an understory forest bird community in the East Usambara Mountains.

  2. Modeling Forest Understory Fires in an Eastern Amazonian Landscape

    NASA Technical Reports Server (NTRS)

    Alencar, A. A. C.; Solorzano, L. A.; Nepstad, D. C.

    2004-01-01

    Forest understory fires are an increasingly important cause of forest impoverishment in Ammonia, but little is known of the landscape characteristics and climatic phenomena that determine their occurrence. We developed empirical functions relating the occurrence of understory fires to landscape features near Paragominas, a 35- yr-old ranching and logging center in eastern Ammonia. An historical sequence of maps of forest understory fire was created based on field interviews With local farmers and Landsat TM images. Several landscape features that might explain spatial variations in the occurrence of understory fires were also mapped and co-registered for each of the sample dates, including: forest fragment size and shape, forest impoverishment through logging and understory fires, source of ignition (settlements and charcoal pits), roads, forest edges, and others. The spatial relationship between forest understory fire and each landscape characteristic was tested by regression analyses. Fire probability models were then developed for various combinations of landscape characteristics. The analyses were conducted separately for years of the El Nino Southern Oscillation (ENSO), which are associated with severe drought in eastern Amazonia, and non-ENS0 years. Most (91 %) of the forest area that burned during the 10-yr sequence caught fire during ENSO years, when severe drought may have increased both forest flammability and the escape of agricultural management fires. Forest understory fires were associated with forest edges, as reported in previous studies from Ammonia. But the strongest predictor of forest fire was the percentage of the forest fragment that had been previously logged or burned. Forest fragment size, distance to charcoal pits, distance to agricultural settlement, proximity to forest edge, and distance to roads were also correlated with forest understory fire. Logistic regression models using information on fragment degradation and distance to ignition sources accurately predicted the location of lss than 80% of the forest fires observed during the ENSO event of 1997- 1998. In this Amazon landscape, forest understory fire is a complex function of several variables that influence both the flammability and ignition exposure of the forest.

  3. Contrasting physiological responses to excess heat and irradiance in two tropical savanna sedges

    PubMed Central

    John-Bejai, C.; Farrell, A. D.; Cooper, F. M.; Oatham, M. P.

    2013-01-01

    Tropical hyperseasonal savannas provide a rare example of a tropical climax community dominated by graminoid species. Species living in such savannas are frequently exposed to excess heat and light, in addition to drought and waterlogging, and must possess traits to avoid or tolerate these stress factors. Here we examine the contrasting heat and light stress adaptations of two dominant savanna sedges: Lagenocarpus guianensis, which is restricted to the sheltered forest edge, and Lagenocarpus rigidus, which extends from the forest edge to the open savanna. An ecotone extending from the forest edge to the open savanna was used to assess differences in a range of physiological traits (efficiency of photosystem II, cell membrane thermostability, stomatal conductance, leaf surface reflectance and canopy temperature depression) and a range of leaf functional traits (length : width ratio, specific leaf area and degree of folding). Lagenocarpus guianensis showed significantly less canopy temperature depression than L. rigidus, which may explain why this species was restricted to the forest edge. The range of leaf temperatures measured was within the thermal tolerance of L. guianensis and allowed photosystem II to function normally, at least within the cool forest edge. The ability of L. rigidus to extend into the open savanna was associated with an ability to decouple leaf temperature from ambient temperature combined with enhanced cell membrane thermostability. The high degree of canopy temperature depression seen in L. rigidus was not explained by enhanced stomatal conductance or leaf reflectance, but was consistent with a capacity to increase specific leaf area and reduce leaf length: width ratio in the open savanna. Plasticity in leaf functional traits and in cell membrane thermostability are key factors in the ability of this savanna sedge to survive abiotic stress. PMID:24379971

  4. Numerical and functional responses of forest bats to a major insect pest in pine plantations.

    PubMed

    Charbonnier, Yohan; Barbaro, Luc; Theillout, Amandine; Jactel, Hervé

    2014-01-01

    Global change is expected to modify the frequency and magnitude of defoliating insect outbreaks in forest ecosystems. Bats are increasingly acknowledged as effective biocontrol agents for pest insect populations. However, a better understanding is required of whether and how bat communities contribute to the resilience of forests to man- and climate-driven biotic disturbances.We studied the responses of forest insectivorous bats to a major pine defoliator, the pine processionary moth Thaumetopoea pityocampa, which is currently expanding its range in response to global warming [corrected]. We used pheromone traps and ultrasound bat recorders to estimate the abundance and activity of moths and predatory bats along the edge of infested pine stands. We used synthetic pheromone to evaluate the effects of experimentally increased moth availability on bat foraging activity. We also evaluated the top-down regulation of moth population by estimating T. pityocampa larval colonies abundance on the same edges the following winter. We observed a close spatio-temporal matching between emergent moths and foraging bats, with bat activity significantly increasing with moth abundance. The foraging activity of some bat species was significantly higher near pheromone lures, i.e. in areas of expected increased prey availability. Furthermore moth reproductive success significantly decreased with increasing bat activity during the flight period of adult moths. These findings suggest that bats, at least in condition of low prey density, exhibit numerical and functional responses to a specific and abundant prey, which may ultimately result in an effective top-down regulation of the population of the prey. These observations are consistent with bats being useful agents for the biocontrol of insect pest populations in plantation forests.

  5. Changes in forest productivity across Alaska consistent with biome shift

    Treesearch

    Peter S.A. Beck; Glenn P. Juday; Claire Alix; Valerie A. Barber; Stephen E. Winslow; Emily E. Sousa; Patricia Heiser; James D. Herriges; Scott J. Goetz

    2011-01-01

    Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest...

  6. The Impact of Nature-Based Tourism on Bird Communities: A Case Study in Pallas-Yllästunturi National Park

    NASA Astrophysics Data System (ADS)

    Huhta, Esa; Sulkava, Pekka

    2014-05-01

    Nature-based tourism and recreation within and close to protected areas may have negative environmental impacts on biodiversity due to urban development, landscape fragmentation, and increased disturbance. We conducted a 3-year study of disturbances of birds induced by nature-based tourism over a recreational gradient in the Pallas-Yllästunturi National Park and its surroundings in northern Finland. Bird assemblages were studied in highly disturbed areas close to the park (a ski resort, villages, and accommodation areas) and in campfire sites, along hiking routes (recreational areas) and in a forest (control area) within the park. Compared with the forest, the disturbed urbanized areas had higher abundances of human-associated species, corvid species, cavity and building nesters, and edge species. The abundances of managed forest species were higher in campfire sites than in the forest. Hiking trails and campfire sites did not have a negative impact on open-nesting bird species. The most likely reason for this outcome is that most campfire sites were situated at forest edges; this species group prefers managed forests and forest edge as a breeding habitat. The abundances of virgin forest species did not differ among the areas studied. The results of the study suggest that the current recreation pressure has not caused substantial changes in the forest bird communities within the National Park. We suggest that the abundances of urban exploiter species could be used as indicators to monitor the level and changes of urbanization and recreational pressure at tourist destinations.

  7. The impact of nature-based tourism on bird communities: a case study in Pallas-Yllästunturi National Park.

    PubMed

    Huhta, Esa; Sulkava, Pekka

    2014-05-01

    Nature-based tourism and recreation within and close to protected areas may have negative environmental impacts on biodiversity due to urban development, landscape fragmentation, and increased disturbance. We conducted a 3-year study of disturbances of birds induced by nature-based tourism over a recreational gradient in the Pallas-Yllästunturi National Park and its surroundings in northern Finland. Bird assemblages were studied in highly disturbed areas close to the park (a ski resort, villages, and accommodation areas) and in campfire sites, along hiking routes (recreational areas) and in a forest (control area) within the park. Compared with the forest, the disturbed urbanized areas had higher abundances of human-associated species, corvid species, cavity and building nesters, and edge species. The abundances of managed forest species were higher in campfire sites than in the forest. Hiking trails and campfire sites did not have a negative impact on open-nesting bird species. The most likely reason for this outcome is that most campfire sites were situated at forest edges; this species group prefers managed forests and forest edge as a breeding habitat. The abundances of virgin forest species did not differ among the areas studied. The results of the study suggest that the current recreation pressure has not caused substantial changes in the forest bird communities within the National Park. We suggest that the abundances of urban exploiter species could be used as indicators to monitor the level and changes of urbanization and recreational pressure at tourist destinations.

  8. Urbanization Effects on the Vertical Distribution of Soil Microbial Communities and Soil C Storage across Edge-to-Interior Urban Forest Gradients

    NASA Astrophysics Data System (ADS)

    Rosier, C. L.; Van Stan, J. T., II; Trammell, T. L.

    2017-12-01

    Urbanization alters environmental conditions such as temperature, moisture, carbon (C) and nitrogen (N) deposition affecting critical soil processes (e.g., C storage). Urban soils experience elevated N deposition (e.g., transportation, industry) and decreased soil moisture via urban heat island that can subsequently alter soil microbial community structure and activity. However, there is a critical gap in understanding how increased temperatures and pollutant deposition influences soil microbial community structure and soil C/N cycling in urban forests. Furthermore, canopy structural differences between individual tree species is a potentially important mechanism facilitating the deposition of pollutants to the soil. The overarching goal of this study is to investigate the influence of urbanization and tree species structural differences on the bacterial and fungal community and C and N content of soils experiencing a gradient of urbanization pressures (i.e., forest edge to interior; 150-m). Soil cores (1-m depth) were collected near the stem (< 0.5 meter) of two tree species with contrasting canopy and bark structure (Fagus grandifolia, vs. Liriodendron tulipifera), and evaluated for soil microbial structure via metagenomic analysis and soil C/N content. We hypothesize that soil moisture constraints coupled with increases in recalcitrant C will decrease gram negative bacteria (i.e., dependent on labile C) while increasing saprophytic fungal community abundance (i.e., specialist consuming recalcitrant C) within both surface and subsurface soils experiencing the greatest urban pressure (i.e., forest edge). We further expect trees located on the edge of forest fragments will maintain greater surface soil (< 20 cm) C concentrations due to decreased soil moisture constraining microbial activity (e.g., slower decay), and increased capture of recalcitrant C stocks from industrial/vehicle emission sources (e.g., black C). Our initial results support our hypotheses that urbanization alters soil microbial community composition via reduced soil moisture and carbon storage potential via deposition gradients. Further analyses will answer important questions regarding how individual tree species alters urban soil C storage, N retention, and microbial dynamics.

  9. Mapping Mangrove Density from Rapideye Data in Central America

    NASA Astrophysics Data System (ADS)

    Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru

    2017-06-01

    Mangrove forests provide a wide range of socioeconomic and ecological services for coastal communities. Extensive aquaculture development of mangrove waters in many developing countries has constantly ignored services of mangrove ecosystems, leading to unintended environmental consequences. Monitoring the current status and distribution of mangrove forests is deemed important for evaluating forest management strategies. This study aims to delineate the density distribution of mangrove forests in the Gulf of Fonseca, Central America with Rapideye data using the support vector machines (SVM). The data collected in 2012 for density classification of mangrove forests were processed based on four different band combination schemes: scheme-1 (bands 1-3, 5 excluding the red-edge band 4), scheme-2 (bands 1-5), scheme-3 (bands 1-3, 5 incorporating with the normalized difference vegetation index, NDVI), and scheme-4 (bands 1-3, 5 incorporating with the normalized difference red-edge index, NDRI). We also hypothesized if the obvious contribution of Rapideye red-edge band could improve the classification results. Three main steps of data processing were employed: (1), data pre-processing, (2) image classification, and (3) accuracy assessment to evaluate the contribution of red-edge band in terms of the accuracy of classification results across these four schemes. The classification maps compared with the ground reference data indicated the slightly higher accuracy level observed for schemes 2 and 4. The overall accuracies and Kappa coefficients were 97% and 0.95 for scheme-2 and 96.9% and 0.95 for scheme-4, respectively.

  10. The mangement of national forests of eastern United States for non-timber forest products

    Treesearch

    James L. Chamberlain

    2000-01-01

    Many products are harvested fiom the forests of the United States in addition to timber. These non-timber forest products (NTFPs) are plants, parts of plants, or fungi that are harvested from within and on the edges of natural, disturbed or managed forests. Often, NTFPs are harvested from public forests for the socio-economic benefit they provide to rural collectors....

  11. EDGE EFFECTS ON LIZARDS (NOROPS) AND FROGS (ELEUTHERODACTYLUS) IN TROPICAL FOREST FRAGMENTS. (U915581)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  12. Global-scale patterns of forest fragmentation

    USGS Publications Warehouse

    Riitters, K.; Wickham, J.; O'Neill, R.; Jones, B.; Smith, E.

    2000-01-01

    We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 ?? 9 pixels, "small" scale) to 59,049 km 2 (243 ?? 243 pixels, "large" scale) were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (interior, perforated, edge, transitional, patch, and undetermined) from the amount of forest and its occurrence as adjacent forest pixels. Interior forest exists only at relatively small scales; at larger scales, forests are dominated by edge and patch conditions. At the smallest scale, there were significant differences in fragmentation among continents; within continents, there were significant differences among individual forest types. Tropical rain forest fragmentation was most severe in North America and least severe in Europe - Asia. Forest types with a high percentage of perforated conditions were mainly in North America (five types) and Europe - Asia (four types), in both temperate and subtropical regions. Transitional and patch conditions were most common in 11 forest types, of which only a few would be considered as "naturally patchy" (e.g., dry woodland). The five forest types with the highest percentage of interior conditions were in North America; in decreasing order, they were cool rain forest, coniferous, conifer boreal, cool mixed, and cool broadleaf. Copyright ?? 2000 by The Resilience Alliance.

  13. A new diminutive frog species of Adelophryne (Amphibia: Anura: Eleutherodactylidae) from the Atlantic Forest, southeastern Brazil.

    PubMed

    Lourenço-de-Moraes, Ricardo; Ferreira, Rodrigo Barbosa; Fouquet, Antoine; Bastos, Rogério Pereira

    2014-08-04

    The genus Adelophryne is composed of diminutive frogs occurring in northern Amazonia and the Atlantic Forest. Herein we describe a new species of Adelophryne found in the leaf litter of primary and secondary forests in the mountainous region of Espírito Santo state, southeastern Brazil. The new species is characterized by its small body size, two phalanges in the finger IV, and a glandular ridge line that runs from the posterior part of eye to the insertion of the forelimb. This species is sensitive to edge effect and conversion of native forest into coffee and Eucalyptus plantations and may be listed as Endangered (EN) under B1ab(iii) criteria of the IUCN Red List.

  14. [Response of the ant community to attributes of fragments and vegetation in a northeastern Atlantic Rain Forest area, Brazil].

    PubMed

    Gomes, Juliana P; Iannuzzi, Luciana; Leal, Inara R

    2010-01-01

    The objective of this study was to determine the effects of forest fragmentation on ant richness in a landscape of Atlantic Forest in Northeast Brazil. More specifically, the ant richness was related to the attributes of fragments (area and distance from the fragment central point to the edge), landscape (forest cover surrounding the fragments), and tree community (plant density, richness, and percentage of shade tolerant species). The surveys were carried out in 19 fragments located in Alagoas State from October 2007 to March 2008. Samples were collected through a 300 m transect established in the center of each fragment, where 30 1-m² leaf litter samples were collected at 10 m intervals. A total of 146 ant species was collected, which belonged to 42 genera, 24 tribes and nine subfamilies. The attributes of fragments and landscape did not influence ant richness. On the other hand, tree density explained ca. 23% of ant richness. In relation to functional groups, both density and richness of trees explained the richness of general myrmicines (the whole model explained ca. 42% of the variation in this group) and percentage of shade tolerant trees explained the richness of specialist predator ants (30% for the whole model). These results indicate that ant fauna is more influenced by vegetation integrity than by fragment size, distance to edge or forest cover surrounding fragments.

  15. Major shifts at the range edge of marine forests: the combined effects of climate changes and limited dispersal

    PubMed Central

    Assis, J.; Berecibar, E.; Claro, B.; Alberto, F.; Reed, D.; Raimondi, P.; Serrão, E. A.

    2017-01-01

    Global climate change is likely to constrain low latitude range edges across many taxa and habitats. Such is the case for NE Atlantic marine macroalgal forests, important ecosystems whose main structuring species is the annual kelp Saccorhiza polyschides. We coupled ecological niche modelling with simulations of potential dispersal and delayed development stages to infer the major forces shaping range edges and to predict their dynamics. Models indicated that the southern limit is set by high winter temperatures above the physiological tolerance of overwintering microscopic stages and reduced upwelling during recruitment. The best range predictions were achieved assuming low spatial dispersal (5 km) and delayed stages up to two years (temporal dispersal). Reconstructing distributions through time indicated losses of ~30% from 1986 to 2014, restricting S. polyschides to upwelling regions at the southern edge. Future predictions further restrict populations to a unique refugium in northwestern Iberia. Losses were dependent on the emissions scenario, with the most drastic one shifting ~38% of the current distribution by 2100. Such distributional changes might not be rescued by dispersal in space or time (as shown for the recent past) and are expected to drive major biodiversity loss and changes in ecosystem functioning. PMID:28276501

  16. Local shifts in floral biotic interactions in habitat edges and their effect on quantity and quality of plant offspring

    PubMed Central

    Fenu, Giuseppe; Bernardo, Liliana

    2017-01-01

    Abstract Spatial shifts in insect fauna due to ecological heterogeneity can severely constrain plant reproduction. Nonetheless, data showing effects of insect visit patterns and intensity of mutualistic and/or antagonistic plant–insect interactions on plant reproduction over structured ecological gradients remain scarce. We investigated how changes in flower-visitor abundance, identity and behaviour over a forest-open habitat gradient affect plant biotic interactions, and quantitative and qualitative fitness in the edge-specialist Dianthus balbisii. Composition and behaviour of the insects visiting flowers of D. balbisii strongly varied over the study gradient, influencing strength and patterns of plant biotic interactions (i.e. herbivory and pollination likelihood). Seed set comparison in free- and manually pollinated flowers suggested spatial variations in the extent of quantitative pollen limitation, which appeared more pronounced at the gradient extremes. Such variations were congruent to patterns of flower visit and plant biotic interactions. The analyses on seed and seedling viability evidenced that spatial variation in amount and type of pollinators, and frequency of herbivory affected qualitative fitness of D. balbisii by influencing selfing and outcrossing rates. Our work emphasizes the role of plant biotic interactions as a fine-scale mediator of plant fitness in ecotones, highlighting that optimal plant reproduction can take place into a restricted interval of the ecological gradients occurring at forest edges. Reducing the habitat complexity typical of such transition contexts can threat edge-adapted plants. PMID:28775831

  17. Clear-cutting affects habitat connectivity for a forest amphibian by decreasing permeability to juvenile movements.

    PubMed

    Popescu, Viorel D; Hunter, Malcolm L

    2011-06-01

    Conservation of forest amphibians is dependent on finding the right balance between management for timber production and meeting species' habitat requirements. For many pond-breeding amphibians, successful dispersal of the juvenile stage is essential for long-term population persistence. We investigated the influence of timber-harvesting practices on the movements of juvenile wood frogs (Lithobates sylvaticus). We used a chronosequence of stands produced by clear-cutting to evaluate how stand age affects habitat permeability to movements. We conducted experimental releases of juveniles in 2008 (n = 350) and 2009 (n = 528) in unidirectional runways in four treatments: mature forest, recent clearcut, 11-year-old, and 20-year-old regeneration. The runways were 50 x 2.5-m enclosures extending into each treatment, perpendicular to a distinct edge, with four tracking stations at 10, 20, 30, and 40 m from the edge. We recorded the number of animals reaching each tracking station, and the proportion of animals changing their direction of movement at each distance. We found that the mature forest was 3.1 and 3.7 times more permeable than the 11-year-old regeneration and the recent clearcut, respectively. Animals actively avoided open-canopy habitats and sharp edges; significantly more animals returned toward the closed-canopy forest at 0 m and 10 m in the less permeable treatments. There were no significant differences in habitat permeability between the mature forest and the 20-year-old regeneration. Our study is the first to directly assess habitat permeability to juvenile amphibian movement in relation to various forestry practices. We argue that habitat permeability at this scale is largely driven by the behavior of animals in relation to habitat disturbance and that caution needs to be used when using spatial modeling and expert-derived permeability values to assess connectivity of amphibian populations. The effects of clear-cutting on the migratory success of juvenile L. sylvaticus are long-lasting. Forestry practices that involve canopy removal and conversion of natural forest to conifer plantations may affect regional population viability by hindering successful dispersal.

  18. Spatial characteristics of early successional habitat across the Upper Great Lakes states

    Treesearch

    Brian G. Tavernia; Mark D. Nelson; James D. Garner; Charles H. (Hobie) Perry

    2016-01-01

    Creation and management of early successional forest (ESF) is needed to halt and reverse declines of bird species dependent on pioneering plant species or young forests. ESF-dependent bird species require specific structural forest classes and are sensitive to forest age (a surrogate for forest structure), patch size, proximity to patch edges, and the juxtaposition of...

  19. Can a Forest/Nonforest Change Map Improve the Precision of Forest Area, Volume, Growth, Removals, and Mortality Estimates?

    Treesearch

    Dale D. Gormanson; Mark H. Hansen; Ronald E. McRoberts

    2005-01-01

    In an extensive forest inventory, stratifications that use dual-date forest/nonforest classifications of Landsat Thematic Mapper data approximately 10 years apart are tested against similar classifications that use data from only one date. Alternative stratifications that further define edge strata as pixels adjacent to a forest/nonforest boundary are included in the...

  20. Forest cover changes due to hydrocarbon extraction disturbance in central Pennsylvania (2004–2010)

    USGS Publications Warehouse

    Roig-Silva, Coral; Slonecker, Terry; Milheim, Lesley; Ballew, Jesse R.; Winters, S. Gail

    2016-01-01

    The state of Pennsylvania has a long history of oil and gas extraction. In recent years with advances in technology such as hydraulic fracturing, hydrocarbon sources that were not profitable in the past are now being exploited. Here, we present an assessment of the cumulative impact of oil and gas extraction activities on the forests of 35 counties in Pennsylvania and their intersecting sub-watersheds between 2004 and 2010. The assessment categorizes counties and sub-watersheds based on the estimated amount of change to forest cover in the area. From the data collected we recognize that although forest cover has not been greatly impacted (with an average loss of percent forest coverage of 0.16% at the county level), landscape structure is affected. Increase in edge forest and decrease in interior forest is evident in many of the counties and sub-watersheds examined. These changes can have a detrimental effect on forest biodiversity and dynamics.

  1. Mating systems of Psychotria tenuinervis (Rubiaceae): distance from anthropogenic and natural edges of Atlantic forest fragment.

    PubMed

    Ramos, Flavio Nunes; Zucchi, Maria Imaculada; Solferini, Vera Nisaka; Santos, Flavio A M

    2008-02-01

    The aim of this study was to determine and compare the mating systems among Psychotria tenuinervis populations at anthropogenic edges, natural edges, and the forest interior using allozyme electrophoresis of naturally pollinated progeny arrays. P. tenuinervis showed low outcrossing rates, varying from 37% to 50% of the mating attributable to outcrossing and 50% to 63% attributable to self-fertilization, in the three habitats. The forest interior had the highest outcrossing rate (t(m) = 0.50 and t(s) = 0.43) among the three habitats. However, there were no differences in either multilocus or single-locus rates among the three habitats, indicating that the contribution of biparental inbreeding to the apparent selfing rate in these populations was very low. The multilocus (t(m)) and single-locus (t(s)) outcrossing rates for the P. tenuinervis in the sample plots within each habitat showed great heterogeneity. In conclusion, edge creation seems not to influence its mating systems. Additionally, although P. tenuinervis is a distylous species, the population's inbreeding can be attributed almost entirely to self-fertilization.

  2. Management to conserve forest ecosystems

    USGS Publications Warehouse

    Robbins, C.S.; McComb, William C.

    1984-01-01

    Historically, management of forests for wildlife has emphasized creation of openings and provision for a maximum of edge habitats. Wildlife managers have believed, quite logically, that increased sunlight enhances productivity among plants and insects, resulting in greater use by game animals and other wildlife. Recent studies comparing breeding bird populations of extensive forests with those of isolated woodlots have shown that the smaller woodlots, especially those under 35 ha (about 85 acres), lack many species that are typical of the larger tracts. The missing species can be predicted, and basically are the neotropical migrants. These long-distance migrants share several characteristics that make them especially vulnerable to reproductive failure in situations where predation and cowbird parasitism are high: they are primarily single-brooded, open nesters that lay small clutches on or near the ground. Edge habitats and forest openings attract cowbirds and predators. The edge species of birds, which are mostly permanent residents or short-distance migrants, are well adapted to survive and reproduce in small isolated woodlands without the benefit of special habitat management. The obligate forest interior species, on the other hand, are decreasing in those parts of North America where extensive forests are being replaced by isolated woodlands. If we are to preserve ecosystems intact for the benefit of future generations, and maintain a viable gene pool for the scarcer species, we must think in terms of retaining large, unbroken tracts of forest and of limiting disturbance in the more remote portions of these tracts.

  3. Post-breeding bird responses to canopy tree retention, stand size, and edge in regenerating Appalachian hardwood stands

    USGS Publications Warehouse

    McDermott, Molly E.; Wood, Petra B.

    2011-01-01

    Avian use of even-aged timber harvests is likely affected by stand attributes such as size, amount of edge, and retained basal area, all characteristics that can easily be manipulated in timber harvesting plans. However, few studies have examined their effects during the post-breeding period. We studied the impacts of clearcut, low-leave two-age, and high-leave two-age harvesting on post-breeding birds using transect sampling and mist-netting in north-central West Virginia. In our approach, we studied the effects of these harvest types as well as stand size and edge on species characteristic of both early-successional and mature forest habitats. In 2005–2006, 13 stands ranging from 4 to 10 years post-harvest and 4–21 ha in size were sampled from late June through mid-August. Capture rates and relative abundance were similar among treatments for generalist birds. Early-successional birds had the lowest capture rates and fewer species (∼30% lower), and late-successional birds reached their highest abundance and species totals (double the other treatments) in high-leave two-age stands. Area sensitivity was evident for all breeding habitat groups. Both generalist and late-successional bird captures were negatively related to stand size, but these groups showed no clear edge effects. Mean relative abundance decreased to nearly zero for the latter group in the largest stands. In contrast, early-successional species tended to use stand interiors more often and responded positively to stand size. Capture rates for this group tripled as stand size increased from 4 to 21 ha. Few birds in the forest periphery responded to harvest edge types despite within-stand edge effects evident for several species. To create suitable habitat for early-successional birds, large, non-linear openings with a low retained basal area are ideal, while smaller harvests and increased residual tree retention would provide habitat for more late-successional birds post-breeding. Although our study has identified habitat use patterns for different species in timber harvests, understanding habitat-specific bird survival is needed to help determine the quality of silvicultural harvests for post-breeding birds.

  4. Mesembrinellinae (Diptera: Calliphoridae) to edge effects in the Tinguá Biological Reserve, Rio de Janeiro, Brazil.

    PubMed

    Gadelha, B Q; Silva, A B; Ferraz, A C P; Aguiar, V M

    2015-11-01

    In this study we describe the diversity of Mesembrinelinae in a biological reserve in the city of Nova Iguaçu, State of Rio de Janeiro. Traps containing sardines were distributed seasonally, at four sites: Site A (22° 58.788' S, 43° 43.459' W), in a forest edge, and sites B (22° 58.523' S, 43° 44.540' W), C (22° 58.350' S, 43° 44.678' W), and D (22° 34.865' S, 43° 27.063' W), located 1,000 m, 500 m, and 2,000 m respectively, inwards from the edge. A total of 2,150 individuals of Mesembrinellinae were collected, representing ten species. Laneela nigripes Guimarães, 1977 was the most abundant species, followed by Mesembrinella bellardiana Aldrich, 1922, Eumesembrinella cyaneicincta (Surcouf, 1919) and Mesembrinella semihyalina Mello, 1967. These species were common and constant during the study period. Mesembrinella batesi Aldrich, 1922, Eumesembrinella quadrilineata (Fabricius, 1805) and Huascaromusca aeneiventris (Wiedmann, 1830) were the less abundant flies, being considered rare and accidental. Eumesembrinella besnoiti (Seguy, 1925) was rare and accessory. Eumesembrinella cyaneicincta, M. bellardiana, M. semihyalina and M. bicolor were mostly collected in site B, while L. nigripes was mostly collected in site C. The edge effect was not evident since the four sites showed similar populations. Site B showed a strong positive relationship between abundance and richness, in site C the correlation was positive and weak, and there was no correlation in A and D. The highest abundance of specimens was recorded during autumn and winter. These flies occurred from the edge up to 2,000 m inside the forest.

  5. Parasitism at the landscape scale: Cowbirds prefer forests

    USGS Publications Warehouse

    Hahn, D.C.; Hatfield, J.S.

    1995-01-01

    Landscape-scale examination of parasitism patterns of Brown-headed Cowbirds (Molothrus ater) revealed heterogeneous parasitism rates across the mosaic of a forest and associated oldfield communities. In a two-year study in Dutchess County, New York, we found a significantly higher parasitism rate in the forest-interior community (n = 301 nests; 17 species) than on the species in the adjacent and nearby old-field and edge (n = 328 nests; 15 species; 32.3% versus 6.5%; p lt 0.0001). Cowbirds invaded a mature 1300-ha forest stand even when their traditional host species were available in adjacent old-field and edge habitats. The forest and old field study areas were located in a 38,000-ha township with 55% forest cover and contained numerous agriculture, dairy, and horse farms that provided favorable habitat for cowbirds, within-forest examination of parasitism patterns revealed four aspects of cowbird parasitism that contrasted with patterns described in other regions; (1) parasitism was concentrated significantly more often on ground and low-nesting (nests ltoreq 1 m) forest species than on medium- and high nesting species (nests gt 1 m; 35. 01 % versus 2993%; p = 0.0393); (2) parasitism was not significantly greater on Neotropical migrant species than on short-distance migrants and residents; (3) the parasitism rate was not higher in nests close to edges; and (4) the parasitism level was low on certain forest species (such as Wood Thrush) that have experienced high parasitism levels in the Midwest. From a management perspective these data suggest that cowbirds exhibit regional differences in host and habitat use; the target host community of a particular cowbird population is unpredictable at the landscape scale; and a landscape scale should be used in designing cowbird studies to accurately assess local population dynamics.

  6. An Amazonian rainforest and its fragments as a laboratory of global change.

    PubMed

    Laurance, William F; Camargo, José L C; Fearnside, Philip M; Lovejoy, Thomas E; Williamson, G Bruce; Mesquita, Rita C G; Meyer, Christoph F J; Bobrowiec, Paulo E D; Laurance, Susan G W

    2018-02-01

    We synthesize findings from one of the world's largest and longest-running experimental investigations, the Biological Dynamics of Forest Fragments Project (BDFFP). Spanning an area of ∼1000 km 2 in central Amazonia, the BDFFP was initially designed to evaluate the effects of fragment area on rainforest biodiversity and ecological processes. However, over its 38-year history to date the project has far transcended its original mission, and now focuses more broadly on landscape dynamics, forest regeneration, regional- and global-change phenomena, and their potential interactions and implications for Amazonian forest conservation. The project has yielded a wealth of insights into the ecological and environmental changes in fragmented forests. For instance, many rainforest species are naturally rare and hence are either missing entirely from many fragments or so sparsely represented as to have little chance of long-term survival. Additionally, edge effects are a prominent driver of fragment dynamics, strongly affecting forest microclimate, tree mortality, carbon storage and a diversity of fauna. Even within our controlled study area, the landscape has been highly dynamic: for example, the matrix of vegetation surrounding fragments has changed markedly over time, succeeding from large cattle pastures or forest clearcuts to secondary regrowth forest. This, in turn, has influenced the dynamics of plant and animal communities and their trajectories of change over time. In general, fauna and flora have responded differently to fragmentation: the most locally extinction-prone animal species are those that have both large area requirements and low tolerance of the modified habitats surrounding fragments, whereas the most vulnerable plants are those that respond poorly to edge effects or chronic forest disturbances, and that rely on vulnerable animals for seed dispersal or pollination. Relative to intact forests, most fragments are hyperdynamic, with unstable or fluctuating populations of species in response to a variety of external vicissitudes. Rare weather events such as droughts, windstorms and floods have had strong impacts on fragments and left lasting legacies of change. Both forest fragments and the intact forests in our study area appear to be influenced by larger-scale environmental drivers operating at regional or global scales. These drivers are apparently increasing forest productivity and have led to concerted, widespread increases in forest dynamics and plant growth, shifts in tree-community composition, and increases in liana (woody vine) abundance. Such large-scale drivers are likely to interact synergistically with habitat fragmentation, exacerbating its effects for some species and ecological phenomena. Hence, the impacts of fragmentation on Amazonian biodiversity and ecosystem processes appear to be a consequence not only of local site features but also of broader changes occurring at landscape, regional and even global scales. © 2017 Cambridge Philosophical Society.

  7. Predator- and Scavenger-Mediated Ecosystem Services Determined by Distance to Field-Forest Interface in the Maine Lowbush Blueberry Agroecosystem.

    PubMed

    Jones, Matthew S; Halteman, William A; Drummond, Francis A

    2016-10-01

    Predators and scavengers play a vital role in regulating insect pests, weeds, and vertebrate scat in perennial agroecosystems. Understanding how farm management practices and surrounding habitat influence these beneficial ecosystem services contributes to our understanding of these complex ecological systems and guides future management decisions. In a mensurative 2-yr study, we determined how different pest management strategies and surrounding forest composition influenced levels of sentinel insect pupae, weed seeds, and deer scat (feces) removal. Removal of these bioresources was measured within 12 commercial lowbush blueberry fields during 2011 and 2012; farms differed in surrounding landscape composition and farm management strategies. Both the removal of sentinel pupae and scat, was significantly higher within field interiors than at field edges and within adjacent forests. Additionally, farm management strategy interacted with field position to result in significantly higher scat removal in conventional field interiors than organic field interiors. Surrounding forest composition had variable effects on removal of materials. Our results indicate higher levels of activity within field centers as opposed to field edges; this is contrary to what has been observed in other perennial cropping agroecosystems. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Climate threats on growth of rear-edge European beech peripheral populations in Spain.

    PubMed

    Dorado-Liñán, I; Akhmetzyanov, L; Menzel, A

    2017-12-01

    European beech (Fagus sylvatica L.) forests in the Iberian Peninsula are a clear example of a temperate forest tree species at the rear edge of its large distribution area in Europe. The expected drier and warmer climate may alter tree growth and species distribution. Consequently, the peripheral populations will most likely be the most threatened ones. Four peripheral beech forests in the Iberian Peninsula were studied in order to assess the climate factors influencing tree growth for the last six decades. The analyses included an individual tree approach in order to detect not only the changes in the sensitivity to climate but also the potential size-mediated sensitivity to climate. Our results revealed a dominant influence of previous and current year summer on tree growth during the last six decades, although the analysis in two equally long periods unveiled changes and shifts in tree sensitivity to climate. The individual tree approach showed that those changes in tree response to climate are not size dependent in most of the cases. We observed a reduced negative effect of warmer winter temperatures at some sites and a generalized increased influence of previous year climatic conditions on current year tree growth. These results highlight the crucial role played by carryover effects and stored carbohydrates for future tree growth and species persistence.

  9. Climate threats on growth of rear-edge European beech peripheral populations in Spain

    NASA Astrophysics Data System (ADS)

    Dorado-Liñán, I.; Akhmetzyanov, L.; Menzel, A.

    2017-12-01

    European beech ( Fagus sylvatica L.) forests in the Iberian Peninsula are a clear example of a temperate forest tree species at the rear edge of its large distribution area in Europe. The expected drier and warmer climate may alter tree growth and species distribution. Consequently, the peripheral populations will most likely be the most threatened ones. Four peripheral beech forests in the Iberian Peninsula were studied in order to assess the climate factors influencing tree growth for the last six decades. The analyses included an individual tree approach in order to detect not only the changes in the sensitivity to climate but also the potential size-mediated sensitivity to climate. Our results revealed a dominant influence of previous and current year summer on tree growth during the last six decades, although the analysis in two equally long periods unveiled changes and shifts in tree sensitivity to climate. The individual tree approach showed that those changes in tree response to climate are not size dependent in most of the cases. We observed a reduced negative effect of warmer winter temperatures at some sites and a generalized increased influence of previous year climatic conditions on current year tree growth. These results highlight the crucial role played by carryover effects and stored carbohydrates for future tree growth and species persistence.

  10. Forest habitat conservation in Africa using commercially important insects.

    PubMed

    Raina, Suresh Kumar; Kioko, Esther; Zethner, Ole; Wren, Susie

    2011-01-01

    African forests, which host some of the world's richest biodiversity, are rapidly diminishing. The loss of flora and fauna includes economically and socially important insects. Honey bees and silk moths, grouped under commercial insects, are the source for insect-based enterprises that provide income to forest-edge communities to manage the ecosystem. However, to date, research output does not adequately quantify the impact of such enterprises on buffering forest ecosystems and communities from climate change effects. Although diseases/pests of honey bees and silk moths in Africa have risen to epidemic levels, there is a dearth of practical research that can be utilized in developing effective control mechanisms that support the proliferation of these commercial insects as pollinators of agricultural and forest ecosystems. This review highlights the critical role of commercial insects within the environmental complexity of African forest ecosystems, in modern agroindustry, and with respect to its potential contribution to poverty alleviation and pollination services. It identifies significant research gaps that exist in understanding how insects can be utilized as ecosystem health indicators and nurtured as integral tools for important socioeconomic and industrial gains.

  11. National forests on the edge: development pressures on America's national forests and grasslands.

    Treesearch

    Ralph J. Alig; Eric M. White; Sara J. Comas; Mary Carr; Mike Eley; Kelly Elverum; Mike O' Donnell; David M. Theobald; Ken Cordell; Jonathan Haber; Theodore W. Beauvais

    2007-01-01

    Many of America’s national forests and grasslands—collectively called the National Forest System—face increased risks and alterations from escalating housing development on private rural lands along their boundaries. National forests and grasslands provide critical social, ecological, and economic benefits to the American public. This study projects future housing...

  12. Red-edge vegetation indices for detecting and assessing disturbances in Norway spruce dominated mountain forests

    NASA Astrophysics Data System (ADS)

    Adamczyk, Joanna; Osberger, Antonia

    2015-05-01

    Here we propose an approach to enhance the detection and assessment of forest disturbances in mountain areas based on red-edge reflectance. The research addresses the need for improved monitoring of areas included in the European Natura 2000 network. Thirty-eight vegetation indices (VI) are assessed for sensitivity to topographic variations. A separability analysis is performed for the resulting set of ten VI whereby two VI (PSSRc2, SR 800/550) are found most suitable for threshold-based OBIA classification. With a correlation analysis (SRCC) between VI and the training samples we identify Datt4 as suitable to represent the magnitude of forest disturbance. The provided information layers illustrate two combined phenomena that were derived by (1) an OBIA delineation and (2) continuous representation of the magnitude of forest disturbance. The satisfactory accuracy assessment results confirm that the approach is useful for operational tasks in the long-term monitoring of Norway spruce dominated forests in mountainous areas, with regard to forest disturbance.

  13. Chapter 15: A desired future condition for Sierra Nevada Forests

    Treesearch

    M. North

    2012-01-01

    An unexpected outcome of U.S. Forest Service General Technical Report PSW-GTR 220, "An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests" (North et al. 2009), was how it generated discussion about a desired future condition for Sierra Nevada forests. The paper did not convey leading-edge research results or provide an exhaustive literature...

  14. Breeding bird populations in Missouri Ozark forests with and without clearcutting

    Treesearch

    Frank R., III Thompson; William D. Dijak; Thomas G. Kulowiec; David A. Hamilton

    1992-01-01

    Concern has arisen that forest management practices that create edge (such as clearcutting) are contributing to regional declines in neotropical migrant birds that inhabit forest interiors. Consequently, we studied breeding bird populations in an extensively forested region of southern Missouri to determine if the numbers of breeding birds differed between areas (n = 9...

