UFORE (i-Tree Eco) Analysis of Chicago
Cherie LeBlanc Fisher; David Nowak
2010-01-01
The USDA Forest Service and City of Chicago conducted a UFORE (now called i-Tree Eco) analysis of Chicago's urban forest in the summer of 2007. The UFORE (Urban FORest Effects) model developed by the Forest Service uses on-the-ground sampling data to understand the composition of on urban forest and calculate the forest's impacts on air pollution and energy...
The Urban Forest Effects (UFORE) model: quantifying urban forest structure and functions
David J. Nowak; Daniel E. Crane
2000-01-01
The Urban Forest Effects (UFORE) computer model was developed to help managers and researchers quantify urban forest structure and functions. The model quantifies species composition and diversity, diameter distribution, tree density and health, leaf area, leaf biomass, and other structural characteristics; hourly volatile organic compound emissions (emissions that...
Satoshi Hirabayashi; Chuck Kroll; David Nowak
2011-01-01
The Urban Forest Effects-Deposition model (UFORE-D) was developed with a component-based modeling approach. Functions of the model were separated into components that are responsible for user interface, data input/output, and core model functions. Taking advantage of the component-based approach, three UFORE-D applications were developed: a base application to estimate...
Gordon M. Heisler; Richard H. Grant; David J. Nowak; Wei Gao; Daniel E. Crane; Jeffery T. Walton
2003-01-01
Evaluating the impact of ultraviolet-B radiation (UVB) on urban populations would be enhanced by improved predictions of the UVB radiation at the level of human activity. This paper reports the status of plans for incorporating a UVB prediction module into an existing Urban Forest Effects (UFORE) model. UFORE currently has modules to quantify urban forest structure,...
Urban forest assessment in northern Delaware
David J. Nowak; Robert E. Hoehn; Jun Wang; Andy Lee; Vikram Krishnamurthy; Gary Schwetz
2009-01-01
Presents results of an analysis of the urban forest of the Wilmington, Delaware, the metropolitan corridor in New Castle County (NCC), and Rattlesnake Run sewershed in the city of Wilmington using the Urban Forest Effects (UFORE) model. This analysis reveals that there are about 882,700 trees (19.3 percent tree cover) in the NCC metro corridor and about 136,000 trees (...
Comparing estimates of EMEP MSC-W and UFORE models in air pollutant reduction by urban trees.
Guidolotti, Gabriele; Salviato, Michele; Calfapietra, Carlo
2016-10-01
There is a growing interest to identify and quantify the benefits provided by the presence of trees in urban environment in order to improve the environmental quality in cities. However, the evaluation and estimate of plant efficiency in removing atmospheric pollutants is rather complicated, because of the high number of factors involved and the difficulty of estimating the effect of the interactions between the different components. In this study, the EMEP MSC-W model was implemented to scale-down to tree-level and allows its application to an industrial-urban green area in Northern Italy. Moreover, the annual outputs were compared with the outputs of UFORE (nowadays i-Tree), a leading model for urban forest applications. Although, EMEP/MSC-W model and UFORE are semi-empirical models designed for different applications, the comparison, based on O3, NO2 and PM10 removal, showed a good agreement in the estimates and highlights how the down-scaling methodology presented in this study may have significant opportunities for further developments.
David Nowak; Anne Buckelew Cumming; Daniel Twardus; Robert Hoehn; Manfred Mielke
2007-01-01
Trees in cities can improve environmental quality and human health. Unfortunately, little is known about the urban forest resource and what and how it contributes to local, regional, and national societies and economies. To better understand the urban forest resource and its value, the Forest Service, U.S. Department of Agriculture, Forest Health Monitoring Program...
Persinger, M A
1985-04-01
The tectonic strain hypothesis for many reports of UFOs (UFORs), primarily odd luminosities and metallic-looking phenomena, has been criticized on the basis of inadequate data. This reply begins with the distinction between the empirical basis for the association between UFORs and seismic activity, the hypothesis, and laboratory experiments. It is emphasized that criticisms of data should be based upon empirical criteria rather than value judgments about scientific credibility. Multivariate and bivariate analyses have indicated systematic relationships between UFORs and earthquake measures within several different areas and for different historical periods. However, the physical mechanisms for the generation of individual UFO events and their relationship to UFORs require closer examination.
The role of a peri-urban forest on air quality improvement in the Mexico City megalopolis.
Baumgardner, Darrel; Varela, Sebastian; Escobedo, Francisco J; Chacalo, Alicia; Ochoa, Carlos
2012-04-01
Air quality improvement by a forested, peri-urban national park was quantified by combining the Urban Forest Effects (UFORE) and the Weather Research and Forecasting coupled with Chemistry (WRF-Chem) models. We estimated the ecosystem-level annual pollution removal function of the park's trees, shrub and grasses using pollution concentration data for carbon monoxide (CO), ozone (O(3)), and particulate matter less than 10 microns in diameter (PM(10)), modeled meteorological and pollution variables, and measured forest structure data. Ecosystem-level O(3) and CO removal and formation were also analyzed for a representative month. Total annual air quality improvement of the park's vegetation was approximately 0.02% for CO, 1% for O(3,) and 2% for PM(10), of the annual concentrations for these three pollutants. Results can be used to understand the air quality regulation ecosystem services of peri-urban forests and regional dynamics of air pollution emissions from major urban areas. Copyright © 2011 Elsevier Ltd. All rights reserved.
Persinger, M A
1985-02-01
The contribution of geomagnetic variation to the occurrence of UFORs (reports of UFOs) within the New Madrid States during the 6-mo. increments before increases in the numbers of IV-V or less intensity earthquakes within the central USA was determined. Although statistically significant zero-order correlations existed between measures of earthquakes, UFORs and geomagnetic variability, the association between the latter two deteriorated markedly when their shared variance with earthquakes was held constant. These outcomes are compatible with the hypothesis that geomagnetic variability (or phenomena associated with it) may enhance UFORs but only if tectonic stress and strain are increasing within the region.
Urban forest ecosystem analysis using fused airborne hyperspectral and lidar data
NASA Astrophysics Data System (ADS)
Alonzo, Mike Gerard
Urban trees are strategically important in a city's effort to mitigate their carbon footprint, heat island effects, air pollution, and stormwater runoff. Currently, the most common method for quantifying urban forest structure and ecosystem function is through field plot sampling. However, taking intensive structural measurements on private properties throughout a city is difficult, and the outputs from sample inventories are not spatially explicit. The overarching goal of this dissertation is to develop methods for mapping urban forest structure and function using fused hyperspectral imagery and waveform lidar data at the individual tree crown scale. Urban forest ecosystem services estimated using the USDA Forest Service's i-Tree Eco (formerly UFORE) model are based largely on tree species and leaf area index (LAI). Accordingly, tree species were mapped in my Santa Barbara, California study area for 29 species comprising >80% of canopy. Crown-scale discriminant analysis methods were introduced for fusing Airborne Visible Infrared Imaging Spectrometry (AVIRIS) data with a suite of lidar structural metrics (e.g., tree height, crown porosity) to maximize classification accuracy in a complex environment. AVIRIS imagery was critical to achieving an overall species-level accuracy of 83.4% while lidar data was most useful for improving the discrimination of small and morphologically unique species. LAI was estimated at both the field-plot scale using laser penetration metrics and at the crown scale using allometry. Agreement of the former with photographic estimates of gap fraction and the latter with allometric estimates based on field measurements was examined. Results indicate that lidar may be used reasonably to measure LAI in an urban environment lacking in continuous canopy and characterized by high species diversity. Finally, urban ecosystem services such as carbon storage and building energy-use modification were analyzed through combination of aforementioned methods and the i-Tree Eco modeling framework. The remote sensing methods developed in this dissertation will allow researchers to more precisely constrain urban ecosystem spatial analyses and equip cities to better manage their urban forest resource.
NASA Astrophysics Data System (ADS)
Odeh, I. A.; Zou, X. L.
2015-12-01
In terms of total terrestrial sequestered carbon, the global soils and forests are recognized as the predominant C sinks. Even though urban forests stored a relatively small proportion of the total terrestrial C, they also provide other important ecosystem services such as improving air quality, cooling effect in buildings and aesthetics. Thus in view of these environmental services the quantification of urban tree is increasingly viewed as essential to the understanding of how these ecosystem services can be optimized. The aims of this paper are to: i) quantify the spatial-temporal distribution of urban forests in Northwest Sydney using remote sensing techniques; ii) determine the total urban C-storage over many decades; iii) apply UFORE model to estimate air pollutant removal ability of urban forest. The results revealed the estimated total trees in Northwest Sydney in 2011was approximately 2.3 million. These urban forests potentially store an estimated 1.3 million tons of carbon in various forms such as biomass, soil carbon, etc. The relative carbon sequestration rate of these trees was estimated to be about 20,500 tC/yr (equivalent to AUD 467,000/year). Furthermore, the results show that trees near buildings can potentially avoid AUD 12.9 million of energy cost every year and 70000 tons of carbon emission, the latter which is equivalent to additional savings of nearly AUD 1.6 million per year. We also estimated that urban forests in the study area could potentially remove about 44,600 tons of pollutants (mainly greenhouse gases) annually equivalent to a saving of about AUD 409 million per year. Thus the results reveal the spatial-temporal variation of urban vegetation in the last twenty year between 1991 and 2011. The study has showcased the importance and potential role of urban forests in preserving carbon and thus reducing GHG emissions into atmosphere. Furthermore, these results highlight the significant value of urban forests in term of pollutant removal. The significance of these outcomes, if extrapolated to other cities of Australia and the world, is huge.
NASA Technical Reports Server (NTRS)
Brown, Molly E.; McGroddy, Megan; Spence, Caitlin; Flake, Leah; Sarfraz, Amna; Nowak, David J.; Milesi, Cristina
2012-01-01
As the world becomes increasingly urban, the need to quantify the effect of trees in urban environments on energy usage, air pollution, local climate and nutrient run-off has increased. By identifying, quantifying and valuing the ecological activity that provides services in urban areas, stronger policies and improved quality of life for urban residents can be obtained. Here we focus on two radically different models that can be used to characterize urban forests. The i-Tree Eco model (formerly UFORE model) quantifies ecosystem services (e.g., air pollution removal, carbon storage) and values derived from urban trees based on field measurements of trees and local ancillary data sets. Biome-BGC (Biome BioGeoChemistry) is used to simulate the fluxes and storage of carbon, water, and nitrogen in natural environments. This paper compares i-Tree Eco's methods to those of Biome-BGC, which estimates the fluxes and storage of energy, carbon, water and nitrogen for vegetation and soil components of the ecosystem. We describe the two models and their differences in the way they calculate similar properties, with a focus on carbon and nitrogen. Finally, we discuss the implications of further integration of these two communities for land managers such as those in Maryland.
NASA Astrophysics Data System (ADS)
Tallis, Matthew; Freer-Smith, Peter; Sinnett, Danielle; Aylott, Matthew; Taylor, Gail
2010-05-01
In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence created by the structure of the urban forest. In this context urban greening has long been known as a mechanism to contribute towards PM10 removal from the air, furthermore, tree canopy cover has a role in contributing towards a more sustainable urban environment. The work reported here has been carried out within the BRIDGE project (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism). The aim of this project is to assess the fluxes of energy, water, carbon dioxide and particulates within the urban environment and develope a DSS (Decision Support System) to aid urban planners in sustainable development. A combination of published urban canopy cover data from ground, airborne and satellite based surveys was used. For each of the 33 London boroughs the urban canopy was classified to three groups, urban woodland, street trees and garden trees and each group quantified in terms of ground cover. The total [PM10] for each borough was taken from the LAEI (London Atmospheric Emissions Inventory 2006) and the contribution to reducing [PM10] was assessed for each canopy type. Deposition to the urban canopy was assessed using the UFORE (Urban Forest Effects Model) approach. Deposition to the canopy, boundary layer height and percentage reduction of the [PM10] in the atmosphere was assessed using both hourly meterological data and [PM10] and seasonal data derived from annual models. Results from hourly and annual data were compared with measured values. The model was then applied to future predictions of annual [PM10] and future canopy cover scenarios for London. The contribution of each canopy type subjected to the different atmospheric [PM10] of the 33 London boroughs now and in the future will be discussed. Implementing these findings into a decision support system (DSS) for sustainable urban planning will also be discussed.
NASA Astrophysics Data System (ADS)
Medrano, Nicolas W.
Ambient air pollution is a major issue in urban environments, causing negative health impacts and increasing costs for metropolitan economies. Vegetation has been shown to remove these pollutants at a substantial rate. This study utilizes the i-Tree Eco (UFORE) and i-Tree Canopy models to estimate air pollution removal services provided by trees in Government Canyon State Natural Area (GCSNA), an approximately 4,700 hectare area in San Antonio, Texas. For i-Tree Eco, a stratified project of the five prominent vegetation types was completed. A comparison of removal services provided by vegetation communities indicated there was no significant difference in removal rates. Total pollution removal of GCSNA was estimated to be 239.52 metric tons/year at a rate of 64.42 kg/ha of tree cover/year. By applying this value to the area within Bexar County, Texas belonging to the Balcones Canyonlands ecoregion, it was determined that for 2013 an estimated 2,598.45 metric tons/year of air pollution was removed at a health value to society of 19.4 million. This is a reduction in pollution removal services since 2003, in which 3,050.35 metric tons/year were removed at a health value of 22.8 million. These results suggest urban sprawl taking place in San Antonio is reducing air pollution removal services provided by trees.
NASA Astrophysics Data System (ADS)
Nordin, Annika; Strengbom, Joachim; From, Fredrik
2014-05-01
In management of boreal forests, nitrogen (N) enrichment from atmospheric deposition or from forest fertilization can appear in combination with land-use related disturbances, i.e. tree harvesting by clear-felling. Long-term interactive effects between N enrichment and disturbance on boreal forest ecosystem structure and function are, however, poorly known. We investigated effects of N enrichment by forest fertilization done > 25 years ago on forest understory species composition in old-growth (undisturbed) forests, and in forests clear-felled 10 years ago (disturbed). In clear-felled forests we also investigated effects of the previous N addition on growth of tree saplings. The results show that the N enrichment effect on the understory species composition was strongly dependent on the disturbance caused by clear-felling. In undisturbed forests, there were small or no effects on understory species composition from N addition. In contrast, effects were large in forests first exposed to N addition and subsequently disturbed by clear-felling. Effects of N addition differed among functional groups of plants. Abundance of graminoids increased (+232%) and abundance of dwarf shrubs decreased (-44%) following disturbance in N fertilized forests. For vascular plants, the two perturbations had contrasting effects on α-(within forests) and β-diversity (among forests): in disturbed forests, N addition reduced, or had no effect on α-diversity, while β-diversity increased. For bryophytes, negative effects of disturbance on α-diversity were smaller in N fertilized forests than in forests not fertilized, while neither N addition nor disturbance had any effects on β-diversity. Moreover, sapling growth in forests clear-felled 10 years ago was significantly higher in previously N fertilized forests than in forests not fertilized. Our study show that effects of N addition on plant communities may appear small, short-lived, or even absent until exposed to a disturbance. This highlights the importance of considering interactive effects with disturbance when evaluating long-term effects of N enrichment on boreal forest ecosystem structure and function.
Fragmentation impairs the microclimate buffering effect of tropical forests.
Ewers, Robert M; Banks-Leite, Cristina
2013-01-01
Tropical forest species are among the most sensitive to changing climatic conditions, and the forest they inhabit helps to buffer their microclimate from the variable climatic conditions outside the forest. However, habitat fragmentation and edge effects exposes vegetation to outside microclimatic conditions, thereby reducing the ability of the forest to buffer climatic variation. In this paper, we ask what proportion of forest in a fragmented ecosystem is impacted by altered microclimate conditions driven by edge effects, and extrapolate these results to the whole Atlantic Forest biome, one of the most disturbed biodiversity hotspots. To address these questions, we collected above and below ground temperature for a full year using temperature sensors placed in forest fragments of different sizes, and at different distances from the forest edge. In the Atlantic forests of Brazil, we found that the buffering effect of forests reduced maximum outside temperatures by one third or more at ground level within a forest, with the buffering effect being stronger below-ground than one metre above-ground. The temperature buffering effect of forests was, however, reduced near forest edges with the edge effect extending up to 20 m inside the forest. The heavily fragmented nature of the Brazilian Atlantic forest means that 12% of the remaining biome experiences altered microclimate conditions. Our results add further information about the extent of edge effects in the Atlantic Forest, and we suggest that maintaining a low perimeter-to-area ratio may be a judicious method for minimizing the amount of forest area that experiences altered microclimatic conditions in this ecosystem.
Fragmentation Impairs the Microclimate Buffering Effect of Tropical Forests
Ewers, Robert M.; Banks-Leite, Cristina
2013-01-01
Background Tropical forest species are among the most sensitive to changing climatic conditions, and the forest they inhabit helps to buffer their microclimate from the variable climatic conditions outside the forest. However, habitat fragmentation and edge effects exposes vegetation to outside microclimatic conditions, thereby reducing the ability of the forest to buffer climatic variation. In this paper, we ask what proportion of forest in a fragmented ecosystem is impacted by altered microclimate conditions driven by edge effects, and extrapolate these results to the whole Atlantic Forest biome, one of the most disturbed biodiversity hotspots. To address these questions, we collected above and below ground temperature for a full year using temperature sensors placed in forest fragments of different sizes, and at different distances from the forest edge. Principal Findings In the Atlantic forests of Brazil, we found that the buffering effect of forests reduced maximum outside temperatures by one third or more at ground level within a forest, with the buffering effect being stronger below-ground than one metre above-ground. The temperature buffering effect of forests was, however, reduced near forest edges with the edge effect extending up to 20 m inside the forest. The heavily fragmented nature of the Brazilian Atlantic forest means that 12% of the remaining biome experiences altered microclimate conditions. Conclusions Our results add further information about the extent of edge effects in the Atlantic Forest, and we suggest that maintaining a low perimeter-to-area ratio may be a judicious method for minimizing the amount of forest area that experiences altered microclimatic conditions in this ecosystem. PMID:23483976
The effect of forest roads on the reproductive success of forest-dwelling passerine birds
David I. King; Richard M. DeGraaf
2002-01-01
Recent studies indicate that forest roads may affect the distribution of forest-dwelling birds. However, previous studies have not demonstrated any significant effects of forest roads on avian productivity. We studied the effect of maintained and unmaintained forest roads on (1) forest bird nest survival, (2) reproductive parameters of ovenbirds (Seiurus...
Effects of stand age on the demography of a temperate forest herb in post-agricultural forests.
Jacquemyn, Hans; Brys, Rein
2008-12-01
Changes in land use have been shown to have profound effects on forest plant community structure and diversity. Dispersal limitation has been invoked as a major factor hampering colonization of forest plant species, while seed-sowing experiments and performance observations have provided some evidence for recruitment limitation determining forest plant distribution in post-agricultural forests. However, most of these studies were relatively short-term, and very few studies have investigated long-term growth rates of populations occurring in recent and ancient forests. In this study, matrix models using demographic data collected for four consecutive years were used to study the effect of forest age on population dynamics of the temperate forest herb Primula elatior. A life table response experiment (LTRE) and elasticity analysis were used to analyze the effect of forest age on population growth rate (lambda) and to decompose the effect of forest age on lambda into contributions from each matrix element. Population growth increased logarithmically with increasing forest age. Bootstrap analyses showed that populations located in very recent forests (< 50-years-old) had growth rates that were significantly < 1, whereas populations located in forests > 150-years-old had growth rates that were significantly > 1. Summed elasticities for individual growth significantly decreased with increasing forest age, whereas summed elasticities for survival and fertility significantly increased with increasing forest age. The LTRE analysis showed that the increase in lambda with increasing forest age was mainly due to increased seedling and juvenile growth and increased juvenile and adult survival. Our results indicate that past agricultural land use has long-lasting effects on the demography of forest herbs and may provide an additional mechanistic explanation for the poor colonization capacity of many forest herbs in post-agricultural forests.
Late-successional forests and northern spotted owls: how effective is the Northwest Forest Plan?
Miles Hemstrom; Martin G. Raphael
2000-01-01
This paper describes the late-successional and old-growth forest and the northern spotted owl effectiveness monitoring plans for the Northwest Forest Plan. The effectiveness monitoring plan for late-successional and old-growth forests will track changes in forest spatial distribution, and within-stand structure and composition, and it will predict future trends.
Edge and area effects on the occurrence of migrant forest songbirds
Parker, T.H.; Stansberry, B.M.; Becker, C.D.; Gipson, P.S.
2005-01-01
Concerns about forest fragmentation and its conservation implications have motivated numerous studies that investigate the influence of forest patch area and forest edge on songbird distribution patterns. The generalized effects of forest patch size and forest edge on animal distributions is still debatable because forest patch size and forest edge are often confounded and because of an incomplete synthesis of available data. To fill a portion of this gap, we incorporated all available published data (33 papers) in meta-analyses of forest edge and area effects on site occupancy patterns for 26 Neotropical migrant forest-nesting songbirds in eastern North America. All reported area effects are confounded or potentially confounded by edge effects, and we refer to these as "confounded" studies. The converse, however, is not true and most reported edge effects are independent of patch area. When considering only nonconfounded studies of edge effects, only 1 of 17 species showed significant edge avoidance and 3 had significant affinity for edges. In confounded studies, 12 of 22 species showed significant avoidance of small patches and edges, and 1 had an affinity for small patches and edges. Furthermore, average effect sizes averaged across studies or species tended to be higher for confounded studies than for edge studies. We discuss three possible reasons for differences in results between these two groups of studies. First, studies of edge effects tended to be carried out in landscapes with greater forest cover than studies of confounded effects; among confounded effects studies, as forest cover increased, we observed a nonsignificant trend towards decreasing strength of small patch or edge avoidance effects. Thus, the weaker effects in edge studies may be due to the fact that these studies were conducted in forest-dominated landscapes. Second, we may have detected strong effects only in confounded studies because area effects are much stronger than edge effects on bird occurrence, and area effects drive the results in confounded studies. Third, edge and area effects may interact in such a way that edge effects become more important as forest patch size decreases; thus, both edge and area effects are responsible for results in confounded studies. These three explanations cannot be adequately separated with existing data. Regardless, it is clear that fragmentation of forests into small patches is detrimental to many migrant songbird species. ??2005 Society for Conservation Biology.
Piecing together the fragments: Elucidating edge effects on forest carbon dynamics
NASA Astrophysics Data System (ADS)
Hutyra, L.; Smith, I. A.; Reinmann, A.; Marrs, J.; Thompson, J.
2017-12-01
Forest fragmentation is pervasive throughout the world's forests, impacting growing conditions and carbon dynamics through edge effects that produce gradients in microclimate, biogeochemistry, and stand structure. Despite the majority of the world's forests being <1km from an edge, our understanding of forest carbon dynamics is largely derived from intact forest systems. In the northeastern USA, we find that over 23% of the current forest area is just 30m from an agricultural or developed edge. Edge effects on the carbon cycle vary in their magnitude by biome, but current forest carbon accounting methods and ecosystem models largely do not include edge effects, highlighting an important gap in our understanding of the terrestrial carbon cycle. Characterizing the role of forest fragmentation in regional and global biogeochemical cycles necessitates advancing our understanding of how shifts in microenvironment at the forest edge interact with local prevailing drivers of global change and limitations to microbial activity and forest growth. This study synthesizes the literature related to edge effects and the carbon cycle, considering how fragmentation affects the growing conditions of the world's remaining forests based on risks and opportunities for forests near the edge.
Brian Brookshire; Carl Hauser
1993-01-01
The effects of forest management on non-timber resources are of growing concern to forest managers and the public. While many previous studies have reported effects of stand-level treatments (less than 15 ha) on various stand-level attributes, few studies have attempted to document the influence of forest management on the biotic and abiotic characteristics of entire...
Paul G. Rodewald; Kimberly G. Smith
1998-01-01
Relatively little is known about the effects of uneven-aged forest management practices on eastern forest birds, despite the fact that such methods are now commonly practiced. In 1993-94, we studied the short-term effects of uneven-aged forest management on bird communities in oak-hickory forests of north-western Arkansas. We estimated bird abundance in mature forests...
36 CFR 223.135 - Effect of listing.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Effect of listing. 223.135 Section 223.135 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...
36 CFR 223.135 - Effect of listing.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Effect of listing. 223.135 Section 223.135 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...
36 CFR 223.135 - Effect of listing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Effect of listing. 223.135 Section 223.135 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...
36 CFR 223.135 - Effect of listing.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Effect of listing. 223.135 Section 223.135 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS...
NASA Astrophysics Data System (ADS)
dos-Santos, M. N.; Keller, M.; Morton, D. C.; Longo, M.; Scaranello, M. A., Sr.; Pinagé, E. R.; Correa Pabon, R.
2017-12-01
Ongoing tropical forest degradation and forest fragmentation increases forest edge area. Forest edges experience hotter, drier, and windier conditions and greater exposure to fires compared to interior areas, which elevate rates of tree mortality. Previous studies have suggested that forests within 100 m from the edge may lose 36% of biomass during the first two decades following fragmentation, although such estimates are based on a limited number of experimental plots. Degraded forests behave differently from intact forests and quantifying edge effect extension in a degraded forest landscape is more challenging compared to experimental studies. To overcome these limitations, we used airborne lidar data to quantify changes in forest structure near 91 edges in a heavily degraded tropical forest in Paragominas Municipality, eastern Brazilian Amazon. Paragominas was a center of timber production in the 1990s. Today, the landscape is a mosaic of different agricultural uses, degraded, secondary and unmanaged forests. A total of 3000 ha of high density (mean density of 17.9 points/m2) lidar data were acquired in August/September 2013 and June/July 2014 over 30 transects (200 x 5000m), systematically distributed over the study area, using the Optech Orion M-200 laser scanning system. We adopted lidar-measured forest heights as the edge effect criteria and found that mean extent of edge effect was highly variable across degraded forests (150 ± 354m) and secondary forest fragments (265 ± 365m). We related the extent of forest edges to the historical disturbances identified in Landsat imagery since 1984. Contrary to previous studies, we found that carbon stocks along forest edges were not significantly lower than forest core biomass when edges were defined by previously estimated range of 100 and 300m. In frontier forests, ecological edge effect may be masked by the cumulative impact of historic forest degradation - an anthropogenic edge effect that extends beyond the scale of changes in forest microclimate from fragmentation.
NASA Astrophysics Data System (ADS)
Burcsu, Theresa Katherine
Edge effects are among the most serious threats to forest integrity because as global forest cover decreases overall, forest edge influence increases proportionally, driving habitat change and loss. Edge effects occur at the division between adjacent habitat types. Our understanding of edge effects comes mainly from tropical wet, temperate and boreal forests. Because forest structure in moisture-limited forests differs from wetter forest types, edge dynamics are likely to differ as well. Moreover, dry forests in the tropics have been nearly eliminated or exist only as forest fragments, making edge influence an important conservation and management concern for remaining dry forests. This study addresses this gap in the edge influence knowledge by examining created, regenerating edges associated with forest management in a seasonally dry pine-oak forest of Oaxaca, creating a new data point in edge effects research. In this study I used Landsat TM imagery and a modified semivariance analysis to estimate the distance of edge influence for vegetation. I also used field methods to characterize forest structure and estimate edge influence on canopy and subcanopy vegetation. To finalize the project I extended the study to bird assemblages to identify responses and habitat preferences to local-scale changes associated with regenerating edges created by group-selection timber harvest. Remote sensing analysis estimated that the distance of edge influence was 30-90 m from the edge. Vegetation analysis suggested that edge effects were weak relative to wetter forest types and that remote sensing data did not provide an estimate that was directly applicable to field-measured vegetative edge effects. The bird assemblages likewise responded weakly to habitat change associated with edge effect. Open canopy structure, simple vertical stratigraphy, and topographic variation create forest conditions in which small openings do not create a high contrast to undisturbed forest. Thus, in this seasonally dry, open forest, vegetation and bird communities respond less to small openings than they do in wetter, more closed-canopy forests. Management practices and historical land-use interact and interfere with the detectability of edge influence in our study area. These results support hypotheses proposed for open forest types and suggest that patterns in edge influence in wet forest types may not be applicable to dry sites.
36 CFR 223.42 - Transfer of effective purchaser credits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Transfer of effective purchaser credits. 223.42 Section 223.42 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL...
36 CFR 223.42 - Transfer of effective purchaser credits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Transfer of effective purchaser credits. 223.42 Section 223.42 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL...
36 CFR 223.42 - Transfer of effective purchaser credits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Transfer of effective purchaser credits. 223.42 Section 223.42 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL...
36 CFR 223.42 - Transfer of effective purchaser credits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Transfer of effective purchaser credits. 223.42 Section 223.42 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL...
Li, Xiao-Na; He, Hong-Shi; Wu, Zhi-Wei; Liang, Yu
2012-12-01
With the combination of forest landscape model (LANDIS) and forest gap model (LINKAGES), this paper simulated the effects of climate change on the boreal forest landscape in the Great Xing'an Mountains, and compared the direct effects of climate change and the effects of climate warming-induced fires on the forest landscape. The results showed that under the current climate conditions and fire disturbances, the forest landscape in the study area could maintain its dynamic balance, and Larix gmelinii was still the dominant tree species. Under the future climate and fire disturbances scenario, the distribution area of L. gmelinii and Pinus pumila would be decreased, while that of Betula platyphylla, Populus davidiana, Populus suaveolens, Chosenia arbutifolia, and Pinus sylvestris var. mongolica would be increased, and the forest fragmentation and forest diversity would have an increase. The changes of the forest landscape lagged behind climate change. Climate warming would increase the growth of most tree species except L. gmelinii, while the increased fires would increase the distribution area of P. davidiana, P. suaveolens, and C. arbutifolia and decrease the distribution area of L. gmelinii, P. sylvestris var. mongolica, and P. pumila. The effects of climate warming-induced fires on the forest landscape were almost equal to the direct effects of climate change, and aggravated the direct effects of climate change on forest composition, forest landscape fragmentation, and forest landscape diversity.
Paoletti, E; Schaub, M; Matyssek, R; Wieser, G; Augustaitis, A; Bastrup-Birk, A M; Bytnerowicz, A; Günthardt-Goerg, M S; Müller-Starck, G; Serengil, Y
2010-06-01
Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered. Copyright 2009 Elsevier Ltd. All rights reserved.
A tool to analyze environmental impacts of roads on forest watersheds
Ajay Prasad
2007-01-01
The construction and use of forest roads can have impacts on geomorphic processes and erosion patterns in forested basins. Analyzing these impacts will help forest managers to effectively manage road and road drainage system and hence minimize the negative impacts of forest roads. To manage forest roads effectively the USDA Forest Service (USFS) has developed a road...
NASA Astrophysics Data System (ADS)
Jaramillo, Fernando; Cory, Neil; Arheimer, Berit; Laudon, Hjalmar; van der Velde, Ype; Hasper, Thomas B.; Teutschbein, Claudia; Uddling, Johan
2018-01-01
During the last 6 decades, forest biomass has increased in Sweden mainly due to forest management, with a possible increasing effect on evapotranspiration. However, increasing global CO2 concentrations may also trigger physiological water-saving responses in broadleaf tree species, and to a lesser degree in some needleleaf conifer species, inducing an opposite effect. Additionally, changes in other forest attributes may also affect evapotranspiration. In this study, we aimed to detect the dominating effect(s) of forest change on evapotranspiration by studying changes in the ratio of actual evapotranspiration to precipitation, known as the evaporative ratio, during the period 1961-2012. We first used the Budyko framework of water and energy availability at the basin scale to study the hydroclimatic movements in Budyko space of 65 temperate and boreal basins during this period. We found that movements in Budyko space could not be explained by climatic changes in precipitation and potential evapotranspiration in 60 % of these basins, suggesting the existence of other dominant drivers of hydroclimatic change. In both the temperate and boreal basin groups studied, a negative climatic effect on the evaporative ratio was counteracted by a positive residual effect. The positive residual effect occurred along with increasing standing forest biomass in the temperate and boreal basin groups, increasing forest cover in the temperate basin group and no apparent changes in forest species composition in any group. From the three forest attributes, standing forest biomass was the one that could explain most of the variance of the residual effect in both basin groups. These results further suggest that the water-saving response to increasing CO2 in these forests is either negligible or overridden by the opposite effect of the increasing forest biomass. Thus, we conclude that increasing standing forest biomass is the dominant driver of long-term and large-scale evapotranspiration changes in Swedish forests.
E. Paoletti; M. Schaub; R. Matyssek; G. Wieser; A. Augustaitis; A. M. Bastrup-Birk; A. Bytnerowicz; M. S. Gunthardt-Goerg; G. Muller-Starck; Y. Serengil
2010-01-01
Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of...
Hedwall, Per-Ola; Skoglund, Jerry; Linder, Sune
2015-02-01
The boreal forest is one of the largest terrestrial biomes and plays a key role for the global carbon balance and climate. The forest floor vegetation has a strong influence on the carbon and nitrogen cycles of the forests and is sensitive to changes in temperature conditions and nutrient availability. Additionally, the effects of climate warming on forest floor vegetation have been suggested to be moderated by the tree layer. Data on the effects of soil warming on forest floor vegetation from the boreal forest are, however, very scarce. We studied the effects on the forest floor vegetation in a long-term (18 years) soil warming and fertilization experiment in a Norway spruce stand in northern Sweden. During the first 9 years, warming favored early successional species such as grasses and forbs at the expense of dwarf shrubs and bryophytes in unfertilized stands, while the effects were smaller after fertilization. Hence, warming led to significant changes in species composition and an increase in species richness in the open canopy nutrient limited forest. After another 9 years of warming and increasing tree canopy closure, most of the initial effects had ceased, indicating an interaction between forest succession and warming. The only remaining effect of warming was on the abundance of bryophytes, which contrary to the initial phase was strongly favored by warming. We propose that the suggested moderating effects of the tree layer are specific to plant life-form and conclude that the successional phase of the forest may have a considerable impact on the effects of climate change on forest floor vegetation and its feedback effects on the carbon and nitrogen cycles, and thus on the climate.
Hedwall, Per-Ola; Skoglund, Jerry; Linder, Sune
2015-01-01
The boreal forest is one of the largest terrestrial biomes and plays a key role for the global carbon balance and climate. The forest floor vegetation has a strong influence on the carbon and nitrogen cycles of the forests and is sensitive to changes in temperature conditions and nutrient availability. Additionally, the effects of climate warming on forest floor vegetation have been suggested to be moderated by the tree layer. Data on the effects of soil warming on forest floor vegetation from the boreal forest are, however, very scarce. We studied the effects on the forest floor vegetation in a long-term (18 years) soil warming and fertilization experiment in a Norway spruce stand in northern Sweden. During the first 9 years, warming favored early successional species such as grasses and forbs at the expense of dwarf shrubs and bryophytes in unfertilized stands, while the effects were smaller after fertilization. Hence, warming led to significant changes in species composition and an increase in species richness in the open canopy nutrient limited forest. After another 9 years of warming and increasing tree canopy closure, most of the initial effects had ceased, indicating an interaction between forest succession and warming. The only remaining effect of warming was on the abundance of bryophytes, which contrary to the initial phase was strongly favored by warming. We propose that the suggested moderating effects of the tree layer are specific to plant life-form and conclude that the successional phase of the forest may have a considerable impact on the effects of climate change on forest floor vegetation and its feedback effects on the carbon and nitrogen cycles, and thus on the climate. PMID:25750720
Xu, Guolian; Mo, Jiangming; Zhou, Guoyi
2005-07-01
In this paper, simulated N deposition addition (0, 50, 100 and 150 kg x hm(-2) x yr(-1)) by spreading water or NH4NO3 was conducted to study the early responses of soil fauna in three typical native forests (monsoon evergreen broadleaf forest, pine forest, and broadleaf-pine mixed forest) of subtropical China. The results showed that in monsoon evergreen broadleaf forest, N deposition addition had an obviously negative effect on the three indexes for soil fauna, but in pine forest, the positive effect was significant (P < 0. 05), and the soil fauna community could reach the level in mixed forest, even that in monsoon evergreen broadleaf forest at sometime. The responses in mixed forest were not obvious. In monsoon evergreen broadleaf forest, the negative effects were significant (P < 0.05) under medium N deposition, but not under low N deposition. In pine forest, the positive effect was significant (P < 0.05) under high N deposition, especially for the number of soil fauna groups. The results obtained might imply the N saturation-response mechanisms of forest ecosystems in subtropical China, and the conclusions from this study were also consisted with some related researches.
Effectiveness of Africa's tropical protected areas for maintaining forest cover.
Bowker, J N; De Vos, A; Ament, J M; Cumming, G S
2017-06-01
The effectiveness of parks for forest conservation is widely debated in Africa, where increasing human pressure, insufficient funding, and lack of management capacity frequently place significant demands on forests. Tropical forests house a substantial portion of the world's remaining biodiversity and are heavily affected by anthropogenic activity. We analyzed park effectiveness at the individual (224 parks) and national (23 countries) level across Africa by comparing the extent of forest loss (as a proxy for deforestation) inside parks to matched unprotected control sites. Although significant geographical variation existed among parks, the majority of African parks had significantly less forest loss within their boundaries (e.g., Mahale Park had 34 times less forest loss within its boundary) than control sites. Accessibility was a significant driver of forest loss. Relatively inaccessible areas had a higher probability (odds ratio >1, p < 0.001) of forest loss but only in ineffective parks, and relatively accessible areas had a higher probability of forest loss but only in effective parks. Smaller parks less effectively prevented forest loss inside park boundaries than larger parks (T = -2.32, p < 0.05), and older parks less effectively prevented forest loss inside park boundaries than younger parks (F 2,154 = -4.11, p < 0.001). Our analyses, the first individual and national assessment of park effectiveness across Africa, demonstrated the complexity of factors (such as geographical variation, accessibility, and park size and age) influencing the ability of a park to curb forest loss within its boundaries. © 2016 Society for Conservation Biology.
Modeling the Effects of Fire Frequency and Severity on Forests in the Northwestern United States
Busing, Richard T.; Solomon, Allen M.
2006-01-01
This study used a model of forest dynamics (FORCLIM) and actual forest survey data to demonstrate the effects of various fire regimes on different forest types in the Pacific Northwest. We examined forests in eight ecoregions ranging from wet coastal forests dominated by Pseudotsuga menziesii and other tall conifers to dry interior forests dominated by Pinus ponderosa. Fire effects simulated as elevated mortality of trees based on their species and size did alter forest structure and species composition. Low frequency fires characteristic of wetter forests (return interval >200 yr) had minor effects on composition. When fires were severe, they tended to reduce total basal area with little regard to species differences. High frequency fires characteristic of drier forests (return interval <30 yr) had major effects on species composition and on total basal area. Typically, they caused substantial reductions in total basal area and shifts in dominance toward highly fire tolerant species. With the addition of fire, simulated basal areas averaged across ecoregions were reduced to levels approximating observed basal areas.
Z. Dai; K.D. Johnson; R.A. Birdsey; J.L. Hernandez-Stefanoni; J.M. Dupuy
2015-01-01
Assessing the effect of climate change on carbon sequestration in tropical forest ecosystems is important to inform monitoring, reporting, and verification (MRV) for reducing deforestation and forest degradation (REDD), and to effectively assess forest management options under climate change. Two process-based models, Forest-DNDC and Biome-BGC, with different spatial...
Can we set a global threshold age to define mature forests?
Martin, Philip; Jung, Martin; Brearley, Francis Q; Ribbons, Relena R; Lines, Emily R; Jacob, Aerin L
2016-01-01
Globally, mature forests appear to be increasing in biomass density (BD). There is disagreement whether these increases are the result of increases in atmospheric CO2 concentrations or a legacy effect of previous land-use. Recently, it was suggested that a threshold of 450 years should be used to define mature forests and that many forests increasing in BD may be younger than this. However, the study making these suggestions failed to account for the interactions between forest age and climate. Here we revisit the issue to identify: (1) how climate and forest age control global forest BD and (2) whether we can set a threshold age for mature forests. Using data from previously published studies we modelled the impacts of forest age and climate on BD using linear mixed effects models. We examined the potential biases in the dataset by comparing how representative it was of global mature forests in terms of its distribution, the climate space it occupied, and the ages of the forests used. BD increased with forest age, mean annual temperature and annual precipitation. Importantly, the effect of forest age increased with increasing temperature, but the effect of precipitation decreased with increasing temperatures. The dataset was biased towards northern hemisphere forests in relatively dry, cold climates. The dataset was also clearly biased towards forests <250 years of age. Our analysis suggests that there is not a single threshold age for forest maturity. Since climate interacts with forest age to determine BD, a threshold age at which they reach equilibrium can only be determined locally. We caution against using BD as the only determinant of forest maturity since this ignores forest biodiversity and tree size structure which may take longer to recover. Future research should address the utility and cost-effectiveness of different methods for determining whether forests should be classified as mature.
Two-stage recovery of amphibian assemblages following selective logging of tropical forests.
Adum, Gilbert Baase; Eichhorn, Markus Peter; Oduro, William; Ofori-Boateng, Caleb; Rödel, Mark-Oliver
2013-04-01
There is a lack of quantitative information on the effectiveness of selective-logging practices in ameliorating effects of logging on faunal communities. We conducted a large-scale replicated field study in 3 selectively logged moist semideciduous forests in West Africa at varying times after timber extraction to assess post logging effects on amphibian assemblages. Specifically, we assessed whether the diversity, abundance, and assemblage composition of amphibians changed over time for forest-dependent species and those tolerant of forest disturbance. In 2009, we sampled amphibians in 3 forests (total of 48 study plots, each 2 ha) in southwestern Ghana. In each forest, we established plots in undisturbed forest, recently logged forest, and forest logged 10 and 20 years previously. Logging intensity was constant across sites with 3 trees/ha removed. Recently logged forests supported substantially more species than unlogged forests. This was due to an influx of disturbance-tolerant species after logging. Simultaneously Simpson's index decreased, with increased in dominance of a few species. As time since logging increased richness of disturbance-tolerant species decreased until 10 years after logging when their composition was indistinguishable from unlogged forests. Simpson's index increased with time since logging and was indistinguishable from unlogged forest 20 years after logging. Forest specialists decreased after logging and recovered slowly. However, after 20 years amphibian assemblages had returned to a state indistinguishable from that of undisturbed forest in both abundance and composition. These results demonstrate that even with low-intensity logging (≤3 trees/ha) a minimum 20-year rotation of logging is required for effective conservation of amphibian assemblages in moist semideciduous forests. Furthermore, remnant patches of intact forests retained in the landscape and the presence of permanent brooks may aid in the effective recovery of amphibian assemblages. © 2012 Society for Conservation Biology.
Forests on the edge: Microenvironmental drivers of carbon cycle response to edge effects
NASA Astrophysics Data System (ADS)
Reinmann, A.; Hutyra, L.; Smith, I. A.; Thompson, J.
2017-12-01
Twenty percent of the world's forest is within 100 m of a forest edge, but much of our understanding of forest carbon (C) cycling comes from large, intact ecosystems, which creates an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest is the most heavily fragmented forest biome in the world and its growth and carbon storage responses to forest edge effects appear to be the opposite of those in the tropical and boreal regions. We used field measurements to quantify the drivers of temperate forest C cycling response to edge effects, characterizing vegetative growth, respiration, and forest structure. We find large gradients in air and soil temperature from the forest interior to edge (up to 4 and 10° C, respectively) and the magnitude of this gradient is inversely correlated to the size of the forest edge growth enhancement. Further, leaf area index increases with proximity to the forest edge. While we also find increases in soil respiration between the forest interior and edge, this flux is small relative to aboveground growth enhancement near the edge. These findings represent an important advancement in our understanding of forest C cycle response to edge effects and will greatly improve our capacity to constrain biogenic C fluxes in fragmented and heterogeneous landscapes.
Quantifying the effect of forests on frequency and intensity of rockfalls
NASA Astrophysics Data System (ADS)
Moos, Christine; Dorren, Luuk; Stoffel, Markus
2017-02-01
Forests serve as a natural means of protection against small rockfalls. Due to their barrier effect, they reduce the intensity and the propagation probability of falling rocks and thus reduce the occurrence frequency of a rockfall event for a given element at risk. However, despite established knowledge on the protective effect of forests, they are generally neglected in quantitative rockfall risk analyses. Their inclusion in quantitative rockfall risk assessment would, however, be necessary to express their efficiency in monetary terms and to allow comparison of forests with other protective measures, such as nets and dams. The goal of this study is to quantify the effect of forests on the occurrence frequency and intensity of rockfalls. We therefore defined an onset frequency of blocks based on a power-law magnitude-frequency distribution and determined their propagation probabilities on a virtual slope based on rockfall simulations. Simulations were run for different forest and non-forest scenarios under varying forest stand and terrain conditions. We analysed rockfall frequencies and intensities at five different distances from the release area. Based on two multivariate statistical prediction models, we investigated which of the terrain and forest characteristics predominantly drive the role of forest in reducing rockfall occurrence frequency and intensity and whether they are able to predict the effect of forest on rockfall risk. The rockfall occurrence frequency below forested slopes is reduced between approximately 10 and 90 % compared to non-forested slope conditions; whereas rockfall intensity is reduced by 10 to 70 %. This reduction increases with increasing slope length and decreases with decreasing tree density, tree diameter and increasing rock volume, as well as in cases of clustered or gappy forest structures. The statistical prediction models reveal that the cumulative basal area of trees, block volume and horizontal forest structure represent key variables for the prediction of the protective effect of forests. In order to validate these results, models have to be tested on real slopes with a wide variation of terrain and forest conditions.
NASA Astrophysics Data System (ADS)
De Vos, A.; Bowker, J.; Ament, J.; Cumming, G.
2016-12-01
The effectiveness of parks for forest conservation is widely debated in Africa, where increasing human pressure, insufficient funding, and lack of management capacity frequently place significant demands on forest habitats. Tropical forests house a significant portion of the world's remaining biodiversity and are being heavily impacted by anthropogenic activity. We used Hansen et al.'s (2013) global forest change dataset to analyse park effectiveness at the individual (224 parks) and national (23 countries) level across Africa by comparing the extent of forest loss (as a proxy for deforestation) inside parks to matched unprotected control samples. We found that, although significant geographical variation exists between parks, the majority of African parks experienced significantly lower deforestation within their boundaries. Accessibility was a significant driver of deforestation, with less accessible areas having a higher probability of forest loss in ineffective parks and more accessible areas having a higher probability of forest loss in effective parks. Smaller parks were less effective at preventing forest loss inside park boundaries than larger parks, and older parks were less effective than younger parks. Our analysis, which is the first individual and national assessment of park effectiveness across Africa, demonstrates the complexity of factors influencing the ability of a park to curb deforestation within its boundaries and highlights the potential of web-based remote sensing technology in monitoring protected area effectiveness.
The Influence of Hurricane Winds on Caribbean Dry Forest Structure and Nutrient Pools
Skip J. Van Bloem; Peter G. Murphy; Ariel E. Lugo; Rebecca Ostertag; Maria Rivera Costa; Ivelisse Ruiz Bernard; Sandra Molina Colon; Miguel Canals Mora
2005-01-01
In 1998, we measured the effects of Hurricane Georges after it passed over long-term research sites in Puerto Rican dry forest. Our primary objectives were to quantify hurricane effects on forest structure, to compare effects in a large tract of forest versus a series of nearby forest fragments, to evaluate short-term response to hurricane disturbance in terms of...
Comparison of forest edge effects on throughfall deposition in different forest types.
Wuyts, Karen; De Schrijver, An; Staelens, Jeroen; Gielis, Leen; Vandenbruwane, Jeroen; Verheyen, Kris
2008-12-01
This study examined the influence of distance to the forest edge, forest type, and time on Cl-, SO4(2-), NO3(-), and NH4+ throughfall deposition in forest edges. The forests were dominated by pedunculate oak, silver birch, or Corsican/Austrian pine, and were situated in two regions of Flanders (Belgium). Along transects, throughfall deposition was monitored at distances of 0-128 m from the forest edge. A repeated-measures analysis demonstrated that time, forest type, and distance to the forest edge significantly influenced throughfall deposition of the ions studied. The effect of distance to the forest edge depended significantly on forest type in the deposition of Cl-, SO4(2-), and NO3(-): the edge effect was significantly greater in pine stands than in deciduous birch and oak stands. This finding supports the possibility of converting pine plantations into oak or birch forests in order to mitigate the input of nitrogen and potentially acidifying deposition.
NASA Astrophysics Data System (ADS)
Watiniasih, N. L.; Tambunan, J.; Merdana, I. M.; Antara, I. N. G.
2018-04-01
Forest fire is a common phenomenon in tropical forest likes in Indonesia. Beside the effect of soaring heat and lack of rain during dry season due to the tropical climate, farming system is also reported as one reason of forest fire in Indonesia. People of surrounding areas and neighbouring countries are suffering from the effect of forest fire. Plants and animals are the most suffer from this occurrence that they cannot escape. This study aimed to investigate the effect of previously burnt and un-burnt tropical forest in Borneo Island on the plant and insect diversity of the tropical forest. The result of the study found that the plants in previously burnt forest area was dominated by one species, while higher and more stable plant diversity was found in un-burnt forest. Although the number of individual insects was higher in previously burnt tropical forest, but the insects was more diverse in un-burnt tropical forest. The alteration of environmental conditions in previously burnt and un-burnt forest indicate that the energy held in natural forest support higher number and more stable insects than previously burnt forest.
[Advance in researches on the effect of forest on hydrological process].
Zhang, Zhiqiang; Yu, Xinxiao; Zhao, Yutao; Qin, Yongsheng
2003-01-01
According to the effects of forest on hydrological process, forest hydrology can be divided into three related aspects: experimental research on the effects of forest changing on hydrological process quantity and water quality; mechanism study on the effects of forest changing on hydrological cycle, and establishing and exploitating physical-based distributed forest hydrological model for resource management and engineering construction. Orientation experiment research can not only support the first-hand data for forest hydrological model, but also make clear the precipitation-runoff mechanisms. Research on runoff mechanisms can be valuable for the exploitation and improvement of physical based hydrological models. Moreover, the model can also improve the experimental and runoff mechanism researches. A review of above three aspects are summarized in this paper.
Li, Yingnan; Kang, Wanmo; Han, Yiwen; Song, Youngkeun
2018-01-23
Fragmented forests generate a variety of forest edges, leading to microclimates in the edge zones that differ from those in the forest interior. Understanding microclimatic variation is an important consideration for managers because it helps when making decisions about how to restrict the extent of edge effects. Thus, our study attempted to characterize the changing microclimate features at an urban forest edge located on Mt. Gwanak, Seoul, South Korea. We examined edge effects on air temperature, relative humidity, soil temperature, soil moisture, and photosynthetically active radiation (PAR) during the hottest three consecutive days in August 2016. Results showed that each variable responded differently to the edge effects. This urban forest edge had an effect on temporal changes at a diurnal scale in all microclimate variables, except soil moisture. In addition, all variables except relative humidity were significantly influenced by the edge effect up to 15 m inward from the forest boundary. The relative humidity fluctuated the most and showed the deepest extent of the edge effect. Moreover, the edge widths calculated from the relative humidity and air temperature both peaked in the late afternoon (16:00 h). Our findings provide a reference for forest managers in designing urban forest zones and will contribute to the conservation of fragmented forests in urban areas.
36 CFR 223.135 - Effect of listing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Effect of listing. 223.135 Section 223.135 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER Suspension and Debarment of Timber Purchasers § 223.135 Effect of...
Late-successional and old-growth forest effectiveness monitoring plan for the Northwest Forest Plan.
Miles Hemstrom; Thomas Spies; Craig Palmer; Ross Kiester; John Teply; Phil McDonald; Ralph. Warbington
1998-01-01
This report presents options for long-term effectiveness monitoring of late-successional and old-growth forests under the Northwest Forest Plan. It describes methods to answer questions about how much late-successional forest exists on Federal land, its pattern, how itâs changing, and if the Forest Plan is providing for its conservation and management. It specifies...
Colin A. Penn; Beverley C. Wemple; John L. Campbell
2012-01-01
Many factors influence snow depth, water content and duration in forest ecosystems. The effects of forest cover and canopy gap geometry on snow accumulation has been well documented in coniferous forests of western North America and other regions; however, few studies have evaluated these effects on snowpack dynamics in mixed deciduous forests of the northeastern USA....
Patricia Elias; James Burger; Stephanie Connolly; Mary Beth. Adams
2010-01-01
The Monongahela National Forest (MNF) lies downwind from many sources of acid deposition (AD) pollution. Therefore, managers are concerned about the possible deleterious effects of AD on the forest ecosystem. To address the needs of MNF managers, we used Forest Inventory and Analysis (FIA) sites to evaluate forest growth patterns on the MNF to determine the...
Salli F. Dymond; W. Michael Aust; Stephen P. Prisley; Mark H. Eisenbies; James M. Vose
2014-01-01
Managed forests have historically been linked to watershed protection and flood mitigation. Research indicates that forests can potentially minimize peak flows during storm events, yet the relationship between forests and flooding is complex. Forest roads, usually found in managed systems, can potentially magnify the effects of forest harvesting on water yields. The...
Protected areas: mixed success in conserving East Africa's evergreen forests.
Pfeifer, Marion; Burgess, Neil D; Swetnam, Ruth D; Platts, Philip J; Willcock, Simon; Marchant, Robert
2012-01-01
In East Africa, human population growth and demands for natural resources cause forest loss contributing to increased carbon emissions and reduced biodiversity. Protected Areas (PAs) are intended to conserve habitats and species. Variability in PA effectiveness and 'leakage' (here defined as displacement of deforestation) may lead to different trends in forest loss within, and adjacent to, existing PAs. Here, we quantify spatial variation in trends of evergreen forest coverage in East Africa between 2001 and 2009, and test for correlations with forest accessibility and environmental drivers. We investigate PA effectiveness at local, landscape and national scales, comparing rates of deforestation within park boundaries with those detected in park buffer zones and in unprotected land more generally. Background forest loss (BFL) was estimated at -9.3% (17,167 km(2)), but varied between countries (range: -0.9% to -85.7%; note: no BFL in South Sudan). We document high variability in PA effectiveness within and between PA categories. The most successful PAs were National Parks, although only 26 out of 48 parks increased or maintained their forest area (i.e. Effective parks). Forest Reserves (Ineffective parks, i.e. parks that lose forest from within boundaries: 204 out of 337), Nature Reserves (six out of 12) and Game Parks (24 out of 26) were more likely to lose forest cover. Forest loss in buffer zones around PAs exceeded background forest loss, in some areas indicating leakage driven by Effective National Parks. Human pressure, forest accessibility, protection status, distance to fires and long-term annual rainfall were highly significant drivers of forest loss in East Africa. Some of these factors can be addressed by adjusting park management. However, addressing close links between livelihoods, natural capital and poverty remains a fundamental challenge in East Africa's forest conservation efforts.
