Sample records for forest fire disaster

  1. Improving the Interoperability of Disaster Models: a Case Study of Proposing Fireml for Forest Fire Model

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Wang, F.; Meng, Q.; Li, Z.; Liu, B.; Zheng, X.

    2018-04-01

    This paper presents a new standardized data format named Fire Markup Language (FireML), extended by the Geography Markup Language (GML) of OGC, to elaborate upon the fire hazard model. The proposed FireML is able to standardize the input and output documents of a fire model for effectively communicating with different disaster management systems to ensure a good interoperability. To demonstrate the usage of FireML and testify its feasibility, an adopted forest fire spread model being compatible with FireML is described. And a 3DGIS disaster management system is developed to simulate the dynamic procedure of forest fire spread with the defined FireML documents. The proposed approach will enlighten ones who work on other disaster models' standardization work.

  2. 44 CFR 206.394 - Cost eligibility.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... incident fires involving co-mingled Federal/State and privately owned forest or grassland. (10) In those... Interstate Forest Fire Protection Compacts, eligible costs are reimbursed in accordance with eligibility... HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE Fire Suppression Assistance § 206.394...

  3. Civic Ecology Education and Resilient Societies: A Survey of Forest Fires in Greece

    ERIC Educational Resources Information Center

    Papaspiliou, Konstantina; Skanavis, Constantina; Giannoulis, Christos

    2014-01-01

    Forest fires, as all natural disasters, have the potential to seriously affect both the environment and the social structure of a local community. Unlike some of the natural disasters, such as hurricanes, tornados and tsunamis which are unpredictable, the phenomenon of forest fires could be easily predicted and controlled, since the causes are…

  4. Design and realization of disaster assessment algorithm after forest fire

    NASA Astrophysics Data System (ADS)

    Xu, Aijun; Wang, Danfeng; Tang, Lihua

    2008-10-01

    Based on GIS technology, this paper mainly focuses on the application of disaster assessment algorithm after forest fire and studies on the design and realization of disaster assessment based on GIS. After forest fire through the analysis and processing of multi-sources and heterogeneous data, this paper integrates the foundation that the domestic and foreign scholars laid of the research on assessment for forest fire loss with the related knowledge of assessment, accounting and forest resources appraisal so as to study and approach the theory framework and assessment index of the research on assessment for forest fire loss. The technologies of extracting boundary, overlay analysis, and division processing of multi-sources spatial data are available to realize the application of the investigation method of the burnt forest area and the computation of the fire area. The assessment provides evidence for fire cleaning in burnt areas and new policy making on restoration in terms of the direct and the indirect economic loss and ecological and environmental damage caused by forest fire under the condition of different fire danger classes and different amounts of forest accumulation, thus makes forest resources protection operated in a faster, more efficient and more economical way. Finally, this paper takes Lin'an city of Zhejiang province as a test area to confirm the method mentioned in the paper in terms of key technologies.

  5. Keynote address: the role of silviculture in restoring fire-adapted ecosystems

    Treesearch

    James K. Agee

    2007-01-01

    Across the drier forests of the western United States, historical fire was a natural silvicultural process--thinning stands from below, cleaning surface fuels, and maintaining fire-resilient conditions. The 20th century fire exclusion policy, although initiated with the best of intentions, has been a disaster in dry forests, converting them to high-severity fire...

  6. Mapping and Analysis of Forest and Land Fire Potential Using Geospatial Technology and Mathematical Modeling

    NASA Astrophysics Data System (ADS)

    Suliman, M. D. H.; Mahmud, M.; Reba, M. N. M.; S, L. W.

    2014-02-01

    Forest and land fire can cause negative implications for forest ecosystems, biodiversity, air quality and soil structure. However, the implications involved can be minimized through effective disaster management system. Effective disaster management mechanisms can be developed through appropriate early warning system as well as an efficient delivery system. This study tried to focus on two aspects, namely by mapping the potential of forest fire and land as well as the delivery of information to users through WebGIS application. Geospatial technology and mathematical modeling used in this study for identifying, classifying and mapping the potential area for burning. Mathematical models used is the Analytical Hierarchy Process (AHP), while Geospatial technologies involved include remote sensing, Geographic Information System (GIS) and digital field data collection. The entire Selangor state was chosen as our study area based on a number of cases have been reported over the last two decades. AHP modeling to assess the comparison between the three main criteria of fuel, topography and human factors design. Contributions of experts directly involved in forest fire fighting operations and land comprising officials from the Fire and Rescue Department Malaysia also evaluated in this model. The study found that about 32.83 square kilometers of the total area of Selangor state are the extreme potential for fire. Extreme potential areas identified are in Bestari Jaya and Kuala Langat High Ulu. Continuity of information and terrestrial forest fire potential was displayed in WebGIS applications on the internet. Display information through WebGIS applications is a better approach to help the decision-making process at a high level of confidence and approximate real conditions. Agencies involved in disaster management such as Jawatankuasa Pengurusan Dan Bantuan Bencana (JPBB) of District, State and the National under the National Security Division and the Fire and Rescue Department Malaysia can use the end result of this study in preparation for the land and forest fires in the future.

  7. [Research progress in post-fire debris flow].

    PubMed

    Di, Xue-ying; Tao, Yu-zhu

    2013-08-01

    The occurrence of the secondary disasters of forest fire has significant impacts on the environment quality and human health and safety. Post-fire debris flow is one of the most hazardous secondary disasters of forest fire. To understand the occurrence conditions of post-fire debris flow and to master its occurrence situation are the critical elements in post-fire hazard assessment. From the viewpoints of vegetation, precipitation threshold and debris flow material sources, this paper elaborated the impacts of forest fire on the debris flow, analyzed the geologic and geomorphic conditions, precipitation and slope condition that caused the post-fire debris flow as well as the primary mechanisms of debris-flow initiation caused by shallow landslide or surface runoff, and reviewed the research progress in the prediction and forecast of post-fire debris flow and the related control measures. In the future research, four aspects to be focused on were proposed, i. e., the quantification of the relationships between the fire behaviors and environmental factors and the post-fire debris flow, the quantitative research on the post-fire debris flow initiation and movement processes, the mechanistic model of post-fire debris flow, and the rapid and efficient control countermeasures of post-fire debris flow.

  8. The simulation of surface fire spread based on Rothermel model in windthrow area of Changbai Mountain (Jilin, China)

    NASA Astrophysics Data System (ADS)

    Yin, Hang; Jin, Hui; Zhao, Ying; Fan, Yuguang; Qin, Liwu; Chen, Qinghong; Huang, Liya; Jia, Xiang; Liu, Lijie; Dai, Yuhong; Xiao, Ying

    2018-03-01

    The forest-fire not only brings great loss to natural resources, but also destructs the ecosystem and reduces the soil fertility, causing some natural disasters as soil erosion and debris flow. However, due to the lack of the prognosis for forest fire spreading trend in forest fire fighting, it is difficult to formulate rational and effective fire-fighting scheme. In the event of forest fire, achieving accurate judgment to the fire behavior would greatly improve the fire-fighting efficiency, and reduce heavy losses caused by fire. Researches on forest fire spread simulation can effectively reduce the loss of disasters. The present study focused on the simulation of "29 May 2012" wildfire in windthrow area of Changbai Mountain. Basic data were retrieved from the "29 May 2012" wildfire and field survey. A self-development forest fire behavior simulated program based on Rothermel Model was used in the simulation. Kappa coefficient and Sørensen index were employed to evaluate the simulation accuracy. The results showed that: The perimeter of simulated burned area was 4.66 km, the area was 56.47 hm2 and the overlapped burned area was 33.68 hm2, and the estimated rate of fire spread was 0.259 m/s. Between the simulated fire and actual fire, the Kappa coefficient was 0.7398 and the Sørensen co-efficient was 0.7419. This proved the application of Rothermel model to conduct fire behavior simulation in windthrow meadow was feasible. It can achieve the goal of forecasting for the spread behavior in windthrow area of Changbai Mountain. Thus, our self-development program based on the Rothermel model can provide a effective forecast of fire spread, which will facilitate the fire suppression work.

  9. 78 FR 52600 - Colorado Disaster # CO-00054

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 13718 and 13719] Colorado Disaster CO-00054 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Colorado dated 08/14/2013. Incident: Black Forest Fire...

  10. Improvement of Forest Fire Detection Algorithm Using Brightness Temperature Lapse Rate Correction in HIMAWARI-8 IR Channels: Application to the 6 may 2017 Samcheok City, Korea

    NASA Astrophysics Data System (ADS)

    Park, S. H.; Park, W.; Jung, H. S.

    2018-04-01

    Forest fires are a major natural disaster that destroys a forest area and a natural environment. In order to minimize the damage caused by the forest fire, it is necessary to know the location and the time of day and continuous monitoring is required until fire is fully put out. We have tried to improve the forest fire detection algorithm by using a method to reduce the variability of surrounding pixels. We focused that forest areas of East Asia, part of the Himawari-8 AHI coverage, are mostly located in mountainous areas. The proposed method was applied to the forest fire detection in Samcheok city, Korea on May 6 to 10, 2017.

  11. Temporal scaling behavior of forest and urban fires

    NASA Astrophysics Data System (ADS)

    Wang, J.; Song, W.; Zheng, H.; Telesca, L.

    2009-04-01

    It has been found that many natural systems are characterized by scaling behavior. In such systems natural factors dominate the event dynamics. Forest fires in different countries have been found to exhibit frequency-size power law over many orders of magnitude and with similar value of parameters. But in countries with high population density such as China and Japan, more than 95% of the forest fire disasters are caused by human activities. Furthermore, with the development of society, the wildland-urban interface (WUI) area is becoming more and more populated, and the forest fire is much connected with urban fire. Therefore exploring the scaling behavior of fires dominated by human-related factors is very challenging. The present paper explores the temporal scaling behavior of forest fires and urban fires in Japan with mathematical methods. Two factors, Allan factor (AF) and Fano factor (FF) are used to investigate time-scaling of fire systems. It is found that the FF for both forest fires and urban fires increases linearly in log-log scales, and this indicates that it behaves as a power-law for all the investigated timescales. From the AF plot a 7 days cycle is found, which indicates a weekly cycle. This may be caused by human activities which has a weekly periodicity because on weekends people usually have more outdoor activities, which may cause more hidden trouble of fire disasters. Our findings point out that although the human factors are the main cause, both the forest fires and urban fires exhibit time-scaling behavior. At the same time, the scaling exponents for urban fires are larger than forest fires, signifying a more intense clustering. The reason may be that fires are affected not only by weather condition, but also by human activities, which play a more important role for urban fires than forest fires and have a power law distribution and scaling behavior. Then some work is done to the relative humidity. Similar distribution law characterizes the relative humidity. The AF plot and FF plot of relative humidity validate the existence of a strong link between weather and fires, and it is very likely that the daily humidity cycle determines the daily fire periodicity.

  12. A qualitative and quantitative analysis of risk perception and treatment options as related to wildfires in the USDA FS Region 3 National Forests

    Treesearch

    Ingrid M. Martin; Wade E. Martin; Carol B. Raish

    2011-01-01

    As the incidence of devastating fires rises, managing the risk posed by these fires has become critical. This report provides important information to examine the ways that different groups or disaster subcultures develop the mentalities or perceived realities that affect their views and responses concerning risk and disaster preparedness. Fire risk beliefs and...

  13. 36 CFR 28.11 - Nonconforming uses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Nonconforming uses. 28.11 Section 28.11 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR FIRE... insurance practices), destroyed or rendered a hazard, whether by fire, natural disaster, abandonment or...

  14. 36 CFR 28.11 - Nonconforming uses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Nonconforming uses. 28.11 Section 28.11 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR FIRE... insurance practices), destroyed or rendered a hazard, whether by fire, natural disaster, abandonment or...

  15. Using Airborne LIDAR Data for Assessment of Forest Fire Fuel Load Potential

    NASA Astrophysics Data System (ADS)

    İnan, M.; Bilici, E.; Akay, A. E.

    2017-11-01

    Forest fire incidences are one of the most detrimental disasters that may cause long terms effects on forest ecosystems in many parts of the world. In order to minimize environmental damages of fires on forest ecosystems, the forested areas with high fire risk should be determined so that necessary precaution measurements can be implemented in those areas. Assessment of forest fire fuel load can be used to estimate forest fire risk. In order to estimate fuel load capacity, forestry parameters such as number of trees, tree height, tree diameter, crown diameter, and tree volume should be accurately measured. In recent years, with the advancements in remote sensing technology, it is possible to use airborne LIDAR for data estimation of forestry parameters. In this study, the capabilities of using LIDAR based point cloud data for assessment of the forest fuel load potential was investigated. The research area was chosen in the Istanbul Bentler series of Bahceköy Forest Enterprise Directorate that composed of mixed deciduous forest structure.

  16. Fire evolution in the radioactive forests of Ukraine and Belarus: future risks for the population and the environment

    Treesearch

    N. Evangeliou; Y. Balkanski; A. Cozic; WeiMin Hao; F. Mouillot; K. Thonicke; R. Paugam; S. Zibtsev; T. A. Mousseau; R. Wang; B. Poulter; A. Petkov; C. Yue; P. Cadule; B. Koffi; J. W. Kaiser; A. P. Moller

    2015-01-01

    In this paper, we analyze the current and future status of forests in Ukraine and Belarus that were contaminated after the nuclear disaster in 1986. Using several models, together with remote-sensing data and observations, we studied how climate change in these forests may affect fire regimes. We investigated the possibility of 137Cs displacement over Europe...

  17. Multi-temporal analysis of forest fire risk driven by environmental and socio-economic change in the Republic of Korea

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Lim, C. H.; Kim, G. S.; Lee, W. K.

    2017-12-01

    Analysis of forest fire risk is important in disaster risk reduction (DRR) since it provides a way to manage forest fires. Climate and socio-economic factors are important in the cause of forest fires, and the role of the socio-economic factors in prevention and preparedness of forest fires is increasing. As most of the forest fires in the Republic of Korea are highly related to human activities, both environmental factors and socio-economic factors were considered into the analysis of forest fire risk. In this study, the Maximum Entropy (MaxEnt) model was used to predict the potential geographical distribution and probability of forest fire occurrence spatially and temporally from 1980s to the 2010s in the Republic of Korea by multi-temporal analysis and analyze the relationship between forest fires and the factors. As a result of the risk analysis, there was an overall increasing trend in forest fire risk from the 1980s to the 2000s, and socio-economic factors were highly correlated with the occurrence of forest fires. The study demonstrates that the socio-economic factors considered as human activities can increase the occurrence of forest fires. The result implies that managing human activities are significant to prevent forest fire occurrence. In addition, timely forest fire prevention and control is necessary as drought index such as Standardized Precipitation Index (SPI) also affected forest fires.

  18. Forest and Land Fire Prevention Through the Hotspot Movement Pattern Approach

    NASA Astrophysics Data System (ADS)

    Turmudi, T.; Kardono, P.; Hartanto, P.; Ardhitasari, Y.

    2018-02-01

    Indonesia has experienced a great forest fire disaster in 2015. The losses incurred were enormous. But actually the incidence of forest and land fires occurs almost every year. Various efforts were made to cope with the fire disaster. The appearance of a hotspot becomes an early indication of the fire incident both location and time. By studying the location and time of the hotspot's appearance indicates that the hotspot has certain movement patterns from year to year. This study aims to show the pattern of movement of hotspots from year to year that can be used for the prevention of forest and land fires. The method used is time series analysis of land cover and hotspot distribution. The data used were land cover data from 2005 to 2016, hotspot data from 2005 to 2016. The location of this study is the territory of Meranti Kepulauan District. The results show that the highest hotspot is 425 hotspots occurs in the shrubs and bushes. From year to year, the pattern of hotspot movement occurs in the shrubs and bushes cover. The hotspot pattern follows the direction of unused land for cultivation and is dominated by shrubs. From these results, we need to pay more attentiont for the land with the cover of shrubs adjacent to the cultivated land.

  19. Barriers to community-directed fire restoration

    Treesearch

    R. Bruce Hull; Bruce E. Goldstein

    2006-01-01

    Wild fire disasters create novel situations and challenges for natural resource managers, including working with emergent community groups that have a great deal of motivation for change, little familiarity with agency protocol, and strong preferences for the goals and methods of forest fire restoration, some of which may run counter to agency norms. After a fire,...

  20. A brush fire forensic case.

    PubMed

    Rella, R; Sturaro, A; Parvoli, G; Ferrara, D; Casellato, U; Vadalà, G

    2005-01-01

    In Italy, every summer forest fires attract public attention due to the number of victims, the intensity of the fires, the areas devastated, the environmental damage and the loss of property. Excluding some fires by natural causes, other causes are related to the social, economic, and productive profile of the territory. The erroneous expectation is that wooded areas destroyed by fire can then be used for private interests. Often, a fire, started to clear a small area, can completely change the expected result, producing disaster, loss of property, destruction of entire forests and resident fauna, and kill innocent people. In this case report, the reconstruction of an arson scene, the analytical techniques and the results obtained are illustrated in this paper, with the aim of sharing with other research laboratories the current knowledge on forest fire.

  1. A burning problem: social dynamics of disaster risk reduction through wildfire mitigation

    Treesearch

    Susan Charnley; Melissa R. Poe; Alan A. Ager; Thomas A. Spies; Emily K. Platt; Keith A. Olsen

    2015-01-01

    Disasters result from hazards affecting vulnerable people. Most disasters research by anthropologists focuses on vulnerability; this article focuses on natural hazards. We use the case of wildfire mitigation on United States Forest Service lands in the northwestern United States to examine social, political, and economic variables at multiple scales that influence fire...

  2. Geophysical survey for groundwater potential investigation in peat land area, Riau, Indonesia

    NASA Astrophysics Data System (ADS)

    Islami, N.; Irianti, M.; Azhar; Nor, M.; Fakhrudin

    2018-04-01

    Tropical forests, especially peat lands, are particularly vulnerable to forest fires. Fires are the most common disasters in peat lands in the dry season, especially in Riau Province, Indonesia. In the process of extinguishing the peat fire, several substantial problems arise to stop peat fires during this period. This study aims to determine the possibility of using ground water as a source of water to anticipate the early mitigation of peat land fires disaster. The geoelectrical resistivity surveys were used to predict the subsurface geological data including peat thickness and depth of aquifers. The geometry of peat lands was determined using geostatistics based on geoelectrical resistivity interpretation data. Peat Land thickness varies up to 4 m in the north and is thinner to the south. A shallower and deeper aquifer is available at a depth of 13 m to 18 m and 70 m to 90 m respectively. In general, the potential of groundwater in the shallow aquifer is predicted to be sufficient for peat land watering anytime.

  3. Gis-Based Multi-Criteria Decision Analysis for Forest Fire Risk Mapping

    NASA Astrophysics Data System (ADS)

    Akay, A. E.; Erdoğan, A.

    2017-11-01

    The forested areas along the coastal zone of the Mediterranean region in Turkey are classified as first-degree fire sensitive areas. Forest fires are major environmental disaster that affects the sustainability of forest ecosystems. Besides, forest fires result in important economic losses and even threaten human lives. Thus, it is critical to determine the forested areas with fire risks and thereby minimize the damages on forest resources by taking necessary precaution measures in these areas. The risk of forest fire can be assessed based on various factors such as forest vegetation structures (tree species, crown closure, tree stage), topographic features (slope and aspect), and climatic parameters (temperature, wind). In this study, GIS-based Multi-Criteria Decision Analysis (MCDA) method was used to generate forest fire risk map. The study was implemented in the forested areas within Yayla Forest Enterprise Chiefs at Dursunbey Forest Enterprise Directorate which is classified as first degree fire sensitive area. In the solution process, "extAhp 2.0" plug-in running Analytic Hierarchy Process (AHP) method in ArcGIS 10.4.1 was used to categorize study area under five fire risk classes: extreme risk, high risk, moderate risk, and low risk. The results indicated that 23.81 % of the area was of extreme risk, while 25.81 % was of high risk. The result indicated that the most effective criterion was tree species, followed by tree stages. The aspect had the least effective criterion on forest fire risk. It was revealed that GIS techniques integrated with MCDA methods are effective tools to quickly estimate forest fire risk at low cost. The integration of these factors into GIS can be very useful to determine forested areas with high fire risk and also to plan forestry management after fire.