  15. A closer look at forests on the edge: future development on private forests in three states.

    Treesearch

    Eric White; Rhonda. Mazza

    2008-01-01

    Privately owned forests provide many public benefits, including clean water and air, wildlife habitat, and recreational opportunities. By 2030, 44.2 million acres of rural private forest land across the conterminous United States are projected to experience substantial increases in residential development. As housing density increases, the public benefits provided by...

  16. Evaluation of spatial models to predict vulnerability of forest birds to brood parasitism by cowbirds

    USGS Publications Warehouse

    Gustafson, E.J.; Knutson, M.G.; Niemi, G.J.; Friberg, M.

    2002-01-01

    We constructed alternative spatial models at two scales to predict Brown-headed Cowbird (Molothrus ater) parasitism rates from land cover maps. The local-scale models tested competing hypotheses about the relationship between cowbird parasitism and distance of host nests from a forest edge (forest-nonforest boundary). The landscape models tested competing hypotheses about how landscape features (e.g., forests, agricultural fields) interact to determine rates of cowbird parasitism. The models incorporate spatial neighborhoods with a radius of 2.5 km in their formulation, reflecting the scale of the majority of cowbird commuting activity. Field data on parasitism by cowbirds (parasitism rate and number of cowbird eggs per nest) were collected at 28 sites in the Driftless Area Ecoregion of Wisconsin, Minnesota, and Iowa and were compared to the predictions of the alternative models. At the local scale, there was a significant positive relationship between cowbird parasitism and mean distance of nest sites from the forest edge. At the landscape scale, the best fitting models were the forest-dependent and forest-fragmentation-dependent models, in which more heavily forested and less fragmented landscapes had higher parasitism rates. However, much of the explanatory power of these models results from the inclusion of the local-scale relationship in these models. We found lower rates of cowbird parasitism than did most Midwestern studies, and we identified landscape patterns of cowbird parasitism that are opposite to those reported in several other studies of Midwestern songbirds. We caution that cowbird parasitism patterns can be unpredictable, depending upon ecoregional location and the spatial extent, and that our models should be tested in other ecoregions before they are applied there. Our study confirms that cowbird biology has a strong spatial component, and that improved spatial models applied at multiple spatial scales will be required to predict the effects of landscape and forest management on cowbird parasitism of forest birds.

  17. Altitudinal vs Latitudinal Climactic Drivers: A Comparison of a Relict Picea and Abies Forest in the Southern Appalachians versus the Hemi-Boreal Transition Zone off Southern Canada

    NASA Astrophysics Data System (ADS)

    Evans, A.; Lafon, C. W.

    2015-12-01

    Identification of biotic and abiotic determinants of tree species range limits is critical for understanding the effects of climate change on species distributions. Upward shifts of species distributions in montane areas have been widely reported but there have been few reports of latitudinal range retractions. Previous studies have indicated that southern latitudinal limits of a species range are dictated by biotic factors such as competition while others have suggested that abiotic factors, such as temperature, dictate these limits. We investigated the potential climatic gradients at the southern latitudinal limit of the Spruce (Picea) and Fir (Abies) species that dominate the Canadian boreal forest community as well as relict boreal forests containing similar species found in the high elevation areas of the Southern Appalachians. Existing research has suggested that relict ecosystems are more sensitive to climate change and can be indicative of future changes at latitudinal range limits. Expanding on this literature, we hypothesized that we would see similar gradients in climatic variables at the southern latitudinal limit of the Canadian boreal forest and those in the relict boreal forests southern Appalachians acting as controlling factors of these species distributions. We used forty years of climate data from weather stations along the southern edge of the boreal forest in the Canadian Shield provinces, species distribution data from the Canadian National Forest Inventory, (CNFI) geospatial data from the National Park Service (NPS), and historical weather data from the National Oceanic and Atmospheric Administration (NOAA) to perform our analysis. Our results indicate different climate variables act as controls of warm edge range limits of the Canadian boreal forest than those of the relict boreal forest of the southern Appalachians. However, we believe range retractions of the relict forest may be indicative of a more gradual response of similar species across a latitudinal gradient.

  18. Private forests, housing growth, and America’s water supply: A report from the Forests on the Edge and Forests to Faucets Projects

    Treesearch

    M. H. Mockrin; R. L. Lilja; E. Weidner; S. M. Stein; M. A. Carr

    2014-01-01

    America’s private forests provide a vast array of public goods and services, including abundant, clean surface water. Forest loss and development can affect water quality and quantity when forests are removed and impervious surfaces, such as paved roads, spread across the landscape. We rank watersheds across the conterminous United States according to the contributions...

  19. Landscape And Edge Effects On The Distribution Of Mammalian Predators In Missouri

    Treesearch

    William D. Dijak; Frank R. Thompson III

    2000-01-01

    Raccoons (Procyon lotor), opossums (Didelphis virginiana), and striped skunks (Mephitis mephitis) are predators of forest songbird eggs and nestlings. We examined the relative abundance of these predators at landscape and local scales to better understand predation risks. At the landscape scale, we examined the...

  20. Community-level net spillover of natural enemies from managed to natural forest

    USDA-ARS?s Scientific Manuscript database

    Edge effects in fragmented natural habitats may be exacerbated by intensive land-use in the surrounding landscape. Given that most managed systems have higher productivity than adjacent natural systems, theory suggests that subsidised consumers are likely to spill over from managed to natural habita...

  1. A Moveable Feast: Insects Moving at the Forest-Crop Interface Are Affected by Crop Phenology and the Amount of Forest in the Landscape.

    PubMed

    González, Ezequiel; Salvo, Adriana; Defagó, María Teresa; Valladares, Graciela

    2016-01-01

    Edges have become prevailing habitats, mainly as a result of habitat fragmentation and agricultural expansion. The interchange of functionally relevant organisms like insects occurs through these edges and can influence ecosystem functioning in both crop and non-crop habitats. However, very few studies have focused on the directionality of insect movement through edges, and the role of crop and non-crop amount has been ignored. Using bi-directional flight interception traps we investigated interchange of herbivore, natural enemy, pollinator and detritivore insects between native forest fragments and soybean crops, simultaneously considering movement direction, forest cover in the landscape and crop phenology. In total, 52,173 specimens and 877 morphospecies were collected. We found that, within most functional and taxonomic groups, movement intensity was similar (richness and/or abundance) between directions, whereas a predominantly forest-to-crop movement characterized natural enemies. Insect movement was extensively affected by crop phenology, decreasing during crop senescence, and was enhanced by forest cover particularly at senescence. Mainly the same herbivore species moved to and from the forest, but different natural enemy species predominated in each direction. Finally, our analyses revealed greater forest contribution to natural enemy than to herbivore communities in the crop, fading with distance to the forest in both groups. By showing that larger amounts of forest lead to richer insect interchange, in both directions and in four functional groups, our study suggests that allocation to natural and cultivated habitats at landscape level could influence functioning of both systems. Moreover, natural enemies seemed to benefit more than pests from natural vegetation, with natural enemy spillover from forests likely contributing to pest control in soybean fields. Thus consequences of insect interchange seem to be mostly positive for the agroecosystem, although consequences for the natural system deserve further study.

  2. Assessing forest vulnerability to climate warming using a process-based model of tree growth: bad prospects for rear-edges.

    PubMed

    Sánchez-Salguero, Raúl; Camarero, Jesus Julio; Gutiérrez, Emilia; González Rouco, Fidel; Gazol, Antonio; Sangüesa-Barreda, Gabriel; Andreu-Hayles, Laia; Linares, Juan Carlos; Seftigen, Kristina

    2017-07-01

    Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought-prone areas, tree populations located at the driest and southernmost distribution limits (rear-edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear-edges of the continuous distributions of these tree species. We used tree-ring width data from a network of 110 forests in combination with the process-based Vaganov-Shashkin-Lite growth model and climate-growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO 2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear-edge. By contrast, growth of high-elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of -10.7% and -16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear-edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear-edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions. © 2016 John Wiley & Sons Ltd.

  3. Characterizing the forest fragmentation of Canada's national parks.

    PubMed

    Soverel, Nicholas O; Coops, Nicholas C; White, Joanne C; Wulder, Michael A

    2010-05-01

    Characterizing the amount and configuration of forests can provide insights into habitat quality, biodiversity, and land use. The establishment of protected areas can be a mechanism for maintaining large, contiguous areas of forests, and the loss and fragmentation of forest habitat is a potential threat to Canada's national park system. Using the Earth Observation for Sustainable Development of Forests (EOSD) land cover product (EOSD LC 2000), we characterize the circa 2000 forest patterns in 26 of Canada's national parks and compare these to forest patterns in the ecological units surrounding these parks, referred to as the greater park ecosystem (GPE). Five landscape pattern metrics were analyzed: number of forest patches, mean forest patch size (hectare), standard deviation of forest patch size (hectare), mean forest patch perimeter-to-area ratio (meters per hectare), and edge density of forest patches (meters per hectare). An assumption is often made that forests within park boundaries are less fragmented than the surrounding GPE, as indicated by fewer forest patches, a larger mean forest patch size, less variability in forest patch size, a lower perimeter-to-area ratio, and lower forest edge density. Of the 26 national parks we analyzed, 58% had significantly fewer patches, 46% had a significantly larger mean forest patch size (23% were not significantly different), and 46% had a significantly smaller standard deviation of forest patch size (31% were not significantly different), relative to their GPEs. For forest patch perimeter-to-area ratio and forest edge density, equal proportions of parks had values that were significantly larger or smaller than their respective GPEs and no clear trend emerged. In summary, all the national parks we analyzed, with the exception of the Georgian Bay Islands, were found to be significantly different from their corresponding GPE for at least one of the five metrics assessed, and 50% of the 26 parks were significantly different from their respective GPEs for all of the metrics assessed. The EOSD LC 2000 provides a heretofore unavailable dataset for characterizing broad trends in forest fragmentation in Canada's national parks and in their surrounding GPEs. The interpretation of forest fragmentation metrics must be guided by the underlying land cover context, as many forested ecosystems in Canada are naturally fragmented due to wetlands and topography. Furthermore, interpretation must also consider the management context, as some parks are designed to preserve fragmented habitats. An analysis of forest pattern such as that described herein provides a baseline, from which changes in fragmentation patterns over time could be monitored, enabled by earth observation data.

  4. Spatial and temporal patterns of beetles associated with coarse woody debris in managed bottomland hardwood forests.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulyshen, M., D.; Hanula, J., L.; Horn, S.

    2004-05-13

    For. Ecol. and Mgt. 199:259-272. Malaise traps were used to sample beetles in artificial canopy gaps of different size (0.13 ha, 0.26 ha, and0.50 ha) and age in a South Carolina bottomland hardwood forest. Traps were placed at the center, edge, and in the surrounding forest of each gap. Young gaps (ý 1 year) had large amounts of coarse woody debris compared to the surrounding forest, while older gaps (ý 6 years) had virtually none. The total abundance and diversity of wood-dwelling beetles (Buprestidae, Cerambycidae, Brentidae, Bostrichidae, and Curculionidae (Scolytinae and Platypodinae)) was higher in the center of young gapsmore » than in the center of old gaps. The abundance was higher in the center of young gaps than in the surrounding forest, while the forest surrounding old gaps and the edge of old gaps had a higher abundance and diversity of wood-dwelling beetles than did the center of old gaps. There was no difference in wood-dwelling beetle abundance between gaps of different size, but diversity was lower in 0.13 ha old gaps than in 0.26 ha or 0.50 ha old gaps. We suspect that gap size has more of an effect on woodborer abundance than indicated here because malaise traps sample a limited area. The predaceous beetle family Cleridae showed a very similar trend to that of the woodborers. Coarse woody debris is an important resource for many organisms, and our results lend further support to forest management practices that preserve coarse woody debris created during timber removal.« less

  5. Landscape correlates of breeding bird richness across the United States mid-Atlantic region

    USGS Publications Warehouse

    Jones, K.B.; Neale, A.C.; Nash, M.S.; Riitters, K.H.; Wickham, J.D.; O'Neill, R. V.; Van Remortel, R. D.

    2000-01-01

    Using a new set of landscape indicator data generated by the U.S.EPA, and a comprehensive breeding bird database from the National Breeding Bird Survey, we evaluated associations between breeding bird richness and landscape characteristics across the entire mid-Atlantic region of the United States. We evaluated how these relationships varied among different groupings (guilds) of birds based on functional, structural, and compositional aspects of individual species demographics. Forest edge was by far the most important landscape attribute affecting the richness of the lumped specialist and generalist guilds; specialist species richness was negatively associated with forest edge and generalist richness was positively associated with forest edge. Landscape variables (indicators) explained a greater proportion of specialist species richness than the generalist guild (46% and 31%, respectively). The lower value in generalists may reflect freer-scale distributions of open habitat that go undetected by the Landsat satellite, open habitats created by roads (the areas from which breeding bird data are obtained), and the lumping of a wide variety of species into the generalist category. A further breakdown of species into 16 guilds showed considerable variation in the response of breeding birds to landscape conditions; forest obligate species had the strongest association with landscape indicators measured in this study (55% of the total variation explained) and forest generalists and open ground nesters the lowest (17% of the total variation explained). The variable response of guild species richness to landscape pattern suggests that one must consider species' demographics when assessing the consequences of landscape change on breeding birds.Using a new set of landscape indicator data generated by the U.S. EPA, and a comprehensive breeding bird database from the National Breeding Bird Survey, we evaluated associations between breeding bird richness and landscape characteristics across the entire mid-Atlantic region of the United States. We evaluated how these relationships varied among different groupings (guilds) of birds based on functional, structural, and compositional aspects of individual species demographics. Forest edge was by far the most important landscape attribute affecting the richness of the lumped specialist and generalist guilds; specialist species richness was negatively associated with forest edge and generalist richness was positively associated with forest edge. Landscape variables (indicators) explained a greater proportion of specialist species richness than the generalist guild (46% and 31%, respectively). The lower value in generalists may reflect finer-scale distributions of open habitat that go undetected by the Landsat satellite, open habitats created by roads (the areas from which breeding bird data are obtained), and the lumping of a wide variety of species into the generalist category. A further breakdown of species into 16 guilds showed considerable variation in the response of breeding birds to landscape conditions; forest obligate species had the strongest association with landscape indicators measured in this study (55% of the total variation explained) and forest generalists and open ground nesters the lowest (17% of the total variation explained). The variable response of guild species richness to landscape pattern suggests that one must consider species' demographics when assessing the consequences of landscape change on breeding birds.

  6. Landscape Analysis of Adult Florida Panther Habitat.

    PubMed

    Frakes, Robert A; Belden, Robert C; Wood, Barry E; James, Frederick E

    2015-01-01

    Historically occurring throughout the southeastern United States, the Florida panther is now restricted to less than 5% of its historic range in one breeding population located in southern Florida. Using radio-telemetry data from 87 prime-aged (≥3 years old) adult panthers (35 males and 52 females) during the period 2004 through 2013 (28,720 radio-locations), we analyzed the characteristics of the occupied area and used those attributes in a random forest model to develop a predictive distribution map for resident breeding panthers in southern Florida. Using 10-fold cross validation, the model was 87.5 % accurate in predicting presence or absence of panthers in the 16,678 km2 study area. Analysis of variable importance indicated that the amount of forests and forest edge, hydrology, and human population density were the most important factors determining presence or absence of panthers. Sensitivity analysis showed that the presence of human populations, roads, and agriculture (other than pasture) had strong negative effects on the probability of panther presence. Forest cover and forest edge had strong positive effects. The median model-predicted probability of presence for panther home ranges was 0.81 (0.82 for females and 0.74 for males). The model identified 5579 km2 of suitable breeding habitat remaining in southern Florida; 1399 km2 (25%) of this habitat is in non-protected private ownership. Because there is less panther habitat remaining than previously thought, we recommend that all remaining breeding habitat in south Florida should be maintained, and the current panther range should be expanded into south-central Florida. This model should be useful for evaluating the impacts of future development projects, in prioritizing areas for panther conservation, and in evaluating the potential impacts of sea-level rise and changes in hydrology.

  7. Comparative sensitivity to environmental variation and human disturbance of Asian tapirs (Tapirus indicus) and other wild ungulates in Thailand.

    PubMed

    Lynam, Antony J; Tantipisanuh, Naruemon; Chutipong, Wanlop; Ngoprasert, Dusit; Baker, Megan C; Cutter, Passanan; Gale, George; Kitamura, Shumpei; Steinmetz, Robert; Sukmasuang, Ronglarp; Thunhikorn, Somying

    2012-12-01

    Southeast Asia's tropical forests suffer the highest rates of deforestation and disturbance of any on Earth, with poorly understood impacts on native fauna. Asian tapirs (Tapirus indicus) are among the least studied of the large mammals in these forests. Using records from 9 camera trap surveys in 7 of the largest (>1000 km(2) ) protected area complexes, we assessed the influence of environmental variation and human-induced disturbance on tapir occurrence. Tapirs were detected at 13% of locations sampled, significantly associated with evergreen forest (P < 0.001). A multiple logistic regression model predicted tapir presence 87% of the time. According to this model, tapir occurrence was positively influenced by annual rainfall and proximity to the forest edge. However, tapirs may not avoid edges but instead prefer wetter evergreen forest, a habitat type that tended to occur further from the forest edge at higher elevations in our particular study sites (P < 0.001). By comparison, 4 other wild ungulate species that share habitats with tapirs showed a range of differing responses. Tapirs are expected to be less sensitive to disturbance because they are not targets for hunting and trade, and are almost entirely active at night, so avoid peak traffic periods in parks. Tapir populations in Thailand may be more stable than in other parts of their global range because rates of forest loss have decreased >40% over the past 20 years. We recommend surveys to fill gaps in the understanding of the status in lesser-known protected areas, research to better understand the fine-scale environmental influences on behavior and habitats of tapirs, and other forest ungulates, and continued legal status for tapirs in the highest category of protection. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  8. Ozone gradients in a spruce forest stand in relation to wind speed and time of the day

    NASA Astrophysics Data System (ADS)

    Pleijel, H.; Wallin, G.; Karlsson, P. E.; Skärby, L.

    Ozone concentrations were measured outside and inside a 60-year-old 15-20 m tall spruce forest at a wind-exposed forest edge in southwest Sweden, at 3 and 13 m height 15 m outside the forest, and at 3 and 13 m height inside the forest 45 m from the forest edge. Measurements at 3 m were made with three replicate tubes on each site, the replicates being separated by 10 m. In addition, horizontal and vertical wind speeds were measured at 8 m height outside and inside the forest. During daytime, the concentrations inside the forest were generally slightly lower. Negative ozone concentration gradients from the open field into the forest were observed at 3 m height when the wind speed was below approximately 1.5 m s -1. At very low wind speeds, mainly occurring during the night, the ozone concentrations at 3 m height were frequently higher inside the forest than outside the forest. This may be caused by a very large aerodynamic resistance to ozone deposition, due to very small air movements inside the forest under stable conditions. It is concluded that ozone uptake by the trees is likely to be very small at night, even if stomata are not entirely closed. Results from open-top chamber experiments are also discussed.

  9. Local versus landscape-scale effects of anthropogenic land-use on forest species richness

    NASA Astrophysics Data System (ADS)

    Buffa, G.; Del Vecchio, S.; Fantinato, E.; Milano, V.

    2018-01-01

    The study investigated the effects of human-induced landscape patterns on species richness in forests. For 80 plots of fixed size, we measured human disturbance (categorized as urban/industrial and agricultural land areas), at 'local' and 'landscape' scale (500 m and 2500 m radius from each plot, respectively), the distance from the forest edge, and the size and shape of the woody patch. By using GLM, we analyzed the effects of disturbance and patch-based measures on both total species richness and the richness of a group of specialist species (i.e. the 'ancient forest species'), representing more specific forest features. Patterns of local species richness were sensitive to the structure and composition of the surrounding landscape. Among the landscape components taken into account, urban/industrial land areas turned out as the most threatening factor for both total species richness and the richness of the ancient forest species. However, the best models evidenced a different intensity of the response to the same disturbance category as well as a different pool of significant variables for the two groups of species. The use of groups of species, such as the ancient forest species pool, that are functionally related and have similar ecological requirements, may represent an effective solution for monitoring forest dynamics under the effects of external factors. The approach of relating local assessment of species richness, and in particular of the ancient forest species pool, to land-use patterns may play an important role for the science-policy interface by supporting and strengthening conservation and regional planning decision making.

  10. Forests in a water limited world under climate change

    Treesearch

    C. Mátyás; G. Sun

    2014-01-01

    The debate on ecological and climatic benefits of planted forests at the sensitive dry edge of the closed forest belt (i.e. at the ‘xeric limits’) is still unresolved. Forests sequester atmospheric carbon dioxide, accumulate biomass, control water erosion and dust storms, reduce river sedimentation, and mitigate small floods. However, planting trees in areas previously...

  11. USE OF ROAD MAPS IN NATIONAL ASSESSMENTS OF FOREST FRAGMENTATION IN THE UNITED STATES

    EPA Science Inventory

    Including road-mediated forest fragmentation is a contentious issue in United States national assessments. We compared fragmentation as calculated from national land-cover maps alone, and from land-cover maps in combination with road maps. The increment of forest edge from roads ...

  12. Changes in forest productivity across Alaska consistent with biome shift.

    PubMed

    Beck, Pieter S A; Juday, Glenn P; Alix, Claire; Barber, Valerie A; Winslow, Stephen E; Sousa, Emily E; Heiser, Patricia; Herriges, James D; Goetz, Scott J

    2011-04-01

    Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal-tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline. © 2011 Blackwell Publishing Ltd/CNRS.

  13. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient.

    PubMed

    Orihuela, Rodrigo L L; Peres, Carlos A; Mendes, Gabriel; Jarenkow, João A; Tabarelli, Marcelo

    2015-01-01

    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.

  14. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient

    PubMed Central

    Orihuela, Rodrigo L. L.; Peres, Carlos A.; Mendes, Gabriel; Jarenkow, João A.; Tabarelli, Marcelo

    2015-01-01

    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide. PMID:26309252

  15. Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries

    NASA Astrophysics Data System (ADS)

    Armenteras, Dolors; Barreto, Joan Sebastian; Tabor, Karyn; Molowny-Horas, Roberto; Retana, Javier

    2017-06-01

    Tropical forests in NW Amazonia are highly threatened by the expansion of the agricultural frontier and subsequent deforestation. Fire is used, both directly and indirectly, in Brazilian Amazonia to propagate deforestation and increase forest accessibility. Forest fragmentation, a measure of forest degradation, is also attributed to fire occurrence in the tropics. However, outside the Brazilian Legal Amazonia the role of fire in increasing accessibility and forest fragmentation is less explored. In this study, we compared fire regimes in five countries that share this tropical biome in the most north-westerly part of the Amazon Basin (Venezuela, Colombia, Ecuador, Peru and Brazil). We analysed spatial differences in the timing of peak fire activity and in relation to proximity to roads and rivers using 12 years of MODIS active fire detections. We also distinguished patterns of fire in relation to forest fragmentation by analysing fire distance to the forest edge as a measure of fragmentation for each country. We found significant hemispheric differences in peak fire occurrence with the highest number of fires in the south in 2005 vs. 2007 in the north. Despite this, both hemispheres are equally affected by fire. We also found difference in peak fire occurrence by country. Fire peaked in February in Colombia and Venezuela, whereas it peaked in September in Brazil and Peru, and finally Ecuador presented two fire peaks in January and October. We confirmed the relationship between fires and forest fragmentation for all countries and also found significant differences in the distance between the fire and the forest edge for each country. Fires were associated with roads and rivers in most countries. These results can inform land use planning at the regional, national and subnational scales to minimize the contribution of road expansion and subsequent access to the Amazonian natural resources to fire occurrence and the associated deforestation and carbon emissions.

  16. Evidence for declining forest resilience to wildfires under climate change.

    PubMed

    Stevens-Rumann, Camille S; Kemp, Kerry B; Higuera, Philip E; Harvey, Brian J; Rother, Monica T; Donato, Daniel C; Morgan, Penelope; Veblen, Thomas T

    2018-02-01

    Forest resilience to climate change is a global concern given the potential effects of increased disturbance activity, warming temperatures and increased moisture stress on plants. We used a multi-regional dataset of 1485 sites across 52 wildfires from the US Rocky Mountains to ask if and how changing climate over the last several decades impacted post-fire tree regeneration, a key indicator of forest resilience. Results highlight significant decreases in tree regeneration in the 21st century. Annual moisture deficits were significantly greater from 2000 to 2015 as compared to 1985-1999, suggesting increasingly unfavourable post-fire growing conditions, corresponding to significantly lower seedling densities and increased regeneration failure. Dry forests that already occur at the edge of their climatic tolerance are most prone to conversion to non-forests after wildfires. Major climate-induced reduction in forest density and extent has important consequences for a myriad of ecosystem services now and in the future. © 2017 John Wiley & Sons Ltd/CNRS.

  17. The Role of Species Traits in Mediating Functional Recovery during Matrix Restoration

    PubMed Central

    Barnes, Andrew D.; Emberson, Rowan M.; Krell, Frank-Thorsten; Didham, Raphael K.

    2014-01-01

    Reversing anthropogenic impacts on habitat structure is frequently successful through restoration, but the mechanisms linking habitat change, community reassembly and recovery of ecosystem functioning remain unknown. We test for the influence of edge effects and matrix habitat restoration on the reassembly of dung beetle communities and consequent recovery of dung removal rates across tropical forest edges. Using path modelling, we disentangle the relative importance of community-weighted trait means and functional trait dispersion from total biomass effects on rates of dung removal. Community trait composition and biomass of dung beetle communities responded divergently to edge effects and matrix habitat restoration, yielding opposing effects on dung removal. However, functional dispersion—used in this study as a measure of niche complementarity—did not explain a significant amount of variation in dung removal rates across habitat edges. Instead, we demonstrate that the path to functional recovery of these altered ecosystems depends on the trait-mean composition of reassembling communities, over and above purely biomass-dependent processes that would be expected under neutral theory. These results suggest that any ability to manage functional recovery of ecosystems during habitat restoration will demand knowledge of species' roles in ecosystem processes. PMID:25502448

  18. The role of species traits in mediating functional recovery during matrix restoration.

    PubMed

    Barnes, Andrew D; Emberson, Rowan M; Krell, Frank-Thorsten; Didham, Raphael K

    2014-01-01

    Reversing anthropogenic impacts on habitat structure is frequently successful through restoration, but the mechanisms linking habitat change, community reassembly and recovery of ecosystem functioning remain unknown. We test for the influence of edge effects and matrix habitat restoration on the reassembly of dung beetle communities and consequent recovery of dung removal rates across tropical forest edges. Using path modelling, we disentangle the relative importance of community-weighted trait means and functional trait dispersion from total biomass effects on rates of dung removal. Community trait composition and biomass of dung beetle communities responded divergently to edge effects and matrix habitat restoration, yielding opposing effects on dung removal. However, functional dispersion--used in this study as a measure of niche complementarity--did not explain a significant amount of variation in dung removal rates across habitat edges. Instead, we demonstrate that the path to functional recovery of these altered ecosystems depends on the trait-mean composition of reassembling communities, over and above purely biomass-dependent processes that would be expected under neutral theory. These results suggest that any ability to manage functional recovery of ecosystems during habitat restoration will demand knowledge of species' roles in ecosystem processes.

  19. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation.

    PubMed

    Barlow, Jos; Lennox, Gareth D; Ferreira, Joice; Berenguer, Erika; Lees, Alexander C; Mac Nally, Ralph; Thomson, James R; Ferraz, Silvio Frosini de Barros; Louzada, Julio; Oliveira, Victor Hugo Fonseca; Parry, Luke; Solar, Ricardo Ribeiro de Castro; Vieira, Ima C G; Aragão, Luiz E O C; Begotti, Rodrigo Anzolin; Braga, Rodrigo F; Cardoso, Thiago Moreira; de Oliveira, Raimundo Cosme; Souza, Carlos M; Moura, Nárgila G; Nunes, Sâmia Serra; Siqueira, João Victor; Pardini, Renata; Silveira, Juliana M; Vaz-de-Mello, Fernando Z; Veiga, Ruan Carlo Stulpen; Venturieri, Adriano; Gardner, Toby A

    2016-07-07

    Concerted political attention has focused on reducing deforestation, and this remains the cornerstone of most biodiversity conservation strategies. However, maintaining forest cover may not reduce anthropogenic forest disturbances, which are rarely considered in conservation programmes. These disturbances occur both within forests, including selective logging and wildfires, and at the landscape level, through edge, area and isolation effects. Until now, the combined effect of anthropogenic disturbance on the conservation value of remnant primary forests has remained unknown, making it impossible to assess the relative importance of forest disturbance and forest loss. Here we address these knowledge gaps using a large data set of plants, birds and dung beetles (1,538, 460 and 156 species, respectively) sampled in 36 catchments in the Brazilian state of Pará. Catchments retaining more than 69–80% forest cover lost more conservation value from disturbance than from forest loss. For example, a 20% loss of primary forest, the maximum level of deforestation allowed on Amazonian properties under Brazil’s Forest Code, resulted in a 39–54% loss of conservation value: 96–171% more than expected without considering disturbance effects. We extrapolated the disturbance-mediated loss of conservation value throughout Pará, which covers 25% of the Brazilian Amazon. Although disturbed forests retained considerable conservation value compared with deforested areas, the toll of disturbance outside Pará’s strictly protected areas is equivalent to the loss of 92,000–139,000 km2 of primary forest. Even this lowest estimate is greater than the area deforested across the entire Brazilian Amazon between 2006 and 2015 (ref. 10). Species distribution models showed that both landscape and within-forest disturbances contributed to biodiversity loss, with the greatest negative effects on species of high conservation and functional value. These results demonstrate an urgent need for policy interventions that go beyond the maintenance of forest cover to safeguard the hyper-diversity of tropical forest ecosystems.

  20. Sustaining America's urban trees and forests: a Forests on the Edge report

    Treesearch

    David J. Nowak; Paula B. Randler; Eric J. Greenfield; Sara J. Comas; Mary A. Carr; Ralph J. Alig

    2010-01-01

    Close to 80 percent of the U.S. population lives in urban areas and depends on the essential ecological, economic, and social benefits provided by urban trees and forests. However, the distribution of urban tree cover and the benefits of urban forests vary across the United States, as do the challenges of sustaining this important resource. As urban areas expand...

  1. Velocity and Drag Evolution From the Leading Edge of a Model Mangrove Forest

    NASA Astrophysics Data System (ADS)

    Maza, Maria; Adler, Katherine; Ramos, Diogo; Garcia, Adrian Mikhail; Nepf, Heidi

    2017-11-01

    An experimental study of unidirectional flow through a model mangrove forest measured both velocity and forces on individual trees. The individual trees were 1/12th scale models of mature Rhizophora, including 24 prop roots distributed in a three-dimensional layout. Thirty-two model trees were distributed in a staggered array producing a 2.5 m long forest. The velocity evolved from a boundary layer profile at the forest leading edge to a vertical profile determined by the vertical distribution of frontal area, with significantly higher velocity above the prop roots. Fully developed conditions were reached at the fifth tree row from the leading edge. Within the root zone the velocity was reduced by up to 50% and the TKE was increased by as much as fivefold, relative to the upstream conditions. TKE in the root zone was mainly produced by root and trunk wakes, and it agreed in magnitude with the estimation obtained using the Tanino and Nepf (2008) formulation. Maximum TKE occurred at the top of the roots, where a strong shear region was associated with the change in frontal area. The drag measured on individual trees decreased from the leading edge and reached a constant value at the fifth row and beyond, i.e., in the fully developed region. The drag exhibited a quadratic dependence on velocity, which justified the definition of a quadratic drag coefficient. Once the correct drag length-scale was defined, the measured drag coefficients collapsed to a single function of Reynolds number.

  2. A PRELIMINARY ASSESSMENT OF THE MONTREAL PROCESS INDICATORS OF FOREST FRAGMENTATION FOR THE UNITED STATES

    EPA Science Inventory

    As part of the 2003 U.S. Report on Sustainable Forests, four metrics of forest fragmentation patch size, edge amount, inter-patch contrast - were measured within 142,602 non overlapping 56.25 km2 analysis units on land-cover maps derived from satellite imagery for the 48 contermi...

  3. Application of Laser Imaging for Bio/geophysical Studies

    NASA Technical Reports Server (NTRS)

    Hummel, J. R.; Goltz, S. M.; Depiero, N. L.; Degloria, D. P.; Pagliughi, F. M.

    1992-01-01

    SPARTA, Inc. has developed a low-cost, portable laser imager that, among other applications, can be used in bio/geophysical applications. In the application to be discussed here, the system was utilized as an imaging system for background features in a forested locale. The SPARTA mini-ladar system was used at the International Paper Northern Experimental Forest near Howland, Maine to assist in a project designed to study the thermal and radiometric phenomenology at forest edges. The imager was used to obtain data from three complex sites, a 'seed' orchard, a forest edge, and a building. The goal of the study was to demonstrate the usefulness of the laser imager as a tool to obtain geometric and internal structure data about complex 3-D objects in a natural background. The data from these images have been analyzed to obtain information about the distributions of the objects in a scene. A range detection algorithm has been used to identify individual objects in a laser image and an edge detection algorithm then applied to highlight the outlines of discrete objects. An example of an image processed in such a manner is shown. Described here are the results from the study. In addition, results are presented outlining how the laser imaging system could be used to obtain other important information about bio/geophysical systems, such as the distribution of woody material in forests.

  4. Simple Runoff Control Structures Stand Test of Time

    Treesearch

    Dean M. Knighton

    1984-01-01

    Diversion terraces and detention basins constructed along the field-forest edge in the Driftless Area reduce farmland runoff and subsequent gullying in the forest below for many years. The structures are inexpensive and simple to build.

  5. Using landscape ecology to test hypotheses about large-scale abundance patterns in migratory birds

    USGS Publications Warehouse

    Flather, C.H.; Sauer, J.R.

    1996-01-01

    The hypothesis that Neotropical migrant birds may be undergoing widespread declines due to land use activities on the breeding grounds has been examined primarily by synthesizing results from local studies. Growing concern for the cumulative influence of land use activities on ecological systems has heightened the need for large-scale studies to complement what has been observed at local scales. We investigated possible landscape effects on Neotropical migrant bird populations for the eastern United States by linking two large-scale inventories designed to monitor breeding-bird abundances and land use patterns. The null hypothesis of no relation between landscape structure and Neotropical migrant abundance was tested by correlating measures of landscape structure with bird abundance, while controlling for the geographic distance among samples. Neotropical migrants as a group were more 'sensitive' to landscape structure than either temperate migrants or permanent residents. Neotropical migrants tended to be more abundant in landscapes with a greater proportion of forest and wetland habitats, fewer edge habitats, large forest patches, and with forest habitats well dispersed throughout the scene. Permanent residents showed few correlations with landscape structure and temperate migrants were associated with habitat diversity and edge attributes rather than with the amount, size, and dispersion of forest habitats. The association between Neotropical migrant abundance and forest fragmentation differed among physiographic strata, suggesting that land-scape context affects observed relations between bird abundance and landscape structure. Finally, associations between landscape structure and temporal trends in Neotropical migrant abundance were negatively correlated with forest habitats. These results suggest that extrapolation of patterns observed in some landscapes is not likely to hold regionally, and that conservation policies must consider the variation in landscape structure associations observed among different types of bird species and in physiographic strata with varying land use histories.

  6. Disturbance of Dabao highway construction on plant species and soil nutrients in Longitudinal Range Gorge Region (LRGR) of Southwestern China.

    PubMed

    Cui, Baoshan; Zhao, Shuqing; Zhang, Kejiang; Li, Shaocai; Dong, Shikui; Bai, Junhong

    2009-11-01

    The disturbance of highway construction upon surrounding vulnerable ecosystems is a common threat in the Longitudinal Range Gorge Region of southwestern China. We evaluated the disturbance of highway on plant species richness and diversity and soil nutrients from adjacent to the highway to 300 m upslope and 100 m downslope in forests and grasslands by setting 12 belt transects in forests and grasslands (six belt transects and six control belt transects, respectively). The results showed that there were some significant variances in belt transects with respective control belt transects for species richness and diversity in both forests and grasslands. Species richness and diversity of trees were lower within a 50-m distance from the highway and more noticeable on the downslope portion. Species richness and diversity of shrubs and herbs appeared higher near highway edge. Both species richness and diversity of herbs were similar in forests. In addition, exotic species, such as Eupatorium adenophorum, were further from the road and more widely dispersed in grasslands. Soil nutrients except total potassium (TK) were lower in the downslope area adjacent to highway edge and showed a significant increase with increasing distance from the highway in both forests and grasslands. This indicates that grasslands acted as microhabitats for exotic species and are more easily to be invaded than forests, especially if disturbed. Once destroyed, plant species and soil nutrients will require a significant amount of time to be restored to control levels. This work illustrates that the effects extend considerably to distances upslope and downslope from the construction site. Given that these changes occurred relatively quickly, the study suggests that the environmental "footprint" grows far beyond the road and adjacent zone of disruption.

  7. Does Tropical Forest Fragmentation Increase Long-Term Variability of Butterfly Communities?

    PubMed Central

    Leidner, Allison K.; Haddad, Nick M.; Lovejoy, Thomas E.

    2010-01-01

    Habitat fragmentation is a major driver of biodiversity loss. Yet, the overall effects of fragmentation on biodiversity may be obscured by differences in responses among species. These opposing responses to fragmentation may be manifest in higher variability in species richness and abundance (termed hyperdynamism), and in predictable changes in community composition. We tested whether forest fragmentation causes long-term hyperdynamism in butterfly communities, a taxon that naturally displays large variations in species richness and community composition. Using a dataset from an experimentally fragmented landscape in the central Amazon that spanned 11 years, we evaluated the effect of fragmentation on changes in species richness and community composition through time. Overall, adjusted species richness (adjusted for survey duration) did not differ between fragmented forest and intact forest. However, spatial and temporal variation of adjusted species richness was significantly higher in fragmented forests relative to intact forest. This variation was associated with changes in butterfly community composition, specifically lower proportions of understory shade species and higher proportions of edge species in fragmented forest. Analysis of rarefied species richness, estimated using indices of butterfly abundance, showed no differences between fragmented and intact forest plots in spatial or temporal variation. These results do not contradict the results from adjusted species richness, but rather suggest that higher variability in butterfly adjusted species richness may be explained by changes in butterfly abundance. Combined, these results indicate that butterfly communities in fragmented tropical forests are more variable than in intact forest, and that the natural variability of butterflies was not a buffer against the effects of fragmentation on community dynamics. PMID:20224772

  8. Threats to at-risk species in America's private forests: a Forests on the Edge report

    Treesearch

    Mary A. Carr; Ronald E. McRoberts; Lisa G. Mahal; Sara J. Comas

    2010-01-01

    More than 4,600 native animal and plant species associated with private forests in the United States are at risk of decline or extinction. This report identifies areas across the conterminous United States where at-risk species habitats in rural private forests are most likely to decrease because of increases in housing density from 2000 to 2030. We also identify areas...

  9. Private forests, public benefits: increased housing density and other pressures on private forest contributions

    Treesearch

    Ronald E. McRoberts; Lisa G. Mahal; Mary A. Carr; Ralph J. Alig; Sara J. Comas; David M. Theobald; Amanda. Cundiff

    2009-01-01

    Over half (56 percent) of America’s forests are privately owned and managed and provide a vast array of public goods and services, such as clean water, timber, wildlife habitat, and recreational opportunities. These important public benefits are being affected by increased housing density in urban as well as rural areas across the country. The Forests on the Edge...

  10. Paths more traveled: Predicting future recreation pressures on America’s national forests and grasslands - a Forests on the Edge report

    Treesearch

    Donald B. K. English; Pam Froemke; Kathleen Hawkos

    2014-01-01

    Populations near many national forests and grasslands are rising and are outpacing growth elsewhere in the United States. We used National Visitor Use Monitoring (NVUM) data and U.S. census data to examine growth in population and locally based recreation visits within 50 and 100 miles of National Forest System (NFS) boundaries. From 1990 to 2010, the population living...