Does increasing rotation length lead to greater forest carbon storage?
NASA Astrophysics Data System (ADS)
Ter-Mikaelian, M. T.; Colombo, S. J.; Chen, J.
2016-12-01
Forest management is a key factor affecting climate change mitigation by forests. Increasing the age of harvesting (also referred to as rotation length) is a management practice that has been proposed as a means of increasing forest carbon sequestration and storage. However, studies of the effects of increasing harvest age on forest carbon stocks have mostly been limited to forest plantations. In contrast, this study assesses the effects of increased harvest age of managed natural forests of Ontario (Canada) at two scales. At the stand level, we assess merchantable volume yield curves to differentiate those for which increasing the age of harvest results in an increase in total forest carbon stocks versus those for which increased harvest age reduces carbon stocks. The stand level results are then applied to forest landscapes to demonstrate that the effect of increasing the age of harvest on forest carbon storage is specific to the forest growth rates for a given forest landscape and depends on the average age at which forests are harvested under current (business-as-usual) management practice. We discuss the implications of these results for forest management aimed at mitigating climate change.
Evaluating Heterogeneous Conservation Effects of Forest Protection in Indonesia
Shah, Payal; Baylis, Kathy
2015-01-01
Establishing legal protection for forest areas is the most common policy used to limit forest loss. This article evaluates the effectiveness of seven Indonesian forest protected areas introduced between 1999 and 2012. Specifically, we explore how the effectiveness of these parks varies over space. Protected areas have mixed success in preserving forest, and it is important for conservationists to understand where they work and where they do not. Observed differences in the estimated treatment effect of protection may be driven by several factors. Indonesia is particularly diverse, with the landscape, forest and forest threats varying greatly from region to region, and this diversity may drive differences in the effectiveness of protected areas in conserving forest. However, the observed variation may also be spurious and arise from differing degrees of bias in the estimated treatment effect over space. In this paper, we use a difference-in-differences approach comparing treated observations and matched controls to estimate the effect of each protected area. We then distinguish the true variation in protected area effectiveness from spurious variation driven by several sources of estimation bias. Based on our most flexible method that allows the data generating process to vary across space, we find that the national average effect of protection preserves an additional 1.1% of forest cover; however the effect of individual parks range from a decrease of 3.4% to an increase of 5.3% and the effect of most parks differ from the national average. Potential biases may affect estimates in two parks, but results consistently show Sebangau National Park is more effective while two parks are substantially less able to protect forest cover than the national average. PMID:26039754
Evaluating heterogeneous conservation effects of forest protection in Indonesia.
Shah, Payal; Baylis, Kathy
2015-01-01
Establishing legal protection for forest areas is the most common policy used to limit forest loss. This article evaluates the effectiveness of seven Indonesian forest protected areas introduced between 1999 and 2012. Specifically, we explore how the effectiveness of these parks varies over space. Protected areas have mixed success in preserving forest, and it is important for conservationists to understand where they work and where they do not. Observed differences in the estimated treatment effect of protection may be driven by several factors. Indonesia is particularly diverse, with the landscape, forest and forest threats varying greatly from region to region, and this diversity may drive differences in the effectiveness of protected areas in conserving forest. However, the observed variation may also be spurious and arise from differing degrees of bias in the estimated treatment effect over space. In this paper, we use a difference-in-differences approach comparing treated observations and matched controls to estimate the effect of each protected area. We then distinguish the true variation in protected area effectiveness from spurious variation driven by several sources of estimation bias. Based on our most flexible method that allows the data generating process to vary across space, we find that the national average effect of protection preserves an additional 1.1% of forest cover; however the effect of individual parks range from a decrease of 3.4% to an increase of 5.3% and the effect of most parks differ from the national average. Potential biases may affect estimates in two parks, but results consistently show Sebangau National Park is more effective while two parks are substantially less able to protect forest cover than the national average.
Ruffell, Jay; Didham, Raphael K.; Barrett, Paul; Gorman, Nic; Pike, Rhonda; Hickey-Elliott, Andrée; Sievwright, Karin; Armstrong, Doug P.
2014-01-01
Forest edges can strongly affect avian nest success by altering nest predation rates, but this relationship is inconsistent and context dependent. There is a need for researchers to improve the predictability of edge effects on nest predation rates by examining the mechanisms driving their occurrence and variability. In this study, we examined how the capture rates of ship rats, an invasive nest predator responsible for avian declines globally, varied with distance from the forest edge within forest fragments in a pastoral landscape in New Zealand. We hypothesised that forest edges would affect capture rates by altering vegetation structure within fragments, and that the strength of edge effects would depend on whether fragments were grazed by livestock. We measured vegetation structure and rat capture rates at 488 locations ranging from 0–212 m from the forest edge in 15 forest fragments, seven of which were grazed. Contrary to the vast majority of previous studies of edge effects on nest predation, ship rat capture rates increased with increasing distance from the forest edge. For grazed fragments, capture rates were estimated to be 78% lower at the forest edge than 118 m into the forest interior (the farthest distance for grazed fragments). This relationship was similar for ungrazed fragments, with capture rates estimated to be 51% lower at the forest edge than 118 m into the forest interior. A subsequent path analysis suggested that these ‘reverse’ edge effects were largely or entirely mediated by changes in vegetation structure, implying that edge effects on ship rats can be predicted from the response of vegetation structure to forest edges. We suggest the occurrence, strength, and direction of edge effects on nest predation rates may depend on edge-driven changes in local habitat when the dominant predator is primarily restricted to forest patches. PMID:25412340
Ruffell, Jay; Didham, Raphael K; Barrett, Paul; Gorman, Nic; Pike, Rhonda; Hickey-Elliott, Andrée; Sievwright, Karin; Armstrong, Doug P
2014-01-01
Forest edges can strongly affect avian nest success by altering nest predation rates, but this relationship is inconsistent and context dependent. There is a need for researchers to improve the predictability of edge effects on nest predation rates by examining the mechanisms driving their occurrence and variability. In this study, we examined how the capture rates of ship rats, an invasive nest predator responsible for avian declines globally, varied with distance from the forest edge within forest fragments in a pastoral landscape in New Zealand. We hypothesised that forest edges would affect capture rates by altering vegetation structure within fragments, and that the strength of edge effects would depend on whether fragments were grazed by livestock. We measured vegetation structure and rat capture rates at 488 locations ranging from 0-212 m from the forest edge in 15 forest fragments, seven of which were grazed. Contrary to the vast majority of previous studies of edge effects on nest predation, ship rat capture rates increased with increasing distance from the forest edge. For grazed fragments, capture rates were estimated to be 78% lower at the forest edge than 118 m into the forest interior (the farthest distance for grazed fragments). This relationship was similar for ungrazed fragments, with capture rates estimated to be 51% lower at the forest edge than 118 m into the forest interior. A subsequent path analysis suggested that these 'reverse' edge effects were largely or entirely mediated by changes in vegetation structure, implying that edge effects on ship rats can be predicted from the response of vegetation structure to forest edges. We suggest the occurrence, strength, and direction of edge effects on nest predation rates may depend on edge-driven changes in local habitat when the dominant predator is primarily restricted to forest patches.
Ziter, Carly; Bennett, Elena M; Gonzalez, Andrew
2014-11-01
Edge effects are among the primary mechanisms by which forest fragmentation can influence the link between biodiversity and ecosystem processes, but relatively few studies have quantified these mechanisms in temperate regions. Carbon storage is an important ecosystem function altered by edge effects, with implications for climate change mitigation. Two opposing hypotheses suggest that aboveground carbon (AGC) stocks at the forest edge will (a) decrease due to increased tree mortality and compositional shifts towards smaller, lower wood density species (e.g., as seen in tropical systems) or, less often, (b) increase due to light/temperature-induced increases in diversity and productivity. We used field-based measurements, allometry, and mixed models to investigate the effects of proximity to the forest edge on AGC stocks, species richness, and community composition in 24 forest fragments in southern Quebec. We also asked whether fragment size or connectivity with surrounding forests altered these edge effects. AGC stocks remained constant across a 100 m edge-to-interior gradient in all fragment types, despite changes in tree community composition and stem density consistent with expectations of forest edge effects. We attribute this constancy primarily to compensatory effects of small trees at the forest edge; however, it is due in some cases to the retention of large trees at forest edges, likely a result of forest management. Our results suggest important differences between temperate and tropical fragments with respect to mechanisms linking biodiversity and AGC dynamics. Small temperate forest fragments may be valuable in conservation efforts based on maintaining biodiversity and multiple ecosystem services.
NASA Astrophysics Data System (ADS)
Kelsey, Katharine Cashman
Climate change is resulting in a number of rapid changes in forests worldwide. Forests comprise a critical component of the global carbon cycle, and therefore climate-induced changes in forest carbon balance have the potential to create a feedback within the global carbon cycle and affect future trajectories of climate change. In order to further understanding of climate-driven changes in forest carbon balance, I (1) develop a method to improve spatial estimates forest carbon stocks, (2) investigate the effect of climate change and forest management actions on forest recovery and carbon balance following disturbance, and (3) explore the relationship between climate and forest growth, and identify climate-driven trends in forest growth through time, within San Juan National Forest in southwest Colorado, USA. I find that forest carbon estimates based on texture analysis from LandsatTM imagery improve regional forest carbon maps, and this method is particularly useful for estimating carbon stocks in forested regions affected by disturbance. Forest recovery from disturbance is also a critical component of future forest carbon stocks, and my results indicate that both climate and forest management actions have important implications for forest recovery and carbon dynamics following disturbance. Specifically, forest treatments that use woody biomass removed from the forest for electricity production can reduce carbon emissions to the atmosphere, but climate driven changes in fire severity and forest recovery can have the opposite effect on forest carbon stocks. In addition to the effects of disturbance and recovery on forest condition, I also find that climate change is decreasing rates of forest growth in some species, likely in response to warming summer temperatures. These growth declines could result in changes of vegetation composition, or in extreme cases, a shift in vegetation type that would alter forest carbon storage. This work provides insight into both current and future changes in forest carbon balance as a consequence of climate change and forest management in the western US.
Mitigation benefits of forestation greatly varies on short spatial scale
NASA Astrophysics Data System (ADS)
Yakir, Dan; Rotenberg, Eyal; Rohatin, Shani; Ramati, Efrat; Asaf, David; Dicken, Uri
2016-04-01
Mitigation of global warming by forestation is controversial because of its linkage to increasing surface energy load and associated surface warming. Such tradeoffs between cooling associated with carbon sequestration and warming associated with radiative effects have been considered predominantly on large spatial scales, indicating benefits of forestation mainly in the tropics but not in the boreal regions. Using mobile laboratory for measuring CO2, water and energy flux in forest and non-forest ecosystem along the climatic gradient in Israel over three years, we show that the balance between cooling and warming effects of forestation can be transformed across small spatial scale. While converting shrubland to pine forest in a semi-arid site (280 mm annual precipitations) requires several decades of carbon sequestration to balance the radiative warming effects, similar land use change under moist Mediterranean conditions (780 mm annual precipitation) just ~200 km away showed reversal of this balance. Specifically, the results indicated that in the study region (semi-arid to humid Mediterranean), net absorb radiation in pine forests is always larger than in open space ecosystems, resulting in surface warming effects (the so-called albedo effect). Similarly, depression of thermal radiation emission, mainly due canopy skin surface cooling associated with the 'convector effect' in forests compared with shrubland ecosystems also appears in all sites. But both effects decrease by about 1/2 in going from the semi-arid to the humid Mediterranean sites, while enhanced productivity of forest compared to grassland increase about fourfold. The results indicate a greater potential for forestation as climate change mitigation strategy than previously assumed.
Eric J. Gustafson; David E. Lytle; Randy Swaty; Craig Loehle
2007-01-01
While the cumulative effects of the actions of multiple owners have long been recognized as critically relevant to efforts to maintain sustainable forests at the landscape scale, few studies have addressed these effects. We used the HARVEST timber harvest simulator to predict the cumulative effects of four owner groups (two paper companies, a state forest and non-...
Effects of satellite image spatial aggregation and resolution on estimates of forest land area
M.D. Nelson; R.E. McRoberts; G.R. Holden; M.E. Bauer
2009-01-01
Satellite imagery is being used increasingly in association with national forest inventories (NFIs) to produce maps and enhance estimates of forest attributes. We simulated several image spatial resolutions within sparsely and heavily forested study areas to assess resolution effects on estimates of forest land area, independent of other sensor characteristics. We...
Bat activity in selection harvests and intact forest canopy gaps at Indiana state forests
Scott Haulton; Kathryn L. DeCosta
2014-01-01
Forest managers often prescribe silvicultural methods based on how effectively they mimic the natural disturbance agents that have historically shaped the forests they manage. On Indiana state forests, selection systems are used on most harvested acreage and appear to structurally mimic the effects of naturally occurring, gap-forming disturbances affecting individual...
Thomas R. Crow; David S. Buckley; Elizabeth A. Nauertz; John C. Zasada
2002-01-01
To improve our understanding of how management affects the composition and structure of northern hardwood forests, we compared managed with unmanaged sugar maple (Acer saccharum Marsh.) dominated forests. Unmanaged old-growth and unmanaged second-growth forests provided baselines for comparing the effects of even-aged and uneven-aged forest...
Simulating ungulate herbivory across forest landscapes: A browsing extension for LANDIS-II
DeJager, Nathan R.; Drohan, Patrick J.; Miranda, Brian M.; Sturtevant, Brian R.; Stout, Susan L.; Royo, Alejandro; Gustafson, Eric J.; Romanski, Mark C.
2017-01-01
Browsing ungulates alter forest productivity and vegetation succession through selective foraging on species that often dominate early succession. However, the long-term and large-scale effects of browsing on forest succession are not possible to project without the use of simulation models. To explore the effects of ungulates on succession in a spatially explicit manner, we developed a Browse Extension that simulates the effects of browsing ungulates on the growth and survival of plant species cohorts within the LANDIS-II spatially dynamic forest landscape simulation model framework. We demonstrate the capabilities of the new extension and explore the spatial effects of ungulates on forest composition and dynamics using two case studies. The first case study examined the long-term effects of persistently high white-tailed deer browsing rates in the northern hardwood forests of the Allegheny National Forest, USA. In the second case study, we incorporated a dynamic ungulate population model to simulate interactions between the moose population and boreal forest landscape of Isle Royale National Park, USA. In both model applications, browsing reduced total aboveground live biomass and caused shifts in forest composition. Simulations that included effects of browsing resulted in successional patterns that were more similar to those observed in the study regions compared to simulations that did not incorporate browsing effects. Further, model estimates of moose population density and available forage biomass were similar to previously published field estimates at Isle Royale and in other moose-boreal forest systems. Our simulations suggest that neglecting effects of browsing when modeling forest succession in ecosystems known to be influenced by ungulates may result in flawed predictions of aboveground biomass and tree species composition.
Seeing the forest beyond the carbon
NASA Astrophysics Data System (ADS)
Schwalm, C.; Giffen, A.; Duffy, P.; Houghton, R. A.; Lowenstein, F.; Perschel, R.; Rogers, B. M.
2016-12-01
Climate policy should be about more than obviating greenhouse gas emissions from fossil fuel combustion. From Kyoto onward forests and forest management have played a role-albeit a misspecified one-in climate policy. The 2015 COP21 Paris Agreement took the unprecedented step of providing funding for REDD+; re-emphasizing the importance of forest stewardship as a policy vehicle. This step is welcome but still falls well short of leveraging the full effect of forests on climate in the context of policy. Forest-climate effects can be grouped in three broad categories: (1) land carbon sink, i.e., maximizing carbon contained in forest carbon stocks; (2) biophysical effects whereby forest structure and extent influence climate directly; and (3) the use of wood in long-lived structures, i.e., "build it with wood". This last category refers to offsetting fossil fuel emissions through forest management and the use of wood products. Climate policy strongly emphasizes the land carbon sink. This ignores management as a means to alter climate-through, for example, evaporative cooling, cloud engineering, and the albedo effect-as well as the up to 31% decrease in CO2 emissions if wood were substituted for other construction materials. We present a new framework for forest-based climate policy that accounts for all three types for forest-climate effects. A clear change in course is needed. This agenda-for-change must move toward policy and subsidy that foster forest management and use that (1) minimizes total CO2 emissions, (2) maximizes biophysical climate benefits, and (3) provides communities with still greater incentives to maintain forest cover and quality. Absent such incentives we are left with the prospect that we are not harnessing the full potential of forests in climate regulation. Indeed, we may be making our climate situation worse.
Observations from old forests underestimate climate change effects on tree mortality.
Luo, Yong; Chen, Han Y H
2013-01-01
Understanding climate change-associated tree mortality is central to linking climate change impacts and forest structure and function. However, whether temporal increases in tree mortality are attributed to climate change or stand developmental processes remains uncertain. Furthermore, interpreting the climate change-associated tree mortality estimated from old forests for regional forests rests on an un-tested assumption that the effects of climate change are the same for young and old forests. Here we disentangle the effects of climate change and stand developmental processes on tree mortality. We show that both climate change and forest development processes influence temporal mortality increases, climate change-associated increases are significantly higher in young than old forests, and higher increases in younger forests are a result of their higher sensitivity to regional warming and drought. We anticipate our analysis to be a starting point for more comprehensive examinations of how forest ecosystems might respond to climate change.
Inverted edge effects on carbon stocks in human-dominated landscapes
NASA Astrophysics Data System (ADS)
Romitelli, I.; Keller, M.; Vieira, S. A.; Metzger, J. P.; Reverberi Tambosi, L.
2017-12-01
Although the importance of tropical forests to regulate greenhouse gases is well documented, little is known about what factors affect the ability of these forests to store carbon in human-dominated landscapes. Among those factors, the landscape structure, particularly the amount of forest cover, the type of matrix and edge effects, can have important roles. We tested how carbon stock is influenced by a combination of factors of landscape composition (pasture and forest cover), landscape configuration (edge effect) and relief factors (slope, elevation and aspect). To test those relationships, we performed a robust carbon stock estimation with inventory and LiDAR data in human-dominated landscapes from the Brazilian Atlantic forest region. The study area showed carbon stock mean 45.49 ± 9.34 Mg ha-1. The interaction between forest cover, edge effect and slope was the best combination explanatory of carbon stock. We observed an inverted edge effect pattern where carbon stock is higher close to the edges of the studied secondary forests. This inverted edge effect observed contradicts the usual pattern reported in the literature for mature forests. We suppose this pattern is related with a positive effect that edge conditions can have stimulating forest regeneration, but the underlying processes to explain the observed pattern should still be tested. Those results suggest that Carbon stocks in human-dominated and fragmented landscapes can be highly affected by the landscape structure, and particularly that edges conditions can favor carbon sequestration in regenerating tropical forests.
Kurt W. Gottschalk; W. Russ MacFarlane
1994-01-01
A cooperative area was established on the Glenwood Ranger District, Jefferson National Forest, to demonstrate the effectiveness of silvicultural treatments in minimizing gypsy effects to the public and forest resource professionals and provide additional research data on the effectiveness of the treatments versus direct insect treatments. The silvicultural treatments...
Development effects on private forest management: a critical look at the evidence.
J.D. Kline
2007-01-01
The timber production and ecological effects of forest land development are influenced by both the rate and spatial distribution of forest land development, and how remaining undeveloped forest lands are managed. Regarding effects on management, research conducted in the U.S. South and in Oregon suggests that development can reduce the intensity with which landowners...
Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Alamgir, Mohammed; Porolak, Gabriel; Mohandass, D; Laurance, William F
2018-04-01
Closed-canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species-conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree-species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0-100-m transect from edge to forest interior) on the liana community and liana-host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana-infested trees, and determinants of the rates of tree infestation within five forest fragments (23-58 ha in area) and five nearby intact-forest sites. Fragmented forests experienced considerable disturbance-induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small-sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low-disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.
Effects of national forest-management regimes on unprotected forests of the Himalaya.
Brandt, Jodi S; Allendorf, Teri; Radeloff, Volker; Brooks, Jeremy
2017-12-01
Globally, deforestation continues, and although protected areas effectively protect forests, the majority of forests are not in protected areas. Thus, how effective are different management regimes to avoid deforestation in non-protected forests? We sought to assess the effectiveness of different national forest-management regimes to safeguard forests outside protected areas. We compared 2000-2014 deforestation rates across the temperate forests of 5 countries in the Himalaya (Bhutan, Nepal, China, India, and Myanmar) of which 13% are protected. We reviewed the literature to characterize forest management regimes in each country and conducted a quasi-experimental analysis to measure differences in deforestation of unprotected forests among countries and states in India. Countries varied in both overarching forest-management goals and specific tenure arrangements and policies for unprotected forests, from policies emphasizing economic development to those focused on forest conservation. Deforestation rates differed up to 1.4% between countries, even after accounting for local determinants of deforestation, such as human population density, market access, and topography. The highest deforestation rates were associated with forest policies aimed at maximizing profits and unstable tenure regimes. Deforestation in national forest-management regimes that emphasized conservation and community management were relatively low. In India results were consistent with the national-level results. We interpreted our results in the context of the broader literature on decentralized, community-based natural resource management, and our findings emphasize that the type and quality of community-based forestry programs and the degree to which they are oriented toward sustainable use rather than economic development are important for forest protection. Our cross-national results are consistent with results from site- and regional-scale studies that show forest-management regimes that ensure stable land tenure and integrate local-livelihood benefits with forest conservation result in the best forest outcomes. © 2017 Society for Conservation Biology.
Local cooling and warming effects of forests based on satellite observations.
Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng
2015-03-31
The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies.
Local cooling and warming effects of forests based on satellite observations
Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng
2015-01-01
The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies. PMID:25824529
Roger W. Perry; Ronald E. Thill; David M. Leslie
2008-01-01
Forest management affects the quality and availability of roost sites for forest-dwelling bats, but information on roost selection beyond the scale of individual forest stands is limited. We evaluated effects of topography (elevation, slope, and proximity of roads and streams), forest habitat class, and landscape patch configuration on selection of summer diurnal oosts...
Phillip J. Van Mantgem; Nathan L. Stephenson; Eric Knapp; John Barrles; Jon E. Keeley
2011-01-01
The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before...
Effects of Understory Burning in a Mesic Mixed-Oak Forest of the Southern Appalachians
Katherine J. Elliott; James M. Vose; Barton D. Clinton; Jennifer D. Knoepp
2004-01-01
Information is lacking on ecosystem effects of understory burning in mesic mixed-oak (Quercus spp.) forests of the southern Appalachians. Native Americans used periodic fires in these forests for driving game and opening the forest. In April 1998, we conducted a low- to moderate-intensity fire in a coveÂhardwood forest in the Nantahala National...
Corey R. Halpin; Craig G. Lorimer; Jacob J. Hanson; Brian J. Palik
2017-01-01
The group selection method can potentially increase the proportion of shade-intolerant and midtolerant tree species in forests dominated by shade-tolerant species, but previous results have been variable, and concerns have been raised about possible effects on forest fragmentation and forest structure. Limited evidence is available on these issues for forests managed...
David N. Wear; Linda A. Joyce
2012-01-01
Human concerns about the effects of climate change on forests are related to the values that forests provide to human populations, that is, to the effects on ecosystem services derived from forests. Service values include the consumption of timber products, the regulation of climate and water quality, and aesthetic and spiritual values. Effects of climate change on...
Erdmann, Georgia; Scheu, Stefan; Maraun, Mark
2012-06-01
Most European forests are managed by humans. However, the manner and intensity of management vary. While the effect of forest management on above-ground communities has been investigated in detail, effects on the below-ground fauna remain poorly understood. Oribatid mites are abundant microarthropods in forest soil and important decomposers in terrestrial ecosystems. Here, we investigated the effect of four forest types (i.e., managed coniferous forests; 30 and 70 years old managed beech forests; natural beech forests) on the density, diversity and community structure of oribatid mites (Acari). The study was replicated at three regions in Germany: the Swabian Alb, the Hainich and the Schorfheide. To relate changes in oribatid mite community structure to environmental factors, litter mass, pH, C and N content of litter, fine roots and C content of soil were measured. Density of oribatid mites was highest in the coniferous forests and decreased in the order 30 years old, 70 years old, and natural beech forests. Mass of the litter layer and density of oribatid mites were strongly correlated indicating that the litter layer is an important factor regulating oribatid mite densities. Diversity of oribatid mites was little affected by forest type indicating that they harbor similar numbers of niches. Species composition differed between the forest types, suggesting different types of niches. The community structure of oribatid mites differed more strongly between the three regions than between the forest types indicating that regional factors are more important than effects associated with forest type.
Effects of white-tailed deer and invasive plants on the herb layer of suburban forests.
Morrison, Janet A
2017-11-01
Lack of hunting and predators and proximity to human communities make suburban forests prone to high deer abundance and non-native plant invasions. I investigated these likely drivers of community structure in the herb layers of six suburban forests in one region of New Jersey, USA. In 223 plots I assessed the herb layer response to 2.5 years with or without deer fencing and the early stage of invasion from seed additions of Microstegium vimineum , an invasive, annual grass. Non-native plants and herbaceous native plants were affected very little by fencing or M. vimineum invasion. In contrast, across all forests the combination of deer access and M. vimineum addition had a strongly negative effect on woody native percent cover. Forests differed in overall fencing effects on woody natives; their cover was greater in fenced plots in just three forests, suggesting greater deer pressure in those forests during the experiment. The early invasion by M. vimineum was greatest in two of these same forests, but was not influenced by fencing. Multi-group structural equation modelling compared two groups of forests that differed in vegetation abundance and other characteristics. It paralleled the results above and also showed no negative influence of non-native cover on native cover, even in the forests where non-native cover was greater. It identified a positive effect of light level on herb layer plants in the forests with less vegetation, and also revealed a positive effect of soil water potential (SWP) on non-native plants in the forests with more vegetation, which had higher SWP. These suburban forests within a common region varied widely in native and non-native herb layer abundance, the early success of M. vimineum invasion and the herb layer's response to early invasion and protection from deer.
Protected Areas: Mixed Success in Conserving East Africa’s Evergreen Forests
Pfeifer, Marion; Burgess, Neil D.; Swetnam, Ruth D.; Platts, Philip J.; Willcock, Simon; Marchant, Robert
2012-01-01
In East Africa, human population growth and demands for natural resources cause forest loss contributing to increased carbon emissions and reduced biodiversity. Protected Areas (PAs) are intended to conserve habitats and species. Variability in PA effectiveness and ‘leakage’ (here defined as displacement of deforestation) may lead to different trends in forest loss within, and adjacent to, existing PAs. Here, we quantify spatial variation in trends of evergreen forest coverage in East Africa between 2001 and 2009, and test for correlations with forest accessibility and environmental drivers. We investigate PA effectiveness at local, landscape and national scales, comparing rates of deforestation within park boundaries with those detected in park buffer zones and in unprotected land more generally. Background forest loss (BFL) was estimated at −9.3% (17,167 km2), but varied between countries (range: −0.9% to −85.7%; note: no BFL in South Sudan). We document high variability in PA effectiveness within and between PA categories. The most successful PAs were National Parks, although only 26 out of 48 parks increased or maintained their forest area (i.e. Effective parks). Forest Reserves (Ineffective parks, i.e. parks that lose forest from within boundaries: 204 out of 337), Nature Reserves (six out of 12) and Game Parks (24 out of 26) were more likely to lose forest cover. Forest loss in buffer zones around PAs exceeded background forest loss, in some areas indicating leakage driven by Effective National Parks. Human pressure, forest accessibility, protection status, distance to fires and long-term annual rainfall were highly significant drivers of forest loss in East Africa. Some of these factors can be addressed by adjusting park management. However, addressing close links between livelihoods, natural capital and poverty remains a fundamental challenge in East Africa’s forest conservation efforts. PMID:22768074
A Multi-Scale Perspective of the Effects of Forest Fragmentation on Birds in Eastern Forests
Frank R. Thompson; Therese M. Donovan; Richard M. DeGraff; John Faaborg; Scott K. Robinson
2002-01-01
We propose a model that considers forest fragmentation within a spatial hierarchy that includes regional or biogeographic effects, landscape-level fragmentation effects, and local habitat effects. We hypothesize that effects operate "top down" in that larger scale effects provide constraints or context for smaller scale effects. Bird species' abundance...
Effects of rural residential development on forest communities in Oregon and Washington, USA
David L. Azuma; Bianca N.I. Eskelson; Joel L. Thompson
2014-01-01
Rural residential development in forests of Oregon and Washington continues to be a key driver of land use change. This type of development can have a variety of effects on the goods and services forests provide to the region. We used structure density from photo-interpreted points around forest inventory and analysis plots to examine differences in forest attributes...
Rich L. Clawson; John Faaborg; Elena Seon
1997-01-01
Our goal is to understand the repercussions of two different forest management techniques on Neotropical migrant birds in the heavily forested landscape of the Missouri Ozarks. Our objectives are to determine breeding densities of forest birds under even-aged and uneven-aged management regimes and to determine the effects of these practices on songbird demographics....
William H. McWilliams; Brett J. Butler; Laurence E. Caldwell; Douglas M. Griffith; Michael L. Hoppus; Kenneth M. Laustsen; Andrew J. Lister; Tonya W. Lister; Jacob W. Metzler; Randall S. Morin; Steven A. Sader; Lucretia B. Stewart; James R. Steinman; James, A. Westfall; David A. Williams; Andrew Whitman; Christopher W. Woodall; Christopher W. Woodall
2005-01-01
In 1999, the Maine Forest Service and USDA Forest Service's Forest Inventory and Analysis program implemented a new system for inventorying and monitoring Maine's forests. The effects of the spruce budworm epidemic continue to affect the composition, structure, and distribution of Maine's forested ecosystems. The area of forest land in Maine has remained...
Assessing management effects on Oak forests in Austria
NASA Astrophysics Data System (ADS)
Gautam, Sishir; Pietsch, Stephan A.; Hasenauer, Hubert
2010-05-01
Historic land use as well as silvicultural management practices have changed the structures and species composition of central European forests. Such changes have effects on the growth of forests and contribute to global warming. As insufficient information on historic forest management is available it is hard to explain the effect of management on forests growth and its possible consequences to the environment. In this situation, the BIOME-BGC model, which integrates the main physical, biological and physiological processes based on current understanding of ecophysiology is an option for assessing the management effects through tracking the cycling of energy, water, carbon and nutrients within a given ecosystems. Such models are increasingly employed to simulate current and future forest dynamics. This study first compares observed standing tree volume, carbon and nitrogen content in soil in the high forests and coppice with standards stands of Oak forests in Austria. Biome BGC is then used to assess the effects of management on forest growth and to explain the differences with measured parameters. Close positive correlations and unbiased results and statistically insignificant differences between predicted and observed volumes indicates the application of the model as a diagnostic tool to assess management effects in oak forests. The observed data in 2006 and 2009 was further compared with the results of respective model runs. Further analysis on simulated data shows that thinning leads to an increase in growth efficiency (GE), nitrogen use efficiency (NUE) and water use efficiency (WUE), and to a decrease in the radiation use efficiency (RUE) in both forests. Among all studied growth parameters, only the difference in the NUE was statistically significant. This indicates that the difference in the yield of forests is mainly governed by the NUE difference in stands due to thinning. The coppice with standards system produces an equal amount of net primary production while consuming significantly less nitrogen compared to the high forests.
Stephen R. Shifley; Frank R. Thompson; William D. Dijak; Zhaofei F. Fan
2008-01-01
Forest landscape disturbance and succession models have become practical tools for large-scale, long-term analyses of the cumulative effects of forest management on real landscapes. They can provide essential information in a spatial context to address management and policy issues related to forest planning, wildlife habitat quality, timber harvesting, fire effects,...
[Effects of climate change on forest soil organic carbon storage: a review].
Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen
2010-07-01
Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.
Deforestation effects on Amazon forest resilience
NASA Astrophysics Data System (ADS)
Zemp, D. C.; Schleussner, C.-F.; Barbosa, H. M. J.; Rammig, A.
2017-06-01
Through vegetation-atmosphere feedbacks, rainfall reductions as a result of Amazon deforestation could reduce the resilience on the remaining forest to perturbations and potentially lead to large-scale Amazon forest loss. We track observation-based water fluxes from sources (evapotranspiration) to sinks (rainfall) to assess the effect of deforestation on continental rainfall. By studying 21st century deforestation scenarios, we show that deforestation can reduce dry season rainfall by up to 20% far from the deforested area, namely, over the western Amazon basin and the La Plata basin. As a consequence, forest resilience is systematically eroded in the southwestern region covering a quarter of the current Amazon forest. Our findings suggest that the climatological effects of deforestation can lead to permanent forest loss in this region. We identify hot spot regions where forest loss should be avoided to maintain the ecological integrity of the Amazon forest.
Song, Chorong; Ikei, Harumi; Kobayashi, Maiko; Miura, Takashi; Taue, Masao; Kagawa, Takahide; Li, Qing; Kumeda, Shigeyoshi; Imai, Michiko; Miyazaki, Yoshifumi
2015-03-02
There has been increasing attention on the therapeutic effects of the forest environment. However, evidence-based research that clarifies the physiological effects of the forest environment on hypertensive individuals is lacking. This study provides scientific evidence suggesting that a brief forest walk affects autonomic nervous system activity in middle-aged hypertensive individuals. Twenty participants (58.0±10.6 years) were instructed to walk predetermined courses in forest and urban environments (as control). Course length (17-min walk), walking speed, and energy expenditure were equal between the forest and urban environments to clarify the effects of each environment. Heart rate variability (HRV) and heart rate were used to quantify physiological responses. The modified semantic differential method and Profile of Mood States were used to determine psychological responses. The natural logarithm of the high-frequency component of HRV was significantly higher and heart rate was significantly lower when participants walked in the forest than when they walked in the urban environment. The questionnaire results indicated that, compared with the urban environment, walking in the forest increased "comfortable", "relaxed", "natural" and "vigorous" feelings and decreased "tension-anxiety," "depression," "anxiety-hostility," "fatigue" and "confusion". A brief walk in the forest elicited physiological and psychological relaxation effects on middle-aged hypertensive individuals.
Renner, Swen C; Lüdtke, Bruntje; Kaiser, Sonja; Kienle, Julia; Schaefer, H Martin; Segelbacher, Gernot; Tschapka, Marco; Santiago-Alarcon, Diego
2016-08-01
Habitat characteristics determine the presence of individuals through resource availability, but at the same time, such features also influence the occurrence of parasites. We analyzed how birds respond to changes in interior forest structures, to forest management regimes, and to the risk of haemosporidian infections. We captured and took blood samples from blackcaps (Sylvia atricapilla) and chaffinches (Fringilla coelebs) in three different forest types (beech, mixed deciduous, spruce). We measured birds' body asymmetries, detected avian haemosporidians, and counted white blood cells as an immune measure of each individual per forest type. We used, to our knowledge for the first time, continuous forest structural parameters to quantify habitat structure, and found significant effects of habitat structure on parasite prevalence that previously have been undetected. We found three times higher prevalence for blackcaps compared with chaffinches. Parasite intensity varied significantly within host species depending on forest type, being lowest in beech forests for both host species. Structurally complex habitats with a high degree of entropy had a positive effect on the likelihood of acquiring an infection, but the effect on prevalence was negative for forest sections with a south facing aspect. For blackcaps, forest gaps also had a positive effect on prevalence, but canopy height had a negative one. Our results suggest that forest types and variations in forest structure influence the likelihood of acquiring an infection, which subsequently has an influence on host health status and body condition; however, responses to some environmental factors are host-specific. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Patrick J. McHale; Myron J. Mitchell; Dudley J. Raynal; Francis P. Bowles
1996-01-01
To investigate the effects of elevated soil temperatures on a forest ecosystem, heating cables were buried at a depth of 5 cm within the forest floor of a northern hardwood forest at the Huntington Wildlife Forest (Adirondack Mountains, New York). Temperature was elevated 2.5, 5.0 and 7.5?C above ambient, during May - September in both 1993 and 1994. Various aspects of...
Nancy H.F. French; Eric S. Kasischke; Ronald J. Hall; Karen A. Murphy; David L. Verbyla; Elizabeth E. Hoy; Jennifer L. Allen
2008-01-01
There has been considerable interest in the recent literature regarding the assessment of post-fire effects on forested areas within the North American boreal forest. Assessing the physical and ecological effects of fire in boreal forests has far-reaching implications for a variety of ecosystem processes -- such as post-fire forest succession -- and land management...
M.B. Adams; P.J. Edwards; J.N. Kochenderfer; F. Wood
2004-01-01
In 1951, stream gaging was begun on five small headwater catchments on the Fernow Experimental Forest in West Virginia, to study the effects of forest management activities, particularly timber harvesting, on water yield and quality. Results from these watersheds, and others gaged more recently, have shown that annual water yields increase in proportion to the basal...
Impact of professional foresters on timber harvests on West Virginia nonindustrial private forests
Stuart A. Moss; Eric Heitzman
2013-01-01
Timber harvests conducted on 90 nonindustrial private forest properties in West Virginia were investigated to determine the effects that professional foresters have on harvest and residual stand attributes. Harvests were classified based on the type of forester involved: (1) consulting/state service foresters representing landowners, (2) industry foresters representing...
The effect of blurred plot coordinates on interpolating forest biomass: a case study
J. W. Coulston
2004-01-01
Interpolated surfaces of forest attributes are important analytical tools and have been used in risk assessments, forest inventories, and forest health assessments. The USDA Forest Service Forest Inventory and Analysis program (FIA) annually collects information on forest attributes in a consistent fashion nation-wide. Users of these data typically perform...
Post-socialist forest disturbance in the Carpathian border region of Poland, Slovakia, and Ukraine.
Kuemmerle, Tobias; Hostert, Patrick; Radeloff, Volker C; Perzanowski, Kajetan; Kruhlov, Ivan
2007-07-01
Forests provide important ecosystem services, and protected areas around the world are intended to reduce human disturbance on forests. The question is how forest cover is changing in different parts of the world, why some areas are more frequently disturbed, and if protected areas are effective in limiting anthropogenic forest disturbance. The Carpathians are Eastern Europe's largest contiguous forest ecosystem and are a hotspot of biodiversity. Eastern Europe has undergone dramatic changes in political and socioeconomic structures since 1990, when socialistic state economies transitioned toward market economies. However, the effects of the political and economic transition on Carpathian forests remain largely unknown. Our goals were to compare post-socialist forest disturbance and to assess the effectiveness of protected areas in the border triangle of Poland, Slovakia, and Ukraine, to better understand the role of broadscale political and socioeconomic factors. Forest disturbances were assessed using the forest disturbance index derived from Landsat MSS/TM/ETM+ images from 1978 to 2000. Our results showed increased harvesting in all three countries (up to 1.8 times) in 1988-1994, right after the system change. Forest disturbance rates differed markedly among countries (disturbance rates in Ukraine were 4.5 times higher than in Poland, and those in Slovakia were 4.3 times higher than in Poland), and in Ukraine, harvests tended to occur at higher elevations. Forest fragmentation increased in all three countries but experienced a stronger increase in Slovakia and Ukraine (approximately 5% decrease in core forest) than in Poland. Protected areas were most effective in Poland and in Slovakia, where harvesting rates dropped markedly (by nearly an order of magnitude in Slovakia) after protected areas were designated. In Ukraine, harvesting rates inside and outside protected areas did not differ appreciably, and harvests were widespread immediately before the designation of protected areas. In summary, the socioeconomic changes in Eastern Europe that occurred since 1990 had strong effects on forest disturbance. Differences in disturbance rates among countries appear to be most closely related to broadscale socioeconomic conditions, forest management practices, forest policies, and the strength of institutions. We suggest that such factors may be equally important in other regions of the world.
Deljouei, Azade; Abdi, Ehsan; Marcantonio, Matteo; Majnounian, Baris; Amici, Valerio; Sohrabi, Hormoz
2017-08-01
Forest roads alter the biotic and abiotic components of ecosystems, modifying temperature, humidity, wind speed, and light availability that, in turn, cause changes in plant community composition and diversity. We aim at investigating and comparing the diversity of herbaceous species along main and secondary forest roads in a temperate-managed hornbeam-beech forest, north of Iran. Sixteen transects along main and secondary forest roads were established (eight transects along main roads and eight along secondary roads). To eliminate the effect of forest type, all transects were located in Carpinetum-Fagetum forests, the dominant forest type in the study area. The total length of each transect was 200 m (100 m toward up slope and 100 m toward down slope), and plots were established along it at different distances from road edge. The diversity of herbaceous plant species was calculated in each plot using Shannon-Wiener index, species richness, and Pielou's index. The results showed that diversity index decreased when distance from road edge increases. This decreasing trend continued up to 60 m from forest road margin, and after this threshold, the index slightly increased. Depending on the type of road (main or secondary) as well as cut or fill slopes, the area showing a statistical different plant composition and diversity measured through Shannon-Wiener, species richness, and Pielou's index is up to 10 m. The length depth of the road edge effect found in main and secondary forest roads was small, but it could have cumulative effects on forest microclimate and forest-associated biota at the island scale. Forest managers should account for the effect of road buildings on plant communities.
Fujiwara, Akio; Saito, Haruo; Horiuchi, Masahiro
2017-01-01
We investigated the influence of forest management on landscape appreciation and psychological restoration in on-site settings by exposing respondents to an unmanaged, dense coniferous (crowding) forest and a managed (thinned) coniferous forest; we set the two experimental settings in the forests of the Fuji Iyashinomoroi Woodland Study Center. The respondents were individually exposed to both settings while sitting for 15 min and were required to answer three questionnaires to analyze the psychological restorative effects before and after the experiment (feeling (the Profile of Mood States), affect (the Positive and Negative Affect Schedule), and subjective restorativeness (the Restorative Outcome Scale). To compare landscape appreciation, they were required to answer another two questionnaires only after the experiment, for scene appreciation (the semantic differential scale) and for the restorative properties of each environment (the Perceived Restorativeness Scale). Finally, we obtained these findings: (1) the respondents evaluated each forest environment highly differently and evaluated the thinned forest setting more positively; (2) the respondents’ impressions of the two physical environments did not appear to be accurately reflected in their evaluations; (3) forest environments have potential restorative effects whether or not they are managed, but these effects can be partially enhanced by managing the forests. PMID:28718831
Osazuwa-Peters, Oyomoare L.; Jiménez, Iván; Oberle, Brad; Chapman, Colin A.; Zanne, Amy E.
2015-01-01
Selective logging, the targeted harvesting of timber trees in a single cutting cycle, is globally rising in extent and intensity. Short-term impacts of selective logging on tropical forests have been widely investigated, but long-term effects on temporal dynamics of forest structure and composition are largely unknown. Understanding these long-term dynamics will help determine whether tropical forests are resilient to selective logging and inform choices between competing demands of anthropogenic use versus conservation of tropical forests. Forest dynamics can be studied within the framework of succession theory, which predicts that temporal turnover rates should decline with time since disturbance. Here, we investigated the temporal dynamics of a tropical forest in Kibale National Park, Uganda over 45 years following selective logging. We estimated turnover rates in stems, species composition, and functional traits (wood density and diameter at breast height), using observations from four censuses in 1989, 1999, 2006, and 2013, of stems ≥ 10 cm diameter within 17 unlogged and 9 logged 200 × 10 m vegetation plots. We used null models to account for interdependencies among turnover rates in stems, species composition, and functional traits. We tested predictions that turnover rates should be higher and decrease with increasing time since the selective logging event in logged forest, but should be less temporally variable in unlogged forest. Overall, we found higher turnover rates in logged forest for all three attributes, but turnover rates did not decline through time in logged forest and was not less temporally variable in unlogged forest. These results indicate that successional models that assume recovery to pre-disturbance conditions are inadequate for predicting the effects of selective logging on the dynamics of the tropical forest in Kibale. Selective logging resulted in persistently higher turnover rates, which may compromise the carbon storage capacity of Kibale’s forest. Selective logging effects may also interact with effects from other global trends, potentially causing major long-term shifts in the dynamics of tropical forests. Similar studies in tropical forests elsewhere will help determine the generality of these conclusions. Ultimately, the view that selective logging is a benign approach to the management of tropical forests should be reconsidered in the light of studies of the effects of this practice on long-term forest dynamics. PMID:26339115
Osazuwa-Peters, Oyomoare L; Jiménez, Iván; Oberle, Brad; Chapman, Colin A; Zanne, Amy E
2015-12-01
Selective logging, the targeted harvesting of timber trees in a single cutting cycle, is globally rising in extent and intensity. Short-term impacts of selective logging on tropical forests have been widely investigated, but long-term effects on temporal dynamics of forest structure and composition are largely unknown. Understanding these long-term dynamics will help determine whether tropical forests are resilient to selective logging and inform choices between competing demands of anthropogenic use versus conservation of tropical forests. Forest dynamics can be studied within the framework of succession theory, which predicts that temporal turnover rates should decline with time since disturbance. Here, we investigated the temporal dynamics of a tropical forest in Kibale National Park, Uganda over 45 years following selective logging. We estimated turnover rates in stems, species composition, and functional traits (wood density and diameter at breast height), using observations from four censuses in 1989, 1999, 2006, and 2013, of stems ≥ 10 cm diameter within 17 unlogged and 9 logged 200 × 10 m vegetation plots. We used null models to account for interdependencies among turnover rates in stems, species composition, and functional traits. We tested predictions that turnover rates should be higher and decrease with increasing time since the selective logging event in logged forest, but should be less temporally variable in unlogged forest. Overall, we found higher turnover rates in logged forest for all three attributes, but turnover rates did not decline through time in logged forest and was not less temporally variable in unlogged forest. These results indicate that successional models that assume recovery to pre-disturbance conditions are inadequate for predicting the effects of selective logging on the dynamics of the tropical forest in Kibale. Selective logging resulted in persistently higher turnover rates, which may compromise the carbon storage capacity of Kibale's forest. Selective logging effects may also interact with effects from other global trends, potentially causing major long-term shifts in the dynamics of tropical forests. Similar studies in tropical forests elsewhere will help determine the generality of these conclusions. Ultimately, the view that selective logging is a benign approach to the management of tropical forests should be reconsidered in the light of studies of the effects of this practice on long-term forest dynamics.
BARBARA A. RICHARDSON; MICHAEL J. RICHARDSON; FELIPE N. SOTO-ADAMES
2005-01-01
1. The primary effects of climatic conditions on invertebrate litter communities, and the secondary effects of different forest types, were distinguished by using the sierra palm as a control in a natural experiment along an elevational gradient in the Luquillo Mountains. These mountains have three well-defined forest types along the gradient, with the palm occurring...
Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation.
Barlow, Jos; Lennox, Gareth D; Ferreira, Joice; Berenguer, Erika; Lees, Alexander C; Mac Nally, Ralph; Thomson, James R; Ferraz, Silvio Frosini de Barros; Louzada, Julio; Oliveira, Victor Hugo Fonseca; Parry, Luke; Solar, Ricardo Ribeiro de Castro; Vieira, Ima C G; Aragão, Luiz E O C; Begotti, Rodrigo Anzolin; Braga, Rodrigo F; Cardoso, Thiago Moreira; de Oliveira, Raimundo Cosme; Souza, Carlos M; Moura, Nárgila G; Nunes, Sâmia Serra; Siqueira, João Victor; Pardini, Renata; Silveira, Juliana M; Vaz-de-Mello, Fernando Z; Veiga, Ruan Carlo Stulpen; Venturieri, Adriano; Gardner, Toby A
2016-07-07
Concerted political attention has focused on reducing deforestation, and this remains the cornerstone of most biodiversity conservation strategies. However, maintaining forest cover may not reduce anthropogenic forest disturbances, which are rarely considered in conservation programmes. These disturbances occur both within forests, including selective logging and wildfires, and at the landscape level, through edge, area and isolation effects. Until now, the combined effect of anthropogenic disturbance on the conservation value of remnant primary forests has remained unknown, making it impossible to assess the relative importance of forest disturbance and forest loss. Here we address these knowledge gaps using a large data set of plants, birds and dung beetles (1,538, 460 and 156 species, respectively) sampled in 36 catchments in the Brazilian state of Pará. Catchments retaining more than 69–80% forest cover lost more conservation value from disturbance than from forest loss. For example, a 20% loss of primary forest, the maximum level of deforestation allowed on Amazonian properties under Brazil’s Forest Code, resulted in a 39–54% loss of conservation value: 96–171% more than expected without considering disturbance effects. We extrapolated the disturbance-mediated loss of conservation value throughout Pará, which covers 25% of the Brazilian Amazon. Although disturbed forests retained considerable conservation value compared with deforested areas, the toll of disturbance outside Pará’s strictly protected areas is equivalent to the loss of 92,000–139,000 km2 of primary forest. Even this lowest estimate is greater than the area deforested across the entire Brazilian Amazon between 2006 and 2015 (ref. 10). Species distribution models showed that both landscape and within-forest disturbances contributed to biodiversity loss, with the greatest negative effects on species of high conservation and functional value. These results demonstrate an urgent need for policy interventions that go beyond the maintenance of forest cover to safeguard the hyper-diversity of tropical forest ecosystems.
Carbon savings with transatlantic trade in pellets: accounting for market-driven effects
NASA Astrophysics Data System (ADS)
Wang, Weiwei; Dwivedi, Puneet; Abt, Robert; Khanna, Madhu
2015-11-01
Exports of pellets from the United States (US) are growing significantly to meet the demand for renewable energy in the European Union. This transatlantic trade in pellets has raised questions about the greenhouse gas (GHG) intensity of these pellets and their effects on conventional forest product markets in the US. This paper examines the GHG intensity of pellets exported from the US using either forest biomass only or forest and agricultural biomass combined. We develop an integrated dynamic, price-endogenous, partial equilibrium model of the forestry, agricultural, and transportation sectors in the US to investigate not only the direct life-cycle GHG intensity of pellets but also the accompanying indirect market and land use effects induced by changes in prices of forest and agricultural products over the 2007-2032 period. Across different scenarios of high and low pellet demand that can be met with either forest biomass only or with forest and agricultural biomass, we find that the GHG intensity of pellet based electricity is 74% to 85% lower than that of coal-based electricity. We also find that the GHG intensity of pellets produced using agricultural and forest biomass is 28% to 34% lower than that of pellets produced using forest biomass only. GHG effects due to induced direct and indirect changes in forest carbon stock caused by changes in harvest rotations, changes in land use and in conventional wood production account for 11% to 26% of the overall GHG intensity of pellets produced from forest biomass only; these effects are negative with the use of forest and agricultural biomass.
Responses of dead forest fuel moisture to climate change
Yongqiang Liu
2016-01-01
Forest fuel moisture is an important factor for wildland fire behavior. Predicting future wildfire trends and controlled burned conditions is essential to effective natural resource management, but the associated effects of forest fuel moisture remain uncertain. This study investigates the responses of dead forest fuel moisture to climate change in the...
Perspectives of Maine Forest Cover Change from Landsat Imagery and Forest Inventory Analysis (FIA)
Steven Sader; Michael Hoppus; Jacob Metzler; Suming Jin
2005-01-01
A forest change detection map was developed to document forest gains and losses during the decade of the 1990s. The effectiveness of the Landsat imagery and methods for detecting Maine forest cover change are indicated by the good accuracy assessment results: forest-no change, forest loss, and forest gain accuracy were 90, 88, and 92% respectively, and the good...
Mark D. Nelson; W. Keith Moser
2007-01-01
The USDA Forest Service's Forest Inventory and Analysis (FIA) program conducts strategic inventories of our Nation's forest resources. There is increasing need to assess effects of forest disturbance from catastrophic events, often within geographic extents not typically addressed by strategic forest inventories. One such event occurred within the Boundary...
Eric J. Gustafson; Melissa Lucash; Johannes Liem; Helen Jenny; Rob Scheller; Kelly Barrett; Brian R. Sturtevant
2016-01-01
Forest managers are increasingly considering how climate change may alter forests' capacity to provide ecosystem goods and services. But identifying potential climate change effects on forests is difficult because interactions among forest growth and mortality, climate change, management, and disturbances are complex and uncertain. Although forest landscape models...
The effects of forest fragmentation on forest stand attributes
Ronald E. McRoberts; Greg C. Liknes
2002-01-01
For two study areas in Minnesota, USA, one heavily forested and one sparsely forested, maps of predicted proportion forest area were created using Landsat Thematic Mapper imagery, forest inventory plot data, and a logistic regression model. The maps were used to estimate quantitative indices of forest fragmentation. Correlations between the values of the indices and...
Dumitru Salajanu; Dennis M. Jacobs
2006-01-01
Authorsâ objective was to determine at what level biomass and forest area obtained from partial and complete forested plot inventory data compares with forested area and biomass estimates from the national inventory data. A subset of 3819 inventory plots (100% forested, 100% non-forested, mixed-forest/non-forest) was used to classify the land cover and model the...
Positive edge effects on forest-interior cryptogams in clear-cuts.
Caruso, Alexandro; Rudolphi, Jörgen; Rydin, Håkan
2011-01-01
Biological edge effects are often assessed in high quality focal habitats that are negatively influenced by human-modified low quality matrix habitats. A deeper understanding of the possibilities for positive edge effects in matrix habitats bordering focal habitats (e.g. spillover effects) is, however, essential for enhancing landscape-level resilience to human alterations. We surveyed epixylic (dead wood inhabiting) forest-interior cryptogams (lichens, bryophytes, and fungi) associated with mature old-growth forests in 30 young managed Swedish boreal forest stands bordering a mature forest of high conservation value. In each young stand we registered species occurrences on coarse dead wood in transects 0-50 m from the border between stand types. We quantified the effect of distance from the mature forest on the occurrence of forest-interior species in the young stands, while accounting for local environment and propagule sources. For comparison we also surveyed epixylic open-habitat (associated with open forests) and generalist cryptogams. Species composition of epixylic cryptogams in young stands differed with distance from the mature forest: the frequency of occurrence of forest-interior species decreased with increasing distance whereas it increased for open-habitat species. Generalists were unaffected by distance. Epixylic, boreal forest-interior cryptogams do occur in matrix habitats such as clear-cuts. In addition, they are associated with the matrix edge because of a favourable microclimate closer to the mature forest on southern matrix edges. Retention and creation of dead wood in clear-cuts along the edges to focal habitats is a feasible way to enhance the long-term persistence of epixylic habitat specialists in fragmented landscapes. The proposed management measures should be performed in the whole stand as it matures, since microclimatic edge effects diminish as the matrix habitat matures. We argue that management that aims to increase habitat quality in matrix habitats bordering focal habitats should increase the probability of long-term persistence of habitat specialists.