  4. Fire spread estimation on forest wildfire using ensemble kalman filter

    NASA Astrophysics Data System (ADS)

    Syarifah, Wardatus; Apriliani, Erna

    2018-04-01

    Wildfire is one of the most frequent disasters in the world, for example forest wildfire, causing population of forest decrease. Forest wildfire, whether naturally occurring or prescribed, are potential risks for ecosystems and human settlements. These risks can be managed by monitoring the weather, prescribing fires to limit available fuel, and creating firebreaks. With computer simulations we can predict and explore how fires may spread. The model of fire spread on forest wildfire was established to determine the fire properties. The fire spread model is prepared based on the equation of the diffusion reaction model. There are many methods to estimate the spread of fire. The Kalman Filter Ensemble Method is a modified estimation method of the Kalman Filter algorithm that can be used to estimate linear and non-linear system models. In this research will apply Ensemble Kalman Filter (EnKF) method to estimate the spread of fire on forest wildfire. Before applying the EnKF method, the fire spread model will be discreted using finite difference method. At the end, the analysis obtained illustrated by numerical simulation using software. The simulation results show that the Ensemble Kalman Filter method is closer to the system model when the ensemble value is greater, while the covariance value of the system model and the smaller the measurement.

  5. Annual Historical Summary Fiscal Year 1982

    DTIC Science & Technology

    1983-10-12

    for a natural disaster /eaiergency situation. 3 5 Forces Command replaced the Command Evaluation (CE) of Reserve Component Nuclear Capable Units with... disasters or catastrophes occurring within its area. Illustrative of many such public "calls for aid in which Sixth ’IM AM rasponded were t.1e Columbia...34ational Forest. fire and flood disaster in the state of Washington; the damaging4 threatening blazes in the Santa Cruz Mountains and on the Hunter

  6. WebGIS Platform Adressed to Forest Fire Management Methodologies

    NASA Astrophysics Data System (ADS)

    André Ramos-Simões, Nuno; Neto Paixão, Helena Maria; Granja Martins, Fernando Miguel; Pedras, Celestina; Lança, Rui; Silva, Elisa; Jordán, António; Zavala, Lorena; Soares, Cristina

    2015-04-01

    Forest fires are one of the natural disasters that causes more damages in nature, as well as high material costs, and sometimes, a significant losses in human lives. In summer season, when high temperatures are attained, fire may rapidly progress and destroy vast areas of forest and also rural and urban areas. The forest fires have effect on forest species, forest composition and structure, soil properties and soil capacity for nutrient retention. In order to minimize the negative impact of the forest fires in the environment, many studies have been developed, e.g. Jordán et al (2009), Cerdà & Jordán (2010), and Gonçalves & Vieira (2013). Nowadays, Remote Sensing (RS) and Geographic Information System (GIS) technologies are used as support tools in fire management decisions, namely during the fire, but also before and after. This study presents the development of a user-friendly WebGIS dedicated to share data, maps and provide updated information on forest fire management for stakeholders in Iberia Peninsula. The WebGIS platform was developed with ArcGIS Online, ArcGIS for Desktop; HyperText Markup Language (HTML) and Javascript. This platform has a database that includes spatial and alphanumeric information, such as: origin, burned areas, vegetation change over time, terrain natural slope, land use, soil erosion and fire related hazards. The same database contains also the following relevant information: water sources, forest tracks and traffic ways, lookout posts and urban areas. The aim of this study is to provide the authorities with a tool to assess risk areas and manage more efficiently forest fire hazards, giving more support to their decisions and helping the populations when facing this kind of phenomena.

  7. Estimation of Wild Fire Risk Area based on Climate and Maximum Entropy in Korean Peninsular

    NASA Astrophysics Data System (ADS)

    Kim, T.; Lim, C. H.; Song, C.; Lee, W. K.

    2015-12-01

    The number of forest fires and accompanying human injuries and physical damages has been increased by frequent drought. In this study, forest fire danger zone of Korea is estimated to predict and prepare for future forest fire hazard regions. The MaxEnt (Maximum Entropy) model is used to estimate the forest fire hazard region which estimates the probability distribution of the status. The MaxEnt model is primarily for the analysis of species distribution, but its applicability for various natural disasters is getting recognition. The detailed forest fire occurrence data collected by the MODIS for past 5 years (2010-2014) is used as occurrence data for the model. Also meteorology, topography, vegetation data are used as environmental variable. In particular, various meteorological variables are used to check impact of climate such as annual average temperature, annual precipitation, precipitation of dry season, annual effective humidity, effective humidity of dry season, aridity index. Consequently, the result was valid based on the AUC(Area Under the Curve) value (= 0.805) which is used to predict accuracy in the MaxEnt model. Also predicted forest fire locations were practically corresponded with the actual forest fire distribution map. Meteorological variables such as effective humidity showed the greatest contribution, and topography variables such as TWI (Topographic Wetness Index) and slope also contributed on the forest fire. As a result, the east coast and the south part of Korea peninsula were predicted to have high risk on the forest fire. In contrast, high-altitude mountain area and the west coast appeared to be safe with the forest fire. The result of this study is similar with former studies, which indicates high risks of forest fire in accessible area and reflects climatic characteristics of east and south part in dry season. To sum up, we estimated the forest fire hazard zone with existing forest fire locations and environment variables and had meaningful result with artificial and natural effect. It is expected to predict future forest fire risk with future climate variables as the climate changes.

  8. Simulating the effect of ignition source type on forest fire statistics

    NASA Astrophysics Data System (ADS)

    Krenn, Roland; Hergarten, Stefan

    2010-05-01

    Forest fires belong to the most frightening natural hazards, and have long-term ecological and economic effects on the regions involved. It was found that their frequency-area distributions show power-law behaviour under a wide variety of conditions, interpreting them as a self-organised critical phenomenon. Using computer simulations, self-organised critical behaviour manifests in simple cellular automaton models. With respect to ignition source, forest fires can be categorised as lightning-induced or as a result of human activity. Lightning fires are considered to be natural, whereas ``man made'' fires are frequently caused by some sort of technological disaster, such as sparks from wheels of trains, the rupture of overhead electrical lines, the misuse of electrical or mechanical devices and so on. Taking into account that such events rarely occur deep in the woods, man made fires should start preferably on the edge of a forest or where the forest is not very dense. We present a modification in the self-organised critical Drossel-Schwabl forest fire model that takes these two different triggering mechanisms into account and increases the scaling exponent of the frequency-area distribution by ca. 1/3. Combined simulations further predict a dependence of the overall event-size distribution on the ratio of lightning-induced and man made fires as well as a splitting of their partial distributions. Lightning is identified as the dominant mechanism in the regime of the largest fires. The results are confirmed by the analysis of the Canadian Large Fire Database and suggest that lightning-induced and man made forest fires cannot be treated separately in wildfire modelling, hazard assessment and forest management.

  9. [Prediction model of human-caused fire occurrence in the boreal forest of northern China].

    PubMed

    Guo, Fu-tao; Su, Zhang-wen; Wang, Guang-yu; Wang, Qiang; Sun, Long; Yang, Ting-ting

    2015-07-01

    The Chinese boreal forest is an important forest resource in China. However, it has been suffering serious disturbances of forest fires, which were caused equally by natural disasters (e.g., lightning) and human activities. The literature on human-caused fires indicates that climate, topography, vegetation, and human infrastructure are significant factors that impact the occurrence and spread of human-caused fires. But the studies on human-caused fires in the boreal forest of northern China are limited and less comprehensive. This paper applied the spatial analysis tools in ArcGIS 10.0 and Logistic regression model to investigate the driving factors of human-caused fires. Our data included the geographic coordinates of human-caused fires, climate factors during year 1974-2009, topographic information, and forest map. The results indicated that distance to railway (x1) and average relative humidity (x2) significantly impacted the occurrence of human-caused fire in the study area. The logistic model for predicting the fire occurrence probability was formulated as P= 1/[11+e-(3.026-0.00011x1-0.047x2)] with an accuracy rate of 80%. The above model was used to predict the monthly fire occurrence during the fire season of 2015 based on the HADCM2 future weather data. The prediction results showed that the high risk of human-caused fire occurrence concentrated in the months of April, May, June and August, while April and May had higher risk of fire occurrence than other months. According to the spatial distribution of possibility of fire occurrence, the high fire risk zones were mainly in the west and southwest of Tahe, where the major railways were located.

  10. Multi-Level Wild Land Fire Fighting Management Support System for an Optimized Guidance of Ground and Air Forces

    NASA Astrophysics Data System (ADS)

    Almer, Alexander; Schnabel, Thomas; Perko, Roland; Raggam, Johann; Köfler, Armin; Feischl, Richard

    2016-04-01

    Climate change will lead to a dramatic increase in damage from forest fires in Europe by the end of this century. In the Mediterranean region, the average annual area affected by forest fires has quadrupled since the 1960s (WWF, 2012). The number of forest fires is also on the increase in Central and Northern Europe. The Austrian forest fire database shows a total of 584 fires for the period 2012 to 2014, while even large areas of Sweden were hit by forest fires in August 2014, which were brought under control only after two weeks of intense fire-fighting efforts supported by European civil protection modules. Based on these facts, the improvements in forest fire control are a major international issue in the quest to protect human lives and resources as well as to reduce the negative environmental impact of these fires to a minimum. Within this paper the development of a multi-functional airborne management support system within the frame of the Austrian national safety and security research programme (KIRAS) is described. The main goal of the developments is to assist crisis management tasks of civil emergency teams and armed forces in disaster management by providing multi spectral, near real-time airborne image data products. As time, flexibility and reliability as well as objective information are crucial aspects in emergency management, the used components are tailored to meet these requirements. An airborne multi-functional management support system was developed as part of the national funded project AIRWATCH, which enables real-time monitoring of natural disasters based on optical and thermal images. Airborne image acquisition, a broadband line of sight downlink and near real-time processing solutions allow the generation of an up-to-date geo-referenced situation map. Furthermore, this paper presents ongoing developments for innovative extensions and research activities designed to optimize command operations in national and international fire-fighting missions. The ongoing development focuses on the following topics: (1) Development of a multi-level management solution to coordinate and guide different airborne and terrestrial deployed firefighting modules as well as related data processing and data distribution activities. (2) Further, a targeted control of the thermal sensor based on a rotating mirror system to extend the "area performance" (covered area per hour) in time critical situations for the monitoring requirements during forest fire events. (3) Novel computer vision methods for analysis of thermal sensor signatures, which allow an automatic classification of different forest fire types and situations. (4) A module for simulation-based decision support for planning and evaluation of resource usage and the effectiveness of performed fire-fighting measures. (5) Integration of wearable systems to assist ground teams in rescue operations as well as a mobile information system into innovative command and fire-fighting vehicles. In addition, the paper gives an outlook on future perspectives including a first concept for the integration of the near real-time multilevel forest fire fighting management system into an "EU Civil Protection Team" to support the EU civil protection modules and the Emergency Response Coordination Centre in Brussels. Keywords: Airborne sensing, multi sensor imaging, near real-time fire monitoring, simulation-based decision support, forest firefighting management, firefighting impact analysis.

  11. Southern California Disasters II

    NASA Technical Reports Server (NTRS)

    Nicholson, Heather; Todoroff, Amber L.; LeBoeuf, Madeline A.

    2015-01-01

    The USDA Forest Service (USFS) has multiple programs in place which primarily utilize Landsat imagery to produce burn severity indices for aiding wildfire damage assessment and mitigation. These indices provide widely-used wildfire damage assessment tools to decision makers. When the Hyperspectral Infrared Imager (HyspIRI) is launched in 2022, the sensor's hyperspectral resolution will support new methods for assessing natural disaster impacts on ecosystems, including wildfire damage to forests. This project used simulated HyspIRI data to study three southern California fires: Aspen, French, and King. Burn severity indices were calculated from the data and the results were quantitatively compared to the comparable USFS products currently in use. The final results from this project illustrate how HyspIRI data may be used in the future to enhance assessment of fire-damaged areas and provide additional monitoring tools for decision support to the USFS and other land management agencies.

  12. Web service tools in the era of forest fire management and elimination

    NASA Astrophysics Data System (ADS)

    Poursanidis, Dimitris; Kochilakis, Giorgos; Chrysoulakis, Nektarios; Varella, Vasiliki; Kotroni, Vassiliki; Eftychidis, Giorgos; Lagouvardos, Kostas

    2014-10-01

    Wildfires in forests and forested areas in South Europe, North America, Central Asia and Australia are a diachronic threat with crucial ecological, economic and social impacts. Last decade the frequency, the magnitude and the intensity of fires have increased even more because of the climate change. An efficient response to such disasters requires an effective planning, with an early detection system of the ignition area and an accurate prediction of fire propagation to support the rapid response mechanisms. For this reason, information systems able to predict and visualize the behavior of fires, are valuable tools for fire fighting. Such systems, able also to perform simulations that evaluate the fire development scenarios, based on weather conditions, become valuable Decision Support Tools for fire mitigation planning. A Web-based Information System (WIS) developed in the framework of the FLIRE (Floods and fire risk assessment and management) project, a LIFE+ co-funded by the European Commission research, is presented in this study. The FLIRE WIS use forest fuel maps which have been developed by using generalized fuel maps, satellite data and in-situ observations. Furthermore, it leverages data from meteorological stations and weather forecast from numerical models to feed the fire propagation model with the necessary for the simulations inputs and to visualize the model's results for user defined time periods and steps. The user has real-time access to FLIRE WIS via any web browser from any platform (PC, Laptop, Tablet, Smartphone).

  13. Covering the Homeland: National Guard Unmanned Aircraft Systems Support for Wildland Firefighting and Natural Disaster Events

    DTIC Science & Technology

    2008-12-01

    OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for...VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1 . AGENCY USE ONLY (Leave...National Guard, Unmanned Aircraft System, Wildland Forest Fire, Natural Disaster, MQ- 1 Predator, MQ-9 Reaper, Autonomous Modular Sensor, National

  14. Object-based Forest Fire Analysis for Pedrógão Grande Fire Using Landsat 8 OLI and Sentinel-2A Imagery

    NASA Astrophysics Data System (ADS)

    Tonbul, H.; Kavzoglu, T.

    2017-12-01

    Forest fires are among the most important natural disasters with the damage to the natural habitat and human-life. Mapping damaged forest fires is crucial for assessing ecological effects caused by fire, monitoring land cover changes and modeling atmospheric and climatic effects of fire. In this context, satellite data provides a great advantage to users by providing a rapid process of detecting burning areas and determining the severity of fire damage. Especially, Mediterranean ecosystems countries sets the suitable conditions for the forest fires. In this study, the determination of burnt areas of forest fire in Pedrógão Grande region of Portugal occurred in June 2017 was carried out using Landsat 8 OLI and Sentinel-2A satellite images. The Pedrógão Grande fire was one of the largest fires in Portugal, more than 60 people was killed and thousands of hectares were ravaged. In this study, four pairs of pre-fire and post-fire top of atmosphere (TOA) and atmospherically corrected images were utilized. The red and near infrared (NIR) spectral bands of pre-fire and post-fire images were stacked and multiresolution segmentation algorithm was applied. In the segmentation processes, the image objects were generated with estimated optimum homogeneity criteria. Using eCognition software, rule sets have been created to distinguish unburned areas from burned areas. In constructing the rule sets, NDVI threshold values were determined pre- and post-fire and areas where vegetation loss was detected using the NDVI difference image. The results showed that both satellite images yielded successful results for burned area discrimination with a very high degree of consistency in terms of spatial overlap and total burned area (over 93%). Object based image analysis (OBIA) was found highly effective in delineation of burnt areas.

  15. Texas Disasters II: Utilizing NASA Earth Observations to Assist the Texas Forest Service in Mapping and Analyzing Fuel Loads and Phenology in Texas Grasslands

    NASA Technical Reports Server (NTRS)

    Brooke, Michael; Williams, Meredith; Fenn, Teresa

    2016-01-01

    The risk of severe wildfires in Texas has been related to weather phenomena such as climate change and recent urban expansion into wild land areas. During recent years, Texas wild land areas have experienced sequences of wet and dry years that have contributed to increased wildfire risk and frequency. To prevent and contain wildfires, the Texas Forest Service (TFS) is tasked with evaluating and reducing potential fire risk to better manage and distribute resources. This task is made more difficult due to the vast and varied landscape of Texas. The TFS assesses fire risk by understanding vegetative fuel types and fuel loads. To better assist the TFS, NASA Earth observations, including Landsat and Moderate Resolution Imaging Specrtoradiometer (MODIS) data, were analyzed to produce maps of vegetation type and specific vegetation phenology as it related to potential wildfire fuel loads. Fuel maps from 2010-2011 and 2014-2015 fire seasons, created by the Texas Disasters I project, were used and provided alternating, complementary map indicators of wildfire risk in Texas. The TFS will utilize the end products and capabilities to evaluate and better understand wildfire risk across Texas.

  16. [Forest fire risk assessment for China under different climate scenarios.

    PubMed

    Tian, Xiao Rui; Dai, Xuan; Wang, Ming Yu; Zhao, Feng Jun; Shu, Li Fu

    2016-03-01

    Forest fire risk depends on the hazard factors, affected body, and hazard prevention and reduction ability. The integrated risk assessment is the foundation for developing scientific fire mana-gement policies and carrying out the forest fire prevention measures. A forest fire risk assessment model and index system were established based on the classic natural disaster risk model and available data, and the model was used to assess the forest fire risks in past and future. The future climate scenario data included outputs from five global climate models (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM and NorESM1-M) for RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5, respectively. Each component index of Fire Weather Index (FWI) system was calculated daily for each grid in 1987-2050 for the historical observations and future climate scenarios according to the maximum temperature, minimum relative humidity, wind speed and daily precipitation. The results showed that areas with high and very high fire danger ratings in 1987-2010 accounted for 21.2% and 6.2%, respectively, which were distributed in Greater Xing'an Mountains and the Changbai Mountain area, most parts of Yunnan, and many fragment areas in southern China. The areas with high and very high burn possibilities were mainly distributed in the northeast and southwest region, accounting for 13.1% and 4.0%, respectively. Compared with the observation period, the areas with high and very high fire danger ratings in 2021-2050 would increase by 0.6%, 5.5%, 2.3%, and 3.5% under RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 respectively, and North China would show significant increase. The regions with high-risk forest fires would also increase due to climate change, with the most significant increase under RCP 8.5 scenario (+1.6%).

  17. Bottlenecks in Geospatial Data-Driven Decision-Making for Natural Disaster Management: A Case Study of Forest Fire Prevention and Control in Guatemala's Maya Biosphere Reserve

    NASA Astrophysics Data System (ADS)

    Berenter, J. S.; Mueller, J. M.; Morrison, I.