  11. Habitat fragmentation and its lasting impact on Earth’s ecosystems

    PubMed Central

    Haddad, Nick M.; Brudvig, Lars A.; Clobert, Jean; Davies, Kendi F.; Gonzalez, Andrew; Holt, Robert D.; Lovejoy, Thomas E.; Sexton, Joseph O.; Austin, Mike P.; Collins, Cathy D.; Cook, William M.; Damschen, Ellen I.; Ewers, Robert M.; Foster, Bryan L.; Jenkins, Clinton N.; King, Andrew J.; Laurance, William F.; Levey, Douglas J.; Margules, Chris R.; Melbourne, Brett A.; Nicholls, A. O.; Orrock, John L.; Song, Dan-Xia; Townshend, John R.

    2015-01-01

    We conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest’s edge, subject to the degrading effects of fragmentation. A synthesis of fragmentation experiments spanning multiple biomes and scales, five continents, and 35 years demonstrates that habitat fragmentation reduces biodiversity by 13 to 75% and impairs key ecosystem functions by decreasing biomass and altering nutrient cycles. Effects are greatest in the smallest and most isolated fragments, and they magnify with the passage of time. These findings indicate an urgent need for conservation and restoration measures to improve landscape connectivity, which will reduce extinction rates and help maintain ecosystem services. PMID:26601154

  12. Large-scale experimental landscapes reveal distinctive effects of patch shape and connectivity on arthropod communities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrock, John, L.; Curler, Gregory, R.; Danielson, Brent, J.

    2011-09-14

    The size, shape, and isolation of habitat patches can affect organism behavior and population dynamics, but little is known about the relative role of shape and connectivity in affecting ecological communities at large spatial scales. Using six sampling sessions from July 2001 until August 2002, we collected 33,685 arthropods throughout seven 12-ha experimental landscapes consisting of clear-cut patches surrounded by a matrix of mature pine forest. Patches were explicitly designed to manipulate connectivity (via habitat corridors) independently of area and edge effects. We found that patch shape, rather than connectivity, affected ground-dwelling arthropod richness and beta diversity (i.e. turnover ofmore » genera among patches). Arthropod communities contained fewer genera and exhibited less turnover in high-edge connected and high-edge unconnected patches relative to low-edge unconnected patches of similar area. Connectivity, rather than patch shape, affected the evenness of ground-dwelling arthropod communities; regardless of patch shape, high-edge connected patches had lower evenness than low- or high-edge unconnected patches. Among the most abundant arthropod orders, increased richness in low-edge unconnected patches was largely due to increased richness of Coleoptera, whereas Hymenoptera played an important role in the lower evenness in connected patches and patterns of turnover. These findings suggest that anthropogenic habitat alteration can have distinct effects on ground-dwelling arthropod communities that arise due to changes in shape and connectivity. Moreover, this work suggests that corridors, which are common conservation tools that change both patch shape and connectivity, can have multiple effects on arthropod communities via different mechanisms, and each effect may alter components of community structure.« less

  13. Forest Conservation Opportunity Areas - Liberal Model (ECO_RES.COA_FORREST33)

    EPA Pesticide Factsheets

    This layer designates areas with potential for forest conservation. These are areas of natural or semi-natural forest land cover patches that are at least 75 meters away from roads and away from patch edges. OAs were modeled by creating distance grids using the National Land Cover Database and the Census Bureau's TIGER roads files.

  14. Forest Conservation Opportunity Areas - Conservative Model (ECO_RES.COA_FORREST66)

    EPA Pesticide Factsheets

    This layer designates areas with potential for forest conservation. These are areas of natural or semi-natural forest land cover patches that area at least 395 meters away from roads and away from patch edges. OAs were modeled by creating distance grids using the National Land Cover Database and the Census Bureau's TIGER road files.

  15. Coast redwood seedling regeneration following fire in a southern coast redwood forest

    Treesearch

    Rachel Lazzeri-Aerts; Will Russell

    2017-01-01

    It has been hypothesized that individuals adapted to conditions near the species’ range edge, may increase the likelihood that the species will persevere under changing climatic conditions (Rehm et al. 2015). The southern coast redwood (Sequoia sempervirens (D. Don) Endl.) forests vary from more northern redwood forests in terms of stand...

  16. Arthropod abundance and seasonal bird use of bottomland forest harvest gaps

    Treesearch

    Christopher E. Moorman; Liessa T. Woen; John C. Kilgo; James L. Hanula; Scott Horn; Michael D. Ulyshen

    2012-01-01

    We investigated the influence of arthropod abundance and vegetation structure on shifts in avian use of canopy gap, gap edge, and surrounding forest understory in a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. We compared captures of foliage-gleaning birds among locations during four periods (spring migration, breeding, post-breeding, and...

  17. Landscape Characterization Of Four Watersheds Under Different Forest Management Scenarios In The Ouachita Mountains Of Arkansas

    Treesearch

    Philip A. Tappe; Robert C. Weih; Ronald E. Thill; M. Anthony Melchiors; T. Bently Wigley

    2004-01-01

    Abstract - Recent changes in philosophy concerning forest management have focused attention on managing ecosystems at scales beyond the stand level. Properties of forested landscapes, such as patch size and shape, edge density, and interspersion have direct influences on flora and fauna. However, there is little information regarding spatial patterns...

  18. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery

    NASA Astrophysics Data System (ADS)

    Zarco-Tejada, P. J.; Hornero, A.; Hernández-Clemente, R.; Beck, P. S. A.

    2018-03-01

    The operational monitoring of forest decline requires the development of remote sensing methods that are sensitive to the spatiotemporal variations of pigment degradation and canopy defoliation. In this context, the red-edge spectral region (RESR) was proposed in the past due to its combined sensitivity to chlorophyll content and leaf area variation. In this study, the temporal dimension of the RESR was evaluated as a function of forest decline using a radiative transfer method with the PROSPECT and 3D FLIGHT models. These models were used to generate synthetic pine stands simulating decline and recovery processes over time and explore the temporal rate of change of the red-edge chlorophyll index (CI) as compared to the trajectories obtained for the structure-related Normalized Difference Vegetation Index (NDVI). The temporal trend method proposed here consisted of using synthetic spectra to calculate the theoretical boundaries of the subspace for healthy and declining pine trees in the temporal domain, defined by CItime=n/CItime=n+1 vs. NDVItime=n/NDVItime=n+1. Within these boundaries, trees undergoing decline and recovery processes showed different trajectories through this subspace. The method was then validated using three high-resolution airborne hyperspectral images acquired at 40 cm resolution and 260 spectral bands of 6.5 nm full-width half-maximum (FWHM) over a forest with widespread tree decline, along with field-based monitoring of chlorosis and defoliation (i.e., 'decline' status) in 663 trees between the years 2015 and 2016. The temporal rate of change of chlorophyll vs. structural indices, based on reflectance spectra extracted from the hyperspectral images, was different for trees undergoing decline, and aligned towards the decline baseline established using the radiative transfer models. By contrast, healthy trees over time aligned towards the theoretically obtained healthy baseline. The applicability of this temporal trend method to the red-edge bands of the MultiSpectral Imager (MSI) instrument on board Sentinel-2a for operational forest status monitoring was also explored by comparing the temporal rate of change of the Sentinel-2-derived CI over areas with declining and healthy trees. Results demonstrated that the Sentinel-2a red-edge region was sensitive to the temporal dimension of forest condition, as the relationships obtained for pixels in healthy condition deviated from those of pixels undergoing decline.

  19. Landscape forest cover and edge effects on songbird nest predation vary by nest predator

    Treesearch

    W. Andrew Cox; Frank R. III Thompson; John Faaborg

    2012-01-01

    Rates of nest predation for birds vary between and within species across multiple spatial scales, but we have a poor understanding of which predators drive such patterns. We video-monitored nests and identified predators at 120 nests of the Acadian Flycatcher (Empidonax virescens) and the Indigo Bunting (Passerina cyanea) at eight...

  20. Inventory of forest and rangeland and detection of forest stress. [Black Hills, Manitou, Colorado, and Atlanta, Georgia test sites

    NASA Technical Reports Server (NTRS)

    Heller, R. C.; Aldrich, R. C.; Driscoll, R. S.; Weber, F. P. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Controlled visual interpretation of one ERTS-1 scene taken at the peak of the growing season has indicated that classification to the ECOCLASS Series level is not entirely satisfactory. For five forest classes, aspen, Douglas-fir, lodgepole pine, ponderosa pine, and Spruce/fir, correct identification ranged from 60 to 70 percent. With the exception of shortgrass and wet shrubby meadow classes in the nonforest categories (81 and 100 percent correct, respectively), correct identification of the nonforest classes is so far unacceptable. The low accuracies are believed due to: (1) edge effects due to ecotones between plant community classes with apparent similar image characteristics; (2) confounding effects of amount of plant crown cover and ground surface material in the scene; and (3) variable land slope degree and aspect as it affects the image signature.

  1. Human access and landscape structure effects on Andean forest bird richness

    NASA Astrophysics Data System (ADS)

    Aubad, Jorge; Aragón, Pedro; Rodríguez, Miguel Á.

    2010-07-01

    We analyzed the influence of human access and landscape structure on forest bird species richness in a fragmented landscape of the Colombian Andes. In Latin America, habitat loss and fragmentation are considered as the greatest threats to biodiversity because a large number of countryside villagers complement their food and incomes with the extraction of forest resources. Anthropogenic actions may also affect forest species by bird hunting or indirectly through modifying the structure of forest habitats. We surveyed 14 secondary cloud forest remnants to generate bird species richness data for each of them. We also quantified six landscape structure descriptors of forest patch size (patch area and core area), shape (perimeter of each fragment and the Patton's shape index) and isolation (nearest neighbor distance and edge contrast), and generated (using principal components analysis) a synthetic human influence variable based on the distance of each fragment to roads and villages, as well as the total slope of the fragments. Species richness was related to these variables using generalized linear models (GLMs) complemented with model selection techniques based on information theory and partial regression analysis. We found that forest patch size and accessibility were key drivers of bird richness, which increased toward largest patches, but decreased in those more accessible to humans and their potential disturbances. Both patch area and human access effects on forest bird species richness were complementary and similar in magnitude. Our results provide a basis for biodiversity conservation plans and initiatives of Andean forest diversity.

  2. A large-scale field assessment of carbon stocks in human-modified tropical forests.

    PubMed

    Berenguer, Erika; Ferreira, Joice; Gardner, Toby Alan; Aragão, Luiz Eduardo Oliveira Cruz; De Camargo, Plínio Barbosa; Cerri, Carlos Eduardo; Durigan, Mariana; Cosme De Oliveira Junior, Raimundo; Vieira, Ima Célia Guimarães; Barlow, Jos

    2014-12-01

    Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0-30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long-term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively avoid degradation as well as deforestation. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  3. Response of the Agile Antechinus to Habitat Edge, Configuration and Condition in Fragmented Forest

    PubMed Central

    Johnstone, Christopher P.; Lill, Alan; Reina, Richard D.

    2011-01-01

    Habitat fragmentation and degradation seriously threaten native animal communities. We studied the response of a small marsupial, the agile antechinus Antechinus agilis, to several environmental variables in anthropogenically fragmented Eucalyptus forest in south-east Australia. Agile antechinus were captured more in microhabitats dominated by woody debris than in other microhabitats. Relative abundances of both sexes were positively correlated with fragment core area. Male and female mass-size residuals were smaller in larger fragments. A health status indicator, haemoglobin-haematocrit residuals (HHR), did not vary as a function of any environmental variable in females, but male HHR indicated better health where sites' microhabitats were dominated by shrubs, woody debris and trees other than Eucalyptus. Females were trapped less often in edge than interior fragment habitat and their physiological stress level, indicated by the neutrophil/lymphocyte ratio in peripheral blood, was higher where fragments had a greater proportion of edge habitat. The latter trend was potentially due to lymphopoenia resulting from stress hormone-mediated leukocyte trafficking. Using multiple indicators of population condition and health status facilitates a comprehensive examination of the effects of anthropogenic disturbances, such as habitat fragmentation and degradation, on native vertebrates. Male agile antechinus' health responded negatively to habitat degradation, whilst females responded negatively to the proportion of edge habitat. The health and condition indicators used could be employed to identify conservation strategies that would make habitat fragments less stressful for this or similar native, small mammals. PMID:22076129

  4. Response of the agile antechinus to habitat edge, configuration and condition in fragmented forest.

    PubMed

    Johnstone, Christopher P; Lill, Alan; Reina, Richard D

    2011-01-01

    Habitat fragmentation and degradation seriously threaten native animal communities. We studied the response of a small marsupial, the agile antechinus Antechinus agilis, to several environmental variables in anthropogenically fragmented Eucalyptus forest in south-east Australia. Agile antechinus were captured more in microhabitats dominated by woody debris than in other microhabitats. Relative abundances of both sexes were positively correlated with fragment core area. Male and female mass-size residuals were smaller in larger fragments. A health status indicator, haemoglobin-haematocrit residuals (HHR), did not vary as a function of any environmental variable in females, but male HHR indicated better health where sites' microhabitats were dominated by shrubs, woody debris and trees other than Eucalyptus. Females were trapped less often in edge than interior fragment habitat and their physiological stress level, indicated by the neutrophil/lymphocyte ratio in peripheral blood, was higher where fragments had a greater proportion of edge habitat. The latter trend was potentially due to lymphopoenia resulting from stress hormone-mediated leukocyte trafficking. Using multiple indicators of population condition and health status facilitates a comprehensive examination of the effects of anthropogenic disturbances, such as habitat fragmentation and degradation, on native vertebrates. Male agile antechinus' health responded negatively to habitat degradation, whilst females responded negatively to the proportion of edge habitat. The health and condition indicators used could be employed to identify conservation strategies that would make habitat fragments less stressful for this or similar native, small mammals.

  5. Spatial and temporal patterns of beetles associated with coarse woody debris in managed bottomland hardwood forests

    Treesearch

    Michael D. Ulyshen; James L. Hanula; Scott Horn; John C. Kilgo; Christopher E. Moorman

    2004-01-01

    Malaise traps were used to sample beetles in artificial canopy gaps of different size (0.13 ha, 0.26 ha, and 0.50 ha) and age in a South Carolina bottomland hardwood forest. Traps were placed at the center, edge, and in the surrounding forest of each gap. Young gaps (~1 year) had large amounts of coarse woody debris compared to the surrounding forest, while older gaps...

  6. Analysis of physical parameters related with water infiltration in tropical soils located in edges forest in urban areas

    NASA Astrophysics Data System (ADS)

    Márcia Longo, Regina; Cunha, Jessica C. M.; Lammoglia, Rafaella; Mendes, Deborah R.; Mungilioli, Sarah S.; Damame, Desiree B.; Demamboro, Antônio C.; Bettine, Sueli C.; Ribeiro, Admilson I.; Fengler, Felipe H.

    2015-04-01

    A very important factor for water infiltration into the soil in urban forest systems and suffering constant anthropogenic pressures is the analysis of soil compaction where these forests are or will be established. In this context, this work aimed to promote studies on physical parameters related to distribution of pores, compaction and soil biological activity in forest remnants border areas located in urban watersheds in Campinas / SP - Brazil. The Forest of Santa Genebra (22°49'45 "S and 47°06'33" W) has an average altitude of 680m and tropical climate of altitude, has an area of 251 ha and a nine kilometer perimeter. It constitutes 85% of Semideciduos forests and 15% swamp forest. Due to its location close to urban centers, roads and agricultural areas under direct influence of the anthropic means. For the present study analyzes were performed: particle size, soil density, porosity, matters organic, of biopores, and root distribution (primary, secondary and tertiary) and seedlings in 40 points on the perimeter of the forest equidistant 200m remaining edge. The analysis of the results allowed us to observe that areas suffer direct influence of human activities surrounding. With the results set correlations between the different parameters in order to allow a better understanding of the dynamics of water infiltration into the soil under these conditions and the quantity of tertiary roots, biopores and soil density were the best indicator of environmental quality as suffer direct influence of the surrounding areas, especially those near the most urbanized regions. In general, it can be observed that human activities such as deforestation and vehicle traffic, animals and people, promoted soil compaction and consequent changes in water infiltration into the soil in areas of edges of this remnant of these consequences affect direct numerous parameters that directly influence the dynamics of an ecosystem restoration that is now significantly affected by the occupation of their surroundings.

  7. Species richness and relative species abundance of Nymphalidae (Lepidoptera) in three forests with different perturbations in the North-Central Caribbean of Costa Rica.

    PubMed

    Stephen, Carolyn; Sánchez, Ragde

    2014-09-01

    Measurements of species richness and species abundance can have important implications for regulations and conservation. This study investigated species richness and abundance of butterflies in the family Nymphalidae at undisturbed, and disturbed habitats in Tirimbina Biological Reserve and Nogal Private Reserve, Sarapiquí, Costa Rica. Traps baited with rotten banana were placed in the canopy and the understory of three habitats: within mature forest, at a river/forest border, and at a banana plantation/forest border. In total, 71 species and 487 individuals were caught and identified during May and June 2011 and May 2013. Species richness and species abundance were found to increase significantly at perturbed habitats (p < 0.0001, p < 0.0001, respectively). The edge effect, in which species richness and abundance increase due to greater complementary resources from different habitats, could be one possible explanation for increased species richness and abundance.

  8. Case study: Prioritization strategies for reforestation of minelands to benefit Cerulean Warblers

    USGS Publications Warehouse

    McDermott, Molly E.; Shumar, Matthew B.; Wood, Petra Bohall

    2013-01-01

    The central Appalachian landscape is being heavily altered by surface coal mining. The practice of Mountaintop Removal/Valley Fill (MTRVF) mining has transformed large areas of mature forest to non-forest and created much forest edge, affecting habitat quality for mature forest wildlife. The Appalachian Regional Reforestation Initiative is working to restore mined areas to native hardwood forest conditions, and strategies are needed to prioritize restoration efforts for wildlife. We present mineland reforestation guidelines for the imperiled Cerulean Warbler, considered a useful umbrella species, in its breeding range. In 2009, we surveyed forest predicted to have Cerulean Warblers near mined areas in the MTRVF region of West Virginia and Kentucky. We visited 36 transect routes and completed songbird surveys on 151 points along these routes. Cerulean Warblers were present at points with fewer large-scale canopy disturbances and more mature oak-hickory forest. We tested the accuracy of a predictive map for this species and demonstrated that it can be useful to guide reforestation efforts. We then developed a map of hot spot locations that can be used to determine potential habitat suitability. Restoration efforts would have greatest benefit for Cerulean Warblers and other mature forest birds if concentrated near a relative-abundance hot spot, on north- and east-facing ridgetops surrounded by mature deciduous forest, and prioritized to reduce edges and connect isolated forest patches. Our multi-scale approach for prioritizing restoration efforts using an umbrella species may be applied to restore habitat impacted by a variety of landscape disturbances.

  9. Recognizing the ‘sparsely settled forest’: Multi-decade socioecological change dynamics and community exemplars

    Treesearch

    Derek B. Van Berkel; Bronwyn Rayfield; Sebastián Martinuzzi; Martin J. Lechowicz; Eric White; Kathleen P. Bell; Chris R. Colocousis; Kent F. Kovacs; Anita T. Morzillo; Darla K. Munroe; Benoit Parmentier; Volker C. Radeloff; Brian J. McGill

    2018-01-01

    Sparsely settled forests (SSF) are poorly studied, coupled natural and human systems involving rural communities in forest ecosystems that are neither largely uninhabited wildland nor forests on the edges of urban areas. We developed and applied a multidisciplinary approach to define, map, and examine changes in the spatial extent and structure of both the landscapes...

  10. The West Virginia university forest hazard rating study: the hazards of hazard rating

    Treesearch

    Ray R., Jr. Hicks; David E. Fosbroke; Shrivenkar Kosuri; Charles B. Yuill

    1991-01-01

    The West Virginia University (WVU) Forest is a 7,600-acre tract located along the leading edge of gypsy moth infestation. The hazard rating study at the WVU Forest serves three objectives. First, hazard rating is being used to determine the extent and distribution of damage that can be expected when gypsy moth defoliation occurs. Second, susceptibility and...

  11. Seedfall and seed viability within artificial canopy gaps in a western Washington douglas-fir forest

    Treesearch

    Warren D. Devine; Timothy B. Harrington

    2015-01-01

    Seedfall of coast Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) has been studied at the forest edge-clearcut interface and in small canopy gaps, but it has not been evaluated in gap sizes that would be typical of a group-selection method of regeneration. In a mature Douglas-fir forest in the Puget Sound...

  12. Characterizing the canopy gap structure of a disturbed forest using Fourier transform

    Treesearch

    R. A. Sommerfeld; J. E. Lundquist; J. Smith

    2000-01-01

    Diseases and other small-scale disturbances alter spatial patterns of heterogeneity in forests by killing trees. Canopy gaps caused by tree death are a common feature of forests. Because gaps are caused by different disturbances acting at different times and places, operationally determining the locations of gap edges is often difficult. In this study, digital image...

  13. Life on the edge: carbon fluxes from wetland to ocean along Alaska's coastal temperate rain forest

    Treesearch

    Rhonda Mazza; Richard Edwards; David D' Amore

    2010-01-01

    Acre for acre, streams of the coastal temperate rain forest along the Gulf of Alaska export 36 times as much dissolved organic carbon as the world average. Rain and snow are the great connectors, tightly linking aquatic and terrestrial systems of this region. The freshwater that flushes over and through the forest floor leaches carbon...

  14. Edge-related gradients in microclimate in forest aggregates following structural retention harvests in western Washington

    Treesearch

    Troy D. Heithecker; Charles B. Halpern

    2007-01-01

    Aggregated retention is now a common method of regeneration harvest in forest ecosystems managed for both timber and ecological objectives. If residual forest aggregates are to serve as temporary refugia for species sensitive to disturbance or environmental stress, microclimatic conditions must be sufficiently buffered to allow for their persistence. In 1-ha aggregates...

  15. Historical harvests reduce neighboring old-growth basal area across a forest landscape

    Treesearch

    David M. Bell; Thomas A. Spies; Robert Pabst

    2017-01-01

    While advances in remote sensing have made stand, landscape, and regional assessments of the direct impacts of disturbance on forests quite common, the edge influence of timber harvesting on the structure of neighboring unharvested forests has not been examined extensively. In this study, we examine the impact of historical timber harvests on basal area patterns of...

  16. Terrestrial and stream amphibians across clearcut-forest interfaces in the Siskiyou Mountains, Oregon

    USGS Publications Warehouse

    Biek, Roman; Mills, L. Scott; Bury, R. Bruce

    2002-01-01

    Timber harvest in the Pacific Northwest has resulted in a highly fragmented landscape. but there is no information on responses of amphibians to forest edges for this region. We investigated abundance of terrestrial and stream-dwelling amphibians on the interface of recent clearcuts and mature forest in the Siskiyou Mountains, Oregon, in summer and fall of 1998. We assessed relative abundance of terrestrial -amphibians on four clearcut forest transects with a combination of pitfall trapping and manual searches. Ensantinas and Del Norte salamanders, the most frequently recorded species, were found on all four sites.  While we commonly captured ensantinas using both techniques, we caught most Del Norte salamanders during manual searches. For both species we found no differences in abundance associated with distance to forest edge. Lack of differences in salamander abundance among clearcut and adjacent forests may be related lo large amounts of small woody debris that remained in the clearcuts. The abundance of larvae of tailed frogs and Pacific giant salamanders in five headwater streams was markedly lower in clearcuts than in downstream mature forest stands. No obvious differences existed for stream habitat variables across transects. but abundance of metamorphosed individuals and recruitment may be reduced in clearcut areas due lo hotter and drier conditions during

  17. Differences in breeding bird assemblages related to reed canary grass cover cover and forest structure on the Upper Mississippi River

    USGS Publications Warehouse

    Kirsch, Eileen M.; Gray, Brian R.

    2017-01-01

    Floodplain forest of the Upper Mississippi River provides habitat for an abundant and diverse breeding bird community. However, reed canary grass Phalaris arundinacea invasion is a serious threat to the future condition of this forest. Reed canary grass is a well-known aggressive invader of wetland systems in the northern tier states of the conterminous United States. Aided by altered flow regimes and nutrient inputs from agriculture, reed canary grass has formed dense stands in canopy gaps and forest edges, retarding tree regeneration. We sampled vegetation and breeding birds in Upper Mississippi River floodplain forest edge and interior areas to 1) measure reed canary grass cover and 2) evaluate whether the breeding bird assemblage responded to differences in reed canary grass cover. Reed canary grass was found far into forest interiors, and its cover was similar between interior and edge sites. Bird assemblages differed between areas with more or less reed canary grass cover (.53% cover breakpoint). Common yellowthroat Geothlypis trichas, black-capped chickadee Parus atricapillus, and rose-breasted grosbeak Pheucticus ludovicianus were more common and American redstart Setophaga ruticilla, great crested flycatcher Myiarchus crinitus, and Baltimore oriole Icterus galbula were less common in sites with more reed canary grass cover. Bird diversity and abundance were similar between sites with different reed canary grass cover. A stronger divergence in bird assemblages was associated with ground cover ,15%, resulting from prolonged spring flooding. These sites hosted more prothonotary warbler Protonotaria citrea, but they had reduced bird abundance and diversity compared to other sites. Our results indicate that frequently flooded sites may be important for prothonotary warblers and that bird assemblages shift in response to reed canary grass invasion.

  18. Matrix Intensification Alters Avian Functional Group Composition in Adjacent Rainforest Fragments

    PubMed Central

    Deikumah, Justus P.; McAlpine, Clive A.; Maron, Martine

    2013-01-01

    Conversion of farmland land-use matrices to surface mining is an increasing threat to the habitat quality of forest remnants and their constituent biota, with consequences for ecosystem functionality. We evaluated the effects of matrix type on bird community composition and the abundance and evenness within avian functional groups in south-west Ghana. We hypothesized that surface mining near remnants may result in a shift in functional composition of avifaunal communities, potentially disrupting ecological processes within tropical forest ecosystems. Matrix intensification and proximity to the remnant edge strongly influenced the abundance of members of several functional guilds. Obligate frugivores, strict terrestrial insectivores, lower and upper strata birds, and insect gleaners were most negatively affected by adjacent mining matrices, suggesting certain ecosystem processes such as seed dispersal may be disrupted by landscape change in this region. Evenness of these functional guilds was also lower in remnants adjacent to surface mining, regardless of the distance from remnant edge, with the exception of strict terrestrial insectivores. These shifts suggest matrix intensification can influence avian functional group composition and related ecosystem-level processes in adjacent forest remnants. The management of matrix habitat quality near and within mine concessions is important for improving efforts to preserveavian biodiversity in landscapes undergoing intensification such as through increased surface mining. PMID:24058634

  19. Matrix intensification alters avian functional group composition in adjacent rainforest fragments.

    PubMed

    Deikumah, Justus P; McAlpine, Clive A; Maron, Martine

    2013-01-01

    Conversion of farmland land-use matrices to surface mining is an increasing threat to the habitat quality of forest remnants and their constituent biota, with consequences for ecosystem functionality. We evaluated the effects of matrix type on bird community composition and the abundance and evenness within avian functional groups in south-west Ghana. We hypothesized that surface mining near remnants may result in a shift in functional composition of avifaunal communities, potentially disrupting ecological processes within tropical forest ecosystems. Matrix intensification and proximity to the remnant edge strongly influenced the abundance of members of several functional guilds. Obligate frugivores, strict terrestrial insectivores, lower and upper strata birds, and insect gleaners were most negatively affected by adjacent mining matrices, suggesting certain ecosystem processes such as seed dispersal may be disrupted by landscape change in this region. Evenness of these functional guilds was also lower in remnants adjacent to surface mining, regardless of the distance from remnant edge, with the exception of strict terrestrial insectivores. These shifts suggest matrix intensification can influence avian functional group composition and related ecosystem-level processes in adjacent forest remnants. The management of matrix habitat quality near and within mine concessions is important for improving efforts to preserveavian biodiversity in landscapes undergoing intensification such as through increased surface mining.

  20. Management of riparian buffers: upslope thinning with downslope impacts

    Treesearch

    Kenneth J. Ruzicka; Klaus J. Puettmann; Deanna H. Olson

    2014-01-01

    We examined the potential of using upslope density management to influence growth and drought tolerance of trees in untreated downslope riparian forests. Increment cores from Douglas-fir trees in three mature stands in western Oregon, USA, were collected and measured. Trees responded to an apparent edge effect up to 15 m downslope of thinned areas but not downslope of...

  1. Cryptic indirect effects of exurban edges on a woodland community

    Treesearch

    R. J. Warren; S. M. Pearson; S. Henry; K. Rossouw; J. P. Love; M. J. Olejniczak; Katherine Elliott; M. A. Bradford

    2015-01-01

    Exurban development (e.g., second homes) in woodlands spreads urban land use impacts beyond suburbs, but because exurban developments often retain many components of original ecosystem structure—such as a forest canopy rather than open lawn—their ecological impacts may be underestimated. Changes in seed-dispersing ant behavior prompted by exurban land use,...

  2. Susceptibility of regeneration in clearcuts to defoliation by gypsy moth

    Treesearch

    Ray R., Jr. Hicks; Robert M. Fultineer; Barbara S. Ware; Kurt W. Gottschalk

    1993-01-01

    In 1991 and 1992, we observed gypsy moth defoliation of oak regeneration in clearcuts of varying sizes and ages. We established plots in the surrounding mature forests to document ambient gypsy moth population levels and placed subplots within the clearcuts designed to examine the effect of location relative to the clearcut edge. We found that the levels of defoliation...

  3. Changes in patch features may exacerbate or compensate for the effect of habitat loss on forest bird populations.

    PubMed

    Magrach, Ainhoa; Larrinaga, Asier R; Santamaría, Luis

    2011-01-01

    One and a half centuries after Darwin visited Chiloe Island, what he described as "…an island covered by one great forest…" has lost two-thirds of its forested areas. At this biodiversity hotspot, forest surface is becoming increasingly fragmented due to unregulated logging, clearing for pastures and replacement by exotic tree plantations. Decrease in patch size, increased isolation and "edge effects" can influence the persistence of forest species in remnant fragments. We assessed how these variables affect local density for six forest birds, chosen to include the most important seed dispersers (four species) and bird pollinators (two species, one of which acts also as seed disperser), plus the most common insectivore (Aphrastura spinicauda). Based on cue-count point surveys (8 points per fragment), we estimated bird densities for each species in 22 forest fragments of varying size, shape, isolation and internal-habitat structure (e.g. tree size and epiphyte cover). Bird densities varied with fragment connectivity (three species) and shape (three species), but none of the species was significantly affected by patch size. Satellite image analyses revealed that, from 1985 to 2008, forested area decreased by 8.8% and the remaining forest fragments became 16% smaller, 58-73% more isolated and 11-50% more regular. During that period, bird density estimates for the northern part of Chiloé (covering an area of 1214.75 km(2)) decreased for one species (elaenia), increased for another two (chucao and hummingbird) and did not vary for three (rayadito, thrust and blackbird). For the first three species, changes in patch features respectively exacerbated, balanced and overcame the effects of forest loss on bird population size (landscape-level abundance). Hence, changes in patch features can modulate the effect of habitat fragmentation on forest birds, suggesting that spatial planning (guided by spatially-explicit models) can be an effective tool to facilitate their conservation.

  4. TEMPORAL CHANGE IN FOREST FRAGMENTATION AT MULTIPLE SCALES

    EPA Science Inventory

    Previous studies of temporal changes in fragmentation have focused almost exclusively on patch and edge statistics, which might not detect changes in the spatial scale at which forest occurs in or dominates the landscape. We used temporal land-cover data for the Chesapeake Bay r...

  5. Woody browse production

    Treesearch

    Tom Crow; Forest Stearns

    1992-01-01

    Sugar maple has great potential as wildlife food, especially as good winter fare for deer in the northern Lake States. Deer will diligently seek out sugar maple browse in the hardwood forests along the edges of a winter yard or in isolated islands of upland forest within a yard.

  6. EnviroAtlas - Austin, TX - Tree Cover Configuration and Connectivity, Water Background

    EPA Pesticide Factsheets

    This EnviroAtlas dataset categorizes forest land cover into structural elements (e.g. core, edge, connector, etc.). In this community, Forest is defined as Trees & Forest (Trees & Forest - 40 = 1; All Else = 0). Water was considered background (value 129) during the analysis to create this dataset, however it has been converted into value 10 to distinguish it from land area background. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. Movement patterns of rural and suburban white-tailed deer in Massachusetts

    USGS Publications Warehouse

    Gaughan, C.R.; DeStefano, S.

    2005-01-01

    We used satellite land cover data and the program FRAGSTATS toquantify land cover types and calculate the amount of forest edge available in suburban and rural regions of northeastern and northwestern Massachusetts. Cover categories included forest cover, open canopy vegetation, and non-deer habitat. We calculated all edge segments where forest cover abutted open canopy cover. Our open canopy vegetation category was calculated both with and without low intensity suburban development. We then compared these findings to movement data from 53 (13 males, 40 females) adult radio-marked white-tailed deerOdocoileus virginianusmonitored biweekly and diurnally from January 2001 to January 2003. The range of movements of suburban deer in eastern Massachusetts showed no difference to that of suburban deer in western Massachusetts (P = 0.7). However, the ranges for suburban deer in both eastern and western Massachusetts were 10 times less than those of deer in rural western Massachusetts (P = 0.001).Our findings suggest that landscape configuration, as described by the amount and distribution of edge due to suburban development, which is related to the amount and distribution of resources such as food and cover, affects migratory behavior of white-tailed deer, allowsdeer to have smaller ranges, and contributes to high deer densities.Inclusion of suburban edge in habitat models will increase our understanding of deer-habitat relationships for management of deer in urbanizing environments. ?? 2005 Springer Science + Business Media, Inc.

  8. How disturbance, competition and dispersal interact to prevent tree range boundaries from keeping pace with climate change

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Duveneck, M.; Gustafson, E. J.; Serra-Diaz, J. M.; Thompson, J. R.

    2017-12-01

    Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change, disturbance and competitive interactions to produce range shifts are poorly understood. We used a physiologically-based mechanistic landscape model to study these interactions in the northeastern United States. We designed a series of disturbance scenarios to represent varied disturbance regimes in terms of both disturbance extent and intensity. We simulated forest succession by incorporating climate change under a high emissions future, disturbances, seed dispersal, and competition using the landscape model parameterized with forest inventory data. Tree species range boundary shifts in the next century were quantified as the change in the location of the 5th (the trailing edge) and 95th (the leading edge) percentiles of the spatial distribution of simulated species. Simulated tree species range boundary shifts in New England over the next century were far below (usually < 20 km) that required to track the velocity of temperature change (usually more than 110 km over 100 years) under a high emissions scenario. Simulated species` ranges shifted northward at both the leading edge (northern boundary) and trailing edge (southern boundary). Disturbances may expedite species` recruitment into new sites, but they had little effect on the velocity of simulated range boundary shifts. Range shifts at the trailing edge tended to be associated with photosynthetic capacity, competitive ability for light and seed dispersal ability, whereas shifts at the leading edge were associated only with photosynthetic capacity and competition for light. This study underscores the importance of understanding the role of interspecific competition and disturbance when studying tree range shifts.

  9. How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change.

    PubMed

    Liang, Yu; Duveneck, Matthew J; Gustafson, Eric J; Serra-Diaz, Josep M; Thompson, Jonathan R

    2018-01-01

    Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change, disturbance and competitive interactions to produce range shifts are poorly understood. We used a physiologically based mechanistic landscape model to study these interactions in the northeastern United States. We designed a series of disturbance scenarios to represent varied disturbance regimes in terms of both disturbance extent and intensity. We simulated forest succession by incorporating climate change under a high-emissions future, disturbances, seed dispersal, and competition using the landscape model parameterized with forest inventory data. Tree species range boundary shifts in the next century were quantified as the change in the location of the 5th (the trailing edge) and 95th (the leading edge) percentiles of the spatial distribution of simulated species. Simulated tree species range boundary shifts in New England over the next century were far below (usually <20 km) that required to track the velocity of temperature change (usually more than 110 km over 100 years) under a high-emissions scenario. Simulated species` ranges shifted northward at both the leading edge (northern boundary) and trailing edge (southern boundary). Disturbances may expedite species' recruitment into new sites, but they had little effect on the velocity of simulated range boundary shifts. Range shifts at the trailing edge tended to be associated with photosynthetic capacity, competitive ability for light and seed dispersal ability, whereas shifts at the leading edge were associated only with photosynthetic capacity and competition for light. This study underscores the importance of understanding the role of interspecific competition and disturbance when studying tree range shifts. © 2017 John Wiley & Sons Ltd.

  10. Oil palm monoculture induces drastic erosion of an Amazonian forest mammal fauna

    PubMed Central

    Maués, Paula Cristina R. de A.; Oliveira, Geovana Linhares; Mineiro, Ivo G. B.; de Maria, Susanne L. Silva; Lima, Renata C. S.

    2017-01-01

    Oil palm monoculture comprises one of the most financially attractive land-use options in tropical forests, but cropland suitability overlaps the distribution of many highly threatened vertebrate species. We investigated how forest mammals respond to a landscape mosaic, including mature oil palm plantations and primary forest patches in Eastern Amazonia. Using both line-transect censuses (LTC) and camera-trapping (CT), we quantified the general patterns of mammal community structure and attempted to identify both species life-history traits and the environmental and spatial covariates that govern species intolerance to oil palm monoculture. Considering mammal species richness, abundance, and species composition, oil palm plantations were consistently depauperate compared to the adjacent primary forest, but responses differed between functional groups. The degree of forest habitat dependency was a leading trait, determining compositional dissimilarities across habitats. Considering both the LTC and CT data, distance from the forest-plantation interface had a significant effect on mammal assemblages within each habitat type. Approximately 87% of all species detected within oil palm were never farther than 1300 m from the forest edge. Our study clearly reinforces the notion that conventional oil palm plantations are extremely hostile to native tropical forest biodiversity, which does not bode well given prospects for oil palm expansion in both aging and new Amazonian deforestation frontiers. PMID:29117202

  11. 5. Aerial view of turnpike path running through center of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Aerial view of turnpike path running through center of photograph along row of trees. 1917 realignment visible along left edge of photograph along edge of forest. Modernized alignment resumes at top right of photograph. View looking north. - Orange Turnpike, Parallel to new Orange Turnpike, Monroe, Orange County, NY

  12. Drove roads: Keystone structures that promote ant diversity in Mediterranean forest landscapes

    NASA Astrophysics Data System (ADS)

    Azcárate, Francisco M.; Seoane, Javier; Castro, Sara; Peco, Begoña

    2013-05-01

    Drove roads are the traditional corridors used by pastoralists for seasonal movements of livestock (transhumance). They cover a considerable land area in Mediterranean countries and, although they are an obvious source of landscape diversity, their influence on the diversity and composition of animal assemblages has not been documented. Ant communities were studied on four active drove roads, two in forests (submediterranean and conifer) and two in open environments (croplands and rangelands). They were compared with the respective matrix communities and their contribution to local species richness was evaluated. The effects were heavily dependent on the open or closed nature of the matrix. In forest environments, drove roads increased ant species richness at the local scale, acting as clear keystone structures. Their species richness and functional diversity were highest on the fine scale, species composition was different, and a slight edge effect in the matrix was detected. In contrast, drove roads had little or even a negative effect in open environment locations. We conclude that drove roads have a high conservation value for ants in Mediterranean forest environments, in addition to their importance as reservoirs of plant biodiversity and generators of ecological goods and services.

  13. Fragment quality and matrix affect epiphytic performance in a Mediterranean forest landscape.

    PubMed

    Belinchón, Rocío; Martínez, Isabel; Otálora, Mónica A G; Aragón, Gregorio; Dimas, Jesús; Escudero, Adrián

    2009-11-01

    Destruction and fragmentation of habitats represent one of the most important threats for biodiversity. Here, we examined the effects of fragmentation in Mediterranean forests on the epiphytic lichen Lobaria pulmonaria (Lobariaceae). We tested the hypothesis that not only the level of fragmentation affects L. pulmonaria populations, but also the quality of the habitat and the nature of the surrounding matrix affect them. The presence and abundance of the lichen was recorded on 2039 trees in a total of 31 stands. We recorded habitat quality and landscape variables at three hierarchical levels: tree, plot, and patch. We found that L. pulmonaria tends to occur in trees with larger diameters in two types of surveyed forests. In Quercus pyrenaica patches, the mean diameter of colonized trees was smaller, suggesting the importance of bark roughness. Factors affecting the presence and cover of the lichen in each type of forest were different. There was a strong positive influence of distance from a river in beech forests, whereas proximity to forest edge positively affected in oak forests. The influence of the surrounding matrix was also an important factor explaining the epiphytic lichen abundance.