Positive Edge Effects on Forest-Interior Cryptogams in Clear-Cuts
Caruso, Alexandro; Rudolphi, Jörgen; Rydin, Håkan
2011-01-01
Biological edge effects are often assessed in high quality focal habitats that are negatively influenced by human-modified low quality matrix habitats. A deeper understanding of the possibilities for positive edge effects in matrix habitats bordering focal habitats (e.g. spillover effects) is, however, essential for enhancing landscape-level resilience to human alterations. We surveyed epixylic (dead wood inhabiting) forest-interior cryptogams (lichens, bryophytes, and fungi) associated with mature old-growth forests in 30 young managed Swedish boreal forest stands bordering a mature forest of high conservation value. In each young stand we registered species occurrences on coarse dead wood in transects 0–50 m from the border between stand types. We quantified the effect of distance from the mature forest on the occurrence of forest-interior species in the young stands, while accounting for local environment and propagule sources. For comparison we also surveyed epixylic open-habitat (associated with open forests) and generalist cryptogams. Species composition of epixylic cryptogams in young stands differed with distance from the mature forest: the frequency of occurrence of forest-interior species decreased with increasing distance whereas it increased for open-habitat species. Generalists were unaffected by distance. Epixylic, boreal forest-interior cryptogams do occur in matrix habitats such as clear-cuts. In addition, they are associated with the matrix edge because of a favourable microclimate closer to the mature forest on southern matrix edges. Retention and creation of dead wood in clear-cuts along the edges to focal habitats is a feasible way to enhance the long-term persistence of epixylic habitat specialists in fragmented landscapes. The proposed management measures should be performed in the whole stand as it matures, since microclimatic edge effects diminish as the matrix habitat matures. We argue that management that aims to increase habitat quality in matrix habitats bordering focal habitats should increase the probability of long-term persistence of habitat specialists. PMID:22114728
Morante-Filho, José Carlos; Faria, Deborah; Mariano-Neto, Eduardo; Rhodes, Jonathan
2015-01-01
Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists) and specific food resources (frugivores and insectivores) to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%). At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist.
NASA Astrophysics Data System (ADS)
Sathre, R.; Gustavsson, L.; Haus, S.; Lundblad, M.; Lundström, A.; Ortiz, C.; Truong, N.; Wikberg, P. E.
2016-12-01
Forests can play several roles in climate change mitigation strategies, for example as a reservoir for storing carbon and as a source of renewable materials and energy. To better understand the linkages and possible trade-offs between different forest management strategies, we conduct an integrated analysis where both sequestration of carbon in growing forests and the effects of substituting carbon intensive products within society are considered. We estimate the climate effects of directing forest management in Sweden towards increased carbon storage in forests, with more land set-aside for protection, or towards increased forest production for the substitution of carbon-intensive materials and fossil fuels, relative to a reference case of current forest management. We develop various scenarios of forest management and biomass use to estimate the carbon balances of the forest systems, including ecological and technological components, and their impacts on the climate in terms of cumulative radiative forcing over a 100-year period. For the reference case of current forest management, increasing the harvest of forest residues is found to give increased climate benefits. A scenario with increased set-aside area and the current level of forest residue harvest begins with climate benefits compared to the reference scenario, but the benefits cannot be sustained for 100 years because the rate of carbon storage in set-aside forests diminishes over time as the forests mature, but the demand for products and fuels remains. The most climatically beneficial scenario, expressed as reduced cumulative radiative forcing, in both the short and long terms is a strategy aimed at high forest production, high residue recovery rate, and high efficiency utilization of harvested biomass. Active forest management with high harvest level and efficient forest product utilization will provide more climate benefit, compared to reducing harvest and storing more carbon in the forest. Figure. Schematic diagram of complete modelled forest system including ecological and technological components, showing major flows of carbon.
NASA Astrophysics Data System (ADS)
Caldwell, P.; Elliott, K.; Hartsell, A.; Miniat, C.
2016-12-01
Climate change and disturbances are threatening the ability of forested watersheds to provide the clean, reliable, and abundant fresh water necessary to support aquatic ecosystems and a growing human population. Forested watersheds in the eastern US have undergone significant change over the 20th century due to natural and introduced disturbances and a legacy of land use. We hypothesize that changes in forest age and species composition (i.e., forest change) associated with these disturbances may have altered forest water use and thus streamflow (Q) due to inherent differences in transpiration among species and forest ages. To test this hypothesis, we quantified changes in Q from 1960 to 2012 in 202 US Geological Survey forested reference watersheds across the eastern US, and separated the effect of changes in climate from forest change using Auto-Regressive Integrated Moving Average (ARIMA) time series modeling. We linked changes in Q to forest disturbance, forest ages and species composition using the Landsat-based North American Forest Dynamics dataset and plot-level USDA Forest Service Forest Inventory and Analysis (FIA) data. We found that 172 of the 202 sites (85%) exhibited changes in Q not accounted for by climate that we attributed to forest change and/or land use change. Among these, 76 (44%) had declining Q due to forest change (mostly in the southeastern US) while 96 (56%) had increasing Q (mostly in the mid-Atlantic and northeastern US). Across the 172 sites with forest-related changes in Q, 34% had at least 10% of the watershed area disturbed at least once from 1986-2010. In a case study of three watersheds, FIA data indicated that changes in forest structure and species composition explained observed changes in Q beyond climate effects. Our results suggest that forest-related changes in Q may have significant implications for water supply in the region and may inform forest management strategies to mitigate climate change impacts on water resources.
Ren, Yin; Yan, Jing; Wei, Xiaohua; Wang, Yajun; Yang, Yusheng; Hua, Lizhong; Xiong, Yongzhu; Niu, Xiang; Song, Xiaodong
2012-12-30
Research on the effects of urban sprawl on carbon stocks within urban forests can help support policy for sustainable urban design. This is particularly important given climate change and environmental deterioration as a result of rapid urbanization. The purpose of this study was to quantify the effects of urban sprawl on dynamics of forest carbon stock and density in Xiamen, a typical city experiencing rapid urbanization in China. Forest resource inventory data collected from 32,898 patches in 4 years (1972, 1988, 1996 and 2006), together with remotely sensed data (from 1988, 1996 and 2006), were used to investigate vegetation carbon densities and stocks in Xiamen, China. We classified the forests into four groups: (1) forest patches connected to construction land; (2) forest patches connected to farmland; (3) forest patches connected to both construction land and farmland and (4) close forest patches. Carbon stocks and densities of four different types of forest patches during different urbanization periods in three zones (urban core, suburb and exurb) were compared to assess the impact of human disturbance on forest carbon. In the urban core, the carbon stock and carbon density in all four forest patch types declined over the study period. In the suburbs, different urbanization processes influenced forest carbon density and carbon stock in all four forest patch types. Urban sprawl negatively affected the surrounding forests. In the exurbs, the carbon stock and carbon density in all four forest patch types tended to increase over the study period. The results revealed that human disturbance played the dominant role in influencing the carbon stock and density of forest patches close to the locations of human activities. In forest patches far away from the locations of human activities, natural forest regrowth was the dominant factor affecting carbon stock and density. Copyright © 2012 Elsevier Ltd. All rights reserved.
Morante-Filho, José Carlos; Rhodes, Jonathan
2015-01-01
Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists) and specific food resources (frugivores and insectivores) to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%). At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist. PMID:26083245
Management of tropical forests for products and energy
John I. Zerbe
1992-01-01
Tropical forests have always been sources for prized timbers, rubber, tannin, and other forest products for use worldwide. However, with the recent concern regarding global change, the importance of effective forest products management and utilization has increased significantly. The USDA Forest Service's Forest Products Laboratory at Madison, Wisconsin, has...
Have we been successful? Monitoring horizontal forest complexity for forest restoration projects
Yvette L. Dickinson; Kristen A. Pelz; Emma Giles; Josh Howie
2016-01-01
Forest management today often seeks to restore ecological integrity and enhance human well-being by increasing forest complexity, resilience, and functionality. However, effective and financially expedient monitoring of forest complexity is challenging. In this study, we developed a practical and inexpensive technique to measure horizontal forest complexity....
Effects of Conservation Policies on Forest Cover Change in Giant Panda Habitat Regions, China
Li, Yu; Viña, Andrés; Yang, Wu; Chen, Xiaodong; Zhang, Jindong; Ouyang, Zhiyun; Liang, Zai; Liu, Jianguo
2014-01-01
After long periods of deforestation, forest transition has occurred globally, but the causes of forest transition in different countries are highly variable. Conservation policies may play important roles in facilitating forest transition around the world, including China. To restore forests and protect the remaining natural forests, the Chinese government initiated two nationwide conservation policies in the late 1990s -- the Natural Forest Conservation Program (NFCP) and the Grain-To-Green Program (GTGP). While some studies have discussed the environmental and socioeconomic effects of each of these policies independently and others have attributed forest recovery to both policies without rigorous and quantitative analysis, it is necessary to rigorously quantify the outcomes of these two conservation policies simultaneously because the two policies have been implemented at the same time. To fill the knowledge gap, this study quantitatively evaluated the effects of the two conservation policies on forest cover change between 2001 and 2008 in 108 townships located in two important giant panda habitat regions -- the Qinling Mountains region in Shaanxi Province and the Sichuan Giant Panda Sanctuary in Sichuan Province. Forest cover change was evaluated using a land-cover product (MCD12Q1) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). This product proved to be highly accurate in the study region (overall accuracy was ca. 87%, using 425 ground truth points collected in the field), thus suitable for the forest change analysis performed. Results showed that within the timeframe evaluated, most townships in both regions exhibited either increases or no changes in forest cover. After accounting for a variety of socioeconomic and biophysical attributes, an Ordinary Least Square (OLS) regression model suggests that the two policies had statistically significant positive effects on forest cover change after seven years of implementation, while population density, percent agricultural population, road density, and initial forest cover (i.e. in 2001) had significant negative effects. The methods and results from this study will be useful for continuing the implementation of these conservation policies, for the development of future giant panda habitat conservation projects, and for achieving forest sustainability in China and elsewhere. PMID:26146431
Effects of Conservation Policies on Forest Cover Change in Giant Panda Habitat Regions, China.
Li, Yu; Viña, Andrés; Yang, Wu; Chen, Xiaodong; Zhang, Jindong; Ouyang, Zhiyun; Liang, Zai; Liu, Jianguo
2013-07-01
After long periods of deforestation, forest transition has occurred globally, but the causes of forest transition in different countries are highly variable. Conservation policies may play important roles in facilitating forest transition around the world, including China. To restore forests and protect the remaining natural forests, the Chinese government initiated two nationwide conservation policies in the late 1990s -- the Natural Forest Conservation Program (NFCP) and the Grain-To-Green Program (GTGP). While some studies have discussed the environmental and socioeconomic effects of each of these policies independently and others have attributed forest recovery to both policies without rigorous and quantitative analysis, it is necessary to rigorously quantify the outcomes of these two conservation policies simultaneously because the two policies have been implemented at the same time. To fill the knowledge gap, this study quantitatively evaluated the effects of the two conservation policies on forest cover change between 2001 and 2008 in 108 townships located in two important giant panda habitat regions -- the Qinling Mountains region in Shaanxi Province and the Sichuan Giant Panda Sanctuary in Sichuan Province. Forest cover change was evaluated using a land-cover product (MCD12Q1) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). This product proved to be highly accurate in the study region (overall accuracy was ca. 87%, using 425 ground truth points collected in the field), thus suitable for the forest change analysis performed. Results showed that within the timeframe evaluated, most townships in both regions exhibited either increases or no changes in forest cover. After accounting for a variety of socioeconomic and biophysical attributes, an Ordinary Least Square (OLS) regression model suggests that the two policies had statistically significant positive effects on forest cover change after seven years of implementation, while population density, percent agricultural population, road density, and initial forest cover (i.e. in 2001) had significant negative effects. The methods and results from this study will be useful for continuing the implementation of these conservation policies, for the development of future giant panda habitat conservation projects, and for achieving forest sustainability in China and elsewhere.
Bähner, K W; Zweig, K A; Leal, I R; Wirth, R
2017-10-01
Forest fragmentation and climate change are among the most severe and pervasive forms of human impact. Yet, their combined effects on plant-insect herbivore interaction networks, essential components of forest ecosystems with respect to biodiversity and functioning, are still poorly investigated, particularly in temperate forests. We addressed this issue by analysing plant-insect herbivore networks (PIHNs) from understories of three managed beech forest habitats: small forest fragments (2.2-145 ha), forest edges and forest interior areas within three continuous control forests (1050-5600 ha) in an old hyper-fragmented forest landscape in SW Germany. We assessed the impact of forest fragmentation, particularly edge effects, on PIHNs and the resulting differences in robustness against climate change by habitat-wise comparison of network topology and biologically realistic extinction cascades of networks following scores of vulnerability to climate change for the food plant species involved. Both the topological network metrics (complexity, nestedness, trophic niche redundancy) and robustness to climate change strongly increased in forest edges and fragments as opposed to the managed forest interior. The nature of the changes indicates that human impacts modify network structure mainly via host plant availability to insect herbivores. Improved robustness of PIHNs in forest edges/small fragments to climate-driven extinction cascades was attributable to an overall higher thermotolerance across plant communities, along with positive effects of network structure. The impoverishment of PIHNs in managed forest interiors and the suggested loss of insect diversity from climate-induced co-extinction highlight the need for further research efforts focusing on adequate silvicultural and conservation approaches.
Vitali, Francesco; Mastromei, Giorgio; Senatore, Giuliana; Caroppo, Cesarea; Casalone, Enrico
2016-01-01
In this study, we evaluate the long-lasting effects on soil microbial communities of a change within a single land-use category, specifically the conversion from natural forest to forest plantation. To minimize the effects of impacts other than land-use (i.e., climatic and anthropogenic), we chose three sites within a Natural Park, with homogeneous orographic and soil texture characteristics. We compared microbial diversity in a total of 156 soil samples from two natural mixed forests and a similar forest converted to poplar plantation about thirty years ago. The diversity and structure of bacterial and fungal communities were investigated by terminal restriction fragments length polymorphism (T-RFLP) analysis of the 16S-rRNA gene and the ITS-rDNA regions, respectively. Bacterial and fungal communities from the forest plantation, compared to those from natural forest soils, showed different community structure and lower α-diversity values, consistently with the significantly higher pH values and lower organic matter content of those soils. β-diversity values, the number of measured and estimated dominant OTUs, and their distribution among the three sites showed that microbial communities from the two natural forests were much more similar to each other than they were to communities from the poplar plantation, suggesting an effect of the forest conversion on the composition and diversity of soil microbial communities. α-diversity in cultivated forest soils had narrower temporal fluctuations than in natural forest soils, suggesting higher temporal stability of microbial communities. Overall, we demonstrated that the conversion from natural forest to forest plantation altered soil microbial communities, changing their structure, lowering their diversity, and causing a spatial and temporal homogenization. Copyright © 2015 Elsevier GmbH. All rights reserved.
Tropical forest loss and its multitrophic effects on insect herbivory.
Morante-Filho, José Carlos; Arroyo-Rodríguez, Víctor; Lohbeck, Madelon; Tscharntke, Teja; Faria, Deborah
2016-12-01
Forest loss threatens biodiversity, but its potential effects on multitrophic ecological interactions are poorly understood. Insect herbivory depends on complex bottom-up (e.g., resource availability and plant antiherbivore defenses) and top-down forces (e.g., abundance of predators and herbivorous), but its determinants in human-altered tropical landscapes are largely unknown. Using structural equation models, we assessed the direct and indirect effects of forest loss on insect herbivory in 40 landscapes (115 ha each) from two regions with contrasting land-use change trajectories in the Brazilian Atlantic rainforest. We considered landscape forest cover as an exogenous predictor and (1) forest structure, (2) abundance of predators (birds and arthropods), and (3) abundance of herbivorous arthropods as endogenous predictors of insect leaf damage. From 12 predicted pathways, 11 were significant and showed that (1) leaf damage increases with forest loss (direct effect); (2) leaf damage increases with forest loss through the simplification of vegetation structure and its associated dominance of herbivorous insects (indirect effect); and further demonstrate (3) a lack of top-down control of herbivores by predators (birds and arthropods). We conclude that forest loss favors insect herbivory by undermining the bottom-up control (presumably reduced plant antiherbivore defense mechanisms) in forests dominated by fast-growing pioneer plant species, and by improving the conditions required for herbivores proliferation. © 2016 by the Ecological Society of America.
Effects of white-tailed deer and invasive plants on the herb layer of suburban forests
2017-01-01
Abstract Lack of hunting and predators and proximity to human communities make suburban forests prone to high deer abundance and non-native plant invasions. I investigated these likely drivers of community structure in the herb layers of six suburban forests in one region of New Jersey, USA. In 223 plots I assessed the herb layer response to 2.5 years with or without deer fencing and the early stage of invasion from seed additions of Microstegium vimineum, an invasive, annual grass. Non-native plants and herbaceous native plants were affected very little by fencing or M. vimineum invasion. In contrast, across all forests the combination of deer access and M. vimineum addition had a strongly negative effect on woody native percent cover. Forests differed in overall fencing effects on woody natives; their cover was greater in fenced plots in just three forests, suggesting greater deer pressure in those forests during the experiment. The early invasion by M. vimineum was greatest in two of these same forests, but was not influenced by fencing. Multi-group structural equation modelling compared two groups of forests that differed in vegetation abundance and other characteristics. It paralleled the results above and also showed no negative influence of non-native cover on native cover, even in the forests where non-native cover was greater. It identified a positive effect of light level on herb layer plants in the forests with less vegetation, and also revealed a positive effect of soil water potential (SWP) on non-native plants in the forests with more vegetation, which had higher SWP. These suburban forests within a common region varied widely in native and non-native herb layer abundance, the early success of M. vimineum invasion and the herb layer’s response to early invasion and protection from deer. PMID:29218140
Yao, Jing; He, Xingyuan; Wang, Anzhi; Chen, Wei; Li, Xiaoyu; Lewis, Bernard J.; Lv, Xiaotao
2012-01-01
Balancing forest harvesting and restoration is critical for forest ecosystem management. In this study, we used LANDIS, a spatially explicit forest landscape model, to evaluate the effects of 21 alternative forest management initiatives which were drafted for forests in the upstream region of the Hun River in northeastern China. These management initiatives included a wide range of planting and harvest intensities for Pinus koraiensis, the historically dominant tree species in the region. Multivariate analysis of variance, Shannon's Diversity Index, and planting efficiency (which indicates how many cells of the target species at the final year benefit from per-cell of the planting trees) estimates were used as indicators to analyze the effects of planting and harvesting regimes on forests in the region. The results showed that the following: (1) Increased planting intensity, although augmenting the coverage of P. koraiensis, was accompanied by decreases in planting efficiency and forest diversity. (2) While selective harvesting could increase forest diversity, the abrupt increase of early succession species accompanying this method merits attention. (3) Stimulating rapid forest succession may not be a good management strategy, since the climax species would crowd out other species which are likely more adapted to future climatic conditions in the long run. In light of the above, we suggest a combination of 30% planting intensity with selective harvesting of 50% and 70% of primary and secondary timber species, respectively, as the most effective management regime in this area. In the long run this would accelerate the ultimate dominance of P. koraiensis in the forest via a more effective rate of planting, while maintaining a higher degree of forest diversity. These results are particularly useful for forest managers constrained by limited financial and labor resources who must deal with conflicts between forest harvesting and restoration. PMID:22723930
Analyzing the edge effects in a Brazilian seasonally dry tropical forest.
Arruda, D M; Eisenlohr, P V
2016-02-01
Due to the deciduous nature of dry forests (widely known as seasonally dry tropical forests) they are subject to microclimatic conditions not experienced in other forest formations. Close examinations of the theory of edge effects in dry forests are still rare and a number of questions arise in terms of this topic. In light of this situation we examined a fragment of the dry forest to respond to the following questions: (I) Are there differences in canopy cover along the edge-interior gradient during the dry season? (II) How does the microclimate (air temperature, soil temperature, and relative humidity) vary along that gradient? (III) How does the microclimate influence tree species richness, evenness and abundance along that gradient? (IV) Are certain tree species more dominant closer to the forest edges? Regressions were performed to address these questions. Their coefficients did not significantly vary from zero. Apparently, the uniform openness of the forest canopy caused a homogeneous internal microclimate, without significant differentiation in habitats that would allow modifications in biotic variables tested. We conclude that the processes of edge effect commonly seen in humid forests, not was shared with the dry forest assessed.
Water Quality Effects of Forest Roads in Bottomland Hardwood Stands
Robert B. Rummer
1999-01-01
Management of bottomland hardwood sites requires adequate access to support forest operations. A study conducted in a bottomland forest in central Georgia has evaluated the effect of forest road design on sediment movement and water quality. Five years of measurement indicate that a conventional crowned road design is a net sink for sediment, primarily due to settling...
Robert W. Peck; Christine G. Niwa
2005-01-01
Microarthropod densities within late-successional coniferous forests thinned 16-41 yr before sampling were compared with adjacent unthinned stands to identify longer term effects of thinning on this community. Soil and forest floor layers were sampled separately on eight paired sites. Within the forest floor oribatid, mesostigmatid, and to a marginal extent,...
Z.L. Walton; N.C. Poudyal; J. Hepinstall; C. Johnson Gaither; B.B. Boley
2015-01-01
While the growing literature on forest ecosystem services has examined the value and significance of a range ofservices, our understanding of the health-related benefits of ecosystem services from forests is still limited. Tocharacterize the role of forest resources in reducing community vulnerability to the heat effects of climate...
Back to the future: assessing accuracy and sensitivity of a forest growth model
Susan Hummel; Paul Meznarich
2014-01-01
The Forest Vegetation Simulator (FVS) is a widely used computer model that projects forest growth and predicts the effects of disturbances such as fire, insects, harvests, or disease. Land managers often use these projections to decide among silvicultural options and estimate the potential effects of these options on forest conditions. Despite FVS's popularity,...
Potential impact of a transatlantic trade and Investment partnership on the global forest sector
Joseph Buongiorno; Paul Rougieux; Ahmed Barkaoui; Shushuai Zhu; Patrice Harou
2014-01-01
The effects of a transatlantic trade agreement on the global forest sector were assessed with the Global Forest Products Model, conditional on previous macroeconomic impacts predicted with a general equilibrium model. Comprehensive tariff elimination per se had little effect on the forest sector. However, with deeper reforms and integration consumption would increase...
Forests and water: effects of forest management on floods, sedimentation, and water supply
Henry W. Anderson; Marvin D. Hoover; Kenneth G. Reinhart
1976-01-01
From the background of more than 100 years' collective experience in watershed research and from comprehensive review of the literature of forest hydrology, the authors summarize what is known about the forest's influence on the water resource, particularly the effects of current forestry practices. They first examine the fundamental hydrologic processes in...
Effectiveness of Vegetation in Erosion Control From Forest Road Sideslopes
Johnny M. Grace
2002-01-01
Abstract.. Forest roads have been identified as the major contributor to sediment production from forested lands, accounting for perhaps as much as 90% of all sediment produced. In recent years, increased concern and societal pressure has focused on the impacts of forest roads and the effectiveness of erosion control measures. In addition, the reâ...
Initial effects of restoring natural forest structures in Estonia
D. Laarmann; H. Korjus; A. Sims; A. Kangur; J.A. Stanturf
2013-01-01
The legacy of structural homogenization due to forest management for commercial products is a loss of biodiversity. A common policy in many European countries is to increase forest diversity by converting managed forests to more natural conditions. The aim of this study was to provide an early evaluation of the effectiveness of different restoration treatments to...
Land use history, environment, and tree composition in a tropical forest
Jill Thompson; Nicholas Brokaw; Jess K. Zimmerman; Robert B. Waide; Edwin M. III Everham; D. Jean Lodge; Charlotte M. Taylor; Diana Garcia-Montiel; Marcheterre Fluet
2002-01-01
The effects of historical land use on tropical forest must be examined to understand present forest characteristics and to plan conservation strategies. We compared the effects of past land use, topography, soil type, and other environmental variables on tree species composition in a subtropical wet forest in the Luquillo Mountains, Puerto Rico. The study involved...
Anthropogenic effects on a tropical forest according to the distance from human settlements.
Popradit, Ananya; Srisatit, Thares; Kiratiprayoon, Somboon; Yoshimura, Jin; Ishida, Atsushi; Shiyomi, Masae; Murayama, Takehiko; Chantaranothai, Pranom; Outtaranakorn, Somkid; Phromma, Issara
2015-10-05
The protection of tropical forests is one of the most urgent issues in conservation biology because of the rapid deforestation that has occurred over the last 50 years. Even in protected forests, the anthropogenic effects from newly expanding villages such as harvesting of medicinal plants, pasturing cattle and forest fires can induce environmental modifications, especially on the forest floor. We evaluated the anthropogenic effects of the daily activities of neighboring residents on natural forests in 12 plots extending from the village boundary into a natural forest in Thailand. The basal area per unit land area did not present a significant trend; however, the species diversity of woody plants decreased linearly towards the village boundary, which caused a loss of individual density because of severe declines in small saplings compared with adult trees and large saplings in proximity to the village. An analysis of tree-size categories indicates a lack of small samplings near the village boundary. The current forest appears to be well protected based on the adult tree canopy, but regeneration of the present-day forests is unlikely because of the loss of seedlings.
Li, Xiaona; He, Hong S; Wu, Zhiwei; Liang, Yu; Schneiderman, Jeffrey E
2013-01-01
Forest management under a changing climate requires assessing the effects of climate warming and disturbance on the composition, age structure, and spatial patterns of tree species. We investigated these effects on a boreal forest in northeastern China using a factorial experimental design and simulation modeling. We used a spatially explicit forest landscape model (LANDIS) to evaluate the effects of three independent variables: climate (current and expected future), fire regime (current and increased fire), and timber harvesting (no harvest and legal harvest). Simulations indicate that this forested landscape would be significantly impacted under a changing climate. Climate warming would significantly increase the abundance of most trees, especially broadleaf species (aspen, poplar, and willow). However, climate warming would have less impact on the abundance of conifers, diversity of forest age structure, and variation in spatial landscape structure than burning and harvesting. Burning was the predominant influence in the abundance of conifers except larch and the abundance of trees in mid-stage. Harvesting impacts were greatest for the abundance of larch and birch, and the abundance of trees during establishment stage (1-40 years), early stage (41-80 years) and old- growth stage (>180 years). Disturbance by timber harvesting and burning may significantly alter forest ecosystem dynamics by increasing forest fragmentation and decreasing forest diversity. Results from the simulations provide insight into the long term management of this boreal forest.
Gis-Based Multi-Criteria Decision Analysis for Forest Fire Risk Mapping
NASA Astrophysics Data System (ADS)
Akay, A. E.; Erdoğan, A.
2017-11-01
The forested areas along the coastal zone of the Mediterranean region in Turkey are classified as first-degree fire sensitive areas. Forest fires are major environmental disaster that affects the sustainability of forest ecosystems. Besides, forest fires result in important economic losses and even threaten human lives. Thus, it is critical to determine the forested areas with fire risks and thereby minimize the damages on forest resources by taking necessary precaution measures in these areas. The risk of forest fire can be assessed based on various factors such as forest vegetation structures (tree species, crown closure, tree stage), topographic features (slope and aspect), and climatic parameters (temperature, wind). In this study, GIS-based Multi-Criteria Decision Analysis (MCDA) method was used to generate forest fire risk map. The study was implemented in the forested areas within Yayla Forest Enterprise Chiefs at Dursunbey Forest Enterprise Directorate which is classified as first degree fire sensitive area. In the solution process, "extAhp 2.0" plug-in running Analytic Hierarchy Process (AHP) method in ArcGIS 10.4.1 was used to categorize study area under five fire risk classes: extreme risk, high risk, moderate risk, and low risk. The results indicated that 23.81 % of the area was of extreme risk, while 25.81 % was of high risk. The result indicated that the most effective criterion was tree species, followed by tree stages. The aspect had the least effective criterion on forest fire risk. It was revealed that GIS techniques integrated with MCDA methods are effective tools to quickly estimate forest fire risk at low cost. The integration of these factors into GIS can be very useful to determine forested areas with high fire risk and also to plan forestry management after fire.
Cumulative effects of forest management activities: how might they occur?
R. M. Rice; R. B. Thomas
1985-01-01
Concerns are often voiced about possible environmental damage as the result of the cumulative sedimentation effects of logging and forest road construction. In response to these concerns, National Forests are developing procedures to reduce the possibility that their activities may lead to unacceptable cumulative effects
Kenneth W. Stolte
2001-01-01
The Forest Health Monitoring (FHM) and Forest Inventory and Analyses (FIA) programs are integrated bilogical monitoring systems that use nationally standardized methods to evaluate and report on the health and sustainability of forest ecosystems in the United States. Many of the anticipated changes in forest ecosystems from climate change were also issues addressed in...
Morita, E; Fukuda, S; Nagano, J; Hamajima, N; Yamamoto, H; Iwai, Y; Nakashima, T; Ohira, H; Shirakawa, T
2007-01-01
Shinrin-yoku (walking and/or staying in forests in order to promote health) is a major form of relaxation in Japan; however, its effects have yet to be completely clarified. The aims of this study were: (1) to evaluate the psychological effects of shinrin-yoku in a large number of participants; and (2) to identify the factors related to these effects. Four hundred and ninety-eight healthy volunteers took part in the study. Surveys were conducted twice in a forest on the same day (forest day) and twice on a control day. Outcome measures were evaluated using the Multiple Mood Scale-Short Form (hostility, depression, boredom, friendliness, wellbeing and liveliness) and the State-Trait Anxiety Inventory A-State Scale. Statistical analyses were conducted using analysis of variance and multiple regression analyses. Hostility (P<0.001) and depression (P<0.001) scores decreased significantly, and liveliness (P=0.001) scores increased significantly on the forest day compared with the control day. The main effect of environment was also observed with all outcomes except for hostility, and the forest environment was advantageous. Stress levels were shown to be related to the magnitude of the shinrin-yoku effect; the higher the stress level, the greater the effect. This study revealed that forest environments are advantageous with respect to acute emotions, especially among those experiencing chronic stress. Accordingly, shinrin-yoku may be employed as a stress reduction method, and forest environments can be viewed as therapeutic landscapes. Therefore, customary shinrin-yoku may help to decrease the risk of psychosocial stress-related diseases, and evaluation of the long-term effects of shinrin-yoku is warranted.
Macpherson, Morag F; Kleczkowski, Adam; Healey, John R; Hanley, Nick
2017-04-01
Forests deliver multiple benefits both to their owners and to wider society. However, a wave of forest pests and pathogens is threatening this worldwide. In this paper we examine the effect of disease on the optimal rotation length of a single-aged, single rotation forest when a payment for non-timber benefits, which is offered to private forest owners to partly internalise the social values of forest management, is included. Using a generalisable bioeconomic framework we show how this payment counteracts the negative economic effect of disease by increasing the optimal rotation length, and under some restrictive conditions, even makes it optimal to never harvest the forest. The analysis shows a range of complex interactions between factors including the rate of spread of infection and the impact of disease on the value of harvested timber and non-timber benefits. A key result is that the effect of disease on the optimal rotation length is dependent on whether the disease affects the timber benefit only compared to when it affects both timber and non-timber benefits. Our framework can be extended to incorporate multiple ecosystem services delivered by forests and details of how disease can affect their production, thus facilitating a wide range of applications.
Hudiburg, Tara W; Luyssaert, Sebastiaan; Thornton, Peter E; Law, Beverly E
2013-11-19
Climate mitigation activities in forests need to be quantified in terms of the long-term effects on forest carbon stocks, accumulation, and emissions. The impacts of future environmental change and bioenergy harvests on regional forest carbon storage have not been quantified. We conducted a comprehensive modeling study and life-cycle assessment of the impacts of projected changes in climate, CO2 concentration, and N deposition, and region-wide forest management policies on regional forest carbon fluxes. By 2100, if current management strategies continue, then the warming and CO2 fertilization effect in the given projections result in a 32-68% increase in net carbon uptake, overshadowing increased carbon emissions from projected increases in fire activity and other forest disturbance factors. To test the response to new harvesting strategies, repeated thinnings were applied in areas susceptible to fire to reduce mortality, and two clear-cut rotations were applied in productive forests to provide biomass for wood products and bioenergy. The management strategies examined here lead to long-term increased carbon emissions over current harvesting practices, although semiarid regions contribute little to the increase. The harvest rates were unsustainable. This comprehensive approach could serve as a foundation for regional place-based assessments of management effects on future carbon sequestration by forests in other locations.
NASA Astrophysics Data System (ADS)
Besnard, S.; Carvalhais, N.; Clevers, J.; Dutrieux, L.; Gans, F.; Herold, M.; Reichstein, M.; Jung, M.
2017-12-01
Forests play a crucial role in the global carbon (C) cycle, covering about 30% of the planet's terrestrial surface, accounting for 50% of plant productivity, and storing 45% of all terrestrial C. As such, forest disturbances affect the balance of terrestrial C dioxide (CO 2 ) exchange, with the potential of releasing large amounts of C into the atmosphere. Understanding and quantifying the effect of forest disturbance on terrestrial C metabolism is critical for improving forest C balance estimates and predictions. Here we combine remote sensing, climate, and eddy-covariance (EC) data to study forest land surface-atmosphere C fluxes at more than 180 sites globally. We aim to enhance understanding of C balance in forest ecosystems by capturing the ecological carry-over effect of disturbance historyon C fluxes. Our objectives are to (1) characterize forest disturbance history through the full temporal depth of the Landsat time series (LTS); and (2) to investigate lag and carry-over effects of forest dynamics and climate on ecosystem C fluxes using a data-driven recurrent neural network(RNN). The resulting data-driven model integrates carry-over effects of the system, using LTS, ecosystem productivity, and several abiotic factors. In this study, we show that our RNN algorithm is able to effectively calculate realistic seasonal, interannual, and across-site C flux variabilities based on EC, LTS, and climate data. In addition, our results demonstrate that a deep learning approach with embedded dynamic memory effects offorest dynamics is able to better capture lag and carry-over effects due to soil-vegetation feedback compared to a classic approach considering only the current condition of the ecosystem. Our study paves the way to produce accurate, high resolution carbon fluxes maps, providing morecomprehensive monitoring, mapping, and reporting of the carbon consequences of forest change globally.
Evaluating forest land development effects on private forestry in eastern Oregon.
Jeffrey D. Kline; David L. Azuma
2007-01-01
Research suggests that forest land development can reduce the productivity of remaining forest land because private forest owners reduce their investments in forest management. We developed empirical models describing forest stocking, thinning, harvest, and postharvest tree planting in eastern Oregon, as functions of stand and site characteristics, ownership, and...
Frank R. Thompson III
2005-01-01
Forest fragmentation, urbanization, and forest management are important issues for bird conservation in the eastern broadleaf forest of North America. Fragmentation of forest by agricultural and developed land uses increases the numbers of Brown-headed Cowbirds (Molothrus ater) and nest predators in the landscape, which results in decreased...
Rhonda. Mazza
2007-01-01
Fire is a part of the forest ecosystem, and its effects have been well documented in the scientific literature. But controversy remains about the effects of management options in a burned forest, and the scientific basis for decisionmaking about postfire management is uncertain and has not been effectively articulated. Management concerns after a fire...
Caspar Creek experimental watersheds: cumulative effects of forest practices on downstream resources
Anne M. Rosenthal; Thomas E. Featured: Lisle
2005-01-01
Research at Caspar Creek provides information that helps forest managers assess and predict the environmental effects of forest practices and natural disturbances on downstream resources. Monitoring long-term effects and adapting practices can help protect and restore water quality and fish habitat in Northern California.
Effects of defoliation by gypsy moth
Mark J. Twery
1991-01-01
Defoliation of trees by the gypsy moth (Lymantria dispar L.) has many and varied effects. It causes economic losses through lost forest production and reduced aesthetic qualities of the forest. However, defoliation may improve habitat for many species of wildlife and contribute to increased diversity of eastern forests. Effects on water resources,...
Forest-rainfall cascades buffer against drought across the Amazon
NASA Astrophysics Data System (ADS)
Staal, Arie; Tuinenburg, Obbe A.; Bosmans, Joyce H. C.; Holmgren, Milena; van Nes, Egbert H.; Scheffer, Marten; Zemp, Delphine Clara; Dekker, Stefan C.
2018-06-01
Tree transpiration in the Amazon may enhance rainfall for downwind forests. Until now it has been unclear how this cascading effect plays out across the basin. Here, we calculate local forest transpiration and the subsequent trajectories of transpired water through the atmosphere in high spatial and temporal detail. We estimate that one-third of Amazon rainfall originates within its own basin, of which two-thirds has been transpired. Forests in the southern half of the basin contribute most to the stability of other forests in this way, whereas forests in the south-western Amazon are particularly dependent on transpired-water subsidies. These forest-rainfall cascades buffer the effects of drought and reveal a mechanism by which deforestation can compromise the resilience of the Amazon forest system in the face of future climatic extremes.
Bytnerowicz, Andrzej; Omasa, Kenji; Paoletti, Elena
2007-06-01
Many air pollutants and greenhouse gases have common sources, contribute to radiative balance, interact in the atmosphere, and affect ecosystems. The impacts on forest ecosystems have been traditionally treated separately for air pollution and climate change. However, the combined effects may significantly differ from a sum of separate effects. We review the links between air pollution and climate change and their interactive effects on northern hemisphere forests. A simultaneous addressing of the air pollution and climate change effects on forests may result in more effective research, management and monitoring as well as better integration of local, national and global environmental policies.
Morris C. Johnson; Maureen C Kennedy; David L. Peterson
2011-01-01
We used the Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS) to simulate fuel treatment effects on stands in low- to midelevation dry forests (e.g., ponderosa pine (Pinus ponderosa Dougl. ex. P. & C. Laws.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) of the western United States. We...
Jane Kapler Smith; Donald E. Zimmerman; Carol Akerelrea; Garrett O' Keefe
2008-01-01
Natural resource managers use a variety of computer-mediated presentation methods to communicate management practices to the public. We explored the effects of using the Stand Visualization System to visualize and animate predictions from the Forest Vegetation Simulator-Fire and Fuels Extension in presentations explaining forest succession (forest growth and change...
K. A. Brown; F. N. Scatena; J. Gurevitch; NO-VALUE
2006-01-01
We report the effects of an invasive tree (Syzygium jambos, Myrtaceace) on species composition, plant diversity patterns, and forest regeneration in primary and secondary forest in the Luquillo Mountains of northeastern Puerto Rico, including the area in and around the Caribbean National Forest (CNF) and the Luquillo Long Term Ecological Research site (Luquillo LTER)....
Ayn J. Shlisky; Don Vandendriesche
2012-01-01
Effective national forest planning depends on scientifically sound analyses of land management alternatives relative to desired future conditions and environmental effects. The USDA Forest Service Pacific Northwest Region is currently using state-and-transition simulation models (STMs) to simulate changes in forest composition and structure for the revisions of five...
Scott L. Stephens; Jason J. Moghaddas; Carl Edminster; Carl E. Fiedler; Sally Haase; Michael Harrington; Jon E. Keeley; Eric E. Knapp; James D. McIver; Kerry Metlen; Carl N. Skinner; Andrew Youngblood
2009-01-01
Forest structure and species composition in many western U.S. coniferous forests have been altered through fire exclusion, past and ongoing harvesting practices, and livestock grazing over the 20th century. The effects of these activities have been most pronounced in seasonally dry, low and mid-elevation coniferous forests that once experienced frequent, low to...
The effect of fire intensity on soil respiration in Siberia boreal forest
S. Baker; A. V. Bogorodskaya
2010-01-01
Russian boreal forests have an annual wildfire activity averaging 10 to 20 million ha, which has increased in recent years. This wildfire activity, in response to changing climate has the potential to significantly affect the carbon storage capacity of Siberian forests. A better understanding of the effect of fire on soil respiration rates in the boreal forest of...
Canopy gap replacement failure in a Pennsylvania forest preserve subject to extreme deer herbivory
Brian S. Pedersen; Angela M. Wallis
2003-01-01
While research has demonstrated the adverse effects of deer herbivory on forest regeneration in forests managed for timber production, less study has been devoted to the long term effects of deer on the dynamics of forests set aside as natural areas. At sufficiently high population densities, deer could interrupt the typical cycle of canopy gap formation and...
Aaron B. Shiels; Grizelle Gonzalez; D. Jean Lodge; Michael R Willig; Jess K. Zimmerman
2015-01-01
Intense hurricanes disturb many tropical forests, but the key mechanisms driving post-hurricane forest changes are not fully understood. In Puerto Rico, we used a replicated factorial experiment to determine the mechanisms of forest change associated with canopy openness and organic matter (debris) addition. Cascading effects from canopy openness accounted for...
Alec M. Kretchun; Robert M. Scheller; Melissa S. Lucash; Kenneth L. Clark; John Hom; Steve Van Tuyl; Michael L. Fine
2014-01-01
Disturbance regimes within temperate forests can significantly impact carbon cycling. Additionally, projected climate change in combination with multiple, interacting disturbance effects may disrupt the capacity of forests to act as carbon sinks at large spatial and temporal scales. We used a spatially explicit forest succession and disturbance model, LANDIS-II, to...
Hydrologic effects of a changing forested landscape--challenges for the hydrological sciences
J.A. Jones; G.L. Achterman; L.A. Augustine; I.F. Creed; P.F. Ffolliott; L. MacDonald; B.C. Wemple
2009-01-01
Of all the ecological services of forests, a sustainable water supply may be the most important. Streamflow from forests provides two-thirds of fresh water supply in the United States. Removing forest cover temporarily increases the proportion of precipitation that becomes streamflow, and this effect has spurred political pressure to cut trees for the purpose of...
Effects of roads on elk: implications for management in forested ecosystems.
Mary M. Rowland; Michael J. Wisdom; Bruce K. Johnson; Mark A. Penninger
2004-01-01
The effects of roads on both habitat and population responses of elk (Cervus elaphus) have been of keen interest to foresters and ungulate biologists for the last half century. Increased timber harvest in national forests, beginning in the 1960s, led to a proliferation of road networks in forested ecosystems inhabited by elk (Hieb 1976, Lyon and...
Piermaria Corona; Marco Marchetti
2000-01-01
International and regional efforts to define a suitable list of criteria and indicators for sustainable forest management show the new role of forestry within the environmental sector and the need for an effective integration of forest inventories in natural resources surveys. This paper examines the potential of forest inventories to support such needs, with specific...
Igor F. Buksha; Valentina L. Meshkova; Oleg M. Radchenko; Alexander S. Sidorov
1998-01-01
Forests in the Ukraine are affected by environmental pollution, intensive forestry practice, and recreational uses. These factors make them sensitive to impacts of climate change. Since 1989 Ukraine has participated in the International Cooperative Program on Assessment and Monitoring of Air Pollution Effects on Forests (ICP-Forests). A network of monitoring plots has...
C. C. Rhoades; M. A. Battaglia; M. E. Rocca; M. G. Ryan
2012-01-01
Mechanical fuel reduction treatments have been implemented on millions of hectares of western North American forests. The redistribution of standing forest biomass to the soil surface by mulching treatments has no ecological analog, and this practice may alter soil processes and forest productivity. We evaluated the effects of mulch addition on soil nitrogen...
Itter, Malcolm S; Finley, Andrew O; D'Amato, Anthony W; Foster, Jane R; Bradford, John B
2017-06-01
Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands. © 2017 by the Ecological Society of America.
Itter, Malcolm S.; Finley, Andrew O.; D'Amato, Anthony W.; Foster, Jane R.; Bradford, John B.
2017-01-01
Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics—changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands.
High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle
NASA Astrophysics Data System (ADS)
Brinck, Katharina; Fischer, Rico; Groeneveld, Jürgen; Lehmann, Sebastian; Dantas de Paula, Mateus; Pütz, Sandro; Sexton, Joseph O.; Song, Danxia; Huth, Andreas
2017-03-01
Deforestation in the tropics is not only responsible for direct carbon emissions but also extends the forest edge wherein trees suffer increased mortality. Here we combine high-resolution (30 m) satellite maps of forest cover with estimates of the edge effect and show that 19% of the remaining area of tropical forests lies within 100 m of a forest edge. The tropics house around 50 million forest fragments and the length of the world's tropical forest edges sums to nearly 50 million km. Edge effects in tropical forests have caused an additional 10.3 Gt (2.1-14.4 Gt) of carbon emissions, which translates into 0.34 Gt per year and represents 31% of the currently estimated annual carbon releases due to tropical deforestation. Fragmentation substantially augments carbon emissions from tropical forests and must be taken into account when analysing the role of vegetation in the global carbon cycle.
Chen, Guangsheng; Tian, Hanqin; Huang, Chengquan; ...
2013-07-01
Forest ecosystems in the southern United States are dramatically altered by three major disturbances: timber harvesting, hurricane, and permanent land conversion. Understanding and quantifying effects of disturbance on forest carbon, nitrogen, and water cycles is critical for sustainable forest management in this region. In this study, we introduced a process-based ecosystem model for simulating forest disturbance impacts on ecosystem carbon, nitrogen, and water cycles. Based on forest mortality data classified from Landsat TM/ETM + images, this model was then applied to estimate changes in carbon storage using Mississippi and Alabama as a case study. Mean annual forest mortality rate formore » these states was 2.37%. Due to frequent disturbance, over 50% of the forest land in the study region was less than 30 years old. Forest disturbance events caused a large carbon source (138.92 Tg C, 6.04 Tg C yr -1; 1 Tg = 10 12 g) for both states during 1984–2007, accounting for 2.89% (4.81% if disregard carbon storage changes in wood products) of the total forest carbon storage in this region. Large decreases and slow recovery of forest biomass were the main causes for carbon release. Forest disturbance could result in a carbon sink in few areas if wood product carbon was considered as a local carbon pool, indicating the importance of accounting for wood product carbon when assessing forest disturbance effects. The legacy effects of forest disturbance on ecosystem carbon storage could last over 50 years. Lastly, this study implies that understanding forest disturbance impacts on carbon dynamics is of critical importance for assessing regional carbon budgets.« less
Effects of Increased Nitrogen Availability on C and N Cycles in Tropical Forests: A Meta-Analysis.
Bejarano-Castillo, Marylin; Campo, Julio; Roa-Fuentes, Lilia L
2015-01-01
Atmospheric N deposition is predicted to increase four times over its current status in tropical forests by 2030. Our ability to understand the effects of N enrichment on C and N cycles is being challenged by the large heterogeneity of the tropical forest biome. The specific response will depend on the forest's nutrient status; however, few studies of N addition appear to incorporate the nutrient status in tropical forests, possibly due to difficulties in explaining how this status is maintained. We used a meta-analysis to explore the consequences of the N enrichment on C and N cycles in tropical montane and lowland forests. We tracked changes in aboveground and belowground plant C and N and in mineral soil in response to N addition. We found an increasing trend of plant biomass in montane forests, but not in lowland forests, as well as a greater increase in NO emission in montane forest compared with lowland forest. The N2O and NO emission increase in both forest; however, the N2O increase in lowland forest was significantly even at first time N addition. The NO emission increase showed be greater at first term compared with long term N addition. Moreover, the increase in total soil N, ammonium, microbial N, and dissolved N concentration under N enrichment indicates a rich N status of lowland forests. The available evidence of N addition experiments shows that the lowland forest is richer in N than montane forests. Finally, the greater increase in N leaching and N gas emission highlights the importance of study the N deposition effect on the global climate change.
Tobari, Y; Koba, K; Fukushima, K; Tokuchi, N; Ohte, N; Tateno, R; Toyoda, S; Yoshioka, T; Yoshida, N
2010-05-15
Evaluation of the openness of the nitrogen (N) cycle in forest ecosystems is important in efforts to improve forest management because the N supply often limits primary production. The use of the oxygen isotope ratio (delta(18)O) of nitrate is a promising approach to determine how effectively atmospheric nitrate can be retained in a forest ecosystem. We investigated the delta(18)O of nitrate in stream water in order to estimate the contribution of atmospheric NO(3) (-) in stream-water NO(3) (-) (f(atm)) from 26 watersheds with different stand ages (1-87 years) in Japan. The stream-water nitrate concentrations were high in young forests whereas, in contrast, old forests discharged low-nitrate stream water. These results implied a low f(atm) and a closed N cycle in older forests. However, the delta(18)O values of nitrate in stream water revealed that f(atm) values were higher in older forests than in younger forests. These results indicated that even in old forests, where the discharged N loss was small, atmospheric nitrate was not retained effectively. The steep slopes of the studied watersheds (>40 degrees ) which hinder the capturing of atmospheric nitrate by plants and microbes might be responsible for the inefficient utilization of atmospheric nitrate. Moreover, the unprocessed fraction of atmospheric nitrate in the stream-water nitrate in the forest (f(unprocessed)) was high in the young forest (78%), although f(unprocessed) was stable and low for other forests (5-13%). This high f(unprocessed) of the young forest indicated that the young forest retained neither atmospheric NO(3) (-) nor soil NO(3) (-) effectively, engendering high stream-water NO(3) (-) concentrations. Copyright (c) 2010 John Wiley & Sons, Ltd.
Schleuning, Matthias; Farwig, Nina; Peters, Marcell K; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Naumann, Clas M; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J Wolfgang; Böhning-Gaese, Katrin
2011-01-01
Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants.
Schleuning, Matthias; Farwig, Nina; Peters, Marcell K.; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W.; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H.; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J. Wolfgang; Böhning-Gaese, Katrin
2011-01-01
Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants. PMID:22114695
Rocha, Ricardo; Ovaskainen, Otso; López-Baucells, Adrià; Farneda, Fábio Z; Sampaio, Erica M; Bobrowiec, Paulo E D; Cabeza, Mar; Palmeirim, Jorge M; Meyer, Christoph F J
2018-02-28
Tropical forest loss and fragmentation are due to increase in coming decades. Understanding how matrix dynamics, especially secondary forest regrowth, can lessen fragmentation impacts is key to understanding species persistence in modified landscapes. Here, we use a whole-ecosystem fragmentation experiment to investigate how bat assemblages are influenced by the regeneration of the secondary forest matrix. We surveyed bats in continuous forest, forest fragments and secondary forest matrix habitats, ~15 and ~30 years after forest clearance, to investigate temporal changes in the occupancy and abundance of old-growth specialist and habitat generalist species. The regeneration of the second growth matrix had overall positive effects on the occupancy and abundance of specialists across all sampled habitats. Conversely, effects on generalist species were negligible for forest fragments and negative for secondary forest. Our results show that the conservation potential of secondary forests for reverting faunal declines in fragmented tropical landscapes increases with secondary forest age and that old-growth specialists, which are often of most conservation concern, are the greatest beneficiaries of secondary forest maturation. Our findings emphasize that the transposition of patterns of biodiversity persistence in island ecosystems to fragmented terrestrial settings can be hampered by the dynamic nature of human-dominated landscapes.
Verheyen, K.; Guntenspergen, Glenn R.; Biesbrouck, B.; Hermy, M.
2003-01-01
A framework that summarizes the direct and indirect effects of past land use on forest herb recolonization is proposed, and used to analyse the colonization patterns of forest understorey herbaceous species in a 360-ha mixed forest, grassland and arable landscape in the Dijle river valley (central Belgium).Fine-scale distribution maps were constructed for 14 species. The species were mapped in 15 946 forest plots and outside forests (along parcel margins) in 5188 plots. Forest stands varied in age between 1 and more than 224 years. Detailed land-use history data were combined with the species distribution maps to identify species-specific colonization sources and to calculate colonization distances.The six most frequent species were selected for more detailed statistical analysis.Logistic regression models indicated that species frequency in forest parcels was a function of secondary forest age, distance from the nearest colonization source and their interaction. Similar age and distance effects were found within hedgerows.In 199 forest stands, data about soils, canopy structure and the cover of competitive species were collected. The relative importance of habitat quality and spatio-temporal isolation for the colonization of the forest herb species was quantified using structural equation modelling (SEM), within the framework proposed for the effects of past land use.The results of the SEM indicate that, except for the better colonizing species, the measured habitat quality variables are of minor importance in explaining colonization patterns, compared with the combination of secondary forest age and distance from colonization sources.Our results suggest the existence of a two-stage colonization process in which diaspore availability determines the initial pattern, which is affected by environmental sorting at later stages.
Dáttilo, Wesley; Aguirre, Armando; Quesada, Mauricio; Dirzo, Rodolfo
2015-01-01
Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae) and its floral visitors (including both effective and non-effective pollinators) at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i) Does fragment size affect the structure of individual-based plant-pollinator networks? (ii) Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii) Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in remnant forests.
NASA Astrophysics Data System (ADS)
Wei, Xiaohua; Zhang, Mingfang
2010-12-01
Climatic variability and forest disturbance are commonly recognized as two major drivers influencing streamflow change in large-scale forested watersheds. The greatest challenge in evaluating quantitative hydrological effects of forest disturbance is the removal of climatic effect on hydrology. In this paper, a method was designed to quantify respective contributions of large-scale forest disturbance and climatic variability on streamflow using the Willow River watershed (2860 km2) located in the central part of British Columbia, Canada. Long-term (>50 years) data on hydrology, climate, and timber harvesting history represented by equivalent clear-cutting area (ECA) were available to discern climatic and forestry influences on streamflow by three steps. First, effective precipitation, an integrated climatic index, was generated by subtracting evapotranspiration from precipitation. Second, modified double mass curves were developed by plotting accumulated annual streamflow against annual effective precipitation, which presented a much clearer picture of the cumulative effects of forest disturbance on streamflow following removal of climatic influence. The average annual streamflow changes that were attributed to forest disturbances and climatic variability were then estimated to be +58.7 and -72.4 mm, respectively. The positive (increasing) and negative (decreasing) values in streamflow change indicated opposite change directions, which suggest an offsetting effect between forest disturbance and climatic variability in the study watershed. Finally, a multivariate Autoregressive Integrated Moving Average (ARIMA) model was generated to establish quantitative relationships between accumulated annual streamflow deviation attributed to forest disturbances and annual ECA. The model was then used to project streamflow change under various timber harvesting scenarios. The methodology can be effectively applied to any large-scale single watershed where long-term data (>50 years) are available.
Long, Hexing; Liu, Jinlong; Tu, Chengyue; Fu, Yimin
2018-07-01
Forest landscape restoration is emerging as an effective approach to restore degraded forests for the provision of ecosystem services and to minimize trade-offs between conservation and rural livelihoods. Policy and institutional innovations in China illustrate the governance transformation of forest landscape restoration from state-controlled to polycentric governance. Based on a case study of the Ecological Forest Purchase Program in Yong'an municipality, China's Fujian Province, this paper explores how such forest governance transformation has evolved and how it has shaped the outcomes of forest landscape restoration in terms of multi-dimensionality and actor configurations. Our analysis indicates that accommodating the participation of multiple actors and market-based instruments facilitate a smoother transition from state-centered to polycentric governance in forest landscape restoration. Governance transitions for forest landscape restoration must overcome a number of challenges including ensurance of a formal participation forum, fair participation, and a sustainable legislative and financial system to enhance long-term effectiveness.
Edge effects on moisture reduce wood decomposition rate in a temperate forest.