    2016-12-01

    Annual forest fires are a source of great economic and environmental cost in the Maya Biosphere Reserve (MBR), a region of high ecological and historical value in Guatemala's department of Petén. Scarce institutional resources, limited local response capacity, and difficult terrain place a premium on the use of Earth observation data for forest fire management in the MBR, but also present significant institutional barriers to optimizing the value of this data. Drawing upon key informant interviews and a contingent valuation survey of national and local actors conducted during a three-year performance evaluation of the USAID/NASA Regional Visualization and Monitoring System (SERVIR), this paper traces the flow of SERVIR data from acquisition to decision in order to assess the institutional and contextual factors affecting the value of Earth observation data for forest fire management in the MBR. Findings indicate that the use of satellite data for forest fire management in the MBR is widespread and multi-dimensional: historical assessments of land use and land cover, fire scarring, and climate data help central-level fire management agencies identify and regulate fire-sensitive areas; regular monitoring and dissemination of climate data enables coordination between agricultural burning activities and fire early warning systems; and daily satellite detection of thermal anomalies in land surface temperature permits first responders to monitor and react to "hotspot" activity. Findings also suggest, however, that while the decentralized operations of Petén's fire management systems foster the use of Earth observation data, systemic bottlenecks, including budgetary constraints, inadequate data infrastructure and interpretation capacity, and obstacles to regulatory enforcement, impede the flow of information and use of technology and thus impact the value of that data, particularly in remote and under-resourced areas of the MBR. A geographic expansion and fortification of support systems for use of Earth observation data is thus required to maximize the value of data-driven forest fire management in the MBR. Findings further validate a need for continued cooperation between scientific and governance institutions to disseminate and integrate geospatial data into environmental decision-making.

  18. Advanced fire observation by the Intelligent Infrared Sensor prototype FOCUS on the International Space Station

    NASA Astrophysics Data System (ADS)

    Oertel, D.; Haschberger, P.; Tank, V.; Lanzl, F.; Zhukov, B.; Jahn, H.; Briess, K.; Lorenz, E.; Roeser, H.-P.; Ginati, A.; Tobehn, C.; Schulte in den Bäumen, J.; Christmann, U.

    1999-01-01

    Current and planned operational space-borne Earth observation systems provide spatially, radiometrically or temporally crude data for the detection and monitoring of high temperature phenomena on the surface of our planet. High Temperature Events (HTE) very often cause environmental disasters. Such HTE are forest and savannah fires, fires of open coal mines, volcanic activities and others (e.g. fires of oil wells, pipelines etc.). A simultaneous co-registration of a combination of infrared (IR) and visible (VIS) channels is the key for a reliable autonomous on-board detection of High Temperature Events (HTE) on Earth surface, such as vegetation fires and volcano eruptions. This is the main feature of the FOCUS experiment. Furthermore there are ecology-oriented objectives of the FOCUS experiment mainly related to spectrometric/imaging remote inspection and parameter extraction of selected HTEs, and to the assessment of some ecological consequences of HTEs, such as aerosol and gas emission. Based on own experimental work and supported by Co-Investigators from Italy, Greece, France, Spain, Russia and Germany, DLR proposed in 1997 to use the International Space Station (ISS) in its early utilization phase as a platform and test-bed for an Intelligent Infrared Sensor prototype FOCUS of a future Environmental Disaster Recognition Satellite System. FOCUS is considered by ESA as an important mission combining a number of proven technologies and observation techniques to provide the scientific and operational user community with key data for the classification and monitoring of forest fires. FOCUS was selected as one of five European ``Groupings'' to be flown as an externally mounted payload during the early utilisation phase of the ISS. The FOCUS Phase A Study will be performed by OHB-System, DLR and Zeiss from September 1998 until May 1999.

  19. Real Time Fire Reconnaissance Satellite Monitoring System Failure Model

    NASA Astrophysics Data System (ADS)

    Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique

    2013-09-01

    In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.

  20. 44 CFR 206.390 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE Fire Suppression Assistance § 206.390 General. When the Assistant Administrator for the Disaster Assistance Directorate determines that a fire or fires threaten such destruction as would constitute a major disaster, assistance may be authorized...

  1. 44 CFR 206.390 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE Fire Suppression Assistance § 206.390 General. When the Assistant Administrator for the Disaster Assistance Directorate determines that a fire or fires threaten such destruction as would constitute a major disaster, assistance may be authorized...

  2. Animals as Mobile Biological Sensors for Forest Fire Detection

    PubMed Central

    2007-01-01

    This paper proposes a mobile biological sensor system that can assist in early detection of forest fires one of the most dreaded natural disasters on the earth. The main idea presented in this paper is to utilize animals with sensors as Mobile Biological Sensors (MBS). The devices used in this system are animals which are native animals living in forests, sensors (thermo and radiation sensors with GPS features) that measure the temperature and transmit the location of the MBS, access points for wireless communication and a central computer system which classifies of animal actions. The system offers two different methods, firstly: access points continuously receive data about animals' location using GPS at certain time intervals and the gathered data is then classified and checked to see if there is a sudden movement (panic) of the animal groups: this method is called animal behavior classification (ABC). The second method can be defined as thermal detection (TD): the access points get the temperature values from the MBS devices and send the data to a central computer to check for instant changes in the temperatures. This system may be used for many purposes other than fire detection, namely animal tracking, poaching prevention and detecting instantaneous animal death. PMID:28903281

  3. Fire Disasters in the Twentieth Century

    PubMed Central

    Cavallini, M.; Papagni, M.F.; Baruffaldi Preis, F.W.

    2007-01-01

    Summary In the field of natural and man-made disasters, fire has played a predominant role. A report is presented of fire disasters in the twentieth century, with a chronological analysis of different worldwide typologies. PMID:21991077

  4. Lessons learned from post-wildfire monitoring and implications for land management and regional drinking water treatability in Southern Rockies of Alberta

    NASA Astrophysics Data System (ADS)

    Diiwu, J.; Silins, U.; Kevin, B.; Anderson, A.

    2008-12-01

    Like many areas of the Rocky Mountains, Alberta's forests on the eastern slopes of the Rockies have been shaped by decades of successful fire suppression. These forests are at high risk to fire and large scale insect infestation, and climate change will continue to increase these risks. These headwaters forests provide the vast majority of usable surface water supplies to large region of the province, and large scale natural disasters can have dramatic effects on water quality and water availability. The population in the region has steadily increased and now this area is the main source water for many Alberta municipalities, including the City of Calgary, which has a population of over one million. In 2003 a fire burned 21,000 ha in the southern foothills area. The government land managers were concerned about the downstream implications of the fire and salvage operations, however there was very limited scientific information to guide the decision making. This led to establishment of the Southern Rockies Watershed Project, which is a partnership between Alberta Sustainable Resource Development, the provincial government department responsible for land management and the University of Alberta. After five years of data collection, the project has produced quantitative information that was not previously available about the effects of fire and management interventions such as salvage logging on headwaters and regional water quality. This information can be used to make decisions on forest operations, fire suppression, and post-fire salvage operations. In the past few years this project has captured the interest of large municipalities and water treatment researchers who are keen to investigate the potential implications of large natural disturbances to large and small drinking water treatment facilities. Examples from this project will be used to highlight the challenges and successes encountered while bridging the gap between science and land management policy.

  5. UAVSAR for the Management of Natural Disasters

    NASA Astrophysics Data System (ADS)

    Lou, Y.; Hensley, S.; Jones, C. E.

    2014-12-01

    The unique capabilities of imaging radar to penetrate cloud cover and collect data in darkness over large areas at high resolution makes it a key information provider for the management and mitigation of natural and human-induced disasters such as earthquakes, volcanoes, landslides, floods, and wildfires. Researchers have demonstrated the use of UAVSAR's fully polarimetric data to determine flood extent, forest fire extent, lava flow, and landslide. The ability for UAVSAR to provide high accuracy repeated flight tracks and precise imaging geometry for measuring surface deformation to a few centimeter accuracy using InSAR techniques. In fact, UAVSAR's repeat-pass interferometry capability unleashed new potential approaches to manage the risk of natural disasters prior to the occurrence of these events by modeling and monitoring volcano inflation, earthquake fault movements, landslide rate and extent, and sink hole precursory movement. In this talk we will present examples of applications of UAVSAR for natural disaster management. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  6. Investigating the haze transport from 1997 biomass burning in Southeast Asia: its impact upon Singapore

    NASA Astrophysics Data System (ADS)

    Koe, Lawrence C. C.; Arellano, Avelino F.; McGregor, John L.

    The 1997 Indonesia forest fires was an environmental disaster of exceptional proportions. Such a disaster caused massive transboundary air pollution and indiscriminate destruction of biodiversity in the world. The immediate consequence of the fires was the production of large amounts of haze in the region, causing visibility and health problems within Southeast Asia. Furthermore, fires of these magnitudes are potential contributors to global warming and climate change due to the emission of large amounts of greenhouse gases and other pyrogenic products.The long-range transport of fire-related haze in the region is investigated using trajectories from the CSIRO Division of Atmospheric Research Limited Area Model (DARLAM). Emission scenarios were constructed for hotspot areas in Sumatra and Kalimantan for the months of September and October 1997 to determine the period and fire locations most critical to Singapore. This study also examines some transport issues raised from field observations. Results show that fires in the coastal areas of southeast Sumatra and southwest Kalimantan can be potential contributors to transboundary air pollution in Singapore. Singapore was directly affected by haze from these areas whereas Kuala Lumpur was heavily affected by the haze coming from Sumatra. In most cases, Singapore was more affected by fires from Kalimantan than was Kuala Lumpur. This was mainly a result of the shifting of monsoons. The transition of monsoons resulted in weaker low-level winds and shifted convergence zones near to the southeast of Peninsular Malaysia. In addition to severe drought and massive fire activity in 1997, the timing of the monsoon transition has a strong influence on haze transport in the region.

  7. International Space Station Instmments Collect Imagery of Natural Disasters

    NASA Technical Reports Server (NTRS)

    Evans, C. A.; Stefanov, W. L.

    2013-01-01

    A new focus for utilization of the International Space Station (ISS) is conducting basic and applied research that directly benefits Earth's citizenry. In the Earth Sciences, one such activity is collecting remotely sensed imagery of disaster areas and making those data immediately available through the USGS Hazards Data Distribution System, especially in response to activations of the International Charter for Space and Major Disasters (known informally as the "International Disaster Charter", or IDC). The ISS, together with other NASA orbital sensor assets, responds to IDC activations following notification by the USGS. Most of the activations are due to natural hazard events, including large floods, impacts of tropical systems, major fires, and volcanic eruptions and earthquakes. Through the ISS Program Science Office, we coordinate with ISS instrument teams for image acquisition using several imaging systems. As of 1 August 2013, we have successfully contributed imagery data in support of 14 Disaster Charter Activations, including regions in both Haiti and the east coast of the US impacted by Hurricane Sandy; flooding events in Russia, Mozambique, India, Germany and western Africa; and forest fires in Algeria and Ecuador. ISS-based sensors contributing data include the Hyperspectral Imager for the Coastal Ocean (HICO), the ISERV (ISS SERVIR Environmental Research and Visualization System) Pathfinder camera mounted in the US Window Observational Research Facility (WORF), the ISS Agricultural Camera (ISSAC), formerly operating from the WORF, and high resolution handheld camera photography collected by crew members (Crew Earth Observations). When orbital parameters and operations support data collection, ISS-based imagery adds to the resources available to disaster response teams and contributes to the publicdomain record of these events for later analyses.

  8. Development of SNS Stream Analysis Based on Forest Disaster Warning Information Service System

    NASA Astrophysics Data System (ADS)

    Oh, J.; KIM, D.; Kang, M.; Woo, C.; Kim, D.; Seo, J.; Lee, C.; Yoon, H.; Heon, S.

    2017-12-01

    Forest disasters, such as landslides and wildfires, cause huge economic losses and casualties, and the cost of recovery is increasing every year. While forest disaster mitigation technologies have been focused on the development of prevention and response technologies, they are now required to evolve into evacuation and border evacuation, and to develop technologies fused with ICT. In this study, we analyze the SNS (Social Network Service) stream and implement a system to detect the message that the forest disaster occurred or the forest disaster, and search the keyword related to the forest disaster in advance in real time. It is possible to detect more accurate forest disaster messages by repeatedly learning the retrieved results using machine learning techniques. To do this, we designed and implemented a system based on Hadoop and Spark, a distributed parallel processing platform, to handle Twitter stream messages that open SNS. In order to develop the technology to notify the information of forest disaster risk, a linkage of technology such as CBS (Cell Broadcasting System) based on mobile communication, internet-based civil defense siren, SNS and the legal and institutional issues for applying these technologies are examined. And the protocol of the forest disaster warning information service system that can deliver the SNS analysis result was developed. As a result, it was possible to grasp real-time forest disaster situation by real-time big data analysis of SNS that occurred during forest disasters. In addition, we confirmed that it is possible to rapidly propagate alarm or warning according to the disaster situation by using the function of the forest disaster warning information notification service. However, the limitation of system application due to the restriction of opening and sharing of SNS data currently in service and the disclosure of personal information remains a problem to be solved in the future. Keyword : SNS stream, Big data, Machine learning techniques, CBS, Forest disaster warning information service system Acknowledgement : This research was supported by the Forestry Technology 2015 Forestry Technology Research and Development Project (Planning project).

  9. Planning for burn disasters: lessons learned from one hundred years of history.

    PubMed

    Barillo, David J; Wolf, Steven

    2006-01-01

    The terrorist attacks of September 11th have prompted interest in developing plans to manage thousands of burn casualties. There is little actual experience in the United States in managing disasters of this magnitude. As an alternative, lessons may be learned from the historical experiences of previous civilian burn or fire disasters occurring in this country. A review of relevant medical, fire service, and popular literature pertaining to civilian burn or fire disasters occurring in the United States between the years 1900 and 2000 was performed. In the 20th century, 73 major U.S. fire or burn disasters have occurred. With each disaster prompting a strengthening of fire regulations or building codes, the number of fatalities per incident has steadily decreased. Detailed examination of several landmark fires demonstrated that casualty counts were great but that most victims had fatal injuries and died on the scene or within 24 hours. A second large cohort comprised the walking wounded, who required minimal outpatient treatment. Patients requiring inpatient burn care comprise a small percentage of the total casualty figure but consume enormous resources during hospitalization. Burn mass casualty incidents are uncommon. The number of casualties per incident decreased over time. In most fire disasters, the majority of victims either rapidly die or have minimal injuries and can be treated and released. As a result, most disasters produce fewer than 25 to 50 patients requiring inpatient burn care. This would be a rational point to begin burn center preparations for mass casualty incidents. A robust outpatient capability to manage the walking wounded is also desirable.

  10. 42 CFR 485.64 - Condition of participation: Disaster procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and records; (2) Procedures for notifying community emergency personnel (for example, fire department, ambulance, etc.); (3) Instructions regarding the location and use of alarm systems and signals and fire...'s written disaster plan must be developed and maintained with assistance of qualified fire, safety...

  11. Facing and managing natural disasters in the Sporades islands, Greece

    NASA Astrophysics Data System (ADS)

    Karanikola, P.; Panagopoulos, T.; Tampakis, S.; Karantoni, M. I.; Tsantopoulos, G.

    2014-04-01

    The region of the Sporades islands located in central Greece is at the mercy of many natural phenomena, such as earthquakes due to the marine volcano Psathoura and the rift of Anatolia, forest fires, floods, landslides, storms, hail, snowfall and frost. The present work aims at studying the perceptions and attitudes of the residents regarding how they face and manage natural disasters. A positive public response during a hazard crisis depends not only upon the availability and good management of a civil defense plan but also on the knowledge and perception of the possible hazards by the local population. It is important for the stakeholders to know what the citizens expect so that the necessary structures can be developed in the phase of preparation and organization. The residents were asked their opinion about what they think should be done by the stakeholders after a catastrophic natural disaster, particularly about the immediate response of stakeholders and their involvement and responsibilities at different, subsequent intervals of time following the disaster. The residents were also asked about the most common disasters that happen in their region and about the preparation activities of the stakeholders.

  12. 78 FR 14740 - Disaster Assistance; Fire Management Assistance Grant (FMAG) Program-Deadline Extensions and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ... [Docket ID FEMA-2013-0004] RIN 1660-AA78 Disaster Assistance; Fire Management Assistance Grant (FMAG..., DHS. ACTION: Proposed rule. SUMMARY: FEMA proposes to revise its Fire Management Assistance Grant...-2340, or (email) [email protected] . SUPPLEMENTARY INFORMATION: I. Background The Fire Management...

  13. Animals as Mobile Biological Sensors for Forest Fire Detection.

    PubMed

    Sahin, Yasar Guneri

    2007-12-04

    This paper proposes a mobile biological sensor system that can assist in earlydetection of forest fires one of the most dreaded natural disasters on the earth. The main ideapresented in this paper is to utilize animals with sensors as Mobile Biological Sensors(MBS). The devices used in this system are animals which are native animals living inforests, sensors (thermo and radiation sensors with GPS features) that measure thetemperature and transmit the location of the MBS, access points for wireless communicationand a central computer system which classifies of animal actions. The system offers twodifferent methods, firstly: access points continuously receive data about animals' locationusing GPS at certain time intervals and the gathered data is then classified and checked tosee if there is a sudden movement (panic) of the animal groups: this method is called animalbehavior classification (ABC). The second method can be defined as thermal detection(TD): the access points get the temperature values from the MBS devices and send the datato a central computer to check for instant changes in the temperatures. This system may beused for many purposes other than fire detection, namely animal tracking, poachingprevention and detecting instantaneous animal death.

  14. Establishing conversation spaces in hastily formed networks: the worst fire in modern Swedish history.

    PubMed

    Lundberg, Jonas; Törnqvist, Eva K; Nadjm-Tehrani, Simin

    2014-10-01

    In presenting examples from the most extensive and demanding fire in modern Swedish history, this paper describes challenges facing hastily formed networks in exceptional situations. Two concepts that have been used in the analysis of the socio-technical systems that make up a response are conversation space and sensemaking. This paper argues that a framework designed to promote understanding of the sensemaking process must take into consideration the time and the location at which an individual is engaged in an event. In hastily formed networks, location is partly mediated through physical systems that form conversation spaces of players and their interaction practices. This paper identifies and discusses four challenges to the formation of shared conversation spaces. It is based on the case study of the 2006 Bodträskfors forest fire in Sweden and draws on the experiences of organised volunteers and firefighters who participated in a hastily formed network created to combat the fire. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.

  15. Brazil Fire Characterization and Burn Area Estimation Using the Airborne Infrared Disaster Assessment (AIRDAS) System

    NASA Technical Reports Server (NTRS)

    Brass, J. A.; Riggan, P. J.; Ambrosia, V. G.; Lockwood, R. N.; Pereira, J. A.; Higgins, R. G.; Peterson, David L. (Technical Monitor)

    1995-01-01

    Remotely sensed estimations of regional and global emissions from biomass combustion have been used to characterize fire behavior, determine fire intensity, and estimate burn area. Highly temporal, low resolution satellite data have been used to calculate estimates of fire numbers and area burned. These estimates of fire activity and burned area have differed dramatically, resulting in a wide range of predictions on the ecological and environmental impacts of fires. As part of the Brazil/United States Fire Initiative, an aircraft campaign was initiated in 1992 and continued in 1994. This multi-aircraft campaign was designed to assist in the characterization of fire activity, document fire intensity and determine area burned over prescribed, agricultural and wildland fires in the savanna and forests of central Brazil. Using a unique, multispectral scanner (AIRDAS), designed specifically for fire characterization, a variety of fires and burned areas were flown with a high spatial and high thermal resolution scanner. The system was used to measure flame front size, rate of spread, ratio of smoldering to flaming fronts and fire intensity. In addition, long transects were flown to determine the size of burned areas within the cerrado and transitional ecosystems. The authors anticipate that the fire activity and burned area estimates reported here will lead to enhanced information for precise regional trace gas prediction.