  14. Maintenance of a Minimum Spanning Forest in a Dynamic Planar Graph

    DTIC Science & Technology

    1990-01-18

    v): Delete the edge from v to its parent , thereby dividing the tree containing v into two trees. evert(v): Make v the root of its tree by reversing...the path from v to the original root. find parent (v): Return the parent of v, or null if v is the root of its tree. find Ica(u, v): Return the least...given node (including the parent edge). The ordered set of edges adjacent to node v is called the edge list for v. For example, in our application we

  15. Shale gas development effects on the songbird community in a central Appalachian forest

    USGS Publications Warehouse

    Farwell, Laura S.; Wood, Petra; Sheehan, James; George, Gregory A.

    2016-01-01

    In the last decade, unconventional drilling for natural gas from the Marcellus-Utica shale has increased exponentially in the central Appalachians. This heavily forested region contains important breeding habitat for many neotropical migratory songbirds, including several species of conservation concern. Our goal was to examine effects of unconventional gas development on forest habitat and breeding songbirds at a predominantly forested site from 2008 to 2015. Construction of gas well pads and infrastructure (e.g., roads, pipelines) contributed to an overall 4.5% loss in forest cover at the site, a 12.4% loss in core forest, and a 51.7% increase in forest edge density. We evaluated the relationship between land-cover metrics and species richness within three avian guilds: forest-interior, early-successional, and synanthropic, in addition to abundances of 21 focal species. Land-cover impacts were evaluated at two spatial extents: a point-level within 100-m and 500-m buffers of each avian survey station, and a landscape-level across the study area (4326 ha). Although we observed variability in species-specific responses, we found distinct trends in long-term response among the three avian guilds. Forest-interior guild richness declined at all points across the site and at points impacted within 100 m by shale gas but did not change at unimpacted points. Early-successional and synanthropic guild richness increased at all points and at impacted points. Our results suggest that shale gas development has the potential to fragment regional forests and alter avian communities, and that efforts to minimize new development in core forests will reduce negative impacts to forest dependent species.

  16. Discerning fragmentation dynamics of tropical forest and wetland during reforestation, urban sprawl, and policy shifts.

    PubMed

    Gao, Qiong; Yu, Mei

    2014-01-01

    Despite the overall trend of worldwide deforestation over recent decades, reforestation has also been found and is expected in developing countries undergoing fast urbanization and agriculture abandonment. The consequences of reforestation on landscape patterns are seldom addressed in the literature, despite their importance in evaluating biodiversity and ecosystem functions. By analyzing long-term land cover changes in Puerto Rico, a rapidly reforested (6 to 42% during 1940-2000) and urbanized tropical island, we detected significantly different patterns of fragmentation and underlying mechanisms among forests, urban areas, and wetlands. Forest fragmentation is often associated with deforestation. However, we also found significant fragmentation during reforestation. Urban sprawl and suburb development have a dominant impact on forest fragmentation. Reforestation mostly occurs along forest edges, while significant deforestation occurs in forest interiors. The deforestation process has a much stronger impact on forest fragmentation than the reforestation process due to their different spatial configurations. In contrast, despite the strong interference of coastal urbanization, wetland aggregation has occurred due to the effective implementation of laws/regulations for wetland protection. The peak forest fragmentation shifted toward rural areas, indicating progressively more fragmentation in forest interiors. This shift is synchronous with the accelerated urban sprawl as indicated by the accelerated shift of the peak fragmentation index of urban cover toward rural areas, i.e., 1.37% yr-1 in 1977-1991 versus 2.17% yr-1 in 1991-2000. Based on the expected global urbanization and the regional forest transition from deforested to reforested, the fragmented forests and aggregated wetlands in this study highlight possible forest fragmentation processes during reforestation in an assessment of biodiversity and functions and suggest effective laws/regulations in land planning to reduce future fragmentation.

  17. Discerning Fragmentation Dynamics of Tropical Forest and Wetland during Reforestation, Urban Sprawl, and Policy Shifts

    PubMed Central

    Gao, Qiong; Yu, Mei

    2014-01-01

    Despite the overall trend of worldwide deforestation over recent decades, reforestation has also been found and is expected in developing countries undergoing fast urbanization and agriculture abandonment. The consequences of reforestation on landscape patterns are seldom addressed in the literature, despite their importance in evaluating biodiversity and ecosystem functions. By analyzing long-term land cover changes in Puerto Rico, a rapidly reforested (6 to 42% during 1940–2000) and urbanized tropical island, we detected significantly different patterns of fragmentation and underlying mechanisms among forests, urban areas, and wetlands. Forest fragmentation is often associated with deforestation. However, we also found significant fragmentation during reforestation. Urban sprawl and suburb development have a dominant impact on forest fragmentation. Reforestation mostly occurs along forest edges, while significant deforestation occurs in forest interiors. The deforestation process has a much stronger impact on forest fragmentation than the reforestation process due to their different spatial configurations. In contrast, despite the strong interference of coastal urbanization, wetland aggregation has occurred due to the effective implementation of laws/regulations for wetland protection. The peak forest fragmentation shifted toward rural areas, indicating progressively more fragmentation in forest interiors. This shift is synchronous with the accelerated urban sprawl as indicated by the accelerated shift of the peak fragmentation index of urban cover toward rural areas, i.e., 1.37% yr−1 in 1977–1991 versus 2.17% yr−1 in 1991–2000. Based on the expected global urbanization and the regional forest transition from deforested to reforested, the fragmented forests and aggregated wetlands in this study highlight possible forest fragmentation processes during reforestation in an assessment of biodiversity and functions and suggest effective laws/regulations in land planning to reduce future fragmentation. PMID:25409016

  18. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2a imagery.

    PubMed

    Zarco-Tejada, P J; Hornero, A; Hernández-Clemente, R; Beck, P S A

    2018-03-01

    The operational monitoring of forest decline requires the development of remote sensing methods that are sensitive to the spatiotemporal variations of pigment degradation and canopy defoliation. In this context, the red-edge spectral region (RESR) was proposed in the past due to its combined sensitivity to chlorophyll content and leaf area variation. In this study, the temporal dimension of the RESR was evaluated as a function of forest decline using a radiative transfer method with the PROSPECT and 3D FLIGHT models. These models were used to generate synthetic pine stands simulating decline and recovery processes over time and explore the temporal rate of change of the red-edge chlorophyll index (CI) as compared to the trajectories obtained for the structure-related Normalized Difference Vegetation Index (NDVI). The temporal trend method proposed here consisted of using synthetic spectra to calculate the theoretical boundaries of the subspace for healthy and declining pine trees in the temporal domain, defined by CI time=n /CI time=n+1 vs. NDVI time=n /NDVI time=n+1 . Within these boundaries, trees undergoing decline and recovery processes showed different trajectories through this subspace. The method was then validated using three high-resolution airborne hyperspectral images acquired at 40 cm resolution and 260 spectral bands of 6.5 nm full-width half-maximum (FWHM) over a forest with widespread tree decline, along with field-based monitoring of chlorosis and defoliation (i.e., 'decline' status) in 663 trees between the years 2015 and 2016. The temporal rate of change of chlorophyll vs. structural indices, based on reflectance spectra extracted from the hyperspectral images, was different for trees undergoing decline, and aligned towards the decline baseline established using the radiative transfer models. By contrast, healthy trees over time aligned towards the theoretically obtained healthy baseline . The applicability of this temporal trend method to the red-edge bands of the MultiSpectral Imager (MSI) instrument on board Sentinel-2a for operational forest status monitoring was also explored by comparing the temporal rate of change of the Sentinel-2-derived CI over areas with declining and healthy trees. Results demonstrated that the Sentinel-2a red-edge region was sensitive to the temporal dimension of forest condition, as the relationships obtained for pixels in healthy condition deviated from those of pixels undergoing decline.

  19. More than Drought: Precipitation Variance, Excessive Wetness, Pathogens and the Future of the Western Edge of the Eastern Deciduous Forest.

    PubMed

    Hubbart, Jason A; Guyette, Richard; Muzika, Rose-Marie

    2016-10-01

    For many regions of the Earth, anthropogenic climate change is expected to result in increasingly divergent climate extremes. However, little is known about how increasing climate variance may affect ecosystem productivity. Forest ecosystems may be particularly susceptible to this problem considering the complex organizational structure of specialized species niche adaptations. Forest decline is often attributable to multiple stressors including prolonged heat, wildfire and insect outbreaks. These disturbances, often categorized as megadisturbances, can push temperate forests beyond sustainability thresholds. Absent from much of the contemporary forest health literature, however, is the discussion of excessive precipitation that may affect other disturbances synergistically or that might represent a principal stressor. Here, specific points of evidence are provided including historic climatology, variance predictions from global change modeling, Midwestern paleo climate data, local climate influences on net ecosystem exchange and productivity, and pathogen influences on oak mortality. Data sources reveal potential trends, deserving further investigation, indicating that the western edge of the Eastern Deciduous forest may be impacted by ongoing increased precipitation, precipitation variance and excessive wetness. Data presented, in conjunction with recent regional forest health concerns, suggest that climate variance including drought and excessive wetness should be equally considered for forest ecosystem resilience against increasingly dynamic climate. This communication serves as an alert to the need for studies on potential impacts of increasing climate variance and excessive wetness in forest ecosystem health and productivity in the Midwest US and similar forest ecosystems globally. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Disturbance and density-dependent processes (competition and facilitation) influence the fine-scale genetic structure of a tree species' population.

    PubMed

    Fajardo, Alex; Torres-Díaz, Cristian; Till-Bottraud, Irène

    2016-01-01

    Disturbances, dispersal and biotic interactions are three major drivers of the spatial distribution of genotypes within populations, the last of which has been less studied than the other two. This study aimed to determine the role of competition and facilitation in the degree of conspecific genetic relatedness of nearby individuals of tree populations. It was expected that competition among conspecifics will lead to low relatedness, while facilitation will lead to high relatedness (selection for high relatedness within clusters). The stand structure and spatial genetic structure (SGS) of trees were examined within old-growth and second-growth forests (including multi-stemmed trees at the edge of forests) of Nothofagus pumilio following large-scale fires in Patagonia, Chile. Genetic spatial autocorrelations were computed on a spatially explicit sampling of the forests using five microsatellite loci. As biotic plant interactions occur among immediate neighbours, mean nearest neighbour distance (MNND) among trees was computed as a threshold for distinguishing the effects of disturbances and biotic interactions. All forests exhibited a significant SGS for distances greater than the MNND. The old-growth forest genetic and stand structure indicated gap recolonization from nearby trees (significantly related trees at distances between 4 and 10 m). At distances smaller than the MNND, trees of the second-growth interior forest showed significantly lower relatedness, suggesting a fading of the recolonization structure by competition, whereas the second-growth edge forest showed a positive and highly significant relatedness among trees (higher among stems of a cluster than among stems of different clusters), resulting from facilitation. Biotic interactions are shown to influence the genetic composition of a tree population. However, facilitation can only persist if individuals are related. Thus, the genetic composition in turn influences what type of biotic interactions will take place among immediate neighbours in post-disturbance forests. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. A preliminary assessment of Montreal process indicators of forest fragmentation for the United States

    Treesearch

    Kurt H. Riitters; James D. Wickham; John W. Coulston

    2004-01-01

    Abstract. As part of the U.S. 2003 National Report on Sustainable Forests, four metrics of forest fragmentation – patch size, edge amount, inter-patch distance, and patch contrast – were measured within 137 744 non-overlapping 5625 ha analysis units on land-cover maps derived from satellite imagery for the 48 conterminous States. The perimeter of a...

  2. Structure and composition of altered riparian forests in an agricultural Amazonian landscape.

    PubMed

    Nagy, R Chelsea; Porder, Stephen; Neill, Christopher; Brando, Paulo; Quintino, Raimundo Mota; do Nascimento, Sebastiâo Aviz

    2015-09-01

    Deforestation and fragmentation influence the microclimate, vegetation structure, and composition of remaining patches of tropical forest. In the southern Amazon, at the frontier of cropland expansion, forests are converted and fragmented in a pattern that leaves standing riparian forests whose dimensions are mandated by the Brazilian National Forest Code. These altered riparian forests share many characteristics of well-studied upland forest fragments, but differ because they remain connected to larger areas of forest downstream, and because they may experience wetter soil conditions because reduction of forest cover in the surrounding watershed raises groundwater levels and increases stream runoff. We compared forest regeneration, structure, composition, and diversity in four areas of intact riparian forest and four areas each of narrow, medium, and wide altered riparian forests that have been surrounded by agriculture since the early 1980s. We found that seedling abundance was reduced by as much as 64% and sapling abundance was reduced by as much as 67% in altered compared to intact riparian forests. The most pronounced differences between altered and intact forest occurred near forest edges and within the narrowest sections of altered riparian forests. Woody plant species composition differed and diversity was reduced in altered forests compared to intact riparian forests. However, despite being fragmented for several decades, large woody plant biomass and carbon storage, the number of live or dead large woody plants, mortality rates, and the size distribution of woody plants did not differ significantly between altered and intact riparian forests. Thus, even in these relatively narrow forests with high edge: area ratios, we saw no evidence of the increases in mortality and declines in biomass that have been found in other tropical forest fragment studies. However, because of the changes in both species community and reduced regeneration, it is unclear how long this relative lack of change will be sustained. Additionally, Brazil recently passed a law in their National Forest Code allowing narrower riparian buffers than those studied here in restored areas, which could affect their long-term sustainability.

  3. Forests in a water limited world under climate change

    NASA Astrophysics Data System (ADS)

    Mátyás, Csaba; Sun, Ge

    2014-08-01

    The debate on ecological and climatic benefits of planted forests at the sensitive dry edge of the closed forest belt (i.e. at the ‘xeric limits’) is still unresolved. Forests sequester atmospheric carbon dioxide, accumulate biomass, control water erosion and dust storms, reduce river sedimentation, and mitigate small floods. However, planting trees in areas previously dominated by grassland or cropland can dramatically alter the energy and water balances at multiple scales. The forest/grassland transition zone is especially vulnerable to projected drastic temperature and precipitation shifts and growing extremes due to its high ecohydrological sensitivity. We investigated some of the relevant aspects of the ecological and climatic role of forests and potential impacts of climate change at the dryland margins of the temperate-continental zone using case studies from China, the United States and SE Europe (Hungary). We found that, contrary to popular expectations, the effects of forest cover on regional climate might be limited and the influence of forestation on water resources might be negative. Planted forests generally reduce stream flow and lower groundwater table level because of higher water use than previous land cover types. Increased evaporation potential due to global warming and/or extreme drought events is likely to reduce areas that are appropriate for tree growth and forest establishment. Ecologically conscious forest management and forestation planning should be adjusted to the local, projected hydrologic and climatic conditions, and should also consider non-forest alternative land uses.

  4. Riparian Zone Analysis for Forest Land Cover for the Conterminous US

    EPA Science Inventory

    One data layer describing the amount of forest land cover contained within a buffer area extending 30 meters to each side of all streams contained within the basin (Watershed Boundary Dataset (WBD) 12-digit Hydrologic Unit Code (HUC)) and from the edge of water bodies such as la...

  5. Changes in Patch Features May Exacerbate or Compensate for the Effect of Habitat Loss on Forest Bird Populations

    PubMed Central

    Magrach, Ainhoa; Larrinaga, Asier R.; Santamaría, Luis

    2011-01-01

    One and a half centuries after Darwin visited Chiloe Island, what he described as “…an island covered by one great forest…” has lost two-thirds of its forested areas. At this biodiversity hotspot, forest surface is becoming increasingly fragmented due to unregulated logging, clearing for pastures and replacement by exotic tree plantations. Decrease in patch size, increased isolation and “edge effects” can influence the persistence of forest species in remnant fragments. We assessed how these variables affect local density for six forest birds, chosen to include the most important seed dispersers (four species) and bird pollinators (two species, one of which acts also as seed disperser), plus the most common insectivore (Aphrastura spinicauda). Based on cue-count point surveys (8 points per fragment), we estimated bird densities for each species in 22 forest fragments of varying size, shape, isolation and internal-habitat structure (e.g. tree size and epiphyte cover). Bird densities varied with fragment connectivity (three species) and shape (three species), but none of the species was significantly affected by patch size. Satellite image analyses revealed that, from 1985 to 2008, forested area decreased by 8.8% and the remaining forest fragments became 16% smaller, 58–73% more isolated and 11–50% more regular. During that period, bird density estimates for the northern part of Chiloé (covering an area of 1214.75 km2) decreased for one species (elaenia), increased for another two (chucao and hummingbird) and did not vary for three (rayadito, thrust and blackbird). For the first three species, changes in patch features respectively exacerbated, balanced and overcame the effects of forest loss on bird population size (landscape-level abundance). Hence, changes in patch features can modulate the effect of habitat fragmentation on forest birds, suggesting that spatial planning (guided by spatially-explicit models) can be an effective tool to facilitate their conservation. PMID:21738723

  6. Feeding group responses of a Neotropical termite assemblage to rain forest fragmentation.

    PubMed

    Davies, Richard G

    2002-10-01

    Biomass collapse and its associated microclimatic stresses within recently isolated rain forest fragments may negatively affect species diversity of most resident taxa. However, for some decomposer organisms, increased resource availability via accompanying tree die-off may effect positive responses, at least for a time, with implications for rates of nutrient cycling and greenhouse gas release. This study investigates the early effects of forest fragmentation on a Neotropical termite assemblage. Numbers of encounters (surrogate for relative abundance) and species richness of wood and leaf-litter feeders, soil feeders, and the whole assemblage, were studied across true forest islands and mainland sites at a hydroelectric reservoir in French Guiana. Results showed no overall effect of fragmentation on either total termite encounters or species richness. However, numbers of encounters and species richness of wood and leaf-litter feeders showed positive responses to forest fragmentation. By contrast, soil feeders showed a negative response for numbers of encounters and no significant effect for species richness. Environmental data suggest that increased tree die-off, and other edge effects associated with biomass collapse, were underway at the time of sampling. Resulting increase in resource availability may therefore explain the positive influence on wood and leaf-litter feeders. A possible decrease in predation pressure from ants with decrease in island size was not tested for, but was a likely effect of the flooded matrix habitat. Fragmentation effects on soil feeder encounters may be due to the energetic and microclimatic constraints of feeding lower down the humification gradient of termite food substrates, but were not sufficient to affect species richness. The patterns revealed suggest that rates of wood decomposition following tree die-off, and of soil nutrient cycling, under different rain forest fragmentation scenarios, merit further study.

  7. Deforestation and Carbon Loss in Southwest Amazonia: Impact of Brazil's Revised Forest Code

    NASA Astrophysics Data System (ADS)

    Roriz, Pedro Augusto Costa; Yanai, Aurora Miho; Fearnside, Philip Martin

    2017-09-01

    In 2012 Brazil's National Congress altered the country's Forest Code, decreasing various environmental protections in the set of regulations governing forests. This suggests consequences in increased deforestation and emissions of greenhouse gases and in decreased protection of fragile ecosystems. To ascertain the effects, a simulation was run to the year 2025 for the municipality (county) of Boca do Acre, Amazonas state, Brazil. A baseline scenario considered historical behavior (which did not respect the Forest Code), while two scenarios considered full compliance with the old Forest Code (Law 4771/1965) and the current Code (Law 12,651/2012) regarding the protection of "areas of permanent preservation" (APPs) along the edges of watercourses. The models were parameterized from satellite imagery and simulated using Dinamica-EGO software. Deforestation actors and processes in the municipality were observed in loco in 2012. Carbon emissions and loss of forest by 2025 were computed in the three simulation scenarios. There was a 10% difference in the loss of carbon stock and of forest between the scenarios with the two versions of the Forest Code. The baseline scenario showed the highest loss of carbon stocks and the highest increase in annual emissions. The greatest damage was caused by not protecting wetlands and riparian zones.

  8. Deforestation and Carbon Loss in Southwest Amazonia: Impact of Brazil's Revised Forest Code.

    PubMed

    Roriz, Pedro Augusto Costa; Yanai, Aurora Miho; Fearnside, Philip Martin

    2017-09-01

    In 2012 Brazil's National Congress altered the country's Forest Code, decreasing various environmental protections in the set of regulations governing forests. This suggests consequences in increased deforestation and emissions of greenhouse gases and in decreased protection of fragile ecosystems. To ascertain the effects, a simulation was run to the year 2025 for the municipality (county) of Boca do Acre, Amazonas state, Brazil. A baseline scenario considered historical behavior (which did not respect the Forest Code), while two scenarios considered full compliance with the old Forest Code (Law 4771/1965) and the current Code (Law 12,651/2012) regarding the protection of "areas of permanent preservation" (APPs) along the edges of watercourses. The models were parameterized from satellite imagery and simulated using Dinamica-EGO software. Deforestation actors and processes in the municipality were observed in loco in 2012. Carbon emissions and loss of forest by 2025 were computed in the three simulation scenarios. There was a 10% difference in the loss of carbon stock and of forest between the scenarios with the two versions of the Forest Code. The baseline scenario showed the highest loss of carbon stocks and the highest increase in annual emissions. The greatest damage was caused by not protecting wetlands and riparian zones.

  9. Extracting Forest Canopy Characteristics from Remote Sensing Imagery: Implications for Sentinel-2 Mission

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Asa; Kopaekova, Veronika; Rogass, Christian; Mielke, Christian; Misurec, Jan

    2016-08-01

    Systematic quantification and monitoring of forest biophysical and biochemical variables is required to assess the response of ecosystems to climate change. Remote sensing has been introduced as a time and cost- efficient way to carry out large scale monitoring of vegetation parameters. Red-Edge Position (REP) is a hyperspectrally detectable parameter which is sensitive to vegetation Chl. In the current study, REP was modelled for the Norway spruce forest canopy resampled to HyMap and Sentinel-2 spectral resolution as well as calculated from the real HyMap and Sentinel-2 simulated data. Different REP extraction methods (4PLI, PF, LE, 4PLIH and 4PLIS) were assessed. The study showed the way for effective utilization of the forthcoming hyper and superspectral remote sensing sensors from orbit to monitor vegetation attributes.

  10. Using Landscape Analysis to Test Hypotheses about Drivers of Tick Abundance and Infection Prevalence with Borrelia burgdorferi.

    PubMed

    Ferrell, A Michelle; Brinkerhoff, R Jory

    2018-04-12

    Patterns of vector-borne disease risk are changing globally in space and time and elevated disease risk of vector-borne infection can be driven by anthropogenic modification of the environment. Incidence of Lyme disease, caused by the bacterium Borrelia burgdorferi sensu stricto, has risen in a number of locations in North America and this increase may be driven by spatially or numerically expanding populations of the primary tick vector, Ixodes scapularis . We used a model selection approach to identify habitat fragmentation and land-use/land cover variables to test the hypothesis that the amount and configuration of forest cover at spatial scales relevant to deer, the primary hosts of adult ticks, would be the predominant determinants of tick abundance. We expected that land cover heterogeneity and amount of forest edge, a habitat thought to facilitate deer foraging and survival, would be the strongest driver of tick density and that larger spatial scales (5-10 km) would be more important than smaller scales (1 km). We generated metrics of deciduous and mixed forest fragmentation using Fragstats 4.4 implemented in ArcMap 10.3 and found, after adjusting for multicollinearity, that total forest edge within a 5 km buffer had a significant negative effect on tick density and that the proportion of forested land cover within a 10 km buffer was positively associated with density of I. scapularis nymphs. None of the 1 km fragmentation metrics were found to significantly improve the fit of the model. Elevation, previously associated with increased density of I. scapularis nymphs in Virginia, while significantly predictive in univariate analysis, was not an important driver of nymph density relative to fragmentation metrics. Our results suggest that amount of forest cover (i.e., lack of fragmentation) is the most important driver of I. scapularis density in our study system.

  11. Mapping Vegetation Structure in Kakadu National Park: An AIRSAR and GIS Application in Conservation

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Sisk, Thomas D.; Hampton, Haydee; Milne, Anthony K.

    1999-01-01

    Airborne Synthetic Aperture Radar (AIRSAR) data were used to map vegetation structure in Kakadu National Park Australia as part of the PACRIM project. SAR data were co-registered with Landsat TM, aerial photos, and map data in a geographic information system for a small test area consisting of mangrove, floodplain grasslands, lowland tropical evergreen forest and upland mixed deciduous and evergreen tropical forest near the South Alligator River. Landsat (Thematic Mapper) TM very clearly showed the floristic composition and burn scars from the previous years fires and the AIRSAR data provided a profile of vegetation structure. Extensive field data on vegetation species composition and structure were collected across a series of transects in cooperation with a survey of avifauna in an effort to link the habitat edge structure with bird species responses. A test site was found that contained two types of habitat edges: 1) A structure specific edge - characterized by the appearance of a very strong structural change in the forest canopy occurring in the absence of a substantial turnover in floristics. 2) Floristic edge - a sharp transition in vegetation genetic composition with a mixed set of structural changes. Specific polarization combinations were selected that were highly correlated to a set of desired structural parameters found in the field data. Classification routines were employed to group radar pixels into 3 structural classes based on: the Surface Area to Volume ratio (SA/V) of the stems, the SA/V of the branches, and the leaf area index of the canopy. Separate canopy structure maps were then entered into the GIS and bird responses were observed relative to the classes and their boundaries. Follow-on work will consist of extending this approach to neighboring areas, generating structure maps, predicting bird responses across the edges, and make accuracy assessments.

  12. EnviroAtlas - Memphis, TN - Tree Cover Configuration and Connectivity, Water Background

    EPA Pesticide Factsheets

    This EnviroAtlas dataset categorizes forest land cover into structural elements (e.g. core, edge, connector, etc.). Forest is defined as Trees & Forest and Woody Wetlands. Water was considered background (value 129) during the analysis to create this dataset, however it has been converted into value 10 to distinguish it from land area background. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  13. Effects of exurban development and temperature on bird species in the southern Appalachians.

    PubMed

    Lumpkin, Heather A; Pearson, Scott M

    2013-10-01

    Land-use dynamics and climatic gradients have large effects on many terrestrial systems. Exurban development, one of the fastest growing forms of land use in the United States, may affect wildlife through habitat fragmentation and building presence may alter habitat quality. We studied the effects of residential development and temperature gradients on bird species occurrence at 140 study sites in the southern Appalachian Mountains (North Carolina, U.S.A.) that varied with respect to building density and elevation. We used occupancy models to determine 36 bird species' associations with building density, forest canopy cover, average daily mean temperature, and an interaction between building density and mean temperature. Responses varied with habitat requirement, breeding range, and migration distance. Building density and mean temperature were both included in the top occupancy models for 19 of 36 species and a building density by temperature interaction was included in models for 8 bird species. As exurban development expands in the southern Appalachians, interior forest species and Neotropical migrants are likely to decline, but shrubland or edge species are not likely to benefit. Overall, effects of building density were greater than those of forest canopy cover. Exurban development had a greater effect on birds at high elevations due to a greater abundance of sensitive forest-interior species and Neotropical migrants. A warming climate may exacerbate these negative effects. © 2013 Society for Conservation Biology.

  14. Turbulent Structures in a Pine Forest with a Deep and Sparse Trunk Space: Stand and Edge Regions

    NASA Astrophysics Data System (ADS)

    Dupont, Sylvain; Irvine, Mark R.; Bonnefond, Jean-Marc; Lamaud, Eric; Brunet, Yves

    2012-05-01

    Forested landscapes often exhibit large spatial variability in vertical and horizontal foliage distributions. This variability may affect canopy-atmosphere exchanges through its action on the development of turbulent structures. Here we investigate in neutral stratification the turbulent structures encountered in a maritime pine forest characterized by a high, dense foliated layer associated with a deep and sparse trunk space. Both stand and edge regions are considered. In situ measurements and the results of large-eddy simulations are used and analyzed together. In stand conditions, far from the edge, canopy-top structures appear strongly damped by the dense crown layer. Turbulent wind fluctuations within the trunk space, where the momentum flux vanishes, are closely related to these canopy-top structures through pressure diffusion. Consequently, autocorrelation and spectral analyses are not quite appropriate to characterize the vertical scale of coherent structures in this type of canopy, as pressure diffusion enhances the actual scale of structures. At frequencies higher than those associated with canopy-top structures, wind fluctuations related to wake structures developing behind tree stems are observed within the trunk space. They manifest themselves in wind velocity spectra as secondary peaks in the inertial subrange region, confirming the hypothesis of spectral short-cuts in vegetation canopies. In the edge region specific turbulent structures develop just below the crown layer, in addition to canopy-top structures. They are generated by the wind shear induced by the sub-canopy wind jet that forms at the edge. These structures provide a momentum exchange mechanism similar to that observed at the canopy top but in the opposite direction and with a lower magnitude. They may develop as in plane mixing-layer flows, with some perturbations induced by canopy-top structures. Wake structures are also observed within the trunk space in the edge region.

  15. Does landscape connectivity shape local and global social network structure in white-tailed deer?

    PubMed Central

    Koen, Erin L.; Tosa, Marie I.; Nielsen, Clayton K.; Schauber, Eric M.

    2017-01-01

    Intraspecific social behavior can be influenced by both intrinsic and extrinsic factors. While much research has focused on how characteristics of individuals influence their roles in social networks, we were interested in the role that landscape structure plays in animal sociality at both individual (local) and population (global) levels. We used female white-tailed deer (Odocoileus virginianus) in Illinois, USA, to investigate the potential effect of landscape on social network structure by weighting the edges of seasonal social networks with association rate (based on proximity inferred from GPS collar data). At the local level, we found that sociality among female deer in neighboring social groups (n = 36) was mainly explained by their home range overlap, with two exceptions: 1) during fawning in an area of mixed forest and grassland, deer whose home ranges had low forest connectivity were more social than expected; and 2) during the rut in an area of intensive agriculture, deer inhabiting home ranges with high amount and connectedness of agriculture were more social than expected. At the global scale, we found that deer populations (n = 7) in areas with highly connected forest-agriculture edge, a high proportion of agriculture, and a low proportion of forest tended to have higher weighted network closeness, although low sample size precluded statistical significance. This result implies that infectious disease could spread faster in deer populations inhabiting such landscapes. Our work advances the general understanding of animal social networks, demonstrating how landscape features can underlie differences in social behavior both within and among wildlife social networks. PMID:28306748

  16. Seasonal relationships between birds and arthropods in bottomland forest canopy gaps.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, Liessa, Thomas

    2004-12-31

    Bowen, Liessa, Thomas. 2004. Seasonal relationships between birds and arthropods in bottomland forest canopy gaps. PhD Dissertation. North Carolina State University. Raleigh, North Carolina. 98pp. I investigated the influence of arthropod availability and vegetation structure on avian habitat use at the center, edge, and adjacent to forest canopy gaps in 2001 and 2002. I used mist-netting and plot counts to estimate abundance of birds using three sizes (0.13, 0.26, and 0.5 ha) of 7-8 year old group-selection timber harvest openings during four seasons (spring migration, breeding, post-breeding, and fall migration) in a bottomland hardwood forest in the Upper Coastal Plainmore » of South Carolina. I used foliage clipping, Malaise trapping, and pitfall trapping to determine arthropod abundance within each habitat, and I used a warm water crop-flush on captured birds to gather information about arthropods eaten. I observed more birds, including forest interior species, forest-edge spedge species, and several individual species, in early-successional canopy gap and gap-edge habitats than in surrounding mature forest during all seasons. I found a significant interaction between season and habitat type for several groups and individual species, suggesting a seasonal shift in habitat use. Captures of all birds, insectivorous birds, foliage- gleaners, ground-gleaners, aerial salliers, Hooded Warbler (Wilsonia citrina), Northern Cardinal (Cardinalis cardinalis), White-eyed Vireo (Vireo griseus), and Black-throated Blue Warbler (Dendroica caerulescens) were positively correlated with understory vegetation density during two or more seasons. I found relationships between insectivorous birds and leaf-dwelling Lepidoptera, insectivorous birds and ground-dwelling arthropods, foliage-gleaning birds and foliage-dwelling arthropods, and aerial salliers and flying arthropods, as well as between individual bird species and arthropods. Relationships were inconsistent, however, with many species being negatively correlated with arthropod abundance. Coleopteran, Lepidopteran, and Aranid prey items represented the greatest proportions of crop-flush samples during all seasons. Proportional consumption of Coleopteran and Hemipteran prey items was higher than their proportional availability, and consumption of Aranid and Hymenopteran prey items was lower than their proportional availability during all seasons. Individual bird species and guilds consistently consumed similar proportions of certain groups of arthropods from spring through fall migration, with no apparent seasonal shift in diet composition. My research suggests that many species of birds selectively choose mid-successional gap and gap-edge habitat over surrounding mature forest during the non-breeding season, and the creation of small canopy gaps within a mature forest may increase local bird species richness. It is less obvious how arthropod availability affects bird habitat use across seasons. A structurally diverse mosaic of habitat types, including regenerating canopy gaps within a mature forest, may provide valuable habitat for birds and a variety of arthropod prey items across multiple seasons.« less

  17. Afforestation and forests at the dryland edges: Lessons learned and future outlooks

    Treesearch

    Csaba Mátyás; Ge Sun; Yaoqi Zhang

    2013-01-01

    In the Drylands of Northern China, such as the Loess Plateau region, a buffer zone of planted forests—a “Green Great Wall”—has been created in the last five decades. These government programs have often generated unintended environmental consequences, and have failed to achieve the desired benefits. Planted forests withhold erosion, dust storms and silting of streams...

  18. Herbivorous insect response to group selection cutting in a southeastern bottomland hardwood forest

    Treesearch

    Michael D. Ulyshen; James L. Hanula; Scott Horn; John C. Kilgo; Christopher E. Moorman

    2005-01-01

    Malaise and pitfall traps were used to sample herbivorous insects in canopy gaps created by group-selection cutting in a bottomland hardwood forest in South Carolina. The traps were placed at the centers, edges, and in the forest adjacent to gaps of different sizes (0.13, 0.26, and 0.50 ha) and ages (1 and 7 yr old) during four sampling periods in 2001. Overall, the...

  19. [Environmental variability and physiological responses from Polylepis cuadrijuga (Rosaceae) in a fragmented environment in the Páramo de la Rusia (Colombia].

    PubMed

    Ramos, Carolina; Buitrago, Sindy P; Pulido, Karen L; Vanegas, Leidy J

    2013-03-01

    Polylepis cuadrijuga is an endemic woody species from the Colombian Eastern range, being the only tree species with capacity to live on mountainous environments beyond 4 000m of altitude. Grazing and agriculture have transformed at least 30% of the Guantiva-La Rusia region, turning continuous extensions of high Andean forest in a fragmented landscape, and P cuadrijuga remnants have become smaller and more isolated. The aim of this study was to establish the environmental differences between a matrix of grazing pastures and the interior of fragments, to evaluate the physiological responses of P cuadrijuga and determining the edge effect. Air temperature and humidity, soil water holding capacity and photosynthetic active radiation, were measured along two 50X2m transects from the matrix toward the center of fragment. Six trees inside the transects were chosen in each one of three sites (matrix, edge and interior) to measure the index chlorophyll content and to sample leaves to assess the leaf area, leaf biomass, specific leaf area, anatomy, health condition and pubescence. Results showed significantly differences between the matrix and the interior and intermediate conditions in the edge. Radiation, temperature and air desiccation were higher in the matrix than in the interior, submitting P cuadrijuga trees to a stressing environment, where they presented stratification of epidermis and palisade parenchyma, and a higher leaf area, leaf thickness, chlorophyll content and pubescence than in the interior of fragments. All these physiological traits allow avoiding the photoxidation and damages by freezing or desiccation to which trees are exposed in a grazing pasture matrix. Nevertheless, there was a higher frequency of healthy leaves in the interior of fragments, showing that high irradiations and extreme air temperature and humidity reach adversely affect to P cuadrijuga. Individuals in the edge had ecophysiological traits similar to the matrix ones, which confirm an edge effect that could penetrate 17m inside the fragments. We conclude that P cuadrijuga is a plastic species, able to overcome the stress conditions from anthropogenic transformations, species able to be used in high Andean forest restoration programs

  20. Integration of adaptive guided filtering, deep feature learning, and edge-detection techniques for hyperspectral image classification

    NASA Astrophysics Data System (ADS)

    Wan, Xiaoqing; Zhao, Chunhui; Gao, Bing

    2017-11-01

    The integration of an edge-preserving filtering technique in the classification of a hyperspectral image (HSI) has been proven effective in enhancing classification performance. This paper proposes an ensemble strategy for HSI classification using an edge-preserving filter along with a deep learning model and edge detection. First, an adaptive guided filter is applied to the original HSI to reduce the noise in degraded images and to extract powerful spectral-spatial features. Second, the extracted features are fed as input to a stacked sparse autoencoder to adaptively exploit more invariant and deep feature representations; then, a random forest classifier is applied to fine-tune the entire pretrained network and determine the classification output. Third, a Prewitt compass operator is further performed on the HSI to extract the edges of the first principal component after dimension reduction. Moreover, the regional growth rule is applied to the resulting edge logical image to determine the local region for each unlabeled pixel. Finally, the categories of the corresponding neighborhood samples are determined in the original classification map; then, the major voting mechanism is implemented to generate the final output. Extensive experiments proved that the proposed method achieves competitive performance compared with several traditional approaches.

  1. Agricultural Intensification Exacerbates Spillover Effects on Soil Biogeochemistry in Adjacent Forest Remnants

    PubMed Central

    Didham, Raphael K.; Barker, Gary M.; Bartlam, Scott; Deakin, Elizabeth L.; Denmead, Lisa H.; Fisk, Louise M.; Peters, Jennifer M. R.; Tylianakis, Jason M.; Wright, Hannah R.; Schipper, Louis A.

    2015-01-01

    Land-use intensification is a central element in proposed strategies to address global food security. One rationale for accepting the negative consequences of land-use intensification for farmland biodiversity is that it could ‘spare’ further expansion of agriculture into remaining natural habitats. However, in many regions of the world the only natural habitats that can be spared are fragments within landscapes dominated by agriculture. Therefore, land-sparing arguments hinge on land-use intensification having low spillover effects into adjacent protected areas, otherwise net conservation gains will diminish with increasing intensification. We test, for the first time, whether the degree of spillover from farmland into adjacent natural habitats scales in magnitude with increasing land-use intensity. We identified a continuous land-use intensity gradient across pastoral farming systems in New Zealand (based on 13 components of farmer input and soil biogeochemistry variables), and measured cumulative off-site spillover effects of fertilisers and livestock on soil biogeochemistry in 21 adjacent forest remnants. Ten of 11 measured soil properties differed significantly between remnants and intact-forest reference sites, for both fenced and unfenced remnants, at both edge and interior. For seven variables, the magnitude of effects scaled significantly with magnitude of surrounding land-use intensity, through complex interactions with fencing and edge effects. In particular, total C, total N, δ15N, total P and heavy-metal contaminants of phosphate fertilizers (Cd and U) increased significantly within remnants in response to increasing land-use intensity, and these effects were exacerbated in unfenced relative to fenced remnants. This suggests movement of livestock into surrounding natural habitats is a significant component of agricultural spillover, but pervasive changes in soil biogeochemistry still occur through nutrient spillover channels alone, even in fenced remnants set aside for conservation. These results have important implications for the viability of land-sparing as a strategy for balancing landscape-level conservation and production goals in agricultural landscapes. PMID:25575017

  2. The emergence densities of annual cicadas (Hemiptera: Cicadidae) increase with sapling density and are greater near edges in a bottomland hardwood forest.