Crockatt, Martha E; Bebber, Daniel P
2015-02-01
Forests around the world are increasingly fragmented, and edge effects on forest microclimates have the potential to affect ecosystem functions such as carbon and nutrient cycling. Edges tend to be drier and warmer due to the effects of insolation, wind, and evapotranspiration and these gradients can penetrate hundreds of metres into the forest. Litter decomposition is a key component of the carbon cycle, which is largely controlled by saprotrophic fungi that respond to variation in temperature and moisture. However, the impact of forest fragmentation on litter decay is poorly understood. Here, we investigate edge effects on the decay of wood in a temperate forest using an experimental approach, whereby mass loss in wood blocks placed along 100 m transects from the forest edge to core was monitored over 2 years. Decomposition rate increased with distance from the edge, and was correlated with increasing humidity and moisture content of the decaying wood, such that the decay constant at 100 m was nearly twice that at the edge. Mean air temperature decreased slightly with distance from the edge. The variation in decay constant due to edge effects was larger than that expected from any reasonable estimates of climatic variation, based on a published regional model. We modelled the influence of edge effects on the decay constant at the landscape scale using functions for forest area within different distances from edge across the UK. We found that taking edge effects into account would decrease the decay rate by nearly one quarter, compared with estimates that assumed no edge effect. © 2014 John Wiley & Sons Ltd.
Stephanie Mansourian; John A. Stanturf; Mercy Afua Adutwumwaa Derkyi; Vera Lex Engel
2017-01-01
Restoring forest landscapes is critical in the face of continued global forest loss and degradation. In this article, weexplore some challenges underlying the delivery of global commitments to restore forest landscapes. We propose that threefundamental questions need to be resolved upfront for the effective implementation of Forest Landscape...
Long-term effects of different forest regeneration methods on mature forest birds
Roger W. Perry; Julianna M.A. Jenkins; Ronald E. Thill; Frank R. Thompson
2018-01-01
Changes in forest structure that result from silviculture, including timber harvest, can positively or negatively affect bird species that use forests. Because many bird species associated with mature forests are facing population declines, managers need to know how timber harvesting affects species of birds that rely on mature trees or forests for breeding, foraging,...
Roads as edges: Effects on birds in forested landscapes
Yvette K. Ortega; David E. Capen
2002-01-01
Numerous studies have documented that forest edges affect habitat use and reproductive success of forest birds, but few studies have considered edges created by narrow breaks in the forest canopy. We compared predation rates on artificial nests placed within forest habitat along edge transects, 10 m from unpaved roads, and along interior transects, 300 m from forest-...
Soil physical changes associated with forest harvesting operations on a organic soil
Johnny M. Grace; R.W. Skaggs; D.K. Cassel
2006-01-01
The influence of forest operations on forest soil and water continues to be an issue of concern in forest management. Research has focused on evaluating forest operation effects on numerous soil and water quality indicators. However, poorly drained forested watersheds with organic soil surface horizons have not been extensively investigated. A study was initiated in...
Effects of forest fire and logging on forest degradation in Mongolia
Yeong Dae Park; Don Koo Lee; Jamsran Tsogtbaatar; John A. Stanturf
2010-01-01
Forests in Mongolia have been severely degraded by forest fire and exploitive logging. This study investigate changes in vegetation and soil properties after forest fire or clearfelling. Microclimate conditions such as temperature and relative humidity (RH) changed drastically after forest fire or logging; temperature increased 1.6-1.7 ºC on average, whereas...
Cumulative ecological and socioeconomic effects of forest policies in coastal Oregon.
T.A. Spies; K.N. Johnson; K.M. Burnett; J.L. Ohmann; B.C. McComb; G.H. Reeves; P. Bettinger; J.D. Kline; B. Garber-Yonts
2007-01-01
Forest biodiversity policies in multiownership landscapes are typically developed in an uncoordinated fashion with little consideration of their interactions or possible unintended cumulative effects. We conducted an assessment of some of the ecological and socioeconomic effects of recently enacted forest management policies in the 2.3-million-ha Coast Range...
Naficy, Cameron; Sala, Anna; Keeling, Eric G; Graham, Jon; DeLuca, Thomas H
2010-10-01
Increased forest density resulting from decades of fire exclusion is often perceived as the leading cause of historically aberrant, severe, contemporary wildfires and insect outbreaks documented in some fire-prone forests of the western United States. Based on this notion, current U.S. forest policy directs managers to reduce stand density and restore historical conditions in fire-excluded forests to help minimize high-severity disturbances. Historical logging, however, has also caused widespread change in forest vegetation conditions, but its long-term effects on vegetation structure and composition have never been adequately quantified. We document that fire-excluded ponderosa pine forests of the northern Rocky Mountains logged prior to 1960 have much higher average stand density, greater homogeneity of stand structure, more standing dead trees and increased abundance of fire-intolerant trees than paired fire-excluded, unlogged counterparts. Notably, the magnitude of the interactive effect of fire exclusion and historical logging substantially exceeds the effects of fire exclusion alone. These differences suggest that historically logged sites are more prone to severe wildfires and insect outbreaks than unlogged, fire-excluded forests and should be considered a high priority for fuels reduction treatments. Furthermore, we propose that ponderosa pine forests with these distinct management histories likely require distinct restoration approaches. We also highlight potential long-term risks of mechanical stand manipulation in unlogged forests and emphasize the need for a long-term view of fuels management.
Hilário, R R; Toledo, J J
2016-01-01
Palms, bromeliads and bamboos are key elements of tropical forests and understanding the effects of climate, anthropogenic pressure and forest structure on these groups is crucial to forecast structural changes in tropical forests. Therefore, we investigated the effects of these factors on the abundance of these groups in 22 Atlantic forest fragments of Northeastern Brazil. Abundance of bromeliads and bamboos were assessed through indexes. Palms were counted within a radius of 20 m. We also obtained measures of vegetation structure, fragment size, annual precipitation, precipitation seasonality and human population density. We tested the effects of these predictors on plant groups using path analysis. Palm abundance was higher in taller forests with larger trees, closed canopy and sparse understory, which may be a result of the presence of seed dispersers and specific attributes of local palm species. Bromeliads were negatively affected by both annual precipitation and precipitation seasonality, what may reflect adaptations of these plants to use water efficiently, but also the need to capture water in a regular basis. Bamboos were not related to any predictor variable. As climate and forest structure affected the abundance of bromeliads and palms, human-induced climatic changes and disturbances in forest structure may modify the abundance of these groups. In addition, soil properties and direct measurements of human disturbance should be used in future studies in order to improve the predictability of models about plant groups in Northeastern Atlantic Forest.
Li, Xiaona; He, Hong S.; Wu, Zhiwei; Liang, Yu; Schneiderman, Jeffrey E.
2013-01-01
Forest management under a changing climate requires assessing the effects of climate warming and disturbance on the composition, age structure, and spatial patterns of tree species. We investigated these effects on a boreal forest in northeastern China using a factorial experimental design and simulation modeling. We used a spatially explicit forest landscape model (LANDIS) to evaluate the effects of three independent variables: climate (current and expected future), fire regime (current and increased fire), and timber harvesting (no harvest and legal harvest). Simulations indicate that this forested landscape would be significantly impacted under a changing climate. Climate warming would significantly increase the abundance of most trees, especially broadleaf species (aspen, poplar, and willow). However, climate warming would have less impact on the abundance of conifers, diversity of forest age structure, and variation in spatial landscape structure than burning and harvesting. Burning was the predominant influence in the abundance of conifers except larch and the abundance of trees in mid-stage. Harvesting impacts were greatest for the abundance of larch and birch, and the abundance of trees during establishment stage (1–40 years), early stage (41–80 years) and old- growth stage (>180 years). Disturbance by timber harvesting and burning may significantly alter forest ecosystem dynamics by increasing forest fragmentation and decreasing forest diversity. Results from the simulations provide insight into the long term management of this boreal forest. PMID:23573209
Salamander abundance along road edges and within abandoned logging roads in Appalachian forests.
Semlitsch, Raymond D; Ryan, Travis J; Hamed, Kevin; Chatfield, Matt; Drehman, Bethany; Pekarek, Nicole; Spath, Mike; Watland, Angie
2007-02-01
Roads may be one of the most common disturbances in otherwise continuous forested habitat in the southern Appalachian Mountains. Despite their obvious presence on the landscape, there is limited data on the ecological effects along a road edge or the size of the "road-effect zone." We sampled salamanders at current and abandoned road sites within the Nantahala National Forest, North Carolina (U.S.A.) to determine the road-effect zone for an assemblage of woodland salamanders. Salamander abundance near the road was reduced significantly, and salamanders along the edges were predominantly large individuals. These results indicate that the road-effect zone for these salamanders extended 35 m on either side of the relatively narrow, low-use forest roads along which we sampled. Furthermore, salamander abundance was significantly lower on old, abandoned logging roads compared with the adjacent upslope sites. These results indicate that forest roads and abandoned logging roads have negative effects on forest-dependent species such as plethodontid salamanders. Our results may apply to other protected forests in the southern Appalachians and may exemplify a problem created by current and past land use activities in all forested regions, especially those related to road building for natural-resource extraction. Our results show that the effect of roads reached well beyond their boundary and that abandonment or the decommissioning of roads did not reverse detrimental ecological effects; rather, our results indicate that management decisions have significant repercussions for generations to come. Furthermore, the quantity of suitable forested habitat in the protected areas we studied was significantly reduced: between 28.6% and 36.9% of the area was affected by roads. Management and policy decisions must use current and historical data on land use to understand cumulative impacts on forest-dependent species and to fully protect biodiversity on national lands.
Stemflow Acid Neutralization Capacity in a Broadleaved Deciduous Forest: The Role of Edge Effects
NASA Astrophysics Data System (ADS)
Levia, D. F., Jr.; Shiklomanov, A.
2014-12-01
The fragmentation of forests is occurring at an accelerated rate in parts of the United States. Forest fragmentation creates edge habitat that affects the biogeochemistry of forests. Atmospheric deposition is known to increase at the forest edge in comparison to the forest interior. Past research has demonstrated the critical role of edge effects on throughfall chemistry but no known work has examined the relationship between stemflow chemistry and edge effects. To fill this data gap, we quantified the stemflow acid neutralization capacity (ANC) of nineteen Liriodendron tulipifera L. (yellow poplar) trees between forest edge and interior locations in the Piedmont of the mid-Atlantic USA. ANC was measured directly by potentiometric titration. Both stemflow pH and ANC were higher for L. tulipifera trees on the forest edge as opposed to those in interior locations (p < 0.01), although marked variability was observed among individual trees. It is critical to note that the ANC of stemflow of edge trees is almost certainly contextual, depending on geographic locality. This is to say that stemflow from edge trees may neutralize acid inputs in some locations (as in our case) but lead to enhanced acidification of aqueous inputs to forest soils in other locales where the dry deposition of acid anions is high. The experimental results have ramifications for forest management schema seeking to increase or decrease the extent of edge habitat in forest fragments.
Effects of Forest Gaps on Soil Properties in Castanopsis kawakamii Nature Forest.
He, Zhongsheng; Liu, Jinfu; Su, Songjin; Zheng, Shiqun; Xu, Daowei; Wu, Zeyan; Hong, Wei; Wang, James Li-Ming
2015-01-01
The aim of this study is to analyze the effects of forest gaps on the variations of soil properties in Castanopsis kawakamii natural forest. Soil physical and chemical properties in various sizes and development stages were studied in C. kawakamii natural forest gaps. The results showed that forest gaps in various sizes and development stages could improve soil pore space structure and water characteristics, which may effectively promote the water absorbing capacity for plant root growth and play an important role in forest regeneration. Soil pore space structure and water characteristics in small gaps showed more obvious improvements, followed by the medium and large gaps. Soil pore space structure and water characteristics in the later development stage of forest gaps demonstrated more obvious improvements, followed by the early and medium development stages. The contents of hydrolysable N and available K in various sizes and development stages of forest gaps were higher than those of non-gaps, whereas the contents of total N, total P, available P, organic matter, and organic carbon were lower. The contents of total N, hydrolysable N, available K, organic matter, and organic carbon in medium gaps were higher than those of large and small gaps. The disturbance of forest gaps could improve the soils' physical and chemical properties and increase the population species' richness, which would provide an ecological basis for the species coexistence in C. kawakamii natural forest.
Gregory S. Latta; Darius M. Adams; Kathleen P. Bell; Jeff Kline
2016-01-01
We describe the use of linked land-use and forest sector models to simulate the effects of carbon offset sales on private forest owners' land-use and forest management decisions inwestern Oregon (USA). Our work focuses on forest management decisions rather than afforestation, allows full forest sector price adjustment to land-use changes, and incorporates time-...
A synthesis of current knowledge on forests and carbon storage in the United States.
McKinley, Duncan C; Ryan, Michael G; Birdsey, Richard A; Giardina, Christian P; Harmon, Mark E; Heath, Linda S; Houghton, Richard A; Jackson, Robert B; Morrison, James F; Murray, Brian C; Patakl, Diane E; Skog, Kenneth E
2011-09-01
Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because approximately 60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding deforestation and promoting regeneration after disturbance should receive high priority as policy considerations. Policies to encourage programs or projects that influence forest carbon sequestration and offset fossil fuel emissions should also consider major items such as leakage, the cyclical nature of forest growth and regrowth, and the extensive demand for and movement of forest products globally, and other greenhouse gas effects, such as methane and nitrous oxide emissions, and recognize other environmental benefits of forests, such as biodiversity, nutrient management, and watershed protection. Activities that contribute to helping forests adapt to the effects of climate change, and which also complement forest carbon storage strategies, would be prudent.
Ochiai, Hiroko; Ikei, Harumi; Song, Chorong; Kobayashi, Maiko; Takamatsu, Ako; Miura, Takashi; Kagawa, Takahide; Li, Qing; Kumeda, Shigeyoshi; Imai, Michiko; Miyazaki, Yoshifumi
2015-02-25
Time spent walking and relaxing in a forest environment ("forest bathing" or "forest therapy") has well demonstrated anti-stress effects in healthy adults, but benefits for ill or at-risk populations have not been reported. The present study assessed the physiological and psychological effects of forest therapy (relaxation and stress management activity in the forest) on middle-aged males with high-normal blood pressure. Blood pressure and several physiological and psychological indices of stress were measured the day before and approximately 2 h following forest therapy. Both pre- and post-treatment measures were conducted at the same time of day to avoid circadian influences. Systolic and diastolic blood pressure (BP), urinary adrenaline, and serum cortisol were all significantly lower than baseline following forest therapy (p<0.05). Subjects reported feeling significantly more "relaxed" and "natural" according to the Semantic Differential (SD) method. Profile of Mood State (POMS) negative mood subscale scores for "tension-anxiety," "confusion," and "anger-hostility," as well as the Total Mood Disturbance (TMD) score were significantly lower following forest therapy. These results highlight that forest is a promising treatment strategy to reduce blood pressure into the optimal range and possibly prevent progression to clinical hypertension in middle-aged males with high-normal blood pressure.
Forest Cover Change Analysis in Inner Mongolia Using Remote Sensing Data
NASA Astrophysics Data System (ADS)
Xie, S.; Gong, J.; Huang, X.
2018-04-01
Forest is the lung of the earth, and it has important effect on maintaining the ecological balance of the whole earth. This study was conducted in Inner Mongolia during the year 1990-2015. Land use and land cover data were used to obtain forest cover change of Inner Mongolia. In addition, protected area data, road data, ASTER GDEM data were combined with forest cover change data to analyze the relationship between them. Moreover, patch density and landscape shape index were calculated to analyze forest change in perspective of landscape aspect. The results indicated that forest area increased overall during the study period. However, a few cities still had a phenomenon of reduced forest area. Results also demonstrated that the construction of protected area had positive effect on protecting forest while roads may disturbed forest due to human activities. In addition, forest patches in most of cities of Inner Mongolia tended to be larger and less fragmented. This paper reflected forest change in Inner Mongolia objectively, which is helpful for policy making by government.
Eric J. Gustafson; Brian R. Miranda; Arjan M.G. De Bruijn; Brian R. Sturtevant; Mark E. Kubiske
2017-01-01
Forest landscape models (FLM) are increasingly used to project the effects of climate change on forested landscapes, yet most use phenomenological approaches with untested assumptions about future forest dynamics. We used a FLM that relies on first principles to mechanistically simulate growth (LANDIS-II with PnET-Succession) to systematically explore how landscapes...
Siyan Ma; Jiquan Chen; Malcolm North; Heather E. Erickson; Mary Bresee; James Le Moine
2004-01-01
To understand the roles of forest management practices in meeting the goals of forest sustainability and CO2 sequestration, we evaluated the effects of burning and thinning treatments on soil respiration and soil environments in an old-growth, mixed-conifer forest in Californiaâs southern Sierra Nevada. Six experimental treatments with two levels...
Richy J. Harrod; David W. Peterson; Nicholas A. Povak; Erich Kyle Dodson
2009-01-01
Forest thinning and prescribed fires are practices used by managers to address concerns over ecosystem degradation and severe wildland fire potential in dry forests. There is some debate, however, about treatment effectiveness in meeting management objectives as well as their ecological consequences. The purpose of this study was to assess changes to forest stand...
Ralph J. Alig
2010-01-01
This report is a compilation of six briefing papers based on literature reviews and syntheses, prepared for U.S. Department of Agriculture, Forest Service policy analysts and decisionmakers about specific questions pertaining to climate change. The main topics addressed here are economic effects on the forest sector at the national and global scales, costs of forest...
Climate profoundly shapes forests. Forest species composition, productivity, availability of goods and services, disturbance regimes, and location on the landscape are all regulated by climate. Much research attention has focused on the problem of predicting the response of fores...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyle, T W; Shugart, H H; West, D C
1981-01-01
This study examines the utilization and management of natural forest lands to meet growing wood-energy demands. An application of a forest simulation model is described for assessing energy returns and long-term ecological impacts of wood-energy harvesting under four general silvicultural practices. Results indicate that moderate energy yields could be expected from mild cutting operations which would significantly effect neither the commercial timber market nor the composition, structure, or diversity of these forests. Forest models can provide an effective tool for determining optimal management strategies that maximize energy returns, minimize environmental detriment, and complement existing land-use plans.
Yao, Jing; He, Xingyuan; He, Hongshi; Chen, Wei; Dai, Limin; Lewis, Bernard J.; Yu, Lizhong
2016-01-01
Unlike the virgin forest in the Changbaishan Nature Reserve in northeastern China, little research on a landscape scale has been conducted on secondary forests in the region under conditions of a warming climate. This research was undertaken in the upper Hun River region where the vegetation is representative of the typical secondary forest of northeastern China. The spatially explicit forest landscape model LANDIS was utilized to simulate the responses of forest restoration dynamics to anthropogenic disturbance (planting and harvesting) and evaluate the difference of the restoration process under continuation of current climatic conditions and climate warming. The results showed that: (1) The interaction of planting and harvesting has organizational scale effects on the forest. The combination of planting and harvesting policies has significant effects on the overall forest but not on individual species. (2) The area expansion of the historically dominant species Pinus koraiensis is less under climate warming than under continuation of current climatic conditions. These suggests that we should carefully take historically dominant species as the main focus for forest restoration, especially when they are near their natural distribution boundary, because they are probably less capable of successfully adapting to climate change. PMID:26725308
Effects of forests, roads and mistletoe on bird diversity in monoculture rubber plantations
NASA Astrophysics Data System (ADS)
Sreekar, Rachakonda; Huang, Guohualing; Yasuda, Mika; Quan, Rui-Chang; Goodale, Eben; Corlett, Richard T.; Tomlinson, Kyle W.
2016-02-01
Rising global demand for natural rubber is expanding monoculture rubber (Hevea brasilensis) at the expense of natural forests in the Old World tropics. Conversion of forests into rubber plantations has a devastating impact on biodiversity and we have yet to identify management strategies that can mitigate this. We determined the life-history traits that best predict bird species occurrence in rubber plantations in SW China and investigated the effects of surrounding forest cover and distance to roads on bird diversity. Mistletoes provide nectar and fruit resources in rubber so we examined mistletoe densities and the relationship with forest cover and rubber tree diameter. In rubber plantations, we recorded less than half of all bird species extant in the surrounding area. Birds with wider habitat breadths and low conservation value had a higher probability of occurrence. Species richness and diversity increased logarithmically with surrounding forest cover, but roads had little effect. Mistletoe density increased exponentially with rubber tree diameters, but was unrelated to forest cover. To maximize bird diversity in rubber-dominated landscapes it is therefore necessary to preserve as much forest as possible, construct roads through plantations and not forest, and retain some large rubber trees with mistletoes during crop rotations.
Effects of forests, roads and mistletoe on bird diversity in monoculture rubber plantations.
Sreekar, Rachakonda; Huang, Guohualing; Yasuda, Mika; Quan, Rui-Chang; Goodale, Eben; Corlett, Richard T; Tomlinson, Kyle W
2016-02-23
Rising global demand for natural rubber is expanding monoculture rubber (Hevea brasilensis) at the expense of natural forests in the Old World tropics. Conversion of forests into rubber plantations has a devastating impact on biodiversity and we have yet to identify management strategies that can mitigate this. We determined the life-history traits that best predict bird species occurrence in rubber plantations in SW China and investigated the effects of surrounding forest cover and distance to roads on bird diversity. Mistletoes provide nectar and fruit resources in rubber so we examined mistletoe densities and the relationship with forest cover and rubber tree diameter. In rubber plantations, we recorded less than half of all bird species extant in the surrounding area. Birds with wider habitat breadths and low conservation value had a higher probability of occurrence. Species richness and diversity increased logarithmically with surrounding forest cover, but roads had little effect. Mistletoe density increased exponentially with rubber tree diameters, but was unrelated to forest cover. To maximize bird diversity in rubber-dominated landscapes it is therefore necessary to preserve as much forest as possible, construct roads through plantations and not forest, and retain some large rubber trees with mistletoes during crop rotations.
Physiological and Psychological Effects of a Forest Therapy Program on Middle-Aged Females.
Ochiai, Hiroko; Ikei, Harumi; Song, Chorong; Kobayashi, Maiko; Miura, Takashi; Kagawa, Takahide; Li, Qing; Kumeda, Shigeyoshi; Imai, Michiko; Miyazaki, Yoshifumi
2015-12-01
The natural environment is increasingly recognized as an effective counter to urban stress, and "Forest Therapy" has recently attracted attention as a relaxation and stress management activity with demonstrated clinical efficacy. The present study assessed the physiological and psychological effects of a forest therapy program on middle-aged females. Seventeen Japanese females (62.2 ± 9.4 years; mean ± standard deviation) participated in this experiment. Pulse rate, salivary cortisol level, and psychological indices were measured on the day before forest therapy and on the forest therapy day. Pulse rate and salivary cortisol were significantly lower than baseline following forest therapy, indicating that subjects were in a physiologically relaxed state. Subjects reported feeling significantly more "comfortable," "relaxed," and "natural" according to the semantic differential (SD) method. The Profile of Mood State (POMS) negative mood subscale score for "tension-anxiety" was significantly lower, while that for "vigor" was significantly higher following forest therapy. Our study revealed that forest therapy elicited a significant (1) decrease in pulse rate, (2) decrease in salivary cortisol levels, (3) increase in positive feelings, and (4) decrease in negative feelings. In conclusion, there are substantial physiological and psychological benefits of forest therapy on middle-aged females.
Yao, Jing; He, Xingyuan; He, Hongshi; Chen, Wei; Dai, Limin; Lewis, Bernard J; Yu, Lizhong
2016-01-04
Unlike the virgin forest in the Changbaishan Nature Reserve in northeastern China, little research on a landscape scale has been conducted on secondary forests in the region under conditions of a warming climate. This research was undertaken in the upper Hun River region where the vegetation is representative of the typical secondary forest of northeastern China. The spatially explicit forest landscape model LANDIS was utilized to simulate the responses of forest restoration dynamics to anthropogenic disturbance (planting and harvesting) and evaluate the difference of the restoration process under continuation of current climatic conditions and climate warming. The results showed that: (1) The interaction of planting and harvesting has organizational scale effects on the forest. The combination of planting and harvesting policies has significant effects on the overall forest but not on individual species. (2) The area expansion of the historically dominant species Pinus koraiensis is less under climate warming than under continuation of current climatic conditions. These suggests that we should carefully take historically dominant species as the main focus for forest restoration, especially when they are near their natural distribution boundary, because they are probably less capable of successfully adapting to climate change.
Ruete, Alejandro; Snäll, Tord; Jönsson, Mari
2016-07-01
Diversity patterns and dynamics at forest edges are not well understood. We disentangle the relative importance of edge-effect variables on spatio-temporal patterns in species richness and occupancy of deadwood-dwelling fungi in fragmented old-growth forests. We related richness and log occupancy by 10 old-growth forest indicator fungi and by two common fungi to log conditions in natural and anthropogenic edge habitats of 31 old-growth Picea abies forest stands in central Sweden. We compared edge-to-interior gradients (100 m) to the forest interior (beyond 100 m), and we analyzed stand-level changes after 10 yr. Both richness and occupancy of logs by indicator species was negatively related to adjacent young clear-cut edges, but this effect decreased with increasing clear-cut age. The occupancy of logs by indicator species also increased with increasing distance to the natural edges. In contrast, the occupancy of logs by common species was positively related or unrelated to distance to clear-cut edges regardless of the edge age, and this was partly explained by fungal specificity to substrate quality. Stand-level mean richness and mean occupancy of logs did not change for indicator or common species over a decade. By illustrating the importance of spatial and temporal dimensions of edge effects, we extend the general understanding of the distribution and diversity of substrate-confined fungi in fragmented old-growth forests. Our results highlight the importance of longer forest rotation times adjacent to small protected areas and forest set-asides, where it may take more than 50 yr for indicator species richness levels to recover to occupancy levels observed in the forest interior. Also, non-simultaneous clear-cutting of surrounding productive forests in a way that reduces the edge effect over time (i.e., dynamic buffers) may increase the effective core area of small forest set-asides and improve their performance on protecting species of special concern for conservation. © 2016 by the Ecological Society of America.
Zhang, Yuxin; Zhang, Shuang; Ma, Keming; Fu, Bojie; Anand, Madhur
2014-01-01
The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr.), planted larch (Larix principis-rupprechtii Mayr.), and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer), while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation. PMID:25545860
Carbon emissions from deforestation and forest fragmentation in the Brazilian Amazon
NASA Astrophysics Data System (ADS)
Numata, Izaya; Cochrane, Mark A.; Souza, Carlos M., Jr.; Sales, Marcio H.
2011-10-01
Forest-fragmentation-related edge effects are one of the major causes of forest degradation in Amazonia and their spatio-temporal dynamics are highly influenced by annual deforestation patterns. Rapid biomass collapse due to edge effects in forest fragments has been reported in the Brazilian Amazon; however the collective impacts of this process on Amazonian carbon fluxes are poorly understood. We estimated biomass loss and carbon emissions from deforestation and forest fragmentation related to edge effects on the basis of the INPE (Brazilian National Space Research Institute) PRODES deforestation data and forest biomass volume data. The areas and ages of edge forests were calculated annually and the corresponding biomass loss and carbon emissions from these forest edges were estimated using published rates of biomass decay and decomposition corresponding to the areas and ages of edge forests. Our analysis estimated carbon fluxes from deforestation (4195 Tg C) and edge forest (126-221 Tg C) for 2001-10 in the Brazilian Amazon. The impacts of varying rates of deforestation on regional forest fragmentation and carbon fluxes were also investigated, with the focus on two periods: 2001-5 (high deforestation rates) and 2006-10 (low deforestation rates). Edge-released carbon accounted for 2.6-4.5% of deforestation-related carbon emissions. However, the relative importance of carbon emissions from forest fragmentation increased from 1.7-3.0% to 3.3-5.6% of the respective deforestation emissions between the two contrasting deforestation rates. Edge-related carbon fluxes are of increasing importance for basin-wide carbon accounting, especially as regards ongoing reducing emissions from deforestation and forest degradation (REDD) efforts in Brazilian Amazonia.
Ecological consequences of forest elephant declines for Afrotropical forests.
Poulsen, John R; Rosin, Cooper; Meier, Amelia; Mills, Emily; Nuñez, Chase L; Koerner, Sally E; Blanchard, Emily; Callejas, Jennifer; Moore, Sarah; Sowers, Mark
2018-06-01
Poaching is rapidly extirpating African forest elephants (Loxodonta cyclotis) from most of their historical range, leaving vast areas of elephant-free tropical forest. Elephants are ecological engineers that create and maintain forest habitat; thus, their loss will have large consequences for the composition and structure of Afrotropical forests. Through a comprehensive literature review, we evaluated the roles of forest elephants in seed dispersal, nutrient recycling, and herbivory and physical damage to predict the cascading ecological effects of their population declines. Loss of seed dispersal by elephants will favor tree species dispersed abiotically and by smaller dispersal agents, and tree species composition will depend on the downstream effects of changes in elephant nutrient cycling and browsing. Loss of trampling and herbivory of seedlings and saplings will result in high tree density with release from browsing pressures. Diminished seed dispersal by elephants and high stem density are likely to reduce the recruitment of large trees and thus increase homogeneity of forest structure and decrease carbon stocks. The loss of ecological services by forest elephants likely means Central African forests will be more like Neotropical forests, from which megafauna were extirpated thousands of years ago. Without intervention, as much as 96% of Central African forests will have modified species composition and structure as elephants are compressed into remaining protected areas. Stopping elephant poaching is an urgent first step to mitigating these effects, but long-term conservation will require land-use planning that incorporates elephant habitat into forested landscapes that are being rapidly transformed by industrial agriculture and logging. © 2017 Society for Conservation Biology.
Landscape-level effects on aboveground biomass of tropical forests: A conceptual framework.
Melito, Melina; Metzger, Jean Paul; de Oliveira, Alexandre A
2018-02-01
Despite the general recognition that fragmentation can reduce forest biomass through edge effects, a systematic review of the literature does not reveal a clear role of edges in modulating biomass loss. Additionally, the edge effects appear to be constrained by matrix type, suggesting that landscape composition has an influence on biomass stocks. The lack of empirical evidence of pervasive edge-related biomass losses across tropical forests highlights the necessity for a general framework linking landscape structure with aboveground biomass. Here, we propose a conceptual model in which landscape composition and configuration mediate the magnitude of edge effects and seed-flux among forest patches, which ultimately has an influence on biomass. Our model hypothesizes that a rapid reduction of biomass can occur below a threshold of forest cover loss. Just below this threshold, we predict that changes in landscape configuration can strongly influence the patch's isolation, thus enhancing biomass loss. Moreover, we expect a synergism between landscape composition and patch attributes, where matrix type mediates the effects of edges on species decline, particularly for shade-tolerant species. To test our conceptual framework, we propose a sampling protocol where the effects of edges, forest amount, forest isolation, fragment size, and matrix type on biomass stocks can be assessed both collectively and individually. The proposed model unifies the combined effects of landscape and patch structure on biomass into a single framework, providing a new set of main drivers of biomass loss in human-modified landscapes. We argue that carbon trading agendas (e.g., REDD+) and carbon-conservation initiatives must go beyond the effects of forest loss and edges on biomass, considering the whole set of effects on biomass related to changes in landscape composition and configuration. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Xu, Peipei; Zhou, Tao; Zhao, Xiang; Luo, Hui; Gao, Shan; Li, Zheng; Cao, Leyao
2018-07-01
Global climate change leads to gradual increases in the frequency, intensity, and duration of extreme drought events. Human activities such as afforestation and deforestation have led to spatial variation in forest structure, causing forests to exhibit an age-spatial structure relationship. Thus, it is of great importance to accurately evaluate the effects of drought stress on forest ecosystems with different forest age structures. Because the spatial heterogeneity varies with drought stress intensity, forest age, there are still a lot of uncertainties in current studies. In this study, based on the field measurement, and the proxy index of stand age (based on forest canopy height from LiDAR and stock volume from inventory) at the regional scale, we analyzed the different drought responses of forest ecosystems with various forest ages across different scales in Yunnan province, southwest China from 2001 to 2014. At the local scale, significant differences in the effects of drought stress were found among forests with various ages, suggesting that older forests suffer more under drought stress than younger forests. At the regional scale, the investigation statistics of forest damage indicated a maximum damage ratio in the forest with tall trees (>32 m), whereas damage was minimal in the forest with short trees (<25 m). The stock volume of the forest exhibited the same pattern, that is, the forest damage ratio increased as the stock volume increased. These data demonstrate that the responses of forest drought could be affected by forest age. Under drought stress, older forests show greater vulnerability and risk of damage, which will require special attention for forest managers, as well as improved risk assessments, in the context of future climate change.
NASA Astrophysics Data System (ADS)
Reyer, Christopher P. O.; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G.; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P.; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Guerra Hernández, Juan; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J.; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A.; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E.; Hanewinkel, Marc
2017-03-01
Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.
Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc
2017-01-01
Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures. PMID:28855959
González, Ezequiel; Salvo, Adriana; Valladares, Graciela
2017-10-01
Human activities have led to global simplification of ecosystems, among which Neotropical dry forests are some of the most threatened. Habitat loss as well as edge effects may affect insect communities. Here, we analyzed insects sampled with pan traps in 9 landscapes (at 5 scales, in 100-500 m diameter circles) comprising cultivated fields and Chaco Serrano forests, at overall community and taxonomic order level. In total 7043 specimens and 456 species of hexapods were captured, with abundance and richness being directly related to forest cover at 500 m and higher at edges in comparison with forest interior. Community composition also varied with forest cover and edge/interior location. Different responses were detected among the 8 dominant orders. Collembola, Hemiptera, and Orthoptera richness and/or abundance were positively related to forest cover at the larger scale, while Thysanoptera abundance increased with forest cover only at the edge. Hymenoptera abundance and richness were negatively related to forest cover at 100 m. Coleoptera, Diptera, and Hymenoptera were more diverse and abundant at the forest edge. The generally negative influence of forest loss on insect communities could have functional consequences for both natural and cultivated systems, and highlights the relevance of forest conservation. Higher diversity at the edges could result from the simultaneous presence of forest and matrix species, although "resource mapping" might be involved for orders that were richer and more abundant at edges. Adjacent crops could benefit from forest proximity since natural enemies and pollinators are well represented in the orders showing positive edge effects. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Effects of Increased Nitrogen Availability on C and N Cycles in Tropical Forests: A Meta-Analysis
2015-01-01
Atmospheric N deposition is predicted to increase four times over its current status in tropical forests by 2030. Our ability to understand the effects of N enrichment on C and N cycles is being challenged by the large heterogeneity of the tropical forest biome. The specific response will depend on the forest’s nutrient status; however, few studies of N addition appear to incorporate the nutrient status in tropical forests, possibly due to difficulties in explaining how this status is maintained. We used a meta-analysis to explore the consequences of the N enrichment on C and N cycles in tropical montane and lowland forests. We tracked changes in aboveground and belowground plant C and N and in mineral soil in response to N addition. We found an increasing trend of plant biomass in montane forests, but not in lowland forests, as well as a greater increase in NO emission in montane forest compared with lowland forest. The N2O and NO emission increase in both forest; however, the N2O increase in lowland forest was significantly even at first time N addition. The NO emission increase showed be greater at first term compared with long term N addition. Moreover, the increase in total soil N, ammonium, microbial N, and dissolved N concentration under N enrichment indicates a rich N status of lowland forests. The available evidence of N addition experiments shows that the lowland forest is richer in N than montane forests. Finally, the greater increase in N leaching and N gas emission highlights the importance of study the N deposition effect on the global climate change. PMID:26633681
Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João Hn; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc
2017-03-16
Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.
Short- and long-term effects of fire on carbon in US dry temperate forest systems
Hurteau, Matthew D.; Brooks, Matthew L.
2011-01-01
Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires, resulting in greater tree mortality, have caused a decrease in forest carbon stability. Fire management actions can mitigate the risk of high-severity fires, but these actions often require a trade-off between maximizing carbon stocks and carbon stability. We discuss the effects of fire on forest carbon stocks and recommend that managing forests on the basis of their specific ecologies should be the foremost goal, with carbon sequestration being an ancillary benefit. ?? 2011 by American Institute of Biological Sciences. All rights reserved.
Agosta, Salvatore J; Hulshof, Catherine M; Staats, Ethan G
2017-05-01
The ecological effects of large-scale climate change have received much attention, but the effects of the more acute form of climate change that results from local habitat alteration have been less explored. When forest is fragmented, cut, thinned, cleared or otherwise altered in structure, local climates and microclimates change. Such changes can affect herbivores both directly (e.g. through changes in body temperature) and indirectly (e.g. through changes in host plant traits). We advance an eco-physiological framework to understand the effects of changing forests on herbivorous insects. We hypothesize that if tropical forest caterpillars are climate and resource specialists, then they should have reduced performance outside of mature forest conditions. We tested this hypothesis with a field experiment contrasting the performance of Rothschildia lebeau (Saturniidae) caterpillars feeding on the host plant Casearia nitida (Salicaceae) in two different aged and structured tropical dry forests in Area de Conservación Guanacaste, Costa Rica. Compared to more mature closed-canopy forest, in younger secondary forest we found that: (1) ambient conditions were hotter, drier and more variable; (2) caterpillar growth and development were reduced; and (3) leaves were tougher, thicker and drier. Furthermore, caterpillar growth and survival were negatively correlated with these leaf traits, suggesting indirect host-mediated effects of climate on herbivores. Based on the available evidence, and relative to mature forest, we conclude that reduced herbivore performance in young secondary forest could have been driven by changes in climate, leaf traits (which were likely climate induced) or both. However, additional studies will be needed to provide more direct evidence of cause-and-effect and to disentangle the relative influence of these factors on herbivore performance in this system. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Escobedo, Francisco J; Wagner, John E; Nowak, David J; De la Maza, Carmen Luz; Rodriguez, Manuel; Crane, Daniel E
2008-01-01
Santiago, Chile has the distinction of having among the worst urban air pollution problems in Latin America. As part of an atmospheric pollution reduction plan, the Santiago Regional Metropolitan government defined an environmental policy goal of using urban forests to remove particulate matter less than 10 microm (PM(10)) in the Gran Santiago area. We used cost effectiveness, or the process of establishing costs and selecting least cost alternatives for obtaining a defined policy goal of PM(10) removal, to analyze this policy goal. For this study, we quantified PM(10) removal by Santiago's urban forests based on socioeconomic strata and using field and real-time pollution and climate data via a dry deposition urban forest effects model. Municipal urban forest management costs were estimated using management cost surveys and Chilean Ministry of Planning and Cooperation documents. Results indicate that managing municipal urban forests (trees, shrubs, and grass whose management is under the jurisdiction of Santiago's 36 municipalities) to remove PM(10) was a cost-effective policy for abating PM(10) based on criteria set by the World Bank. In addition, we compared the cost effectiveness of managing municipal urban forests and street trees to other control policies (e.g. alternative fuels) to abate PM(10) in Santiago and determined that municipal urban forest management efficiency was similar to these other air quality improvement measures.
Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India.
Schmerbeck, Joachim; Fiener, Peter
2015-08-01
This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km(2) (4.4%) of India, whereas according to the MODIS fire product about 2200 km(2) (1.4%) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.
Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India
NASA Astrophysics Data System (ADS)
Schmerbeck, Joachim; Fiener, Peter
2015-08-01
This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km2 (4.4 %) of India, whereas according to the MODIS fire product about 2200 km2 (1.4 %) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.
R.S. Morin; A.M. Liebhold; K.W. Gottschalk; D.B. Twardus; R.E. Acciavatti; R.L. White; S.B. Horsley; W.D. Smith; E.R. Luzader
2001-01-01
This publication describes the forest vegetation and health conditions of the Allegheny National Forest (ANF). During the past 15 years, the ANF has experienced four severe droughts, several outbreaks of exotic and native insect defoliators, and the effects of other disturbance agents. An increase in tree mortality has raised concerns about forest health. Historical...
David J. Flaspohler; Christian P. Giardina; Gregory P. Asner; Patrick Hart; Jonathan Price; Cassie Ka’apu Lyons; Xeronimo Castaneda
2010-01-01
Forest fragmentation is a common disturbance affecting biological diversity, yet the impacts of fragmentation on many forest processes remain poorly understood. Forest restoration is likely to be more successful when it proceeds with an understanding of how native and exotic vertebrates utilize forest patches of different size. We used a system of forest fragments...
Assessing the Effects of Forest Fragmentation Using Satellite Imagery and Forest Inventory Data
Ronald E. McRoberts; Greg C. Liknes
2005-01-01
For a study area in the North Central region of the USA, maps of predicted proportion forest area were created using Landsat Thematic Mapper imagery, forest inventory plot data, and a logistic regression model. The maps were used to estimate quantitative indices of forest fragmentation. Correlations between the values of the indices and forest attributes observed on...
Southern Foresters' Perceptions of Climate Change: Implications for Educational Program Development
ERIC Educational Resources Information Center
Boby, Leslie; Hubbard, William; Megalos, Mark; Morris, Hilary L. C.
2016-01-01
An understanding of foresters' perceptions of climate change is important for developing effective educational programs on adaptive forest management. We surveyed 1,398 foresters in the southern United States regarding their perceptions of climate change, observations and concerns about climatic and forest conditions, and knowledge of and interest…
Deer and diversity in Allegheny hardwood forests: managing an unlikely challenge
David S. deCalesta
1994-01-01
High white-tailed deer (Odocoileus virginianus) density and interfering vegetation were identified as factors affecting the regeneration of hardwood forests in the Allegheny National Forest and surrounding forests in northwestern Pennsylvania. Research was designed by Forest Service scientists to quantify these effects. A high degree of interest in...
The effect of protected areas on forest disturbance in the Carpathian Mountains 1985-2010.
Butsic, Van; Munteanu, Catalina; Griffiths, Patrick; Knorn, Jan; Radeloff, Volker C; Lieskovský, Juraj; Mueller, Daniel; Kuemmerle, Tobias
2017-06-01
Protected areas are a cornerstone for forest protection, but they are not always effective during times of socioeconomic and institutional crises. The Carpathian Mountains in Eastern Europe are an ecologically outstanding region, with widespread seminatural and old-growth forest. Since 1990, Carpathian countries (Czech Republic, Hungary, Poland, Romania, Slovakia, and Ukraine) have experienced economic hardship and institutional changes, including the breakdown of socialism, European Union accession, and a rapid expansion of protected areas. The question is how protected-area effectiveness has varied during these times across the Carpathians given these changes. We analyzed a satellite-based data set of forest disturbance (i.e., forest loss due to harvesting or natural disturbances) from 1985 to 2010 and used matching statistics and a fixed-effects estimator to quantify the effect of protection on forest disturbance. Protected areas in the Czech Republic, Slovakia, and the Ukraine had significantly less deforestation inside protected areas than outside in some periods; the likelihood of disturbance was reduced by 1-5%. The effectiveness of protection increased over time in these countries, whereas the opposite was true in Romania. Older protected areas were most effective in Romania and Hungary, but newer protected areas were more effective in Czech Republic, and Poland. Strict protection (International Union for Conservation of Nature [IUCN] protection category Ia-II) was not more effective than landscape-level protection (IUCN III-VI). We suggest that the strength of institutions, the differences in forest privatization, forest management, prior distribution of protected areas, and when countries joined the European Union may provide explanations for the strikingly heterogeneous effectiveness patterns among countries. Our results highlight how different the effects of protected areas can be at broad scales, indicating that the effectiveness of protected areas is transitory over time and space and suggesting that generalizations about the effectiveness of protected areas can be misleading. © 2016 Society for Conservation Biology.
A large-scale field assessment of carbon stocks in human-modified tropical forests.
Berenguer, Erika; Ferreira, Joice; Gardner, Toby Alan; Aragão, Luiz Eduardo Oliveira Cruz; De Camargo, Plínio Barbosa; Cerri, Carlos Eduardo; Durigan, Mariana; Cosme De Oliveira Junior, Raimundo; Vieira, Ima Célia Guimarães; Barlow, Jos
2014-12-01
Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0-30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long-term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively avoid degradation as well as deforestation. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
[Psychological Effects of Forest Therapy Program on Workers].
Ikei, Harumi; Koizumi, Haruka; Song, Chorong; Kouzuki, Mitsunori; Teratani, Seiichiro; Sakuma, Takahiro; Miyazaki, Yoshifumi
2015-01-01
To examine the psychological effects of forest therapy program on workers. The subjective symptoms index, a shortened version of the profile of mood states (POMS), and a semantic differential (SD) method were used to measure the psychological effects. The evaluations were performed 3 days before, during, and 1, 3, and 5 days after the forest therapy. The following results were obtained: (1) the subjective symptoms improved before breakfast and continued for 5 days; (2) the mood evaluated using POMS improved before breakfast and continued for 3 days; and (3) “comfortable,” “relaxed,” and “natural” feelings evaluated using the SD method were enhanced before breakfast, lunch, and dinner during forest therapy. These results provided scientific evidence of the psychological effects of forest therapy program on workers.
Forest Practice Rules and cumulative watershed impacts in California
L. M. Reid
1999-01-01
Response to the following questions, "As currently implemented, are existing California forest practice rules effective in preventing cumulative watershed impacts, including flooding?" and "What kind of measures might improve the effectiveness of forest practices rules for avoiding forestry-related cumulative watershed impacts
36 CFR 218.16 - Applicability and effective date.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Applicability and effective date. 218.16 Section 218.16 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PREDECISIONAL ADMINISTRATIVE REVIEW PROCESSES Predecisional Administrative Review Process for...
Forest structure and downed woody debris in boreal, temperate, and tropical forest fragments.
Gould, William A; González, Grizelle; Hudak, Andrew T; Hollingsworth, Teresa Nettleton; Hollingsworth, Jamie
2008-12-01
Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.
Pamela J. Edwards; Frederica Wood; Robin L. Quinlivan
2016-01-01
Literature describing the effectiveness of best management practices (BMPs) applicable to forest roads is reviewed and synthesized. Effectiveness is considered from the perspective of protecting water quality and water resources. Both paved and unpaved forest roads are considered, but BMPs that involve substantial engineering are not considered. Some of the BMPs...
Effects of multiple fires on the structure of southwestern Washington forests
Andrew N. Gray; Jerry F. Franklin
1997-01-01
Fire frequcncy, intensity, and size can influence the nature of forest development, with potentially profound effects on ecosystem processes and the abundance of native species. The effect of an intense wildfire and subsequent severe fires within a short period (reburns) on forest establishment, composition, and structure was examined in the 16,000 ha Siouxon Creek...
Homogenization of northern U.S. Great Lakes forests due to land use
Lisa A. Schulte; David J. Mladenoff; Thomas R. Crow; Laura C. Merrick; David T. Cleland
2007-01-01
Human land use of forested regions has intensified worldwide in recent decades, threatening long-term sustainability. Primary effects include conversion of land cover or reversion to an earlier stage of successional development. Both types of change can have cascading effects through ecosystems; however, the longterm effects where forests are allowed to regrow are...
R. Bruce Medhurst; Mark S. Wipfli; Chris Binckley; Karl Polivka; Paul F. Hessburg; R. Brion. Salter
2010-01-01
Effects of forest management on stream communities have been widely documented, but the role that climate plays in the disturbance outcomes is not understood. In order to determine whether the effect of disturbance from forest management on headwater stream communities varies by climate, we evaluated benthic macroinvertebrate communities in 24 headwater streams that...
Modeling the cumulative watershed effects of forest management strategies
R. R. Ziemer; J. Lewis; R. M. Rice; T. E. Lisle
1991-01-01
Abstract - There is increasing concern over the possibility of adverse cumulative watershed effects from intensive forest management. It is impractical to address many aspects of the problem experimentally because to do so would require studying large watersheds for 100 yr or more. One such aspect is the long-term effect of forest management strategies on erosion and...
Detecting the effects of forest harvesting on streamflow using hydrologic model change detection
Nicolas P. Zegre; Nicholas A. Som
2011-01-01
Knowledge of the effects of forest management on hydrology primarily comes from paired-catchment study experiments. This approach has contributed fundamental knowledge of the effects of forest management on hydrology, but results from these studies lack insight into catchment processes. Outlined in this study is an alternative method of change detection that uses a...
NASA Astrophysics Data System (ADS)
Uriarte, M.; Schwartz, N.; Budsock, A.
2017-12-01
Naturally regenerating second-growth forests account for ca. 50% of tropical forest cover and provide key ecosystem services. Understanding climate impacts on these ecosystems is critical for developing effective mitigation programs. Differences in environmental conditions and landscape context from old-growth forests may exacerbate climate impacts on second-growth stands. Nearly 70% of forest regeneration is occurring in hilly, upland, or mountain regions; a large proportion of second-growth forests are also fragmented. The effects of drought at the landscape scale, however, and the factors that modulate landscape heterogeneity in drought impacts remain understudied. Heterogeneity in soil moisture, light, and temperature in fragmented, topographically complex landscapes is likely to influence climate impacts on these forests. We examine impacts of a severe drought in 2015 on a forested landscape in Puerto Rico using two anomalies in vegetation indices. The study landscape is fragmented and topographically complex and includes old- and second-growth forests. We consider how topography (slope, aspect), fragmentation (distance to forest edge, patch size), and forest age (old- vs second-growth) modulate landscape heterogeneity of drought impacts and recovery from drought. Drought impacts were more severe in second-growth forests than in old-growth stands. Both topography and forest fragmentation influences the magnitude of drought impacts. Forest growing in steep areas, south facing slopes, small patches, and closer to forest edges exhibited more marked responses to drought. Forest recovery from drought was greater in second-growth forests and south facing slopes but slower in small patches and closer to forest edges. These findings are congruent with studies of drought impacts on tree growth in the study region. Together these results demonstrate the need for a multi-scalar approach to the study of drought impacts on tropical forests.
Quantifying scaling effects on satellite-derived forest area estimates for the conterminous USA
Daolan Zheng; L.S. Heath; M.J. Ducey; J.E. Smith
2009-01-01
We quantified the scaling effects on forest area estimates for the conterminous USA using regression analysis and the National Land Cover Dataset 30m satellite-derived maps in 2001 and 1992. The original data were aggregated to: (1) broad cover types (forest vs. non-forest); and (2) coarser resolutions (1km and 10 km). Standard errors of the model estimates were 2.3%...
J.W. Campbell; J.L. Hanula; T.A. Waldrop
2007-01-01
Pollination by insects in forests is an extremely important process that should be conserved. Not only do pollinating insects help to maintain a diversity of plants within forests, but they also aid in pollinating crops found near forested land. Currently, the effects of various forest management practices on floral visiting insect abundance or diversity is unknown, so...
Peter M. Groffman; Richard V. Pouyat; Mary L. Cadenasso; Wayne C. Zipperer; Katalin Szlavecz; Ian D. Yesilonis; Lawrence E. Band; Grace S. Brush
2006-01-01
Forests embedded in an urban matrix are a useful venue for investigating the effects of multiple factors such as climate change, altered disturbance regimes and species invasions on forest ecosystems. Urban forests also represent a significant land area, with potentially important effects on landscape and regional scale nitrogen (N) and carbon (C) storage and flux. We...
Effects of historic forest disturbance on water quality and flow in the Interior Western U.S
M. Matyjasik; G. Moisen; C. Combe; T. Hathcock; S. Mitts; M. Hernandez; T. Frescino; T. Schroeder
2014-01-01
Water quality and flow is affected my many complex factors in the Interior Western U.S. While many studies focus on individual water parameters response to a limited number of changing conditions, little work looks at long term effects of diverse forest disturbances on a broader array of water quality and flow metrics. The U.S. Forest Service Forest Inventory and...
The effects of forest fires on the stand history of New Jersey's pine region
S. Little
1946-01-01
This paper summarizes the present knowledge on the effects of forest fires in the Pine Region of New Jersey. It is not the result of any one research project, but the combined result of research and observations. Its purpose is to acquaint foresters and others having some knowledge of forestry and conservation with the importance of forest fires and the part they have...
Urbanization effects on soil nitrogen transformations and microbial biomass in the subtropics
Heather A. Enloe; B. Graeme Lockaby; Wayne C. Zipperer; Greg L. Somers
2015-01-01
As urbanization can involve multiple alterations to the soil environment, it is uncertain how urbanization effects soil nitrogen cycling. We established 22â0.04 ha plots in six different land cover typesârural slash pine (Pinus elliottii) plantations (n=3), rural natural pine forests (n=3), rural natural oak forests (n=4), urban pine forests (n=3), urban oak forests (n...
Peter E. Koestner; Karen A. Koestner; Daniel G. Neary
2012-01-01
The Sierra Ancha International Cooperative Program on Assessment and Monitoring of Air Pollution Effects on Forests study site or (SAEF-ICP II) is part of an international network of cooperative forest monitoring sites spread throughout Europe and the United States. The United Nations Economic Commission for Europe established the ICP II network in 1985 to monitor long...
Devlaeminck, Rebecca; De Schrijver, An; Hermy, Martin
2005-01-20
Throughfall deposition and canopy exchange of acidifying and eutrophying compounds and major base cations were studied by means of throughfall analysis in a deciduous beech (Fagus sylvatica L.) forest edge in Belgium over a period of 1 year. Throughfall fluxes of Cl(-), NH(4)(+) and Na(+) were significantly elevated at the forest edge compared to the forest interior. As no edge effect on throughfall water volume could be detected, the observed edge enhancement effects were mainly due to dry deposition and canopy exchange patterns. Indeed, there was an elevated dry deposition of Cl(-), Na(+), K(+), Ca(2+) and Mg(2+) up to 50 m from the field/forest border. Within the forest, throughfall and dry deposition of SO(4)(2-) were highly variable and no significant differences were observed between the forest edge and the forest interior. Leaching of K(+) and Ca(2+) was reduced in the forest edge up to a distance of 30 m from the border. The measured nitrogen and acidic depositions far exceeded the current Flemish critical loads with respect to the protection of biodiversity in forests, especially at the forest edge. This points to an urgent need for controlling emissions as well as the need to consider the elevated deposition load in forest edges when calculating the critical loads in forests.
Chen, Xiao-mei; Liu, Ju-xiu; Deng, Qi; Chu, Guo-wei; Zhou, Guo-yi; Zhang, De-qiang
2010-05-01
From December 2006 to June 2008, a field experiment was conducted to study the effects of natural precipitation, doubled precipitation, and no precipitation on the soil organic carbon fractions and their distribution under a successional series of monsoon evergreen broad-leaf forest, pine and broad-leaf mixed forest, and pine forest in Dinghushan Mountain of Southern China. Different precipitation treatments had no significant effects on the total organic carbon (TOC) concentration in the same soil layer under the same forest type (P > 0.05). In treatment no precipitation, particulate organic carbon (POC) and light fraction organic carbon (LFOC) were mainly accumulated in surface soil layer (0-10 cm); but in treatments natural precipitation and doubled precipitation, the two fractions were infiltrated to deeper soil layers. Under pine forest, soil readily oxidizable organic carbon (ROC) was significantly higher in treatment no precipitation than in treatments natural precipitation and doubled precipitation (P < 0.05). The percentage of soil POC, ROC, and LFOC to soil TOC was much greater under the forests at early successional stage than at climax stage, suggesting that the forest at early successional stage might not be an ideal place for soil organic carbon storage. Precipitation intensity less affected TOC, but had greater effects on the labile components POC, ROC, and LFOC.