  16. Wildfires in Chernobyl-contaminated forests and risks to the population and the environment: a new nuclear disaster about to happen?

    PubMed

    Evangeliou, Nikolaos; Balkanski, Yves; Cozic, Anne; Hao, Wei Min; Møller, Anders Pape

    2014-12-01

    Radioactive contamination in Ukraine, Belarus and Russia after the Chernobyl accident left large rural and forest areas to their own fate. Forest succession in conjunction with lack of forest management started gradually transforming the landscape. During the last 28 years dead wood and litter have dramatically accumulated in these areas, whereas climate change has increased temperature and favored drought. The present situation in these forests suggests an increased risk of wildfires, especially after the pronounced forest fires of 2010, which remobilized Chernobyl-deposited radioactive materials transporting them thousand kilometers far. For the aforementioned reasons, we study the consequences of different forest fires on the redistribution of (137)Cs. Using the time frequency of the fires that occurred in the area during 2010, we study three scenarios assuming that 10%, 50% and 100% of the area are burnt. We aim to sensitize the scientific community and the European authorities for the foreseen risks from radioactivity redistribution over Europe. The global model LMDZORINCA that reads deposition density of radionuclides and burnt area from satellites was used, whereas risks for the human and animal population were calculated using the Linear No-Threshold (LNT) model and the computerized software ERICA Tool, respectively. Depending on the scenario, whereas between 20 and 240 humans may suffer from solid cancers, of which 10-170 may be fatal. ERICA predicts insignificant changes in animal populations from the fires, whereas the already extreme radioactivity background plays a major role in their living quality. The resulting releases of (137)Cs after hypothetical wildfires in Chernobyl's forests are classified as high in the International Nuclear Events Scale (INES). The estimated cancer incidents and fatalities are expected to be comparable to those predicted for Fukushima. This is attributed to the fact that the distribution of radioactive fallout after the wildfires occurred to the intensely populated Western Europe, whereas after Fukushima it occurred towards the Pacific Ocean. The situation will be exacerbated near the forests not only due to the expected redistribution of refractory radionuclides (also trapped there), but also due to the nutritional habits of the local human and animal population. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. 42 CFR 485.727 - Condition of participation: Disaster preparedness.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... written plan in operation, with procedures to be followed in the event of fire, explosion, or other disaster. The plan is developed and maintained with the assistance of qualified fire, safety, and other... participation: Disaster preparedness. The organization has a written plan, periodically rehearsed, with...

  18. 42 CFR 485.727 - Condition of participation: Disaster preparedness.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... written plan in operation, with procedures to be followed in the event of fire, explosion, or other disaster. The plan is developed and maintained with the assistance of qualified fire, safety, and other... participation: Disaster preparedness. The organization has a written plan, periodically rehearsed, with...

  19. 42 CFR 485.727 - Condition of participation: Disaster preparedness.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... written plan in operation, with procedures to be followed in the event of fire, explosion, or other disaster. The plan is developed and maintained with the assistance of qualified fire, safety, and other... participation: Disaster preparedness. The organization has a written plan, periodically rehearsed, with...

  20. 42 CFR 485.727 - Condition of participation: Disaster preparedness.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... written plan in operation, with procedures to be followed in the event of fire, explosion, or other disaster. The plan is developed and maintained with the assistance of qualified fire, safety, and other... participation: Disaster preparedness. The organization has a written plan, periodically rehearsed, with...

  1. Utilizing NASA EOS Data for Fire Management in el Departmento del Valle del Cauco, Colombia

    NASA Astrophysics Data System (ADS)

    Brenton, J. C.; Bledsoe, N.; Alabdouli, K.

    2012-12-01

    In the last few years, fire incidence in Colombian wild areas has increased, damaging pristine forests into savannas and sterile lands. Fire poses a significant threat to biodiversity, rural communities and established infrastructure. These events issue an urgent need to address this problem. NASA Earth Observing System (EOS) can play a significant role in the monitoring fires and natural disasters. SERVIR, the Regional Visualization and Monitoring Network, constitutes a platform for the observation, forecasting and modeling of environmental processes in Central America. A project called "The GIS for fire management in Guatemala (SIGMA-I)" has been already conducted to address the same problem in another Latin American country, Guatemala. SIGMA-I was developed by the Inter-agency work among the National protected areas council (CONAP), National Forestry Institution (INAB), the National Coordinator for Disaster Reduction / National Forest Fire Prevention and Control System (CONRED/SIPECIF), and the Ministry of the Environment and National Resources (MARN) in Guatemala under the guidance and assistance of SERVIR. With SIGMA-I as an example, we proposed to conduct a similar project for the country of Colombia. First, a pilot study in the area of the watershed of the Cali River, Colombia was conducted to ensure that the data was available and that the maps and models were accurate. The proposed study will investigate the technical resources required: 1.) A fire map with a compilation of ignition data (hot spots) utilizing Fire Information for Resource Management System (FIRMS) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) products MOD14 and MYD14 2.) A map of fire scars derived from medium resolution satellite data (ASTER) during the period 2003-2011 for the entire country, and a map of fire scar recurrence and statistics derived from the datasets produced. 3.) A pattern analysis and ignition cause model derived from a matrix of variables statistically exploring the demographic and environmental factors of fire risk, such as land surface temperature, precipitation, and NDVI .4.) A dynamic fire risk evaluation able to generate a dynamic map of ignition risk based on statistical analysis factors. This study aims to research integrating MODIS, Landsat and ASTER data along with in-situ data on environmental parameters from the Corporation of the Cauca Valley River (CVC) along with other data on social, economical and cultural variables obtained by researchers of the Wild Fire Observatory (OCIF) from the "Universidad Autónoma de Occidente" in order to create an ignition cause model, dynamic fire risk evaluation system and compile any and all geospatial data generated for the region. In this way the research will help predict and forecast fire vulnerabilities in the region. The team undertook this project through SERVIR with the guidance of the scientist, Victor Hugo Ramos, who was the leader and principal investigator on the SIGMA-I.

  2. Patterns of preference and practice: bridging actors in wildfire response networks in the American Northwest.

    PubMed

    Faas, A J; Velez, Anne-Lise K; FitzGerald, Clare; Nowell, Branda L; Steelman, Toddi A

    2017-07-01

    The roles of bridging actors in emergency response networks can be important to disaster response outcomes. This paper is based on an evaluation of wildfire preparedness and response networks in 21 large-scale wildfire events in the wildland-urban interface near national forests in the American Northwest. The study investigated how key individuals in responder networks anticipated seeking out specific people in perceived bridging roles prior to the occurrence of wildfires, and then captured who in fact assumed these roles during actual large-scale events. It examines two plausible, but contradictory, bodies of theory-similarity and dissimilarity-that suggest who people might seek out as bridgers and who they would really go to during a disaster. Roughly one-half of all pre-fire nominations were consistent with similarity. Yet, while similarity is a reliable indicator of how people expect to organise, it does not hold up for how they organise during the real incident. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.

  3. Operational Remote Sensing Services in North Eastern Region of India for Natural Resources Management, Early Warning for Disaster Risk Reduction and Dissemination of Information and Services

    NASA Astrophysics Data System (ADS)

    Raju, P. L. N.; Sarma, K. K.; Barman, D.; Handique, B. K.; Chutia, D.; Kundu, S. S.; Das, R. Kr.; Chakraborty, K.; Das, R.; Goswami, J.; Das, P.; Devi, H. S.; Nongkynrih, J. M.; Bhusan, K.; Singh, M. S.; Singh, P. S.; Saikhom, V.; Goswami, C.; Pebam, R.; Borgohain, A.; Gogoi, R. B.; Singh, N. R.; Bharali, A.; Sarma, D.; Lyngdoh, R. B.; Mandal, P. P.; Chabukdhara, M.

    2016-06-01

    North Eastern Region (NER) of India comprising of eight states considered to be most unique and one of the most challenging regions to govern due to its unique physiographic condition, rich biodiversity, disaster prone and diverse socio-economic characteristics. Operational Remote Sensing services increased manifolds in the region with the establishment of North Eastern Space Applications Centre (NESAC) in the year 2000. Since inception, NESAC has been providing remote sensing services in generating inventory, planning and developmental activities, and management of natural resources, disasters and dissemination of information and services through geo-web services for NER. The operational remote sensing services provided by NESAC can be broadly divided into three categories viz. natural resource planning and developmental services, disaster risk reduction and early warning services and information dissemination through geo-portal services. As a apart of natural resources planning and developmental services NESAC supports the state forest departments in preparing the forest working plans by providing geospatial inputs covering entire NER, identifying the suitable culturable wastelands for cultivation of silkworm food plants, mapping of natural resources such as land use/land cover, wastelands, land degradation etc. on temporal basis. In the area of disaster risk reduction, NESAC has initiated operational services for early warning and post disaster assessment inputs for flood early warning system (FLEWS) using satellite remote sensing, numerical weather prediction, hydrological modeling etc.; forest fire alert system with actionable attribute information; Japanese Encephalitis Early Warning System (JEWS) based on mosquito vector abundance, pig population and historical disease intensity and agriculture drought monitoring for the region. The large volumes of geo-spatial databases generated as part of operational services are made available to the administrators and local government bodies for better management, preparing prospective planning, and sustainable use of available resources. The knowledge dissemination is being done through online web portals wherever the internet access is available and as well as offline space based information kiosks, where the internet access is not available or having limited bandwidth availability. This paper presents a systematic and comprehensive study on the remote sensing services operational in NER of India for natural resources management, disaster risk reduction and dissemination of information and services, in addition to outlining future areas and direction of space applications for the region.

  4. [Relationships of forest fire with lightning in Daxing' anling Mountains, Northeast China].

    PubMed

    Lei, Xiao-Li; Zhou, Guang-Sheng; Jia, Bing-Rui; Li, Shuai

    2012-07-01

    Forest fire is an important factor affecting forest ecosystem succession. Recently, forest fire, especially forest lightning fire, shows an increasing trend under global warming. To study the relationships of forest fire with lightning is essential to accurately predict the forest fire in time. Daxing' anling Mountains is a region with high frequency of forest lightning fire in China, and an important experiment site to study the relationships of forest fire with lightning. Based on the forest fire records and the corresponding lightning and meteorological observation data in the Mountains from 1966 to 2007, this paper analyzed the relationships of forest fire with lightning in this region. In the period of 1966-2007, both the lightning fire number and the fired forest area in this region increased significantly. The meteorological factors affecting the forest lighting fire were related to temporal scales. At yearly scale, the forest lightning fire was significantly correlated with precipitation, with a correlation coefficient of -0.489; at monthly scale, it had a significant correlation with air temperature, the correlation coefficient being 0.18. The relationship of the forest lightning fire with lightning was also related to temporal scales. At yearly scale, there was no significant correlation between them; at monthly scale, the forest lightning fire was strongly correlated with lightning and affected by precipitation; at daily scale, a positive correlation was observed between forest lightning fire and lightning when the precipitation was less than 5 mm. According to these findings, a fire danger index based on ADTD lightning detection data was established, and a forest lightning fire forecast model was developed. The prediction accuracy of this model for the forest lightning fire in Daxing' anling Mountains in 2005-2007 was > 80%.

  5. Emergency response networks for disaster monitoring and detection from space

    NASA Astrophysics Data System (ADS)

    Vladimirova, Tanya; Sweeting, Martin N.; Vitanov, Ivan; Vitanov, Valentin I.

    2009-05-01

    Numerous man-made and natural disasters have stricken mankind since the beginning of the new millennium. The scale and impact of such disasters often prevent the collection of sufficient data for an objective assessment and coordination of timely rescue and relief missions on the ground. As a potential solution to this problem, in recent years constellations of Earth observation small satellites and in particular micro-satellites (<100 kg) in low Earth orbit have emerged as an efficient platform for reliable disaster monitoring. The main task of the Earth observation satellites is to capture images of the Earth surface using various techniques. For a large number of applications the resulting delay between image capture and delivery is not acceptable, in particular for rapid response remote sensing aiming at disaster monitoring and detection. In such cases almost instantaneous data availability is a strict requirement to enable an assessment of the situation and instigate an adequate response. Examples include earthquakes, volcanic eruptions, flooding, forest fires and oil spills. The proposed solution to this issue are low-cost networked distributed satellite systems in low Earth orbit capable of connecting to terrestrial networks and geostationary Earth orbit spacecraft in real time. This paper discusses enabling technologies for rapid response disaster monitoring and detection from space such as very small satellite design, intersatellite communication, intelligent on-board processing, distributed computing and bio-inspired routing techniques.

  6. The forensics of fulgurite formation

    NASA Astrophysics Data System (ADS)

    Pasek, Matthew A.; Pasek, Virginia D.

    2018-04-01

    Natural disasters such as forest fires can result in extensive and costly property damage. These events may be the result of a human error or system failure triggered by electrical discharge, and in such circumstances may form a fulgurite. Understanding fulgurites and their formation may be critical in determining the cause of the fire or other, shock-related event. Here we identify several distinguishing features of fulgurites formed in association with downed power lines, including the presence of melted conductors, transformation of quartz to cristobalite, and morphological differences including increased glass percentage and smaller internal voids. These features are consequences of how heat is transferred to and through a target rock material as it melts and forms a fulgurite, and are predicted from both first principles of diffusive heat transfer, and empirically-derived reaction kinetics for mineral transformations.

  7. 29 CFR 15.23 - Restrictions on certain claims.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... coin collections) only when lost incident to fire, flood, hurricane, other natural disaster, or by... hardware and software only when lost or damaged incident to fire, flood, hurricane, other natural disaster...

  8. Focused sunlight factor of forest fire danger assessment using Web-GIS and RS technologies

    NASA Astrophysics Data System (ADS)

    Baranovskiy, Nikolay V.; Sherstnyov, Vladislav S.; Yankovich, Elena P.; Engel, Marina V.; Belov, Vladimir V.

    2016-08-01

    Timiryazevskiy forestry of Tomsk region (Siberia, Russia) is a study area elaborated in current research. Forest fire danger assessment is based on unique technology using probabilistic criterion, statistical data on forest fires, meteorological conditions, forest sites classification and remote sensing data. MODIS products are used for estimating some meteorological conditions and current forest fire situation. Geonformation technologies are used for geospatial analysis of forest fire danger situation on controlled forested territories. GIS-engine provides opportunities to construct electronic maps with different levels of forest fire probability and support raster layer for satellite remote sensing data on current forest fires. Web-interface is used for data loading on specific web-site and for forest fire danger data representation via World Wide Web. Special web-forms provide interface for choosing of relevant input data in order to process the forest fire danger data and assess the forest fire probability.

  9. 38 CFR 17.114 - Submittal of claim for reimbursement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and evaluate each article with a notation as to its condition at the time of the fire, earthquake, or other natural disaster i.e., whether new, worn, etc. The date of the fire, earthquake, or other natural... in a designated location at the time of loss by fire, earthquake, or other natural disaster or was in...

  10. 38 CFR 17.114 - Submittal of claim for reimbursement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and evaluate each article with a notation as to its condition at the time of the fire, earthquake, or other natural disaster i.e., whether new, worn, etc. The date of the fire, earthquake, or other natural... in a designated location at the time of loss by fire, earthquake, or other natural disaster or was in...

  11. 38 CFR 17.114 - Submittal of claim for reimbursement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and evaluate each article with a notation as to its condition at the time of the fire, earthquake, or other natural disaster i.e., whether new, worn, etc. The date of the fire, earthquake, or other natural... in a designated location at the time of loss by fire, earthquake, or other natural disaster or was in...

  12. Towards the development of full-fledged forest fire information systems

    NASA Astrophysics Data System (ADS)

    Baetens, J.; De Baets, B.

    2012-12-01

    Throughout the last decades much efforts have been spent in obtaining an increased understanding of wildfire dynamics and the way it is influenced by prevailing environmental conditions and settings, such as temperature, humidity, topography, vegetation abundance, and so on, since such a profound apprehension is a prerequisite for achieving enhanced wildfire prevention measures, as well as for optimizing fire fighting and disaster management. Amongst other things, this pursuit has culminated in the deployment of wildfire information systems, such as the Canadian Wildfire Information System (CWFIS), the European Forest Fire Information System (EFFIS) and the United States Active Fire Mapping Program and Landscape Fire and Resource Management Planning Tools (LANDFIRE), which inform any interested stakeholder, be it a citizen or a government official, about the current fire risk, the extent and location of current fires, the inflammability of the vegetation, and so on. Taking into account the coverage of these systems, it should be clear that they strongly rely upon satellite imagery that is obtained from dedicated sensors, such as the Moderate-Resolution Imaging Spectroradiometer (MODIS) on board of NASA's Terra and Aqua satellites and the Advanced Very High Resolution Radiometer (AVHRR) that is carried by NOAA satellites, or more general-purpose instruments on board of spacecrafts such as Landsat or SPOT. Yet, to this day the aforementioned information systems have not yet embraced the power of mathematical modeling in order to enable trustworthy forecasts of the spatio-temporal propagation of wildfires given their current extent, which would nonetheless be extremely useful for optimizing fire fighting and disaster management, taking appropriate preventive measures, and so on. The deployment of such full-fledged wildfire information systems requires a high-level integration of (real-time) satellite imagery, weather reports and forecasts, geographic information, and finally mathematical models that constitute a mathematization of the underlying environmental processes, and which are indispensable for attaining sound and trustworthy wildfire forecasts, just as their meteorological counterparts are exploited to yield meaningful weather forecasts. As a very first step towards the development of a full-fledged wildfire information system, we demonstrate how MODIS imagery, Anderson fuel maps and geographic information can be combined to achieve meaningful wildfire forecasts given the current extent of the considered wildfire. Such a high-level integration is illustrated for a wildfire that swept through a natural area in Arizona, United States, near the border with New Mexico, between days 148 and 166 of the year 2011. Taking into account the spatial discreteness of the exploited information, which follows from its storage in geographical information systems, we rely upon a spatially discrete mathematical model, i.e. a coupled-map lattice, for mimicking the spatio-temporal wildfire propagation that can be extended in a next stage. Since setting up a full-fledged wildfire information system requires a highly multidisciplinary approach in which foresters, mathematicians, computer scientists, physicists, ecologists and others need to be involved, we hope to stimulate the joint efforts in accomplishing this task by means of our contribution.

  13. 78 FR 32416 - Minnesota; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... President issued a major disaster declaration under the authority of the Robert T. Stafford Disaster Relief... disaster declaration under the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C..., Disaster Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing...

  14. 78 FR 36557 - Iowa; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... President issued a major disaster declaration under the authority of the Robert T. Stafford Disaster Relief... warrant a major disaster declaration under the Robert T. Stafford Disaster Relief and Emergency Assistance....046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to Individuals and...

  15. 76 FR 44031 - Arkansas; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... President issued a major disaster declaration under the authority of the Robert T. Stafford Disaster Relief... a major disaster declaration under the Robert T. Stafford Disaster Relief and Emergency Assistance....046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to Individuals and...

  16. Forest-fire models

    Treesearch

    Haiganoush Preisler; Alan Ager

    2013-01-01

    For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...

  17. Dynamic Resource Allocation in Disaster Response: Tradeoffs in Wildfire Suppression

    PubMed Central

    Petrovic, Nada; Alderson, David L.; Carlson, Jean M.