    PubMed

    Chiavacci, Scott J; Bednarz, James C; McKay, Tanja

    2014-08-01

    The emergence densities of cicadas tend to be patchy at multiple spatial scales. While studies have identified habitat conditions related to these patchy distributions, their interpretation has been based primarily on periodical cicada species; habitat factors associated with densities of nonperiodical (i.e., annual) cicadas have remained under studied. This is despite their widespread distribution, diversity, and role as an important trophic resource for many other organisms, particularly within riparian areas. We studied habitat factors associated with the emergence densities of Tibicen spp. in a bottomland hardwood forest in east-central Arkansas. We found emergence densities were greatest in areas of high sapling densities and increased toward forest edges, although sapling density was a much stronger predictor of emergence density. Emergence densities also differed among sample areas within our study system. The habitat features predicting nymph densities were likely driven by a combination of factors affecting female selection of oviposition sites and the effects of habitat conditions on nymph survival. The differences in nymph densities between areas of our system were likely a result of the differential effects of flooding in these areas. Interestingly, our findings were similar to observations of periodical species, suggesting that both types of cicadas select similar habitat characteristics for ovipositing or are under comparable selective pressures during development. Our findings also imply that changes in habitat characteristics because of anthropogenically altered disturbance regimes (e.g., flooding) have the potential to negatively impact both periodical and annual species, which could have dramatic consequences for organisms at numerous trophic levels.

  3. Insights into the Vitis complex in the Danube floodplain (Austria).

    PubMed

    Arnold, Claire; Bachmann, Olivier; Schnitzler, Annik

    2017-10-01

    European grapevine populations quickly disappeared from most of their range, massively killed by the spread of North American grapevine pests and diseases. Nowadays taxonomic pollution represents a new threat. A large Vitis complex involves escaped cultivars, rootstocks, and wild grapevines. The study aimed to provide insight into the Vitis complex in the Danube region through field and genetic analyses. Among the five other major rivers in Europe which still host wild grapevine populations, the Danube floodplain is the only one benefiting from an extensive protected forest area (93 km²) and an relatively active dynamic flood pulse. The Donau-Auen National Park also regroups the largest wild grapevine population in Europe. Ninety-two percent of the individuals collected in the park were true wild grapevines, and 8% were hybrids and introgressed individuals of rootstocks, wild grapevines, and cultivars. These three groups are interfertile acting either as pollen donor or receiver. Hybrids were established within and outside the dykes, mostly in anthropized forest edges. The best-developed individuals imply rootstock genes. They establish in the most erosive parts of the floodplain. 42% of the true wild grapevines lived at the edges of forest/meadow, 33.3% at the edges forest/channels, and 23.9% in forest gaps. DBH (Diameter Breast Height) varied significantly with the occurrence of flooding. Clones were found in both true wild and hybrids/introgressed grapevines. The process of cloning seemed to be prevented in places where flooding dynamics is reduced. The current global distribution of true wild grapevines shows a strong tendency toward clustering, in sites where forestry practices were the most extensive. However, the reduced flooding activity is a danger for long-term sustainability of the natural wild grapevine population.

  4. Habitat characterization of western hoolock gibbons Hoolock hoolock by examining home range microhabitat use.

    PubMed

    Akers, Alice A; Anwarul Islam, Md; Nijman, Vincent

    2013-10-01

    Conserving a species depends on an understanding of its habitat requirements. Primatologists often characterize the habitat requirements of primates using macroscale population-based approaches relying on correlations between habitat attributes and population abundances between sites with varying levels of disturbance. This approach only works for species spread between several populations. The populations of some primates do not fulfill these criteria, forcing researchers to rely on individual-based (microscale) rather than population-based approaches for habitat characterization. We examined the reliability of using micro-scale habitat characterizations by studying the microhabitat preferences of a group of wild western hoolock gibbons (Hoolock hoolock) in order to compare our results to the habitat preferences of western hoolock gibbons identified during a macroscale study of populations across Bangladesh. We used stepwise discriminant analysis to differentiate between the areas of low, medium, and high usage based on microhabitat characteristics (tree species availability, altitude, canopy connection, distance from forest edge, and levels of human disturbance). The gibbons used interior forest habitat with low food tree availability most frequently for sleeping and socializing, and used edge habitat containing high food tree availability for medium periods for feeding. These results indicate that the gibbons prefer interior forest but are frequently forced to visit the forest edge to feed. Therefore, the optimal habitat would be interior forest away from human disturbance with high sleeping-tree and feeding-tree availability. These habitat preferences are consistent with the habitat attributes of Bangladesh's largest remaining western hoolock gibbon populations, which live in areas containing low agricultural encroachment and high food-tree availability. Microhabitat use studies can be used to characterize the habitat requirements of a species, but should include multiple scales of analysis wherever possible.

  5. Forest resources of southwest Alabama

    Treesearch

    I.F. Eldredge

    1938-01-01

    An area of about 8 million acres in southwest Alabama, extending from the Gulf of Mexico northward into the western edge of the Black Belt Prairie, includes two Forest survey Unites: Alabama #1 (the southern part of the area, with Covington, Escambia, Baldwin, Mobile, and Washington Counties), and Alabama #2 (the northern part, with Sumter, Coctaw, Marengo, Wilcox,...

  6. Plantings for wildlife

    Treesearch

    Samuel B. Kirby; Claude L. Ponder; Donald J. Smith

    1989-01-01

    Grains, forages, and other vegetation can be planted to provide critical habitat for desired wildlife species or to increase habitat diversity. Plantings may be in openings created in the forest (see Note 9.11 Wildlife Openings) or along the forest edge in cultivated or pastured fields if protected from domestic livestock. The first step in determining if and what type...

  7. Songbird use of regenerating forest, glade, and edge habitat types

    Treesearch

    Alix D. Fink; Frank R., III Thompson; April A. Tudor

    2006-01-01

    Population numbers of many bird species associated with early-successional or disturbance-dependent habitat types are declining. We used an information-theoretic approach to evaluate hypotheses concerning factors affecting breeding bird densities in different early-successional habitat types. We studied shrubland bird communities in 3- to 5-year-old regenerating forest...

  8. The optimization of edge and line detectors for forest image analysis

    Treesearch

    Zhiling Long; Joseph Picone; Victor A. Rudis

    2000-01-01

    Automated image analysis for forestry applications is becoming increasingly important with the rapid evolution of satellite and land-based remote imaging industries. Features derived from line information play a very important role in analyses of such images. Many edge and line detection algorithms have been proposed but few, if any, comprehensive studies exist that...

  9. Spectral characterization of forest damage occurring on Whiteface Mountain, NY - Studies with the Fluorescence Line Imager (FLI) and ground-based spectrometers

    NASA Technical Reports Server (NTRS)

    Rock, B. N.; Moss, D. M.; Miller, J. R.; Freemantle, J. R.; Boyer, M. G.

    1990-01-01

    Ground-based spectral characteristics of fir wave damage and an analysis of calibrated FLI data acquired along the same fir wave utilized for the in situ measurements are presented. Derivative curve data were produced from both in situ and FLI reflectance measurements for the red edge spectral region for birch and for various portions of a fir wave. The results suggested that with proper atmospheric correction of airborne imaging spectrometer data sets, the derivative curve approach will provide an accurate means of assessing red edge parameters, and that such data will permit identification of specific types of forest damage on the basis of spectral fine features.

  10. The response of ground beetles (Coleoptera: Carabidae) to selection cutting in a South Carolina bottomland hardwood forest

    Treesearch

    Michael D. Ulyshen; James L. Hanula; Scott Horn; John C. Kilgo; Christopher E. Moorman

    2005-01-01

    We compared the response of ground beetles (Coleoptera: Carabidae) to the creation of canopy gaps of different size (0.13, 0.26, and 0.50 ha) and age (1 and 7 years) in a bottomland hardwood forest (South Carolina, USA). Samples were collected four times in 2001 by malaise and pitfall traps placed at the center and edge of each gap, and 50 m into the surrounding forest...

  11. The role of Phragmites australis in mediating inland salt marsh migration in a Mid-Atlantic estuary.

    PubMed

    Smith, Joseph A M

    2013-01-01

    Many sea level rise adaptation plans emphasize the protection of adjacent uplands to allow for inland salt marsh migration, but little empirical information exists on this process. Using aerial photos from 1930 and 2006 of Delaware Estuary coastal habitats in New Jersey, I documented the rate of coastal forest retreat and the rate of inland salt marsh migration across 101.1 km of undeveloped salt marsh and forest ecotone. Over this time, the amount of forest edge at this ecotone nearly doubled. In addition, the average amount of forest retreat was 141.2 m while the amount of salt marsh inland migration was 41.9 m. Variation in forest retreat within the study area was influenced by variation in slope. The lag between the amount of forest retreat and salt marsh migration is accounted for by the presence of Phragmites australis which occupies the forest and salt marsh ecotone. Phragmites expands from this edge into forest dieback areas, and the ability of salt marsh to move inland and displace Phragmites is likely influenced by salinity at both an estuary-wide scale and at the scale of local subwatersheds. Inland movement of salt marsh is lowest at lower salinity areas further away from the mouth of the estuary and closer to local heads of tide. These results allow for better prediction of salt marsh migration in estuarine landscapes and provide guidance for adaptation planners seeking to prioritize those places with the highest likelihood of inland salt marsh migration in the near-term.

  12. Fragmentation increases wind disturbance impacts on forest structure and carbon stocks in a western Amazonian landscape.

    PubMed

    Schwartz, Naomi B; Uriarte, María; DeFries, Ruth; Bedka, Kristopher M; Fernandes, Katia; Gutiérrez-Vélez, Victor; Pinedo-Vasquez, Miguel A

    2017-09-01

    Tropical second-growth forests could help mitigate climate change, but the degree to which their carbon potential is achieved will depend on exposure to disturbance. Wind disturbance is common in tropical forests, shaping structure, composition, and function, and influencing successional trajectories. However, little is known about the impacts of extreme winds on second-growth forests in fragmented landscapes, though these ecosystems are often located in mosaics of forest, pasture, cropland, and other land cover types. Indirect evidence suggests that fragmentation increases risk of wind damage in tropical forests, but no studies have found such impacts following severe storms. In this study, we ask whether fragmentation and forest type (old vs. second growth) were associated with variation in wind damage after a severe convective storm in a fragmented production landscape in western Amazonia. We applied linear spectral unmixing to Landsat 8 imagery from before and after the storm, and combined it with field observations of damage to map wind effects on forest structure and biomass. We also used Landsat 8 imagery to map land cover with the goals of identifying old- and second-growth forest and characterizing fragmentation. We used these data to assess variation in wind disturbance across 95,596 ha of forest, distributed over 6,110 patches. We find that fragmentation is significantly associated with wind damage, with damage severity higher at forest edges and in edgier, more isolated patches. Damage was also more severe in old-growth than in second-growth forests, but this effect was weaker than that of fragmentation. These results illustrate the importance of considering landscape context in planning tropical forest restoration and natural regeneration projects. Assessments of long-term carbon sequestration potential need to consider spatial variation in disturbance exposure. Where risk of extreme winds is high, minimizing fragmentation and isolation could increase carbon sequestration potential. © 2017 by the Ecological Society of America.

  13. The impact of forest structure and spatial scale on the relationship between ground plot above ground biomass and GEDI lidar waveforms

    NASA Astrophysics Data System (ADS)

    Armston, J.; Marselis, S.; Hancock, S.; Duncanson, L.; Tang, H.; Kellner, J. R.; Calders, K.; Disney, M.; Dubayah, R.

    2017-12-01

    The NASA Global Ecosystem Dynamics Investigation (GEDI) will place a multi-beam waveform lidar instrument on the International Space Station (ISS) to provide measurements of forest vertical structure globally. These measurements of structure will underpin empirical modelling of above ground biomass density (AGBD) at the scale of individual GEDI lidar footprints (25m diameter). The GEDI pre-launch calibration strategy for footprint level models relies on linking AGBD estimates from ground plots with GEDI lidar waveforms simulated from coincident discrete return airborne laser scanning data. Currently available ground plot data have variable and often large uncertainty at the spatial resolution of GEDI footprints due to poor colocation, allometric model error, sample size and plot edge effects. The relative importance of these sources of uncertainty partly depends on the quality of ground measurements and region. It is usually difficult to know the magnitude of these uncertainties a priori so a common approach to mitigate their influence on model training is to aggregate ground plot and waveform lidar data to a coarser spatial scale (0.25-1ha). Here we examine the impacts of these principal sources of uncertainty using a 3D simulation approach. Sets of realistic tree models generated from terrestrial laser scanning (TLS) data or parametric modelling matched to tree inventory data were assembled from four contrasting forest plots across tropical rainforest, deciduous temperate forest, and sclerophyll eucalypt woodland sites. These tree models were used to simulate geometrically explicit 3D scenes with variable tree density, size class and spatial distribution. GEDI lidar waveforms are simulated over ground plots within these scenes using monte carlo ray tracing, allowing the impact of varying ground plot and waveform colocation error, forest structure and edge effects on the relationship between ground plot AGBD and GEDI lidar waveforms to be directly assessed. We quantify the sensitivity of calibration equations relating GEDI lidar structure measurements and AGBD to these factors at a range of spatial scales (0.0625-1ha) and discuss the implications for the expanding use of existing in situ ground plot data by GEDI.

  14. Queensland, Australia

    NASA Image and Video Library

    1994-09-30

    STS068-253-045 (30 September-11 October 1994) --- Forest fires in southeastern Queensland, Australia. The smoke is blowing to the east. This is the southeastern edge of the Darling Downs, a wheat-growing and sheep pasture region just west of the Great Dividing Range, southwest of Brisbane. An extensive summer drought made the forests of the range highly susceptible to wildfire.

  15. Anthropogenic fire history and red oak forests in south-central Ontario

    Treesearch

    Daniel C. Dey; Richard P. Guyette

    2000-01-01

    The regeneration and dominance of northern red oak (Quercus rubra L.) has been associated with fire throughout eastern North America. Red oak in central Ontario grows near the northern edge of its distribution in mixed hardwood - coniferous forests under mesic conditions where it competes with more shade-tolerant species. We hypothesized that the...

  16. Ecology and management of aspen: A Lake States perspective

    Treesearch

    David T. Cleland; Larry A. Leefers; Donald I. Dickmann

    2001-01-01

    Aspen has been an ecologically important, though relatively minor, component of the Lake States (Michigan, Wisconsin, and Minnesota) forests for millennia. General Land Office records from the 1800s indicate that aspen comprised a small fraction of the region's eastern forests, but was more extensive on the western edge. Then Euro-American settlement in the 1800s...

  17. Pervasive Defaunation of Forest Remnants in a Tropical Biodiversity Hotspot

    PubMed Central

    Canale, Gustavo R.; Peres, Carlos A.; Guidorizzi, Carlos E.; Gatto, Cassiano A. Ferreira; Kierulff, Maria Cecília M.

    2012-01-01

    Tropical deforestation and forest fragmentation are among the most important biodiversity conservation issues worldwide, yet local extinctions of millions of animal and plant populations stranded in unprotected forest remnants remain poorly explained. Here, we report unprecedented rates of local extinctions of medium to large-bodied mammals in one of the world's most important tropical biodiversity hotspots. We scrutinized 8,846 person-years of local knowledge to derive patch occupancy data for 18 mammal species within 196 forest patches across a 252,669-km2 study region of the Brazilian Atlantic Forest. We uncovered a staggering rate of local extinctions in the mammal fauna, with only 767 from a possible 3,528 populations still persisting. On average, forest patches retained 3.9 out of 18 potential species occupancies, and geographic ranges had contracted to 0–14.4% of their former distributions, including five large-bodied species that had been extirpated at a regional scale. Forest fragments were highly accessible to hunters and exposed to edge effects and fires, thereby severely diminishing the predictive power of species-area relationships, with the power model explaining only ∼9% of the variation in species richness per patch. Hence, conventional species-area curves provided over-optimistic estimates of species persistence in that most forest fragments had lost species at a much faster rate than predicted by habitat loss alone. PMID:22905103

  18. Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data

    NASA Astrophysics Data System (ADS)

    Ramoelo, Abel; Cho, M. A.; Mathieu, R.; Madonsela, S.; van de Kerchove, R.; Kaszta, Z.; Wolff, E.

    2015-12-01

    Land use and climate change could have huge impacts on food security and the health of various ecosystems. Leaf nitrogen (N) and above-ground biomass are some of the key factors limiting agricultural production and ecosystem functioning. Leaf N and biomass can be used as indicators of rangeland quality and quantity. Conventional methods for assessing these vegetation parameters at landscape scale level are time consuming and tedious. Remote sensing provides a bird-eye view of the landscape, which creates an opportunity to assess these vegetation parameters over wider rangeland areas. Estimation of leaf N has been successful during peak productivity or high biomass and limited studies estimated leaf N in dry season. The estimation of above-ground biomass has been hindered by the signal saturation problems using conventional vegetation indices. The objective of this study is to monitor leaf N and above-ground biomass as an indicator of rangeland quality and quantity using WorldView-2 satellite images and random forest technique in the north-eastern part of South Africa. Series of field work to collect samples for leaf N and biomass were undertaken in March 2013, April or May 2012 (end of wet season) and July 2012 (dry season). Several conventional and red edge based vegetation indices were computed. Overall results indicate that random forest and vegetation indices explained over 89% of leaf N concentrations for grass and trees, and less than 89% for all the years of assessment. The red edge based vegetation indices were among the important variables for predicting leaf N. For the biomass, random forest model explained over 84% of biomass variation in all years, and visible bands including red edge based vegetation indices were found to be important. The study demonstrated that leaf N could be monitored using high spatial resolution with the red edge band capability, and is important for rangeland assessment and monitoring.

  19. Intergalactic Helium Absorption toward High-Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Giroux, Mark L.; Fardal, Mark A.; Shull, J. Michael

    1995-01-01

    The recent Hubble Space Telescope (HST) observations of the z(q) = 3.286 quasar Q0302-003 (Jakobsen et at. 1994) and the z(q) = 3.185 quasar Q1935-67 by Tytler (1995) show absorption edges at the redshifted wavelength of He II 304 A. A key goal is to distinguish between contributions from discrete Ly-alpha forest clouds and a smoothly distributed intergalactic medium (IGM). We model the contributions from each of these sources of He II absorption, including the distribution of line Doppler widths and column densities, the 'He II proximity effect' from the quasar, and a self-consistent derivation of the He II opacity of the universe as a function of the spectrum of ionizing sources, with the assumption that both the clouds and the IGM are photoionized. The He II edge can be fully accounted for by He II line blanketing for reasonable distributions of line widths and column densities in the Ly-alpha forest, provided that the ionizing sources have spectral index alpha(s) greater than 1.5, and any He II proximity effect is neglected. Even with some contribution from a diffuse IGM, it is difficult to account for the edge observed by Jakobsen et al. (1994) with a 'hard' source spectrum (alpha(s) less than 1.3). The proximity effect modifies the relative contributions of the clouds and IGM to tau(He II) near the quasar (z approx. less than z(q)) and markedly increases the amount of He II absorption required. This implies, for example, that to account for the He II edge with line blanketing alone, the minimum spectral index alpha(s) must be increased from 1.5 to 1.9. We demonstrate the need for higher resolution observations that characterize the change in transmission as z approaches z(q) and resolve line-free gaps in the continuum. We set limits on the density of the diffuse IGM and suggest that the IGM and Ly-alpha clouds are likely to be a significant repository for dark baryons.

  20. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia

    PubMed Central

    2015-01-01

    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments. PMID:26132139

  1. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia.

    PubMed

    Benchimol, Maíra; Peres, Carlos A

    2015-01-01

    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments.

  2. 1997 Hardwood Research Award Winner: "Automatic Color Sorting of Hardwood Edge-Glued Panel Parts"

    Treesearch

    D. Earl Kline; Richard Conners; Qiang Lu; Philip A. Araman

    1997-01-01

    The National Hardwood Lumber Association's 1997 Hardwood Research Award was presented to D. Earl Kline, Richard Conners, Qiang Lu and Philip Araman at the 25th Annual Hardwood Symposium for developing an automatic system for color sorting hardwood edge-glued panel parts. The researchers comprise a team from Virginia Tech University and the USDA Forest Service in...

  3. Forest Edge Regrowth Typologies in Southern Sweden-Relationship to Environmental Characteristics and Implications for Management.

    PubMed

    Wiström, Björn; Busse Nielsen, Anders

    2017-07-01

    After two major storms, the Swedish Transport Administration was granted permission in 2008 to expand the railroad corridor from 10 to 20 m from the rail banks, and to clear the forest edges in the expanded area. In order to evaluate the possibilities for managers to promote and control the species composition of the woody regrowth so that a forest edge with a graded profile develops over time, this study mapped the woody regrowth and environmental variables at 78 random sites along the 610-km railroad between Stockholm and Malmö four growing seasons after the clearing was implemented. Through different clustering approaches, dominant tree species to be controlled and future building block species for management were identified. Using multivariate regression trees, the most decisive environmental variables were identified and used to develop a regrowth typology and to calculate species indicator values. Five regrowth types and ten indicator species were identified along the environmental gradients of soil moisture, soil fertility, and altitude. Six tree species dominated the regrowth across the regrowth types, but clustering showed that if these were controlled by selective thinning, lower tree and shrub species were generally present so they could form the "building blocks" for development of a graded edge. We concluded that selective thinning targeted at controlling a few dominant tree species, here named Functional Species Control, is a simple and easily implemented management concept to promote a wide range of suitable species, because it does not require field staff with specialist taxonomic knowledge.

  4. Multitemporal analysis of forest fragmentation in Hindu Kush Himalaya-a case study from Khangchendzonga Biosphere Reserve, Sikkim, India.

    PubMed

    Sharma, Mohit; Areendran, G; Raj, Krishna; Sharma, Ankita; Joshi, P K

    2016-10-01

    Forests in the mountains are a treasure trove; harbour a large biodiversity; and provide fodder, firewood, timber and non-timber forest products; all of these are essential for human survival in the highest mountains on earth. The present paper attempts a spatiotemporal assessment of forest fragmentation and changes in land use land cover (LULC) pattern using multitemporal satellite data over a time span of around a decade (2000-2009), within the third highest protected area (PA) in the world. The fragmentation analysis using Landscape Fragmentation Tool (LFT) depicts a decrease in large core, edge and patches areas by 5.93, 3.64 and 0.66 %, respectively, while an increase in non-forest and perforated areas by 6.59 and 4.01 %, respectively. The land cover dynamics shows a decrease in open forest, alpine scrub, alpine meadows, snow and hill shadow areas by 2.81, 0.39, 8.18, 3.46 and 0.60 %, respectively, and there is an increase in dense forest and glacier area by 4.79 and 10.65 %, respectively. The change analysis shows a major transformation in areas from open forest to dense forest and from alpine meadows to alpine scrub. In order to quantify changes induced by forest fragmentation and to characterize composition and configuration of LULC mosaics, fragmentation indices were computed using Fragstats at class level, showing the signs of accelerated fragmentation. The outcome of the analysis revealed the effectiveness of geospatial tools coupled with landscape ecology in characterization and quantification of forest fragmentation and land cover changes. The present study provides a baseline database for sustainable conservation planning that will benefit the subsistence livelihoods in the region. Recommendations made based on the present analysis will help to recover forest and halt the pessimistic effects of fragmentation and land cover changes on biodiversity and ecosystem services in the region.

  5. All Conservation Opportunity Areas (ECO.RES.ALL_OP_AREAS)

    EPA Pesticide Factsheets

    The All_OP_Areas GIS layer are all the Conservation Opportunity Areas identified by MoRAP (produced for EPA Region 7). They designate areas with potential for forest, grassland and forest/grassland mosaic conservation. These are areas of natural or semi-natural forest land cover that are at least 75 meters away from roads and away from patch edges. OAs were modeled by creating distance grids using the National Land Cover Database and the Census Bureau's TIGER roads files.

  6. Are ungulates in forests concerns or key species for conservation and biodiversity? Reply to Boulanger et al. (DOI: 10.1111/gcb.13899).

    PubMed

    Fløjgaard, Camilla; Bruun, Hans Henrik; Hansen, Morten D D; Heilmann-Clausen, Jacob; Svenning, Jens-Christian; Ejrnaes, Rasmus

    2018-03-01

    Increasing species richness of light demanding species in forests may not be a conservation concern if we accept a macroecological and evolutionary baseline for biodiversity. Most of the current biodiversity in Europe has evolved in the Pleistocene or earlier, and in ecosystems markedly influenced by dynamic natural processes, including grazing. Many threatened species are associated with high-light forest environments such as forest glades and edges, as these have strongly declined at least partially due to the decline of large herbivores in European forests. Hence, moderate grazing in forests should be an ecological baseline and conservation target rather than a concern. © 2017 John Wiley & Sons Ltd.

  7. Habitat selection of a large carnivore along human-wildlife boundaries in a highly modified landscape.

    PubMed

    Takahata, Chihiro; Nielsen, Scott Eric; Takii, Akiko; Izumiyama, Shigeyuki

    2014-01-01

    When large carnivores occupy peripheral human lands conflict with humans becomes inevitable, and the reduction of human-carnivore interactions must be the first consideration for those concerned with conflict mitigation. Studies designed to identify areas of high human-bear interaction are crucial for prioritizing management actions. Due to a surge in conflicts, against a background of social intolerance to wildlife and the prevalent use of lethal control throughout Japan, Asiatic black bears (Ursus thibetanus) are now threatened by high rates of mortality. There is an urgent need to reduce the frequency of human-bear encounters if bear populations are to be conserved. To this end, we estimated the habitats that relate to human-bear interactions by sex and season using resource selection functions (RSF). Significant seasonal differences in selection for and avoidance of areas by bears were estimated by distance-effect models with interaction terms of land cover and sex. Human-bear boundaries were delineated on the basis of defined bear-habitat edges in order to identify areas that are in most need of proactive management strategies. Asiatic black bears selected habitats in close proximity to forest edges, forest roads, rivers, and red pine and riparian forests during the peak conflict season and this was correctly predicted in our human-bear boundary maps. Our findings demonstrated that bears selected abandoned forests and agricultural lands, indicating that it should be possible to reduce animal use near human lands by restoring season-specific habitat in relatively remote areas. Habitat-based conflict mitigation may therefore provide a practical means of creating adequate separation between humans and these large carnivores.

  8. Effects of landscape composition and wetland fragmentation on frog and toad abundance and species richness in Iowa and Wisconsin, USA

    USGS Publications Warehouse

    Knutson, M.G.; Sauer, J.R.; Olsen, D.A.; Mossman, M.J.; Hemesath, L.M.; Lannoo, M.J.

    1999-01-01

    Management of amphibian populations to reverse recent declines will require defining high-quality habitat for individual species or groups of species, followed by efforts to retain or restore these habitats on the landscape. We examined landscape-level habitat relationships for frogs and toads by measuring associations between relative abundance and species richness based on survey data derived from anuran calls and features of land-cover maps for Iowa and Wisconsin. The most consistent result across all anuran guilds was a negative association with the presence of urban land. Upland and wetland forests and emergent wetlands tended to be positively associated with anurans. Landscape metrics that represent edges and patch diversity also had generally positive associations, indicating that anurans benefit from a complex of habitats that include wetlands. In Iowa the most significant associations with relative abundance were the length of the edge between wetland and forest (positive) and the presence of urban land (negative). In Wisconsin the two most significant associations with relative abundance were forest area and agricultural area (both positive). Anurans had positive associations with agriculture in Wisconsin but not in Iowa. Remnant forest patches in agricultural landscapes may be providing refuges for some anuran species. Differences in anuran associations with deep water and permanent wetlands between the two states suggest opportunities for management action. Large-scale maps can contribute to predictive models of amphibian habitat use, but water quality and vegetation information collected from individual wetlands will likely be needed to strengthen those predictions. Landscape habitat analyses provide a framework for future experimental and intensive research on specific factors affecting the health of anurans.

  9. Effects of landscape composition and wetland fragmentation on frog and toad abundance and species richness in Iowa and Wisconsin, U.S.A

    USGS Publications Warehouse

    Knutson, Melinda G.; Sauer, John R.; Olsen, Douglas A.; Mossman, Michael J.; Hemesath, Lisa M.; Lannoo, Michael J.

    1999-01-01

    Management of amphibian populations to reverse recent declines will require defining high-quality habitat for individual species or groups of species, followed by efforts to retain or restore these habitats on the landscape. We examined landscape-level habitat relationships for frogs and toads by measuring associations between relative abundance and species richness based on survey data derived from anuran calls and features of land-cover maps for Iowa and Wisconsin. The most consistent result across all anuran guilds was a negative association with the presence of urban land. Upland and wetland forests and emergent wetlands tended to be positively associated with anurans. Landscape metrics that represent edges and patch diversity also had generally positive associations, indicating that anurans benefit from a complex of habitats that include wetlands. In Iowa the most significant associations with relative abundance were the length of the edge between wetland and forest ( positive) and the presence of urban land (negative). In Wisconsin the two most significant associations with relative abundance were forest area and agricultural area ( both positive). Anurans had positive associations with agriculture in Wisconsin but not in Iowa. Remnant forest patches in agricultural landscapes may be providing refuges for some anuran species. Differences in anuran associations with deep water and permanent wetlands between the two states suggest opportunities for management action. Large-scale maps can contribute to predictive models of amphibian habitat use, but water quality and vegetation information collected from individual wetlands will likely be needed to strengthen those predictions. Landscape habitat analyses provide a framework for future experimental and intensive research on specific factors affecting the health of anurans.

  10. Habitat Selection of a Large Carnivore along Human-Wildlife Boundaries in a Highly Modified Landscape

    PubMed Central

    Takahata, Chihiro; Nielsen, Scott Eric; Takii, Akiko; Izumiyama, Shigeyuki

    2014-01-01

    When large carnivores occupy peripheral human lands conflict with humans becomes inevitable, and the reduction of human-carnivore interactions must be the first consideration for those concerned with conflict mitigation. Studies designed to identify areas of high human-bear interaction are crucial for prioritizing management actions. Due to a surge in conflicts, against a background of social intolerance to wildlife and the prevalent use of lethal control throughout Japan, Asiatic black bears (Ursus thibetanus) are now threatened by high rates of mortality. There is an urgent need to reduce the frequency of human-bear encounters if bear populations are to be conserved. To this end, we estimated the habitats that relate to human-bear interactions by sex and season using resource selection functions (RSF). Significant seasonal differences in selection for and avoidance of areas by bears were estimated by distance-effect models with interaction terms of land cover and sex. Human-bear boundaries were delineated on the basis of defined bear-habitat edges in order to identify areas that are in most need of proactive management strategies. Asiatic black bears selected habitats in close proximity to forest edges, forest roads, rivers, and red pine and riparian forests during the peak conflict season and this was correctly predicted in our human-bear boundary maps. Our findings demonstrated that bears selected abandoned forests and agricultural lands, indicating that it should be possible to reduce animal use near human lands by restoring season-specific habitat in relatively remote areas. Habitat-based conflict mitigation may therefore provide a practical means of creating adequate separation between humans and these large carnivores. PMID:24465947

  11. Evaluating the impact of abrupt changes in forest policy and management practices on landscape dynamics: analysis of a Landsat image time series in the Atlantic Northern Forest.

    PubMed

    Legaard, Kasey R; Sader, Steven A; Simons-Legaard, Erin M

    2015-01-01

    Sustainable forest management is based on functional relationships between management actions, landscape conditions, and forest values. Changes in management practices make it fundamentally more difficult to study these relationships because the impacts of current practices are difficult to disentangle from the persistent influences of past practices. Within the Atlantic Northern Forest of Maine, U.S.A., forest policy and management practices changed abruptly in the early 1990s. During the 1970s-1980s, a severe insect outbreak stimulated salvage clearcutting of large contiguous tracts of spruce-fir forest. Following clearcut regulation in 1991, management practices shifted abruptly to near complete dependence on partial harvesting. Using a time series of Landsat satellite imagery (1973-2010) we assessed cumulative landscape change caused by these very different management regimes. We modeled predominant temporal patterns of harvesting and segmented a large study area into groups of landscape units with similar harvest histories. Time series of landscape composition and configuration metrics averaged within groups revealed differences in landscape dynamics caused by differences in management history. In some groups (24% of landscape units), salvage caused rapid loss and subdivision of intact mature forest. Persistent landscape change was created by large salvage clearcuts (often averaging > 100 ha) and conversion of spruce-fir to deciduous and mixed forest. In groups that were little affected by salvage (56% of landscape units), contemporary partial harvesting caused loss and subdivision of intact mature forest at even greater rates. Patch shape complexity and edge density reached high levels even where cumulative harvest area was relatively low. Contemporary practices introduced more numerous and much smaller patches of stand-replacing disturbance (typically averaging <15 ha) and a correspondingly large amount of edge. Management regimes impacted different areas to different degrees, producing different trajectories of landscape change that should be recognized when studying the impact of policy and management practices on forest ecology.

  12. Evaluating the Impact of Abrupt Changes in Forest Policy and Management Practices on Landscape Dynamics: Analysis of a Landsat Image Time Series in the Atlantic Northern Forest

    PubMed Central

    Legaard, Kasey R.; Sader, Steven A.; Simons-Legaard, Erin M.

    2015-01-01

    Sustainable forest management is based on functional relationships between management actions, landscape conditions, and forest values. Changes in management practices make it fundamentally more difficult to study these relationships because the impacts of current practices are difficult to disentangle from the persistent influences of past practices. Within the Atlantic Northern Forest of Maine, U.S.A., forest policy and management practices changed abruptly in the early 1990s. During the 1970s-1980s, a severe insect outbreak stimulated salvage clearcutting of large contiguous tracts of spruce-fir forest. Following clearcut regulation in 1991, management practices shifted abruptly to near complete dependence on partial harvesting. Using a time series of Landsat satellite imagery (1973-2010) we assessed cumulative landscape change caused by these very different management regimes. We modeled predominant temporal patterns of harvesting and segmented a large study area into groups of landscape units with similar harvest histories. Time series of landscape composition and configuration metrics averaged within groups revealed differences in landscape dynamics caused by differences in management history. In some groups (24% of landscape units), salvage caused rapid loss and subdivision of intact mature forest. Persistent landscape change was created by large salvage clearcuts (often averaging > 100 ha) and conversion of spruce-fir to deciduous and mixed forest. In groups that were little affected by salvage (56% of landscape units), contemporary partial harvesting caused loss and subdivision of intact mature forest at even greater rates. Patch shape complexity and edge density reached high levels even where cumulative harvest area was relatively low. Contemporary practices introduced more numerous and much smaller patches of stand-replacing disturbance (typically averaging <15 ha) and a correspondingly large amount of edge. Management regimes impacted different areas to different degrees, producing different trajectories of landscape change that should be recognized when studying the impact of policy and management practices on forest ecology. PMID:26106893

  13. Node-based measures of connectivity in genetic networks.

    PubMed

    Koen, Erin L; Bowman, Jeff; Wilson, Paul J

    2016-01-01

    At-site environmental conditions can have strong influences on genetic connectivity, and in particular on the immigration and settlement phases of dispersal. However, at-site processes are rarely explored in landscape genetic analyses. Networks can facilitate the study of at-site processes, where network nodes are used to model site-level effects. We used simulated genetic networks to compare and contrast the performance of 7 node-based (as opposed to edge-based) genetic connectivity metrics. We simulated increasing node connectivity by varying migration in two ways: we increased the number of migrants moving between a focal node and a set number of recipient nodes, and we increased the number of recipient nodes receiving a set number of migrants. We found that two metrics in particular, the average edge weight and the average inverse edge weight, varied linearly with simulated connectivity. Conversely, node degree was not a good measure of connectivity. We demonstrated the use of average inverse edge weight to describe the influence of at-site habitat characteristics on genetic connectivity of 653 American martens (Martes americana) in Ontario, Canada. We found that highly connected nodes had high habitat quality for marten (deep snow and high proportions of coniferous and mature forest) and were farther from the range edge. We recommend the use of node-based genetic connectivity metrics, in particular, average edge weight or average inverse edge weight, to model the influences of at-site habitat conditions on the immigration and settlement phases of dispersal. © 2015 John Wiley & Sons Ltd.

  14. The edge-preservation multi-classifier relearning framework for the classification of high-resolution remotely sensed imagery

    NASA Astrophysics Data System (ADS)

    Han, Xiaopeng; Huang, Xin; Li, Jiayi; Li, Yansheng; Yang, Michael Ying; Gong, Jianya

    2018-04-01

    In recent years, the availability of high-resolution imagery has enabled more detailed observation of the Earth. However, it is imperative to simultaneously achieve accurate interpretation and preserve the spatial details for the classification of such high-resolution data. To this aim, we propose the edge-preservation multi-classifier relearning framework (EMRF). This multi-classifier framework is made up of support vector machine (SVM), random forest (RF), and sparse multinomial logistic regression via variable splitting and augmented Lagrangian (LORSAL) classifiers, considering their complementary characteristics. To better characterize complex scenes of remote sensing images, relearning based on landscape metrics is proposed, which iteratively quantizes both the landscape composition and spatial configuration by the use of the initial classification results. In addition, a novel tri-training strategy is proposed to solve the over-smoothing effect of relearning by means of automatic selection of training samples with low classification certainties, which always distribute in or near the edge areas. Finally, EMRF flexibly combines the strengths of relearning and tri-training via the classification certainties calculated by the probabilistic output of the respective classifiers. It should be noted that, in order to achieve an unbiased evaluation, we assessed the classification accuracy of the proposed framework using both edge and non-edge test samples. The experimental results obtained with four multispectral high-resolution images confirm the efficacy of the proposed framework, in terms of both edge and non-edge accuracy.

  15. Limber pine forests on the leading edge of white pine blister rust distribution in Northern Colorado

    Treesearch

    Jennifer G. Klutsch; Betsy A. Goodrich; Anna W. Schoettle

    2011-01-01

    The combined threats of the current mountain pine beetle (Dendroctonus ponderosae, MPB) epidemic with the imminent invasion of white pine blister rust (caused by the non-native fungus Cronartium ribicola, WPBR) in limber pine (Pinus flexilis) forests in northern Colorado threatens the limber pine's regeneration cycle and ecosystem function. Over one million...

  16. The Moving Edge: Perspectives on the Southern Wildland-Urban Interface

    Treesearch

    Martha C. Monroe; Alison W. Bowers; L. Annie Hermansen

    2003-01-01

    To better understand the wildland-urban interface across the 13 Southern States and to identify issues to be covered in the USDA Forest Service report, "Human Influences on Forest Ecosystems: The Southern Wildland-Urban Interface Assessment," 12 focus groups were conducted in 6 of the Southern States in May and June 2000. The groups were guided through a...

  17. Understorey fire propagation and tree mortality on adjacent areas to an Amazonian deforestation fire

    Treesearch

    J.A. Carvalho; C.A. Gurgel Veras; E.C. Alvarado; D.V. Sandberg; S.J. Leite; R. Gielow; E.R.C. Rabelo; J.C. Santos

    2010-01-01

    Fire characteristics in tropical ecosystems are poorly documented quantitatively in the literature. This paper describes an understorey fire propagating across the edges of a biomass burn of a cleared primary forest. The experiment was carried out in 2001 in the Amazon forest near Alta Floresta, state of Mato Grosso, Brazil, as part of biomass burning experiments...

  18. Modeling the potential of the Northern China forest shelterbelt in improving hydroclimate conditions

    Treesearch

    Yongqiang Liu; John Stanturf; Houquan Lu

    2008-01-01

    The forest shelterbelt (afforestation) project in northern China is the most significant ecosystem project initiated in China during the past three decades. It aims to improve and conserve the ecological environment in the project areas. The tree belt stands along the southern edge of the sandy lands, nearly paralleling to the Great Wall. This study used a regional...

  19. Temporal change in forest fragmentation at multiple scales

    Treesearch

    J.D. Wickham; K.H. Riitters; T.G. Wade; J.W. Coulston

    2007-01-01

    Previous studies of temporal changes in fragmentation have focused almost exclusively on patch and edge statistics, which might not detect changes in the spatial scale at which forest occurs in or dominates the landscape. We used temporal land-cover data for the Chesapeake Bay region and the state of New Jersey to compare patch-based and area–density scaling measures...