Effects of fire on spotted owl site occupancy in a late-successional forest
Roberts, Susan L.; van Wagtendonk, Jan W.; Miles, A. Keith; Kelt, Douglas A.
2011-01-01
The spotted owl (Strix occidentalis) is a late-successional forest dependent species that is sensitive to forest management practices throughout its range. An increase in the frequency and spatial extent of standreplacing fires in western North America has prompted concern for the persistence of spotted owls and other sensitive late-successional forest associated species. However, there is sparse information on the effects of fire on spotted owls to guide conservation policies. In 2004-2005, we surveyed for California spotted owls during the breeding season at 32 random sites (16 burned, 16 unburned) throughout late-successional montane forest in Yosemite National Park, California. Our burned areas burned at all severities, but predominately involved low to moderate fire severity. Based on an information theoretic approach, spotted owl detection and occupancy rates were similar between burned and unburned sites. Nest and roost site occupancy was best explained by a model that combined total tree basal area (positive effect) with cover by coarse woody debris (negative effect). The density estimates of California spotted owl pairs were similar in burned and unburned forests, and the overall mean density estimate for Yosemite was higher than previously reported for montane forests. Our results indicate that low to moderate severity fires, historically common within montane forests of the Sierra Nevada, California, maintain habitat characteristics essential for spotted owl site occupancy. These results suggest that managed fires that emulate the historic fire regime of these forests may maintain spotted owl habitat and protect this species from the effects of future catastrophic fires.
Catterall, Carla P.; Stork, Nigel E.
2018-01-01
Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges (<10 m) and interiors (> 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10–20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity. PMID:29494680
Stone, Marisa J; Catterall, Carla P; Stork, Nigel E
2018-01-01
Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges (<10 m) and interiors (> 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10-20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity.
Local versus landscape-scale effects of anthropogenic land-use on forest species richness
NASA Astrophysics Data System (ADS)
Buffa, G.; Del Vecchio, S.; Fantinato, E.; Milano, V.
2018-01-01
The study investigated the effects of human-induced landscape patterns on species richness in forests. For 80 plots of fixed size, we measured human disturbance (categorized as urban/industrial and agricultural land areas), at 'local' and 'landscape' scale (500 m and 2500 m radius from each plot, respectively), the distance from the forest edge, and the size and shape of the woody patch. By using GLM, we analyzed the effects of disturbance and patch-based measures on both total species richness and the richness of a group of specialist species (i.e. the 'ancient forest species'), representing more specific forest features. Patterns of local species richness were sensitive to the structure and composition of the surrounding landscape. Among the landscape components taken into account, urban/industrial land areas turned out as the most threatening factor for both total species richness and the richness of the ancient forest species. However, the best models evidenced a different intensity of the response to the same disturbance category as well as a different pool of significant variables for the two groups of species. The use of groups of species, such as the ancient forest species pool, that are functionally related and have similar ecological requirements, may represent an effective solution for monitoring forest dynamics under the effects of external factors. The approach of relating local assessment of species richness, and in particular of the ancient forest species pool, to land-use patterns may play an important role for the science-policy interface by supporting and strengthening conservation and regional planning decision making.
NASA Astrophysics Data System (ADS)
Lundquist, Jessica D.; Dickerson-Lange, Susan E.; Lutz, James A.; Cristea, Nicoleta C.
2013-10-01
Many regions of the world are dependent on snow cover for frost protection and summer water supplies. These same regions are predominantly forested, with forests highly vulnerable to change. Here we combine a meta-analysis of observational studies across the globe with modeling to show that in regions with average December-January-February (DJF) temperatures greater than -1°C, forest cover reduces snow duration by 1-2 weeks compared to adjacent open areas. This occurs because the dominant effect of forest cover shifts from slowing snowmelt by shading the snow and blocking the wind to accelerating snowmelt from increasing longwave radiation. In many locations, midwinter melt removes forest snow before solar radiation is great enough for forest shading to matter, and with warming temperatures, midwinter melt is likely to become more widespread. This temperature-effect in forest-snow-climate interactions must be considered in representations of the combined ecohydrological system and can be used advantageously in forest management strategies.
Chen, Hao; Gurmesa, Geshere A.; Liu, Lei; Zhang, Tao; Fu, Shenglei; Liu, Zhanfeng; Dong, Shaofeng; Ma, Chuan; Mo, Jiangming
2014-01-01
Global changes such as increasing CO2, rising temperature, and land-use change are likely to drive shifts in litter inputs to forest floors, but the effects of such changes on litter decomposition remain largely unknown. We initiated a litter manipulation experiment to test the response of litter decomposition to litter removal/addition in three successional forests in southern China, namely masson pine forest (MPF), mixed coniferous and broadleaved forest (MF) and monsoon evergreen broadleaved forest (MEBF). Results showed that litter removal decreased litter decomposition rates by 27%, 10% and 8% and litter addition increased litter decomposition rates by 55%, 36% and 14% in MEBF, MF and MPF, respectively. The magnitudes of changes in litter decomposition were more significant in MEBF forest and less significant in MF, but not significant in MPF. Our results suggest that change in litter quantity can affect litter decomposition, and this impact may become stronger with forest succession in tropical forest ecosystem. PMID:24901698
Long-term effects of fire and harvest on carbon stocks of boreal forests in northeastern China
NASA Astrophysics Data System (ADS)
Huang, C.; He, H. S.; Hawbaker, T. J.; Zhu, Z.; Liang, Y.; Gong, P.
2017-12-01
Fire, harvest and their interactions have strong effects on boreal forests carbon stocks. Repeated disturbances associated with relatively short fire return intervals and harvest rotations, and their interactions caused their effects to increase over simulation time.Boreal forests in the northeastern of China cover 8.46×105 km2, store about 350 Tg aboveground carbon, and play an important role in maintaining China's carbon balance. Boreal forests in this region are facing pressures from repeated fires and timber harvesting activities.The objectives of our study were to evaluate the effects of fire, harvest and their interactions on boreal forest carbon stocks of northeastern China.We used the LANDIS PRO-LINKAGES model-coupling framework to simulate the landscape-level effects of fire and harvest and their interactions over 150 years. Our simulation results suggested that aboveground and soil organic carbon are significantly reduced by fire and harvest over 150 years. The long-term effects of fire and harvest on carbon stocks were greater than the short-term effects in the Great Xing' an Mountains. The total effects of fire-harvest interactions on boreal forests are less than the sum of separate effects of fire and harvest. The response of carbon stocks among ecoregions diverged and was due to the spatial variability of fire and harvest regimes.These results emphasize that fire, harvest, and their interactions play an important role in regulating boreal forest carbon stocks, the extent of fire and harvest effects depended on the intensity of these disturbances.
Effects of federal, state, and local tax policies on family forest owners
Brett J. Butler; Jaketon H. Hewes; Paul Catanzaro; John L. Greene; Michael A. Kilgore; al. et.
2011-01-01
There are over 10 million family forest owners1 across the U.S. (Butler 2008). Collectively they control 264 million acres or 35% of the nation�fs forest land (Butler 2008; Figure 1); in some states, the percentage of family forest ownership can be over 75% (Figure 2). If the forestry and conservation community is interested in keeping forests as forests and...
P.E. Elias; J.A. Burger; M.B. Adams
2009-01-01
The northern and central Appalachian forests are subject to high levels of atmospheric acid deposition (AD), which has been shown in some forests to negatively impact forest growth as well as predispose the forest system to damage from secondary stresses. The purpose of this study was to evaluate the possible contribution of AD to changes in composition and...
Robert E. Kennedy; Zhiqiang Yang; Warren B. Cohen; Eric Pfaff; Justin Braaten; Peder Nelson
2012-01-01
Understanding fine-grain patterns of forest disturbance and regrowth at the landscape scale is critical for effective management, particularly in forests in western Washington, Oregon, and California, U.S., where the policy known as the Northwest Forest Plan (NWFP) was imposed in 1994 over > 8 million ha of forest in an effort to balance environmental and economic...
NASA Astrophysics Data System (ADS)
Numata, I.; Khand, K.; Kjaersgaard, J.; Cochrane, M. A.; Silva, S.
2016-12-01
Deforestation in the Amazon has resulted in massive amounts of forest biomass loss and also in extensive forest fragmentation across the region. Fragmented tropical forests are exposed to abrupt environmental changes and experience several biological and ecological changes across distances from forest edges. Extreme droughts in 2005 and 2010 have caused extensive tree mortality across this region. These events may exacerbate edge effects, where already water stressed forest fragments dry more rapidly potentially enabling other disturbances such as forest fire. We analyzed the effects of forest fragmentation and drought on forest evapotranspiration (ET) estimated using the energy balance-based model METRIC with Landsat imagery in Rondônia State in the southwestern Amazon. Forest ET estimates were produced for the dry seasons (June-August) of 2009-2011 thus including the 2010 drought event and pre- and post-event periods. METRIC ET data were combined with forest edge data with edge distances of 100m, 300m, 500m, 1000m, 5000m and >5000m (core forest), generated from Landsat land cover maps for spatiotemporal analysis of forest ET. METRIC ET estimates had an agreement with flux tower ET data from the field of R2 = 0.72. Within the study time period, the 2010 drought year showed the lowest average ET from core forest (2.5mm/day), followed by 2011 (3.0mm/day) and 2009 (3.6mm/day) in the month of August, the mid dry season, while no significant differences were noted among three study years earlier in the dry seasons. In terms of edge effects, the major changes in forest ET occur up to 300 m from the forest edges, with ET decreasees of 30 % at 100 m as compared to further distances. The magnitude of edge-related ET changes became even greater during August of the drought year (2010) and the post-drought year (2011). Annual (drought and non-drought) and seasonal (June-August) forest ET variations were highly significant (p<0.001), while the impact of distance from edge on forest ET was significant only in the drought year (p<0.05).
Beyond edge effects: landscape controls on forest structure in the southeastern US
NASA Astrophysics Data System (ADS)
Fagan, M. E.; Morton, D. C.; Cook, B.; Masek, J. G.; Zhao, F. A.; Nelson, R.; Huang, C.
2016-12-01
The structure of forest canopies (i.e., their height and complexity) is known to be influenced by a variety of factors, including forest age, species composition, disturbance, edaphic and topographical conditions, and exposure to edge environments. The combined impact of each of these factors on canopy structure is not well characterized for most forest ecosystems, however, which limits our ability to predict the regional impacts of forest fragmentation. The objective of this study was to elucidate the main biophysical drivers of canopy structure across two dominant ecosystems in the southeastern U.S: natural mixed deciduous forests, and industrial conifer plantations. We analyzed spatial changes in canopy structure along aerial transects of LiDAR data ( 3,000 km in all). High-resolution (1 m) LiDAR data from Goddard's LiDAR, Hyperspectral, and Thermal Airborne Imager (G-LiHT) were combined with time series of Landsat imagery to quantify forest type, age, composition, and fragmentation. Forest structural metrics (height, gap fraction, and canopy roughness) were examined across forest types, ages, topography, and decreasing edge exposure. We hypothesized that 1) structural edge effects would be weak in both natural and plantation forest types, and 2) age, composition, and topography would be the dominant influences on natural forest structure. We analyzed all large (>4 ha) fragments from the 8562 distinct forests measured during G-LiHT data collections in 2011 across the southeastern U.S. In general, the relationship between forest structural metrics and edge exposure was highly variable in both natural forests and plantations. However, variability in all structural metrics decreased with distance from an edge. Forest age and topography were strong predictors of canopy structure in natural forests. However plantations tended to be located in sites with limited topographical variation, and thinning disturbances of conifer plantations decreased the strength of the age-structure relationship. We found that canopy structure in our region is influenced by edge effects, but other factors played a larger role in determining forest characteristics. Our results highlight the importance of endogenous, stand-specific processes for forest structure, biomass, and biodiversity in the southeastern U.S.
Yeboah, Daniel; Chen, Han Y H; Kingston, Steve
2016-02-01
Understanding species diversity and disturbance relationships is important for biodiversity conservation in disturbance-driven boreal forests. Species richness and evenness may respond differently with stand development following fire. Furthermore, few studies have simultaneously accounted for the influences of climate and local site conditions on species diversity. Using forest inventory data, we examined the relationships between species richness, Shannon's index, evenness, and time since last stand-replacing fire (TSF) in a large landscape of disturbance-driven boreal forest. TSF has negative effect on species richness and Shannon's index, and a positive effect on species evenness. Path analysis revealed that the environmental variables affect richness and Shannon's index only through their effects on TSF while affecting evenness directly as well as through their effects on TSF. Synthesis and applications. Our results demonstrate that species richness and Shannon's index decrease while species evenness increases with TSF in a boreal forest landscape. Furthermore, we show that disturbance frequency, local site conditions, and climate simultaneously influence tree species diversity through complex direct and indirect effects in the studied boreal forest.
Edge effects on foliar stable isotope values in a Madagascan tropical dry forest.
Crowley, Brooke E; McGoogan, Keriann C; Lehman, Shawn M
2012-01-01
Edge effects represent an inevitable and important consequence of habitat loss and fragmentation. These effects include changes in microclimate, solar radiation, or temperature. Such abiotic effects can, in turn, impact biotic factors. They can have a substantial impact on species, communities, and ecosystems. Here we examine clinal variations in stable carbon and nitrogen isotope values for trees along an edge-interior gradient in the dry deciduous forest at Ankarafantsika National Park. We predicted that soil respiration and differences in solar irradiance would result in stratified δ¹³C values where leaves collected close to the forest floor would have lower δ¹³C values than those growing higher up in the canopy. We also anticipated that plants growing at the savannah-forest boundary would have higher δ¹³C and δ¹⁵N values than plants growing in the forest interior. As expected, we detected a small but significant canopy effect. Leaves growing below 2 m from the forest floor exhibit δ¹³C values that are, on average, 1.1‰ lower than those growing above this threshold. We did not, however, find any relationship between foliar δ¹³C and distance from the edge. Unpredictably, we detected a striking positive relationship between foliar δ¹⁵N values and increasing distance into the forest interior. Variability in physiology among species, anthropogenic influence, organic input, and rooting depth cannot adequately explain this trend. Instead, this unexpected relationship most likely reflects decreasing nutrient or water availability, or a shift in N-sources with increasing distance from the savannah. Unlike most forest communities, the trees at Ampijoroa are growing in nutrient-limited sands. In addition to being nutrient poor, these well-drained soils likely decrease the amount of soil water available to forest vegetation. Continued research on plant responses to edge effects will improve our understanding of the conservation biology of forest ecosystems in Madagascar.
Edge Effects on Foliar Stable Isotope Values in a Madagascan Tropical Dry Forest
Crowley, Brooke E.; McGoogan, Keriann C.; Lehman, Shawn M.
2012-01-01
Edge effects represent an inevitable and important consequence of habitat loss and fragmentation. These effects include changes in microclimate, solar radiation, or temperature. Such abiotic effects can, in turn, impact biotic factors. They can have a substantial impact on species, communities, and ecosystems. Here we examine clinal variations in stable carbon and nitrogen isotope values for trees along an edge-interior gradient in the dry deciduous forest at Ankarafantsika National Park. We predicted that soil respiration and differences in solar irradiance would result in stratified δ13C values where leaves collected close to the forest floor would have lower δ13C values than those growing higher up in the canopy. We also anticipated that plants growing at the savannah-forest boundary would have higher δ13C and δ15N values than plants growing in the forest interior. As expected, we detected a small but significant canopy effect. Leaves growing below 2 m from the forest floor exhibit δ13C values that are, on average, 1.1‰ lower than those growing above this threshold. We did not, however, find any relationship between foliar δ13C and distance from the edge. Unpredictably, we detected a striking positive relationship between foliar δ15N values and increasing distance into the forest interior. Variability in physiology among species, anthropogenic influence, organic input, and rooting depth cannot adequately explain this trend. Instead, this unexpected relationship most likely reflects decreasing nutrient or water availability, or a shift in N-sources with increasing distance from the savannah. Unlike most forest communities, the trees at Ampijoroa are growing in nutrient-limited sands. In addition to being nutrient poor, these well-drained soils likely decrease the amount of soil water available to forest vegetation. Continued research on plant responses to edge effects will improve our understanding of the conservation biology of forest ecosystems in Madagascar. PMID:22973460
Forest Patch Size, Land Use, and Mesic Forest Herbs in the French Broad River Basin, North Carolina
Scott M. Pearson; Alan B. Smith; Monica G. Turner
1998-01-01
The effect of forest fragmentation on cove-forest herbs was studied in the Southern Blue Ridge Province. Patches of mesic forests were sampled with 4 ha study plots. The coverage and density of herb species were greater in large patches (>200 ha) than in small patches (
Can forest watershed management mitigate climate change effects on water resources
James M. Vose; Chelcy R. Ford; Stephanie Laseter; Salli Dymond; Ge Sun; Mary Beth Adams; Stephen Sebestyen; John Campbell; Charlie Luce; Devendra Amatya; Kelly Elder; Tamara Heartsill Scalley
2012-01-01
Long-term hydrology and climate data from United States Forest Service Experimental Forests and Ranges (EFR) provide critical information on the interactions among climate, streamflow, and forest management practices. We examined the relationships among streamflow responses to climate variation and forest management using long-term data. Analysis of climate data from a...
Climate change and forest diseases
R.N. Sturrock; Susan Frankel; A. V. Brown; Paul Hennon; J. T. Kliejunas; K. J. Lewis; J. J. Worrall; A. J. Woods
2011-01-01
As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interactions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and...
Rare Plants of the Redwood Forest and Forest Management Effects
Teresa Sholars; Clare Golec
2007-01-01
Coast redwood forests are predominantly a timber managed habitat type, subjected to repeated disturbances and short rotation periods. What does this repeated disturbance mean for rare plants associated with the redwood forests? Rare plant persistence through forest management activities is influenced by many factors. Persistence of rare plants in a managed landscape is...
Comparison of proposed survey procedures for detection of forest carnivores
Kerry R. Foresman; Dean E. Pearson
1998-01-01
American marten (Martes americana), fisher (M. pennanti), wolverine (Gulo gulo), and lynx (Lynx lynx) are forest carnivores believed threatened by disturbance of late-successional forests. To manage forested ecosystems for these species, effective methods for their detection must be available. Recently, the U.S. Forest Service proposed standardized survey procedures...
Invasive plants, insects, and diseases in the forests of the Anthropocene
Alexander M. Evans
2014-01-01
Invasive species, non-native plants, insects, and diseases can devastate forests. They outcompete native species, replace them in the ecosystem, and even drive keystone forest species to functional extinction. Invasives have negative effects on forest hydrology, carbon storage, and nutrient cycling. The damage caused by invasive species exacerbates the other forest...
NASA Astrophysics Data System (ADS)
McGrath, M.; Luyssaert, S.; Naudts, K.; Chen, Y.; Ryder, J.; Otto, J.; Valade, A.
2015-12-01
Forest management has the potential to impact surface physical characteristics to the same degree that changes in land cover do. The impacts of land cover changes on the global climate are well-known. Despite an increasingly detailed understanding of the potential for forest management to affect climate, none of the current generation of Earth system models account for forest management through their land surface modules. We addressed this gap by developing and reparameterizing the ORCHIDEE land surface model to simulate the biogeochemical and biophysical effects of forest management. Through vertical discretization of the forest canopy and corresponding modifications to the energy budget, radiation transfer, and carbon allocation, forest management can now be simulated much more realistically on the global scale. This model was used to explore the effect of forest management on European climate since 1750. Reparameterization was carried out to replace generic forest plant functional types with real tree species, covering the most dominant species across the continent. Historical forest management and land cover maps were created to run the simulations from 1600 until the present day. The model was coupled to the atmospheric model LMDz to explore differences in climate between 1750 and 2010 and attribute those differences to changes in atmospheric carbon dioxide concentrations and concurrent warming, land cover, species composition, and wood extraction. Although Europe's forest are considered a carbon sink in this century, our simulations show the modern forests are still experiencing carbon debt compared to their historical values.
Comparing simulated carbon budget of a Lei bamboo forest with flux tower data
Li, Xuehe; Jiang, Hong; Liu, Jinxun; Sun, Cheng; Wang, Ying; Jin, Jiaxin
2014-01-01
Bamboo forest ecosystem is the part of the forest ecosystem. The distribution area of bamboo forest is limited, but in somewhere, like south China, it has been cultivate for a long time with human management. As the climate change has been take great effect on forest carbon budget, many researchers pay attention to the carbon budget in bamboo forest. Moreover cultivative management had a significant impact on the bamboo forest carbon budget. In this study, we modified a terrestrial ecosystem model named Integrated Biosphere Simulator (IBIS) according the management of Lei bamboo forest. Some management, like fertilization, shoots harvesting and organic mulching in winter, had been incorporated into model. Then we had compared model results with the observation data from a Lei bamboo flux tower. The simulated and observed results had achieved good consistency. Our simulated Lei bamboo forest yearly net ecosystem productivity (NEP) was 0.41 kgC a-1 of carbon, which is very close to the observation data 0.45 kgC a-1 of carbon. And the monthly simulated results can take the change of carbon budget in each month, similar to the data we got from flux tower. It reflects that the modified IBIS model can characterize the growth of bamboo forest and perform the simulation well. And then two groups of simulations were set to evaluate effects of cultivative managements on Lei bamboo forests carbon budget. And results showed that both fertilization and organic mulching had taken positive effects on Lei bamboo forests carbon sequestration.
Forest Management as an Element of Environment Development
NASA Astrophysics Data System (ADS)
Jaszczak, Roman; Gołojuch, Piotr; Wajchman-Świtalska, Sandra; Miotke, Mariusz
2017-12-01
The implementation of goals of modern forestry requires a simultaneous consideration of sustainable development of forests, protection, needs of the environment development, as well as maintaining a balance between functions of forests. In the current multifunctional forest model, rational forest management assumes all of its tasks as equally important. Moreover, its effects are important factors in the nature and environment protection. The paper presents legal conditions related to the definitions of forest management concepts and sustainable forest management. Authors present a historical outline of human's impact on the forest and its consequences for the environment. The selected aspects of forest management (eg. forest utilization, afforestation, tourism and recreation) and their role in the forest environment have been discussed.
Boyemba, Faustin; Lewis, Simon; Nabahungu, Nsharwasi Léon; Calders, Kim; Zapfack, Louis; Riera, Bernard; Balegamire, Clarisse; Cuni-Sanchez, Aida
2017-01-01
Tropical montane forests provide an important natural laboratory to test ecological theory. While it is well-known that some aspects of forest structure change with altitude, little is known on the effects of altitude on above ground biomass (AGB), particularly with regard to changing height-diameter allometry. To address this we investigate (1) the effects of altitude on height-diameter allometry, (2) how different height-diameter allometric models affect above ground biomass estimates; and (3) how other forest structural, taxonomic and environmental attributes affect above ground biomass using 30 permanent sample plots (1-ha; all trees ≥ 10 cm diameter measured) established between 1250 and 2600 m asl in Kahuzi Biega National Park in eastern Democratic Republic of Congo. Forest structure and species composition differed with increasing altitude, with four forest types identified. Different height-diameter allometric models performed better with the different forest types, as trees got smaller with increasing altitude. Above ground biomass ranged from 168 to 290 Mg ha-1, but there were no significant differences in AGB between forests types, as tree size decreased but stem density increased with increasing altitude. Forest structure had greater effects on above ground biomass than forest diversity. Soil attributes (K and acidity, pH) also significantly affected above ground biomass. Results show how forest structural, taxonomic and environmental attributes affect above ground biomass in African tropical montane forests. They particularly highlight that the use of regional height-diameter models introduces significant biases in above ground biomass estimates, and that different height-diameter models might be preferred for different forest types, and these should be considered in future studies. PMID:28617841
de Wit, Heleen A; Bryn, Anders; Hofgaard, Annika; Karstensen, Jonas; Kvalevåg, Maria M; Peters, Glen P
2014-07-01
Expanding high-elevation and high-latitude forest has contrasting climate feedbacks through carbon sequestration (cooling) and reduced surface reflectance (warming), which are yet poorly quantified. Here, we present an empirically based projection of mountain birch forest expansion in south-central Norway under climate change and absence of land use. Climate effects of carbon sequestration and albedo change are compared using four emission metrics. Forest expansion was modeled for a projected 2.6 °C increase in summer temperature in 2100, with associated reduced snow cover. We find that the current (year 2000) forest line of the region is circa 100 m lower than its climatic potential due to land-use history. In the future scenarios, forest cover increased from 12% to 27% between 2000 and 2100, resulting in a 59% increase in biomass carbon storage and an albedo change from 0.46 to 0.30. Forest expansion in 2100 was behind its climatic potential, forest migration rates being the primary limiting factor. In 2100, the warming caused by lower albedo from expanding forest was 10 to 17 times stronger than the cooling effect from carbon sequestration for all emission metrics considered. Reduced snow cover further exacerbated the net warming feedback. The warming effect is considerably stronger than previously reported for boreal forest cover, because of the typically low biomass density in mountain forests and the large changes in albedo of snow-covered tundra areas. The positive climate feedback of high-latitude and high-elevation expanding forests with seasonal snow cover exceeds those of afforestation at lower elevation, and calls for further attention of both modelers and empiricists. The inclusion and upscaling of these climate feedbacks from mountain forests into global models is warranted to assess the potential global impacts. © 2013 John Wiley & Sons Ltd.
Effects of nitrogen and phosphorus additions on soil methane uptake in disturbed forests
NASA Astrophysics Data System (ADS)
Zheng, Mianhai; Zhang, Tao; Liu, Lei; Zhang, Wei; Lu, Xiankai; Mo, Jiangming
2016-12-01
Atmospheric nitrogen (N) deposition is generally thought to suppress soil methane (CH4) uptake in natural forests, and phosphorus (P) input may alleviate this negative effect. However, it remains unclear how N and P inputs control soil CH4 uptake in disturbed forests. In this study, soil CH4 uptake rates were measured in two disturbed forests, including a secondary forest (with previous, but not recent, disturbance) and a plantation forest (with recent continuous disturbance), in southern China for 34 months of N and/or P additions: control, N addition (150 kg N ha-1 yr-1), P addition (150 kg P ha-1 yr-1), and NP addition (150 kg N ha-1 yr-1 plus 150 kg P ha-1 yr-1). Mean CH4 uptake rate in control plots was significantly higher in the secondary forest (24.40 ± 0.81 µg CH4-C m-2 h-1) than in the plantation forest (17.07 ± 0.70 µg CH4-C m-2 h-1). CH4 uptake rate had negative relationships with soil water-filled pore space in both forests. In the secondary forest, N, P, and NP additions significantly decreased CH4 uptake by 39.7%, 27.8%, and 37.6%, respectively, but had no significant effects in the plantation forest, indicating that P input does not alleviate the suppression of CH4 uptake by N deposition. Taken together, our findings suggest that reducing anthropogenic disturbance, including harvesting of forest floor, and anthropogenic N and P inputs will increase soil CH4 uptake in disturbed forests, which is important in view of the increased trends in global warming during recent decades.
Imani, Gérard; Boyemba, Faustin; Lewis, Simon; Nabahungu, Nsharwasi Léon; Calders, Kim; Zapfack, Louis; Riera, Bernard; Balegamire, Clarisse; Cuni-Sanchez, Aida
2017-01-01
Tropical montane forests provide an important natural laboratory to test ecological theory. While it is well-known that some aspects of forest structure change with altitude, little is known on the effects of altitude on above ground biomass (AGB), particularly with regard to changing height-diameter allometry. To address this we investigate (1) the effects of altitude on height-diameter allometry, (2) how different height-diameter allometric models affect above ground biomass estimates; and (3) how other forest structural, taxonomic and environmental attributes affect above ground biomass using 30 permanent sample plots (1-ha; all trees ≥ 10 cm diameter measured) established between 1250 and 2600 m asl in Kahuzi Biega National Park in eastern Democratic Republic of Congo. Forest structure and species composition differed with increasing altitude, with four forest types identified. Different height-diameter allometric models performed better with the different forest types, as trees got smaller with increasing altitude. Above ground biomass ranged from 168 to 290 Mg ha-1, but there were no significant differences in AGB between forests types, as tree size decreased but stem density increased with increasing altitude. Forest structure had greater effects on above ground biomass than forest diversity. Soil attributes (K and acidity, pH) also significantly affected above ground biomass. Results show how forest structural, taxonomic and environmental attributes affect above ground biomass in African tropical montane forests. They particularly highlight that the use of regional height-diameter models introduces significant biases in above ground biomass estimates, and that different height-diameter models might be preferred for different forest types, and these should be considered in future studies.
An imperative need for global change research in tropical forests.
Zhou, Xuhui; Fu, Yuling; Zhou, Lingyan; Li, Bo; Luo, Yiqi
2013-09-01
Tropical forests play a crucial role in regulating regional and global climate dynamics, and model projections suggest that rapid climate change may result in forest dieback or savannization. However, these predictions are largely based on results from leaf-level studies. How tropical forests respond and feedback to climate change is largely unknown at the ecosystem level. Several complementary approaches have been used to evaluate the effects of climate change on tropical forests, but the results are conflicting, largely due to confounding effects of multiple factors. Although altered precipitation and nitrogen deposition experiments have been conducted in tropical forests, large-scale warming and elevated carbon dioxide (CO2) manipulations are completely lacking, leaving many hypotheses and model predictions untested. Ecosystem-scale experiments to manipulate temperature and CO2 concentration individually or in combination are thus urgently needed to examine their main and interactive effects on tropical forests. Such experiments will provide indispensable data and help gain essential knowledge on biogeochemical, hydrological and biophysical responses and feedbacks of tropical forests to climate change. These datasets can also inform regional and global models for predicting future states of tropical forests and climate systems. The success of such large-scale experiments in natural tropical forests will require an international framework to coordinate collaboration so as to meet the challenges in cost, technological infrastructure and scientific endeavor.
Orihuela, Rodrigo L L; Peres, Carlos A; Mendes, Gabriel; Jarenkow, João A; Tabarelli, Marcelo
2015-01-01
We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.
Orihuela, Rodrigo L. L.; Peres, Carlos A.; Mendes, Gabriel; Jarenkow, João A.; Tabarelli, Marcelo
2015-01-01
We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide. PMID:26309252
NASA Astrophysics Data System (ADS)
Ťupek, Boris; Minkkinen, Kari; Vesala, Timo; Nikinmaa, Eero
2015-04-01
In a mosaic of well drained forests and poorly drained mires of boreal landscape the weather events such as drought and rainy control greenhouse gas dynamics and ecosystem global warming potential (GWP). In forest-mire ecotone especially in ecosystems where CO2 sink is nearly balanced with CO2 source, it's fairly unknown whether the net warming effect of emissions of gases with strong radiative forcing (CH4 and N2O) could offset the net cooling effect of CO2 sequestration. We compared the net ecosystem CO2 exchange (NEE) estimated from the carbon sequestrations of forest stands and forest floor CO2 fluxes against CH4 and N2O fluxes of nine forest/mire site types along the soil moisture gradient in Finland. The ground water of nine sites changed between 10 m in upland forests and 0.1 m in mires, and weather during three years ranged between exceptionally wet and dry for the local climate. The NEE of upland forests was typically a sink of CO2, regardless the weather. Though, xeric pine forest was estimated to be a source of CO2 during wet and intermediate year and became a weak sink only in dry year. The NEE of forest-mire transitions ranged between a sink in dry year, while increased stand carbon sequestration could offset the reduced forest floor CO2 emission, and a source in wet year. The NEE of two sparsely forested mires strongly differed. The lawn type mire was balanced around zero and the hummock type mire was relatively strong NEE sink, regardless the weather. Generally, nearly zero N2O emission could not offset the cooling effect of net CH4 sink and net CO2 sink of upland forest and forest-mire transitions. However in sparsely forested mires, with N2O emission also nearly zero, the CH4 emission during wet and intermediate year played important role in turning the net cooling effect of NEE into a net warming. When evaluating GWP of boreal landscapes, undisturbed forest-mire transitions should be regarded as net cooling ecosystems instead of hotspots of net warming.
Cost-effective age structure and geographical distribution of boreal forest reserves.
Lundström, Johanna; Ohman, Karin; Perhans, Karin; Rönnqvist, Mikael; Gustafsson, Lena; Bugman, Harald
2011-02-01
1. Forest reserves are established to preserve biodiversity, and to maintain natural functions and processes. Today there is heightened focus on old-growth stages, with less attention given to early successional stages. The biodiversity potential of younger forests has been overlooked, and the cost-effectiveness of incorporating different age classes in reserve networks has not yet been studied.2. We performed a reserve selection analysis in boreal Sweden using the Swedish National Forest Inventory plots. Seventeen structural variables were used as biodiversity indicators, and the cost of protecting each plot as a reserve was assessed using the Heureka system. A goal programming approach was applied, which allowed inclusion of several objectives and avoided a situation in which common indicators affected the result more than rare ones. The model was limited either by budget or area.3. All biodiversity indicators were found in all age classes, with more than half having the highest values in ages ≥ 100 years. Several large-tree indicators and all deadwood indicators had higher values in forests 0-14 years than in forests 15-69 years.4. It was most cost-effective to protect a large proportion of young forests since they generally have a lower net present value compared to older forests, but still contain structures of importance for biodiversity. However, it was more area-effective to protect a large proportion of old forests since they have a higher biodiversity potential per area.5. The geographical distribution of reserves selected with the budget-constrained model was strongly biassed towards the north-western section of boreal Sweden, with a large proportion of young forest, whereas the area-constrained model focussed on the south-eastern section, with dominance by the oldest age class.6.Synthesis and applications. We show that young forests with large amounts of structures important to biodiversity such as dead wood and remnant trees are cheap and cost-efficient to protect. This suggests that reserve networks should incorporate sites with high habitat quality of different forest ages. Since young forests are generally neglected in conservation, our approach is of interest also to other forest biomes where biodiversity is adapted to disturbance regimes resulting in open, early successional stages.
NASA Astrophysics Data System (ADS)
Xu, Zhiwei; Yu, Guirui; Zhang, Xinyu; He, Nianpeng; Wang, Qiufeng; Wang, Shengzhong; Xu, Xiaofeng; Wang, Ruili; Zhao, Ning
2018-03-01
Soil microorganisms play an important role in regulating nutrient cycling in terrestrial ecosystems. Most of the studies conducted thus far have been confined to a single forest biome or have focused on one or two controlling factors, and few have dealt with the integrated effects of climate, vegetation, and soil substrate availability on soil microbial communities and functions among different forests. In this study, we used phospholipid-derived fatty acid (PLFA) analysis to investigate soil microbial community structure and extracellular enzymatic activities to evaluate the functional potential of soil microbes of different types of forests in three different climatic zones along the north-south transect in eastern China (NSTEC). Both climate and forest type had significant effects on soil enzyme activities and microbial communities with considerable interactive effects. Except for soil acid phosphatase (AP), the other three enzyme activities were much higher in the warm temperate zone than in the temperate and the subtropical climate zones. The soil total PLFAs and bacteria were much higher in the temperate zone than in the warm temperate and the subtropical zones. The soil β-glucosidase (BG) and N-acetylglucosaminidase (NAG) activities were highest in the coniferous forest. Except for the soil fungi and fungi-bacteria (F/B), the different groups of microbial PLFAs were much higher in the conifer broad-leaved mixed forests than in the coniferous forests and the broad-leaved forests. In general, soil enzyme activities and microbial PLFAs were higher in primary forests than in secondary forests in temperate and warm temperate regions. In the subtropical region, soil enzyme activities were lower in the primary forests than in the secondary forests and microbial PLFAs did not differ significantly between primary and secondary forests. Different compositions of the tree species may cause variations in soil microbial communities and enzyme activities. Our results showed that the main controls on soil microbes and functions vary in different climatic zones and that the effects of soil moisture content, soil temperature, clay content, and the soil N / P ratio were considerable. This information will add value to the modeling of microbial processes and will contribute to carbon cycling in large-scale carbon models.
Estimation of Wild Fire Risk Area based on Climate and Maximum Entropy in Korean Peninsular
NASA Astrophysics Data System (ADS)
Kim, T.; Lim, C. H.; Song, C.; Lee, W. K.
2015-12-01
The number of forest fires and accompanying human injuries and physical damages has been increased by frequent drought. In this study, forest fire danger zone of Korea is estimated to predict and prepare for future forest fire hazard regions. The MaxEnt (Maximum Entropy) model is used to estimate the forest fire hazard region which estimates the probability distribution of the status. The MaxEnt model is primarily for the analysis of species distribution, but its applicability for various natural disasters is getting recognition. The detailed forest fire occurrence data collected by the MODIS for past 5 years (2010-2014) is used as occurrence data for the model. Also meteorology, topography, vegetation data are used as environmental variable. In particular, various meteorological variables are used to check impact of climate such as annual average temperature, annual precipitation, precipitation of dry season, annual effective humidity, effective humidity of dry season, aridity index. Consequently, the result was valid based on the AUC(Area Under the Curve) value (= 0.805) which is used to predict accuracy in the MaxEnt model. Also predicted forest fire locations were practically corresponded with the actual forest fire distribution map. Meteorological variables such as effective humidity showed the greatest contribution, and topography variables such as TWI (Topographic Wetness Index) and slope also contributed on the forest fire. As a result, the east coast and the south part of Korea peninsula were predicted to have high risk on the forest fire. In contrast, high-altitude mountain area and the west coast appeared to be safe with the forest fire. The result of this study is similar with former studies, which indicates high risks of forest fire in accessible area and reflects climatic characteristics of east and south part in dry season. To sum up, we estimated the forest fire hazard zone with existing forest fire locations and environment variables and had meaningful result with artificial and natural effect. It is expected to predict future forest fire risk with future climate variables as the climate changes.
The Amazon forest-rainfall feedback: the roles of transpiration and interception
NASA Astrophysics Data System (ADS)
Dekker, Stefan; Staal, Arie; Tuinenburg, Obbe
2017-04-01
In the Amazon, deep-rooted trees increase local transpiration and high tree cover increase local interception evaporation. These increased local evapotranspiration fluxes to the atmosphere have both positive effects on forests down-wind, as they stimulate rainfall. Although important for the functioning of the Amazon, we have an inadequate assessment on the strength and the timing of these forest-rainfall feedbacks. In this study we (i) estimate local forest transpiration and local interception evaporation, (ii) simulate the trajectories of these moisture flows through the atmosphere and (iii) quantify their contributions to the forest-rainfall feedback for the whole Amazon basin. To determine the atmospheric moisture flows in tropical South America we use a Lagrangian moisture tracking algorithm on 0.25° (c. 25 km) resolution with eight atmospheric layers on a monthly basis for the period 2003-2015. With our approach we account for multiple re-evaporation cycles of this moisture. We also calculate for each month the potential effects of forest loss on evapotranspiration. Combined, these calculations allow us to simulate the effects of land-cover changes on rainfall in downwind areas and estimate the effect on the forest. We found large regional and temporal differences in the importance how forest contribute to rainfall. The transpiration-rainfall feedback is highly important during the dry season. Between September-November, when large parts of the Amazon are at the end of the dry season, more than 50% of the rainfall is caused by the forests upstream. This means that droughts in the Amazon are alleviated by the forest. Furthermore, we found that much moisture cycles several times during its trajectory over the Amazon. After one evapotranspiration-rainfall cycle, more than 40% of the moisture is re-evaporated again. The interception-evaporation feedback is less important during droughts. Finally from our analysis, we show that the forest-rainfall feedback is essential for the resilience of the south-western and northern parts of the Amazon forest. Without the forest-rainfall feedbacks, these forest wouldn't exist.
IMPACTS OF AIR POLLUTION AND CLIMATE CHANGE ON FOREST ECOSYSTEMS - EMERGING RESEARCH NEEDS
Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems "Forests under Anthropogenic Pressure - Effects of Air Pollution, Climate Change and Urban Development", September 10-16, 2006, Riverside, CA, USA are summarized. Tropospheric ozone is st...
Estimating Damage Cost of Net Primary Production due to Climate Change and Ozone(O3) Effect
NASA Astrophysics Data System (ADS)
Park, J. H.; Lee, D. K.; Park, C.; Sung, S.; Kim, H. G.; Mo, Y.; Kim, S.; Kil, S.
2016-12-01
Forests are absorbing and storing carbon dioxide (CO2) through photosynthesis. The forests are not only preventing global warming but also influencing temperature, precipitation and humidity (Costanza et al., 1997; de Groot et al., 2002). Also the forests are recognized as a carbon sink internationally (van Kooten, 2009). The Korean Government supports the economic activity such as carbon offset projects in accordance with 'ACT ON THE MANAGEMENT AND IMPROVEMENT OF CARBON SINK' Article27 (Korea Forest Service, 2013) and aims to make a policy which improves the CO2 capacity of forest for Paris Agreement discussed in UNFCCC COP21, December 2015 (Korea Forest Service, 2015). However, the social-economic activities make to increase aerosols as well as greenhouse gases significantly since the industrial revolution, as a result, the chemical composition of the atmosphere has changed significantly. According to the resent studies, not only CO2 but atmospheric chemistries such as ozone (O3), aerosol and black carbon can be an important factor causing climate change (Hansen et al., 2007; IPCC, 2007). In the past, acid rain affected on forest, but in these days, O3, nitrogen oxide (NOX) and sulfur oxide (SOX) are the most threatening factors on forest ecosystem (Lee et al, 2011). In particular, O3accounts for most of the photochemical products and causes a direct significant impact or damage on the plant because of high toxicity (Han et al., 2006). The research questions of this study are "How does O3 effects on forest productivity in the present and future? " What is the damage cost by the O3 effect in the future? In this study, we developed a statistical model using the parameters which effect on the forest productivity. We estimated the forest productivity using on the derived model in the present and future on a SSP scenarios. Lastly, we evaluated the economic effect or damage cost of O3effect by introducing the concept of climate insurance. The average forest productivity, net primary productivity (NPP), in Korea is about 622 gC/m2/yr in the results. And the result shows that NPP decreases about 2.3% by O3 negative effect. The NPP in the future also decreases about 1-2% and the negative effect of O3 is similar. Finally, damage cost by O3 in the future is bigger than damage by climate change.
Primary forests are irreplaceable for sustaining tropical biodiversity.
Gibson, Luke; Lee, Tien Ming; Koh, Lian Pin; Brook, Barry W; Gardner, Toby A; Barlow, Jos; Peres, Carlos A; Bradshaw, Corey J A; Laurance, William F; Lovejoy, Thomas E; Sodhi, Navjot S
2011-09-14
Human-driven land-use changes increasingly threaten biodiversity, particularly in tropical forests where both species diversity and human pressures on natural environments are high. The rapid conversion of tropical forests for agriculture, timber production and other uses has generated vast, human-dominated landscapes with potentially dire consequences for tropical biodiversity. Today, few truly undisturbed tropical forests exist, whereas those degraded by repeated logging and fires, as well as secondary and plantation forests, are rapidly expanding. Here we provide a global assessment of the impact of disturbance and land conversion on biodiversity in tropical forests using a meta-analysis of 138 studies. We analysed 2,220 pairwise comparisons of biodiversity values in primary forests (with little or no human disturbance) and disturbed forests. We found that biodiversity values were substantially lower in degraded forests, but that this varied considerably by geographic region, taxonomic group, ecological metric and disturbance type. Even after partly accounting for confounding colonization and succession effects due to the composition of surrounding habitats, isolation and time since disturbance, we find that most forms of forest degradation have an overwhelmingly detrimental effect on tropical biodiversity. Our results clearly indicate that when it comes to maintaining tropical biodiversity, there is no substitute for primary forests.
Landscape and vegetation effects on avian reproduction on bottomland forest restorations
Twedt, Daniel J.; Somershoe, Scott G.; Hazler, Kirsten R.; Cooper, Robert J.
2010-01-01
Forest restoration has been undertaken on >200,000 ha of agricultural land in the Mississippi Alluvial Valley, USA, during the past few decades. Decisions on where and how to restore bottomland forests are complex and dependent upon landowner objectives, but for conservation of silvicolous (forest-dwelling) birds, ecologists have espoused restoration through planting a diverse mix of densely spaced seedlings that includes fast-growing species. Application of this planting strategy on agricultural tracts that are adjacent to extant forest or within landscapes that are predominately forested has been advocated to increase forest area and enhance forested landscapes, thereby benefiting area-sensitive, silvicolous birds. We measured support for these hypothesized benefits through assessments of densities of breeding birds and reproductive success of 9 species on 36 bottomland forest restoration sites. Densities of thamnic (shrub-scrub dwelling) and silvicolous birds, such as yellow-breasted chat (Icteria virens), indigo bunting (Passerina cyanea), and white-eyed vireo (Vireo griseus) were positively associated with 1) taller trees, 2) greater stem densities, and 3) a greater proportion of forest within the landscape, whereas densities of birds associated with grasslands, such as dickcissel (Spiza americana) and red-winged blackbird (Agelaius phoeniceus), were negatively associated with these variables. Vegetation structure, habitat edge, and temporal effects had greater influence on nest success than did landscape effects. Taller trees, increased density of woody stems, greater vegetation density, and more forest within the landscape were often associated with greater nest success. Nest success of grassland birds was positively related to distance from forest edge but, for thamnic birds, success was greater near edges. Moreover, nest success and estimated fecundity of thamnic species suggested their populations are self-sustaining on forest restoration sites, whereas these sites are likely population sinks for grassland and open-woodland species. We recommend restoration strategies that promote rapid development of dense forest stands within largely forested landscapes to recruit breeding populations of thamnic and silvicolous birds that have reproductive success sufficient to sustain their populations.
Estimating Forest Species Composition Using a Multi-Sensor Approach
NASA Astrophysics Data System (ADS)
Wolter, P. T.
2009-12-01
The magnitude, duration, and frequency of forest disturbance caused by the spruce budworm and forest tent caterpillar has increased over the last century due to a shift in forest species composition linked to historical fire suppression, forest management, and pesticide application that has fostered the increase in dominance of host tree species. Modeling approaches are currently being used to understand and forecast potential management effects in changing insect disturbance trends. However, detailed forest composition data needed for these efforts is often lacking. Here, we used partial least squares (PLS) regression to integrate satellite sensor data from Landsat, Radarsat-1, and PALSAR, as well as pixel-wise forest structure information derived from SPOT-5 sensor data (Wolter et al. 2009), to estimate species-level forest composition of 12 species required for modeling efforts. C-band Radarsat-1 data and L-band PALSAR data were frequently among the strongest predictors of forest composition. Pixel-level forest structure data were more important for estimating conifer rather than hardwood forest composition. The coefficients of determination for species relative basal area (RBA) ranged from 0.57 (white cedar) to 0.94 (maple) with RMSE of 8.88 to 6.44 % RBA, respectively. Receiver operating characteristic (ROC) curves were used to determine the effective lower limits of usefulness of species RBA estimates which ranged from 5.94 % (jack pine) to 39.41 % (black ash). These estimates were then used to produce a dominant forest species map for the study region with an overall accuracy of 78 %. Most notably, this approach facilitated discrimination of aspen from birch as well as spruce and fir from other conifer species which is crucial for the study of forest tent caterpillar and spruce budworm dynamics, respectively, in the Upper Midwest. Thus, use of PLS regression as a data fusion strategy has proven to be an effective tool for regional characterization of forest composition within spatially heterogeneous forests using large-format satellite sensor data.
Bioenergy production and forest landscape change in the southeastern United States
Costanza, Jennifer K.; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime A.
2016-01-01
Production of woody biomass for bioenergy, whether wood pellets or liquid biofuels, has the potential to cause substantial landscape change and concomitant effects on forest ecosystems, but the landscape effects of alternative production scenarios have not been fully assessed. We simulated landscape change from 2010 to 2050 under five scenarios of woody biomass production for wood pellets and liquid biofuels in North Carolina, in the southeastern United States, a region that is a substantial producer of wood biomass for bioenergy and contains high biodiversity. Modeled scenarios varied biomass feedstocks, incorporating harvest of ‘conventional’ forests, which include naturally regenerating as well as planted forests that exist on the landscape even without bioenergy production, as well as purpose-grown woody crops grown on marginal lands. Results reveal trade-offs among scenarios in terms of overall forest area and the characteristics of the remaining forest in 2050. Meeting demand for biomass from conventional forests resulted in more total forest land compared with a baseline, business-as-usual scenario. However, the remaining forest was composed of more intensively managed forest and less of the bottomland hardwood and longleaf pine habitats that support biodiversity. Converting marginal forest to purpose-grown crops reduced forest area, but the remaining forest contained more of the critical habitats for biodiversity. Conversion of marginal agricultural lands to purpose-grown crops resulted in smaller differences from the baseline scenario in terms of forest area and the characteristics of remaining forest habitats. Each scenario affected the dominant type of land-use change in some regions, especially in the coastal plain that harbors high levels of biodiversity. Our results demonstrate the complex landscape effects of alternative bioenergy scenarios, highlight that the regions most likely to be affected by bioenergy production are also critical for biodiversity, and point to the challenges associated with evaluating bioenergy sustainability.
Spatial and temporal behavioural responses of wild cattle to tropical forest degradation
Goossens, Benoît; Goon Ee Wern, Jocelyn; Kretzschmar, Petra; Bohm, Torsten; Vaughan, Ian P.
2018-01-01
Identifying the consequences of tropical forest degradation is essential to mitigate its effects upon forest fauna. Large forest-dwelling mammals are often highly sensitive to environmental perturbation through processes such as fragmentation, simplification of habitat structure, and abiotic changes including increased temperatures where the canopy is cleared. Whilst previous work has focused upon species richness and rarity in logged forest, few look at spatial and temporal behavioural responses to forest degradation. Using camera traps, we explored the relationships between diel activity, behavioural expression, habitat use and ambient temperature to understand how the wild free-ranging Bornean banteng (Bos javanicus lowi) respond to logging and regeneration. Three secondary forests in Sabah, Malaysian Borneo were studied, varying in the time since last logging (6–23 years). A combination of generalised linear mixed models and generalised linear models were constructed using >36,000 trap-nights. Temperature had no significant effect on activity, however it varied markedly between forests, with the period of intense heat shortening as forest regeneration increased over the years. Bantengs regulated activity, with a reduction during the wet season in the most degraded forest (z = -2.6, Std. Error = 0.13, p = 0.01), and reductions during midday hours in forest with limited regeneration, however after >20 years of regrowth, activity was more consistent throughout the day. Foraging and use of open canopy areas dominated the activity budget when regeneration was limited. As regeneration advanced, this was replaced by greater investment in travelling and using a closed canopy. Forest degradation modifies the ambient temperature, and positively influences flooding and habitat availability during the wet season. Retention of a mosaic of mature forest patches within commercial forests could minimise these effects and also provide refuge, which is key to heat dissipation and the prevention of thermal stress, whilst retention of degraded forest could provide forage. PMID:29649279
Gordon H. Reeves; David B. Hohler; David P. Larsen; David E. Busch; Kim Kratz; Keith Reynolds; Karl F. Stein; Thomas Atzet; Polly Hays; Michael Tehan
2004-01-01
An Aquatic and Riparian Effectiveness Monitoring Plan (AREMP) for the Northwest Forest Plan is intended to characterize the ecological condition of watersheds and aquatic ecosystems. So to determine the effectiveness of the Northwest Forest Plan to meet relevant objectives, this report presents the conceptual foundation of options for use in pilot testing and...
Predicting the effects of tropospheric ozone on forest productivity in the Northeastern U.S.
Scott V. Ollinger; John D. Aber; Peter B. Reich
1996-01-01
It is widely believed that tropospheric ozone presents a significant anthropogenic stress on forest ecosystems. Although much information has been collected regarding ozone effects at the seedling and leaf level, we do not have a reliable means of estimating the effect on mature, native forests. For the present study, we incorporated leaf-level ozone response...
Centennial impacts of fragmentation on the canopy structure of tropical montane forest
Nicholas Vaughn; Greg Asner; Christian Giardina
2014-01-01
Fragmentation poses one of the greatest threats to tropical forests with short-term changes to the structure of forest canopies affecting microclimate, tree mortality, and growth. Yet the long-term effects of fragmentation are poorly understood because (1) most effects require many decades to materialize, but long-term studies are very rare, (2) the effects of edges on...
Eric G. Keeling; Anna Sala; Thomas H. DeLuca
2006-01-01
Research to date on effects of fire exclusion in ponderosa pine (Pinus ponderosa) forests has been limited by narrow geographical focus, by confounding effects due to prior logging at research sites, and by uncertainty from using reconstructions of past conditions to infer changes. For the work presented here, reference stands in unlogged ponderosa...
Effects of Forest Disturbances on Forest Structural Parameters Retrieval from Lidar Waveform Data
NASA Technical Reports Server (NTRS)
Ranson, K, Lon; Sun, G.
2011-01-01
The effect of forest disturbance on the lidar waveform and the forest biomass estimation was demonstrated by model simulation. The results show that the correlation between stand biomass and the lidar waveform indices changes when the stand spatial structure changes due to disturbances rather than the natural succession. This has to be considered in developing algorithms for regional or global mapping of biomass from lidar waveform data.
Impacts of Air Pollution and Climate Change on Forest Ecosystems — Emerging Research Needs
Paoletti, Elena; Bytnerowicz, Andrzej; Andersen, Chris; Augustaitis, Algirdas; Ferretti, Marco; Grulke, Nancy; Günthardt-Goerg, Madeleine S.; Innes, John; Johnson, Dale; Karnosky, Dave; Luangjame, Jesada; Matyssek, Rainer; McNulty, Steven; Müller-Starck, Gerhard; Musselman, Robert; Percy, Kevin
2007-01-01
Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems “Forests under Anthropogenic Pressure Effects of Air Pollution, Climate Change and Urban Development”, September 1016, 2006, Riverside, CA, are summarized. Tropospheric or ground-level ozone (O3) is still the phytotoxic air pollutant of major interest. Challenging issues are how to make O3 standards or critical levels more biologically based and at the same time practical for wide use; quantification of plant detoxification processes in flux modeling; inclusion of multiple environmental stresses in critical load determinations; new concept development for nitrogen saturation; interactions between air pollution, climate, and forest pests; effects of forest fire on air quality; the capacity of forests to sequester carbon under changing climatic conditions and coexposure to elevated levels of air pollutants; enhanced linkage between molecular biology, biochemistry, physiology, and morphological traits. PMID:17450274
Effects of forests, roads and mistletoe on bird diversity in monoculture rubber plantations
Sreekar, Rachakonda; Huang, Guohualing; Yasuda, Mika; Quan, Rui-Chang; Goodale, Eben; Corlett, Richard T.; Tomlinson, Kyle W.