    2012-01-01

    Challenges associated with the allocation of limited resources to mitigate the impact of natural disasters inspire fundamentally new theoretical questions for dynamic decision making in coupled human and natural systems. Wildfires are one of several types of disaster phenomena, including oil spills and disease epidemics, where (1) the disaster evolves on the same timescale as the response effort, and (2) delays in response can lead to increased disaster severity and thus greater demand for resources. We introduce a minimal stochastic process to represent wildfire progression that nonetheless accurately captures the heavy tailed statistical distribution of fire sizes observed in nature. We then couple this model for fire spread to a series of response models that isolate fundamental tradeoffs both in the strength and timing of response and also in division of limited resources across multiple competing suppression efforts. Using this framework, we compute optimal strategies for decision making scenarios that arise in fire response policy. PMID:22514605

  18. 76 FR 33775 - Tennessee; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... President issued a major disaster declaration under the authority of the Robert T. Stafford Disaster Relief... and magnitude to warrant a major disaster declaration under the Robert T. Stafford Disaster Relief and....046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to Individuals and...

  19. 76 FR 34090 - Missouri; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... President issued a major disaster declaration under the authority of the Robert T. Stafford Disaster Relief... warrant a major disaster declaration under the Robert T. Stafford Disaster Relief and Emergency Assistance... (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to Individuals and...

  20. 78 FR 36556 - Oklahoma; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... President issued a major disaster declaration under the authority of the Robert T. Stafford Disaster Relief... major disaster declaration under the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42... Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  1. 78 FR 45547 - North Dakota; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... President issued a major disaster declaration under the authority of the Robert T. Stafford Disaster Relief... major disaster declaration under the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42... Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  2. 77 FR 20043 - Indiana; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... President issued a major disaster declaration under the authority of the Robert T. Stafford Disaster Relief... and magnitude to warrant a major disaster declaration under the Robert T. Stafford Disaster Relief and... Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  3. 75 FR 30419 - Kentucky; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... President issued a major disaster declaration under the authority of the Robert T. Stafford Disaster Relief... magnitude to warrant a major disaster declaration under the Robert T. Stafford Disaster Relief and Emergency....046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to Individuals and...

  4. Post-disaster medical rescue strategy in tropical regions.

    PubMed

    Li, Xiang-Hui; Hou, Shi-Ke; Zheng, Jing-Chen; Fan, Hao-Jun; Song, Jian-Qi

    2012-01-01

    Earthquakes, floods, droughts, storms, mudslides, landslides, and forest wild fires are serious threats to human lives and properties. The present study aimed to study the environmental characteristics and pathogenic traits, recapitulate experiences, and augment applications of medical reliefs in tropical regions. Analysis was made on work and projects of emergency medical rescue, based on information and data collected from 3 emergency medical rescue missions of China International Search and Rescue Team to overseas earthquakes and tsunamis aftermaths in tropical disaster regions - Indonesia-Aceh, Indonesia-Yogyakarta, and Haiti-Port au Prince. Shock, infection and heat stroke were frequently encountered in addition to outbreaks of infectious diseases, skin diseases, and diarrhea during post-disaster emergency medical rescue in tropical regions. High temperature, high humidity, and proliferation of microorganisms and parasites are the characteristics of tropical climate that impose strict requirements on the preparation of rescue work including selective team members suitable for a particular rescue mission and the provisioning of medical equipment and life support materials. The overseas rescue mission itself needs a scientific, efficient, simple workflow for providing efficient emergency medical assistance. Since shock and infection are major tasks in post-disaster treatment of severely injured victims in tropical regions, the prevention and diagnosis of hyperthermia, insect-borne infectious diseases, tropic skin diseases, infectious diarrhea, and pest harms of disaster victims and rescue team staff should be emphasized during the rescue operations.

  5. Chilean geo client application for disasters

    NASA Astrophysics Data System (ADS)

    Suárez, Rodrigo F.; Lovison, Lucia; Potters, Martinus

    2018-05-01

    The global network of the Group on Earth Observation, GEO, connects all kinds of professionals from public and private institutions with data providers, sharing information to face the challenges of global changes and human development and they are creating a Global Earth Observation System of Systems (GEOSS) to connect existing data infrastructures. A GEOSS Architecture Implementation Pilot Project for Disasters in Chile (AIP-8) was created as part of a capacity building initiative and representatives of different national agencies in Chile, along with international experts, formed a GEOSS Capacity Building Working Group (Lovison et al, 2016). Consistent with the objectives of GEOSS AIP-8 Chile, we developed and implemented a prototype service based on web services, mobile applications and other communication channels, which allows connecting different sources of information, aiming to reduce population vulnerability to natural disasters such as: earthquakes, flooding, wild fires and tsunamis, which is presented here. The GEO Chile client application is a JavaScript application using GEODAB brokering services, GIS technology and disaster information provided by national and international disaster services, including public and private organizations, where cartography becomes fundamental as a tool to provide realism and ubiquity to the information. Seven hotpots are targeted: Calbuco, Copahue and Villarrica volcanoes areas, Valparaíso city, which is frequently a victim of wildfires in the zone where population meets forest and Iquique, Illapel and Talcahuano, areas frequently struck by earthquakes and tsunamis.

  6. Forest fire risk zonation mapping using remote sensing technology

    NASA Astrophysics Data System (ADS)

    Chandra, Sunil; Arora, M. K.

    2006-12-01

    Forest fires cause major losses to forest cover and disturb the ecological balance in our region. Rise in temperature during summer season causing increased dryness, increased activity of human beings in the forest areas, and the type of forest cover in the Garhwal Himalayas are some of the reasons that lead to forest fires. Therefore, generation of forest fire risk maps becomes necessary so that preventive measures can be taken at appropriate time. These risk maps shall indicate the zonation of the areas which are in very high, high, medium and low risk zones with regard to forest fire in the region. In this paper, an attempt has been made to generate the forest fire risk maps based on remote sensing data and other geographical variables responsible for the occurrence of fire. These include altitude, temperature and soil variations. Key thematic data layers pertaining to these variables have been generated using various techniques. A rule-based approach has been used and implemented in GIS environment to estimate fuel load and fuel index leading to the derivation of fire risk zonation index and subsequently to fire risk zonation maps. The fire risk maps thus generated have been validated on the ground for forest types as well as for forest fire risk areas. These maps would help the state forest departments in prioritizing their strategy for combating forest fires particularly during the fire seasons.

  7. Seasonal Forecasting of Fires across Southern Borneo, 1997-2010

    NASA Astrophysics Data System (ADS)

    Spessa, Allan; Field, Robert; Kaiser, Johannes; Langner, Andreas; Moore, Jonathan; Pappenberger, Florian; Siegert, Florian; Weber, Ulrich

    2014-05-01

    Wildfire is a fundamental Earth System process, affecting almost all biogeochemical cycles, and all vegetated biomes. Fires are naturally rare in humid tropical forests, and tropical trees are generally killed by even low-intensity fires. However, fire activity in the tropics has increased markedly over the past 15-20 years, especially in Indonesia, Amazonia, and more recently, central Africa also. Since fire is the prime tool for clearing land in the tropics, it not surprising that the increase in fire activity is strongly associated with increased levels of deforestation, which is driven mainly by world-wide demand for timber and agricultural commodities. The consequences of deforestation fires for biodiversity conservation and emissions of greenhouse gases and aerosols are enormous. For example, carbon emissions from tropical biomass burning are around 20% of annual average global fossil fuel emissions. The destructive fires in Indonesia during the exceptionally strong El Niño-induced drought in late 1997 and early 1998 rank as some of the largest peak emissions events in recorded history. Past studies estimate about 1Gt of carbon was released to the atmosphere from the Indonesian fires in 1997 (which were mostly concentrated in carbon-rich forested peatlands). This amount is equivalent to about 14% of the average global annual fossil fuel emissions released during the 1990s. While not as large as the 1997-98 events, significant emissions from biomass burning have also been recorded in other (less severe) El Niño years across Indonesia, in particular, 2002, 2004, 2006 and 2009-2010. Recent climate modelling studies indicate that the frequency of El Niño events may increase under future climate change, affecting many tropical countries, including Indonesia. An increased drought frequency plus a projected increase in population and land use pressures in Indonesia, imply there will be even more fires and emissions in future across the region. However, while several studies using historical data have established negative relationships between fires and antecedent rainfall, and/or positive relationships between fires and deforestation in regions affected by El Nino, comparatively little work has attempted to predict fires and emissions in such regions. Ensemble seasonal climate forecasts issued with several months lead-time have been applied to support risk assessment systems in many fields, notably agricultural production and natural disaster management of flooding, heat waves, drought and fire. The USA, for example, has a long-standing seasonal fire danger prediction system. Fire danger monitoring systems have been operating in Indonesia for over a decade, but, as of yet, no fire danger prediction systems exist. Given the effort required to mobilise suppression and prevention measures in Indonesia, one could argue that high fire danger periods must be anticipated months in advance for mitigation and response measures to be effective. To address this need, the goal of our work was to examine the utility of seasonal rainfall forecasts in predicting severe fires in Indonesia more than one month in advance, using southern Borneo (comprising the bulk of Kalimantan) as a case study. Here we present the results of comparing seasonal forecasts of monthly rainfall from ECMWF's System 4 against i) observed rainfall (GPCP), and ii) burnt area and deforestation (MODIS, AVHRR and Landsat) across southern Borneo for the period 1997-2010. Our results demonstrate the utility of using ECMWF's seasonal climate forecasts for predicting fire activity in the region. Potential applications include improved fire mitigation and responsiveness, and improved risk assessments of biodiversity and carbon losses through fire. These are important considerations for forest protection programmes (e.g. REDD+), forest carbon markets and forest (re)insurance enterprises.

  8. 78 FR 51203 - Iowa; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... President issued a major disaster declaration under the authority of the Robert T. Stafford Disaster Relief... disaster declaration under the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C... Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  9. 76 FR 32984 - Arkansas; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-07

    ... President issued a major disaster declaration under the authority of the Robert T. Stafford Disaster Relief... magnitude to warrant a major disaster declaration under the Robert T. Stafford Disaster Relief and Emergency... (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to Individuals and...

  10. 77 FR 73490 - Delaware; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford Act''), as follows: I... warrant a major disaster declaration under the Robert T. Stafford Disaster Relief and Emergency Assistance..., Disaster Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing...

  11. 77 FR 66859 - Florida; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford Act''), as follows: I... disaster declaration under the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C..., Disaster Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing...

  12. 78 FR 72918 - Nebraska; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford Act''), as follows: I... and magnitude to warrant a major disaster declaration under the Robert T. Stafford Disaster Relief and..., Disaster Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing...

  13. 78 FR 32415 - South Dakota; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... President issued a major disaster declaration under the authority of the Robert T. Stafford Disaster Relief... warrant a major disaster declaration under the Robert T. Stafford Disaster Relief and Emergency Assistance... Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  14. 78 FR 51204 - Colorado; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... President issued a major disaster declaration under the authority of the Robert T. Stafford Disaster Relief... disaster declaration under the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C... Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  15. 76 FR 61729 - Massachusetts; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-05

    ... Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford... severity and magnitude to warrant a major disaster declaration under the Robert T. Stafford Disaster Relief..., Disaster Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing...

  16. 76 FR 72964 - Virginia; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford... and magnitude to warrant a major disaster declaration under the Robert T. Stafford Disaster Relief and..., Disaster Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing...

  17. 76 FR 44031 - Vermont; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... President issued a major disaster declaration under the authority of the Robert T. Stafford Disaster Relief... declaration under the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq..., Disaster Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing...

  18. 77 FR 44648 - Florida; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... President issued a major disaster declaration under the authority of the Robert T. Stafford Disaster Relief... disaster declaration under the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C... Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  19. An approach to the real time risk evaluation system of boreal forest fire

    NASA Astrophysics Data System (ADS)

    Nakau, K.; Fukuda, M.; Kimura, K.; Hayasaka, H.; Tani, H.; Kushida, K.

    2005-12-01

    Huge boreal forest fire may cause massive impacts not only on global warming gas emission but also local communities. Thus, it is important to control forest fire. We collected data about boreal forest fire as satellite imagery and fire observation simultaneously in Alaska and east Siberia in summer fire seasons for these three years. Fire observation data was collected from aircraft flying between Japan and Europe. Fire detection results were compared with observed data to evaluate the accuracy and earliness of automatic detection. NOAA and MODIS satellite images covering Alaska and East Siberia are collected. We are also developing fire expansion simulation model to forecast the possible fire expansion area. On the basis of fire expansion forecast, risk analysis of possible fire expansion for decision aid of fire-fighting activities will be analyzed. To identify the risk of boreal forest fire and public concern about forest fire, we collected local news paper in Fairbanks, AK and discuss the statistics of articles related to forest fire on the newspaper.

  20. Fire intensity impacts on post-fire temperate coniferous forest net primary productivity

    NASA Astrophysics Data System (ADS)

    Sparks, Aaron M.; Kolden, Crystal A.; Smith, Alistair M. S.; Boschetti, Luigi; Johnson, Daniel M.; Cochrane, Mark A.

    2018-02-01

    Fire is a dynamic ecological process in forests and impacts the carbon (C) cycle through direct combustion emissions, tree mortality, and by impairing the ability of surviving trees to sequester carbon. While studies on young trees have demonstrated that fire intensity is a determinant of post-fire net primary productivity, wildland fires on landscape to regional scales have largely been assumed to either cause tree mortality, or conversely, cause no physiological impact, ignoring the impacted but surviving trees. Our objective was to understand how fire intensity affects post-fire net primary productivity in conifer-dominated forested ecosystems on the spatial scale of large wildland fires. We examined the relationships between fire radiative power (FRP), its temporal integral (fire radiative energy - FRE), and net primary productivity (NPP) using 16 years of data from the MOderate Resolution Imaging Spectrometer (MODIS) for 15 large fires in western United States coniferous forests. The greatest NPP post-fire loss occurred 1 year post-fire and ranged from -67 to -312 g C m-2 yr-1 (-13 to -54 %) across all fires. Forests dominated by fire-resistant species (species that typically survive low-intensity fires) experienced the lowest relative NPP reductions compared to forests with less resistant species. Post-fire NPP in forests that were dominated by fire-susceptible species were not as sensitive to FRP or FRE, indicating that NPP in these forests may be reduced to similar levels regardless of fire intensity. Conversely, post-fire NPP in forests dominated by fire-resistant and mixed species decreased with increasing FRP or FRE. In some cases, this dose-response relationship persisted for more than a decade post-fire, highlighting a legacy effect of fire intensity on post-fire C dynamics in these forests.

  1. IMPROVEMENT SUPPORT RESEARCH OF LOCAL DISASTER PREVENTION POWER USING THE FIRE SPREADING SIMULATION SYSTEM IN CASE OF A BIG EARTHQUAKE

    NASA Astrophysics Data System (ADS)

    Futagami, Toru; Omoto, Shohei; Hamamoto, Kenichirou

    This research describes the risk communication towards improvement in the local disaster prevention power for Gobusho town in Marugame city which is only a high density city area in Kagawa Pref. Specifically, the key persons and authors of the area report the practice research towards improvement in the local disaster prevention power by the PDCA cycle of the area, such as formation of local voluntary disaster management organizations and implementation of an emergency drill, applying the fire spreading simulation system in case of a big earthquake. The fire spreading simulation system in case of the big earthquake which authors are developing describes the role and subject which have been achieved to BCP of the local community as a support system.

  2. The EMS system and disaster planning: some observations.

    PubMed

    Holloway, R D; Steliga, J F; Ryan, C T

    1978-02-01

    Disaster planning, one of the 15 essential components of the Emergency Medical Service System Act of 1973, should be the culmination of the establishment of other components. Regions have gone to varying lengths to describe disaster plans but how realistic the plans are is questionable. New York has planned for multiple casualty incidents (MCI) to care for victims of fires, explosions, structural collapses and major transportation incidents. The irrational emotional response in mass disasters conflicts with the rational disaster plans written by health planners. Drills of disaster plans are not realistic. One solution is to designate the next serious incident, such as a fire or traffic accident, a major MCI. The ability to handle an MCI is probably the best measure of an EMS system's effectiveness.

  3. Mapping fires and American Red Cross aid using demographic indicators of vulnerability.

    PubMed

    Lue, Evan; Wilson, John P

    2017-04-01

    Social vulnerability indicators can assist with informing disaster relief preparation. Certain demographic segments of a population may suffer disproportionately during disaster events, and a geographical understanding of them can help to determine where to place strategically logistical assets and to target disaster-awareness outreach endeavours. Records of house fire events and American Red Cross aid provision over a five-year period were mapped for the County of Los Angeles, California, United States, to examine the congruence between actual events and expectations of risk based on vulnerability theory. The geographical context provided by the data was compared with spatially-explicit indicators of vulnerability, such as age, race, and wealth. Fire events were found to occur more frequently in more vulnerable areas, and Red Cross aid was found to have an even stronger relationship to those places. The findings suggest that these indicators speak beyond vulnerability and relate to patterns of fire risk. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.

  4. Fire Patterns and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2015-12-01

    The West African tropical forest (referred to as the Upper Guinean forest, UGF), is a global biodiversity hotspot providing vital ecosystem services for the region's socio-economic and environmental wellbeing. It is also one of the most fragmented and human-modified tropical forest ecosystems, with the only remaining large patches of original forests contained in protected areas. However, these remnant forests are susceptible to continued fire-mediated degradation and forest loss due to intense climatic, demographic and land use pressures. We analyzed human and climatic drivers of fire activity in the sub-region to better understand the spatial and temporal patterns of these risks. We utilized MODIS active fire and burned area products to identify fire activity within the sub-region. We measured climatic variability using TRMM rainfall data and derived indicators of human land use from a variety of geospatial datasets. We used a boosted regression trees model to determine the influences of predictor variables on fire activity. Our analyses indicated that the spatial and temporal variability of precipitation is a key driving factor of fire activity in the UGF. Anthropogenic effects on fire activity in the area were evident through the influences of agriculture and low-density populations. These human footprints in the landscape make forests more susceptible to fires through forest fragmentation, degradation, and fire spread from agricultural areas. Forested protected areas within the forest savanna mosaic experienced frequent fires, whereas the more humid forest areas located in the south and south-western portions of the study area had fewer fires as these rainforests tend to offer some buffering against fire encroachment. These results improve characterization of UGF fire regime and expand our understanding of the spatio-temporal dynamics of tropical forest fires in response to human and climatic pressures.

  5. 77 FR 41874 - New Mexico Disaster #NM-00025

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 13105 and 13106] New Mexico Disaster NM-00025... Administrative declaration of a disaster for the State of New Mexico dated 07/09/2012. Incident: Little Bear Fire... disaster: Primary Counties: Lincoln. Contiguous Counties: New Mexico: Chaves, De Baca, Guadalupe, Otero...

  6. Modeling Forest Understory Fires in an Eastern Amazonian Landscape

    NASA Technical Reports Server (NTRS)

    Alencar, A. A. C.; Solorzano, L. A.; Nepstad, D. C.