  20. EnviroAtlas - Austin, TX - Tree Cover Configuration and Connectivity, Water Background Web Service

    EPA Pesticide Factsheets

    This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas). The EnviroAtlas Austin, TX tree cover configuration and connectivity map categorizes forest land cover into structural elements (e.g. core, edge, connector, etc.). In this community, Forest is defined as Trees & Forest (Trees & Forest - 40 = 1; All Else = 0). Water was considered background (value 129) during the analysis to create this dataset, however it has been converted into value 10 to distinguish it from land area background. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  1. Long-term monitoring reveals an avian species credit in secondary forest patches of Costa Rica

    PubMed Central

    Brouwer, Nathan L.; Olivieri, Alison; Girard-Woolley, Julie; Richardson, Judy F.

    2017-01-01

    Degraded and secondary forests comprise approximately 50% of remaining tropical forest. Bird community characteristics and population trends in secondary forests are infrequently studied, but secondary forest may serve as a “safety net” for tropical biodiversity. Less understood is the occurrence of time-delayed, community-level dynamics such as an extinction debt of specialist species or a species credit resulting from the recolonization of forest patches by extirpated species. We sought to elucidate patterns and magnitudes of temporal change in avian communities in secondary forest patches in Southern Costa Rica biannually over a 10 year period during the late breeding season and mid-winter. We classified birds caught in mist nets or recorded in point counts by residency status, and further grouped them based on preferred habitat, sensitivity to disturbance, conservation priority, foraging guild, and foraging strata. Using hierarchical, mixed-effects models we tested for trends among species that share traits. We found that permanent-resident species increased over time relative to migrants. In both seasons, primary forest species generally increased while species typical of secondary forest, scrub, or edge declined. Species relatively sensitive to habitat disturbance increased significantly over time, whereas birds less sensitive to disturbance decreased. Similarly, generalists with higher habitat breadth scores declined. Because, we found very few changes in vegetation characteristics in secondary forest patches, shifts in the avian community toward primary forest species represent a species credit and are likely related to vegetation changes in the broader landscape. We suggest that natural regeneration and maturation of secondary forests should be recognized as a positive conservation development of potential benefit even to species typical of primary forest. PMID:28674671

  2. Agricultural matrices affect ground ant assemblage composition inside forest fragments

    PubMed Central

    Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Majer, Jonathan David; Vilela, Evaldo Ferreira

    2018-01-01

    The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was ‘generalist’ both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an ‘ocean of crops’. PMID:29791493

  3. Agricultural matrices affect ground ant assemblage composition inside forest fragments.

    PubMed

    Assis, Diego Santana; Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Barrios-Rojas, Katty Elena; Majer, Jonathan David; Vilela, Evaldo Ferreira

    2018-01-01

    The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was 'generalist' both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an 'ocean of crops'.

  4. Simulating the effect of ignition source type on forest fire statistics

    NASA Astrophysics Data System (ADS)

    Krenn, Roland; Hergarten, Stefan

    2010-05-01

    Forest fires belong to the most frightening natural hazards, and have long-term ecological and economic effects on the regions involved. It was found that their frequency-area distributions show power-law behaviour under a wide variety of conditions, interpreting them as a self-organised critical phenomenon. Using computer simulations, self-organised critical behaviour manifests in simple cellular automaton models. With respect to ignition source, forest fires can be categorised as lightning-induced or as a result of human activity. Lightning fires are considered to be natural, whereas ``man made'' fires are frequently caused by some sort of technological disaster, such as sparks from wheels of trains, the rupture of overhead electrical lines, the misuse of electrical or mechanical devices and so on. Taking into account that such events rarely occur deep in the woods, man made fires should start preferably on the edge of a forest or where the forest is not very dense. We present a modification in the self-organised critical Drossel-Schwabl forest fire model that takes these two different triggering mechanisms into account and increases the scaling exponent of the frequency-area distribution by ca. 1/3. Combined simulations further predict a dependence of the overall event-size distribution on the ratio of lightning-induced and man made fires as well as a splitting of their partial distributions. Lightning is identified as the dominant mechanism in the regime of the largest fires. The results are confirmed by the analysis of the Canadian Large Fire Database and suggest that lightning-induced and man made forest fires cannot be treated separately in wildfire modelling, hazard assessment and forest management.

  5. Application of an imputation method for geospatial inventory of forest structural attributes across multiple spatial scales in the Lake States, U.S.A

    NASA Astrophysics Data System (ADS)

    Deo, Ram K.

    Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.

  6. Fog and Phosphorous:Mist Connections?

    NASA Astrophysics Data System (ADS)

    Weathers, K. C.; Caraco, N. F.; Ewing, H. A.

    2005-12-01

    Fog (or cloud) is an important vector for delivering water, nutrients and pollutants to many coastal and montane ecosystems worldwide. Previous research has demonstrated that elements and ions whose sources are thought to be atmospheric, such as nitrogen and sulfur, can be deposited in substantial quantities via fog water deposition. However, the ecologically-important nutrient, phosphorous (P), is thought to derive primarily from guano or terrestrial sources; it has not been demonstrated to be deposited in significant quantities via rain water, for example. Here we suggest that phosphorous may be quite prevalent in fog water and that the atmospheric deposition of phosphorous to the forest floor is significant. Phosphate appears to be either immobilized or utilized in the forest floor. We examine the concentrations of phosphorous in fog water from several ecosystems in the Americas and the spatial patterns of P movement in a fog-dominated, redwood forest in Sonoma County, CA. Phosphate concentrations were surprisingly high, ranging from 0.002 to 2.9 mg/L, in fog samples from near-coast and montane ecosystems. Phosphate in fog water appears to be derived from a crustal source as demonstrated by the strong relationship between phosphorous concentrations in fog and K:Na ratios. Fog water phosphorous inputs to the forest floor were observed to decline exponentially and vary significantly from edge to interior in a redwood forest. Phosphate via fog deposition can be detected in shallow soil zones but not at greater depths, and only at the forest edge, during the summer fog season.

  7. Landscape fragmentation, severe drought, and the new Amazon forest fire regime.

    PubMed

    Alencar, Ane A; Brando, Paulo M; Asner, Gregory P; Putz, Francis E

    2015-09-01

    Changes in weather and land use are transforming the spatial and temporal characteristics of fire regimes in Amazonia, with important effects on the functioning of dense (i.e., closed-canopy), open-canopy, and transitional forests across the Basin. To quantify, document, and describe the characteristics and recent changes in forest fire regimes, we sampled 6 million ha of these three representative forests of the eastern and southern edges of the Amazon using 24 years (1983-2007) of satellite-derived annual forest fire scar maps and 16 years of monthly hot pixel information (1992-2007). Our results reveal that changes in forest fire regime properties differentially affected these three forest types in terms of area burned and fire scar size, frequency, and seasonality. During the study period, forest fires burned 15% (0.3 million ha), 44% (1 million ha), and 46% (0.6 million ha) of dense, open, and transitional forests, respectively. Total forest area burned and fire scar size tended to increase over time (even in years of average rainfall in open canopy and transitional forests). In dense forests, most of the temporal variability in fire regime properties was linked to El Nino Southern Oscillation (ENSO)-related droughts. Compared with dense forests, transitional and open forests experienced fires twice as frequently, with at least 20% of these forests' areas burning two or more times during the 24-year study period. Open and transitional forests also experienced higher deforestation rates than dense forests. During drier years, the end of the dry season was delayed by about a month, which resulted in larger burn scars and increases in overall area burned later in the season. These observations suggest that climate-mediated forest flammability is enhanced by landscape fragmentation caused by deforestation, as observed for open and transitional forests in the Eastern portion of the Amazon Basin.

  8. Effects of forest management on California Spotted Owls: implications for reducing wildfire risk in fire‐prone forests.

    PubMed

    Tempel, Douglas J; Gutiérrez, R J; Whitmore, Sheila A; Reetz, Matthew J; Stoelting, Ricka E; Berigan, William J; Seamans, Mark E; Zachariah Peery, M

    Management of many North American forests is challenged by the need to balance the potentially competing objectives of reducing risks posed by high-severity wildfires and protecting threatened species. In the Sierra Nevada, California, concern about high-severity fires has increased in recent decades but uncertainty exists over the effects of fuel-reduction treatments on species associated with older forests, such as the California Spotted Owl (Strix occidentalis occidentalis). Here, we assessed the effects of forest conditions, fuel reductions, and wildfire on a declining population of Spotted Owls in the central Sierra Nevada using 20 years of demographic data collected at 74 Spotted Owl territories. Adult survival and territory colonization probabilities were relatively high, while territory extinction probability was relatively low, especially in territories that had relatively large amounts of high canopy cover (≥70%) forest. Reproduction was negatively associated with the area of medium-intensity timber harvests characteristic of proposed fuel treatments. Our results also suggested that the amount of edge between older forests and shrub/sapling vegetation and increased habitat heterogeneity may positively influence demographic rates of Spotted Owls. Finally, high-severity fire negatively influenced the probability of territory colonization. Despite correlations between owl demographic rates and several habitat variables, life stage simulation (sensitivity) analyses indicated that the amount of forest with high canopy cover was the primary driver of population growth and equilibrium occupancy at the scale of individual territories. Greater than 90% of medium-intensity harvests converted high-canopy-cover forests into lower-canopy-cover vegetation classes, suggesting that landscape-scale fuel treatments in such stands could have short-term negative impacts on populations of California Spotted Owls. Moreover, high-canopy-cover forests declined by an average of 7.4% across territories during our study, suggesting that habitat loss could have contributed to declines in abundance and territory occupancy. We recommend that managers consider the existing amount and spatial distribution of high-canopy forest before implementing fuel treatments within an owl territory, and that treatments be accompanied by a rigorous monitoring program.

  9. The influence of vegetation height heterogeneity on forest and woodland bird species richness across the United States.

    PubMed

    Huang, Qiongyu; Swatantran, Anu; Dubayah, Ralph; Goetz, Scott J

    2014-01-01

    Avian diversity is under increasing pressures. It is thus critical to understand the ecological variables that contribute to large scale spatial distribution of avian species diversity. Traditionally, studies have relied primarily on two-dimensional habitat structure to model broad scale species richness. Vegetation vertical structure is increasingly used at local scales. However, the spatial arrangement of vegetation height has never been taken into consideration. Our goal was to examine the efficacies of three-dimensional forest structure, particularly the spatial heterogeneity of vegetation height in improving avian richness models across forested ecoregions in the U.S. We developed novel habitat metrics to characterize the spatial arrangement of vegetation height using the National Biomass and Carbon Dataset for the year 2000 (NBCD). The height-structured metrics were compared with other habitat metrics for statistical association with richness of three forest breeding bird guilds across Breeding Bird Survey (BBS) routes: a broadly grouped woodland guild, and two forest breeding guilds with preferences for forest edge and for interior forest. Parametric and non-parametric models were built to examine the improvement of predictability. Height-structured metrics had the strongest associations with species richness, yielding improved predictive ability for the woodland guild richness models (r(2) = ∼ 0.53 for the parametric models, 0.63 the non-parametric models) and the forest edge guild models (r(2) = ∼ 0.34 for the parametric models, 0.47 the non-parametric models). All but one of the linear models incorporating height-structured metrics showed significantly higher adjusted-r2 values than their counterparts without additional metrics. The interior forest guild richness showed a consistent low association with height-structured metrics. Our results suggest that height heterogeneity, beyond canopy height alone, supplements habitat characterization and richness models of forest bird species. The metrics and models derived in this study demonstrate practical examples of utilizing three-dimensional vegetation data for improved characterization of spatial patterns in species richness.

  10. The Influence of Vegetation Height Heterogeneity on Forest and Woodland Bird Species Richness across the United States

    PubMed Central

    Huang, Qiongyu; Swatantran, Anu; Dubayah, Ralph; Goetz, Scott J.

    2014-01-01

    Avian diversity is under increasing pressures. It is thus critical to understand the ecological variables that contribute to large scale spatial distribution of avian species diversity. Traditionally, studies have relied primarily on two-dimensional habitat structure to model broad scale species richness. Vegetation vertical structure is increasingly used at local scales. However, the spatial arrangement of vegetation height has never been taken into consideration. Our goal was to examine the efficacies of three-dimensional forest structure, particularly the spatial heterogeneity of vegetation height in improving avian richness models across forested ecoregions in the U.S. We developed novel habitat metrics to characterize the spatial arrangement of vegetation height using the National Biomass and Carbon Dataset for the year 2000 (NBCD). The height-structured metrics were compared with other habitat metrics for statistical association with richness of three forest breeding bird guilds across Breeding Bird Survey (BBS) routes: a broadly grouped woodland guild, and two forest breeding guilds with preferences for forest edge and for interior forest. Parametric and non-parametric models were built to examine the improvement of predictability. Height-structured metrics had the strongest associations with species richness, yielding improved predictive ability for the woodland guild richness models (r2 = ∼0.53 for the parametric models, 0.63 the non-parametric models) and the forest edge guild models (r2 = ∼0.34 for the parametric models, 0.47 the non-parametric models). All but one of the linear models incorporating height-structured metrics showed significantly higher adjusted-r2 values than their counterparts without additional metrics. The interior forest guild richness showed a consistent low association with height-structured metrics. Our results suggest that height heterogeneity, beyond canopy height alone, supplements habitat characterization and richness models of forest bird species. The metrics and models derived in this study demonstrate practical examples of utilizing three-dimensional vegetation data for improved characterization of spatial patterns in species richness. PMID:25101782

  11. OF BELGOROD PROVINCE].

    PubMed

    Prisniy, Yu A

    2016-01-01

    The article provides a list of 30 species of the family Tabanidae, recorded in Belgorod Province. Forest and forest-steppe species dominate (60 %), being found at edges of oak forests, deciduous and mixed forests, and in mesophytic meadows. These species are distributed over the entire area of the region. The fraction of taiga-forest species in the region is small (10 %). These species are found in western and northern areas where large forests and sphagnum bogs are present. The fraction of steppe species constitutes 13.3 %, these species are found mainly in eastern and south-eastern parts of the Province, where areas of steppe and cretaceous outcrops are found. Desert species (6.7 %) and a single Mediterranean coastal species were also recorded in the region. Mass emergence of horseflies in Belgorod Province begins in June and lasts until mid-August.

  12. Model for detection and assessment of abiotic stress caused by uranium mining in European Black Pine landscapes

    NASA Astrophysics Data System (ADS)

    Filchev, Lachezar; Roumenina, Eugenia

    2013-10-01

    The article presents the results obtained from a study for detection and assessment of abiotic stress through pollution with heavy metals, metalloids, and natural radionuclides in European Black Pine (Pinus nigra L.) forests caused by uranium mining using ground-based biogeochemical, biophysical, and field spectrometry data. The forests are located on a territory subject to underground and open uranium mining. An operational model of the study is proposed. The areas subject to technogeochemical load are outlined based on the aggregate pollution index Zc. Laboratory and field spectrometry data were used to detect the signals of abiotic stress at pixel level. The methods used for determination of stressed and unstressed black pine forests are: four vegetation indices (TCARI, MCARI, MTVI 2, and PRI 1) for stress detection, and the position, depth, asymmetry, and shift of the red-edge. Based on the "blue shift" and the depth and position of the red-edge, registered by the laboratory analysis and field spectral reflectance, it is established that coniferous forests subject to abiotic stress show an increase in total chlorophyll content and carotene. It has been found that the vegetation indices MTVI 2 and PRI 1, as well as the combination of vegetation indices and pigments may be used as a direct indicator of abiotic stress in coniferous forests caused by uranium mining.

  13. Impact Of Recent Timber Harvests On Autumn Scenic Beauty Of Near-Stand Views

    Treesearch

    Rebecca J. Ray Barlow; Victor A. Rudis

    2004-01-01

    Abstract - This study estimated the impact of 10 recent timber cutting regimes on the autumn scenic beauty of shortleaf pine-hardwood forests in the Ouachita Mountains of Arkansas. Scenes were photographed near forest stand edges—views typically observed by sightseeing visitors—from 36 treated areas cut the previous winter and 3 comparable untreated...

  14. Privet is a plague: You can help stop it

    Treesearch

    James H. Miller; Tim Albritton

    2004-01-01

    Have you noticed how privet appears to be exploding across the landscape? Privet is that rampant small-leaved shrub that stays green in winter and can be seen along many fencerows and forest edges, as well as invading interior forests. What at one time was considered the staple farm house shrub is now completely out of control. It has become a plague. In fact, it is...

  15. Measuring Forest Height and Biomass from Space

    NASA Technical Reports Server (NTRS)

    Agueh, Temilola Elisabeth Fato

    2013-01-01

    Talk about doing earth science at NASA and how what we do is focus on the biosphere- that is the living portion of the earth.In particular, we are interested in looking at forests-quantifying deforestation, regrowth, change in general and helping develop new cutting-edge technologies and instruments to be able to measure these changes in land use, land cover and quality more accurately.

  16. Operation and Maintenance. 9-Foot Navigation Channel, Upper Mississippi River, Head of Navigation to Guttenberg, Iowa. Volume 1. Narrative.

    DTIC Science & Technology

    1974-08-01

    forest, along with wood nettle, which is by far the most common shrub layer vegetation, although neither is abundant in the forest proper. Vine form...poison ivy, Virginia creeper, wild grape, p" are common woody vines . The high unshaded edges of running sloughs in the forest areas often have thick...Mississippi River floodplain. 36 7.....a................ S -"’ 2.10 Beginning about 1 million years ago, the Upper Midwest entered what is commonly referred to

  17. Avian habitat relationships in pinyon-juniper woodland

    USGS Publications Warehouse

    Sedgwick, James A.

    1987-01-01

    Habitat relationships of breeding birds were examined in northwestern Colorado in pinyon-juniper (Pinus edulis-Juniperus osteosperma) woodland and in openings where most overstory trees had been knocked down by anchor chaining. Vegetation characteristics and physical habitat features were measured in 233 0.04-ha circular plots around singing males of 13 species of birds from 15 May to 15 July 1980. Thirteen-group discriminant function analysis ordinated bird species along three habitat dimensions described by (1) canopy height; (2) slope, shrub size, and shrub species diversity; and (3) percentage canopy cover, large tree density, distance from a habitat edge, litter cover, and green cover. Woodland, open-area, and intermediate edge species were clearly segregated along the first discriminant axis, and species' associations with shrubs, inclination, ground cover, and edges were revealed by the ordinations along the second and third discriminant axes. Two-group discriminant analyses comparing occupied and available plots identified additional and more specific habitat associations. For example, Hermit Thrushes (Catharus guttatus) were associated with mature forested habitats and forest interiors, Virginia's Warblers (Vermivora virginiae) favored steep, oak-covered draws, Rock Wrens (Salpinctes obsoletus) selected areas where percentage log cover and small tree density were high, and Dusky Flycatchers (Empidonax oberholseri) preferred shrubby slopes with scattered large trees near woodland edges.

  18. Fragmentation and matrix contrast favor understory plants through negative cascading effects on a strong competitor palm.

    PubMed

    Hernández-Ruedas, Manuel A; Arroyo-Rodríguez, Víctor; Morante-Filho, José Carlos; Meave, Jorge A; Martínez-Ramos, Miguel

    2018-05-04

    Understanding the patterns and processes driving biodiversity maintenance in fragmented tropical forests is urgently needed for conservation planning, especially in species-rich forest reserves. Of particular concern are the effects that habitat modifications at the landscape scale may have on forest regeneration and ecosystem functioning: a topic that has received limited attention. Here, we assessed the effects of landscape structure (i.e., forest cover, open area matrices, forest fragmentation, and mean inter-patch isolation distance) on understory plant assemblages in the Los Tuxtlas Biosphere Reserve, Mexico. Previous studies suggest that the demographic burst of the strong competitor palm Astrocaryum mexicanum in the core area of this reserve limits plant recruitment and imperils biodiversity conservation within this protected area. Yet, the local and landscape predictors of this palm, and its impact on tree recruitment at a regional scale are unknown. Thus, we used structural equation modeling to assess the direct and cascading effects of landscape structure on stem and species density in the understory of 20 forest sites distributed across this biodiversity hotspot. Indirect paths included the effect of landscape structure on tree basal area (a proxy of local disturbance), and the effects of these variables on A. mexicanum. Density of A. mexicanum mainly increased with decreasing both fragmentation and open areas in the matrix (matrix contrast, hereafter), and such an increase in palm density negatively affected stem and species density in the understory. The negative direct effect of matrix contrast on stem density was overridden by the indirect positive effects (i.e., through negative cascading effects on A. mexicanum), resulting in a weak effect of matrix contrast on stem density. These findings suggest that dispersal limitation and negative edge effects in more fragmented landscapes dominated by open areas prevent the proliferation of this palm species, enhancing the diversity and abundance of understory trees. This "positive" news adds to an increasing line of evidence suggesting that fragmentation may have some positive effects on biodiversity, in this case by preventing the proliferation of species that can jeopardize biodiversity conservation within tropical reserves. © 2018 by the Ecological Society of America.

  19. Effects of scale and logging on landscape structure in a forest mosaic.

    PubMed

    Leimgruber, P; McShea, W J; Schnell, G D

    2002-03-01

    Landscape structure in a forest mosaic changes with spatial scale (i.e. spatial extent) and thresholds may occur where structure changes markedly. Forest management alters landscape structure and may affect the intensity and location of thresholds. Our purpose was to examine landscape structure at different scales to determine thresholds where landscape structure changes markedly in managed forest mosaics of the Appalachian Mountains in the eastern United States. We also investigated how logging influences landscape structure and whether these management activities change threshold values. Using threshold and autocorrelation analyses, we found that thresholds in landscape indices exist at 400, 500, and 800 m intervals from the outer edge of management units in our study region. For landscape indices that consider all landcover categories, such as dominance and contagion, landscape structure and thresholds did not change after logging occurred. Measurements for these overall landscape indices were strongly influenced by midsuccessional deciduous forest, the most common landcover category in the landscape. When restricting analyses for mean patch size and percent cover to individual forest types, thresholds for early-successional forests changed after logging. However, logging changed the landscape structure at small spatial scale, but did not alter the structure of the entire forest mosaic. Previous forest management may already have increased the heterogeneity of the landscape beyond the point where additional small cuts alter the overall structure of the forest. Because measurements for landscape indices yield very different results at different spatial scales, it is important first to identify thresholds in order to determine the appropriate scales for landscape ecological studies. We found that threshold and autocorrelation analyses were simple but powerful tools for the detection of appropriate scales in the managed forest mosaic under study.

  20. Geotechnology and landscape ecology applied to the selection of potential forest fragments for seed harvesting.

    PubMed

    Santos, Alexandre Rosa Dos; Antonio Alvares Soares Ribeiro, Carlos; de Oliveira Peluzio, Telma Machado; Esteves Peluzio, João Batista; de Queiroz, Vagner Tebaldi; Figueira Branco, Elvis Ricardo; Lorenzon, Alexandre Simões; Domingues, Getulio Fonseca; Marcatti, Gustavo Eduardo; de Castro, Nero Lemos Martins; Teixeira, Thaisa Ribeiro; Dos Santos, Gleissy Mary Amaral Dino Alves; Santos Mota, Pedro Henrique; Ferreira da Silva, Samuel; Vargas, Rozimelia; de Carvalho, José Romário; Macedo, Leandro Levate; da Silva Araújo, Cintia; de Almeida, Samira Luns Hatum

    2016-12-01

    The Atlantic Forest biome is recognized for its biodiversity and is one of the most threatened biomes on the planet, with forest fragmentation increasing due to uncontrolled land use, land occupation, and population growth. The most serious aspect of the forest fragmentation process is the edge effect and the loss of biodiversity. In this context, the aim of this study was to evaluate the dynamics of forest fragmentation and select potential forest fragments with a higher degree of conservation for seed harvesting in the Itapemirim river basin, Espírito Santo State, Brazil. Image classification techniques, forest landscape ecology, and multi-criteria analysis were used to evaluate the evolution of forest fragmentation to develop the landscape metric indexes, and to select potential forest fragments for seed harvesting for the years 1985 and 2013. According to the results, there was a reduction of 2.55% of the occupancy of the fragments in the basin between the years 1985 and 2013. For the years 1985 and 2013, forest fragment units 2 and 3 were spatialized with a high potential for seed harvesting, representing 6.99% and 16.01% of the total fragments, respectively. The methodology used in this study has the potential to be used to support decisions for the selection of potential fragments for seed harvesting because selecting fragments in different environments by their spatial attributes provides a greater degree of conservation, contributing to the protection and conscious management of the forests. The proposed methodology can be adapted to other areas and different biomes of the world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Landscape trajectory of natural boreal forest loss as an impediment to green infrastructure.

    PubMed

    Svensson, Johan; Andersson, Jon; Sandström, Per; Mikusiński, Grzegorz; Jonsson, Bengt-Gunnar

    2018-06-08

    Loss of natural forests has been identified as a critical conservation challenge worldwide. This loss impede the establishment of a functional green infrastructure as a spatiotemporally connected landscape-scale network of habitats enhancing biodiversity, favorable conservation status and ecosystem services. In many regions this loss is caused by forest clearcutting. Through retrospective satellite images analysis we assessed a 50-60 year spatiotemporal clearcutting impact trajectory on natural and near-natural boreal forests across a sizable and representative region from the Gulf of Bothnia to the Scandinavian Mountain Range in northern Fennoscandia. Our analysis broadly covers the whole forest clearcutting period and thus our study approach and results can be applied for comprehensive impact assessment of industrial forest management. Our results demonstrate profound disturbance on natural forest landscape configuration. The whole forest landscape is in a late phase in a transition from a natural or near-natural to a land-use modified state. Our results provide evidence of natural forest loss and spatial polarization at the regional scale, with a pre-dominant share of valuable habitats left in the mountain area, whereas the inland area has been more severely impacted. We highlight the importance of interior forest areas as most valuable biodiversity hotspots and the central axis of green infrastructure. Superimposing the effects of edge disturbance on forest fragmentation, the loss of interior forest entities further aggravate the conservation premises. Our results also show a loss of large contiguous forest patches and indicate patch size homogenization. The current forest protection share is low in the region and with geographical imbalance as the absolute majority is located in remote and low productive sites in the mountain area. Our approach provides possibilities to identify forest areas for directed conservation actions in the form of new protection, restoration and nature conservation oriented forest management, for implementing a functional green infrastructure. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Response of brown-headed cowbirds and three host species to thinning treatments in low-elevation ponderosa pine forests along the northern Colorado Front Range

    USGS Publications Warehouse

    Keeley, W.H.; Germaine, Stephen S.; Stanley, Thomas R.; Spaulding, Sarah A.; Wanner, C.E.

    2013-01-01

    Thinning ponderosa pine (Pinus ponderosa) forests to achieve desired ecological conditions remains a priority in the North American west. In addition to reducing the risk of high-severity wildfires in unwanted areas, stand thinning may increase wildlife and plant diversity and provide increased opportunity for seedling recruitment. We initiated conservative (i.e. minimal removal of trees) ponderosa stand thinning treatments with the goals of reducing fire risk and improving habitat conditions for native wildlife and flora. We then compared site occupancy of brown-headed cowbirds (Molothrus ater), chipping sparrows (Spizella passerina), plumbeous vireos (Vireo plumbeus), and western wood-pewees (Contopus sordidulus) in thinned and unthinned (i.e., control) forest stands from 2007 to 2009. Survey stations located in thinned stands had 64% fewer trees/ha, 25% less canopy cover, and 23% less basal area than stations in control stands. Occupancy by all three host species was negatively associated with tree density, suggesting that these species respond favorably to forest thinning treatments in ponderosa pine forests. We also encountered plumbeous vireos more frequently in plots closer to an ecotonal (forest/grassland) edge, an association that may increase their susceptibility to edge-specialist, brood parasites like brown-headed cowbirds. Occupancy of brown-headed cowbirds was not related to forest metrics but was related to occupancy by plumbeous vireos and the other host species in aggregate, supporting previous reports on the affiliation between these species. Forest management practices that promote heterogeneity in forest stand structure may benefit songbird populations in our area, but these treatments may also confer costs associated with increased cowbird occupancy. Further research is required to understand more on the complex relationships between occupancy of cowbirds and host species, and between cowbird occupancy and realized rates of nest parasitism.

  3. The neglected bee trees: European beech forests as a home for feral honey bee colonies

    PubMed Central

    2018-01-01

    It is a common belief that feral honey bee colonies (Apis mellifera L.) were eradicated in Europe through the loss of habitats, domestication by man and spread of pathogens and parasites. Interestingly, no scientific data are available, neither about the past nor the present status of naturally nesting honeybee colonies. We expected near-natural beech (Fagus sylvatica L.) forests to provide enough suitable nest sites to be a home for feral honey bee colonies in Europe. Here, we made a first assessment of their occurrence and density in two German woodland areas based on two methods, the tracing of nest sites based on forager flight routes (beelining technique), and the direct inspection of potential cavity trees. Further, we established experimental swarms at forest edges and decoded dances for nest sites performed by scout bees in order to study how far swarms from beekeeper-managed hives would potentially move into a forest. We found that feral honey bee colonies regularly inhabit tree cavities in near-natural beech forests at densities of at least 0.11–0.14 colonies/km2. Colonies were not confined to the forest edges; they were also living deep inside the forests. We estimated a median distance of 2,600 m from the bee trees to the next apiaries, while scout bees in experimental swarms communicated nest sites in close distances (median: 470 m). We extrapolate that there are several thousand feral honey bee colonies in German woodlands. These have to be taken in account when assessing the role of forest areas in providing pollination services to the surrounding land, and their occurrence has implications for the species’ perception among researchers, beekeepers and conservationists. This study provides a starting point for investigating the life-histories and the ecological interactions of honey bees in temperate European forest environments. PMID:29637025

  4. The neglected bee trees: European beech forests as a home for feral honey bee colonies.

    PubMed

    Kohl, Patrick Laurenz; Rutschmann, Benjamin

    2018-01-01

    It is a common belief that feral honey bee colonies ( Apis mellifera L.) were eradicated in Europe through the loss of habitats, domestication by man and spread of pathogens and parasites. Interestingly, no scientific data are available, neither about the past nor the present status of naturally nesting honeybee colonies. We expected near-natural beech ( Fagus sylvatica L.) forests to provide enough suitable nest sites to be a home for feral honey bee colonies in Europe. Here, we made a first assessment of their occurrence and density in two German woodland areas based on two methods, the tracing of nest sites based on forager flight routes (beelining technique), and the direct inspection of potential cavity trees. Further, we established experimental swarms at forest edges and decoded dances for nest sites performed by scout bees in order to study how far swarms from beekeeper-managed hives would potentially move into a forest. We found that feral honey bee colonies regularly inhabit tree cavities in near-natural beech forests at densities of at least 0.11-0.14 colonies/km 2 . Colonies were not confined to the forest edges; they were also living deep inside the forests. We estimated a median distance of 2,600 m from the bee trees to the next apiaries, while scout bees in experimental swarms communicated nest sites in close distances (median: 470 m). We extrapolate that there are several thousand feral honey bee colonies in German woodlands. These have to be taken in account when assessing the role of forest areas in providing pollination services to the surrounding land, and their occurrence has implications for the species' perception among researchers, beekeepers and conservationists. This study provides a starting point for investigating the life-histories and the ecological interactions of honey bees in temperate European forest environments.

  5. The Effect of Wind Exposure on the Web Characteristics of a Tetragnathid Orb Spider.

    PubMed

    Tew, Nicholas; Hesselberg, Thomas

    2017-01-01

    Studies on spiders in their natural habitats are necessary for determining the full range of plasticity in their web-building behaviour. Plasticity in web design is hypothesised to be important for spiders building in habitats where environmental conditions cause considerable web damage. Here we compared web characteristics of the orb spider Metellina mengei (Araneae, Tetragnathidae) in two different forest habitats differing in their wind exposure. We found a notable lack of differences in web geometry, orientation and inclination between webs built along an exposed forest edge and those built inside the forest, despite marked differences in wind speed. This suggests that M. mengei did not exhibit web-building plasticity in response to wind in the field, contrasting with the findings of laboratory studies on other species of orb spiders. Instead, differences in prey capture and wind damage trade-offs between habitats may provide an explanation for our results, indicating that different species employ different strategies to cope with environmental constraints.

  6. Mosquitoes of field and forest: the scale of habitat segregation in a diverse mosquito assemblage.

    PubMed

    Reiskind, M H; Griffin, R H; Janairo, M S; Hopperstad, K A

    2017-03-01

    Knowledge of the distribution of arthropod vectors across a landscape is important in determining the risk for vector-borne disease. This has been well explored for ticks, but not for mosquitoes, despite their importance in the transmission of a variety of pathogens. This study examined the importance of habitat, habitat edges, and the scale at which mosquito abundance and diversity vary in a rural landscape by trapping along transects from grassland areas into forest patches. Significant patterns of vector diversity and distinct mosquito assemblages across habitats were found. The scale of individual species' responses to habitat edges was often dramatic, with several species rarely straying even 10 m from the edge. The present results suggest blood-seeking mosquito species are faithful to certain habitats, which has consequences for patterns of vector diversity and risk for pathogen transmission. This implies that analysts of risk for pathogen transmission and foci of control, and developers of land management strategies should assess habitat at a finer scale than previously considered. © 2016 The Royal Entomological Society.

  7. Subalpine Conifer Seedling Demographics: Species Responses to Climate Manipulations Across an Elevational Gradient at Niwot Ridge, Colorado

    NASA Astrophysics Data System (ADS)

    Castanha, C.; Germino, M. J.; Torn, M. S.; Ferrenberg, S.; Harte, J.; Kueppers, L. M.

    2010-12-01

    The effect of climate change on future ranges of treeline species is poorly understood. For example, it is not known whether trees will recruit into the alpine, above the current treeline, and whether population-level differences in trees will mediate range shifts. At Niwot Ridge, Colorado, we used common gardens and climate manipulations to test predictions that warming will lead to greater recruitment at and beyond the cold edge of these species ranges, and will reduce recruitment at the warm edge. Seed from local populations of limber pine and Englemann spruce was harvested and reciprocally planted in 3 experimental sites spanning an elevation gradient from lower subalpine forest (10,000’), to the upper subalpine treeline ecotone (11,000’), to the alpine tundra (11,300’). In Fall 2009 seeds were sown into 20 plots at each site. Overhead infrared heaters targeted increases in growing season surface soil temperature of 4-5°C. The heating treatment, which began in October 2009, was crossed with manual watering, which was initiated following snowmelt in 2010. Over the 2010 growing season, we surveyed seedling germination and mortality weekly. Germination began in early May at the forest site, in early June at the krummholz site, and in early July at the alpine site. Depending on the site and plot, heating accelerated germination by 1 to 4 weeks. Seed source elevation, species, and site all affected germination, with effects for the two species also depending on site. At all sites, lower elevation, warm-edge populations had higher germination rates than high-elevation, cool-edge populations, indicating a potential bottleneck for germination of the high elevation seed sources in the adjacent alpine tundra. At all sites, survival was generally higher for pine than for spruce. Watering tended to enhance pine germinant survival while heating tended to depress spruce germinant survival. Our results indicate that the alpine tundra, generally considered an inhospitable environment, was not favorable for Englemann spruce, even with warming. In contrast, once seeds were introduced, the alpine tundra proved favorable to limber pine germination, irrespective of the climate manipulation.

  8. Know your limits? Climate extremes impact the range of Scots pine in unexpected places.

    PubMed

    Julio Camarero, J; Gazol, Antonio; Sancho-Benages, Santiago; Sangüesa-Barreda, Gabriel

    2015-11-01

    Although extreme climatic events such as drought are known to modify forest dynamics by triggering tree dieback, the impact of extreme cold events, especially at the low-latitude margin ('rear edge') of species distributional ranges, has received little attention. The aim of this study was to examine the impact of one such extreme cold event on a population of Scots pine (Pinus sylvestris) along the species' European southern rear-edge range limit and to determine how such events can be incorporated into species distribution models (SDMs). A combination of dendrochronology and field observation was used to quantify how an extreme cold event in 2001 in eastern Spain affected growth, needle loss and mortality of Scots pine. Long-term European climatic data sets were used to contextualize the severity of the 2001 event, and an SDM for Scots pine in Europe was used to predict climatic range limits. The 2001 winter reached record minimum temperatures (equivalent to the maximum European-wide diurnal ranges) and, for trees already stressed by a preceding dry summer and autumn, this caused dieback and large-scale mortality. Needle loss and mortality were particularly evident in south-facing sites, where post-event recovery was greatly reduced. The SDM predicted European Scots pine distribution mainly on the basis of responses to maximum and minimum monthly temperatures, but in comparison with this the observed effects of the 2001 cold event at the southerly edge of the range limit were unforeseen. The results suggest that in order to better forecast how anthropogenic climate change might affect future forest distributions, distribution modelling techniques such as SDMs must incorporate climatic extremes. For Scots pine, this study shows that the effects of cold extremes should be included across the entire distribution margin, including the southern 'rear edge', in order to avoid biased predictions based solely on warmer climatic scenarios. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Modeling the Effects of Ecosystem Fragmentation and Restoration: Management Models for Mobile Animals. Volume 2. Appendices 3-7

    DTIC Science & Technology

    2003-12-01

    Spizella passerina 0.331 (+0.066) 0.058 (+0.032) 0.001 91 Dark-eyed Junco Junco hyemalis 0.277 (+0.056) 0.125 (+0.037) 0.01 93 Western Tanager...cues such as vegetation structure as surrogates for the factors such as prey availability and predation risk that actually determine habitat quality...foliage prey as well as foliage predators has shown inconsistent patterns between forest edge and interior in different studies (Yahner 1995, De

  10. Evaluation of resting traps to examine the behaviour and ecology of mosquito vectors in an area of rapidly changing land use in Sabah, Malaysian Borneo.

    PubMed

    Brown, Rebecca; Hing, Chua Tock; Fornace, Kimberly; Ferguson, Heather M

    2018-06-14

    Widespread deforestation occurring in the tropics is hypothesized to impact the transmission of vector-borne diseases (VBD). Predicting how environmental changes will impact VBD transmission is dependent on understanding the ecology and behaviour of potential vector species outside of domestic settings. However there are few reliable sampling tools for measuring the habitat preference and host choice of mosquito vectors; with almost none suitable for sampling recently blood-fed, resting mosquitoes. This study evaluated the use of two mosquito traps: the resting bucket (RB) and sticky resting bucket (SRB) traps relative to CDC backpack aspiration (CDC) for sampling mosquitoes resting in a range of habitats representing a gradient of deforestation. Eight habitats were selected for sampling around two villages in Kudat District, Malaysian Borneo, to reflect the range of habitats available to mosquitoes in and around human dwellings, and nearby forest habitats where reservoir hosts are present: secondary forest (edge, interior and canopy); plantations (palm and rubber); and human settlements (inside, under and around houses). Over 31 days, 2243 mosquitoes were collected in 5748 discrete collections. Nine mosquito genera were sampled with Aedes and Culex species being present in all habitats and most abundant. RB and CDC backpack aspiration were most efficient for sampling Culex whereas CDC backpack aspiration and SRB were most efficient for Aedes. Most Aedes identified to species level were Ae. albopictus (91%), with their abundance being highest in forest edge habitats. In contrast, Culex were most abundant under houses. Most blood-fed mosquitoes (76%) were found in human settlements; with humans and chickens being the only blood source. RB and SRB traps proved capable of sampling mosquitoes resting in all sampled habitats. However, sampling efficiency was generally low (c.0.1 per trap per day), necessitating traps to be deployed in high numbers for mosquito detection. None of the traps were effective for sampling zoonotic malaria vectors; however, SRB collected relatively higher numbers of the dengue vector Ae. albopictus. The higher abundance of mosquitoes in forest edge habitats indicates the potential value of these traps for investigating sylvatic dengue transmission. This study has demonstrated the merits in application of simple resting traps for characterising mosquito vector resting behaviour outside of the home.

  11. Forest inventory predictions from individual tree crowns: regression modeling within a sample framework

    Treesearch

    James W. Flewelling

    2009-01-01

    Remotely sensed data can be used to make digital maps showing individual tree crowns (ITC) for entire forests. Attributes of the ITCs may include area, shape, height, and color. The crown map is sampled in a way that provides an unbiased linkage between ITCs and identifiable trees measured on the ground. Methods of avoiding edge bias are given. In an example from a...

  12. Ecological effects of pipeline construction through deciduous forested wetlands, Midland County, Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zellmer, S.D.; Rastorfer, J.R.; Van Dyke, G.D.