2016-01-01
Rising global demand for natural rubber is expanding monoculture rubber (Hevea brasilensis) at the expense of natural forests in the Old World tropics. Conversion of forests into rubber plantations has a devastating impact on biodiversity and we have yet to identify management strategies that can mitigate this. We determined the life-history traits that best predict bird species occurrence in rubber plantations in SW China and investigated the effects of surrounding forest cover and distance to roads on bird diversity. Mistletoes provide nectar and fruit resources in rubber so we examined mistletoe densities and the relationship with forest cover and rubber tree diameter. In rubber plantations, we recorded less than half of all bird species extant in the surrounding area. Birds with wider habitat breadths and low conservation value had a higher probability of occurrence. Species richness and diversity increased logarithmically with surrounding forest cover, but roads had little effect. Mistletoe density increased exponentially with rubber tree diameters, but was unrelated to forest cover. To maximize bird diversity in rubber-dominated landscapes it is therefore necessary to preserve as much forest as possible, construct roads through plantations and not forest, and retain some large rubber trees with mistletoes during crop rotations. PMID:26903032
Scale-dependent effects of nonnative plant invasion on host-seeking tick abundance
Adalsteinsson, Solny A.; D’Amico, Vincent; Shriver, W. Gregory; Brisson, Dustin; Buler, Jeffrey J.
2016-01-01
Nonnative, invasive shrubs can affect human disease risk through direct and indirect effects on vector populations. Multiflora rose (Rosa multiflora) is a common invader within eastern deciduous forests where tick-borne disease (e.g. Lyme disease) rates are high. We tested whether R. multiflora invasion affects blacklegged tick (Ixodes scapularis) abundance, and at what scale. We sampled host-seeking ticks at two spatial scales: fine-scale, within R. multiflora-invaded forest fragments; and patch scale, among R. multiflora-invaded and R. multiflora-free forest fragments. At a fine scale, we trapped 2.3 times more ticks under R. multiflora compared to paired traps 25 m away from R. multiflora. At the patch scale, we trapped 3.2 times as many ticks in R. multiflora-free forests compared to R. multiflora-invaded forests. Thus, ticks are concentrated beneath R. multiflora within invaded forests, but uninvaded forests support significantly more ticks. Among all covariates tested, leaf litter volume was the best predictor of tick abundance; at the patch scale, R. multiflora-invaded forests had less leaf litter than uninvaded forests. We suggest that leaf litter availability at the patch-scale plays a greater role in constraining tick abundance than the fine-scale, positive effect of invasive shrubs. PMID:27088044
Simulation Studies of the Effect of Forest Spatial Structure on InSAR Signature
NASA Technical Reports Server (NTRS)
Sun, Guoqing; Liu, Dawei; Ranson, K. Jon; Koetz, Benjamin
2007-01-01
The height of scattering phase retrieved from InSAR data is considered being correlated with the tree height and the spatial structure of the forest stand. Though some researchers have used simple backscattering models to estimate tree height from the height of scattering center, the effect of forest spatial structure on InSAR data is not well understood yet. A three-dimensional coherent radar backscattering model for forest canopies based on realistic three-dimensional scene was used to investigate the effect in this paper. The realistic spatial structure of forest canopies was established either by field measurements (stem map) or through use of forest growth model. Field measurements or a forest growth model parameterized using local environmental parameters provides information of forest species composition and tree sizes in certain growth phases. A fractal tree model (L-system) was used to simulate individual 3- D tree structure of different ages or heights. Trees were positioned in a stand in certain patterns resulting in a 3-D medium of discrete scatterers. The radar coherent backscatter model took the 3-D forest scene as input and simulates the coherent radar backscattering signature. Interferometric SAR images of 3D scenes were simulated and heights of scattering phase centers were estimated from the simulated InSAR data. The effects of tree height, crown cover, crown depth, and the spatial distribution patterns of trees on the scattering phase center were analyzed. The results will be presented in the paper.
Where do forests influence rainfall?
NASA Astrophysics Data System (ADS)
Wang-Erlandsson, Lan; van der Ent, Ruud; Fetzer, Ingo; Keys, Patrick; Savenije, Hubert; Gordon, Line
2017-04-01
Forests play a major role in hydrology. Not only by immediate control of soil moisture and streamflow, but also by regulating climate through evaporation (i.e., transpiration, interception, and soil evaporation). The process of evaporation travelling through the atmosphere and returning as precipitation on land is known as moisture recycling. Whether evaporation is recycled depends on wind direction and geography. Moisture recycling and forest change studies have primarily focused on either one region (e.g. the Amazon), or one biome type (e.g. tropical humid forests). We will advance this via a systematic global inter-comparison of forest change impacts on precipitation depending on both biome type and geographic location. The rainfall effects are studied for three contemporary forest changes: afforestation, deforestation, and replacement of mature forest by forest plantations. Furthermore, as there are indications in the literature that moisture recycling in some places intensifies during dry years, we will also compare the rainfall impacts of forest change between wet and dry years. We model forest change effects on evaporation using the global hydrological model STEAM and trace precipitation changes using the atmospheric moisture tracking scheme WAM-2layers. This research elucidates the role of geographical location of forest change driven modifications on rainfall as a function of the type of forest change and climatic conditions. These knowledge gains are important at a time of both rapid forest and climate change. Our conclusions nuance our understanding of how forests regulate climate and pinpoint hotspot regions for forest-rainfall coupling.
Effects of changing forest land definitions on forest inventory on the West Coast, USA
David L. Azuma; Andrew Gray
2014-01-01
A key function of forest inventory is to detect changes in the area of forest land over time, yet different definitions of forest land are used in different regions of the world. Changes in the definition of forest intended to improve international consistency can affect the ability to quantify true changes over time. The objective of this study was to evaluate the...
Matthew R. Kluber; Deanna H. Olson; Klaus J. Puettmann
2013-01-01
Th ere are emerging concerns for wildlife species associated with forested headwater systems. Given that headwater streams comprise a large portion of the length of fl owing waterways in western Oregon forests, there is a need to better understand how forest management aff ects headwater forest taxa and their habitats. Forest management strategies that consist of only...
Rahel Sollmann; Angela M. White; Beth Gardner; Patricia N. Manley
2015-01-01
Small mammals comprise an important component of forest vertebrate communities. Our understanding of how small mammals use forested habitat has relied heavily on studies in forest systems not naturally prone to frequent disturbances. Small mammal populations that evolved in frequent-fire forests, however, may be less restricted to specific habitat conditions due to the...
Effect of multi-temporal forest cover change trajectories on forest plant diversity
One of the principal tenets of landscape ecology is that forest loss and fragmentation negatively affects biodiversity. However, historical fluctuations in forest cover resulting from repeated cycles of deforestation and reforestation are likely important in influencing patterns ...
Leon S. Dochinger; Keith F. Jensen; Keith F. Jensen
1990-01-01
Seedlings represent an important linkage for assessing the effect of air pollution on forests. This study examines the foliar responses of white ash seedlings to ozone and acid precipitation as a means of identifying atmospheric deposition effects on forests.
Toral Patel-Weynand
2012-01-01
Scientific literature on the effects of climatic variability and change on forest ecosystems has increased significantly over the past decade, providing a foundation for establishing forest-climate relationships and projecting the effects of continued warming on a wide range of forest resources and ecosystem services. In addition, certainty about the nature of some of...
Improving scientific knowledge
James M. Vose; David L. Peterson
2012-01-01
Scientific literature on the effects of climatic variability and change on forest ecosystems has increased significantly over the past decade, providing a foundation for establishing forest-climate relationships and projecting the effects of continued warming on a wide range of forest resources and ecosystem services. In addition, certainty about the nature of some of...
Effects of site preparation for pine forest/switchgrass Intercropping on water quality
A. Muwamba; D. M. Amatya; H. Ssegane; G.M. Chescheir; T. Appelboom; E.W. Tollner; J. E. Nettles; M. A. Youssef; F. Birgand; R. W. Skaggs; S. Tian
2015-01-01
A study was initiated to investigate the sustainability effects of intercropping switchgrass (Panicum virgatum L.) in a loblolly pine (Pinus taeda L.) plantation. This forest-based biofuel system could possibly provide biomass from the perennial energy grass while maintaining the economics and environmental benefits of a forest...
Research agenda for integrated landscape modeling
Samuel A. Cushman; Donald McKenzie; David L. Peterson; Jeremy Littell; Kevin S. McKelvey
2006-01-01
Reliable predictions of the effects changing climate and disturbance regimes will have on forest ecosystems are crucial for effective forest management. Current fire and climate research in forest ecosystem and community ecology offers data and methods that can inform such predictions. However, research in these fields occurs at different scales, with disparate goals,...
Santos, Bráulio A; Arroyo-Rodríguez, Víctor; Moreno, Claudia E; Tabarelli, Marcelo
2010-09-08
Deforestation and forest fragmentation are known major causes of nonrandom extinction, but there is no information about their impact on the phylogenetic diversity of the remaining species assemblages. Using a large vegetation dataset from an old hyper-fragmented landscape in the Brazilian Atlantic rainforest we assess whether the local extirpation of tree species and functional impoverishment of tree assemblages reduce the phylogenetic diversity of the remaining tree assemblages. We detected a significant loss of tree phylogenetic diversity in forest edges, but not in core areas of small (<80 ha) forest fragments. This was attributed to a reduction of 11% in the average phylogenetic distance between any two randomly chosen individuals from forest edges; an increase of 17% in the average phylogenetic distance to closest non-conspecific relative for each individual in forest edges; and to the potential manifestation of late edge effects in the core areas of small forest remnants. We found no evidence supporting fragmentation-induced phylogenetic clustering or evenness. This could be explained by the low phylogenetic conservatism of key life-history traits corresponding to vulnerable species. Edge effects must be reduced to effectively protect tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.
NASA Astrophysics Data System (ADS)
Danquah, S.
2009-04-01
This submission captures report on the perennial occurrence of wildfires and their accompanying effects on the inhabitants and the fringe forest communities in the Worobong Forest Reserve within the Eastern part of Ghana. Wildfire continues to be the single serious threat to the sustainable development and management of forest and wildlife resources in Ghana, thus depriving indigenous fringe forest communities of enormous socio-economic benefit of the forest. Locally, fire is used in the preparation of farm lands, tapping of palm-wine, charcoal production, honey harvesting, etc. This paper identifies some of the effects of wildfires on the indigenous communities and various interventions made to address the wildfire menace in the area of study over the years. Keywords: Wildfire, Fringe Forest Communities, Sustainable Development Resources, Socio-Economic Benefits
Does nitrogen and sulfur deposition affect forest productivity?
Brittany A. Johnson; Kathryn B. Piatek; Mary Beth Adams; John R. Brooks
2010-01-01
We studied the effects of atmospheric nitrogen and sulfur deposition on forest productivity in a 10-year-old, aggrading forest stand at the Fernow Experimental Forest in Tucker County, WV. Forest productivity was expressed as total aboveground wood biomass, which included stem and branch weight of standing live trees. Ten years after stand regeneration and treatment...
Influences of management of Southern forests on water quantity and quality
Ge Sun; Mark Riedel; Rhett Jackson; Randy Kolka; Devendra Amatya; Jim Shepard
2004-01-01
Water is a key output of southern forests and is critical to other processes, functions, and values of forest ecosystems. This chapter synthesizes published literature about the effects of forest management practices on water quantity and water quality across the Southern United States region. We evaluate the influences of forest management at different temporal and...
Survival analysis for a large scale forest health issue: Missouri oak decline
C.W. Woodall; P.L. Grambsch; W. Thomas; W.K. Moser
2005-01-01
Survival analysis methodologies provide novel approaches for forest mortality analysis that may aid in detecting, monitoring, and mitigating of large-scale forest health issues. This study examined survivor analysis for evaluating a regional forest health issue - Missouri oak decline. With a statewide Missouri forest inventory, log-rank tests of the effects of...
Effects of forest cover on drinking water treatment costs
Travis Warziniack; Chi Ho Sham; Robert Morgan; Yasha Feferholtz
2016-01-01
This paper explores the relationship between forest cover and drinking water treatment costs using results from a 2014 survey by the American Water Works Association (AWWA) that targeted utilities in forested ecoregions in the United States. On the basis of the data collected, there is a negative relationship between forest cover and turbidity, i.e. as forest...
Brett J. Butler; Marla Markowski-Lindsay; Stephanie Snyder; Paul Catanzaro; David B. Kittredge; Kyle Andrejczyk; Brenton J. Dickinson; Derya Eryilmaz; Jaketon H. Hewes; Paula Randler; Donna Tadle; Michael A. Kilgore
2014-01-01
The USDA Forest Service's Forest Stewardship Program (FSP) is the nation's most prominent private forestry assistance program. We examined the FSP using a multiple analytic approach: analysis of annual FSP accomplishments, survey of state FSP coordinators, analytic comparison of family forest owners receiving and not receiving forestry practice assistance,...
Harvest impacts on soil carbon storage in temperate forests
L.E. Nave; E.D. Vance; C.W. Swanston; P.S. Curtis
2010-01-01
Forest soil carbon (C) storage is a significant component of the global C cycle, and is important for sustaining forest productivity. Although forest management may have substantial impacts on soil C storage, experimental data from forest harvesting studies have not been synthesized recently. To quantify the effects of harvesting on soil C, and to identify sources of...
Eric J. Gustafson; Craig Loehle
2006-01-01
Ownership parcelization of forest land and divestiture of industrial forest land is increasing throughout the U.S. This may affect (positively or negatively) the ability of forested landscapes to produce benefits that society values, such as fiber, biodiversity and recreation. We used a timber harvest simulator and neutral model landscapes to systematically study how...
Effects of plot size on forest-type algorithm accuracy
James A. Westfall
2009-01-01
The Forest Inventory and Analysis (FIA) program utilizes an algorithm to consistently determine the forest type for forested conditions on sample plots. Forest type is determined from tree size and species information. Thus, the accuracy of results is often dependent on the number of trees present, which is highly correlated with plot area. This research examines the...
Consequences of climate change for biotic disturbances in North American forests
Aaron S. Weed; Matthew P. Ayres; Jeffrey A. Hicke
2013-01-01
About one-third of North America is forested. These forests are of incalculable value to human society in terms of harvested resources and ecosystem services and are sensitive to disturbance regimes. Epidemics of forest insects and diseases are the dominant sources of disturbance to North American forests. Here we review current understanding of climatic effects...
THOMAS J. BRANDEIS; MARIA DEL ROCIO SUAREZ ROZO
2005-01-01
Total aboveground live tree biomass in Puerto Rican lower montane wet, subtropical wet, subtropical moist and subtropical dry forests was estimated using data from two forest inventories and published regression equations. Multiple potentially-applicable published biomass models existed for some forested life zones, and their estimates tended to diverge with increasing...
Thomas J. Brandeis; Maria Del Rocio; Suarez Rozo
2005-01-01
Total aboveground live tree biomass in Puerto Rican lower montane wet, subtropical wet, subtropical moist and subtropical dry forests was estimated using data from two forest inventories and published regression equations. Multiple potentially-applicable published biomass models existed for some forested life zones, and their estimates tended to diverge with increasing...
Recovery dynamics and climate change effects to future New England forests
Matthew J. Duveneck; Jonathan R. Thompson; Eric J. Gustafson; Yu Liang; Arjan M. G. de Bruijn
2017-01-01
Context. Forests throughout eastern North America continue to recover from broad-scale intensive land use that peaked in the nineteenth century. These forests provide essential goods and services at local to global scales. It is uncertain how recovery dynamics, the processes by which forests respond to past forest land use, will continue to...
Douglas Muchoney; Sharon Hamann
2013-01-01
Forest degradation can be defined as the loss of forest volume, biomass and/or forest productivity caused by natural or human influences. Achieving Reduced Emissions from Deforestation and Forest Degradation (REDD+) requires that deforestation and degradation can be efficiently, reliably, and cost-effectively detected and quantified, often where ground and aerial...
Rain forest fragmentation and the proliferation of successional trees.
Laurance, William F; Nascimento, Henrique E M; Laurance, Susan G; Andrade, Ana C; Fearnside, Philip M; Ribeiro, José E L; Capretz, Robson L
2006-02-01
The effects of habitat fragmentation on diverse tropical tree communities are poorly understood. Over a 20-year period we monitored the density of 52 tree species in nine predominantly successional genera (Annona, Bellucia, Cecropia, Croton, Goupia, Jacaranda, Miconia, Pourouma, Vismia) in fragmented and continuous Amazonian forests. We also evaluated the relative importance of soil, topographic, forest dynamic, and landscape variables in explaining the abundance and species composition of successional trees. Data were collected within 66 permanent 1-ha plots within a large (approximately 1000 km2) experimental landscape, with forest fragments ranging from 1 to 100 ha in area. Prior to forest fragmentation, successional trees were uncommon, typically comprising 2-3% of all trees (> or =10 cm diameter at breast height [1.3 m above the ground surface]) in each plot. Following fragmentation, the density and basal area of successional trees increased rapidly. By 13-17 years after fragmentation, successional trees had tripled in abundance in fragment and edge plots and constituted more than a quarter of all trees in some plots. Fragment age had strong, positive effects on the density and basal area of successional trees, with no indication of a plateau in these variables, suggesting that successional species could become even more abundant in fragments over time. Nonetheless, the 52 species differed greatly in their responses to fragmentation and forest edges. Some disturbance-favoring pioneers (e.g., Cecropia sciadophylla, Vismia guianensis, V. amazonica, V. bemerguii, Miconia cf. crassinervia) increased by >1000% in density on edge plots, whereas over a third (19 of 52) of all species remained constant or declined in numbers. Species responses to fragmentation were effectively predicted by their median growth rate in nearby intact forest, suggesting that faster-growing species have a strong advantage in forest fragments. An ordination analysis revealed three main gradients in successional-species composition across our study area. Species gradients were most strongly influenced by the standlevel rate of tree mortality on each plot and by the number of nearby forest edges. Species-composition also varied significantly among different cattle ranches, which differed in their surrounding matrices and disturbance histories. These same variables were also the best predictors of total successional-tree abundance and species richness. Successional-tree assemblages in fragment interior plots (>150 m from edge), which are subjected to fragment area effects but not edge effects, did not differ significantly from those in intact forest, indicating that area effects per se had little influence on successional trees. Soils and topography also had little discernable effect on these species. Collectively, our results indicate that successional-tree species proliferate rapidly in fragmented Amazonian forests, largely as a result of chronically elevated tree mortality near forest edges and possibly an increased seed rain from successional plants growing in nearby degraded habitats. The proliferation of fast-growing successional trees and correlated decline of old-growth trees will have important effects on species composition, forest dynamics, carbon storage, and nutrient cycling in fragmented forests.
Participatory forest management in Ethiopia: learning from pilot projects.
Ameha, Aklilu; Larsen, H O; Lemenih, Mulugeta
2014-04-01
Different arrangements of decentralized forest management have been promoted as alternatives to centralized and top down approaches to halt tropical deforestation and forest degradation. Ethiopia is one of the countries piloting one of these approaches. To inform future programs and projects it is essential to learn from existing pilots and experiences. This paper analyses five of the pilot participatory forest management (PFM) programs undertaken in Ethiopia. The study is based on the Forest User Group (FUG) members' analyses of the programs using selected outcome variables: forest income, change in forest conditions, forest ownership feelings and effectiveness of FUGs as forest managing institutions. These variables were assessed at three points in time-before the introduction of PFM, during the project implementation and after the projects ended. Data were collected using group discussions, key informant interviews and transect walks through the PFM forests. The results show that in all of the five cases the state of the forest is perceived to have improved with the introduction of PFM, and in four of the cases the improvement was maintained after projects ended. Regulated access to the forests following introduction of PFM was not perceived to have affected forest income negatively. There are, however, serious concerns about the institutional effectiveness of the FUGs after projects ended, and this may affect the success of the PFM approach in the longer term.
James Halperin; David Ganz
2013-01-01
Globally, approximately two-thirds of the world's forests are considered degraded, but practical, cost-effective tools for monitoring forest quality remain elusive. Techniques for monitoring deforestation and changes to forest carbon stocks are widespread and well published. However, techniques for monitoring forest degradation are relatively untested in...
Al-Chokhachy, Robert K.; Black, Tom A.; Thomas, Cameron; Luce, Charlie H.; Rieman, Bruce; Cissel, Richard; Carlson, Anne; Hendrickson, Shane; Archer, Eric K.; Kershner, Jeffrey L.
2016-01-01
Unpaved forest roads remain a pervasive disturbance on public lands and mitigating sediment from road networks remains a priority for management agencies. Restoring roaded landscapes is becoming increasingly important for many native coldwater fishes that disproportionately rely on public lands for persistence. However, effectively targeting restoration opportunities requires a comprehensive understanding of the effects of roads across different ecosystems. Here, we combine a review and a field study to evaluate the status of knowledge supporting the conceptual framework linking unpaved forest roads with streambed sediment. Through our review, we specifically focused on those studies linking measures of the density of forest roads or sediment delivery with empirical streambed sediment measures. Our field study provides an example of a targeted effort of linking spatially explicit estimates of sediment production with measures of streambed sediment. Surprisingly, our review uncovered few studies (n = 8) that empirically tested the conceptual framework linking unpaved forest roads and streambed sediment, and the results varied considerably. Field results generally supported the conceptual model that unpaved forest roads can control streambed sediment quality, but demonstrated high-spatial variability in the effects of forest roads on streambed sediment and the need to address hotspots of sediment sources. The importance of context in the effects of forest roads is apparent in both our review and field data, suggesting the need for in situ studies to avoid misdirected restoration actions.
Fire suppression and fuels treatment effects on mixed-conifer carbon stocks and emissions
M. North; M Hurteau; J Innes
2009-01-01
Depending on management, forests can be an important sink or source of carbon that if released as CO2 could contribute to global warming. Many forests in the western United States are being treated to reduce fuels, yet the effects of these treatments on forest carbon are not well understood. We compared the immediate effects of fuels treatments on carbon stocks and...
Effects of fiber processing on properties of fiber and fiberboard made from lodgepole pine treetops
John F. Hunt; Aziz Ahmed; Katherine Friedrich
2008-01-01
As a part of the National Fire Plan, the USDA Forest Service is conducting research to reduce the severity of forest fires through effective utilization of low-or no-value logging residues and forest thinnings. This report explores the effect of processing on the physical properties of the fibrous material and flat fiberboard panels made from small-diameter lodgepole...
Fire effects in southwestern forests: Proceedings of the second La Mesa Fire Symposium
Craig D. Allen
1996-01-01
In 1977, the La Mesa Fire burned across 15,444 acres of ponderosa pine forests on the adjoining lands of Bandelier National Monument, the Santa Fe National Forest, and Los Alamos National Laboratory. Following this event, several fire effects studies were initiated. The 16 papers herein document longer-term knowledge gained about the ecological effects of the fire and...
Mark E. Harmon; Adam Moreno; James B. Domingo
2009-01-01
The STANDCARB 2.0 model was used to examine the effects of partial harvest of trees within stands on forest-related carbon (C) stores in a typical Pacific Northwest Pseudotsuga/Tsuga forest. For harvest rotation intervals of 20 to 250 years the effect of completely dispersed (that is, a checkerboard) versus completely aggregated cutting patterns (...
The influence of canopy shading of snow on effective albedo in forested environments
NASA Astrophysics Data System (ADS)
Webster, C.; Jonas, T.
2017-12-01
The overlap of highly reflective snow and absorbent forested areas creates strong heterogeneity in the effective surface albedo compared to forest-free areas. Current errors in calculations of effective forest snow albedo arise due to uncertainties in how models should treat masking of snow by vegetation but improvement of local and large scale models is currently limited by a lack of measurements that demonstrate both spatial and temporal variability over forests. We present above-canopy measurements of winter-time effective forest snow albedo using up- and down-looking radiometers mounted on an octocopter UAV for a total of fifteen flights on eight different days. Ground-view fractions across the flight path were between 0.12 and 0.81. Correlations between effective albedo and both ground-view fraction and canopy height were statistically significant during 14 out of 15 flights, but varied between flights due to solar angle and snow cover. Measured effective albedo across the flight path differed by up to 0.33 during snow-on canopy conditions. A comparison between maximum interception and no interception showed effective albedo varied by up 0.17, which was the same variation between effective albedo during high (46°) and low (23°) solar elevation angles. Temporal and spatial variations in effective albedo caused by canopy shading of the snow surface are therefore as important as temporal variations caused by interception of snow by the canopy. Calculation of effective albedo over forested areas therefore requires careful consideration of canopy height, canopy coverage, solar angle and interception load. The results of this study should be used to inform snow albedo and canopy structure parametrisations in local and larger scale land surface models.
Assessing the consequences of global change for forest disturbance from herbivores and pathogens.
Ayres, M P; Lombardero, M J
2000-11-15
Herbivores and pathogens impact the species composition, ecosystem function, and socioeconomic value of forests. Herbivores and pathogens are an integral part of forests, but sometimes produce undesirable effects and a degradation of forest resources. In the United States, a few species of forest pests routinely have significant impacts on up to 20 million ha of forest with economic costs that probably exceed $1 billion/year. Climatic change could alter patterns of disturbance from herbivores and pathogens through: (1) direct effects on the development and survival of herbivores and pathogens; (2) physiological changes in tree defenses; and (3) indirect effects from changes in the abundance of natural enemies (e.g. parasitoids of insect herbivores), mutualists (e.g. insect vectors of tree pathogens), and competitors. Because of their short life cycles, mobility, reproductive potential, and physiological sensitivity to temperature, even modest climate change will have rapid impacts on the distribution and abundance of many forest insects and pathogens. We identify 32 syndromes of biotic disturbance in North American forests that should be carefully evaluated for their responses to climate change: 15 insect herbivores, browsing mammals; 12 pathogens; 1 plant parasite; and 3 undiagnosed patterns of forest decline. It is probable that climatic effects on some herbivores and pathogens will impact on biodiversity, recreation, property value, forest industry, and even water quality. Some scenarios are beneficial (e.g. decreased snow cover may increase winter mortality of some insect pests), but many are detrimental (e.g. warming tends to accelerate insect development rate and facilitate range expansions of pests and climate change tends to produce a mismatch between mature trees and their environment, which can increase vulnerability to herbivores and pathogens). Changes in forest disturbance can produce feedback to climate through affects on water and carbon flux in forest ecosystems; one alarming scenario is that climate warming may increase insect outbreaks in boreal forests, which would tend to increase forest fires and exacerbate further climate warming by releasing carbon stores from boreal ecosystems. We suggest a list of research priorities that will allow us to refine these risk assessments and adopt forest management strategies that anticipate changes in biotic disturbance regimes and mitigate the ecological, social, and economic risks.
NASA Astrophysics Data System (ADS)
Sloggy, M. R.; Plantinga, A.; Latta, G.
2017-12-01
The goal of this study is to examine how the interaction between human systems and land systems influences the extent and severity of forest disturbances. We show that human adaptation to forest disturbance has both long term and short term effects on future timber harvest patterns. We utilize a novel economic model of the forest sector which can be coupled to the Community Land Model (CLM). By simulating both pine beetle outbreaks and wildfires, we are able to model the forest sector's response to these disturbances. We then quantify and report the degree to which natural forest disturbance induces additional disturbances through timber harvest. We find that in the short run, a scarcity of forest products from the affected area increases prices which stimulate harvests in other regions not affected by the disturbance. In the long-run, we find that permanent effects that the natural disturbances have on the forest sector are translated into permanent effects on the pattern of timber harvest. The effects of forest disturbances are not localized, but instead can be distributed across the landscape by their interaction with the human system. Not accounting for this affect could mean a significant underestimation of the forest disturbance attributable to natural disturbance events. Furthermore, our novel economic model can be used with CLM to explore how this feedback may affect other aspects of the environmental system. The results from this study show the importance of accounting for how markets interact with the landscape, and how those results can be used to improve our understanding of both the natural impacts and social impacts of forest disturbance.
Anthropogenic Land-use Change and the Dynamics of Amazon Forest Biomass
NASA Technical Reports Server (NTRS)
Laurance, William F.
2004-01-01
This project was focused on assessing the effects of prevailing land uses, such as habitat fragmentation, selective logging, and fire, on biomass and carbon storage in Amazonian forests, and on the dynamics of carbon sequestration in regenerating forests. Ancillary goals included developing GIs models to help predict the future condition of Amazonian forests, and assessing the effects of anthropogenic climate change and ENS0 droughts on intact and fragmented forests. Ground-based studies using networks of permanent plots were linked with remote-sensing data (including Landsat TM and AVHRR) at regional scales, and higher-resolution techniques (IKONOS imagery, videography, LIDAR, aerial photographs) at landscape and local scales. The project s specific goals were quite eclectic and included: Determining the effects of habitat fragmentation on forest dynamics, floristic composition, and the various components of above- and below-ground biomass. Assessing historical and physical factors that affect trajectories of forest regeneration and carbon sequestration on abandoned lands. Extrapolating results from local studies of biomass dynamics in fragmented and regenerating forests to landscape and regional scales in Amazonia, using remote sensing and GIS. Testing the hypothesis that intact Amazonian forests are functioning as a significant carbon sink. Examining destructive synergisms between forest fragmentation and fire. Assessing the short-term impacts of selective logging on aboveground biomass. Developing GIS models that integrate current spatial data on forest cover, deforestation, logging, mining, highway and roads, navigable rivers, vulnerability to wild fires, protected areas, and existing and planned infrastructure projects, in an effort to predict the future condition of Brazilian Amazonian forests over the next 20-25 years. Devising predictive spatial models to assess the influence of varied biophysical and anthropogenic predictors on Amazonian deforestation.
Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss
Potapov, P.; Hansen, Matthew C.; Stehman, S.V.; Loveland, Thomas R.; Pittman, K.
2008-01-01
Estimation of forest cover change is important for boreal forests, one of the most extensive forested biomes, due to its unique role in global timber stock, carbon sequestration and deposition, and high vulnerability to the effects of global climate change. We used time-series data from the MODerate Resolution Imaging Spectroradiometer (MODIS) to produce annual forest cover loss hotspot maps. These maps were used to assign all blocks (18.5 by 18.5 km) partitioning the boreal biome into strata of high, medium and low likelihood of forest cover loss. A stratified random sample of 118 blocks was interpreted for forest cover and forest cover loss using high spatial resolution Landsat imagery from 2000 and 2005. Area of forest cover gross loss from 2000 to 2005 within the boreal biome is estimated to be 1.63% (standard error 0.10%) of the total biome area, and represents a 4.02% reduction in year 2000 forest cover. The proportion of identified forest cover loss relative to regional forest area is much higher in North America than in Eurasia (5.63% to 3.00%). Of the total forest cover loss identified, 58.9% is attributable to wildfires. The MODIS pan-boreal change hotspot estimates reveal significant increases in forest cover loss due to wildfires in 2002 and 2003, with 2003 being the peak year of loss within the 5-year study period. Overall, the precision of the aggregate forest cover loss estimates derived from the Landsat data and the value of the MODIS-derived map displaying the spatial and temporal patterns of forest loss demonstrate the efficacy of this protocol for operational, cost-effective, and timely biome-wide monitoring of gross forest cover loss.
Conservation of forest birds: evidence of a shifting baseline in community structure.
Rittenhouse, Chadwick D; Pidgeon, Anna M; Albright, Thomas P; Culbert, Patrick D; Clayton, Murray K; Flather, Curtis H; Huang, Chengquan; Masek, Jeffrey G; Stewart, Susan I; Radeloff, Volker C
2010-08-02
Quantifying changes in forest bird diversity is an essential task for developing effective conservation actions. When subtle changes in diversity accumulate over time, annual comparisons may offer an incomplete perspective of changes in diversity. In this case, progressive change, the comparison of changes in diversity from a baseline condition, may offer greater insight because changes in diversity are assessed over longer periods of times. Our objectives were to determine how forest bird diversity has changed over time and whether those changes were associated with forest disturbance. We used North American Breeding Bird Survey data, a time series of Landsat images classified with respect to land cover change, and mixed-effects models to associate changes in forest bird community structure with forest disturbance, latitude, and longitude in the conterminous United States for the years 1985 to 2006. We document a significant divergence from the baseline structure for all birds of similar migratory habit and nest location, and all forest birds as a group from 1985 to 2006. Unexpectedly, decreases in progressive similarity resulted from small changes in richness (<1 species per route for the 22-year study period) and modest losses in abundance (-28.7 - -10.2 individuals per route) that varied by migratory habit and nest location. Forest disturbance increased progressive similarity for Neotropical migrants, permanent residents, ground nesting, and cavity nesting species. We also documented highest progressive similarity in the eastern United States. Contemporary forest bird community structure is changing rapidly over a relatively short period of time (e.g., approximately 22 years). Forest disturbance and forest regeneration are primary factors associated with contemporary forest bird community structure, longitude and latitude are secondary factors, and forest loss is a tertiary factor. Importantly, these findings suggest some regions of the United States may already fall below the habitat amount threshold where fragmentation effects become important predictors of forest bird community structure.
The long-term hydrological effect of forest stands on the stability of slopes
NASA Astrophysics Data System (ADS)
Bogaard, T. A.; Meng, W.; van Beek, L. P. H.
2012-04-01
Forest is widely known to improve slope stability as a result of mechanical and hydrological effects. While the mechanics underlying the stabilizing process of root reinforcement are well understood and quantified, the influence of forest on the occurrence of critical hydrological conditions in terms of suction or pore pressure remains uncertain. Due to seasonal and inter-annual fluctuations, the stabilizing influence of evaporation and transpiration is difficult to isolate from the overall noise of the hydrological signal. More long-term effects of forest stands on soil development are highly variable and thus difficult to observe and quantify. Often these effects are ambivalent, having potentially a stabilizing or destabilizing influence on a slope under particular conditions (e.g., more structured soils leading to both rapid infiltration and drainage). Consequently, it can be postulated that forests will hydrologically influence the magnitude-frequency distribution of landsliding, not only at the stand level but also on a regional scale through the groundwater system. The overall aim of this research is to understand and quantify the stabilizing hydrological effect of forests on potentially unstable slopes. To this end, we focus on the changes in the magnitude-frequency distribution of landsliding that arise as a result of variations in evapotranspiration losses over the life cycle of stands. Temporal variations in evapotranspiration comprise first of all the interception that can account for an important amount of evaporation from a forest, and that changes with seasonal and annual variations in the interception capacity of the canopy and forest floor. Transpiration also represents an important loss that varies over the various growth stages of a forest stand. Based on a literature review of water consumption by tree species and water balance studies of forested catchments we defined the potential transpiration for different growth stages. This information we used in a spatially distributed, physical-based, dynamical model to simulate the hydrology and resulting stability for a catchment on a daily scale. The results can be used to identify end members of the hydrological influence of forests on slope stability and the typical variations in stability associated with the various growth stages. They indicate that the influence of forest stand age on the water consumption can be significant and has clear consequences for the antecedent soil moisture condition within a slope and thus on the potential for slope destabilization. The outcome should help to understand the long-term impact of vegetation on slope hydrology and define sustainable and reliable management strategies at the scale of forest stands. Keywords: slope stability, hydrology, vegetation, long-tem effect
Physiological and psychological effects of walking in stay-in forest therapy.
Park, Bum-Jin; Tsunetsugu, Yuko; Morikawa, Takeshi; Kagawa, Takahide; Lee, Juyoung; Ikei, Harumi; Song, Chorong; Miyazaki, Yoshifumi
2014-01-01
To provide scientific evidence of the physiological and psychological effects of forest and urban environments on 47 young male adults undergoing stay-in forest therapy. Field experiments were conducted at four sites in Japan. At each site, 12 subjects participated in the experiment. The experiments were conducted in forest and urban environments, and the subjects' physiological and psychological responses to these environments were compared. On the first day, six subjects were sent to a forest area, and the other six were sent to an urban area as controls. The groups were switched the next day. Heart rate variability and heart rate were measured to assess physiological responses. The semantic differential method for assessing emotions, the reports of "refreshed" feeling, and the Profile of Mood States (POMS) were used to assess psychological responses. The physiological and psychological responses of each subject were recorded during and after walking, and the differences in indices were compared between the two environments. The forest environment was associated with a higher parasympathetic nervous activity, a lower sympathetic nervous activity, and a lower heart rate than the urban environment. The subjective evaluation scores were generally in accordance with the physiological reactions and were significantly higher in the forest environment than in the urban environment. POMS measurements showed that the forest environment was psychologically relaxing and enhanced psychological vigor. This study provided clear scientific evidence of the physiological effects of forest therapy. The results will contribute to the development of forest therapy research and support the inclusion of forest therapy in preventive medicine.
NASA Astrophysics Data System (ADS)
Von Randow, Rita C. S.; Tomasella, Javier; Von Randow, Celso; Araujo, Alessandro C.; Manzi, Antonio O.
2017-04-01
Since the 70's, the Amazon basin is under constant pressure first because of agricultural expansion, and recently also because of resources extraction. The conversion of pristine forest to other types of land cover as pasture and agriculture, affects the local water balance diminishing the evapotranspiration and increasing the discharge. Those changes can buffer the climate change effects and vice-versa. On the other hand, secondary forest growth resulting from abandoned deforested areas presents higher evaporative fraction (Giambelluca, 2002), leading to higher evapotranspiration rates than pristine forests, what can compensate the effects of deforestation on energy and water balances. In this work we will show four years of eddy flux measurements of a pristine forest and of a secondary growth about 20 years old, located in Central Amazonia, comparing the evapotranspiration and water use efficiency of both sites. The innovative aspect of the present work is the measurement of fluxes above a secondary growth forest in a relatively advanced stage. The measurements of eddy covariance are in accordance with the increase of evaporative fraction with the age of secondary forest presented by Giambelluca (2002). The yearly evaporative fraction (ratio of energy used for evapotranspiration to net radiation) on the primary forest was 0.74-0.81, while in the secondary forest it was 0.85-0.87. On the other hand, secondary forest shows a water use efficiency of 1.9 g C kg-1 H2O, while the pristine forest gives 2.9 g C kg-1 H2O.
Uncertainty in future water supplies from forests: hydrologic effects of a changing forest landscape
NASA Astrophysics Data System (ADS)
Jones, J. A.; Achterman, G. L.; Alexander, L. E.; Brooks, K. N.; Creed, I. F.; Ffolliott, P. F.; MacDonald, L.; Wemple, B. C.
2008-12-01
Forests account for 33 percent of the U.S. land area, process nearly two-thirds of the fresh water supply, and provide water to 40 percent of all municipalities or about 180 million people. Water supply management is becoming more difficult given the increasing demand for water, climate change, increasing development, changing forest ownership, and increasingly fragmented laws governing forest and watershed management. In 2006, the US National Research Council convened a study on the present understanding of forest hydrology, the hydrologic effects of a changing forest landscape, and research and management needs for sustaining water resources from forested landscapes. The committee concluded that while it is possible to generate short-term water yield increases by timber harvesting, there are a variety of reasons why active forest management has only limited potential to sustainably increase water supplies. These include the short-term nature of the increases in most environments, the timing of the increases, the need for downstream storage, and that continuing ground- based timber harvest can reduce water quality. At the same time, past and continuing changes in forest structure and management may be altering water supplies at the larger time and space scales that are of most interest to forest and water managers. These changes include the legacy of past forest management practices, particularly fire suppression and clearcutting; exurban sprawl, which permanently converts forest land to nonforest uses; effects of climate change on wildfires, insect outbreaks, forest structure, forest species composition, snowpack depth and snowmelt; road networks; and changes in forest land ownership. All of these changes have the potential to alter water quantity and quality from forests. Hence, the baseline conditions that have been used to estimate sustained water yields from forested watersheds may no longer be applicable. Stationarity also can no longer be assumed for the long-term control watersheds that have served as the cornerstone for most watershed-scale forest hydrology studies. The net result is that forest and water managers are facing greater uncertainty about future water supplies, water quality, and aquatic ecosystems, and their planning must consider a broader range of future scenarios than in the past. In this presentation, we outline a way forward for the research community to address the challenging questions of the future related to forests and water, and we chart a path for the involvement of various stakeholder groups to engage in water resources research, monitoring and policy formation.
Charney, Noah D; Babst, Flurin; Poulter, Benjamin; Record, Sydne; Trouet, Valerie M; Frank, David; Enquist, Brian J; Evans, Margaret E K
2016-09-01
Predicting long-term trends in forest growth requires accurate characterisation of how the relationship between forest productivity and climatic stress varies across climatic regimes. Using a network of over two million tree-ring observations spanning North America and a space-for-time substitution methodology, we forecast climate impacts on future forest growth. We explored differing scenarios of increased water-use efficiency (WUE) due to CO2 -fertilisation, which we simulated as increased effective precipitation. In our forecasts: (1) climate change negatively impacted forest growth rates in the interior west and positively impacted forest growth along the western, southeastern and northeastern coasts; (2) shifting climate sensitivities offset positive effects of warming on high-latitude forests, leaving no evidence for continued 'boreal greening'; and (3) it took a 72% WUE enhancement to compensate for continentally averaged growth declines under RCP 8.5. Our results highlight the importance of locally adapted forest management strategies to handle regional differences in growth responses to climate change. © 2016 John Wiley & Sons Ltd/CNRS.
Shifts in tree functional composition amplify the response of forest biomass to climate
NASA Astrophysics Data System (ADS)
Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W.
2018-04-01
Forests have a key role in global ecosystems, hosting much of the world’s terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.
Peck, R.W.; Niwa, C.G.
2005-01-01
Microarthropod densities within late-successional coniferous forests thinned 16-41 yr before sampling were compared with adjacent unthinned stands to identify longer term effects of thinning on this community. Soil and forest floor layers were sampled separately on eight paired sites. Within the forest floor oribatid, mesostigmatid, and to a marginal extent, prostigmatid mites, were reduced in thinned stands compared with unthinned stands. No differences were found for Collembola in the forest floor or for any mite suborder within the soil. Family level examination of mesostigmatid and prostigmatid mites revealed significant differences between stand types for both horizons. At the species level, thinning influenced numerous oribatid mites and Collembola. For oribatid mites, significant or marginally significant differences were found for seven of 15 common species in the forest floor and five of 16 common species in soil. Collembola were affected less, with differences found for one of 11 common species in the forest floor and three of 13 common species in soil. Multivariate analysis of variance and ordination indicated that forest thinning had little influence on the composition of oribatid mite and collembolan communities within either the forest floor or soil. Differences in microclimate or in the accumulation of organic matter on the forest floor were likely most responsible for the observed patterns of abundance. Considering the role that microarthropods play in nutrient cycling, determining the functional response of a wide range of taxa to thinning may be important to effective ecosystem management.
Shifts in tree functional composition amplify the response of forest biomass to climate.
Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W
2018-04-05
Forests have a key role in global ecosystems, hosting much of the world's terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.
Acid Precipitation and the Forest Ecosystem
ERIC Educational Resources Information Center
Dochinger, Leon S.; Seliga, Thomas A.
1975-01-01
The First International Symposium on Acid Precipitation and the Forest Ecosystem dealt with the potential magnitude of the global effects of acid precipitation on aquatic ecosystems, forest soils, and forest vegetation. The problem is discussed in the light of atmospheric chemistry, transport, and precipitation. (Author/BT)
Magrach, Ainhoa; Larrinaga, Asier R; Santamaría, Luis
2011-01-01
One and a half centuries after Darwin visited Chiloe Island, what he described as "…an island covered by one great forest…" has lost two-thirds of its forested areas. At this biodiversity hotspot, forest surface is becoming increasingly fragmented due to unregulated logging, clearing for pastures and replacement by exotic tree plantations. Decrease in patch size, increased isolation and "edge effects" can influence the persistence of forest species in remnant fragments. We assessed how these variables affect local density for six forest birds, chosen to include the most important seed dispersers (four species) and bird pollinators (two species, one of which acts also as seed disperser), plus the most common insectivore (Aphrastura spinicauda). Based on cue-count point surveys (8 points per fragment), we estimated bird densities for each species in 22 forest fragments of varying size, shape, isolation and internal-habitat structure (e.g. tree size and epiphyte cover). Bird densities varied with fragment connectivity (three species) and shape (three species), but none of the species was significantly affected by patch size. Satellite image analyses revealed that, from 1985 to 2008, forested area decreased by 8.8% and the remaining forest fragments became 16% smaller, 58-73% more isolated and 11-50% more regular. During that period, bird density estimates for the northern part of Chiloé (covering an area of 1214.75 km(2)) decreased for one species (elaenia), increased for another two (chucao and hummingbird) and did not vary for three (rayadito, thrust and blackbird). For the first three species, changes in patch features respectively exacerbated, balanced and overcame the effects of forest loss on bird population size (landscape-level abundance). Hence, changes in patch features can modulate the effect of habitat fragmentation on forest birds, suggesting that spatial planning (guided by spatially-explicit models) can be an effective tool to facilitate their conservation.
Fire effects on temperate forest soil C and N storage.
Nave, Lucas E; Vance, Eric D; Swanston, Christopher W; Curtis, Peter S
2011-06-01
Temperate forest soils store globally significant amounts of carbon (C) and nitrogen (N). Understanding how soil pools of these two elements change in response to disturbance and management is critical to maintaining ecosystem services such as forest productivity, greenhouse gas mitigation, and water resource protection. Fire is one of the principal disturbances acting on forest soil C and N storage and is also the subject of enormous management efforts. In the present article, we use meta-analysis to quantify fire effects on temperate forest soil C and N storage. Across a combined total of 468 soil C and N response ratios from 57 publications (concentrations and pool sizes), fire had significant overall effects on soil C (-26%) and soil N (-22%). The impacts of fire on forest floors were significantly different from its effects on mineral soils. Fires reduced forest floor C and N storage (pool sizes only) by an average of 59% and 50%, respectively, but the concentrations of these two elements did not change. Prescribed fires caused smaller reductions in forest floor C and N storage (-46% and -35%) than wildfires (-67% and -69%), and the presence of hardwoods also mitigated fire impacts. Burned forest floors recovered their C and N pools in an average of 128 and 103 years, respectively. Among mineral soils, there were no significant changes in C or N storage, but C and N concentrations declined significantly (-11% and -12%, respectively). Mineral soil C and N concentrations were significantly affected by fire type, with no change following prescribed burns, but significant reductions in response to wildfires. Geographic variation in fire effects on mineral soil C and N storage underscores the need for region-specific fire management plans, and the role of fire type in mediating C and N shifts (especially in the forest floor) indicates that averting wildfires through prescribed burning is desirable from a soils perspective.
Timothy Callahan; Devendra Amatya; Peter Stone
2017-01-01
Forests are receiving more attention for the ecosystem goods and services they provide and the potential change agents that may affect forest health and productivity. Highlighting case examples from coastal forests in South Carolina, USA, we describe groundwater processes with respect to stressors and potential responses of a wetland-rich forested landscape,...
The changing effects of Alaska's boreal forest on the climate system
E.S. Euskirchen; A.D. McGuire; F.S. Chapin; T.S. Rupp
2010-01-01
In the boreal forests of Alaska, recent changes in climate have influenced the exchange of trace gases, water, and energy between these forests and the atmosphere. These changes in the structure and function of boreal forests can then feed back to impact regional and global climates. We examine the type and magnitude of the climate feedbacks from boreal forests in...
Assessing urban forest effects and values: Morgantown's Urban Forest
David J. Nowak; Robert E. III Hoehn; Daniel E. Crane; Jack C. Stevens; Jonathan Cumming; Sandhya Mohen; Anne Buckelew. Cumming
2012-01-01
An analysis of the community forest in Morgantown, WV, was undertaken in 2004 to characterize the structural and functional attributes of this forest resource. The assessment revealed that this city has about 658,000 trees with canopies that cover 35.5 percent of the area. The most common tree species are sugar maple, black cherry, and hawthorn. The urban forest...
Louise Loudermilk; Robert Scheller; Peter Weisberg; Jian Yang; Thomas Dilts; Sarah Karam; Carl Skinner
2013-01-01
Understanding how climate change may influence forest carbon (C) budgets requires knowledge of forest growth relationships with regional climate, long-term forest succession, and past and future disturbances, such as wildfires and timber harvesting events. We used a landscape-scale model of forest succession, wildfire, and C dynamics (LANDIS-II) to evaluate the effects...
Forest carbon management in the United States: 1600-2100
Richard A. Birdsey; Kurt Pregitzer; Alan Lucier
2006-01-01
This paper reviews the effects of past forest management on carbon stocks in the United States, and the challenges for managing forest carbon resources in the 21st century. Forests in the United States were in approximate carbon balance with the atmosphere from 1600-1800. Utilization and land clearing caused a large pulse of forest carbon emissions during the 19th...
Preface. Forest ecohydrological processes in a changing environment.
Xiaohua Wei; Ge Sun; James Vose; Kyoichi Otsuki; Zhiqiang Zhang; Keith Smetterm
2011-01-01
The papers in this issue are a selection of the presentations made at the second International Conference on Forests and Water in a Changing Environment. This special issue âForest Ecohydrological Processes in a Changing Environmentâ covers the topics regarding the effects of forest, land use and climate changes on ecohydrological processes across forest stand,...
Projecting Forest Policy and Management Effects across Ownerships in Coastal Oregon
Thomas A. Spies; K. Norman Johnson
2007-01-01
Two of the most fundamental questions in forest ecosystem management are: (1) What are the consequences of different forest management practices? and (2) How do they vary with spatial and temporal scale? The forest management controversies of the 1990s in the Pacific Northwest revolved around these questions and led to major new forest polices in the region for federal...
Riparian area protection and outdoor recreation: lessons from the Northwest Forest Plan
Patrick Impero Wilson; Troy E. Hall; Linda E. Kruger
2012-01-01
The Northwest Forest Plan required the US Forest Service (USFS) to shift its management focus to ecological values rather than the utilitarian ones that had dominated forest policy in the region. This article examines the effects of this shift on the USFS's historic mission to provide recreational access to the region's forests. Focusing on six national...
Jeffery B. Cannon; Kevin J. Barrett; Benjamin M. Gannon; Robert N. Addington; Mike A. Battaglia; Paula J. Fornwalt; Gregory H. Aplet; Antony S. Cheng; Jeffrey L. Underhill; Jennifer S. Briggs; Peter M. Brown
2018-01-01
In response to large, severe wildfires in historically fire-adapted forests in the western US, policy initiatives, such as the USDA Forest Serviceâs Collaborative Forest Landscape Restoration Program (CFLRP), seek to increase the pace and scale of ecological restoration. One required component of this program is collaborative adaptive management, in which monitoring...
Grant M. Domke; Christopher W. Woodall; James E. Smith; James A. Westfall; Ronald E. McRoberts
2012-01-01
Forest ecosystems are the largest terrestrial carbon sink on earth and their management has been recognized as a relatively cost-effective strategy for offsetting greenhouse gas emissions. Forest carbon stocks in the U.S. are estimated using data from the USDA Forest Service, Forest Inventory and Analysis (FIA) program. In an attempt to balance accuracy with...
Analysis of forest health monitoring surveys on the Allegheny National Forest (1998-2001)
Randall S. Morin; Andrew M Liebhold; K.W. Gottschalk; Chris W. Woodall; Daniel B. Twardus; Robert L. White; Stephen B. Horsley; Todd E. Ristau
2006-01-01
Describes forest vegetation and health conditions on the Allegheny National Forest (ANF). During the past 20 years, the ANF has experienced four severe droughts, several outbreaks of exotic and native insect defoliators, and the effects of other disturbance agents. An increase in tree mortality has raised concerns about forest health. Historical aerial surveys (1984-98...
A model for managing edge effects in harvest scheduling using spatial optimization
Kai L. Ross; Sándor F. Tóth
2016-01-01
Actively managed forest stands can create new forest edges. If left unchecked over time and across space, forest operations such as clear-cuts can create complex networks of forest edges. Newly created edges alter the landscape and can affect many environmental factors. These altered environmental factors have a variety of impacts on forest growth and structure and can...
Forest stand structure, productivity, and age mediate climatic effects on aspen decline
Bell, David M.; Bradford, John B.; Lauenroth, William K.
2014-01-01
Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand-scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing-season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline.
Mechanisms of nitrogen deposition effects on temperate forest lichens and trees
Therese S. Carter; Christopher M. Clark; Mark E. Fenn; Sarah Jovan; Steven S. Perakis; Jennifer Riddell; Paul G. Schaberg; Tara L. Greaver; Meredith G. Hastings
2017-01-01
We review the mechanisms of deleterious nitrogen (N) deposition impacts on temperate forests, with a particular focus on trees and lichens. Elevated anthropogenic N deposition to forests has varied effects on individual organisms depending on characteristics both of the N inputs (form, timing, amount) and of the organisms (ecology, physiology) involved. Improved...
Approaches to modeling landscape-scale drought-induced forest mortality
Eric J. Gustafson; Douglas J. Shinneman
2015-01-01
Global changes, including climate change, are rapidly creating new environmental conditions and stressors for forests around the world. Climate change may have modest direct effects, at least initially, but indirect effects and interactions with disturbances can produce important changes in forest composition and landscape pattern (Dale et al. 2001; Gustafson et al....
Emerald ash borer aftermath forests: the future of ash ecosystems
Kathleen S. Knight; Daniel A. Herms; John Cardina; Robert Long; Kamal J.K. Gandhi; Catharine P. Herms
2011-01-01
The effects of emerald ash borer (EAB) (Agrilus planipennis) on forest ecosystems are being studied through a collaborative research program between the U.S. Forest Service and The Ohio State University. We are monitoring ash demographics, understory light availability, EAB population dynamics, native and non-native plants, and effects of ash...
Comparing extinction risk and economic cost in wildlife conservation planning
Robert G. Haight
1995-01-01
Planning regulations pursuant to the National Forest Management Act of 1976 require the USDA Forest Service to produce cost-effective, multiple-use forest plans that ensure the viability of native wildlife populations within the planning area. In accordance with these regulations, this paper presents a method for determining cost-effective conservation plans for...
Fire effects on Gambel oak in southwestern ponderosa pine-oak forests
Scott R. Abella; Peter Z. Fulé
2008-01-01
Gambel oak (Quercus gambelii) is ecologically and aesthetically valuable in southwestern ponderosa pine (Pinus ponderosa) forests. Fire effects on Gambel oak are important because fire may be used in pine-oak forests to manage oak directly or to accomplish other management objectives. We used published literature to: (1) ascertain...
Effects of riparian buffers on hydrology of northern seasonal ponds
Randall K. Kolka; Brian J. Palik; Daniel P. Tersteeg; James C. Bell
2011-01-01
Although seasonal ponds are common in northern, glaciated, forested landscapes, forest management guidelines are generally lacking for these systems. The objective of this study was to determine the effect of riparian buffer type on seasonal pond hydrology following harvest of the adjacent upland forest. A replicated block design consisting of four buffer treatments...