    2004-01-01

    Forest understory fires are an increasingly important cause of forest impoverishment in Ammonia, but little is known of the landscape characteristics and climatic phenomena that determine their occurrence. We developed empirical functions relating the occurrence of understory fires to landscape features near Paragominas, a 35- yr-old ranching and logging center in eastern Ammonia. An historical sequence of maps of forest understory fire was created based on field interviews With local farmers and Landsat TM images. Several landscape features that might explain spatial variations in the occurrence of understory fires were also mapped and co-registered for each of the sample dates, including: forest fragment size and shape, forest impoverishment through logging and understory fires, source of ignition (settlements and charcoal pits), roads, forest edges, and others. The spatial relationship between forest understory fire and each landscape characteristic was tested by regression analyses. Fire probability models were then developed for various combinations of landscape characteristics. The analyses were conducted separately for years of the El Nino Southern Oscillation (ENSO), which are associated with severe drought in eastern Amazonia, and non-ENS0 years. Most (91 %) of the forest area that burned during the 10-yr sequence caught fire during ENSO years, when severe drought may have increased both forest flammability and the escape of agricultural management fires. Forest understory fires were associated with forest edges, as reported in previous studies from Ammonia. But the strongest predictor of forest fire was the percentage of the forest fragment that had been previously logged or burned. Forest fragment size, distance to charcoal pits, distance to agricultural settlement, proximity to forest edge, and distance to roads were also correlated with forest understory fire. Logistic regression models using information on fragment degradation and distance to ignition sources accurately predicted the location of lss than 80% of the forest fires observed during the ENSO event of 1997- 1998. In this Amazon landscape, forest understory fire is a complex function of several variables that influence both the flammability and ignition exposure of the forest.

  7. Gray level co-occurrence and random forest algorithm-based gender determination with maxillary tooth plaster images.

    PubMed

    Akkoç, Betül; Arslan, Ahmet; Kök, Hatice

    2016-06-01

    Gender is one of the intrinsic properties of identity, with performance enhancement reducing the cluster when a search is performed. Teeth have durable and resistant structure, and as such are important sources of identification in disasters (accident, fire, etc.). In this study, gender determination is accomplished by maxillary tooth plaster models of 40 people (20 males and 20 females). The images of tooth plaster models are taken with a lighting mechanism set-up. A gray level co-occurrence matrix of the image with segmentation is formed and classified via a Random Forest (RF) algorithm by extracting pertinent features of the matrix. Automatic gender determination has a 90% success rate, with an applicable system to determine gender from maxillary tooth plaster images. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. [Change trends of summer fire danger in great Xing' an Mountains forest region of Heilongjiang Province, Northeast China under climate change].

    PubMed

    Yang, Guang; Shu, Li-Fu; Di, Xue-Ying

    2012-11-01

    By using Delta and WGEN downscaling methods and Canadian Forest Fire Weather Index, this paper analyzed the variation characteristics of summer fire in Great Xing' an Mountains forest region of Heilongjiang Province in 1966-2010, estimated the change trends of the summer fire danger in 2010-2099, compared the differences of the forest fire in summer, spring, and autumn, and proposed the prevention and control strategies of the summer fire based on the fire environment. Under the background of climate warming, the summer forest fire in the region in 2000-2010 showed a high incidence trend. In foreseeable future, the summer forest fire across the region in 2010-2099, as compared to that in the baseline period 1961-1990, would be increased by 34%, and the increment would be obviously greater than that of spring and autumn fire. Relative to that in 1961-1990, the summer fire in 2010-2099 under both SRES A2a and SRES B2a scenarios would have an increasing trend, and, with the lapse of time, the trend would be more evident, and the area with high summer fire would become wider and wider. Under the scenario of SRES A2a, the summer fire by the end of the 21st century would be doubled, as compared to that in 1961-1990, and the area with high summer fire would be across the region. In the characteristics of fire source, attributes of forest fuel, and fire weather conditions, the summer forest fire was different from the spring and autumn forest fire, and thus, the management of fire source and forest fuel load as well as the forest fire forecast (mid-long term forecast in particular) in the region should be strengthened to control the summer forest fire.

  9. Fire ecology of western Montana forest habitat types

    Treesearch

    William C. Fischer; Anne F. Bradley

    1987-01-01

    Provides information on fire as an ecological factor for forest habitat types in western Montana. Identifies Fire Groups of habitat types based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  10. Monitoring of pipeline ruptures by means of a Robust Satellite Technique (RST)

    NASA Astrophysics Data System (ADS)

    Filizzola, C.; Baldassarre, G.; Corrado, R.; Mazzeo, G.; Marchese, F.; Paciello, R.; Pergola, N.; Tramutoli, V.

    2009-04-01

    Pipeline ruptures have deep economic and ecologic consequences so that pipeline networks represent critical infrastructures to be carefully monitored particularly in areas which are frequently affected by natural disasters like earthquakes, hurricanes, landslide, etc. In order to minimize damages, the detection of harmful events along pipelines should be as rapid as possible and, at the same time, what is detected should be an actual incident and not a false alarm. In this work, a Robust Satellite Technique (RST), already applied to the prevision and NRT (Near Real Time) monitoring of major natural and environmental hazards (such as seismically active areas, volcanic activity, hydrological risk, forest fires and oil spills) has been employed to automatically identify, from satellite, anomalous Thermal Infrared (TIR) transients related to explosions of oil/gas pipelines. In this context, the combination of the RST approach with high temporal resolution, offered by geostationary satellites, seems to assure both a reliable and timely detection of such events. The potentials of the technique (applied to MSG-SEVIRI data) were tested over Iraq, a region which is sadly known for the numerous (mainly manmade) accidents to pipelines, in order to have a simulation of the effects (such as fires or explosions near or directly involving a pipeline facility) due to natural disasters.

  11. Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA.

    PubMed

    Scholl, Andrew E; Taylor, Alan H

    2010-03-01

    Fire is recognized as a keystone process in dry mixed-conifer forests that have been altered by decades of fire suppression, Restoration of fire disturbance to these forests is a guiding principle of resource management in the U.S. National Park Service. Policy implementation is often hindered by a poor understanding of forest conditions before fire exclusion, the characteristics of forest changes since excluding fire, and the influence of topographic or self-organizing controls on forest structure. In this study the spatial and temporal characteristics of fire regimes and forest structure are reconstructed in a 2125-ha mixed-conifer forest. Forests were multi-aged, burned frequently at low severity and fire-return interval, and forest structure did not vary with slope aspect, elevation, or slope position. Fire exclusion has caused an increase in forest density and basal area and a compositional shift to shade-tolerant and fire-intolerant species. The median point fire-return interval and extent of a fire was 10 yr and 115 ha, respectively. The pre-Euro-American settlement fire rotation of 13 yr increased to 378 yr after 1905. The position of fire scars within tree rings indicates that 79% of fires burned in the midsummer to fall period. The spatial pattern of burns exhibited self-organizing behavior. Area burned was 10-fold greater when an area had not been burned by the previous fire. Fires were frequent and widespread, but patches of similar aged trees were < 0.2 ha, suggesting small fire-caused canopy openings. Managers need to apply multiple burns at short intervals for a sustained period to reduce surface fuels and create small canopy openings characteristic of the reference forest. By coupling explicit reference conditions with consideration of current conditions and projected climate change, management activities can balance restoration and risk management.

  12. Examining Historical and Current Mixed-Severity Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America

    PubMed Central

    Odion, Dennis C.; Hanson, Chad T.; Arsenault, André; Baker, William L.; DellaSala, Dominick A.; Hutto, Richard L.; Klenner, Walt; Moritz, Max A.; Sherriff, Rosemary L.; Veblen, Thomas T.; Williams, Mark A.

    2014-01-01

    There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to “restore” forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa pine and mixed-conifer forests of western North America. PMID:24498383

  13. Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America.

    PubMed

    Odion, Dennis C; Hanson, Chad T; Arsenault, André; Baker, William L; Dellasala, Dominick A; Hutto, Richard L; Klenner, Walt; Moritz, Max A; Sherriff, Rosemary L; Veblen, Thomas T; Williams, Mark A

    2014-01-01

    There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to "restore" forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa pine and mixed-conifer forests of western North America.

  14. The Habitat Susceptibility of Bali Starling (Leucopsar rothschildi Stresemann> 1912) Based on Forest Fire Vulnerability Mappin in West Bali National Park

    NASA Astrophysics Data System (ADS)

    Pramatana, F.; Prasetyo, L. B.; Rushayati, S. B.

    2017-10-01

    Bali starling is an endemic and endangered species which tend to decrease of its population in the wild. West Bali National Park (WBNP) is the only habitat of bali starling, however it is threatened nowadays by forest fire. Understanding the sensitivity of habitat to forest & land fire is urgently needed. Geographic Information System (GIS) can be used for mapping the vulnerability of forest fire. This study aims to analyze the contributed factor of forest fire, to develop vulnerability level map of forest fire in WBNP, to estimate habitat vulnerability of bali starling. The variable for mapping forest fire in WBNP were road distance, village distance, land cover, NDVI, NDMI, surface temperature, and slope. Forest fire map in WBNP was created by scoring from each variable, and classified into four classes of forest fire vulnerability which are very low (9 821 ha), low (5 015.718 ha), middle (6 778.656 ha), and high (2 126.006 ha). Bali starling existence in the middle and high vulnerability forest fire class in WBNP, consequently the population and habitat of bali starling is a very vulnerable. Management of population and habitat of bali starling in WBNP must be implemented focus on forest fire impact.

  15. 78 FR 51201 - Wisconsin; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford... Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford Act''). Therefore, I..., Disaster Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing...

  16. 78 FR 23278 - Maine; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford Act''), as follows: I... magnitude to warrant a major disaster declaration under the Robert T. Stafford Disaster Relief and Emergency... Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  17. 77 FR 69648 - Rhode Island; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford... magnitude to warrant a major disaster declaration under the Robert T. Stafford Disaster Relief and Emergency... Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  18. 78 FR 38728 - Michigan; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... President issued a major disaster declaration under the authority of the Robert T. Stafford Disaster Relief... declaration under the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq... Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  19. 78 FR 51201 - Vermont; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford Act''), as follows: I... warrant a major disaster declaration under the Robert T. Stafford Disaster Relief and Emergency Assistance... Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  20. 75 FR 51836 - Kentucky; Amendment No. 7 to Notice of a Major Disaster Declaration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... concerning Federal funds provided under the authority of the Robert T. Stafford Disaster Relief and Emergency... (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to Individuals and...--Disaster Housing Operations for Individuals and Households; 97.050, Presidentially Declared Disaster...

  1. 78 FR 50437 - Texas; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford Act''), as follows: I... disaster declaration under the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C....046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to Individuals and...

  2. 75 FR 2882 - Alabama; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford Act''), as follows: I... warrant a major disaster declaration under the Robert T. Stafford Disaster Relief and Emergency Assistance... Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  3. 76 FR 60515 - Connecticut; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford Act''), as follows: I have declared a major disaster under the Robert T. Stafford Disaster Relief and... (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to Individuals and...

  4. 75 FR 30419 - Mississippi; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... major disaster declaration under the authority of the Robert T. Stafford Disaster Relief and Emergency... declaration under the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq... (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to Individuals and...

  5. Decree No. 849/988 of 14 December 1988 setting forth regulations on the prevention and combat of forest fires.

    PubMed

    1989-01-01

    This Uruguayan Decree sets forth regulations on the prevention and fighting of forest fires. Among other things, it does the following: 1) requires all public and private organizations, as well as all persons, to assist personally in and provide vehicles, machines, and tools for the fighting of forest fires; 2) requires the owners of property containing forests to maintain instruction in fighting fires for an adequate number of employees; 3) requires all forests to be kept cleared of vegetation capable of spreading fires and to have fire walls; 4) requires owners of forests larger than 30 hectares in size to present to the Forest Directorate an annual plan for forest fire defense; and 5) requires owners of forests larger than 30 hectares in size to maintain specified equipment for fighting fires. Persons violating the provisions of this Decree are subject to fines.

  6. Gulf Coast Disaster Management: Forest Damage Detection and Carbon Flux Estimation

    NASA Astrophysics Data System (ADS)

    Maki, A. E.; Childs, L. M.; Jones, J.; Matthews, C.; Spindel, D.; Batina, M.; Malik, S.; Allain, M.; Brooks, A. O.; Brozen, M.; Chappell, C.; Frey, J. W.

    2008-12-01

    Along the Gulf Coast and Eastern Seaboard, tropical storms and hurricanes annually cause defoliation and deforestation amongst coastal forests. After a severe storm clears, there is an urgent need to assess impacts on timber resources for targeting state and national resources to assist in recovery. It is important to identify damaged areas following the storm, due to their increased probability of fire risk, as well as the effect upon the carbon budget. Better understanding and management of the immediate and future effects on the carbon cycle in the coastal forest ecosystem is especially important. Current methods of detection involve assessment through ground-based field surveys, aerial surveys, computer modeling of meteorological data, space-borne remote sensing, and Forest Inventory and Analysis field plots. Introducing remotely-sensed data from NASA and NASA-partnered Earth Observation Systems (EOS), this project seeks to improve the current methodology and focuses on a need for methods that are more synoptic than field surveys and more closely linked to the phenomenology of tree loss and damage than passive remote sensing methods. The primary concentration is on the utilization of Ice, Cloud, and land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) data products to detect changes in forest canopy height as an indicator of post-hurricane forest disturbances. By analyzing ICESat data over areas affected by Hurricane Katrina, this study shows that ICESsat is a useful method of detecting canopy height change, though further research is needed in mixed forest areas. Other EOS utilized in this study include Landsat, Moderate Resolution Imaging Spectroradiometer (MODIS), and the NASA verified and validated international Advanced Wide Field Sensor (AWiFS) sensor. This study addresses how NASA could apply ICESat data to contribute to an improved method of detecting hurricane-caused forest damage in coastal areas; thus to pinpoint areas more susceptible to fire damage and subsequent loss of carbon sequestration.

  7. Analysis of tsunami disaster map by Geographic Information System (GIS): Aceh Singkil-Indonesia

    NASA Astrophysics Data System (ADS)

    Farhan, A.; Akhyar, H.

    2017-02-01

    Tsunami risk map is used by stakeholder as a base to decide evacuation plan and evaluates from disaster. Aceh Singkil district of Aceh- Indonesia’s disaster maps have been developed and analyzed by using GIS tool. Overlay methods through algorithms are used to produce hazard map, vulnerability, capacity and finally created disaster risk map. Spatial maps are used topographic maps, administrative map, SRTM. The parameters are social, economic, physical environmental vulnerability, a level of exposed people, parameters of houses, public building, critical facilities, productive land, population density, sex ratio, poor ratio, disability ratio, age group ratio, the protected forest, natural forest, and mangrove forest. The results show high-risk tsunami disaster at nine villages; moderate levels are seventeen villages, and other villages are shown in the low level of tsunami risk disaster.

  8. Fire ecology of forests and woodlands in Utah

    Treesearch

    Anne F. Bradley; Nonan V. Noste; William C. Fischer

    1992-01-01

    Provides information on fire as an ecological factor in forest habitat types, and in pinyon-juniper woodland and oak-maple brushland communities occurring in Utah. Identifies Fire Groups based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  9. Fire ecology of the forest habitat types of eastern Idaho and western Wyoming

    Treesearch

    Anne F. Bradley; William C. Fischer; Nonan V. Noste

    1992-01-01

    Provides information on fire as an ecological factor in the forest habitat types occurring in eastern Idaho and western Wyoming. Identifies Fire Groups based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  10. Impact of forest fires on particulate matter and ozone levels during the 2003, 2004 and 2005 fire seasons in Portugal.

    PubMed

    Martins, V; Miranda, A I; Carvalho, A; Schaap, M; Borrego, C; Sá, E

    2012-01-01

    The main purpose of this work is to estimate the impact of forest fires on air pollution applying the LOTOS-EUROS air quality modeling system in Portugal for three consecutive years, 2003-2005. Forest fire emissions have been included in the modeling system through the development of a numerical module, which takes into account the most suitable parameters for Portuguese forest fire characteristics and the burnt area by large forest fires. To better evaluate the influence of forest fires on air quality the LOTOS-EUROS system has been applied with and without forest fire emissions. Hourly concentration results have been compared to measure data at several monitoring locations with better modeling quality parameters when forest fire emissions were considered. Moreover, hourly estimates, with and without fire emissions, can reach differences in the order of 20%, showing the importance and the influence of this type of emissions on air quality. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Fire and forest history at Mount Rushmore.

    PubMed

    Brown, Peter M; Wienk, Cody L; Symstad, Amy J

    2008-12-01

    Mount Rushmore National Memorial in the Black Hills of South Dakota is known worldwide for its massive sculpture of four of the United States' most respected presidents. The Memorial landscape also is covered by extensive ponderosa pine (Pinus ponderosa) forest that has not burned in over a century. We compiled dendroecological and forest structural data from 29 plots across the 517-ha Memorial and used fire behavior modeling to reconstruct the historical fire regime and forest structure and compare them to current conditions. The historical fire regime is best characterized as one of low-severity surface fires with occasional (> 100 years) patches (< 100 ha) of passive crown fire. We estimate that only approximately 3.3% of the landscape burned as crown fire during 22 landscape fire years (recorded at > or = 25% of plots) between 1529 and 1893. The last landscape fire was in 1893. Mean fire intervals before 1893 varied depending on spatial scale, from 34 years based on scar-to-scar intervals on individual trees to 16 years between landscape fire years. Modal fire intervals were 11-15 years and did not vary with scale. Fire rotation (the time to burn an area the size of the study area) was estimated to be 30 years for surface fire and 800+ years for crown fire. The current forest is denser and contains more small trees, fewer large trees, lower canopy base heights, and greater canopy bulk density than a reconstructed historical (1870) forest. Fire behavior modeling using the NEXUS program suggests that surface fires would have dominated fire behavior in the 1870 forest during both moderate and severe weather conditions, while crown fire would dominate in the current forest especially under severe weather. Changes in the fire regime and forest structure at Mount Rushmore parallel those seen in ponderosa pine forests from the southwestern United States. Shifts from historical to current forest structure and the increased likelihood of crown fire justify the need for forest restoration before a catastrophic wildfire occurs and adversely impacts the ecological and aesthetic setting of the Mount Rushmore sculpture.

  12. Fire ecology of Montana forest habitat types east of the Continental Divide

    Treesearch

    William C. Fischer; Bruce D. Clayton

    1983-01-01

    Provides information on fire as an ecological factor for forest habitat types occurring east of the Continental Divide in Montana. Identifies "Fire Groups" of habitat types based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  13. Mixed-severity fire history at a forest-grassland ecotone in west central British Columbia, Canada.

    PubMed

    Harvey, Jill E; Smith, Dan J; Veblen, Thomas T

    2017-09-01

    This study examines spatially variable stand structure and fire-climate relationships at a low elevation forest-grassland ecotone in west central British Columbia, Canada. Fire history reconstructions were based on samples from 92 fire-scarred trees and stand demography from 27 plots collected over an area of about 7 km 2 . We documented historical chronologies of widespread fires and localized grassland fires between AD 1600 and 1900. Relationships between fire events, reconstructed values of the Palmer Drought Severity Index, and annual precipitation were examined using superposed epoch and bivariate event analyses. Widespread fires occurred during warm, dry years and were preceded by multiple anomalously dry, warm years. Localized fires that affected only grassland-proximal forests were more frequent than widespread fires. These localized fires showed a lagged, positive relationship with wetter conditions. The landscape pattern of forest structure provided further evidence of complex fire activity with multiple plots shown to have experienced low-, mixed-, and/or high-severity fires over the last four centuries. We concluded that this forest-grassland ecotone was characterized by fires of mixed severity, dominated by frequent, low-severity fires punctuated by widespread fires of moderate to high severity. This landscape-level variability in fire-climate relationships and patterns in forest structure has important implications for fire and grassland management in west central British Columbia and similar environments elsewhere. Forest restoration techniques such as prescribed fire and thinning are oftentimes applied at the forest-grassland ecotone on the basis that historically high frequency, low-severity fires defined the character of past fire activity. This study provides forest managers and policy makers with important information on mixed-severity fire activity at a low elevation forest-grassland ecotone, a crucial prerequisite for the effective management of these complex ecosystems. © 2017 by the Ecological Society of America.