    Implementation of recent federal and state regulations promulgated to protect wetlands makes information on effects of gas pipeline rights-of-way (ROWs) in wetlands essential to the gas pipeline industry. This study is designed to record vegetational changes induced by the construction of a large-diameter gas pipeline through deciduous forested wetlands. Two second-growth forested wetland sites mapped as Lenawee soils, one mature and one subjected to recent selective logging, were selected in Midland County, Michigan. Changes in the adjacent forest and successional development on the ROW are being documented. Cover-class estimates are being made for understory and ROW plant species using 1more » {times}1-m quadrats. Counts are also being made for all woody species with stems < 2 cm in diameter at breast height (dbh) in the same plots used for cover-class estimates. Individual stem diameters and species counts are being recorded for all woody understory and overstory plants with stems {ge}2 cm dbh in 10 {times} 10-m plots. Although analyses of the data have not been completed, preliminary analyses indicate that some destruction of vegetation at the ROW forest edge may have been avoidable during pipeline construction. Rapid regrowth of many native wetland plant species on the ROW occurred because remnants of native vegetation and soil-bearing propagules of existing species survived on the ROW after pipeline construction and seeding operations. 91 refs., 11 figs., 3 tabs.« less

  13. Stabilization of a locally minimal forest

    NASA Astrophysics Data System (ADS)

    Ivanov, A. O.; Mel'nikova, A. E.; Tuzhilin, A. A.

    2014-03-01

    The method of partial stabilization of locally minimal networks, which was invented by Ivanov and Tuzhilin to construct examples of shortest trees with given topology, is developed. According to this method, boundary vertices of degree 2 are not added to all edges of the original locally minimal tree, but only to some of them. The problem of partial stabilization of locally minimal trees in a finite-dimensional Euclidean space is solved completely in the paper, that is, without any restrictions imposed on the number of edges remaining free of subdivision. A criterion for the realizability of such stabilization is established. In addition, the general problem of searching for the shortest forest connecting a finite family of boundary compact sets in an arbitrary metric space is formalized; it is shown that such forests exist for any family of compact sets if and only if for any finite subset of the ambient space there exists a shortest tree connecting it. The theory developed here allows us to establish further generalizations of the stabilization theorem both for arbitrary metric spaces and for metric spaces with some special properties. Bibliography: 10 titles.

  14. Forest management could counteract distribution retractions forced by climate change.

    PubMed

    Mair, Louise; Harrison, Philip J; Räty, Minna; Bärring, Lars; Strandberg, Gustav; Snäll, Tord

    2017-07-01

    Climate change is expected to drive the distribution retraction of northern species. However, particularly in regions with a history of intensive exploitation, changes in habitat management could facilitate distribution expansions counter to expectations under climate change. Here, we test the potential for future forest management to facilitate the southward expansion of an old-forest species from the boreal region into the boreo-nemoral region, contrary to expectations under climate change. We used an ensemble of species distribution models based on citizen science data to project the response of Phellinus ferrugineofuscus, a red-listed old-growth indicator, wood-decaying fungus, to six forest management and climate change scenarios. We projected change in habitat suitability across the boreal and boreo-nemoral regions of Sweden for the period 2020-2100. Scenarios varied in the proportion of forest set aside from production, the level of timber extraction, and the magnitude of climate change. Habitat suitabilities for the study species were projected to show larger relative increases over time in the boreo-nemoral region compared to the boreal region, under all scenarios. By 2100, mean suitabilities in set-aside forest in the boreo-nemoral region were similar to the suitabilities projected for set-aside forest in the boreal region in 2020, suggesting that occurrence in the boreo-nemoral region could be increased. However, across all scenarios, consistently higher projected suitabilities in set-aside forest in the boreal region indicated that the boreal region remained the species stronghold. Furthermore, negative effects of climate change were evident in the boreal region, and projections suggested that climatic changes may eventually counteract the positive effects of forest management in the boreo-nemoral region. Our results suggest that the current rarity of this old-growth indicator species in the boreo-nemoral region may be due to the history of intensive forestry. Forest management therefore has the potential to compensate for the negative effects of climate change. However, increased occurrence at the southern range edge would depend on the dispersal and colonization ability of the species. An increase in the amount of set-aside forest across both the boreal and boreo-nemoral regions is therefore likely to be required to prevent the decline of old-forest species under climate change. © 2017 by the Ecological Society of America.

  15. Lessons about parks and poverty from a decade of forest loss and economic growth around Kibale National Park, Uganda.

    PubMed

    Naughton-Treves, Lisa; Alix-Garcia, Jennifer; Chapman, Colin A

    2011-08-23

    We use field data linked to satellite image analysis to examine the relationship between biodiversity loss, deforestation, and poverty around Kibale National Park (KNP) in western Uganda, 1996-2006. Over this decade, KNP generally maintained forest cover, tree species, and primate populations, whereas neighboring communal forest patches were reduced by half and showed substantial declines in tree species and primate populations. However, a bad decade for forest outside the park proved a prosperous one for most local residents. Panel data for 252 households show substantial improvement in welfare indicators (e.g., safer water, more durable roof material), with the greatest increases found among those with highest initial assets. A combination of regression analysis and matching estimators shows that although the poor tend to be located on the park perimeter, proximity to the park has no measureable effect on growth of productive assets. The risk for land loss among the poor was inversely correlated with proximity to the park, initial farm size, and decline in adjacent communal forests. We conclude the current disproportionate presence of poor households at the edge of the park does not signal that the park is a poverty trap. Rather, Kibale appears to provide protection against desperation sales and farm loss among those most vulnerable.

  16. Lessons about parks and poverty from a decade of forest loss and economic growth around Kibale National Park, Uganda

    PubMed Central

    Naughton-Treves, Lisa; Alix-Garcia, Jennifer; Chapman, Colin A.

    2011-01-01

    We use field data linked to satellite image analysis to examine the relationship between biodiversity loss, deforestation, and poverty around Kibale National Park (KNP) in western Uganda, 1996–2006. Over this decade, KNP generally maintained forest cover, tree species, and primate populations, whereas neighboring communal forest patches were reduced by half and showed substantial declines in tree species and primate populations. However, a bad decade for forest outside the park proved a prosperous one for most local residents. Panel data for 252 households show substantial improvement in welfare indicators (e.g., safer water, more durable roof material), with the greatest increases found among those with highest initial assets. A combination of regression analysis and matching estimators shows that although the poor tend to be located on the park perimeter, proximity to the park has no measureable effect on growth of productive assets. The risk for land loss among the poor was inversely correlated with proximity to the park, initial farm size, and decline in adjacent communal forests. We conclude the current disproportionate presence of poor households at the edge of the park does not signal that the park is a poverty trap. Rather, Kibale appears to provide protection against desperation sales and farm loss among those most vulnerable. PMID:21873178

  17. Amazon Forest Responses to Drought and Fire

    NASA Astrophysics Data System (ADS)

    Morton, D. C.

    2015-12-01

    Deforestation and agricultural land uses provide a consistent source of ignitions along the Amazon frontier during the dry season. The risk of understory fires in Amazon forests is amplified by drought conditions, when fires at the forest edge may spread for weeks before rains begin. Fire activity also impacts the regional response of intact forests to drought through diffuse light effects and nutrient redistribution, highlighting the complexity of feedbacks in this coupled human and natural system. This talk will focus on recent advances in our understanding of fire-climate feedbacks in the Amazon, building on research themes initiated under NASA's Large-scale Biosphere-Atmosphere Experiment in Amazonia (LBA). NASA's LBA program began in the wake of the 1997-1998 El Niño, a strong event that exposed the vulnerability of Amazon forests to drought and fire under current climate and projections of climate change. With forecasts of another strong El Niño event in 2015-2016, this talk will provide a multi-scale synthesis of Amazon forest responses to drought and fire based on field measurements, airborne lidar data, and satellite observations of fires, rainfall, and terrestrial water storage. These studies offer new insights into the mechanisms governing fire season severity in the southern Amazon and regional variability in carbon losses from understory fires. The contributions from remote sensing to our understanding of drought and fire in Amazon forests reflect the legacy of NASA's LBA program and the sustained commitment to interdisciplinary research across the Amazon region.

  18. Population density, sex ratio, body size and fluctuating asymmetry of Ceroglossus chilensis (Carabidae) in the fragmented Maulino forest and surrounding pine plantations

    NASA Astrophysics Data System (ADS)

    Henríquez, Paula; Donoso, Denise S.; Grez, Audrey A.

    2009-11-01

    Habitat fragmentation results in new environmental conditions that may stress resident populations. Such stress may be reflected in demographical or morphological changes in the individuals inhabiting those landscapes. This study evaluates the effects of fragmentation of the Maulino forest on population density, sex ratio, body size, and fluctuating asymmetry (FA) of the endemic carabid Ceroglossus chilensis. Individuals of C. chilensis were collected during 2006 in five locations at Los Queules National Reserve (continuous forest), in five forest fragments and in five areas of surrounding pine plantations (matrix). In each location, once a season, 40 pitfall traps (20 in the centre, 20 in the edge), were opened for 72 h. Population density of C. chilensis was higher in the small fragments than in the pine matrix, with intermediate densities in the continuous forest; sex ratio did not differ significantly from 1:1 in the three habitats. Individuals from the centre of fragments were smaller than those from the centre of continuous forest, and FA did not vary significantly among habitats. These results suggest that small forest fragments maintain dense populations of C. chilensis and therefore they must be considered in conservation strategies. Although the decrease of the body size suggests that small remnants should be connected by managing the structure of the surrounding matrix, facilitating the dispersion of this carabid across the landscape and avoiding possible antagonistic interactions inside small fragments.

  19. Long-term carbon loss in fragmented Neotropical forests.

    PubMed

    Pütz, Sandro; Groeneveld, Jürgen; Henle, Klaus; Knogge, Christoph; Martensen, Alexandre Camargo; Metz, Markus; Metzger, Jean Paul; Ribeiro, Milton Cezar; de Paula, Mateus Dantas; Huth, Andreas

    2014-10-07

    Tropical forests play an important role in the global carbon cycle, as they store a large amount of carbon (C). Tropical forest deforestation has been identified as a major source of CO2 emissions, though biomass loss due to fragmentation--the creation of additional forest edges--has been largely overlooked as an additional CO2 source. Here, through the combination of remote sensing and knowledge on ecological processes, we present long-term carbon loss estimates due to fragmentation of Neotropical forests: within 10 years the Brazilian Atlantic Forest has lost 69 (±14) Tg C, and the Amazon 599 (±120) Tg C due to fragmentation alone. For all tropical forests, we estimate emissions up to 0.2 Pg C y(-1) or 9 to 24% of the annual global C loss due to deforestation. In conclusion, tropical forest fragmentation increases carbon loss and should be accounted for when attempting to understand the role of vegetation in the global carbon balance.

  20. Living on the edge: adaptive and plastic responses of the tree Nothofagus pumilio to a long-term transplant experiment predict rear-edge upward expansion.

    PubMed

    Mathiasen, Paula; Premoli, Andrea C

    2016-06-01

    Current climate change affects the competitive ability and reproductive success of many species, leading to local extinctions, adjustment to novel local conditions by phenotypic plasticity or rapid adaptation, or tracking their optima through range shifts. However, many species have limited ability to expand to suitable areas. Altitudinal gradients, with abrupt changes in abiotic conditions over short distances, represent "natural experiments" for the evaluation of ecological and evolutionary responses under scenarios of climate change. Nothofagus pumilio is the tree species which dominates as pure stands the montane forests of Patagonia. We evaluated the adaptive value of variation in quantitative traits of N. pumilio under contrasting conditions of the altitudinal gradient with a long-term reciprocal transplant experimental design. While high-elevation plants show little response in plant, leaf, and phenological traits to the experimental trials, low-elevation ones show greater plasticity in their responses to changing environments, particularly at high elevation. Our results suggest a relatively reduced potential for evolutionary adaptation of high-elevation genotypes, and a greater evolutionary potential of low-elevation ones. Under global warming scenarios of forest upslope migration, high-elevation variants may be outperformed by low-elevation ones during this process, leading to the local extinction and/or replacement of these genotypes. These results challenge previous models and predictions expected under global warming for altitudinal gradients, on which the leading edge is considered to be the upper treeline forests.

  1. Internal habitat quality determines the effects of fragmentation on austral forest climbing and epiphytic angiosperms.

    PubMed

    Magrach, Ainhoa; Larrinaga, Asier R; Santamaría, Luis

    2012-01-01

    Habitat fragmentation has become one of the major threats to biodiversity worldwide, particularly in the case of forests, which have suffered enormous losses during the past decades. We analyzed how changes in patch configuration and habitat quality derived from the fragmentation of austral temperate rainforests affect the distribution of six species of forest-dwelling climbing and epiphytic angiosperms. Epiphyte and vine abundance is primarily affected by the internal characteristics of patches (such as tree size, the presence of logging gaps or the proximity to patch edges) rather than patch and landscape features (such as patch size, shape or connectivity). These responses were intimately related to species-specific characteristics such as drought- or shade-tolerance. Our study therefore suggests that plant responses to fragmentation are contingent on both the species' ecology and the specific pathways through which the study area is being fragmented, (i.e. extensive logging that shaped the boundaries of current forest patches plus recent, unregulated logging that creates gaps within patches). Management practices in fragmented landscapes should therefore consider habitat quality within patches together with other spatial attributes at landscape or patch scales.

  2. Life on the Edge - Improved Forest Cover Mapping in Mixed-Use Tropical Regions

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Mendenhall, C. D.; Daily, G.

    2016-12-01

    Tropical ecosystems and biodiversity are experiencing rapid change, primarily due to conversion of forest habitat to agriculture. Protected areas, while effective for conservation, only manage 15% of terrestrial area, whereas approximately 58% is privately owned. To incentivize private forest management and slow the loss of biodiversity, payments for ecosystem services (PES) programs were established in Costa Rica that pay landowners who maintain trees on their property. While this program is effective in improving livelihoods and preventing forest conversion, it is only managing payments to landowners on 1% of eligible, non-protected forested land.A major bottleneck for this program is access to accurate, national-scale tree cover maps. While the remote sensing community has made great progress in global-scale tree cover mapping, these maps are not sufficient to guide investments for PES programs. The major limitations of current global-scale tree-cover maps are that they a) do not distinguish between forest and agriculture and b) overestimate tree cover in mixed land-use areas (e.g. Global Forest Change overestimates by 20% on average in this region). This is especially problematic in biodiversity-rich Costa Rica, where small patches of forest intermix with agricultural production, and where the conservation value of tree-cover is high. To address this problem, we are developing a new forest cover mapping method that a) performs a least-squares spectral mixture analysis (SMA) using repeat Landsat imagery and canopy radiative transfer modeling: b) combines Landsat data, SMA results, and radar backscatter data using multi-sensor fusion techniques and: c) trains tree-cover classification models using high resolution data sets along a land use-intensity gradient. Our method predicted tree cover with 85% accuracy when compared to a fine-scale map of tree cover in a tropical, agricultural landscape, whereas the next-best method, the Global Forest Change map, predicted tree cover with 72% accuracy. Next steps will aim to test, improve, and apply this method globally to guide investments in nature in agricultural landscapes where forest stewardship will sustain biodiversity.

  3. Demonstrating the Uneven Importance of Fine-Scale Forest Structure on Snow Distributions using High Resolution Modeling

    NASA Astrophysics Data System (ADS)

    Broxton, P. D.; Harpold, A. A.; van Leeuwen, W.; Biederman, J. A.

    2016-12-01

    Quantifying the amount of snow in forested mountainous environments, as well as how it may change due to warming and forest disturbance, is critical given its importance for water supply and ecosystem health. Forest canopies affect snow accumulation and ablation in ways that are difficult to observe and model. Furthermore, fine-scale forest structure can accentuate or diminish the effects of forest-snow interactions. Despite decades of research demonstrating the importance of fine-scale forest structure (e.g. canopy edges and gaps) on snow, we still lack a comprehensive understanding of where and when forest structure has the largest impact on snowpack mass and energy budgets. Here, we use a hyper-resolution (1 meter spatial resolution) mass and energy balance snow model called the Snow Physics and Laser Mapping (SnowPALM) model along with LIDAR-derived forest structure to determine where spatial variability of fine-scale forest structure has the largest influence on large scale mass and energy budgets. SnowPALM was set up and calibrated at sites representing diverse climates in New Mexico, Arizona, and California. Then, we compared simulations at different model resolutions (i.e. 1, 10, and 100 m) to elucidate the effects of including versus not including information about fine scale canopy structure. These experiments were repeated for different prescribed topographies (i.e. flat, 30% slope north, and south-facing) at each site. Higher resolution simulations had more snow at lower canopy cover, with the opposite being true at high canopy cover. Furthermore, there is considerable scatter, indicating that different canopy arrangements can lead to different amounts of snow, even when the overall canopy coverage is the same. This modeling is contributing to the development of a high resolution machine learning algorithm called the Snow Water Artificial Network (SWANN) model to generate predictions of snow distributions over much larger domains, which has implications for improving land surface models that do not currently resolve or parameterize fine-scale canopy structure. In addition, these findings have implications for understanding the potential of different forest management strategies (i.e. thinning) based on local topography and climate to maximize the amount and retention of snow.

  4. National Insect and Disease Risk Map (NIDRM)--cutting edge software for rapid insect and disease risk model development

    Treesearch

    Frank J. Krist

    2010-01-01

    The Forest Health Technology Enterprise Team (FHTET) of the U.S. Forest Service is leading an effort to produce the next version of the National Insect and Disease Risk Map (NIDRM) for targeted release in 2011. The goal of this effort is to update spatial depictions of risk of tree mortality based on: (1) newly derived 240-m geospatial information depicting the...

  5. Habitat area requirements of breeding forest birds of the middle Atlantic states

    USGS Publications Warehouse

    Robbins, Chandler S.; Dawson, Deanna K.; Dowell, Barbara A.

    1989-01-01

    Conservation of birds requires an understanding of their nesting requirements, including area as well as structural characteristics of the habitat. Previous studies have shown that many neotropical migrant bird species seem to depend on extensive forested areas, but the specific area requirements of individual species have not been clarified sufficiently to aid in design and management of effective preserves. For this 5-year study, bird and vegetation data were obtained at 469 points in forests ranging in area from 0.1 ha to more than 3,000 ha in Maryland and adjacent states. Data were analyzed first by stepwise regression to identify habitat factors that had the greatest influence on relative abundance of each bird species. In the relatively undisturbed mature forests studied, degree of isolation and area were significant predictors of relative abundance for more bird species than were any habitat variables. For species for which forest area was a significant predictor of abundance, we used logistic regression to examine the relationship between forest area and the probability of detecting the species. In managing forest lands for wildlife, top priority should go toward providing for the needs of area-sensitive or rare species rather than increasing species diversity per se. Avian species that occur in small and disturbed forests are generalists that are adapted to survival under edge conditions and need no special assistance from man. Forest reserves with thousands of hectares are required to have the highest probability of providing for the least common species of forest birds in a region. However, if preservation of large contiguous forest tracts is not a realistic option, results of this study suggest 2 alternative approaches. First, if other habitat attributes also are considered, smaller forests may provide suitable breeding sites for relatively rare species. Second, smaller tracts in close proximity to other forests may serve to attract or retain area-sensitive species.

  6. Canada lynx Lynx canadensis habitat and forest succession in northern Maine, USA

    USGS Publications Warehouse

    Hoving, C.L.; Harrison, D.J.; Krohn, W.B.; Jakubas, W.J.; McCollough, M.A.

    2004-01-01

    The contiguous United States population of Canada lynx Lynx canadensis was listed as threatened in 2000. The long-term viability of lynx populations at the southern edge of their geographic range has been hypothesized to be dependent on old growth forests; however, lynx are a specialist predator on snowshoe hare Lepus americanus, a species associated with early-successional forests. To quantify the effects of succession and forest management on landscape-scale (100 km2) patterns of habitat occupancy by lynx, we compared landscape attributes in northern Maine, USA, where lynx had been detected on snow track surveys to landscape attributes where surveys had been conducted, but lynx tracks had not been detected. Models were constructed a priori and compared using logistic regression and Akaike's Information Criterion (AIC), which quantitatively balances data fit and parsimony. In the models with the lowest (i.e. best) AIC, lynx were more likely to occur in landscapes with much regenerating forest, and less likely to occur in landscapes with much recent clearcut, partial harvest and forested wetland. Lynx were not associated positively or negatively with mature coniferous forest. A probabilistic map of the model indicated a patchy distribution of lynx habitat in northern Maine. According to an additional survey of the study area for lynx tracks during the winter of 2003, the model correctly classified 63.5% of the lynx occurrences and absences. Lynx were more closely associated with young forests than mature forests; however, old-growth forests were functionally absent from the landscape. Lynx habitat could be reduced in northern Maine, given recent trends in forest management practices. Harvest strategies have shifted from clearcutting to partial harvesting. If this trend continues, future landscapes will shift away from extensive regenerating forests and toward landscapes dominated by pole-sized and larger stands. Because Maine presently supports the only verified populations of this federally threatened species in the eastern United States, changes in forest management practices could affect recovery efforts throughout that region.

  7. Birds and bats diverge in the qualitative and quantitative components of seed dispersal of a pioneer tree

    NASA Astrophysics Data System (ADS)

    Jacomassa, Fábio André F.; Pizo, Marco Aurélio

    2010-09-01

    Although the overlap in fruit diet between birds and bats is low, they sometimes consume and compete for fruits of the same plant species. What is poorly known is how birds and bats compare with each other in relation to the effectiveness of seed dispersal. In this paper we contrasted birds and bats in relation to quantitative (the amount of fruits removed from plants) and qualitative (germination performance of seeds) components of the seed dispersal of Solanum granuloso- leprosum, a pioneer, small-seeded tree of open areas and forest edges in south Brazil. We tagged fruits on the plants and monitored their removal by day and night. We compared the final percent of germination and speed of germination of seeds ingested by birds and bats with non-ingested, control seeds. While bats removed more fruits than birds, performing better in the quantitative component, birds improved the germination performance of seeds, an aspect of the qualitative component of seed dispersal effectiveness. Although bats are more likely to deposit seeds in highly disturbed sites that favor the recruitment of pioneer plant species, birds frequent forest edges, which is also suitable habitat for S. granuloso- leprosum, We concluded that birds and bats are not 'redundant' seed dispersers for S. granuloso- leprosum because in conjunction they may enhance its recruitment by diversifying the microsites where seeds are deposited, performing in addition different ecological functions in terms of quantity and quality of dispersal.

  8. The Effects of Vegetative Type, Edges, Fire History, Rainfall and Management in Fire-Maintained Habitat

    NASA Technical Reports Server (NTRS)

    Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.

    2018-01-01

    The combined effects of fire history, climate, and landscape features (e.g., edges) on habitat specialists need greater focus in fire ecology studies, which usually only emphasize characteristics of the most recent fire. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights, which are dynamic because of frequent fires. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells (that represented potential territories) because fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities vary between states as functions of environmental covariates. Covariates included vegetative type, edges (e.g., roads, forests), precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presence/absence of fire covariate, but also fire history covariates: time since the previous fire, the longest fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Edges reduced the effectiveness of fires in setting degraded scrub and flatwoods into earlier successional states making mechanical cutting an important tool to compliment frequent prescribed fires.

  9. The influence of personal patterns of behavior on the physiological effects of woodland walking.

    PubMed

    Toda, Masahiro; Takeshita, Tatsuya

    2015-01-01

    The effects of forest walking are once again being recognized; however, few studies have investigated individual variations in the effects of forest walking. The objective of the current study was to investigate the influence of individual patterns of behavior on the physiological effects of walking through woodland. The study employed a crossover, open-label, single-group, self-controlled design. This study was conducted in the forest on Ikoma Mountain, at the eastern edge of Osaka Prefecture in Japan. Participants were 20 healthy males, selected randomly from a population of members at a nonprofit organization with a mean age of 67.6 y. Moving from the start of a mountain path to an observation platform, participants took a 1000-m walk through the forest. On another day, participants remained in their offices. Patterns of personal behavior were assessed preintervention by written questionnaire, identifying type A and type B behavior patterns. Salivary chromogranin A (CgA) levels were determined immediately before and after the walk as well as at 20 min after and 40 min after its end. On the day when participants sat in their offices, control samples were collected at the same times as on the day of the walk. In the type B-behavior pattern group, a significant increase in the levels of CgA occurred after the walk. No change was observed in the type A-behavior pattern group. The findings suggest that walking in woodland may bring about positive health benefits, particularly to individuals with type B characteristics.

  10. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest

    USGS Publications Warehouse

    Kueppers, Lara M.; Conlisk, Erin; Castanha, Cristina; Moyes, Andrew B.; Germino, Matthew; de Valpine, Perry; Torn, Margaret S.; Mitton, Jeffry B.

    2017-01-01

    Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, but raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season-average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first-year recruitment in the forest, but had no net effect on fourth-year recruitment at any site. Watering during the snow-free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low-elevation seeds of both species initially recruited more strongly than high-elevation seeds across the elevation gradient, although the low-provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High- and low-elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high-provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower sensitivity of limber pine to warming indicates a potential for this species to become more important in subalpine forest communities in the coming centuries.

  11. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest.

    PubMed

    Kueppers, Lara M; Conlisk, Erin; Castanha, Cristina; Moyes, Andrew B; Germino, Matthew J; de Valpine, Perry; Torn, Margaret S; Mitton, Jeffry B

    2017-06-01

    Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, but raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season-average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first-year recruitment in the forest, but had no net effect on fourth-year recruitment at any site. Watering during the snow-free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low-elevation seeds of both species initially recruited more strongly than high-elevation seeds across the elevation gradient, although the low-provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High- and low-elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high-provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower sensitivity of limber pine to warming indicates a potential for this species to become more important in subalpine forest communities in the coming centuries. © 2016 John Wiley & Sons Ltd.

  12. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kueppers, Lara M.; Conlisk, Erin; Castanha, Cristina

    Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, butmore » raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season-average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first-year recruitment in the forest, but had no net effect on fourth-year recruitment at any site. Watering during the snow-free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low-elevation seeds of both species initially recruited more strongly than high-elevation seeds across the elevation gradient, although the low-provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High- and low-elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high-provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower sensitivity of limber pine to warming indicates a potential for this species to become more important in subalpine forest communities in the coming centuries.« less

  13. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest

    DOE PAGES

    Kueppers, Lara M.; Conlisk, Erin; Castanha, Cristina; ...

    2016-12-15

    Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, butmore » raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season-average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first-year recruitment in the forest, but had no net effect on fourth-year recruitment at any site. Watering during the snow-free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low-elevation seeds of both species initially recruited more strongly than high-elevation seeds across the elevation gradient, although the low-provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High- and low-elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high-provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower sensitivity of limber pine to warming indicates a potential for this species to become more important in subalpine forest communities in the coming centuries.« less

  14. Avian community response to small-scale habitat disturbance in Maine

    USGS Publications Warehouse

    Derleth, E.L.; McAuley, D.G.; Dwyer, T.J.

    1989-01-01

    The effects of small clearcuts (1 - 8 ha) on avian communities in the forest of eastern Maine were studied using point counts during spring 1978 - 1981. Surveys were conducted in uncut (control) and clear-cut (treatment) plots in three stand types: conifer, hardwood, and mixed growth. We used a mark-recapture model and its associated jackknife species richness estimator (N), as an indicator of avian community structure. Increases in estimated richness (N) and Shannon - Weaver diversity (H') were noted in the treated hardwood and mixed growth, but not in the conifer stands. Seventeen avian species increased in relative abundance, whereas two species declined. Stand treatment was associated with important changes in bird species composition. Increased habitat patchiness and the creation of forest edge are hypothesized as causes for the greater estimates of richness and diversity.

  15. Finescale turbulence and seabed scouring around pneumatophores in a wave-exposed mangrove forest

    NASA Astrophysics Data System (ADS)

    Mullarney, J. C.; Norris, B. K.; Henderson, S. M.; Bryan, K. R.

    2015-12-01

    Coastal mangroves provide a barrier between the coast and lower energy intertidal environments. The presence of mangrove roots (pneumatophores) alters local hydrodynamics by slowing currents, dissipating waves, enhancing within-canopy turbulence, and introducing significant spatial variability to the flow, particularly on the stem scale. To date, limited measurements exist within pneumatophore regions owing to the difficulties of measuring on sufficiently small scales. Hence, little is known about the turbulence controlling sediment transport within these regions. We report unique field observations near the seaward edge of a mangrove forest in the Mekong Delta, Vietnam. This forest is exposed to moderate wave energy (maximum heights of around 1 m), with waves observed to propagate and break up to 100 m inside the forest. Our measurements focus on a rapidly prograding area with a relatively sandy substrate and a gentle topographic slope. We resolved millimeter-scale turbulent flows within and above the pneumatophore canopy. Precise measurements of vegetation densities as a function of height were obtained using photogrammetry techniques. The dissipation rate of turbulent kinetic energy was enhanced at the canopy edge (ɛ ~ 10-4 W/kg), and decreased with distance into the forest (ɛ ~ 10-5 W/kg), although rates remained elevated above values measured on the tidal flat immediately offshore of the mangroves (ɛ ~ 10-6 W/kg). The dependence of turbulence on vegetation characteristics and on the stage of the tidal cycle is explored. The hydrodynamic measurements are then linked with changes in bathymetric features noted after a large wave event. Finer mud sediments were deposited outside the forest on the intertidal mudflat, whereas sandy sediments in the fringe region were significant scoured around regions of dense pneumatophores, and sediment mounds developed in the gaps between pneumatophores.

  16. Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management.

    PubMed

    Kellomäki, Seppo; Peltola, Heli; Nuutinen, Tuula; Korhonen, Kari T; Strandman, Harri

    2008-07-12

    This study investigated the sensitivity of managed boreal forests to climate change, with consequent needs to adapt the management to climate change. Model simulations representing the Finnish territory between 60 and 70 degrees N showed that climate change may substantially change the dynamics of managed boreal forests in northern Europe. This is especially probable at the northern and southern edges of this forest zone. In the north, forest growth may increase, but the special features of northern forests may be diminished. In the south, climate change may create a suboptimal environment for Norway spruce. Dominance of Scots pine may increase on less fertile sites currently occupied by Norway spruce. Birches may compete with Scots pine even in these sites and the dominance of birches may increase. These changes may reduce the total forest growth locally but, over the whole of Finland, total forest growth may increase by 44%, with an increase of 82% in the potential cutting drain. The choice of appropriate species and reduced rotation length may sustain the productivity of forest land under climate change.

  17. Measurements of the Temporal and Spatial Distributions of Turbulence within the Fringing Region of a Mangrove Forest

    NASA Astrophysics Data System (ADS)

    Norris, B. K.; Mullarney, J. C.; Bryan, K. R.; Henderson, S. M.

    2016-02-01

    Fringing coastal mangrove forests provide a barrier between high energy coastlines and lower energy intertidal zones. The aerial roots of mangrove trees dissipate tidal currents and waves, greatly modifying forest-wide sedimentation. However, understanding of turbulence generation and dissipation within the root canopy has been inhibited by the difficulty of resolving such small scale flows. Our research provides a unique, high-resolution (50Hz, mm scale) set of field observations from the seaward edge of Cu Lao Dung Island in the Song Hau distributary channel of the Mekong Delta, Vietnam. Here, we deployed an array of current meters to resolve flows over a length scales of 1 to 100m in order to capture the transition between wave-dominated tidal mudflats, through the forest fringe and into the sheltered forest interior. We are able to demonstrate that there is significant enhancement of the dissipation rate of turbulent kinetic energy at the interface of the forest fringe (1-2 orders of magnitude) compared to the mudflat and forest environments. Moreover, a fine scale study on the evolution of turbulence within the forest fringe reveals a relationship between the location of maximum turbulence and the diameter of individual vegetation elements. Our results confirm that the presence of mangrove vegetation is a significant contributor to the heterogeneous distribution of turbulence. These results show that mangroves have a complex effect on the spatial distribution of turbulence: flows and turbulence are reduced in the sheltered forest interior, creating an ideal environment for sediment deposition, whereas turbulence and erosion is enhanced seaward towards the forest fringe. Given the decline of mangroves worldwide and their role in marine carbon sequestration, a more complete understanding of the complex hydrodynamics that shape the physical environment of mangrove forests is critical to determining the factors that underpin forest expansion or retreat.

  18. Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery

    NASA Astrophysics Data System (ADS)

    Castillo, Jose Alan A.; Apan, Armando A.; Maraseni, Tek N.; Salmo, Severino G.

    2017-12-01

    The recent launch of the Sentinel-1 (SAR) and Sentinel-2 (multispectral) missions offers a new opportunity for land-based biomass mapping and monitoring especially in the tropics where deforestation is highest. Yet, unlike in agriculture and inland land uses, the use of Sentinel imagery has not been evaluated for biomass retrieval in mangrove forest and the non-forest land uses that replaced mangroves. In this study, we evaluated the ability of Sentinel imagery for the retrieval and predictive mapping of above-ground biomass of mangroves and their replacement land uses. We used Sentinel SAR and multispectral imagery to develop biomass prediction models through the conventional linear regression and novel Machine Learning algorithms. We developed models each from SAR raw polarisation backscatter data, multispectral bands, vegetation indices, and canopy biophysical variables. The results show that the model based on biophysical variable Leaf Area Index (LAI) derived from Sentinel-2 was more accurate in predicting the overall above-ground biomass. In contrast, the model which utilised optical bands had the lowest accuracy. However, the SAR-based model was more accurate in predicting the biomass in the usually deficient to low vegetation cover non-forest replacement land uses such as abandoned aquaculture pond, cleared mangrove and abandoned salt pond. These models had 0.82-0.83 correlation/agreement of observed and predicted value, and root mean square error of 27.8-28.5 Mg ha-1. Among the Sentinel-2 multispectral bands, the red and red edge bands (bands 4, 5 and 7), combined with elevation data, were the best variable set combination for biomass prediction. The red edge-based Inverted Red-Edge Chlorophyll Index had the highest prediction accuracy among the vegetation indices. Overall, Sentinel-1 SAR and Sentinel-2 multispectral imagery can provide satisfactory results in the retrieval and predictive mapping of the above-ground biomass of mangroves and the replacement non-forest land uses, especially with the inclusion of elevation data. The study demonstrates encouraging results in biomass mapping of mangroves and other coastal land uses in the tropics using the freely accessible and relatively high-resolution Sentinel imagery.

  19. Threshold responses of songbirds to long-term timber management on an active industrial forest

    USGS Publications Warehouse

    Becker, Douglas A.; Wood, Petra Bohall; Keyser, Patrick D.; Wigley, T. Bently; Dellinger, Rachel; Weakland, Cathy A.

    2011-01-01

    Forest managers often seek to balance economic benefits from timber harvesting with maintenance of habitat for wildlife, ecosystem function, and human uses. Most research on the relationship between avian abundance and active timber management has been short-term, lasting one to two years, creating the need to investigate long-term avian responses and to identify harvest thresholds when a small change in habitat results in a disproportionate response in relative abundance and nest success. Our objectives were to identify trends in relative abundance and nest success and to identify landscape-scale disturbance thresholds for avian species and habitat guilds in response to a variety of harvest treatments (clear-cuts, heavy and light partial harvests) over 14 years. We conducted point counts and monitored nests at an industrial forest in the central Appalachians of West Virginia during 1996–1998, 2001–2003, and 2007–2009. Early successional species increased in relative abundance across all three time periods, whereas interior-edge and forest-interior guilds peaked in relative abundance mid-study after which the forest-interior guild declined. Of 41 species with >10 detections, four (10%) declined significantly, 13 (32%) increased significantly (only three species among all periods), and 9 (22%) peaked in abundance mid-study (over the entire study period, four species had no significant change in abundance, four declined, and one increased). Based on piecewise linear models, forest-interior and interior-edge guilds’ relative abundance harvest thresholds were 28% total harvests (all harvests combined), 10% clear-cut harvests, and 18% light partial harvests, after which abundances declined. Harvest thresholds for the early successional guild were 42% total harvests, 11% clear-cut harvest, and 10% light partial harvests, and relative abundances increased after surpassing thresholds albeit at a reduced rate of increase after the clear-cut threshold. Threshold confidence intervals for individual species overlapped their guild threshold intervals 91% of the time. Even though relative abundance of most species (80%) did not decline as the area affected by timber management increased, implementing management at or below our approximate forest-interior and interior-edge harvest thresholds would reduce the number of declining species by half, maintain higher relative abundances of four species with a net decline in abundance but that peaked in abundance mid-study, and maintain higher relative abundances of ten additional species. In contrast, this management strategy also would prevent the increase in relative abundance of seven species and limit the increase in abundance of three species that increased throughout the study.

  20. Ecological characterisation and infection of Anophelines (Diptera: Culicidae) of the Atlantic Forest in the southeast of Brazil over a 10 year period: has the behaviour of the autochthonous malaria vector changed?

    PubMed

    Buery, Julyana Cerqueira; Rezende, Helder Ricas; Natal, Licia; Silva, Leonardo Santana da; Menezes, Regiane Maria Tironi de; Fux, Blima; Malafronte, Rosely Dos Santos; Falqueto, Aloisio; Cerutti Junior, Crispim

    2018-02-01

    BACKGROUND In southeastern Brazil, autochthonous cases of malaria can be found near Atlantic Forest fragments. Because the transmission cycle has not been completely clarified, the behaviour of the possible vectors in those regions must be observed. A study concerning the entomological aspects and natural infection of anophelines (Diptera: Culicidae) captured in the municipalities of the mountainous region of Espírito Santo state was performed in 2004 and 2005. Similarly, between 2014 and 2015, 12 monthly collections were performed at the same area of the study mentioned above. METHODS Center for Disease Control (CDC) light traps with CO2 were set in open areas, at the edge and inside of the forest (canopy and ground), whereas Shannon traps were set on the edge. FINDINGS A total of 1,414 anophelines were collected from 13 species. Anopheles (Kerteszia) cruzii Dyar and Knab remained the most frequently captured species in the CDC traps set in the forest canopy, as well as being the vector with the highest prevalence of Plasmodium vivax/simium infection, according to molecular polymerase chain reaction techniques. CONCLUSIONS P. vivax/simium was found only in abdomens of the mosquitoes of the subgenus Nyssorhynchus, weakening the hypothesis that this subgenus also plays a role in malaria transmission in this specific region.

  1. Effects of landscape composition and wetland fragmentation on frog and toad abundance and species richness in Iowa and Wisconsin, USA [abstract

    USGS Publications Warehouse

    Knutson, M.G.; Sauer, J.R.; Olsen, D.A.; Mossman, M.J.; Hemesath, L.M.; Lannoo, M.J.

    1998-01-01

    We examined the relationships between anuran diversity and landscape features in the Upper Midwestern United States. Anuran relative abundance and species richness were measured using data collected by Wisconsin and Iowa state calling surveys conducted from 1990-1995. Landscape features surrounding survey points were determined using National Wetland Inventory and Wisconsin Wetland Inventory maps. We tested several hypotheses suggested by the literature. We hypothesized that the relative abundance and species richness of anurans that breed in ephemeral wetlands is positively correlated with the surrounding area of temporary wetlands and emergent wetlands. We hypothesized that the relative abundance and species richness of anurans is positively correlated with patch diversity and wetland edges, in the absence of local fragmentation effects. We hypothesized that the relative abundance and species richness of anurans is positively associated with forests but negatively associated with agriculture and urban areas. Our results show that the interspersion of different wetland types and the concomitant increase in wetland edge habitats were generally positive for frogs and toads and anuran abundance and diversity were generally higher in association with forests, especially forested wetlands. The presence of agriculture did not always depress frog and toad populations or diversity; some species were associated with agricultural landscapes. The two states differed in how anurans were associated with landscape features like lakes and permanent wetlands. We found that frog and toad relative abundance and diversity were lower when urban areas were present. Managers can use models like ours, generated from landscape analyses, along with range maps and population trend analyses to get a comprehensive picture of the health of individual species and groups of species. Our models could be applied to the landscape as a whole, and used to predict species relative abundance and richness at new locations. Our work provides a framework for future experimental and intensive research on specific factors affecting the health of amphibians in the Upper Midwest.