Carl E. Fiedler; Charles E. Keegan; Christopher W. Woodall; Todd A. Morgan
2004-01-01
Estimates of crown fire hazard are presented for existing forest conditions in Montana by density class, structural class, forest type, and landownership. Three hazard reduction treatments were evaluated for their effectiveness in treating historically fire-adapted forests (ponderosa pine (Pinus ponderosa Dougl. ex Laws.), Douglas-fir (...
Conversions of forest land: trends, determinants, projections, and policy considerations
Ralph Alig; Susan Stewart; David Wear; David Nowak
2010-01-01
Forest land conversion leads to ecological effects (e.g., changes in water quality and wildlife habitat) and socioeconomic effects (e.g., expanding urban-forest interface, reduced long-term timber production possibilities and loss of open space). Socioeconomic drivers of land use change such as population totals and personal income levels have increased substantially...
Family Forest Owner Characteristics Shaped by Life Cycle, Cohort, and Period Effects
Sarah M. Butler; Brett J. Butler; Marla Markowski-Lindsay
2017-01-01
Understanding differences and similarities among family forest owners is important in the context of forest land conservation. This study assesses similarities and differences in landowners by analyzing life cycle effects, cohort differences, and period-specific events that shape people's attitudes and behaviors towards their forestland over time. Using data...
Evaluating the Effectiveness Of Postfire Rehabilitation Treatments
Peter R. Robichaud; Jan L. Beyers; Daniel G. Neary
2000-01-01
Spending on postfire emergency watershed rehabilitation has increased during the past decade. A west-wide evaluation of USDA Forest Service burned area emergency rehabilitation (BAER) treatment effectiveness was undertaken as a joint project by USDA Forest Service Research and National Forest System staffs. This evaluation covers 470 fires and 321 BAER projects, from...
Evaluating the effectiveness of postfire rehabilitation treatments
Peter R. Robichaud; Jan L. Beyers; Daniel G. Neary
2000-01-01
Spending on postfire emergency watershed rehabilitation has increased during the past decade. A west-wide evaluation of USDA Forest Service burned area emergency rehabilitation (BAER) treatment effectiveness was undertaken as a joint project by USDA Forest Service Research and National Forest System staffs. This evaluation covers 470 fires and 321 BAER projects, from...
Morris, Rebecca J.
2010-01-01
Huge areas of diverse tropical forest are lost or degraded every year with dramatic consequences for biodiversity. Deforestation and fragmentation, over-exploitation, invasive species and climate change are the main drivers of tropical forest biodiversity loss. Most studies investigating these threats have focused on changes in species richness or species diversity. However, if we are to understand the absolute and long-term effects of anthropogenic impacts on tropical forests, we should also consider the interactions between species, how those species are organized in networks, and the function that those species perform. I discuss our current knowledge of network structure and ecosystem functioning, highlighting empirical examples of their response to anthropogenic impacts. I consider the future prospects for tropical forest biodiversity, focusing on biodiversity and ecosystem functioning in secondary forest. Finally, I propose directions for future research to help us better understand the effects of anthropogenic impacts on tropical forest biodiversity. PMID:20980318
Liu, Lei; Gundersen, Per; Zhang, Wei; Zhang, Tao; Chen, Hao; Mo, Jiangming
2015-09-23
Elevated nitrogen (N) deposition may aggravate phosphorus (P) deficiency in forests in the warm humid regions of China. To our knowledge, the interactive effects of long-term N deposition and P availability on soil microorganisms in tropical replanted forests remain unclear. We conducted an N and P manipulation experiment with four treatments: control, N addition (15 g N m(-2)·yr(-1)), P addition (15 g P m(-2)·yr(-1)), and N and P addition (15 + 15 g N and P m(-2)·yr(-1), respectively) in disturbed (planted pine forest with recent harvests of understory vegetation and litter) and rehabilitated (planted with pine, but mixed with broadleaf returning by natural succession) forests in southern China. Nitrogen addition did not significantly affect soil microbial biomass, but significantly decreased the abundance of gram-negative bacteria PLFAs in both forest types. Microbial biomass increased significantly after P addition in the disturbed forest but not in the rehabilitated forest. No interactions between N and P additions on soil microorganisms were observed in either forest type. Our results suggest that microbial growth in replanted forests of southern China may be limited by P rather than by N, and this P limitation may be greater in disturbed forests.
Can global navigation satellite system signals reveal the ecological attributes of forests?
NASA Astrophysics Data System (ADS)
Liu, Jingbin; Hyyppä, Juha; Yu, Xiaowei; Jaakkola, Anttoni; Liang, Xinlian; Kaartinen, Harri; Kukko, Antero; Zhu, Lingli; Wang, Yunsheng; Hyyppä, Hannu
2016-08-01
Forests have important impacts on the global carbon cycle and climate, and they are also related to a wide range of industrial sectors. Currently, one of the biggest challenges in forestry research is effectively and accurately measuring and monitoring forest variables, as the exploitation potential of forest inventory products largely depends on the accuracy of estimates and on the cost of data collection. A low-cost crowdsourcing solution is needed for forest inventory to collect forest variables. Here, we propose global navigation satellite system (GNSS) signals as a novel type of observables for predicting forest attributes and show the feasibility of utilizing GNSS signals for estimating important attributes of forest plots, including mean tree height, mean diameter at breast height, basal area, stem volume and tree biomass. The prediction accuracies of the proposed technique were better in boreal forest conditions than those of the conventional techniques of 2D remote sensing. More importantly, this technique provides a novel, cost-effective way of collecting large-scale forest measurements in the crowdsourcing context. This technique can be applied by, for example, harvesters or persons hiking or working in forests because GNSS devices are widely used, and the field operation of this technique is simple and does not require professional forestry skills.
Forest fires are associated with elevated mortality in a dense urban setting.
Analitis, Antonis; Georgiadis, Ioannis; Katsouyanni, Klea
2012-03-01
The climate and vegetation of the greater Athens area (population over three million) make forest fires a real threat to the environment during the summer. A few studies have reported the adverse health effects of forest fires, mainly using morbidity outcomes. The authors investigated the short-term effects of forest fires on non-accidental mortality in the population of Athens, Greece, during 1998-2004. The authors used generalised additive models to investigate the effect of forest fires on daily mortality, adjusting for time trend and meteorological variables, taking into account air pollution as measured from fixed monitors. Forest fires were classified by size according to the area burnt. Small fires do not have an effect on mortality. Medium sized fires are associated with an increase of 4.9% (95% CI 0.3% to 9.6%) in the daily total number of deaths, 6.0% (95% CI -0.3% to 12.6%) in the number of cardiovascular deaths and 16.2% (95% CI 1.3% to 33.4%) in the number of respiratory deaths. Cardiovascular effects are larger in those aged <75 years, while respiratory effects are larger in older people. The corresponding effects of the one large fire are: 49.7% (95% CI 37.2% to 63.4%), 60.6% (95% CI 43.1% to 80.3%) and 92.0% (95% CI 47.5% to 150.0%). These effects cannot be completely explained by an increase in ambient particle concentrations. Forest fires have an immediate effect on mortality, not associated with accidental deaths, which is a significant public health problem, especially if the fire occurs near a densely populated area.
Approaches to modeling landscape-scale drought-induced forest mortality
Gustafson, Eric J.; Shinneman, Douglas
2015-01-01
Drought stress is an important cause of tree mortality in forests, and drought-induced disturbance events are projected to become more common in the future due to climate change. Landscape Disturbance and Succession Models (LDSM) are becoming widely used to project climate change impacts on forests, including potential interactions with natural and anthropogenic disturbances, and to explore the efficacy of alternative management actions to mitigate negative consequences of global changes on forests and ecosystem services. Recent studies incorporating drought-mortality effects into LDSMs have projected significant potential changes in forest composition and carbon storage, largely due to differential impacts of drought on tree species and interactions with other disturbance agents. In this chapter, we review how drought affects forest ecosystems and the different ways drought effects have been modeled (both spatially and aspatially) in the past. Building on those efforts, we describe several approaches to modeling drought effects in LDSMs, discuss advantages and shortcomings of each, and include two case studies for illustration. The first approach features the use of empirically derived relationships between measures of drought and the loss of tree biomass to drought-induced mortality. The second uses deterministic rules of species mortality for given drought events to project changes in species composition and forest distribution. A third approach is more mechanistic, simulating growth reductions and death caused by water stress. Because modeling of drought effects in LDSMs is still in its infancy, and because drought is expected to play an increasingly important role in forest health, further development of modeling drought-forest dynamics is urgently needed.
van Mantgem, P.J.; Schwilk, D.W.
2009-01-01
Fire is an important feature of many forest ecosystems, although the quantification of its effects is compromised by the large scale at which fire occurs and its inherent unpredictability. A recurring problem is the use of subsamples collected within individual burns, potentially resulting in spatially autocorrelated data. Using subsamples from six different fires (and three unburned control areas) we show little evidence for strong spatial autocorrelation either before or after burning for eight measures of forest conditions (both fuels and vegetation). Additionally, including a term for spatially autocorrelated errors provided little improvement for simple linear models contrasting the effects of early versus late season burning. While the effects of spatial autocorrelation should always be examined, it may not always greatly influence assessments of fire effects. If high patch scale variability is common in Sierra Nevada mixed conifer forests, even following more than a century of fire exclusion, treatments designed to encourage further heterogeneity in forest conditions prior to the reintroduction of fire will likely be unnecessary.
Decentralization can help reduce deforestation when user groups engage with local government.
Wright, Glenn D; Andersson, Krister P; Gibson, Clark C; Evans, Tom P
2016-12-27
Policy makers around the world tout decentralization as an effective tool in the governance of natural resources. Despite the popularity of these reforms, there is limited scientific evidence on the environmental effects of decentralization, especially in tropical biomes. This study presents evidence on the institutional conditions under which decentralization is likely to be successful in sustaining forests. We draw on common-pool resource theory to argue that the environmental impact of decentralization hinges on the ability of reforms to engage local forest users in the governance of forests. Using matching techniques, we analyze longitudinal field observations on both social and biophysical characteristics in a large number of local government territories in Bolivia (a country with a decentralized forestry policy) and Peru (a country with a much more centralized forestry policy). We find that territories with a decentralized forest governance structure have more stable forest cover, but only when local forest user groups actively engage with the local government officials. We provide evidence in support of a possible causal process behind these results: When user groups engage with the decentralized units, it creates a more enabling environment for effective local governance of forests, including more local government-led forest governance activities, fora for the resolution of forest-related conflicts, intermunicipal cooperation in the forestry sector, and stronger technical capabilities of the local government staff.
NASA Astrophysics Data System (ADS)
Hundera, Kitessa; Aerts, Raf; Fontaine, Alexandre; Van Mechelen, Maarten; Gijbels, Pieter; Honnay, Olivier; Muys, Bart
2013-03-01
The effect of arabica coffee management intensity on composition, structure, and regeneration of moist evergreen Afromontane forests was studied in three traditional coffee-management systems of southwest Ethiopia: semiplantation coffee, semiforest coffee, and forest coffee. Vegetation and environmental data were collected in 84 plots from forests varying in intensity of coffee management. After controlling for environmental variation (altitude, aspect, slope, soil nutrient availability, and soil depth), differences in woody species composition, forest structure, and regeneration potential among management systems were compared using one way analysis of variance. The study showed that intensification of forest coffee cultivation to maximize coffee production negatively affects diversity and structure of Ethiopian moist evergreen Afromontane forests. Intensification of coffee productivity starts with the conversion of forest coffee to semiforest coffee, which has significant negative effects on tree seedling abundance. Further intensification leads to the conversion of semiforest to semiplantation coffee, causing significant diversity losses and the collapse of forest structure (decrease of stem density, basal area, crown closure, crown cover, and dominant tree height). Our study underlines the need for shade certification schemes to include variables other than canopy cover and that the loss of species diversity in intensively managed coffee systems may jeopardize the sustainability of coffee production itself through the decrease of ecosystem resilience and disruption of ecosystem services related to coffee yield, such as pollination and pest control.
Hisano, Masumi; Searle, Eric B; Chen, Han Y H
2018-02-01
Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. © 2017 Cambridge Philosophical Society.
Decentralization can help reduce deforestation when user groups engage with local government
Wright, Glenn D.; Gibson, Clark C.; Evans, Tom P.
2016-01-01
Policy makers around the world tout decentralization as an effective tool in the governance of natural resources. Despite the popularity of these reforms, there is limited scientific evidence on the environmental effects of decentralization, especially in tropical biomes. This study presents evidence on the institutional conditions under which decentralization is likely to be successful in sustaining forests. We draw on common-pool resource theory to argue that the environmental impact of decentralization hinges on the ability of reforms to engage local forest users in the governance of forests. Using matching techniques, we analyze longitudinal field observations on both social and biophysical characteristics in a large number of local government territories in Bolivia (a country with a decentralized forestry policy) and Peru (a country with a much more centralized forestry policy). We find that territories with a decentralized forest governance structure have more stable forest cover, but only when local forest user groups actively engage with the local government officials. We provide evidence in support of a possible causal process behind these results: When user groups engage with the decentralized units, it creates a more enabling environment for effective local governance of forests, including more local government-led forest governance activities, fora for the resolution of forest-related conflicts, intermunicipal cooperation in the forestry sector, and stronger technical capabilities of the local government staff. PMID:27956644
S.B. McLaughlin; S.D. Wullschleger; G. Sun; M. Nosal
2007-01-01
Documentation of the degree and direction of effects of ozone on transpiration of canopies of mature forest trees is critically needed to model ozone effects on forest water use and growth in a warmer future climate.Patterns of sap flow in stems and soil moisture in the rooting zones of mature trees, coupled with late-season...
Jessica Miesel; P. Goebel; R. Corace; David Hix; Randall Kolka; Brian Palik; David Mladenoff
2012-01-01
Fire-adapted forests of the Lake States region are poorly studied relative to those of the western and southeastern United States and our knowledge base of regional short- and long-term fire effects on soils is limited. We compiled and assessed the body of literature addressing fire effects on soils in Lake States forests to facilitate the re-measurement of previous...
Bolt, Laura M; Schreier, Amy L; Voss, Kristofor A; Sheehan, Elizabeth A; Barrickman, Nancy L; Pryor, Nathaniel P; Barton, Matthew C
2018-05-01
When a forest is fragmented, this increases the amount of forest edge relative to the interior. Edge effects can lead to loss of animal and plant species and decreased plant biomass near forest edges. We examined the influence of an anthropogenic forest edge comprising cattle pasture, coconut plantations, and human settlement on the mantled howler (Alouatta palliata), white-faced capuchin (Cebus capucinus), Central American spider monkey (Ateles geoffroyi), and plant populations at La Suerte Biological Research Station (LSBRS), Costa Rica. We predicted that there would be lower monkey encounter rate, mean tree species richness, and diameter at breast height (DBH) in forest edge versus interior, and that monkeys would show species-specific responses to edge based on diet, body size, and canopy height preferences. Specifically, we predicted that howler monkeys would show positive or neutral edge effects due to their flexible folivorous diet, large body size, and preference for high canopy, capuchins would show positive edge effects due to their diverse diet, small body size, and preference for low to middle canopy, and spider monkeys would show negative edge effects due their reliance on ripe fruit, large body size, and preference for high upper canopy. We conducted population and vegetation surveys along edge and interior transects at LSBRS. Contrary to predictions, total monkey encounter rate did not vary between the forest edge and forest interior. Furthermore, all three species showed neutral edge effects with no significant differences in encounter rate between forest edge and interior. Interior transects had significantly higher mean tree species richness than edge transects, and interior trees had greater DBH than edge trees, although this difference was not significant. These results suggest that forest edges negatively impact plant populations at La Suerte but that the monkeys are able to withstand these differences in vegetation.
Guillemot, Joannès; Delpierre, Nicolas; Vallet, Patrick; François, Christophe; Martin-StPaul, Nicolas K; Soudani, Kamel; Nicolas, Manuel; Badeau, Vincent; Dufrêne, Eric
2014-09-01
The structure of a forest stand, i.e. the distribution of tree size features, has strong effects on its functioning. The management of the structure is therefore an important tool in mitigating the impact of predicted changes in climate on forests, especially with respect to drought. Here, a new functional-structural model is presented and is used to assess the effects of management on forest functioning at a national scale. The stand process-based model (PBM) CASTANEA was coupled to a stand structure module (SSM) based on empirical tree-to-tree competition rules. The calibration of the SSM was based on a thorough analysis of intersite and interannual variability of competition asymmetry. The coupled CASTANEA-SSM model was evaluated across France using forest inventory data, and used to compare the effect of contrasted silvicultural practices on simulated stand carbon fluxes and growth. The asymmetry of competition varied consistently with stand productivity at both spatial and temporal scales. The modelling of the competition rules enabled efficient prediction of changes in stand structure within the CASTANEA PBM. The coupled model predicted an increase in net primary productivity (NPP) with management intensity, resulting in higher growth. This positive effect of management was found to vary at a national scale across France: the highest increases in NPP were attained in forests facing moderate to high water stress; however, the absolute effect of management on simulated stand growth remained moderate to low because stand thinning involved changes in carbon allocation at the tree scale. This modelling approach helps to identify the areas where management efforts should be concentrated in order to mitigate near-future drought impact on national forest productivity. Around a quarter of the French temperate oak and beech forests are currently in zones of high vulnerability, where management could thus mitigate the influence of climate change on forest yield.
Yuan, Zuoqiang; Wang, Shaopeng; Gazol, Antonio; Mellard, Jarad; Lin, Fei; Ye, Ji; Hao, Zhanqing; Wang, Xugao; Loreau, Michel
2016-12-01
Biodiversity can be measured by taxonomic, phylogenetic, and functional diversity. How ecosystem functioning depends on these measures of diversity can vary from site to site and depends on successional stage. Here, we measured taxonomic, phylogenetic, and functional diversity, and examined their relationship with biomass in two successional stages of the broad-leaved Korean pine forest in northeastern China. Functional diversity was calculated from six plant traits, and aboveground biomass (AGB) and coarse woody productivity (CWP) were estimated using data from three forest censuses (10 years) in two large fully mapped forest plots (25 and 5 ha). 11 of the 12 regressions between biomass variables (AGB and CWP) and indices of diversity showed significant positive relationships, especially those with phylogenetic diversity. The mean tree diversity-biomass regressions increased from 0.11 in secondary forest to 0.31 in old-growth forest, implying a stronger biodiversity effect in more mature forest. Multi-model selection results showed that models including species richness, phylogenetic diversity, and single functional traits explained more variation in forest biomass than other candidate models. The models with a single functional trait, i.e., leaf area in secondary forest and wood density in mature forest, provided better explanations for forest biomass than models that combined all six functional traits. This finding may reflect different strategies in growth and resource acquisition in secondary and old-growth forests.
NASA Astrophysics Data System (ADS)
Roth, T. R.; Nolin, A. W.
2015-12-01
Forest canopies intercept as much as 60% of snowfall in maritime environments, while processes of sublimation and melt can reduce the amount of snow transferred from the canopy to the ground. This research examines canopy interception efficiency (CIE) as a function of forest and event-scale snowfall characteristics. We use a 4-year dataset of continuous meteorological measurements and monthly snow surveys from the Forest Elevation Snow Transect (ForEST) network that has forested and open sites at three elevations spanning the rain-snow transition zone to the upper seasonal snow zone. Over 150 individual storms were classified by forest and storm type characteristics (e.g. forest density, vegetation type, air temperature, snowfall amount, storm duration, wind speed, and storm direction). The between-site comparisons showed that, as expected, CIE was highest for the lower elevation (warmer) sites with higher forest density compared with the higher elevation sites where storm temperatures were colder, trees were smaller and forests were less dense. Within-site comparisons based on storm type show that this classification system can be used to predict CIE.Our results suggest that the coupling of forest type and storm type information can improve estimates of canopy interception. Understanding the effects of temperature and storm type in temperate montane forests is also valuable for future estimates of canopy interception under a warming climate.
Estimating Chemical Exchange between Atmospheric Deposition and Forest Canopy in Guizhou, China.
Li, Wei; Gao, Fang; Liao, Xueqin
2013-01-01
To evaluate the effects of atmospheric deposition on forest ecosystems, wet-only precipitation and throughfall samples were collected in two forest types (Masson pine [ Lamb.] forests and mixed conifer and broadleaf forests) in the Longli forest in the Guizhou province of southwestern China for a period of 21 successive months from April 2007 to December 2008. The pH and chemical components of precipitation and throughfall were analyzed. In addition, the canopy budget model was applied to distinguish between in-canopy and atmospheric sources of chemical compounds. Canopy leaching and total potentially acidifying deposition fluxes were calculated. The results showed that the average pH and the concentration of ions in throughfall were higher than those in precipitation, with the exception of the NH concentration. Dry deposition of S and N accumulated more in Masson pine forests than in mixed conifer and broadleaf forests. Canopy leaching was the most significant source of base cations in forest throughfall, which was higher in the mixed forests than in the coniferous forests. Anions in throughfall deposition in Masson pine forests exceeded those in the mixed forests. Higher total potentially acidifying deposition fluxes reflected the more effective amounts of acid delivered to Masson pine forests compared with mixed conifer and broadleaf forests. In addition, acid deposition induced the leaching and loss of nutrient ions such as Mg, K, and Ca. Although the trees of the studied areas have not shown any symptoms of cation loss, a potentially harmful influence was engendered by atmospheric deposition in the two forest types in the Longli area. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Fifteen-year patterns of soil carbon and nitrogen following biomass harvesting
Kurth, Valerie J.; D'Amato, Anthony W.; Palik, Brian J.; Bradford, John B.
2014-01-01
The substitution of forest-derived woody biofuels for fossil fuel energy has garnered increasing attention in recent years, but information regarding the mid- and long-term effects on soil productivity is limited. We investigated 15-yr temporal trends in forest floor and mineral soil (0–30 cm) C and N pools in response to organic matter removal treatments (OMR; stem-only harvest, SOH; whole-tree harvest, WTH; and whole-tree plus forest floor removal, FFR) at three edaphically distinct aspen (Populus tremuloides Michx. and P. grandidentata Michx.) forests in the Great Lakes region. The OMR and temporal effects were generally site specific, and both were most evident in the forest floor and combined profile (mineral soil and forest floor) compared with the mineral soil alone. Forest floor and combined profile C and N pools were generally similar in the SOH and WTH treatments, suggesting that slash retention has little impact on soil C and N in this time frame. Temporal changes in C and N at one of the three sites were consistent with patterns documented following exotic earthworm invasion, but mineral soil pools at the other two sites were stable over time. Power analyses demonstrated that significant effects were more likely to be detected for temporal differences than the effects of OMR and in the combined profile than in the mineral soil. Our findings are consistent with previous work demonstrating that OMR effects on soil C and N pools are site specific and more apparent in the forest floor than the mineral soil.
Effects of repeated fires on ecosystem C and N stocks along a fire induced forest/grassland gradient
NASA Astrophysics Data System (ADS)
Cheng, Chih-Hsin; Chen, Yung-Sheng; Huang, Yu-Hsuan; Chiou, Chyi-Rong; Lin, Chau-Chih; Menyailo, Oleg V.
2013-03-01
Repeated fires might have different effect on ecosystem carbon storage than a single fire event, but information on repeated fires and their effects on forest ecosystems and carbon storage is scarce. However, changes in climate, vegetation composition, and human activities are expected to make forests more susceptible to fires that recur with relatively high frequency. In this study, the effects of repeated fires on ecosystem carbon and nitrogen stocks were examined along a fire-induced forest/grassland gradient wherein the fire events varied from an unburned forest to repeatedly burned grassland. Results from the study show repeated fires drastically decreased ecosystem carbon and nitrogen stocks along the forest/grassland gradient. The reduction began with the disappearance of living tree biomass, and followed by the loss of soil carbon and nitrogen. Within 4 years of the onset of repeated fires on the unburned forest, the original ecosystem carbon and nitrogen stocks were reduced by 42% and 21%, respectively. Subsequent fires caused cumulative reductions in ecosystem carbon and nitrogen stocks by 68% and 44% from the original ecosystem carbon and nitrogen stocks, respectively. The analyses of carbon budgets calculated by vegetation composition and stable isotopic δ13C values indicate that 84% of forest-derived carbon is lost at grassland, whereas the gain of grass-derived carbon only compensates 18% for this loss. Such significant losses in ecosystem carbon and nitrogen stocks suggest that the effects of repeated fires have substantial impacts on ecosystem and soil carbon and nitrogen cycling.
Tsao, Tsung-Ming; Tsai, Ming-Jer; Wang, Ya-Nan; Lin, Heng-Lun; Wu, Chang-Fu; Hwang, Jing-Shiang; Hsu, Sandy-H J; Chao, Hsing; Chuang, Kai-Jen; Chou, Charles-C K; Su, Ta-Chen
2014-01-01
Assessment of health effects of a forest environment is an important emerging area of public health and environmental sciences. To demonstrate the long-term health effects of living in a forest environment on subclinical cardiovascular diseases (CVDs) and health-related quality of life (HRQOL) compared with that in an urban environment. This study included the detailed health examination and questionnaire assessment of 107 forest staff members (FSM) and 114 urban staff members (USM) to investigate the long-term health effects of a forest environment. Air quality monitoring between the forest and urban environments was compared. In addition, work-related factors and HRQOL were evaluated. Levels of total cholesterol, low-density lipoprotein cholesterol, and fasting glucose in the USM group were significantly higher than those in the FSM group. Furthermore, a significantly higher intima-media thickness of the internal carotid artery was found in the USM group compared with that in the FSM group. Concentrations of air pollutants, such as NO, NO2, NOx, SO2, CO, PM2.5, and PM10 in the forest environment were significantly lower compared with those in the outdoor urban environment. Working hours were longer in the FSM group; however, the work stress evaluation as assessed by the job content questionnaire revealed no significant differences between FSM and USM. HRQOL evaluated by the World Health Organization Quality of Life-BREF questionnaire showed FSM had better HRQOL scores in the physical health domain. This study provides evidence of the potential beneficial effects of forest environments on CVDs and HRQOL.
Bird response to future climate and forest management focused on mitigating climate change
Jaymi J. LeBrun; Jeffrey E. Schneiderman; Frank R. Thompson; William D. Dijak; Jacob S. Fraser; Hong S. He; Joshua J. Millspaugh
2016-01-01
Context. Global temperatures are projected to increase and affect forests and wildlife populations. Forest management can potentially mitigate climateinduced changes through promoting carbon sequestration, forest resilience, and facilitated change. Objectives. We modeled direct and indirect effects of climate change on avian...
Mouri, Goro; Nakano, Katsuhiro; Tsuyama, Ikutaro; Tanaka, Nobuyuki
2016-08-01
Forest disturbance (or land-cover change) and climatic variability are commonly recognised as two major drivers interactively influencing hydrology in forested watersheds. Future climate changes and corresponding changes in forest type and distribution are expected to generate changes in rainfall runoff that pose a threat to river catchments. It is therefore important to understand how future climate changes will effect average rainfall distribution and temperature and what effect this will have upon forest types across Japan. Recent deforestation of the present-day coniferous forest and expected increases in evergreen forest are shown to influence runoff processes and, therefore, to influence future runoff conditions. We strongly recommend that variations in forest type be considered in future plans to ameliorate projected climate changes. This will help to improve water retention and storage capacities, enhance the flood protection function of forests, and improve human health. We qualitatively assessed future changes in runoff including the effects of variation in forest type across Japan. Four general circulation models (GCMs) were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields: the Model for Interdisciplinary Research on Climate (MIROC), the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), the Hadley Centre Global Environment Model (HadGEM), and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model. The simulations consisted of an ensemble including multiple physics configurations and different reference concentration pathways (RCP2.6, 4.5, and 8.5), the results of which have produced monthly data sets for the whole of Japan. The impacts of future climate changes on forest type in Japan are based on the balance amongst changes in rainfall distribution, temperature and hydrological factors. Methods for assessing the impact of such changes include the Catchment Simulator modelling frameworks based on the Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO) model, which was expanded to estimate discharge by incorporating the effects of forest-type transition across the whole of Japan. The results indicated that, by the 2090s, annual runoff will increase above present-day values. Increases in annual variation in runoff by the 2090s was predicted to be around 14.1% when using the MRI-GCM data and 44.4% when using the HadGEM data. Analysis by long-term projection showed the largest increases in runoff in the 2090s were related to the type of forest, such as evergreen. Increased runoff can have negative effects on both society and the environment, including increased flooding events, worsened water quality, habitat destruction and changes to the forest moisture-retaining function. Prediction of the impacts of future climate change on water generation is crucial for effective environmental planning and management. Copyright © 2016 Elsevier Inc. All rights reserved.
Ter-Mikaelian, Michael T; Colombo, Stephen J; Chen, Jiaxin
2013-10-01
Carbon stocks in managed forests of Ontario, Canada, and in harvested wood products originated from these forests were estimated for 2010-2100. Simulations included four future forest harvesting scenarios based on historical harvesting levels (low, average, high, and maximum available) and a no-harvest scenario. In four harvesting scenarios, forest carbon stocks in Ontario's managed forest were estimated to range from 6202 to 6227 Mt C (millions of tons of carbon) in 2010, and from 6121 to 6428 Mt C by 2100. Inclusion of carbon stored in harvested wood products in use and in landfills changed the projected range in 2100 to 6710-6742 Mt C. For the no-harvest scenario, forest carbon stocks were projected to change from 6246 Mt C in 2010 to 6680 Mt C in 2100. Spatial variation in projected forest carbon stocks was strongly related to changes in forest age (r = 0.603), but had weak correlation with harvesting rates. For all managed forests in Ontario combined, projected carbon stocks in combined forest and harvested wood products converged to within 2% difference by 2100. The results suggest that harvesting in the boreal forest, if applied within limits of sustainable forest management, will eventually have a relatively small effect on long-term combined forest and wood products carbon stocks. However, there was a large time lag to approach carbon equality, with more than 90 years with a net reduction in stored carbon in harvested forests plus wood products compared to nonharvested boreal forest which also has low rates of natural disturbance. The eventual near equivalency of carbon stocks in nonharvested forest and forest that is harvested and protected from natural disturbance reflects both the accumulation of carbon in harvested wood products and the relatively young age at which boreal forest stands undergo natural succession in the absence of disturbance.
Effects of coffee management on deforestation rates and forest integrity.
Hylander, Kristoffer; Nemomissa, Sileshi; Delrue, Josefien; Enkosa, Woldeyohannes
2013-10-01
Knowledge about how forest margins are utilized can be crucial for a general understanding of changes in forest cover, forest structure, and biodiversity across landscapes. We studied forest-agriculture transitions in southwestern Ethiopia and hypothesized that the presence of coffee (Coffea arabica)decreases deforestation rates because of coffee's importance to local economies and its widespread occurrence in forests and forest margins. Using satellite images and elevation data, we compared changes in forest cover over 37 years (1973-2010) across elevations in 2 forest-agriculture mosaic landscapes (1100 km(2) around Bonga and 3000 km(2) in Goma-Gera). In the field in the Bonga area, we determined coffee cover and forest structure in 40 forest margins that differed in time since deforestation. Both the absolute and relative deforestation rates were lower at coffee-growing elevations compared with at higher elevations (-10/20% vs. -40/50% comparing relative rates at 1800 m asl and 2300-2500 m asl, respectively). Within the coffee-growing elevation, the proportion of sites with high coffee cover (>20%) was significantly higher in stable margins (42% of sites that had been in the same location for the entire period) than in recently changed margins (0% of sites where expansion of annual crops had changed the margin). Disturbance level and forest structure did not differ between sites with 30% or 3% coffee. However, a growing body of literature on gradients of coffee management in Ethiopia reports coffee's negative effects on abundances of forest-specialist species. Even if the presence of coffee slows down the conversion of forest to annual-crop agriculture, there is a risk that an intensification of coffee management will still threaten forest biodiversity, including the genetic diversity of wild coffee. Conservation policy for Ethiopian forests thus needs to develop strategies that acknowledge that forests without coffee production may have higher deforestation risks than forests with coffee production and that forests with coffee production often have lower biodiversity value. © 2013 Society for Conservation Biology.
Estimating the Longwave Radiation Underneath the Forest Canopy in Snow-dominated Setting
NASA Astrophysics Data System (ADS)
Zhou, Y.; Kumar, M.; Link, T. E.
2017-12-01
Forest canopies alter incoming longwave radiation at the land surface, thus influencing snow cover energetics. The snow surface receives longwave radiation from the sky as well as from surrounding vegetation. The longwave radiation from trees is determined by its skin temperature, which shows significant heterogeneity depending on its position and morphometric attributes. Here our goal is to derive an effective tree temperature that can be used to estimate the longwave radiation received by the land surface pixel. To this end, we implement these three steps: 1) derive a relation between tree trunk surface temperature and the incident longwave radiation, shortwave radiation, and air temperature; 2) develop an inverse model to calculate the effective temperature by establishing a relationship between the effective temperature and the actual tree temperature; and 3) estimate the effective temperature using widely measured variables, such as solar radiation and forest density. Data used to derive aforementioned relations were obtained at the University of Idaho Experimental Forest, in northern Idaho. Tree skin temperature, incoming longwave radiation, solar radiation received by the tree surface, and air temperature were measured at an isolated tree and a tree within a homogeneous forest stand. Longwave radiation received by the land surface and the sky view factors were also measured at the same two locations. The calculated effective temperature was then compared with the measured tree trunk surface temperature. Additional longwave radiation measurements with pyrgeometer arrays were conducted under forests with different densities to evaluate the relationship between effective temperature and forest density. Our preliminary results show that when exposed to direct shortwave radiation, the tree surface temperature shows a significant difference from the air temperature. Under cloudy or shaded conditions, the tree surface temperature closely follows the air temperature. The effective tree temperature follows the air temperature in a dense forest stand, although it is significantly larger than the air temperature near the isolated tree. This discrepancy motivates us to explore ways to represent the effective tree temperature for stands with different densities.
NASA Astrophysics Data System (ADS)
Hatten, J.; Mack, J.; Dewey, J.; Sucre, E.; Leggett, Z.
2012-04-01
Forest harvest residues and forest floor materials are significant sources of mineral soil organic matter and nutrients for regenerating and establishing forests. Harvest residues in particular are occasionally removed, piled, or burned following harvesting. While the forest floor is never purposely removed during operational harvesting and site preparation, they could become in high demand as bioenergy markets develop. Weyerhaeuser Company established an experimental study to evaluate the effect of forest-floor manipulation on site productivity and soil carbon. This study was installed in a loblolly pine plantation near Millport, Alabama, USA on the Upper Gulf Coastal Plain to test both extremes from complete removal of harvest residues and forest floor to doubling of these materials. This study has been continuously monitored since its establishment in 1994. We have examined the effects of varying forest floor levels on the biomass, soil carbon content, and soil carbon composition in the context of these management activities. Above- and below-ground productivity, soil moisture, soil temperature, and nutrient dynamics have been related to soil organic carbon in mineral soil size/density fractionation and lignin and cutin biomarkers from the cupric oxide (CuO) oxidation technique. We have found that while removing litter and harvest residues has little effect on biomass production and soil carbon, importing litter and harvest residues increases forest productivity and soil carbon content. Interestingly, increased carbon was observed in all depths assessed (O horizon, 0-20, 20-40, and 40-60cm) suggesting that this practice may sequester organic carbon in deep soil horizons. Our biomarker analysis indicated that importing litter and harvest residues increased relative contributions from above ground sources at the 20-40cm depth and increased relative contributions from belowground sources at the 40-60cm depth. These results suggest that organic matter manipulations in managed forests can have significant effects on deep soil carbon that may be resistant to mineralization or the effects of other perturbations such as climate change.
Ruiz-Gutierrez, Viviana; Zipkin, Elise F.; Dhondt, Andre A.
2010-01-01
1. Worldwide loss of biodiversity necessitates a clear understanding of the factors driving population declines as well as informed predictions about which species and populations are at greatest risk. The biggest threat to the long-term persistence of populations is the reduction and changes in configuration of their natural habitat. 2. Inconsistencies have been noted in the responses of populations to the combined effects of habitat loss and fragmentation. These have been widely attributed to the effects of the matrix habitats in which remnant focal habitats are typically embedded. 3. We quantified the potential effects of the inter-patch matrix by estimating occupancy and colonization of forest and surrounding non-forest matrix (NF). We estimated species-specific parameters using a dynamic, multi-species hierarchical model on a bird community in southwestern Costa Rica. 4. Overall, we found higher probabilities of occupancy and colonization of forest relative to the NF across bird species, including those previously categorized as open habitat generalists not needing forest to persist. Forest dependency was a poor predictor of occupancy dynamics in our study region, largely predicting occupancy and colonization of only non-forest habitats. 5. Our results indicate that the protection of remnant forest habitats is key for the long-term persistence of all members of the bird community in this fragmented landscape, including species typically associated with open, non-forest habitats. 6.Synthesis and applications. We identified 39 bird species of conservation concern defined by having high estimates of forest occupancy, and low estimates of occupancy and colonization of non-forest. These species survive in forest but are unlikely to venture out into open, non-forested habitats, therefore, they are vulnerable to the effects of habitat loss and fragmentation. Our hierarchical community-level model can be used to estimate species-specific occupancy dynamics for focal and inter-patch matrix habitats to identify which species within a community are likely to be impacted most by habitat loss and fragmentation. This model can be applied to other taxa (i.e. amphibians, mammals and insects) to estimate species and community occurrence dynamics in response to current environmental conditions and to make predictions in response to future changes in habitat configurations.
Cost-effective age structure and geographical distribution of boreal forest reserves
Lundström, Johanna; Öhman, Karin; Perhans, Karin; Rönnqvist, Mikael; Gustafsson, Lena; Bugman, Harald
2011-01-01
1. Forest reserves are established to preserve biodiversity, and to maintain natural functions and processes. Today there is heightened focus on old-growth stages, with less attention given to early successional stages. The biodiversity potential of younger forests has been overlooked, and the cost-effectiveness of incorporating different age classes in reserve networks has not yet been studied. 2. We performed a reserve selection analysis in boreal Sweden using the Swedish National Forest Inventory plots. Seventeen structural variables were used as biodiversity indicators, and the cost of protecting each plot as a reserve was assessed using the Heureka system. A goal programming approach was applied, which allowed inclusion of several objectives and avoided a situation in which common indicators affected the result more than rare ones. The model was limited either by budget or area. 3. All biodiversity indicators were found in all age classes, with more than half having the highest values in ages ≥ 100 years. Several large-tree indicators and all deadwood indicators had higher values in forests 0–14 years than in forests 15–69 years. 4. It was most cost-effective to protect a large proportion of young forests since they generally have a lower net present value compared to older forests, but still contain structures of importance for biodiversity. However, it was more area-effective to protect a large proportion of old forests since they have a higher biodiversity potential per area. 5. The geographical distribution of reserves selected with the budget-constrained model was strongly biassed towards the north-western section of boreal Sweden, with a large proportion of young forest, whereas the area-constrained model focussed on the south-eastern section, with dominance by the oldest age class. 6. Synthesis and applications. We show that young forests with large amounts of structures important to biodiversity such as dead wood and remnant trees are cheap and cost-efficient to protect. This suggests that reserve networks should incorporate sites with high habitat quality of different forest ages. Since young forests are generally neglected in conservation, our approach is of interest also to other forest biomes where biodiversity is adapted to disturbance regimes resulting in open, early successional stages. PMID:22879680
Monitoring the effects of extreme climate disturbances on forest health in the northeast U.S.
Allan N.D. Auclair; Warren E. Heilman; Peter Busalacchi
2002-01-01
No methodology has been developed to date to predict when a forest population is at risk to specific climate and air pollution stressors. Yet, this information is important to natural resource managers who need frequent, updated assessments of forest health upon which to base management decisions and respond to public concerns on forest health. The USDA Forest Service...
Is the Forest Healthy? (Mid-Atlantic, North Central, New England, and New York Regions)
Jennifer Stoyenoff; John Witter; Bruce Leutscher
1997-01-01
No single measurement can summarize forest health. Instead, we need to look at a wide set of indicators which together serve as a reflection of existing conditions. Repeated monitoring of the forest over time allows us to identify trends in forest conditions and evaluate the effectiveness of our actions. Information about forest health is obtained in a variety of ways...
John T. Kliejunas
2011-01-01
This risk assessment projects the effects of eight forest diseases under two climate-change scenarios (warmer and drier, warmer and wetter). Examples are used to describe how various types of forest diseases may respond to environmental changes. Forest diseases discussed in this report include foliar diseases, Phytophthora diseases, stem rusts,...
W. Wang; J. Xiao; S. V. Ollinger; J. Chen; A. Noormets
2014-01-01
Stand-replacing disturbances including harvests have substantial impacts on forest carbon (C) fluxes and stocks. The quantification and simulation of these effects is essential for better understanding forest C dynamics and informing forest management 5 in the context of global change. We evaluated the process-based forest ecosystem model, PnET-CN, for how well and by...
Society's choices: land use changes, forest fragmentation, and conservation.
Jonathan Thompson
2006-01-01
Changing patterns of land use are at the heart of many environmental concerns regarding U.S. forest lands. Of all the human impacts to forests, development is one of the most significant because of the severity and permanency of the change. Concern about the effects of development on Americaâs forests has risen sharply since the 1990s, when the conversion of forest...
Christopher J Fettig; Stephen R. McKelvey
2014-01-01
Mechanical thinning and the application of prescribed fire are commonly used to restore fire-adapted forest ecosystems in the western United States. During a 10-year period, we monitored the effects of fuel-reduction and forest-restoration treatments on levels of tree mortality in an interior ponderosa pine, Pinus ponderosa Dougl. ex Laws., forest...
Prakash Nepal; Peter J. Ince; Kenneth E. Skog; Sun J. Chang
2013-01-01
Whereas climate change mitigation involving payments to forest landowners for accumulating carbon on their land may increase carbon stored in forests, it will also affect timber supply and prices. This study estimated the effect on US timber and primary forest product markets of hypothetical timber set-aside scenarios where US forest landowners would be paid to forego...
Matthew D. Hurteau; Timothy A. Robards; Donald Stevens; David Saah; Malcolm North; George W. Koch
2014-01-01
Quantifying the impacts of changing climatic conditions on forest growth is integral to estimating future forest carbon balance. We used a growth-and-yield model, modified for climate sensitivity, to quantify the effects of altered climate on mixed-conifer forest growth in the Lake Tahoe Basin, California. Estimates of forest growth and live tree carbon stocks were...
Owen P. Cramer
1974-01-01
Forest land generally produces considerable woody material other than that which is harvested as timber, needed for recycling of nutrients to the soil, or for sheltering wildlife and young forest seedlings. Excess forest residues, both living and dead, are often subject to treatment to reduce fire hazard, to eliminate obstruction to use and protection of the forest,...
Effect of an isolated semi-arid pine forest on the boundary layer height
NASA Astrophysics Data System (ADS)
Brugger, Peter; Banerjee, Tirtha; Kröniger, Konstantin; Preisler, Yakir; Rotenberg, Eyal; Tatarinov, Fedor; Yakir, Dan; Mauder, Matthias
2017-04-01
Forests play an important role for earth's climate by influencing the surface energy balance and CO2 concentrations in the atmosphere. Semi-arid forests and their effects on the local and regional climate are studied within the CliFF project (Climate Feedbacks and benefits of semi-arid Forests). This requires understanding of the atmospheric boundary layer over semi-arid forests, because it links the surface and the free atmosphere and determines the exchange of momentum, heat and trace gases. Our study site, Yatir, is a semi-arid isolated pine forest in the Negev desert in Israel. Higher roughness and lower albedo compared to the surrounding shrubland make it interesting to study the influences of the semi-arid Yatir forest on the boundary layer. Previous studies of the forest focused on the energy balance and secondary circulations. This study focuses on the boundary layer structure above the forest, in particular the boundary layer height. The boundary layer height is an essential parameter for many applications (e.g. construction of convective scaling parameters or air pollution modeling). We measured the boundary layer height upwind, over and downwind of the forest. In addition we measured at two sites wind profiles within the boundary layer and turbulent fluxes at the surface. This allows us to quantify the effects of the forest on boundary layer compared to the surrounding shrubland. Results show that the forest increases the boundary layer height in absence of a strong boundary layer top inversion. A model of the boundary layer height based on eddy-covariance data shows some agreement to the measurements, but fails during anticyclonic conditions and the transition to the nocturnal boundary layer. More complex models accounting for large scale influences are investigated. Further influences of the forest and surrounding shrubland on the turbulent transport of energy are discussed in a companion presentation (EGU2017-2219).
Nematodes inhabit soils of forest and clear-cut areas
Alex L. Shigo; George Yelenosky
1960-01-01
Nematodes are present in all forest soils, but their effects on forest trees are not known. The known destructive nature of these worms on other woody crops suggests that they may also be involved in causing some of the unexplainable losses in vigor and mortality of forest trees.
Effects of elevated CO2 and temperature on forest floor litter decomposition and chemistry
Forest floor can be a major component of the carbon held in forested soils. In mature forests it represents the balance between additions and decomposition under current climate conditions. Because of its position at the soil surface, this reservoir of C is highly susceptible...
Prescribed fire in upland harwood forests
T.L. Keyser; C.H. Greenberg; H. McNab
2014-01-01
In upland hardwood forests of the Southeastern U.S.,prescribed fire is increasingly used by land managers citing objectives that include hazardous fuels reduction, wildlife habitat improvement, promoting oak regeneration, or restoring forest composition or structure to an historic condition. Research suggests that prescribed fire effects on hardwood forests and...
Forest Roads; A Synthesis of Scientific Information
DOT National Transportation Integrated Search
2001-05-01
Effects of roads in forested ecosystems span direct physical and ecological ones (such as geomorphic and hydrological effects), indirect and landscape level ones (such as effects on aquatic habitat, terrestrial vertebrates, and biodiversity conservat...
Sustainable Forest Operations (SFO): A new paradigm in a changing world and climate.
Marchi, Enrico; Chung, Woodam; Visser, Rien; Abbas, Dalia; Nordfjell, Tomas; Mederski, Piotr S; McEwan, Andrew; Brink, Michal; Laschi, Andrea
2018-09-01
The effective implementation of sustainable forest management depends largely on carrying out forest operations in a sustainable manner. Climate change, as well as the increasing demand for forest products, requires a re-thinking of forest operations in terms of sustainability. In this context, it is important to understand the major driving factors for the future development of forest operations that promote economic, environmental and social well-being. The main objective of this paper is to identify important issues concerning forest operations and to propose a new paradigm towards sustainability in a changing climate, work and environmental conditions. Previously developed concepts of forest operations are reviewed, and a newly developed concept - Sustainable Forest Operations (SFO), is presented. Five key performance areas to ensure the sustainability of forest operations include: (i) environment; (ii) ergonomics; (iii) economics; (iv) quality optimization of products and production; and (v) people and society. Practical field examples are presented to demonstrate how these five interconnected principles are relevant to achieving sustainability, namely profit and wood quality maximization, ecological benefits, climate change mitigation, carbon sequestration, and forest workers' health and safety. The new concept of SFO provides integrated perspectives and approaches to effectively address ongoing and foreseeable challenges the global forest communities face, while balancing forest operations performance across economic, environmental and social sustainability. In this new concept, we emphasize the role of wood as a renewable and environmentally friendly material, and forest workers' safety and utilization efficiency and waste management as additional key elements of sustainability. Copyright © 2018 Elsevier B.V. All rights reserved.
Coen, P.S.; Bury, R.B.; Spies, T.A.
1988-01-01
Red tree voles (Arborimus longicaudus) were the only small mammal strongly associated with old-growth forests, whereas vagrant shrews (Sorex vagrans) were most abundant in young forests. Pacific marsh shrews (S. bendirii) were most abundant in wet old-growth forests, but abundance of this species in young (wet) forests needs further study. Clearcuts had a mammalian fauna distinct from young forest stands. Abundance of several species was correlated to habitat features unique to naturally regenerated forests, indicated an urgent need to study the long-term effects of forest management to nongame wildlife.
NASA Astrophysics Data System (ADS)
Marin-Spiotta, E.; Atkinson, E. E.
2015-12-01
Litter decomposition is one of the most studied ecosystem processes, given its role in carbon cycling and nutrient availability, yet our knowledge of how decomposition is influenced by novel species assemblages in tropical forests emerging on post-agricultural landscapes is limited. This is especially true in tropical dry forests, which are some of the most fragmented forests worldwide due to human pressures and sensitive to changes in rainfall and fire regimes. Here we tested for the effects of litter quality, site conditions, and microbial "home-field advantage" on decomposition rates in subtropical dry forests in St. Croix, U.S. Virgin Islands. We conducted a 22-month in situ and reciprocal transplant field decomposition experiment of aboveground litter and fine roots in 10-year old sites dominated by an early successional N-fixing tree and 40-year old mixed-species secondary forests. Total annual litterfall mass did not differ between the two forest types, but monthly amounts did, with more litter accumulating in the 40-year old secondary forests during the dry season and in the 10-year old secondary forests during the wet season. Litter chemistry differed between the two forest types and showed divergent patterns over the two-year field incubation. To test for the effects of litter quality on decomposition rates, we compared mass loss rates for aboveground and root litter from each forest decomposed in situ and transplanted to the other forest type. Litter in the 10-year old forests decomposed faster in situ (k= 1.07 ± 0.04) than when it was transplanted (k=0.86 ± 0.04). Litter from the 40-year old forests showed the opposite pattern. In situ root decomposition in both forests occurred at the same rate compared to roots that were transplanted there from the other forest type, suggesting that site conditions were equally important as litter quality. Our results were not consistent with a microbial home-field advantage for litter and root decomposition, that is, microbes were not more efficient at decomposing their own native litter, regardless of chemistry. Rather, decomposition patterns may be largely controlled by litter quality (and the combined effects of litter quality and site conditions specifically for roots) in contrast to the decomposer community in these subtropical dry forests.
Eric J. Gustafson; L. Jay Roberts; Larry A. Leefers
2006-01-01
Forest management planners require analytical tools to assess the effects of alternative strategies on the sometimes disparate benefits from forests such as timber production and wildlife habitat. We assessed the spatial patterns of alternative management strategies by linking two models that were developed for different purposes. We used a linear programming model (...
Forest fire effects on mercury deposition in the boreal forest
Emma L. Witt; Randall K. Kolka; Edward A. Nater; Trent R. Wickman
2009-01-01
The objective of this study was to determine how forest fire effects Hg deposition to nearby landscapes impacted by smoke plumes. Hg concentrations and deposition were hypothesized to increase in throughfall and open precipitation after fire, and canopy type was hypothesized to influence the magnitude of the increase. Conifer canopies, which are better able to scavenge...
L.A. Norris; H.W. Lorz; S.V. Gregory
1983-01-01
Herbicides, insecticides, fertilizers, and fire retardants are chemicals used to protect or enhance certain forest resources. Their use may directly affect anadromous fish by exposing them to toxic amounts of the chemical. Indirect effects are also possible through chemically induced alteration of habitat, including direct effects on fish-food organisms.Data...
Alec M. Kretchun; E. Louise Loudermilk; Robert M. Scheller; Matthew D. Hurteau; Soumaya Belmecheri
2016-01-01
In forested systems throughout the world, climate influences tree growth and aboveground net primary productivity (ANPP). The effects of extreme climate events (i.e., drought) on ANPP can be compounded by biotic factors (e.g., insect outbreaks). Understanding the contribution of each of these influences on growth requires information at...
Simulation of the effect of air pollution on forest ecosystems in a region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarko, A.M.; Bykadorov, A.V.; Kryuchkov, V.V.
1995-03-01
This article describes a model of air pollution effects on spruce in forests of the northern taiga regions which have been exposed to air pollution from a large metallurgical industrial complex. Both the predictions the model makes about forest ecosystem degradation zones and the limitations of the model are discussed. 5 refs., 1 fig.
Simulating the effects of the southern pine beetle on regional dynamics 60 years into the future
Jennifer K. Costanza; Jiri Hulcr; Frank H. Koch; Todd Earnhardt; Alexa J. McKerrow; Rob R. Dunn; Jaime A. Collazo
2012-01-01
We developed a spatially explicit model that simulated future southern pine beetle (Dendroctonus frontalis, SPB) dynamics and pine forest management for a real landscape over 60 years to inform regional forest management. The SPB has a considerable effect on forest dynamics in the Southeastern United States, especially in loblolly pine (...
Modeling forest harvesting effects on landscape pattern in the Northwest Wisconsin Pine Barrens
Volker C. Radeloff; David J. Mladenoff; Eric J. Gustafson; Robert M. Scheller; Patrick A. Zollner; Hong S. Heilman; H. Resit Akcakaya
2006-01-01
Forest management shapes landscape patterns, and these patterns often differ significantly from those typical for natural disturbance regimes. This may affect wildlife habitat and other aspects of ecosystem function. Our objective was to examine the effects of different forest management decisions on landscape pattern in a fire adapted ecosystem. We used a factorial...
Changing spatial patterns of stand-replacing fire in California conifer forests
Jens T. Stevens; Brandon M. Collins; Jay D. Miller; Malcolm P. North; Scott L. Stephens
2017-01-01
Stand-replacing fire has profound ecological impacts in conifer forests, yet there is continued uncertainty over how best to describe the scale of stand-replacing effects within individual fires, and how these effects are changing over time. In forests where regeneration following stand-replacing fire depends on seed dispersal from surviving trees, the size and shape...
Western spruce budworm defoliation effects on forest structure and potential fire behavior.
S. Hummel; J.K. Agee
2003-01-01
Forest composition and structure on the eastern slope of the Cascade Mountains have been influenced by decades of fire exclusion. Multilayered canopies and high numbers of shade-tolerant true fir trees interact with western spruce budworm to alter forest structure and to affect potential fire behavior and effects. We compared...
Quantifying the effect of fuel reduction treatments on fire behavior in boreal forests
B.W. Butler; R.D. Ottmar; T.S. Rupp; R. Jandt; E. Miller; K. Howard; R. Schmoll; S. Theisen; R.E. Vihnanek; D. Jimenez
2013-01-01
Mechanical (e.g., shearblading) and manual (e.g., thinning) fuel treatments have become the preferred strategy of many fire managers and agencies for reducing fire hazard in boreal forests. This study attempts to characterize the effectiveness of four fuel treatments through direct measurement of fire intensity and forest floor consumption during a single prescribed...
Modeling grain-size dependent bias in estimating forest area: a regional application
Daolan Zheng; Linda S. Heath; Mark J. Ducey
2008-01-01
A better understanding of scaling-up effects on estimating important landscape characteristics (e.g. forest percentage) is critical for improving ecological applications over large areas. This study illustrated effects of changing grain sizes on regional forest estimates in Minnesota, Wisconsin, and Michigan of the USA using 30-m land-cover maps (1992 and 2001)...