  14. Influence of landscape structure, topography, and forest type on spatial variation in historical fire regimes, central Oregon, USA

    USGS Publications Warehouse

    Merschel, Andrew; Heyerdahl, Emily K.; Spies, Thomas A; Loehman, Rachel A.

    2018-01-01

    Context In the interior Northwest, debate over restoring mixed-conifer forests after a century of fire exclusion is hampered by poor understanding of the pattern and causes of spatial variation in historical fire regimes. Objectives To identify the roles of topography, landscape structure, and forest type in driving spatial variation in historical fire regimes in mixed-conifer forests of central Oregon. Methods We used tree rings to reconstruct multicentury fire and forest histories at 105 plots over 10,393 ha. We classified fire regimes into four types and assessed whether they varied with topography, the location of fuel-limited pumice basins that inhibit fire spread, and an updated classification of forest type. Results We identified four fire-regime types and six forest types. Although surface fires were frequent and often extensive, severe fires were rare in all four types. Fire regimes varied with some aspects of topography (elevation), but not others (slope or aspect) and with the distribution of pumice basins. Fire regimes did not strictly co-vary with mixed-conifer forest types. Conclusions Our work reveals the persistent influence of landscape structure on spatial variation in historical fire regimes and can help inform discussions about appropriate restoration of fire-excluded forests in the interior Northwest. Where the goal is to restore historical fire regimes at landscape scales, managers may want to consider the influence of topoedaphic and vegetation patch types that could affect fire spread and ignition frequency.

  15. 76 FR 62085 - Pennsylvania; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford... severity and magnitude to warrant a major disaster declaration under the Robert T. Stafford Disaster Relief....046, Fire Management Assistance Grant; [[Page 62086

  16. Historical dominance of low-severity fire in dry and wet mixed-conifer forest habitats of the endangered terrestrial Jemez Mountains salamander (Plethodon neomexicanus)

    USGS Publications Warehouse

    Margolis, Ellis; Malevich, Steven B.

    2016-01-01

    Anthropogenic alteration of ecosystem processes confounds forest management and conservation of rare, declining species. Restoration of forest structure and fire hazard reduction are central goals of forest management policy in the western United States, but restoration priorities and treatments have become increasingly contentious. Numerous studies have documented changes in fire regimes, forest stand structure and species composition following a century of fire exclusion in dry, frequent-fire forests of the western U.S. (e.g., ponderosa pine and dry mixed-conifer). In contrast, wet mixed-conifer forests are thought to have historically burned infrequently with mixed- or high-severity fire—resulting in reduced impacts from fire exclusion and low restoration need—but data are limited. In this study we quantified the current forest habitat of the federally endangered, terrestrial Jemez Mountains salamander (Plethodon neomexicanus) and compared it to dendroecological reconstructions of historical habitat (e.g., stand structure and composition), and fire regime parameters along a gradient from upper ponderosa pine to wet mixed-conifer forests. We found that current fire-free intervals in Jemez Mountains salamander habitat (116–165 years) are significantly longer than historical intervals, even in wet mixed-conifer forests. Historical mean fire intervals ranged from 10 to 42 years along the forest gradient. Low-severity fires were historically dominant across all forest types (92 of 102 fires). Although some mixed- or highseverity fire historically occurred at 67% of the plots over the last four centuries, complete mortality within 1.0 ha plots was rare, and asynchronous within and among sites. Climate was an important driver of temporal variability in fire severity, such that mixed- and high-severity fires were associated with more extreme drought than low-severity fires. Tree density in dry conifer forests historically ranged from open (90 trees/ha) to moderately dense (400 trees/ha), but has doubled on average since fire exclusion. Infill of fire-sensitive tree species has contributed to the conversion of historically dry mixedconifer to wet mixed-conifer forest. We conclude that low-severity fire, which has been absent for over a century, was a critical ecosystem process across the forest gradient in Jemez Mountains salamander habitat, and thus is an important element of ecosystem restoration, resilience, and rare species recovery.

  17. Effects of forest fire and logging on forest degradation in Mongolia

    Treesearch

    Yeong Dae Park; Don Koo Lee; Jamsran Tsogtbaatar; John A. Stanturf

    2010-01-01

    Forests in Mongolia have been severely degraded by forest fire and exploitive logging. This study investigate changes in vegetation and soil properties after forest fire or clearfelling. Microclimate conditions such as temperature and relative humidity (RH) changed drastically after forest fire or logging; temperature increased 1.6-1.7 ºC on average, whereas...

  18. Changing Weather Extremes Call for Early Warning of Potential for Catastrophic Fire

    NASA Astrophysics Data System (ADS)

    Boer, Matthias M.; Nolan, Rachael H.; Resco De Dios, Víctor; Clarke, Hamish; Price, Owen F.; Bradstock, Ross A.

    2017-12-01

    Changing frequencies of extreme weather events and shifting fire seasons call for enhanced capability to forecast where and when forested landscapes switch from a nonflammable (i.e., wet fuel) state to the highly flammable (i.e., dry fuel) state required for catastrophic forest fires. Current forest fire danger indices used in Europe, North America, and Australia rate potential fire behavior by combining numerical indices of fuel moisture content, potential rate of fire spread, and fire intensity. These numerical rating systems lack the physical basis required to reliably quantify forest flammability outside the environments of their development or under novel climate conditions. Here, we argue that exceedance of critical forest flammability thresholds is a prerequisite for major forest fires and therefore early warning systems should be based on a reliable prediction of fuel moisture content plus a regionally calibrated model of how forest fire activity responds to variation in fuel moisture content. We demonstrate the potential of this approach through a case study in Portugal. We use a physically based fuel moisture model with historical weather and fire records to identify critical fuel moisture thresholds for forest fire activity and then show that the catastrophic June 2017 forest fires in central Portugal erupted shortly after fuels in the region dried out to historically unprecedented levels.

  19. Disaster Planning: Preparedness and Recovery for Libraries and Archives: A RAMP Study with Guidelines.

    ERIC Educational Resources Information Center

    Buchanan, Sally A.; Murray, Toby

    This manual provides guidelines for those who are responsible for disaster planning for libraries and archives. Limited to fire-and-water-related disasters involving books, manuscripts, and photographs, the manual is primarily concerned with planning. Divided into two major areas, disaster preparedness and disaster recovery, the manual covers…

  20. 78 FR 23279 - New Hampshire; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford... Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford Act''). Therefore, I..., Disaster Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing...

  1. 78 FR 51200 - South Dakota; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford... Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford Act''). Therefore, I..., Disaster Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing...

  2. 76 FR 72965 - District of Columbia; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... authority of the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq... severity and magnitude to warrant a major disaster declaration under the Robert T. Stafford Disaster Relief... Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  3. Forest Fire Advanced System Technology (FFAST): A Conceptual Design for Detection and Mapping

    Treesearch

    J. David Nichols; John R. Warren

    1987-01-01

    The Forest Fire Advanced System Technology (FFAST) project is developing a data system to provide near-real-time forest fire information to fire management at the fire Incident Command Post (ICP). The completed conceptual design defined an integrated forest fire detection and mapping system that is based upon technology available in the 1990's. System component...

  4. Relation of weather forecasts to the prediction of dangerous forest fire conditions

    Treesearch

    R. H. Weidman

    1923-01-01

    The purpose of predicting dangerous forest-fire conditions, of course, is to reduce the great cost and damage caused by forest fires. In the region of Montana and northern Idaho alone the average cost to the United States Forest Service of fire protection and suppression is over $1,000,000 a year. Although the causes of forest fires will gradually be reduced by...

  5. Numerical study of propagation of forest fires in the presence of fire breaks using an averaged setting

    NASA Astrophysics Data System (ADS)

    Marzaeva, S. I.; Galtseva, O. V.

    2018-05-01

    The forest fires spread in the pine forests have been numerically simulated using a three-dimensional mathematical model. The model was integrated with respect to the vertical coordinate because horizontal sizes of forest are much greater than the heights of trees. In this paper, the assignment and theoretical investigations of the problems of crown forest fires spread pass the firebreaks were carried out. In this context, a study ( mathematical modeling) of the conditions of forest fire spreading that would make it possible to obtain a detailed picture of the change in the temperature and component concentration fields with time, and determine as well as the limiting condition of fire propagation in forest with these fire breaks.

  6. Disaster: Planning, Preparation, Prevention.

    ERIC Educational Resources Information Center

    Rutherford, Christine

    1990-01-01

    Discusses causes of library disasters and provides several examples of disasters. Emphasis is on the importance of awareness, insurance protection, a written disaster plan, cooperation with the fire marshall and insurance agent in planning, and staff training. Several elements of the written plan are listed. (22 references) (MES)

  7. Mexican forest fires and their decadal variations

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Graciela

    2016-11-01

    A high forest fire season of two to three years is regularly observed each decade in Mexican forests. This seems to be related to the presence of the El Niño phenomenon and to the amount of total solar irradiance. In this study, the results of a multi-cross wavelet analysis are reported based on the occurrence of Mexican forest fires, El Niño and the total solar irradiance for the period 1970-2014. The analysis shows that Mexican forest fires and the strongest El Niño phenomena occur mostly around the minima of the solar cycle. This suggests that the total solar irradiance minima provide the appropriate climatological conditions for the occurrence of these forest fires. The next high season for Mexican forest fires could start in the next solar minimum, which will take place between the years 2017 and 2019. A complementary space analysis based on MODIS active fire data for Mexican forest fires from 2005 to 2014 shows that most of these fires occur in cedar and pine forests, on savannas and pasturelands, and in the central jungles of the Atlantic and Pacific coasts.

  8. Meteorological factors in the Quartz Creek forest fire

    Treesearch

    H. T. Gisborne

    1927-01-01

    It is not often that a large forest fire occurs conveniently near a weather station specially equipped for measuring forest-fire weather. The 13,000-acre Quartz Creek fire on the Kaniksu National Forest during the summer of 1936 was close enough to the Priest River Experimental Forest of the Northern Rocky Mountain Forest Experiment Station for the roar of the flumes...

  9. Understorey fire frequency and the fate of burned forests in southern Amazonia.

    PubMed

    Morton, D C; Le Page, Y; DeFries, R; Collatz, G J; Hurtt, G C

    2013-06-05

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999-2010) and deforestation (2001-2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km(2) between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk.

  10. Understorey fire frequency and the fate of burned forests in southern Amazonia

    PubMed Central

    Morton, D. C.; Le Page, Y.; DeFries, R.; Collatz, G. J.; Hurtt, G. C.

    2013-01-01

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999–2010) and deforestation (2001–2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km2 between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk. PMID:23610169

  11. Fire ecology of the forest habitat types of northern Idaho

    Treesearch

    Jane Kapler Smith; William C. Fischer

    1997-01-01

    Provides information on fire ecology in forest habitat and community types occurring in northern Idaho. Identifies fire groups based on presettlement fire regimes and patterns of succession and stand development after fire. Describes forest fuels and suggests considerations for fire management.

  12. Southwestern Oregon's Biscuit Fire: An Analysis of Forest Resources, Fire Severity, and Fire Hazard

    Treesearch

    David L. Azuma; Glenn A. Christensen

    2005-01-01

    This study compares pre-fire field inventory data (collected from 1993 to 1997) in relation to post-fire mapped fire severity classes and the Fire and Fuels Extension of the Forest Vegetation Simulator growth and yield model measures of fire hazard for the portion of the Siskiyou National Forest in the 2002 Biscuit fire perimeter of southwestern Oregon. Post-fire...

  13. Fire ecology of the forest habitat types of central Idaho

    Treesearch

    M. F. Crane; William C. Fischer

    1986-01-01

    Discusses fire as an ecological factor for forest habitat types occurring in central Idaho. Identifies "Fire Groups" of habitat types based on fire's role in forest succession. Considerations for fire management are suggested.

  14. Short- and long-term effects of fire on carbon in US dry temperate forest systems

    USGS Publications Warehouse

    Hurteau, Matthew D.; Brooks, Matthew L.

    2011-01-01

    Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires, resulting in greater tree mortality, have caused a decrease in forest carbon stability. Fire management actions can mitigate the risk of high-severity fires, but these actions often require a trade-off between maximizing carbon stocks and carbon stability. We discuss the effects of fire on forest carbon stocks and recommend that managing forests on the basis of their specific ecologies should be the foremost goal, with carbon sequestration being an ancillary benefit. ?? 2011 by American Institute of Biological Sciences. All rights reserved.

  15. Satellite Analysis of the Severe 1987 Forest Fires in Northern China and Southeastern Siberia

    NASA Technical Reports Server (NTRS)

    Cahoon, Donald R., Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; Pierson, Joseph M.

    1994-01-01

    Meteorological conditions, extremely conducive to fire development and spread in the spring of 1987, resulted in forest fires burning over extremely large areas in the boreal forest zone in northeastern China and the southeastern region of Siberia. The great China fire, one of the largest and most destructive forest fires in recent history, occurred during this period in the Heilongjiang Province of China. Satellite imagery is used to examine the development and areal distribution of 1987 forest fires in this region. Overall trace gas emissions to the atmosphere from these fires are determined using a satellite-derived estimate of area burned in combination with fuel consumption figures and carbon emission ratios for boreal forest fires.

  16. Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia

    NASA Technical Reports Server (NTRS)

    Cahoon, Donald R, Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; Pierson, Joseph M.

    1994-01-01

    Meteorological conditions, extremely conducive to fire development and spread in the spring of 1987, resulted in forest fires burning over extremely large areas in the boreal forest zone in northeastern China and the southeastern region of Siberia. The great China fire, one of the largest and most destructive forest fires in recent history, occurred during this period in the Heilongjiang Province of China. Satellite imagery is used to examine the development and areal distribution of 1987 forest fires in this region. Overall trace gas emissions to the atmosphere from these fires are determined using a satellite-derived estimate of area burned in combination with fuel consumption figures and carbon emission ratios for boreal forest fires.

  17. Spatial patterns and controls on historical fire regimes and forest structure in the Klamath Mountains

    Treesearch

    Alan H. Taylor; Carl N. Skinner

    2003-01-01

    Fire exclusion in mixed conifer forests has increased the risk of fire due to decades of fuel accumulation. Restoration of fire into altered forests is a challenge because of a poor understanding of the spatial and temporal dynamics of fire regimes. In this study the spatial and temporal characteristics of fire regimes and forest age structure are reconstructed in a...

  18. Fuel variability following wildfire in forests with mixed severity fire regimes, Cascade Range, USA

    Treesearch

    Jessica L. Hudec; David L. Peterson

    2012-01-01

    Fire severity influences post-burn structure and composition of a forest and the potential for a future fire to burn through the area. The effects of fire on forests with mixed severity fire regimes are difficult to predict and interpret because the quantity, structure, and composition of forest fuels vary considerably. This study examines the relationship between fire...

  19. Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries

    NASA Astrophysics Data System (ADS)

    Armenteras, Dolors; Barreto, Joan Sebastian; Tabor, Karyn; Molowny-Horas, Roberto; Retana, Javier

    2017-06-01

    Tropical forests in NW Amazonia are highly threatened by the expansion of the agricultural frontier and subsequent deforestation. Fire is used, both directly and indirectly, in Brazilian Amazonia to propagate deforestation and increase forest accessibility. Forest fragmentation, a measure of forest degradation, is also attributed to fire occurrence in the tropics. However, outside the Brazilian Legal Amazonia the role of fire in increasing accessibility and forest fragmentation is less explored. In this study, we compared fire regimes in five countries that share this tropical biome in the most north-westerly part of the Amazon Basin (Venezuela, Colombia, Ecuador, Peru and Brazil). We analysed spatial differences in the timing of peak fire activity and in relation to proximity to roads and rivers using 12 years of MODIS active fire detections. We also distinguished patterns of fire in relation to forest fragmentation by analysing fire distance to the forest edge as a measure of fragmentation for each country. We found significant hemispheric differences in peak fire occurrence with the highest number of fires in the south in 2005 vs. 2007 in the north. Despite this, both hemispheres are equally affected by fire. We also found difference in peak fire occurrence by country. Fire peaked in February in Colombia and Venezuela, whereas it peaked in September in Brazil and Peru, and finally Ecuador presented two fire peaks in January and October. We confirmed the relationship between fires and forest fragmentation for all countries and also found significant differences in the distance between the fire and the forest edge for each country. Fires were associated with roads and rivers in most countries. These results can inform land use planning at the regional, national and subnational scales to minimize the contribution of road expansion and subsequent access to the Amazonian natural resources to fire occurrence and the associated deforestation and carbon emissions.

  20. A second-order impact model for forest fire regimes.

    PubMed

    Maggi, Stefano; Rinaldi, Sergio

    2006-09-01

    We present a very simple "impact" model for the description of forest fires and show that it can mimic the known characteristics of wild fire regimes in savannas, boreal forests, and Mediterranean forests. Moreover, the distribution of burned biomasses in model generated fires resemble those of burned areas in numerous large forests around the world. The model has also the merits of being the first second-order model for forest fires and the first example of the use of impact models in the study of ecosystems.

  1. Modeling the Effects of Fire Frequency and Severity on Forests in the Northwestern United States

    USGS Publications Warehouse

    Busing, Richard T.; Solomon, Allen M.

    2006-01-01

    This study used a model of forest dynamics (FORCLIM) and actual forest survey data to demonstrate the effects of various fire regimes on different forest types in the Pacific Northwest. We examined forests in eight ecoregions ranging from wet coastal forests dominated by Pseudotsuga menziesii and other tall conifers to dry interior forests dominated by Pinus ponderosa. Fire effects simulated as elevated mortality of trees based on their species and size did alter forest structure and species composition. Low frequency fires characteristic of wetter forests (return interval >200 yr) had minor effects on composition. When fires were severe, they tended to reduce total basal area with little regard to species differences. High frequency fires characteristic of drier forests (return interval <30 yr) had major effects on species composition and on total basal area. Typically, they caused substantial reductions in total basal area and shifts in dominance toward highly fire tolerant species. With the addition of fire, simulated basal areas averaged across ecoregions were reduced to levels approximating observed basal areas.

  2. Assessment of Post Forest Fire Landslides in Uttarakhand Himalaya, India

    NASA Astrophysics Data System (ADS)

    Sharma, N.; Singh, R. B.

    2017-12-01

    According to Forest Survey of India-State Forest Report (2015), the total geographical area of Uttarakhand is 53, 483 covers km2 out of which 24,402 km2 area covers under total forest covers. As noticed during last week of April, 2016 forest of Uttarakhand mountains was gutted down due to major incidences of fire. This incident caused huge damage to different species of flora-fauna, human being, livestock, property and destruction of mountain ecosystem. As per media reports, six people were lost their lives and recorded several charred carcasses of livestock's due to this incident. The forest fire was affected the eleven out of total thirteen districts which roughly covers the 0.2% (approx.) of total vegetation covers.The direct impact of losses are easy to be estimated but indirect impacts of this forest fire are yet to be occurred. The threat of post Forest fire induced landslides during rainfall is themain concern. Since, after forest fire top soil and rocks are loose due to loss of vegetation as binding and protecting agent against rainfall. Therefore, the pore water pressure and weathering will be very high during rainy season which can cause many landslides in regions affected by forest fire. The demarcation of areas worse affected by forest fire is necessary for issuing alerts to habitations and important infrastructures. These alerts will be based upon region specific probable rainfall forecasting through Indian Meteorological Department (IMD). The main objective is to develop a tool for detecting early forest fire and to create awareness amongst mountain community, researchers and concerned government agencies to take an appropriate measures to minimize the incidences of Forest fire and impact of post forest fire landslides in future through implementation of sustainable mountain strategy.