  2. Dispersal of Warren root collar weevils (Coleoptera: Curculionidae) in three types of habitat.

    PubMed

    Machial, Laura A; Lindgren, B Staffan; Steenweg, Robin W; Aukema, Brian H

    2012-06-01

    Warren root collar weevil, Hylobius warreni Wood, is a native, flightless insect distributed throughout the boreal forest of North America. It is an emerging problem in young plantings of lodgepole pine, Pinus contorta variety latifolia, in western Canada, where larval feeding can kill young trees by girdling the root collar. Susceptible plantings are becoming more abundant following salvage harvesting and replanting activities in the wake of an ongoing epidemic of mountain pine beetle, Dendroctonus ponderosae (Hopkins). Previous studies using mark-trap-recapture methods found that movement rates of adult H. warreni were elevated in areas with high numbers of dead trees, consistent with a hypothesis that the insects immigrate from stands with high mountain pine beetle-caused tree mortality to young plantings in search of live hosts. Sampling methods were necessarily biased to insects captured in traps; however, potentially missing individuals that had died, left the study area, or simply remained stationary. Here, we used harmonic radar to examine weevil movement in three different habitats: open field, forest edge, and within a forest. We were able to reliably monitor all but two of 36 insects initially released, over 96 h (4 d). Weevils released in the open field had the highest rates of movement, followed by weevils released at the forest edge, then weevils released within the forest. Movement declined with decreasing ambient air temperature. Our results suggest that weevils tend to be relatively stationary in areas of live hosts, and hence may concentrate in a suitable area once such habitat is found.

  3. Ecomorphology, differentiated habitat use, and nocturnal activities of Rhinolophus and Hipposideros species in East Asian tropical forests.

    PubMed

    Lee, Ya-Fu; Kuo, Yen-Min; Chu, Wen-Chen; Lin, Yu-Hsiu; Chang, Hsing-Yi; Chen, Wei-Ming

    2012-02-01

    We investigated the wing morphology and foraging distributions of sympatric Rhinolophus and Hipposideros species by acoustic sampling, measuring wing parameters, and observing bats in different settings of tropical East Asian forests, to evaluate their flexibility in habitat use and edge sensitivity. R. formosae and H. terasensis were more abundant at edges/in open habitats and shared the highest overlap, with R. formosae displaying the greatest breadth in habitat use, whereas R. monoceros had a higher abundance and feeding efficiency in forest interiors with a continuous canopy. H. terasensis was significantly larger and had higher wing loading and aspect ratio than R. formosae and R. monoceros, while R. formosae had higher wing loading but a lower aspect ratio than the smaller-sized R. monoceros. Shrubs and herbs were higher at sites where bats were captured than at those without bat captures, and R. monoceros and R. formosae were associated with greater canopy and ground coverage, respectively. R. monoceros always foraged while flying at lower heights close to the herb/shrub layers, while H. terasensis and R. formosae used perching to different extents, with R. formosae preferably using fly-catching techniques and appearing farther from the path in open forests rather than in forest interiors. Our results indicate that differences in wing parameters account for the different degrees of flexibility in habitat use, yet the deviations of call frequency from the expected values in R. formosae and H. terasensis suggest additional adaptations accounting for their flexibility in exploring habitats. Copyright © 2012 Elsevier GmbH. All rights reserved.

  4. 18. Arctostaphylos Adanson, Fam. Pl. 2: 165. 1763.

    USGS Publications Warehouse

    Parker, V. Thomas; Vasey, Michael C.; Keeley, Jon E.

    2009-01-01

    Arctostaphylos is richly diverse and taxonomically challenging. Unequivocal fossils appear as far back as the middle Miocene. Many pulses of diversification and decimation may have taken place in the genus since then; evidence suggests that there has been a rapid radiation in the last 1.5 million years. Some morphological features are not clearly differentiated among taxa and appear to be mosaically distributed.Multiple lines of evidence suggest that Arctostaphylos is a terminal branch within Arbutoideae. Arctous is treated here as a separate genus, as it is likely sister to Arctostaphylos. Only one species of Arctostaphylos, A. uva-ursi, is found outside of western North America, Mexico, and Guatemala. Taxa are concentrated within the California Floristic Province (southern Oregon to northern Baja California, Mexico) with the greatest diversity along the central California coast, where over half of the taxa are found. Along the immediate California coastline, most Arctostaphylos species are found within vegetation strongly influenced by summer fog, either within maritime chaparral, as a forest-edge species, or as part of a closed-cone conifer woodland and forest. Away from the coast, Arctostaphylos species are distributed to the desert edge in chaparral woodlands and forests.

  5. A tool for assessing ecological status of forest ecosystem

    NASA Astrophysics Data System (ADS)

    Rahman Kassim, Abd; Afizzul Misman, Muhammad; Azahari Faidi, Mohd; Omar, Hamdan

    2016-06-01

    Managers and policy makers are beginning to appreciate the value of ecological monitoring of artificially regenerated forest especially in urban areas. With the advent of more advance technology in precision forestry, high resolution remotely sensed data e.g. hyperspectral and LiDAR are becoming available for rapid and precise assessment of the forest condition. An assessment of ecological status of forest ecosystem was developed and tested using FRIM campus forest stand. The forest consisted of three major blocks; the old growth artificially regenerated native species forests, naturally regenerated forest and recent planted forest for commercial timber and other forest products. Our aim is to assess the ecological status and its proximity to the mature old growth artificially regenerated stand. We used airborne LiDAR, orthophoto and thirty field sampling quadrats of 20x20m for ground verification. The parameter assessments were grouped into four broad categories: a. forest community level-composition, structures, function; landscape structures-road network and forest edges. A metric of parameters and rating criteria was introduced as indicators of the forest ecological status. We applied multi-criteria assessment to categorize the ecological status of the forest stand. The paper demonstrates the application of the assessment approach using FRIM campus forest as its first case study. Its potential application to both artificially and naturally regenerated forest in the variety of Malaysian landscape is discussed

  6. The shifting nature of vegetation controls on peak snowpack with varying slope and aspect

    NASA Astrophysics Data System (ADS)

    Biederman, J. A.; Harpold, A. A.; Broxton, P. D.; Brooks, P. D.

    2012-12-01

    The controls on peak seasonal snowpack are known to shift between forested and open environments as well as with slope and aspect. Peak snowpack is predicted well by interception models under uniformly dense canopy, while topography, wind and radiation are strong predictors in open areas. However, many basins have complex mosaics of forest canopy and small gaps, where snowpack controls involve complex interactions among climate, topography and forest structure. In this presentation we use a new fully distributed tree-scale model to investigate vegetation controls on snowpack for a range of slope and aspect, and we evaluate the energy balance in forest canopy and gap environments. The model is informed by airborne LiDAR and ground-based observations of climate, vegetation and snowpack. It represents interception, snow distribution by wind, latent and sensible heat fluxes, and radiative fluxes above and below the canopy at a grid scale of 1 m square on an hourly time step. First, the model is minimally calibrated using continuous records of snow depth and snow water equivalent (SWE). Next, the model is evaluated using distributed observations at peak accumulation. Finally, the domain is synthetically altered to introduce ranges of slope and aspect. Northerly aspects accumulate greater peak SWE than southerly aspects (e.g. 275 mm vs. 250 mm at a slope of 28 %) but show lower spatial variability (e. g. CV = 0.14 vs. CV = 0.17 at slope of 28 %). On northerly aspects, most of the snowpack remains shaded by vegetation, whereas on southerly aspects the northern portions of gaps and southern forest edges receive direct insolation during late winter. This difference in net radiation makes peak SWE in forest gaps and adjacent forest edges more sensitive to topography than SWE in areas under dense canopy. Tree-scale modeling of snow dynamics over synthetic terrain offers extensive possibilities to test interactions among vegetation and topographic controls.

  7. Abrupt Increases in Amazonian Tree Mortality Due to Drought-Fire Interactions

    NASA Technical Reports Server (NTRS)

    Brando, Paulo Monteiro; Balch, Jennifer K.; Nepstad, Daniel C.; Morton, Douglas C.; Putz, Francis E.; Coe, Michael T.; Silverio, Divino; Macedo, Marcia N.; Davidson, Eric A.; Nobrega, Caroline C.; hide

    2014-01-01

    Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, longterm experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW x m(exp -1)). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with less than 1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change.

  8. Abrupt increases in Amazonian tree mortality due to drought-fire interactions.

    PubMed

    Brando, Paulo Monteiro; Balch, Jennifer K; Nepstad, Daniel C; Morton, Douglas C; Putz, Francis E; Coe, Michael T; Silvério, Divino; Macedo, Marcia N; Davidson, Eric A; Nóbrega, Caroline C; Alencar, Ane; Soares-Filho, Britaldo S

    2014-04-29

    Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, long-term experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW ⋅ m(-1)). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with <1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change.

  9. Abrupt increases in Amazonian tree mortality due to drought–fire interactions

    PubMed Central

    Brando, Paulo Monteiro; Balch, Jennifer K.; Nepstad, Daniel C.; Morton, Douglas C.; Putz, Francis E.; Coe, Michael T.; Silvério, Divino; Macedo, Marcia N.; Davidson, Eric A.; Nóbrega, Caroline C.; Alencar, Ane; Soares-Filho, Britaldo S.

    2014-01-01

    Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, long-term experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW⋅m−1). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with <1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change. PMID:24733937

  10. PLANT INVASIONS IN RHODE ISLAND RIPARIAN ZONES

    EPA Science Inventory

    The vegetation in riparian zones provides valuable wildlife habitat while enhancing instream habitat and water quality. Forest fragmentation, sunlit edges, and nutrient additions from adjacent development may be sources of stress on riparian zones. Landscape plants may include no...

  11. 11. Photocopy of blueprint (on file at La Grande District ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of blueprint (on file at La Grande District Office, La Grande, Oregon) USDA Forest Service, 1939 - Union Ranger District Compound, Guard Residence, Fronting State Highway 203, at West edge of Union, Union, Union County, OR

  12. 10. Photocopy of architectural blueprint (on file at La Grande ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of architectural blueprint (on file at La Grande District Office, La Grande, Oregon) USDA Forest Service, 1958 - Union Ranger District Compound, Office, Fronting State Highway 203, at West edge of Union, Union, Union County, OR

  13. Forest on the edge: Seasonal cloud forest in Oman creates its own ecological niche

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Anke; Eltahir, Elfatih A. B.

    2006-06-01

    Cloud forests usually grow in the moist tropics where water is not a limiting factor to plant growth. Here, for the first time, we describe the hydrology of a water limited seasonal cloud forest in the Dhofar mountains of Oman. This ecosystem is under significant stress from camels feeding on tree canopies. The Dhofar forests are the remnants of a moist vegetation belt, which once spread across the Arabian Peninsula. According to our investigation the process of cloud immersion during the summer season creates within this desert a niche for moist woodland vegetation. Woodland vegetation survives in this ecosystem, sustained through enhanced capture of cloud water by their canopies (horizontal precipitation). Degraded land lacks this additional water source, which inhibits re-establishment of trees. Our modeling results suggest that cattle feeding may lead to irreversible destruction of one of the most diverse ecosystems in Arabia.

  14. Avian nest success in midwestern forests fragmented by agriculture

    USGS Publications Warehouse

    Knutson, M.G.; Friberg, M.A.; Niemi, G.J.; Newton, W.E.

    2004-01-01

    Knutson et al. (2004) report the results of an avian nest success study conducted to investigate how forest-bird nest success varied by nest location and type as well as by landscape context from 1996 to 1998 in an agricultural region of southwestern Minnesota, and southwestern Wisconsin, and northeastern Iowa. The authors found an overall Mayfield adjusted nest success of 48%, 82% for cavity-nesting species, and 42% for cup-nesting species. Common species varied from 23% for American Redstart (Setophaga ruticilla) to 43% for the Eastern Wood-Pewee (Contopus virens). Nest success was lowest for open-cup nesters, species that reject Brown-headed Cowbird (Molothrus ater) eggs, species that next near forest edges, and Neotropical migrants. These tendencies were consistent across the years of the study. Assessments of nest success considering surrounding landscape metrics indicated that forest area may not be a strong indicator of nest success in landscapes where all the available forests are fragmented.

  15. Final Environmental Assessment: Lease with Omaha Public Power District (OPPD) to Support New United States Strategic Command (USSTRATCOM) Facility and Existing Base Load

    DTIC Science & Technology

    2013-02-01

    Biological Resources The area around and encompassing Offutt AFB is the western edge of the Eastern Deciduous Forest and borders on the ecotone...that separates the Eastern Deciduous Forest from the Tall and Mid Grass Prairies. Early photos of the Offutt AFB area indicate that it was grassland...regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington

  16. Black Hills Region, SD, USA

    NASA Image and Video Library

    1973-06-22

    SL2-81-157 (22 June 1973) --- This view of the Black Hills Region, SD (44.0N, 104.0W) shows the scenic Black Hills where Mt. Rushmore and other monuments are located. Cities and towns in this view include: Rapid City, Deadwood, and Belle Fourche with the nearby Belle Fourche Reservoir. Notable in this scene are the recovering burn scars (seen as irregular shaped light toned patches) from a 1959 forest fire in the Black Hills National Forest near the edge of the photo. Photo credit: NASA

  17. Effects of high-frequency understorey fires on woody plant regeneration in southeastern Amazonian forests

    PubMed Central

    Balch, Jennifer K.; Massad, Tara J.; Brando, Paulo M.; Nepstad, Daniel C.; Curran, Lisa M.

    2013-01-01

    Anthropogenic understorey fires affect large areas of tropical forest, yet their effects on woody plant regeneration post-fire remain poorly understood. We examined the effects of repeated experimental fires on woody stem (less than 1 cm at base) mortality, recruitment, species diversity, community similarity and regeneration mode (seed versus sprout) in Mato Grosso, Brazil. From 2004 to 2010, forest plots (50 ha) were burned twice (B2) or five times (B5), and compared with an unburned control (B0). Stem density recovered within a year after the first burn (initial density: 12.4–13.2 stems m−2), but after 6 years, increased mortality and decreased regeneration—primarily of seedlings—led to a 63 per cent and 85 per cent reduction in stem density in B2 and B5, respectively. Seedlings and sprouts across plots in 2010 displayed remarkable community similarity owing to shared abundant species. Although the dominant surviving species were similar across plots, a major increase in sprouting occurred—almost three- and fourfold greater in B2 and B5 than in B0. In B5, 29 species disappeared and were replaced by 11 new species often present along fragmented forest edges. By 2010, the annual burn regime created substantial divergence between the seedling community and the initial adult tree community (greater than or equal to 20 cm dbh). Increased droughts and continued anthropogenic ignitions associated with frontier land uses may promote high-frequency fire regimes that may substantially alter regeneration and therefore successional processes. PMID:23610167

  18. Amazonian forest-savanna bistability and human impact

    NASA Astrophysics Data System (ADS)

    Wuyts, Bert; Champneys, Alan R.; House, Joanna I.

    2017-05-01

    A bimodal distribution of tropical tree cover at intermediate precipitation levels has been presented as evidence of fire-induced bistability. Here we subdivide satellite vegetation data into those from human-unaffected areas and those from regions close to human-cultivated zones. Bimodality is found to be almost absent in the unaffected regions, whereas it is significantly enhanced close to cultivated zones. Assuming higher logging rates closer to cultivated zones and spatial diffusion of fire, our spatiotemporal mathematical model reproduces these patterns. Given a gradient of climatic and edaphic factors, rather than bistability there is a predictable spatial boundary, a Maxwell point, that separates regions where forest and savanna states are naturally selected. While bimodality can hence be explained by anthropogenic edge effects and natural spatial heterogeneity, a narrow range of bimodality remaining in the human-unaffected data indicates that there is still bistability, although on smaller scales than claimed previously.

  19. The influence of habitat structure on bird species composition in lowland malaysian rain forests.

    PubMed

    Mansor, Mohammad Saiful; Sah, Shahrul Anuar Mohd

    2012-05-01

    Bird surveys were conducted in the Bukit Kepala Gajah limestone area in Lenggong, Perak from July 2010 to January 2011. The study area was divided into three zones: forest edge, forest intermediate and forest interior. A point-count distance sampling method was used in the bird surveys. The study recorded 7789 detections, representing 100 bird species belonging to 28 families. Pycnonotidae, Timaliidae and Nectariniidae were the dominant families overall and showed the highest number of observations recorded in the study area whereas Motacillidae showed the fewest observations. The bird species were grouped into three feeding guilds: insectivores, frugivores and others (omnivores, carnivores, nectarivores and granivores). The species richness of insectivorous birds differed significantly among the forest zones sampled (Kruskal-Wallis: α=0.05, H=10.979, d.f.=2, p=0.004), with more insectivorous birds occurring in the forest interior. No significant differences were found among the zones in the species richness of either the frugivore guild or the composite others guild.

  20. Habitat Preferences of Boros schneideri (Coleoptera: Boridae) in the Natural Tree Stands of the Białowieża Forest

    PubMed Central

    Gutowski, Jerzy M.; Sućko, Krzysztof; Zub, Karol; Bohdan, Adam

    2014-01-01

    Abstract We analyzed habitat requirements of Boros schneideri (Panzer, 1796) (Coleoptera: Boridae) in the natural forests of the continental biogeographical region, using data collected in the Białowieża Forest. This species has been found on the six host trees, but it preferred dead, standing pine trees, characterized by large diameter, moderately moist and moist phloem but avoided trees in sunny locations. It occurred mostly in mesic and wet coniferous forests. This species demonstrated preferences for old tree stands (over 140-yr old), and its occurrence in younger tree-stand age classes (minimum 31–40-yr old) was not significantly different from random distribution. B. schneideri occupied more frequently locations distant from the forest edge, which were less affected by logging. Considering habitat requirements, character of occurrence, and decreasing number of occupied locations in the whole range of distribution, this species can be treated as relict of primeval forests. PMID:25527586

  1. The Influence of Habitat Structure on Bird Species Composition in Lowland Malaysian Rain Forests

    PubMed Central

    Mansor, Mohammad Saiful; Sah, Shahrul Anuar Mohd

    2012-01-01

    Bird surveys were conducted in the Bukit Kepala Gajah limestone area in Lenggong, Perak from July 2010 to January 2011. The study area was divided into three zones: forest edge, forest intermediate and forest interior. A point-count distance sampling method was used in the bird surveys. The study recorded 7789 detections, representing 100 bird species belonging to 28 families. Pycnonotidae, Timaliidae and Nectariniidae were the dominant families overall and showed the highest number of observations recorded in the study area whereas Motacillidae showed the fewest observations. The bird species were grouped into three feeding guilds: insectivores, frugivores and others (omnivores, carnivores, nectarivores and granivores). The species richness of insectivorous birds differed significantly among the forest zones sampled (Kruskal-Wallis: α=0.05, H=10.979, d.f.=2, p=0.004), with more insectivorous birds occurring in the forest interior. No significant differences were found among the zones in the species richness of either the frugivore guild or the composite others guild. PMID:24575221

  2. 6. Photocopy of pencil drawing (on file at La Grande ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of pencil drawing (on file at La Grande District Office, La Grande, Oregon) USDA Forest Service, 1939 CIRCULATION PLAN - Union Ranger District Compound, Fronting State Highway 203, at West edge of Union, Union, Union County, OR

  3. 6. Photocopy of architectural blueprint (on file at La Grande ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of architectural blueprint (on file at La Grande District Office, La Grande, Oregon) USDA Forest Service RANGERS RESIDENCE - Union Ranger Distric Compound, Rangers Residence, Fronting State Highway 203, at West edge of Union, Union, Union County, OR

  4. Long-distance gene flow and adaptation of forest trees to rapid climate change

    PubMed Central

    Kremer, Antoine; Ronce, Ophélie; Robledo-Arnuncio, Juan J; Guillaume, Frédéric; Bohrer, Gil; Nathan, Ran; Bridle, Jon R; Gomulkiewicz, Richard; Klein, Etienne K; Ritland, Kermit; Kuparinen, Anna; Gerber, Sophie; Schueler, Silvio

    2012-01-01

    Forest trees are the dominant species in many parts of the world and predicting how they might respond to climate change is a vital global concern. Trees are capable of long-distance gene flow, which can promote adaptive evolution in novel environments by increasing genetic variation for fitness. It is unclear, however, if this can compensate for maladaptive effects of gene flow and for the long-generation times of trees. We critically review data on the extent of long-distance gene flow and summarise theory that allows us to predict evolutionary responses of trees to climate change. Estimates of long-distance gene flow based both on direct observations and on genetic methods provide evidence that genes can move over spatial scales larger than habitat shifts predicted under climate change within one generation. Both theoretical and empirical data suggest that the positive effects of gene flow on adaptation may dominate in many instances. The balance of positive to negative consequences of gene flow may, however, differ for leading edge, core and rear sections of forest distributions. We propose future experimental and theoretical research that would better integrate dispersal biology with evolutionary quantitative genetics and improve predictions of tree responses to climate change. PMID:22372546

  5. Long-distance gene flow and adaptation of forest trees to rapid climate change.

    PubMed

    Kremer, Antoine; Ronce, Ophélie; Robledo-Arnuncio, Juan J; Guillaume, Frédéric; Bohrer, Gil; Nathan, Ran; Bridle, Jon R; Gomulkiewicz, Richard; Klein, Etienne K; Ritland, Kermit; Kuparinen, Anna; Gerber, Sophie; Schueler, Silvio

    2012-04-01

    Forest trees are the dominant species in many parts of the world and predicting how they might respond to climate change is a vital global concern. Trees are capable of long-distance gene flow, which can promote adaptive evolution in novel environments by increasing genetic variation for fitness. It is unclear, however, if this can compensate for maladaptive effects of gene flow and for the long-generation times of trees. We critically review data on the extent of long-distance gene flow and summarise theory that allows us to predict evolutionary responses of trees to climate change. Estimates of long-distance gene flow based both on direct observations and on genetic methods provide evidence that genes can move over spatial scales larger than habitat shifts predicted under climate change within one generation. Both theoretical and empirical data suggest that the positive effects of gene flow on adaptation may dominate in many instances. The balance of positive to negative consequences of gene flow may, however, differ for leading edge, core and rear sections of forest distributions. We propose future experimental and theoretical research that would better integrate dispersal biology with evolutionary quantitative genetics and improve predictions of tree responses to climate change. © 2012 Blackwell Publishing Ltd/CNRS.

  6. Detecting bugweed (Solanum mauritianum) abundance in plantation forestry using multisource remote sensing

    NASA Astrophysics Data System (ADS)

    Peerbhay, Kabir; Mutanga, Onisimo; Lottering, Romano; Bangamwabo, Victor; Ismail, Riyad

    2016-11-01

    The invasive weed Solanum mauritianum (bugweed) has infested large areas of plantation forests in KwaZulu-Natal, South Africa. Bugweed often forms dense infestations and rapidly capitalises on available natural resources hindering the production of forest resources. Precise assessment of bugweed canopy cover, especially at low abundance cover, is essential to an effective weed management strategy. In this study, the utility of AISA Eagle airborne hyperspectral data (393-994 nm) with the new generation Worldview-2 multispectral sensor (427-908 nm) was compared to detect the abundance of bugweed cover within the Hodgsons Sappi forest plantation. Using sparse partial least squares discriminant analysis (SPLS-DA), the best detection results were obtained when performing discrimination using the remotely sensing images combined with LiDAR. Overall classification accuracies subsequently improved by 10% and 11.67% for AISA and Worldview-2 respectively, with improved detection accuracies for bugweed cover densities as low as 5%. The incorporation of LiDAR worked well within the SPLS-DA framework for detecting the abundance of bugweed cover using remotely sensed data. In addition, the algorithm performed simultaneous dimension reduction and variable selection successfully whereby wavelengths in the visible (393-670 nm) and red-edge regions (725-734 nm) of the spectrum were the most effective.

  7. The effects of patch shape and connectivity on nest site selection and reproductive success of the Indigo Bunting.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weldon, Aimee Jean

    2004-07-01

    Description – Ph.D Dissertation. North Carolina State University. Raleigh, North Carolina. 135 pp. Abatract - Habitat fragmentation and its associated effects have been blamed for the recent population declines of many Neotropical migratory bird species. Increased predation and parasitism resulting from edge-related effects have been implicated for poor nesting success in many studies, mostly of forest interior species. However, little attention has been devoted to disturbance-dependent birds. In this study, I examine how patch shape and connectivity in fragmented landscapes affects the reproductive success of disturbance-dependent bird species, specifically the Indigo Bunting (Passerina cyanea). I conducted my study in amore » landscape-scale experimental system of similar-area habitat patches that differed in connectivity and in shape. Shapes differed between edgy and rectangular forms, where edgy patches contained 50% more edge than rectangular patches. I tested whether edgy patches function as ecological traps for species with strong edge preferences, by leading them to select dangerous habitats. Indigo Buntings preferentially selected edgy patches over rectangular patches, but experienced significantly lower reproductive success in edgy patches early in the season. Although predation pressure intensified in rectangular patches late in the season, seasonal fecundity was still significantly lower in edgy patches, providing the first empirical evidence that edges can function as ecological traps for Indigo Buntings. A second objective of my study was to evaluate the efficacy of conservation corridors for disturbance-dependent bird species. Conservation corridors have become a popular strategy to preserve biodiversity and promote gene flow in fragmented landscapes, but corridors may also have negative consequences. I tested the hypothesis that corridors can increase nest predation risk in connected patches relative to unconnected patches. Nest predation rates increased significantly in connected patches compared to unconnected rectangular patches, but were similar between connected patches and unconnected edgy patches. This suggests that the increase in predator activity in connected patches is largely attributable to edge effects incurred through the addition of a corridor. This is the first landscape-scale study to experimentally demonstrate the potential negative effects of conservation corridors.« less

  8. Landscape heterogeneity reduces coyote predation on white-tailed deer fawns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulsby, William D.; Kilgo, John C.; Vukovich, Mark

    Coyote (Canis latrans) predation on white-tailed deer (Odocoileus virginianus) fawns in southeastern North America has led to deer population declines in some areas. Research or management efforts initiated in response to coyote predation on fawns have primarily focused on implementation of reduced antlerless deer harvest or coyote control to mitigate population declines. Vegetation characteristics may influence coyote hunting efficiency, but the potential influence of land cover at large scales in the southeastern United States is underexplored. We investigated whether mortality risk was affected by landscape characteristics within fawn home ranges for a sample of 165 fawns on the United Statesmore » Department of Energy’s Savannah River Site (SRS), South Carolina, 2007–2012. We monitored fawns every 8 hours to ≥ 4 weeks of age and 1–3 times daily to 12 weeks of age. We included only surviving or coyote-predated fawns in the dataset. The most supported model describing hazard ratios included the length of edge (i.e., area where 2 land cover types joined) in fawn home ranges. Probability of coyote predation increased 1.26 times for each 968-m decrease in edge within a fawn’s simulated home range (29.1-ha circular buffer) under this model. Further, fawns with the least edge in their home ranges were >2 times more likely to be depredated by a coyote than fawns with the greatest edge availability. Support for other models was relatively low, but informative variables (e.g., mean patch fractal dimension, Shannon’s diversity index, mean forest patch size) supported a general trend that as fawn home ranges became more homogeneous and contained larger patches with less edge and fewer cover types, predation risk increased. These findings are consistent with similar work in the midwestern United States, despite landscape differences between regions. The combined weight of evidence suggests maintenance of a heterogeneous landscape consisting of relatively small dispersed patches may reduce fawn losses to coyotes. In conclusion, this information may also be used to identify areas susceptible to greater fawn predation rates across large spatial scales. However, the relatively long forestry rotation lengths and large scale of consistent forest management on the SRS are uncommon in the southeastern United States and the mechanism for the pattern we observed is unclear. Therefore, our results may not be applicable to sites with different forest management practices.« less

  9. Landscape heterogeneity reduces coyote predation on white-tailed deer fawns

    DOE PAGES

    Gulsby, William D.; Kilgo, John C.; Vukovich, Mark; ...

    2017-03-07

    Coyote (Canis latrans) predation on white-tailed deer (Odocoileus virginianus) fawns in southeastern North America has led to deer population declines in some areas. Research or management efforts initiated in response to coyote predation on fawns have primarily focused on implementation of reduced antlerless deer harvest or coyote control to mitigate population declines. Vegetation characteristics may influence coyote hunting efficiency, but the potential influence of land cover at large scales in the southeastern United States is underexplored. We investigated whether mortality risk was affected by landscape characteristics within fawn home ranges for a sample of 165 fawns on the United Statesmore » Department of Energy’s Savannah River Site (SRS), South Carolina, 2007–2012. We monitored fawns every 8 hours to ≥ 4 weeks of age and 1–3 times daily to 12 weeks of age. We included only surviving or coyote-predated fawns in the dataset. The most supported model describing hazard ratios included the length of edge (i.e., area where 2 land cover types joined) in fawn home ranges. Probability of coyote predation increased 1.26 times for each 968-m decrease in edge within a fawn’s simulated home range (29.1-ha circular buffer) under this model. Further, fawns with the least edge in their home ranges were >2 times more likely to be depredated by a coyote than fawns with the greatest edge availability. Support for other models was relatively low, but informative variables (e.g., mean patch fractal dimension, Shannon’s diversity index, mean forest patch size) supported a general trend that as fawn home ranges became more homogeneous and contained larger patches with less edge and fewer cover types, predation risk increased. These findings are consistent with similar work in the midwestern United States, despite landscape differences between regions. The combined weight of evidence suggests maintenance of a heterogeneous landscape consisting of relatively small dispersed patches may reduce fawn losses to coyotes. In conclusion, this information may also be used to identify areas susceptible to greater fawn predation rates across large spatial scales. However, the relatively long forestry rotation lengths and large scale of consistent forest management on the SRS are uncommon in the southeastern United States and the mechanism for the pattern we observed is unclear. Therefore, our results may not be applicable to sites with different forest management practices.« less

  10. The importance of various stages of succession in preservation of biodiversity among riparian birds in northern Iran.

    PubMed

    Roshan, Zahra Sepehri; Anushiravani, Sina; Karimi, Soroor; Moradi, Hossein Varasteh; Salmanmahini, Abdol Rasoul

    2017-02-01

    Every stage of succession may provide certain species with habitat requirements which are impossible in other stages of succession. This study attempts to evaluate the different stages of succession in terms of composition and structure of bird populations in Hyrcanian forests. Bird-habitat relationships were investigated by comparing vegetation characteristics in three successional stages including late, initial stage, and urban areas. Bird richness, diversity, and abundance were measured within a 25-m radius of each of the 120 sampling points in various stages of succession and urban areas from May to April (2014) in the Ziarat catchment. This study indicated that every stage of succession may support certain species. Based on bird-habitat associations along the various stages of succession, two groups were distinguished. Conventional comparative analysis separated two groups of understory birds: interior specialists and edge specialists. The interior-specialist group was positively correlated with the number of dead trees, tall trees with high values of dbh and height and canopy cover. In contrast, edge specialists groups mainly included terrestrial insectivores and were positively correlated with open area and shrub cover, and percentage of shrub cover between 1 and 2 m in height. In summary, bird communities in Hyrcanian forests are highly dynamic in different vegetation covers suggesting that it is critical to increase diverse and abundant bird populations by conserving forests composed of mosaics of differently disturbed stands and mature forest patches.

  11. A spatially explicit decision support model for restoration of forest bird habitat

    USGS Publications Warehouse

    Twedt, D.J.; Uihlein, W.B.; Elliott, A.B.

    2006-01-01

    The historical area of bottomland hardwood forest in the Mississippi Alluvial Valley has been reduced by >75%. Agricultural production was the primary motivator for deforestation; hence, clearing deliberately targeted higher and drier sites. Remaining forests are highly fragmented and hydrologically altered, with larger forest fragments subject to greater inundation, which has negatively affected many forest bird populations. We developed a spatially explicit decision support model, based on a Partners in Flight plan for forest bird conservation, that prioritizes forest restoration to reduce forest fragmentation and increase the area of forest core (interior forest >1 km from 'hostile' edge). Our primary objective was to increase the number of forest patches that harbor >2000 ha of forest core, but we also sought to increase the number and area of forest cores >5000 ha. Concurrently, we targeted restoration within local (320 km2) landscapes to achieve >60% forest cover. Finally, we emphasized restoration of higher-elevation bottomland hardwood forests in areas where restoration would not increase forest fragmentation. Reforestation of 10% of restorable land in the Mississippi Alluvial Valley (approximately 880,000 ha) targeted at priorities established by this decision support model resulted in approximately 824,000 ha of new forest core. This is more than 32 times the amount of core forest added through reforestation of randomly located fields (approximately 25,000 ha). The total area of forest core (1.6 million ha) that resulted from targeted restoration exceeded habitat objectives identified in the Partners in Flight Bird Conservation Plan and approached the area of forest core present in the 1950s.

  12. Long-term preservation of Pycnanthemum genetic resources

    USDA-ARS?s Scientific Manuscript database

    Plants of Pycnanthemum Michx. (Mountain mint; Lamiaceae) are native to North America. They naturally grow in prairies, forest edges, pastures and along roadsides. Their flowers provide abundant nectar for honey bees, wasps, butterflies and other insects. Mountain mint leaves are very scented and pun...

  13. The Forgotten Forest--New Training for Sawmillers and Wood Handlers.

    ERIC Educational Resources Information Center

    Ringling, Dennis F.

    1978-01-01

    Considers the full-time program in sawmilling and wood handling at Williamsport Area Community College (Pennsylvania), which stresses head sawing; edging and trimming processes; log and lumber grading; marketing and business principles; yard, storage, and kiln operations; and sawmill skills. (MB)

  14. 5. Photocopy of blue line drawing (on file at La ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photocopy of blue line drawing (on file at La Grande District Office, La Grande, Oregon) USDA Forest Service, 1939 TREE PLANTING MASTER PLAN - Union Ranger District Compound, Fronting State Highway 203, at West edge of Union, Union, Union County, OR

  15. 7. Photocopy of blue line drawing (on file at La ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopy of blue line drawing (on file at La Grande District Office, La Grande, Oregon) USDA Forest Service, 1965 MASTER SITE DEVELOPMENT PLAN - Union Ranger District Compound, Fronting State Highway 203, at West edge of Union, Union, Union County, OR

  16. 8. Photocopy of architectural blueprint (on file at La Grande ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopy of architectural blueprint (on file at La Grande District Office, La Grande, Oregon) USDA Forest Service, 1957 OFFICE ADDITION (SHEET 2) - Union Ranger District Compound, Office, Fronting State Highway 203, at West edge of Union, Union, Union County, OR

  17. 11. Photocopy of architectural drawing (on file at La Grande ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of architectural drawing (on file at La Grande District Office, La Grande, Oregon) USDA Forest Service, 1939 OFFICE, DETAILED PLANTING PLAN - Union Ranger District Compound, Office, Fronting State Highway 203, at West edge of Union, Union, Union County, OR

  18. Does avian species richness in natural patch mosaics follow the forest fragmentation paradigm?

    USGS Publications Warehouse

    Pavlacky, D.C.; Anderson, S.H.

    2007-01-01

    As one approaches the north-eastern limit of pinyon (Pinus spp.) juniper (Juniperus spp.) vegetation on the Colorado Plateau, USA, woodland patches become increasingly disjunct, grading into sagebrush (Artemisia spp.)-dominated landscapes. Patterns of avian species richness in naturally heterogeneous forests may or may not respond to patch discontinuity in the same manner as bird assemblages in fragmented agricultural systems. We used observational data from naturally patchy woodlands and predictions derived from studies of human-modified agricultural forests to estimate the effects of patch area, shape, isolation and distance to contiguous woodland on avian species richness. We predicted that patterns of species richness in naturally patchy juniper woodlands would differ from those observed in fragmented agricultural systems. Our objectives were to (1) estimate the effect of naturally occurring patch structure on avian species richness with respect to habitat affinity and migratory strategy and (2) assess the concordance of the effects to predictions from agricultural forest systems. We used the analogy between populations and communities to estimate species richness, where species are treated as individuals in the application of traditional capture-recapture theory. Information-theoretic model selection showed that overall species richness was explained primarily by the species area relationship. There was some support for a model with greater complexity than the equilibrium theory of island biogeography where the isolation of large patches resulted in greater species richness. Species richness of woodland-dwelling birds was best explained by the equilibrium hypothesis with partial landscape complementation by open-country species in isolated patches. Species richness within specific migratory strategies showed concomitant increases and no shifts in species composition along the patch area gradient. Our results indicate that many patterns of species richness considered to be fragmentation effects may be general consequences of patch discontinuity and are ubiquitous in naturally heterogeneous systems. There was no evidence for the effects of patch shape and distance to contiguous woodland in juniper woodland, suggesting edge effects and dependence upon regional species pools are characteristics of fragmented agricultural systems. Natural patch mosaics may provide benchmarks for evaluating fragmentation effects and managing forests by mimicking natural landscape patterns. ?? 2007 The Zoological Society of London.

  19. Transient habitats limit development time for periodical cicadas.

    PubMed

    Karban, Richard

    2014-01-01

    Periodical cicadas (Magicicada spp.) mature in 13 or 17 years, the longest development times for any non-diapausing insects. Selection may favor prolonged development since nymphs experience little mortality and individuals taking 17 years have been shown to have greater fecundity than those taking 13 years. Why don't periodical cicadas take even longer to develop? Nymphs feed on root xylem fluid and move little. Ovipositing females prefer fast-growing trees at forest edges. I hypothesized that (1) adults emerging at edges would be heavier than those from forest interiors and (2) habitat changes could limit development time. I collected newly eclosed females that had neither fed as adults nor moved from their site of development. For M. septendecim, females from edges were 4.9% heavier than those from the interior. I assumed that emergence density indicated habitat quality and measured density at eight sites in 1979, 1996, and 2013. Over three generations, variation in densities was great; densities at two sites crashed, and at one site they exploded to 579/m2 Habitat transience may limit development time because only adults can reassess habitats and reposition offspring. In conclusion, cicadas are affected by habitat characteristics, habitats change over 17 years, and cicadas may emerge, mate, and redistribute their offspring to track habitat dynamics.

  20. Occupancy and abundance of wintering birds in a dynamic agricultural landscape

    USGS Publications Warehouse

    Miller, Mark W.; Pearlstine, Elise V.; Dorazio, Robert M.; Mazzotti, Frank J.

    2011-01-01

    Assessing wildlife management action requires monitoring populations, and abundance often is the parameter monitored. Recent methodological advances have enabled estimation of mean abundance within a habitat using presence–absence or count data obtained via repeated visits to a sample of sites. These methods assume populations are closed and intuitively assume habitats within sites change little during a field season. However, many habitats are highly variable over short periods. We developed a variation of existing occupancy and abundance models that allows for extreme spatio-temporal differences in habitat, and resulting changes in wildlife abundance, among sites and among visits to a site within a field season. We conducted our study in sugarcane habitat within the Everglades Agricultural Area southeast of Lake Okeechobee in south Florida. We counted wintering birds, primarily passerines, within 245 sites usually 5 times at each site during December 2006–March 2007. We estimated occupancy and mean abundance of birds in 6 vegetation states during the sugarcane harvest and allowed these parameters to vary temporally or spatially within a vegetation state. Occupancy and mean abundance of the common yellowthroat (Geothlypis trichas) was affected by structure of sugarcane and uncultivated edge vegetation (occupancy=1.00 [95%CĪ=0.96–1.00] and mean abundance=7.9 [95%CĪ=3.2–19.5] in tall sugarcane with tall edge vegetation versus 0.20 [95%CĪ=0.04–0.71] and 0.22 [95%CĪ=0.04–1.2], respectively, in short sugarcane with short edge vegetation in one half of the study area). Occupancy and mean abundance of palm warblers (Dendroica palmarum) were constant (occupancy=1.00, 95%CĪ=0.69–1.00; mean abundance=18, 95%CĪ=1–270). Our model may enable wildlife managers to assess rigorously effects of future edge habitat management on avian distribution and abundance within agricultural landscapes during winter or the breeding season. The model may also help wildlife managers make similar management decisions involving other dynamic habitats such as wetlands, prairies, and even forested areas if forest management or fires occur during the field season.

Top