Jens T. Stevens; Brandon M. Collins; Jonathan W. Long; Malcolm P. North; Susan J. Prichard; Leland W. Tarnay; Angela M. White
2016-01-01
Fuel treatments in fire-suppressed mixed-conifer forests are designed to moderate potential wildfire behavior and effects. However, the objectives for modifying potential fire effects can vary widely, from improving fire suppression efforts and protecting infrastructure, to reintroducing low-severity fire, to restoring and maintaining variable forest structure and...
Reintroducing fire in regenerated dry forests following stand-replacing wildfire.
David W. Peterson; Paul F. Hessburg; Brion Salter; Kevin M. James; Matthew C. Dahlgreen; John A. Barnes
2007-01-01
Prescribed fire use may be effective for increasing fire resilience in young coniferous forests by reducing surface fuels, modifying overstory stand structure, and promoting development of large trees of fire resistant species. Questions remain, however, about when and how to reintroduce fire in regenerated forests, and to what end. We studied the effects of spring...
Forest and farmland conservation effects of Oregon's (USA) land-use planning program.
Jeffrey D. Kline
2005-01-01
Oregon's land-use planning program is often cited as an exemplary approach to forest and farmland conservation, but analyses of its effectiveness are limited. This article examines Oregon's land-use planning program using detailed spatial data describing building densities in western Oregon. An empirical model describes changes in building densities on forest...
Impacts of air pollution and climate change on forest ecosystems - emerging research needs
Elena Paoletti; Bytnerowicz; Chris Andersen; Algirdas Augustaitis; Marco Ferretti; Nancy Grulke; Madeleine S. Gunthardt-goerg; John Innes; Dale Johnson; Dave Karnosky; Jessada Luangjame; Rainer Matyssek; Steven McNulty; Gerhard Muller-Starck; Robert Musselman; Kevin Percy
2007-01-01
Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems "Forests under Anthropogenic Pressure â Effects of Air Pollution, Climate Change and Urban Development", September 10â16, 2006, Riverside, CA, are summarized. Tropospheric or ground-level ozone (O3) is still the phytotoxic...
D.W. Johnson; R.B. Susfalk; P.F. Brewer; W.T. Swank
1999-01-01
Effects of reduced deposition of N, S, and CB on nutrient pools, fluxes, soil, and soil solution chemistry were simulated for two Appalachian forest ecosystems using the nutrient cycling model. In the extremely acidic, N- and S-saturated red spruce (Picea rubens (Sarg.)) forest (Nolan Divide), reducing
Competition alters tree growth responses to climate at individual and stand scales
Kevin Ford; Ian K. Breckheimer; Jerry F. Franklin; James A. Freund; Steve J. Kroiss; Andrew J. Larson; Elinore J. Theobald; Janneke. HilleRisLambers
2015-01-01
Understanding how climate affects tree growth is essential for assessing climate change impacts on forests, but is complicated by the effects of competition, which strongly influences growth and could alter how forests respond to climate change. We characterized the joint effects of climate and competition on diameter growth in the mountain forests of Mount Rainier...
Steven J. Presley; Michael R. Willig; Wunderle Jr. Joseph M.; Luis Nélio Saldanha
2008-01-01
1.As human population size increases, demand for natural resources will increase. Logging pressure related to increasing demands continues to threaten remote areas of Amazonian forest. A harvest protocol is required to provide renewable timber resources that meet consumer needs while minimizing negative effects on biodiversity and ecosystem services. Reduced-impact...
Jess K. Zimmerman; James Aaron Hogan; Aaron B. Shiels; John E. Bithorn; Samuel Matta Carmona; Nicholas Brokaw
2014-01-01
We experimentally manipulated key components of severe hurricane disturbance, canopy openness and detritus deposition, to determine the independent and interactive effects of these components on tree recruitment, forest structure, and diversity in a wet tropical forest in the Luquillo Experimental Forest, Puerto Rico. Canopy openness was increased by trimming branches...
Simulating ungulate herbivory across forest landscapes: A browsing extension for LANDIS-II
Nathan R. De Jager; Patrick J. Drohan; Brian M. Miranda; Brian R. Sturtevant; Susan L. Stout; Alejandro A. Royo; Eric J. Gustafson; Mark C. Romanski
2017-01-01
Browsing ungulates alter forest productivity and vegetation succession through selective foraging onspecies that often dominate early succession. However, the long-term and large-scale effects of browsing on forest succession are not possible to project without the use of simulation models. To explore the effects of ungulates on succession in a spatially explicit...
Peter B. Woodbury; James E. Smith; David A. Weinstein; John A. Laurence
1998-01-01
Most models of the potential effects of climate change on forest growth have produced deterministic predictions. However, there are large uncertainties in data on regional forest condition, estimates of future climate, and quantitative relationships between environmental conditions and forest growth rate. We constructed a new model to analyze these uncertainties...
Zong Bo Shang; Hong S. He; Weimin Xi; Stephen R. Shifley; Brian J. Palik
2012-01-01
Public forest management requires consideration of numerous objectives including protecting ecosystem health, sustaining habitats for native communities, providing sustainable forest products, and providing noncommodity ecosystem services. It is difficult to evaluate the long-term, cumulative effects and tradeoffs these and other associated management objectives. To...
NASA Astrophysics Data System (ADS)
Zhang, Fangmin; Pan, Yude; Birdsey, Richard A.; Chen, Jing M.; Dugan, Alexa
2017-11-01
Currently, US forests constitute a large carbon sink, comprising about 9 % of the global terrestrial carbon sink. Wildfire is the most significant disturbance influencing carbon dynamics in US forests. Our objective is to estimate impacts of climate change, CO2 concentration, and nitrogen deposition on the future net biome productivity (NBP) of US forests until the end of twenty-first century under a range of disturbance conditions. We designate three forest disturbance scenarios under one future climate scenario to evaluate factor impacts for the future period (2011-2100): (1) no wildfires occur but forests continue to age (Saging), (2) no wildfires occur and forest ages are fixed in 2010 (Sfixed_nodis), and (3) wildfires occur according to a historical pattern, consequently changing forest age (Sdis_age_change). Results indicate that US forests remain a large carbon sink in the late twenty-first century under the Sfixed_nodis scenario; however, they become a carbon source under the Saging and Sdis_age_change scenarios. During the period of 2011 to 2100, climate is projected to have a small direct effect on NBP, while atmospheric CO2 concentration and nitrogen deposition have large positive effects on NBP regardless of the future climate and disturbance scenarios. Meanwhile, responses to past disturbances under the Sfixed_nodis scenario increase NBP regardless of the future climate scenarios. Although disturbance effects on NBP under the Saging and Sdis_age_change scenarios decrease with time, both scenarios experience an increase in NBP prior to the 2050s and then a decrease in NBP until the end of the twenty-first century. This study indicates that there is potential to increase or at least maintain the carbon sink of conterminous US forests at the current level if future wildfires are reduced and age structures are maintained at a productive mix. The effects of CO2 on the future carbon sink may overwhelm effects of other factors at the end of the twenty-first century. Although our model in conjunction with multiple disturbance scenarios may not reflect the true conditions of future forests, it provides a range of potential conditions as well as a useful guide to both current and future forest carbon management.
Öztürk, Melih; Bolat, İlyas
2014-04-01
This study investigates the effects of forest transformation into recreation site. A fragment of a Pinus pinaster plantation forest was transferred to a recreation site in the city of Bartın located close to the Black Sea coast of northwestern Turkey. During the transformation, some of the trees were selectively removed from the forest to generate more open spaces for the recreationists. As a result, Leaf Area Index (LAI) decreased by 0.20 (about 11%). Additionally, roads and pathways were introduced into the site together with some recreational equipment sealing parts of the soil surface. Consequently, forest environment was altered with a semi-natural landscape within the recreation site. The purpose of this study is to assess the effects of forest transformation into recreation site particularly in terms of the LAI parameter, forest floor, and soil properties. Preliminary monitoring results indicate that forest floor biomass is reduced by 26% in the recreation site compared to the control site. Soil temperature is increased by 15% in the recreation site where selective removal of trees expanded the gaps allowing more light transmission. On the other hand, the soil bulk density which is an indicator of soil compaction is unexpectedly slightly lower in the recreation site. Organic carbon (C(org)) and total nitrogen (N(total)) together with the other physical and chemical parameter values indicate that forest floor and soil have not been exposed to much disturbance. However, subsequent removal of trees that would threaten the vegetation, forest floor, and soil should not be allowed. The activities of the recreationists are to be concentrated on the paved spaces rather than soil surfaces. Furthermore, long-term monitoring and management is necessary for both the observation and conservation of the site.
Quantifying the missing link between forest albedo and productivity in the boreal zone
NASA Astrophysics Data System (ADS)
Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina
2016-11-01
Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Currently, the physical link between forest albedo and productivity is poorly understood, yet it is crucial for designing optimal forest management strategies for mitigating climate change. We investigated the relationships between boreal forest structure, albedo and FAPAR using a radiative transfer model called Forest Reflectance and Transmittance model FRT and extensive forest inventory data sets ranging from southern boreal forests to the northern tree line in Finland and Alaska (N = 1086 plots). The forests in the study areas vary widely in structure, species composition, and human interference, from intensively managed in Finland to natural growth in Alaska. We show that FAPAR of tree canopies (FAPARCAN) and albedo are tightly linked in boreal coniferous forests, but the relationship is weaker if the forest has broadleaved admixture, or if canopies have low leaf area and the composition of forest floor varies. Furthermore, the functional shape of the relationship between albedo and FAPARCAN depends on the angular distribution of incoming solar irradiance. We also show that forest floor can contribute to over 50 % of albedo or total ecosystem FAPAR. Based on our simulations, forest albedos can vary notably across the biome. Because of larger proportions of broadleaved trees, the studied plots in Alaska had higher albedo (0.141-0.184) than those in Finland (0.136-0.171) even though the albedo of pure coniferous forests was lower in Alaska. Our results reveal that variation in solar angle will need to be accounted for when evaluating climate effects of forest management in different latitudes. Furthermore, increasing the proportion of broadleaved trees in coniferous forests is the most important means of maximizing albedo without compromising productivity: based on our findings the potential of controlling forest density (i.e., basal area) to increase albedo may be limited compared to the effect of favoring broadleaved species.
Postfire woodpecker foraging in salvage-logged and unlogged forests of the Sierra Nevada
C.T. Hanson; M.P. North
2008-01-01
In forests, high-severity burn patchesâwherein most or all of the trees are killed by fireâoften occur within a mosaic of low- and moderate-severity effects. Although there have been several studies of postfire salvage-logging effects on bird species, there have been few studies of effects on bird species associated with high-severity patches in forests that have...
Thom, Dominik; Rammer, Werner; Seidl, Rupert
2017-11-01
Currently, the temperate forest biome cools the earth's climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased disturbance activity in the long run (-10.1%), mainly by reducing the host trees available for bark beetles. Climate change and the resulting future forest dynamics significantly reduced the climate regulation function of the landscape, increasing radiative forcing by up to +10.2% on average over 200 yr. Overall, radiative forcing was most strongly driven by carbon exchange. We conclude that future changes in forest dynamics can cause amplifying climate feedbacks from temperate forest ecosystems.
Angelstam, Per; Khaulyak, Olha; Yamelynets, Taras; Mozgeris, Gintautas; Naumov, Vladimir; Chmielewski, Tadeusz J; Elbakidze, Marine; Manton, Michael; Prots, Bohdan; Valasiuk, Sviataslau
2017-05-15
The functionality of forest patches and networks as green infrastructure may be affected negatively both by expanding road networks and forestry intensification. We assessed the effects of (1) the current and planned road infrastructure, and (2) forest loss and gain, on the remaining large forest landscape massifs as green infrastructure at the EU's eastern border region in post-socialistic transition. First, habitat patch and network functionality in 1996-98 was assessed using habitat suitability index modelling. Second, we made expert interviews about road development with planners in 10 administrative regions in Poland, Belarus and Ukraine. Third, forest loss and gain inside the forest massifs, and gain outside them during the period 2001-14 were measured. This EU cross-border region hosts four remaining forest massifs as regional green infrastructure hotspots. While Poland's road network is developing fast in terms of new freeways, city bypasses and upgrades of road quality, in Belarus and Ukraine the focus is on maintenance of existing roads, and no new corridors. We conclude that economic support from the EU, and thus rapid development of roads in Poland, is likely to reduce the permeability for wildlife of the urban and agricultural matrix around existing forest massifs. However, the four identified forest massifs themselves, forming the forest landscape green infrastructure at the EU's east border, were little affected by road development plans. In contrast, forest loss inside massifs was high, especially in Ukraine. Only in Poland forest loss was balanced by gain. Forest gain outside forest massifs was low. To conclude, pro-active and collaborative spatial planning across different sectors and countries is needed to secure functional forest green infrastructure as base for biodiversity conservation and human well-being. Copyright © 2017. Published by Elsevier Ltd.
Development of deforestation and land cover database for Bhutan (1930-2014).
Reddy, C Sudhakar; Satish, K V; Jha, C S; Diwakar, P G; Murthy, Y V N Krishna; Dadhwal, V K
2016-12-01
Bhutan is a mountainous country located in the Himalayan biodiversity hotspot. This study has quantified the total area under land cover types, estimated the rate of forest cover change, analyzed the changes across forest types, and modeled forest cover change hotpots in Bhutan. The topographical maps and satellite remote sensing images were analyzed to get the spatial patterns of forest and associated land cover changes over the past eight decades (1930-1977-1987-1995-2005-2014). Forest is the largest land cover in Bhutan and constitutes 68.3% of the total geographical area in 2014. Subtropical broad leaved hill forest is predominant type occupies 34.1% of forest area in Bhutan, followed by montane dry temperate (20.9%), montane wet temperate (18.9%), Himalayan moist temperate (10%), and tropical moist sal (8.1%) in 2014. The major forest cover loss is observed in subtropical broad leaved hill forest (64.5 km 2 ) and moist sal forest (9.9 km 2 ) from 1977 to 2014. The deforested areas have mainly been converted into agriculture and contributed for 60.9% of forest loss from 1930 to 2014. In spite of major decline of forest cover in time interval of 1930-1977, there is no net rate of deforestation is recorded in Bhutan since 1995. Forest cover change analysis has been carried out to evaluate the conservation effectiveness in "Protected Areas" of Bhutan. Hotspots that have undergone high transformation in forest cover for afforestation and deforestation were highlighted in the study for conservation prioritisation. Forest conservation policies in Bhutan are highly effective in controlling deforestation as compared to neighboring Asian countries and such service would help in mitigating climate change.
Rodríguez-García, E; Mezquida, E T; Olano, J M
2017-11-01
Changes in land-use patterns are a major driver of global environmental change. Cessation of traditional land-use practices has led to forest expansion and shifts in forest composition. Consequently, former monospecific forests maintained by traditional management are progressing towards mixed forests. However, knowledge is scarce on how the presence of other tree species will affect reproduction of formerly dominant species. We explored this question in the wind-pollinated tree Juniperus thurifera. We hypothesised that the presence of heterospecific trees would have a negative effect on cone production and on the proportion of cones attacked by specialised predators. We assessed the relative importance of forest composition on cone production, seed development and pre-dispersal cone damage on nine paired pure and mixed J. thurifera forests in three regions across the Iberian Peninsula. The effects of forest composition on crop size, cone and seed characteristics, as well as damage by pre-dispersal arthropods were tested using mixed models. Cone production was lower and seed abortion higher in mixed forests, suggesting higher pollination failure. In contrast, cone damage by arthropods was higher in pure forests, supporting the hypothesis that presence of non-host plants reduces damage rates. However, the response of each arthropod to forest composition was species-specific and the relative rates of cone damage varied depending on individual tree crops. Larger crop sizes in pure forests compensated for the higher cone damage rates, leading to a higher net production of sound seeds compared to mixed forests. This study indicates that ongoing changes in forest composition after land abandonment may impact tree reproduction. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
Reinmann, A.; Hutyra, L.
2016-12-01
Forest fragmentation resulting from land use and land cover change is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. However, our understanding of forest carbon dynamics and their response to climate largely comes from unfragmented forest systems, which presents an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink, but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge. These ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance, but across southern New England, USA it increases carbon uptake and storage by 12.5 ± 2.9% and 9.6 ± 1.4%, respectively. However, we also find that forest growth near the edge declines three times faster than in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.
The consequences of poaching and anthropogenic change for forest elephants.
Breuer, Thomas; Maisels, Fiona; Fishlock, Vicki
2016-10-01
Poaching has devastated forest elephant populations (Loxodonta cyclotis), and their habitat is dramatically changing. The long-term effects of poaching and other anthropogenic threats have been well studied in savannah elephants (Loxodonta africana), but the impacts of these changes for Central Africa's forest elephants have not been discussed. We examined potential repercussions of these threats and the related consequences for forest elephants in Central Africa by summarizing the lessons learned from savannah elephants and small forest elephant populations in West Africa. Forest elephant social organization is less known than the social organization of savannah elephants, but the close evolutionary history of these species suggests that they will respond to anthropogenic threats in broadly similar ways. The loss of older, experienced individuals in an elephant population disrupts ecological, social, and population parameters. Severe reduction of elephant abundance within Central Africa's forests can alter plant communities and ecosystem functions. Poaching, habitat alterations, and human population increase are probably compressing forest elephants into protected areas and increasing human-elephant conflict, which negatively affects their conservation. We encourage conservationists to look beyond documenting forest elephant population decline and address the causes of these declines when developing conversation strategies. We suggest assessing the effectiveness of the existing protected-area networks for landscape connectivity in light of current industrial and infrastructure development. Longitudinal assessments of the effects of landscape changes on forest elephant sociality and behavior are also needed. Finally, lessons learned from West African elephant population loss and habitat fragmentation should be used to inform strategies for land-use planning and managing human-elephant interactions. © 2016 Society for Conservation Biology.
Effects of microhabitat on palm seed predation in two forest fragments in southeast Brazil
NASA Astrophysics Data System (ADS)
Fleury, Marina; Galetti, Mauro
2004-12-01
The establishment of plants depends crucially on where seeds are deposited in the environment. Some authors suggest that in forest understory seed predation is lower than in gaps, and higher than at the forest edge. However, most studies have been carried out in large forest patches and very little is known about the effects of microhabitat conditions on seed predation in forest fragments. We evaluated the effects of three microhabitats (gaps, forest edge, and understory) on seed predation of two palm species ( Euterpe edulis and Syagrus romanzoffiana) in two semi-deciduous forest fragments (230 and 2100 ha) in southeast Brazil. Our objective was to test two hypotheses: (1) Low rodent abundance in small fragments as a result of meso-predator action levels leads to lower seed predation in small fragments. (2) Most mammal species in small fragments are generalists with respect to diet and habitat, so that seed predation is similar in different microhabitats (gaps, forest edge and understory) in the small fragment, but not in the larger one. The study community of small fragments is usually composed of generalist species (in diet and habitat aspects), so we expected the same rate of seed predation among microhabitats (gaps, forest edge and understory) in the tested smaller fragment. The experiment was carried out in the dry season (for E. edulis) and in the wet season (for S. romanzoffiana) in 1999. We conclude that post-dispersal seed predation in forest fragments can be directly connected with mammal communities, reflecting their historical and ecological aspects.
The Impact of Selective-Logging and Forest Clearance for Oil Palm on Fungal Communities in Borneo
Kerfahi, Dorsaf; Tripathi, Binu M.; Lee, Junghoon; Edwards, David P.; Adams, Jonathan M.
2014-01-01
Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM) fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads) observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest. PMID:25405609
The impact of selective-logging and forest clearance for oil palm on fungal communities in Borneo.
Kerfahi, Dorsaf; Tripathi, Binu M; Lee, Junghoon; Edwards, David P; Adams, Jonathan M
2014-01-01
Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM) fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads) observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest.
Does Tropical Forest Fragmentation Increase Long-Term Variability of Butterfly Communities?
Leidner, Allison K.; Haddad, Nick M.; Lovejoy, Thomas E.
2010-01-01
Habitat fragmentation is a major driver of biodiversity loss. Yet, the overall effects of fragmentation on biodiversity may be obscured by differences in responses among species. These opposing responses to fragmentation may be manifest in higher variability in species richness and abundance (termed hyperdynamism), and in predictable changes in community composition. We tested whether forest fragmentation causes long-term hyperdynamism in butterfly communities, a taxon that naturally displays large variations in species richness and community composition. Using a dataset from an experimentally fragmented landscape in the central Amazon that spanned 11 years, we evaluated the effect of fragmentation on changes in species richness and community composition through time. Overall, adjusted species richness (adjusted for survey duration) did not differ between fragmented forest and intact forest. However, spatial and temporal variation of adjusted species richness was significantly higher in fragmented forests relative to intact forest. This variation was associated with changes in butterfly community composition, specifically lower proportions of understory shade species and higher proportions of edge species in fragmented forest. Analysis of rarefied species richness, estimated using indices of butterfly abundance, showed no differences between fragmented and intact forest plots in spatial or temporal variation. These results do not contradict the results from adjusted species richness, but rather suggest that higher variability in butterfly adjusted species richness may be explained by changes in butterfly abundance. Combined, these results indicate that butterfly communities in fragmented tropical forests are more variable than in intact forest, and that the natural variability of butterflies was not a buffer against the effects of fragmentation on community dynamics. PMID:20224772
Potential effects of forest management on surface albedo
NASA Astrophysics Data System (ADS)
Otto, J.; Bréon, F.-M.; Schelhaas, M.-J.; Pinty, B.; Luyssaert, S.
2012-04-01
Currently 70% of the world's forests are managed and this figure is likely to rise due to population growth and increasing demand for wood based products. Forest management has been put forward by the Kyoto-Protocol as one of the key instruments in mitigating climate change. For temperate and boreal forests, the effects of forest management on the stand-level carbon balance are reasonably well understood, but the biophysical effects, for example through changes in the albedo, remain elusive. Following a modeling approach, we aim to quantify the variability in albedo that can be attributed to forest management through changes in canopy structure and density. The modelling approach chains three separate models: (1) a forest gap model to describe stand dynamics, (2) a Monte-Carlo model to estimate the probability density function of the optical path length of photons through the canopy and (3) a physically-based canopy transfer model to estimate the interaction between photons and leaves. The forest gap model provides, on a monthly time step the position, height, diameter, crown size and leaf area index of individual trees. The Monte-Carlo model computes from this the probability density function of the distance a photon travels through crown volumes to determine the direct light reaching the forest floor. This information is needed by the canopy transfer model to calculate the effective leaf area index - a quantity that allows it to correctly represent a 3D process with a 1D model. Outgoing radiation is calculated as the result of multiple processes involving the scattering due to the canopy layer and the forest floor. Finally, surface albedo is computed as the ratio between incident solar radiation and calculated outgoing radiation. The study used two time series representing thinning from below of a beech and a Scots pine forest. The results show a strong temporal evolution in albedo during stand establishment followed by a relatively stable albedo once the canopy is closed. During this period, albedo is affected for a short time by forest operations. The modelling approach allowed us to estimate the importance of ground vegetation in the stand albedo. Given that ground vegetation depends on the light reaching the forest floor, ground vegetation could act as a natural buffer to dampen changes in albedo, allowing the stand to maintain optimal leaf temperature. Consequently, accounting for only the carbon balance component of forest management ignores albedo impacts and is thus likely to yield biased estimates of the climate benefits of forest ecosystems.
Modeling the CO2-effects of forest management and wood usage on a regional basis.
Knauf, Marcus; Köhl, Michael; Mues, Volker; Olschofsky, Konstantin; Frühwald, Arno
2015-12-01
At the 15 th Conference of Parties of the UN Framework Convention on Climate Change, Copenhagen, 2009, harvested wood products were identified as an additional carbon pool. This modification eliminates inconsistencies in greenhouse gas reporting by recognizing the role of the forest and timber sector in the global carbon cycle. Any additional CO 2 -effects related to wood usage are not considered by this modification. This results in a downward bias when the contribution of the forest and timber sector to climate change mitigation is assessed. The following article analyses the overall contribution to climate protection made by the forest management and wood utilization through CO 2 -emissions reduction using an example from the German state of North Rhine-Westphalia. Based on long term study periods (2011 to 2050 and 2100, respectively). Various alternative scenarios for forest management and wood usage are presented. In the mid- to long-term (2050 and 2100, respectively) the net climate protection function of scenarios with varying levels of wood usage is higher than in scenarios without any wood usage. This is not observed for all scenarios on short and mid term evaluations. The advantages of wood usage are evident although the simulations resulted in high values for forest storage in the C pools. Even the carbon sink effect due to temporal accumulation of deadwood during the period from 2011 to 2100 is outbalanced by the potential of wood usage effects. A full assessment of the CO 2 -effects of the forest management requires an assessment of the forest supplemented with an assessment of the effects of wood usage. CO 2 -emission reductions through both fuel and material substitution as well as CO 2 sink in wood products need to be considered. An integrated assessment of the climate protection function based on the analysis of the study's scenarios provides decision parameters for a strategic approach to climate protection with regard to forest management and wood use at regional and national levels. The short-term evaluation of subsystems can be misleading, rendering long-term evaluations (until 2100, or even longer) more effective. This is also consistent with the inherently long-term perspective of forest management decisions and measures.
Do little interactions get lost in dark random forests?
Wright, Marvin N; Ziegler, Andreas; König, Inke R
2016-03-31
Random forests have often been claimed to uncover interaction effects. However, if and how interaction effects can be differentiated from marginal effects remains unclear. In extensive simulation studies, we investigate whether random forest variable importance measures capture or detect gene-gene interactions. With capturing interactions, we define the ability to identify a variable that acts through an interaction with another one, while detection is the ability to identify an interaction effect as such. Of the single importance measures, the Gini importance captured interaction effects in most of the simulated scenarios, however, they were masked by marginal effects in other variables. With the permutation importance, the proportion of captured interactions was lower in all cases. Pairwise importance measures performed about equal, with a slight advantage for the joint variable importance method. However, the overall fraction of detected interactions was low. In almost all scenarios the detection fraction in a model with only marginal effects was larger than in a model with an interaction effect only. Random forests are generally capable of capturing gene-gene interactions, but current variable importance measures are unable to detect them as interactions. In most of the cases, interactions are masked by marginal effects and interactions cannot be differentiated from marginal effects. Consequently, caution is warranted when claiming that random forests uncover interactions.
You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin
2016-03-01
Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models.
You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin
2016-01-01
Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871
Li, Yuejiao; Sun, Didi; Li, Dandan; Xu, Zhenfeng; Zhao, Chunzhang; Lin, Honghui; Liu, Qing
2015-01-01
Ectomycorrhiza (ECM) plays an important role in plant nitrogen (N) nutrition and regulates plant responded to climate warming. We conducted a field experiment in a natural forest and a plantation in the eastern Tibetan Plateau to estimate the warming effects of open-top chambers (OTC) on ECM and N nutrition of Picea asperata seedlings. Four-year warming significantly decreased ECM colonization, ECM fungal biomass, fine root vigor, and the N concentration of leaf, stem and coarse root, but significantly increased fine root N concentration and N content of leaf, stem, fine root and whole plant in natural forest. Contrarily, warming induced no obvious change in most of these parameters in plantation. Moreover, warming decreased rhizospheric soil inorganic N content in both forests. Our results showed that four-year warming was not beneficial for ECM colonization of P. asperata seedlings in the two forests, and the seedlings in natural forest were more sensitive and flexible to experimental warming than in plantation. The changes of ECM colonization and fine root biomass for effective N uptake would be good for plant growth and remit N leaching under future warming in natural forest. PMID:26655633
NASA Astrophysics Data System (ADS)
Magnani, Federico; Dewar, Roderick C.; Borghetti, Marco
2009-04-01
Leakage (spillover) refers to the unintended negative (positive) consequences of forest carbon (C) management in one area on C storage elsewhere. For example, the local C storage benefit of less intensive harvesting in one area may be offset, partly or completely, by intensified harvesting elsewhere in order to meet global timber demand. We present the results of a theoretical study aimed at identifying the key factors determining leakage and spillover, as a prerequisite for more realistic numerical studies. We use a simple model of C storage in managed forest ecosystems and their wood products to derive approximate analytical expressions for the leakage induced by decreasing the harvesting frequency of existing forest, and the spillover induced by establishing new plantations, assuming a fixed total wood production from local and remote (non-local) forests combined. We find that leakage and spillover depend crucially on the growth rates, wood product lifetimes and woody litter decomposition rates of local and remote forests. In particular, our results reveal critical thresholds for leakage and spillover, beyond which effects of forest management on remote C storage exceed local effects. Order of magnitude estimates of leakage indicate its potential importance at global scales.
Management impacts on forest floor and soil organic carbon in northern temperate forests of the US
Coeli M. Hoover
2011-01-01
The role of forests in the global carbon cycle has been the subject of a great deal of research recently, but the impact of management practices on forest soil dynamics at the stand level has received less attention. This study used six forest management experimental sites in five northern states of the US to investigate the effects of silvicultural treatments (light...
Consequences of carbon offset payments for the global forest sector
Joseph Buongiorno; Shushuai. Zhu
2013-01-01
Long-term effects of policies to induce carbon storage in forests were projected with the Global Forest Products Model. Offset pay- ments for carbon sequestered in forest biomass of $15â$50/t CO2 e applied in all countries increased CO2 sequestration in world forests by 5â14 billion tons from 2009 to 2030. Limiting implementation to developed countries exported...
Sean Healey; Warren Cohen; Thomas A. Spies; Melinda Moeur; Dirk Pflugmacher; M. German Whitley; Michael. Lefsky
2008-01-01
Interest in preserving older forests at the landscape level has increased in many regions, including the Pacific Northwest of the United States. The Northwest Forest Plan (NWFP) of 1994 initiated a significant reduction in the harvesting of older forests on federal land. We used historical satellite imagery to assess the effect of this reduction in relation to: past...
Sean P. Healey; Warren B. Cohen; Thomas A. Spies; Melinda Moeur; Dirk Pflungmacher; M. German Whitley; Michael Lefsky
2008-01-01
Interest in preserving older forests at the landscape level has increased in many regions, including the Pacific Northwest of the United States. The Northwest Forest Plan (NWFP) of 1994 initiated a significant reduction in the harvesting of older forests on federal land. We used historical satellite imagery to assess the effect of this reduction in relation to: past...
Collection of nontimber forest products from state forests in the US south
Gregory E. Frey; James Chamberlain
2016-01-01
Little is known about the harvest of nontimber forest products (NTFPs) in state forests of the US South. We asked the state forestry agencies in all 13 southern states about the products harvested and the policies regulating harvest, as well as evidence of illegal harvest and the effects of  harvest on biodiversity. Of the 12 southern states that have state forests, 7...
Rebecca S.H. Kennedy; Tomas A. Spies
2005-01-01
Changes to minor patch types in forested landscapes may have large consequences for forest biodiversity. The effects of forest management and environment on these secondary patch types are often poorly understood. For example, do early-to-mid successional minor patch types become more expansive as late successional forest types are fragmented or do they also become...
George R., Jr. Trimble
1959-01-01
The U. S. Forest Service was authorized by Congress in late summer of 1954 to conduct watershed management research in New Hampshire. The purpose of this work is to determine the effect of forest cover on streamflow: the influence of forest cover type, forest condition, and forest treatment practices on water yield, rate of delivery, and on water quality. This is the...
Mechanisms of nitrogen deposition effects on temperate forest lichens and trees
Carter, Therese S.; Clark, Christopher M.; Fenn, Mark E.; Jovan, Sarah E.; Perakis, Steven; Riddell, Jennifer; Schaberg, Paul G.; Greaver, Tara; Hastings, Meredith
2017-01-01
We review the mechanisms of deleterious nitrogen (N) deposition impacts on temperate forests, with a particular focus on trees and lichens. Elevated anthropogenic N deposition to forests has varied effects on individual organisms depending on characteristics both of the N inputs (form, timing, amount) and of the organisms (ecology, physiology) involved. Improved mechanistic knowledge of these effects can aid in developing robust predictions of how organisms respond to either increases or decreases in N deposition. Rising N levels affect forests in micro- and macroscopic ways from physiological responses at the cellular, tissue, and organism levels to influencing individual species and entire communities and ecosystems. A synthesis of these processes forms the basis for the overarching themes of this paper, which focuses on N effects at different levels of biological organization in temperate forests. For lichens, the mechanisms of direct effects of N are relatively well known at cellular, organismal, and community levels, though interactions of N with other stressors merit further research. For trees, effects of N deposition are better understood for N as an acidifying agent than as a nutrient; in both cases, the impacts can reflect direct effects on short time scales and indirect effects mediated through long-term soil and belowground changes. There are many gaps on fundamental N use and cycling in ecosystems, and we highlight the most critical gaps for understanding potential deleterious effects of N deposition. For lichens, these gaps include both how N affects specific metabolic pathways and how N is metabolized. For trees, these gaps include understanding the direct effects of N deposition onto forest canopies, the sensitivity of different tree species and mycorrhizal symbionts to N, the influence of soil properties, and the reversibility of N and acidification effects on plants and soils. Continued study of how these N response mechanisms interact with one another, and with other dimensions of global change, remains essential for predicting ongoing changes in lichen and tree populations across North American temperate forests.
Bird use of reforestation sites: Influence of location and vertical structure
Twedt, Daniel J.; Cooper, Robert
2005-01-01
In the Lower Mississippi Valley, more than 300,000 acres of agricultural land have been reforested in the last 10 years. Planning decisions on how and where to restore forest are complex and usually reflect landowner objectives. However, initial planning decisions may have a large influence on the value of restored stands for birds and other wildlife.Reforestation of small, isolated tracts will likely result in mature forests where reproductive output of breeding birds does not compensate for adult mortality (sink habitats). This may be due to factors such as lower reproductive success near edges (edge effects), insufficient area of habitat to attract colonizing birds (area effects), or restricted population mixing and mating opportunities because of limited dispersal among tracts (isolation effects).Conversely, reforestation adjacent to existing forest increases contiguous forest area and provides areas buffered from agricultural or urban habitats (interior forest core).Bottomland reforestation has historically focused on planting relatively slow-growing tree species, particularly oaks (Quercus spp.). Thus, restoration sites are often dominated by grasses and forbs for up to a decade after tree planting. Grassland birds are the first birds to colonize reforested sites. However, abundance and productivity of grassland birds is generally poor on sites associated with woody vegetation, such as sites adjacent to mature forest.As woody vegetation develops on reforested sites, birds preferring shrub-scrub habitat displace grassland species (Twedt et al. 2002) (fig. 1). Planting faster-growing trees compresses the time for colonization by shrub-scrub birds and the increased vertical stature of these trees attracts forest birds (Twedt and Portwood 1996). Additionally, planting next to existing mature forests creates transitional edges that reduce the detrimental effects of abrupt forest-agriculture interfaces.
Land-use protection for climate change mitigation
NASA Astrophysics Data System (ADS)
Popp, Alexander; Humpenöder, Florian; Weindl, Isabelle; Bodirsky, Benjamin Leon; Bonsch, Markus; Lotze-Campen, Hermann; Müller, Christoph; Biewald, Anne; Rolinski, Susanne; Stevanovic, Miodrag; Dietrich, Jan Philipp
2014-12-01
Land-use change, mainly the conversion of tropical forests to agricultural land, is a massive source of carbon emissions and contributes substantially to global warming. Therefore, mechanisms that aim to reduce carbon emissions from deforestation are widely discussed. A central challenge is the avoidance of international carbon leakage if forest conservation is not implemented globally. Here, we show that forest conservation schemes, even if implemented globally, could lead to another type of carbon leakage by driving cropland expansion in non-forested areas that are not subject to forest conservation schemes (non-forest leakage). These areas have a smaller, but still considerable potential to store carbon. We show that a global forest policy could reduce carbon emissions by 77 Gt CO2, but would still allow for decreases in carbon stocks of non-forest land by 96 Gt CO2 until 2100 due to non-forest leakage effects. Furthermore, abandonment of agricultural land and associated carbon uptake through vegetation regrowth is hampered. Effective mitigation measures thus require financing structures and conservation investments that cover the full range of carbon-rich ecosystems. However, our analysis indicates that greater agricultural productivity increases would be needed to compensate for such restrictions on agricultural expansion.
Liu, Yuan-qiu; Wang, Fang; Ke, Guo-qing; Wang, Ying-ying; Guo, Shen-mao; Fan, Cheng-fang
2011-04-01
Taking the forest lands having been converted from cultivated land for 5 years in Ruichang City of Jiangxi Province as test objects, this paper studied the characteristics of soil organic carbon (SOC) under 4 different conversion models (forest-seedling integration, pure medicinal forest, bamboo-broadleaved mixed forest, and multi-species mixed forest). After the conversion from cultivated land into forestlands, the contents of SOC, microbial biomass carbon (MBC), and mineralizable carbon (PMC) in 0-20 cm soil layer increased by 24.4%, 29%, and 18.4%, respectively, compared with those under the conversion from cultivated land into wasteland (P < 0.05), which indicated that the conversion from cultivated land into forest lands significantly increased the SOC content and SOC storage. The SOC, MBC, and PMC contents in 0-10 cm soil layer were significantly higher than those in 10-20 cm soil layer (P < 0.01), and the differences between the soil layers of the four forest lands were higher than those of the wasteland. Among the 4 conversion models, forest-seedling integration had more obvious effects on SOC.
Ruiz-Benito, Paloma; Lines, Emily R.; Gómez-Aparicio, Lorena; Zavala, Miguel A.; Coomes, David A.
2013-01-01
Tree mortality is a key process underlying forest dynamics and community assembly. Understanding how tree mortality is driven by simultaneous drivers is needed to evaluate potential effects of climate change on forest composition. Using repeat-measure information from c. 400,000 trees from the Spanish Forest Inventory, we quantified the relative importance of tree size, competition, climate and edaphic conditions on tree mortality of 11 species, and explored the combined effect of climate and competition. Tree mortality was affected by all of these multiple drivers, especially tree size and asymmetric competition, and strong interactions between climate and competition were found. All species showed L-shaped mortality patterns (i.e. showed decreasing mortality with tree size), but pines were more sensitive to asymmetric competition than broadleaved species. Among climatic variables, the negative effect of temperature on tree mortality was much larger than the effect of precipitation. Moreover, the effect of climate (mean annual temperature and annual precipitation) on tree mortality was aggravated at high competition levels for all species, but especially for broadleaved species. The significant interaction between climate and competition on tree mortality indicated that global change in Mediterranean regions, causing hotter and drier conditions and denser stands, could lead to profound effects on forest structure and composition. Therefore, to evaluate the potential effects of climatic change on tree mortality, forest structure must be considered, since two systems of similar composition but different structure could radically differ in their response to climatic conditions. PMID:23451096
Can retention forestry help conserve biodiversity? A meta-analysis
Fedrowitz, Katja; Koricheva, Julia; Baker, Susan C; Lindenmayer, David B; Palik, Brian; Rosenvald, Raul; Beese, William; Franklin, Jerry F; Kouki, Jari; Macdonald, Ellen; Messier, Christian; Sverdrup-Thygeson, Anne; Gustafsson, Lena
2014-01-01
Industrial forestry typically leads to a simplified forest structure and altered species composition. Retention of trees at harvest was introduced about 25 years ago to mitigate negative impacts on biodiversity, mainly from clearcutting, and is now widely practiced in boreal and temperate regions. Despite numerous studies on response of flora and fauna to retention, no comprehensive review has summarized its effects on biodiversity in comparison to clearcuts as well as un-harvested forests. Using a systematic review protocol, we completed a meta-analysis of 78 studies including 944 comparisons of biodiversity between retention cuts and either clearcuts or un-harvested forests, with the main objective of assessing whether retention forestry helps, at least in the short term, to moderate the negative effects of clearcutting on flora and fauna. Retention cuts supported higher richness and a greater abundance of forest species than clearcuts as well as higher richness and abundance of open-habitat species than un-harvested forests. For all species taken together (i.e. forest species, open-habitat species, generalist species and unclassified species), richness was higher in retention cuts than in clearcuts. Retention cuts had negative impacts on some species compared to un-harvested forest, indicating that certain forest-interior species may not survive in retention cuts. Similarly, retention cuts were less suitable for some open-habitat species compared with clearcuts. Positive effects of retention cuts on richness of forest species increased with proportion of retained trees and time since harvest, but there were not enough data to analyse possible threshold effects, that is, levels at which effects on biodiversity diminish. Spatial arrangement of the trees (aggregated vs. dispersed) had no effect on either forest species or open-habitat species, although limited data may have hindered our capacity to identify responses. Results for different comparisons were largely consistent among taxonomic groups for forest and open-habitat species, respectively. Synthesis and applications. Our meta-analysis provides support for wider use of retention forestry since it moderates negative harvesting impacts on biodiversity. Hence, it is a promising approach for integrating biodiversity conservation and production forestry, although identifying optimal solutions between these two goals may need further attention. Nevertheless, retention forestry will not substitute for conservation actions targeting certain highly specialized species associated with forest-interior or open-habitat conditions. Our meta-analysis provides support for wider use of retention forestry since it moderates negative harvesting impacts on biodiversity. Hence, it is a promising approach for integrating biodiversity conservation and production forestry, although identifying optimal solutions between these two goals may need further attention. Nevertheless, retention forestry will not substitute for conservation actions targeting certain highly specialized species associated with forest-interior or open-habitat conditions. PMID:25552747
Can retention forestry help conserve biodiversity? A meta-analysis.
Fedrowitz, Katja; Koricheva, Julia; Baker, Susan C; Lindenmayer, David B; Palik, Brian; Rosenvald, Raul; Beese, William; Franklin, Jerry F; Kouki, Jari; Macdonald, Ellen; Messier, Christian; Sverdrup-Thygeson, Anne; Gustafsson, Lena
2014-12-01
Industrial forestry typically leads to a simplified forest structure and altered species composition. Retention of trees at harvest was introduced about 25 years ago to mitigate negative impacts on biodiversity, mainly from clearcutting, and is now widely practiced in boreal and temperate regions. Despite numerous studies on response of flora and fauna to retention, no comprehensive review has summarized its effects on biodiversity in comparison to clearcuts as well as un-harvested forests. Using a systematic review protocol, we completed a meta-analysis of 78 studies including 944 comparisons of biodiversity between retention cuts and either clearcuts or un-harvested forests, with the main objective of assessing whether retention forestry helps, at least in the short term, to moderate the negative effects of clearcutting on flora and fauna. Retention cuts supported higher richness and a greater abundance of forest species than clearcuts as well as higher richness and abundance of open-habitat species than un-harvested forests. For all species taken together (i.e. forest species, open-habitat species, generalist species and unclassified species), richness was higher in retention cuts than in clearcuts. Retention cuts had negative impacts on some species compared to un-harvested forest, indicating that certain forest-interior species may not survive in retention cuts. Similarly, retention cuts were less suitable for some open-habitat species compared with clearcuts. Positive effects of retention cuts on richness of forest species increased with proportion of retained trees and time since harvest, but there were not enough data to analyse possible threshold effects, that is, levels at which effects on biodiversity diminish. Spatial arrangement of the trees (aggregated vs. dispersed) had no effect on either forest species or open-habitat species, although limited data may have hindered our capacity to identify responses. Results for different comparisons were largely consistent among taxonomic groups for forest and open-habitat species, respectively. Synthesis and applications . Our meta-analysis provides support for wider use of retention forestry since it moderates negative harvesting impacts on biodiversity. Hence, it is a promising approach for integrating biodiversity conservation and production forestry, although identifying optimal solutions between these two goals may need further attention. Nevertheless, retention forestry will not substitute for conservation actions targeting certain highly specialized species associated with forest-interior or open-habitat conditions. Our meta-analysis provides support for wider use of retention forestry since it moderates negative harvesting impacts on biodiversity. Hence, it is a promising approach for integrating biodiversity conservation and production forestry, although identifying optimal solutions between these two goals may need further attention. Nevertheless, retention forestry will not substitute for conservation actions targeting certain highly specialized species associated with forest-interior or open-habitat conditions.
Wade, Amy S. I.; Barov, Boris; Burfield, Ian J.; Gregory, Richard D.; Norris, Ken; Butler, Simon J.
2013-01-01
The ecological impacts of changing forest management practices in Europe are poorly understood despite European forests being highly managed. Furthermore, the effects of potential drivers of forest biodiversity decline are rarely considered in concert, thus limiting effective conservation or sustainable forest management. We present a trait-based framework that we use to assess the detrimental impact of multiple land-use and management changes in forests on bird populations across Europe. Major changes to forest habitats occurring in recent decades, and their impact on resource availability for birds were identified. Risk associated with these changes for 52 species of forest birds, defined as the proportion of each species' key resources detrimentally affected through changes in abundance and/or availability, was quantified and compared to their pan-European population growth rates between 1980 and 2009. Relationships between risk and population growth were found to be significantly negative, indicating that resource loss in European forests is an important driver of decline for both resident and migrant birds. Our results demonstrate that coarse quantification of resource use and ecological change can be valuable in understanding causes of biodiversity decline, and thus in informing conservation strategy and policy. Such an approach has good potential to be extended for predictive use in assessing the impact of possible future changes to forest management and to develop more precise indicators of forest health. PMID:23704997
Liu, Lei; Gundersen, Per; Zhang, Wei; Zhang, Tao; Chen, Hao; Mo, Jiangming
2015-01-01
Elevated nitrogen (N) deposition may aggravate phosphorus (P) deficiency in forests in the warm humid regions of China. To our knowledge, the interactive effects of long-term N deposition and P availability on soil microorganisms in tropical replanted forests remain unclear. We conducted an N and P manipulation experiment with four treatments: control, N addition (15 g N m−2·yr−1), P addition (15 g P m−2·yr−1), and N and P addition (15 + 15 g N and P m−2·yr−1, respectively) in disturbed (planted pine forest with recent harvests of understory vegetation and litter) and rehabilitated (planted with pine, but mixed with broadleaf returning by natural succession) forests in southern China. Nitrogen addition did not significantly affect soil microbial biomass, but significantly decreased the abundance of gram-negative bacteria PLFAs in both forest types. Microbial biomass increased significantly after P addition in the disturbed forest but not in the rehabilitated forest. No interactions between N and P additions on soil microorganisms were observed in either forest type. Our results suggest that microbial growth in replanted forests of southern China may be limited by P rather than by N, and this P limitation may be greater in disturbed forests. PMID:26395406
Edge effects and their influence on lemur density and distribution in Southeast Madagascar.
Lehman, Shawn M; Rajaonson, Andry; Day, Sabine
2006-02-01
Edge effects are caused by the penetration of abiotic and biotic conditions from the matrix into forest interiors. Although edge effects influence the biogeography of many tropical organisms, they have not been studied directly in primates. Edge effects are particularly relevant to lemurs due to the loss of 80-90% of forests in Madagascar. In this study, data are presented on how biotic edge effects influenced the distribution and density of lemurs in the Vohibola III Classified Forest in southeastern Madagascar. In total, 415 lemur surveys were conducted during June-October 2003 and May-September 2004 along six 1,250-m transects that ran perpendicular to the forest edge. Data were also collected on lemur food trees along the six transects (density, height, diameter at breast height, area, volume, and distance to forest edge). Four nocturnal species (Avahi laniger, Cheirogaleus major, Lepilemur microdon, and Microcebus rufus) and four diurnal species (Eulemur rubriventer, Eulemur fulvus rufus, Hapalemur grisesus griseus, and Propithecus diadema edwardsi) were sighted during surveys. Regression analyses of lemur densities as a function of distance to forest edge provided edge tolerances for A. laniger (edge-tolerant), M. rufus (edge-tolerant), E. rubriventer (edge-tolerant or omnipresent), and H. g. griseus (omnipresent). The density and distribution of M. rufus and their foods trees were correlated. Edge-related variations in food quality and predation pressures may also be influencing lemurs in Vohibola III. Tolerance for edge effects may explain, in part, how lemurs have survived extreme habitat loss and forest fragmentation in southeastern Madagascar.
Timber type separability in Southeastern United States on LANDSAT-1 MSS data
NASA Technical Reports Server (NTRS)
Kan, E. P.; Dillman, R. D.
1975-01-01
A quantitative, computer-aided study was made on the spectral separability of timber types and condition classes in the Southeastern United States, using LANDSAT-1 multispectral scanner data. It was concluded that LANDSAT-1 could be used effectively to discriminate the gross forest features of softwood, hardwood, and regeneration. The only significant detectable age difference would be between an established forest versus a young (or denuded) forest. The red or near infrared bands would be better for discrimination; phenological early and late spring data would be better than winter. And a temporal analysis would be superior to single-season analysis. Lastly, two spectral bands would be most cost effective for computer analysis. The study site was Sam Houston National Forest of East Texas, a typical forest in the Flatwoods Zone, Southern Region, U. S. Forest Service.
Easterling, W.E.; Brandle, J.R.; Hays, C.J.; Guo, Q.; Guertin, D.S.
2001-01-01
The expansion and contraction of marginal cropland in the Great Plains often involves small forested strips of land that provide important ecological benefits. The effect of human disturbance on these forests is not well known. Because of their unique structure such forests are not well-represented by forest gap models. In this paper, the development, testing and application of a new model known as Seedscape are described. Seedscape is a modification of the JABOWA-II model, and it uses a spatially-explicit landscape to resolve small-scale features of highly fragmented forests in the eastern Great Plains. It was tested and evaluated with observations from two sites, one in Nebraska and a second in eastern Iowa. Seedscape realistically simulates succession at the Nebraska site, but is less successful at the Iowa site. Seedscape was also applied to the Nebraska site to simulate the effect that varying forest corridor widths, in response to the presumed expansion/contraction of adjacent agricultural land, has on succession properties. Results suggest that small differences in widths have negligible effects on forest composition, but large differences in widths may cause statistically-significant changes in the relative importance of some species. We assert that long-term ecological change in human dominated landscapes is not well understood, in part, because of inadequate modeling techniques. Seedscape provides a much-needed tool for assessing the ecological implications of land use change in forests of predominately agricultural landscapes.
Emerging Evidence on the Effectiveness of Tropical Forest Conservation.
Börner, Jan; Baylis, Kathy; Corbera, Esteve; Ezzine-de-Blas, Driss; Ferraro, Paul J; Honey-Rosés, Jordi; Lapeyre, Renaud; Persson, U Martin; Wunder, Sven
2016-01-01
The PLOS ONE Collection "Measuring forest conservation effectiveness" brings together a series of studies that evaluate the effectiveness of tropical forest conservation policies and programs with the goal of measuring conservation success and associated co-benefits. This overview piece describes the geographic and methodological scope of these studies, as well as the policy instruments covered in the Collection as of June 2016. Focusing on forest cover change, we systematically compare the conservation effects estimated by the studies and discuss them in the light of previous findings in the literature. Nine studies estimated that annual conservation impacts on forest cover were below one percent, with two exceptions in Mexico and Indonesia. Differences in effect sizes are not only driven by the choice of conservation measures. One key lesson from the studies is the need to move beyond the current scientific focus of estimating average effects of undifferentiated conservation programs. The specific elements of the program design and the implementation context are equally important factors for understanding the effectiveness of conservation programs. Particularly critical will be a better understanding of the causal mechanisms through which conservation programs have impacts. To achieve this understanding we need advances in both theory and methods.
Htun, Naing Zaw; Mizoue, Nobuya; Yoshida, Shigejiro
2013-02-01
Implementing effective conservation requires an understanding of factors affecting deforestation and forest degradation. Previous studies have investigated factors affecting deforestation, while few studies have examined the determinants of both of deforestation and forest degradation for more than one period. To address this gap, this study examined factors influencing deforestation and forest degradation during 1989-2000 and 2000-2005 in the Popa Mountain Park, Myanmar. We applied multinomial logistic regression (MNL) using land cover maps derived from Landsat images as the dependent variables as well as spatial and biophysical factors as the independent variables. The MNL models revealed influences of the determinants on deforestation and forest degradation changes over time. For example, during 1989-2000, deforestation from closed forest was positively correlated to the distance from the park boundary and was negatively correlated with distance from villages, roads, the park circular road, slope, western aspect and elevation. On the other hand, during 2000-2005, deforestation of closed forest was positively correlated with distance from villages, roads, the park circular road, slope and western aspect, and negatively correlated with distance from the park boundary and elevation. Similar scenarios were observed for the deforestation of open forest and forest degradation of closed forest. The study also found most of the determinants influenced deforestation and forest degradation differently. The changes in determinants of deforestation and forest degradation over time might be attributable to the general decrease in resource availability and to the effect of conservation measures conducted by the park.
NASA Astrophysics Data System (ADS)
Htun, Naing Zaw; Mizoue, Nobuya; Yoshida, Shigejiro
2013-02-01
Implementing effective conservation requires an understanding of factors affecting deforestation and forest degradation. Previous studies have investigated factors affecting deforestation, while few studies have examined the determinants of both of deforestation and forest degradation for more than one period. To address this gap, this study examined factors influencing deforestation and forest degradation during 1989-2000 and 2000-2005 in the Popa Mountain Park, Myanmar. We applied multinomial logistic regression (MNL) using land cover maps derived from Landsat images as the dependent variables as well as spatial and biophysical factors as the independent variables. The MNL models revealed influences of the determinants on deforestation and forest degradation changes over time. For example, during 1989-2000, deforestation from closed forest was positively correlated to the distance from the park boundary and was negatively correlated with distance from villages, roads, the park circular road, slope, western aspect and elevation. On the other hand, during 2000-2005, deforestation of closed forest was positively correlated with distance from villages, roads, the park circular road, slope and western aspect, and negatively correlated with distance from the park boundary and elevation. Similar scenarios were observed for the deforestation of open forest and forest degradation of closed forest. The study also found most of the determinants influenced deforestation and forest degradation differently. The changes in determinants of deforestation and forest degradation over time might be attributable to the general decrease in resource availability and to the effect of conservation measures conducted by the park.
K. L. Shive; P. Z. Fule; C. H. Sieg; B. A. Strom; M. E. Hunter
2014-01-01
Climate change effects on forested ecosystems worldwide include increases in drought-related mortality, changes to disturbance regimes and shifts in species distributions. Such climate-induced changes will alter the outcomes of current management strategies, complicating the selection of appropriate strategies to promote forest resilience. We modelled forest growth in...
Forest Tenure Systems and Sustainable Forest Management: The Case of Ghana
Charles E. Owubah; Dennis C. Le Master; J. Michael Bowker; John G. Lee
2001-01-01
Adoption and implementation of sustainable forestry practices are essential for sustaining forest resources, yet development of effective policies and strategies to achieve them are problematic. Part of the difficulty stems from a limited understanding of the interaction between obtrusive forest policies and indigenous tenure systems and how this affects sustainable...
Restoration Concepts for Temperate and Boreal Forests of North America and Western Europe
John A. Stanturf; P. Madsen
2002-01-01
Throughout the boreal and temperate zones, forest restoration efforts attempt to counteract negative effects of conversion to other land use (afforestation and remediation) and disturbance and stress on existing forests (rehabilitation). Appropriate silvicultural practices can be designed for any forest restoration objective. Most common objectives include timber,...