  3. Disaster Preparedness in YOUR School.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin. Div. of Adult and Continuing Education.

    A look at what to do in time of natural and man-made disasters is presented. Disasters covered include tornados, hurricanes, floods, fires, blizzards, and nuclear disaster. The responsibilities of the Board of Education, school superintendent, school principal, teachers, school nurse, custodian, students, bus drivers, and cafeteria workers are…

  4. 76 FR 34243 - Alabama; Amendment No. 14 to Notice of a Major Disaster Declaration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    .... Further, under this pilot program, FEMA shall obtain any applicable private insurance payments for debris..., Disaster Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing...

  5. Assessment of forest fire impacts and emissions in the European Union based on the European forest fire information system

    Treesearch

    Paulo Barbosa; Andrea Camia; Jan Kucera; Giorgio Libertá; Ilaria Palumbo; Jesus San-Miguel-Ayanz; Guido Schmuck

    2009-01-01

    An analysis on the number of forest fires and burned area distribution as retrieved by the European Forest Fire Information System (EFFIS) database is presented. On average, from 2000 to 2005 about...

  6. Natural and social factors influencing forest fire occurrence at a local spatial scale

    Treesearch

    Maria Luisa Chas-Amil; Julia M. Touza; Jeffrey P. Prestemon; Colin J. McClean

    2012-01-01

    Development of efficient forest fire policies requires an understanding of the underlying reasons behind forest fire ignitions. Globally, there is a close relationship between forest fires and human activities, i.e., fires understood as human events due to negligence (e.g., agricultural burning escapes), and deliberate actions (e.g., pyromania, revenge, land use change...

  7. Modeling impacts of fire severity on successional trajectories and future fire behavior in Alaskan boreal forests

    Treesearch

    Jill F. Johnstone; T. Scott Rupp; Mark Olson; David. Verbyla

    2011-01-01

    Much of the boreal forest in western North America and Alaska experiences frequent, stand-replacing wildfires. Secondary succession after fire initiates most forest stands and variations in fire characteristics can have strong effects on pathways of succession. Variations in surface fire severity that influence whether regenerating forests are dominated by coniferous...

  8. Fire risk in east-side forests.

    Treesearch

    Valerie. Rapp

    2002-01-01

    Wildfire was a natural part of ecosystems in east-side Oregon and Washington before the 20th century. The fire regimes, or characteristic patterns of fire—how often, how hot, how big, what time of year—helped create and maintain various types of forests.Forests are dynamic, and fire interacts with other ecological processes. Fires, forests...

  9. 75 FR 4580 - American Samoa; Amendment No. 3 to Notice of a Major Disaster Declaration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... provided under the authority of the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.... Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford Act'') and..., Disaster Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing...

  10. Landscape fragmentation, severe drought, and the new Amazon forest fire regime.

    PubMed

    Alencar, Ane A; Brando, Paulo M; Asner, Gregory P; Putz, Francis E

    2015-09-01

    Changes in weather and land use are transforming the spatial and temporal characteristics of fire regimes in Amazonia, with important effects on the functioning of dense (i.e., closed-canopy), open-canopy, and transitional forests across the Basin. To quantify, document, and describe the characteristics and recent changes in forest fire regimes, we sampled 6 million ha of these three representative forests of the eastern and southern edges of the Amazon using 24 years (1983-2007) of satellite-derived annual forest fire scar maps and 16 years of monthly hot pixel information (1992-2007). Our results reveal that changes in forest fire regime properties differentially affected these three forest types in terms of area burned and fire scar size, frequency, and seasonality. During the study period, forest fires burned 15% (0.3 million ha), 44% (1 million ha), and 46% (0.6 million ha) of dense, open, and transitional forests, respectively. Total forest area burned and fire scar size tended to increase over time (even in years of average rainfall in open canopy and transitional forests). In dense forests, most of the temporal variability in fire regime properties was linked to El Nino Southern Oscillation (ENSO)-related droughts. Compared with dense forests, transitional and open forests experienced fires twice as frequently, with at least 20% of these forests' areas burning two or more times during the 24-year study period. Open and transitional forests also experienced higher deforestation rates than dense forests. During drier years, the end of the dry season was delayed by about a month, which resulted in larger burn scars and increases in overall area burned later in the season. These observations suggest that climate-mediated forest flammability is enhanced by landscape fragmentation caused by deforestation, as observed for open and transitional forests in the Eastern portion of the Amazon Basin.

  11. Creation and implementation of a certification system for insurability and fire risk classification for forest plantations

    Treesearch

    Veronica Loewe M.; Victor Vargas; Juan Miguel Ruiz; Andrea Alvarez C.; Felipe Lobo Q.

    2015-01-01

    Currently, the Chilean insurance market sells forest fire insurance policies and agricultural weather risk policies. However, access to forest fire insurance is difficult for small and medium enterprises (SMEs), with a significant proportion (close to 50%) of forest plantations being without coverage. Indeed, the insurance market that sells forest fire insurance...

  12. 77 FR 18997 - Rim Lakes Forest Restoration Project; Apache-Sitgreavese National Forest, Black Mesa Ranger...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... uncharacteristicly high-severity wild fires, which can lead to loss of entire stands during one fire event. About 67..., fire, and wind. The purpose of the project is to restore forest health, move forests toward an uneven-aged forest structure with all age classes represented, and restore frequent, periodic surface fire as...

  13. Protection against fire in the mountainous forests of Greece case study: forest complex of W. Nestos

    NASA Astrophysics Data System (ADS)

    Drosos, Vasileios C.; Giannoulas, Vasileios J.; Stergiadou, Anastasia; Karagiannis, Evaggelos; Doukas, Aristotelis-Kosmas G.

    2014-08-01

    Forest fires are an ancient phenomenon. Appear, however, with devastating frequency and intensity over the last 30 years. In our country, the climatic conditions in combination with the intense relief, favor their rapid spread. Considering the fact that environmental conditions provided for decades even worse (increased temperature, drought and vegetation), then the problem of forest fires in our country, is expected to become more intense. The work focuses on the optimization model of the opening up of the forest mountain areas taking into account the prevention and suppression of forest fires. Research area is the mountain forest complex of W. Nestos of Drama Prefecture. The percentage of forest protection area is examined under the light whether the total hose length corresponds to the actual operational capacity to reach a fire source. For this reason are decided to present a three case study concerning area of the forest being protected by fire extinguishing vehicles. The first one corresponds to a fire suppression bandwidth (buffer zone) with a capacity radius of 150m uphill and 250m downhill from the origin point where the fire extinguishing vehicle stands. The second one corresponds to a fire suppression capacity of 200m uphill and 400m downhill and the third one corresponds to a fire suppression capacity of 300m uphill and 500m downhill. The most important forest technical infrastructures to prevent fire are roads network (opening up) for fire protection and buffer zones. Patrols of small and agile 4 × 4 appropriately equipped (pipe length of 500 meters and putting pressure on uphill to 300 meters) for the first attack of the fire in the summer months coupled with early warning of fire observatories adequately cover the forest protection of W. Nestos complex. But spatial distribution needed improvements to a road density of the optimum economic Dec, both forest protection and for better management (skidding) of woody capital.

  14. Alternative characterization of forest fire regimes: incorporating spatial patterns

    Treesearch

    Brandon M. Collins; Jens T. Stevens; Jay D. Miller; Scott L. Stephens; Peter M. Brown; Malcolm P. North

    2017-01-01

    ContextThe proportion of fire area that experienced stand-replacing fire effects is an important attribute of individual fires and fire regimes in forests, and this metric has been used to group forest types into characteristic fire regimes. However, relying on proportion alone ignores important spatial characteristics...

  15. A study of forest fire danger district division in Lushan Mountain based on RS and GIS

    NASA Astrophysics Data System (ADS)

    Xiao, Jinxiang; Huang, Shu-E.; Zhong, Anjian; Zhu, Biqin; Ye, Qing; Sun, Lijun

    2009-09-01

    The study selected 9 factors, average maximum temperature, average temperature, average precipitation, average the longest days of continuous drought and average wind speed during fire prevention period, vegetation type, altitude, slope and aspect as the index of forest fire danger district division, which has taken the features of Lushan Mountain's forest fire history into consideration, then assigned subjective weights to each factor according to their sensitivity to fire or their fire-inducing capability. By remote sensing and GIS, vegetation information layer were gotten from Landsat TM image and DEM with a scale of 1:50000 was abstracted from the digital scanned relief map. Topography info. (elevation, slope, aspect) layers could be gotten after that. A climate resource databank that contained the data from the stations of Lushan Mountain and other nearby 7 stations was built up and extrapolated through the way of grid extrapolation in order to make the distribution map of climate resource. Finally synthetical district division maps were made by weighing and integrating all the single factor special layers,and the study area were divided into three forest fire danger district, include special fire danger district, I-fire danger district and II-fire danger district. It could be used as a basis for developing a forest fire prevention system, preparing the annual investment plan, allocating reasonably the investment of fire prevention, developing the program of forest fire prevention and handle, setting up forest fire brigade, leaders' decisions on forest fire prevention work.

  16. Analysis of zone of vulnurability and impact of forest fires in forest ecosystems in north algeria by susing remote sensing

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    2010-05-01

    The Forest in steppe present ecological diversity, and seen climatic unfavourable conditions in zone and impact of forest fires; we notes deterioration of physical environment particularly, deterioration of natural forest. This deterioration of forests provokes an unbalance of environment witch provokes a process of deterioration advanced in the ultimate stadium is desertification. By elsewhere, where climatic conditions are favourable, the fire is an ecological and acted agent like integral part of evolution of the ecosystems, the specific regeneration of plants are influenced greatly by the regime of fire (season of fire, intensity, interval), witch leads to the recuperation of the vegetation of meadow- fire. In this survey we used the pictures ALSAT-1 for detection of zones with risk of forest fire and their impact on the naturals forests in region named TLEMCEN in the north west of Algeria. A thematic detailed analysis of forests well attended ecosystems some processing on the picture ALSAT-1, we allowed to identify and classifying the forests in there opinion components flowers. We identified ampleness of fire on this zone also. Some parameters as the slope, the proximity to the road and the forests formations were studied in the goal of determining the zones to risk of forest fire. A crossing of diaper of information in a GIS according to a very determined logic allowed classifying the zones in degree of risk of fire in semi arid zone witch forest zone not encouraging the regeneration but permitting the installation of cash of steppe which encourages the desertification.

  17. Examining fire-induced forest changes using novel remote sensing technique: a case study in a mixed pine-oak forest

    NASA Astrophysics Data System (ADS)

    Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2017-12-01

    Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.

  18. 75 FR 51836 - Mississippi; Amendment No. 5 to Notice of a Major Disaster Declaration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... concerning Federal funds provided under the authority of the Robert T. Stafford Disaster Relief and Emergency... Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to... Assistance--Disaster Housing Operations for Individuals and Households; 97.050, Presidentially Declared...

  19. 77 FR 7595 - Alabama; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford Act''), as follows.... Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford Act... Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  20. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada

    NASA Astrophysics Data System (ADS)

    Wotton, B. M.; Flannigan, M. D.; Marshall, G. A.

    2017-09-01

    Much research has been carried out on the potential impacts of climate change on forest fire activity in the boreal forest. Indeed, there is a general consensus that, while change will vary regionally across the vast extent of the boreal, in general the fire environment will become more conducive to fire. Land management agencies must consider ways to adapt to these new conditions. This paper examines the impact of that changed fire environment on overall wildfire suppression capability. We use multiple General Circulation Models and carbon emission pathways to generate future fire environment scenarios for Canada’s forested region. We then use these scenarios with the Canadian Forest Fire Behaviour Prediction System and spatial coverages of the current forest fuel composition across the landscape to examine potential variation in key fire behaviour outputs that influence whether fire management resources can effectively suppress fire. Specifically, we evaluate how the potential for crown fire occurrence and active growth of fires changes with the changing climate. We also examine future fire behaviour through the lens of operational fire intensity thresholds used to guide decisions about resources effectiveness. Results indicate that the proportion of days in fire seasons with the potential for unmanageable fire will increase across Canada’s forest, more than doubling in some regions in northern and eastern boreal forest.

  1. Decreases in net primary production and net ecosystem production along a repeated-fires induced forest/grassland gradient

    NASA Astrophysics Data System (ADS)

    Cheng, C. H.; Huang, Y. H.; Chung-Yu, L.; Menyailo, O.

    2016-12-01

    Fire is one of the most important disturbances in ecosystems. Fire rapidly releases stored carbon into atmosphere and also plays critical roles on soil properties, light and moisture regimes, and plant structures and communities. With the interventions of climate change and human activities, fire regimes become more severe and frequent. In many parts of world, forest fire regimes can be further altered by grass invasion because the invasive grasses create a positive feedback cycle through their rapid recovery after fires and their high flammability during dry periods and allow forests to be burned repeatedly in a relatively short time. For such invasive grass-fire cycle, a great change of native vegetation community can occur. In this study, we examined a C4 invasive grass () fire-induced forest/grassland gradient to quantify the changes of net primary production (NPP) and net ecosystem production (NEP) from an unburned forest to repeated fire grassland. Our results demonstrated negative effects of repeated fires on NPP and NEP. Within 4 years of the onset of repeated fires on the unburned forest, NPP declined by 14%, mainly due to the reduction in aboveground NPP but offset by increase of belowground NPP. Subsequent fires cumulatively caused reductions in both aboveground and belowground NPP. A total of 40% reduction in the long-term repeated fire induced grassland was found. Soil respiration rate were not significantly different along the forest/grassland gradient. Thus, a great reduction in NEP were shown in grassland, which shifted from 4.6 Mg C ha-1 yr-1 in unburnt forest to -2.6 Mg C ha-1 yr-1. Such great losses are critical within the context of forest carbon cycling and long-term sustainability. Forest management practices that can effectively reduce the likelihood of repeated fires and consequent likelihood of establishment of the grass fire cycle are essential for protecting the forest.

  2. Shifts in functional traits elevate risk of fire-driven tree dieback in tropical savanna and forest biomes.

    PubMed

    Pellegrini, Adam F A; Franco, Augusto C; Hoffmann, William A

    2016-03-01

    Numerous predictions indicate rising CO2 will accelerate the expansion of forests into savannas. Although encroaching forests can sequester carbon over the short term, increased fires and drought-fire interactions could offset carbon gains, which may be amplified by the shift toward forest plant communities more susceptible to fire-driven dieback. We quantify how bark thickness determines the ability of individual tree species to tolerate fire and subsequently determine the fire sensitivity of ecosystem carbon across 180 plots in savannas and forests throughout the 2.2-million km(2) Cerrado region in Brazil. We find that not accounting for variation in bark thickness across tree species underestimated carbon losses in forests by ~50%, totaling 0.22 PgC across the Cerrado region. The lower bark thicknesses of plant species in forests decreased fire tolerance to such an extent that a third of carbon gains during forest encroachment may be at risk of dieback if burned. These results illustrate that consideration of trait-based differences in fire tolerance is critical for determining the climate-carbon-fire feedback in tropical savanna and forest biomes. © 2015 John Wiley & Sons Ltd.

  3. Defining fire environment zones in the boreal forests of northeastern China.

    PubMed

    Wu, Zhiwei; He, Hong S; Yang, Jian; Liang, Yu

    2015-06-15

    Fire activity in boreal forests will substantially increase with prolonged growing seasons under a warming climate. This trend poses challenges to managing fires in boreal forest landscapes. A fire environment zone map offers a basis for evaluating these fire-related problems and designing more effective fire management plans to improve the allocation of management resources across a landscape. Toward that goal, we identified three fire environment zones across boreal forest landscapes in northeastern China using analytical methods to identify spatial clustering of the environmental variables of climate, vegetation, topography, and human activity. The three fire environment zones were found to be in strong agreement with the spatial distributions of the historical fire data (occurrence, size, and frequency) for 1966-2005. This paper discusses how the resulting fire environment zone map can be used to guide forest fire management and fire regime prediction. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. 76 FR 44026 - Mississippi; Amendment No. 5 to Notice of a Major Disaster Declaration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... obtain any applicable private insurance payments for debris removal to reimburse Federal costs to the... Counseling; 97.033, Disaster Legal Services; 97.034, Disaster Unemployment Assistance (DUA); 97.046, Fire...

  5. Policy change and governance at the wildland-urban interface: the case of post-wildfire impacts in Boise, Idaho

    NASA Astrophysics Data System (ADS)

    Lindquist, Eric

    2013-04-01

    In the summer of 2012 over 1.7 million acres (approximately 6900 sq kilometers) were burned from wildfires in the state of Idaho in the Western United States. While most of the these fires were in rural and wilderness areas, several significant fires occurred at the wildland-urban interface (WUI), threatening houses, communities and the built environment as never before. As the population of the Mountain West in the United States grows, the WUI (the area where homes are being built adjacent to traditionally wild or rural areas and the built environment encroaches on wildlands) is rapidly becoming an at risk area for human habitation. Efforts to make these areas more resilient and sustainable in the face of increasing fire risk, due to increasing drought and climate change, are resulting in efforts to change or adapt disaster response and planning policy. An increase in stakeholders, however, with diverse objectives and resources presents an opportunity to assess the current governance situation for policy change in response to wildland fires in the dynamic and complex context of the WUI. The research presented here will focus on the case of Treasure Valley region of southwest Idaho and Boise, the capitol city of Idaho. This region is illustrative of the growing urban western United States and the pressures from a growing population pushing into the WUI. This research frames fire policy and decision making at the wildland-urban interface within public policy process theory using the example of the summer of 2012 forest fires in Idaho (USA) and focuses on subsequents impact these fires are having on fire planning and policy in the Boise metropolitan region. The focus is on the diverse stakeholders (federal, state and regional agencies, tourism, agriculture and private sector interests, homeowner organizations, and fire response and recovery agencies) and their roles and responsibilities, their interactions, decision and policy processes, the use of science in decision making, post and pre disaster assessments, and subsequent policy changes. The conclusions will reflect on the outlook for the future of the WUI in regard to wildfire risk and response and on the contribution of policy process theory to this policy domain. This paper/poster addresses significant theoretical and empirical issues raised in the Call for Papers for NH7.1 "Spatial and temporal patterns of wildfires: models, theory and reality," including: pre-fire planning and risk management; post-fire evaluation; relation between wildfires and social changes; and the influence of weather and climate change on wildfire activity.

  6. Early forest dynamics in stand-replacing fire patches in the northern Sierra Nevada, California, USA

    Treesearch

    Brandon M. Collins; Gary B. Roller

    2013-01-01

    There is considerable concern over the occurrence of stand-replacing fire in forest types historically associated with low- to moderate-severity fire. The concern is largely over whether contemporary levels of stand-replacing fire are outside the historical range of variability, and what natural forest recovery is in these forest types following stand-replacing fire....

  7. Spatiotemporal patterns of fire-induced forest mortality in boreal regions and its potential drivers

    NASA Astrophysics Data System (ADS)

    Yang, J.; Tian, H.; Pan, S.; Hansen, M.; Wang, Y.

    2017-12-01

    Wildfire is the major natural disturbance in boreal forests, which have substantially affected various biological and biophysical processes. Although a few previous studies examined fire severity in boreal regions and reported a higher fire-induced forest mortality in boreal North America than in boreal Eurasia, it remains unclear how this mortality changes over time and how environmental factors affect the temporal dynamics of mortality at a large scale. By using a combination of multiple sources of satellite observations, we investigate the spatiotemporal patterns of fire-induced forest mortality in boreal regions, and examine the contributions of potential drivers. Our results show that forest composition is the key factor influencing the spatial variations of fire mortality across ecoregions. For the temporal variations, we find that the late-season burning was associated with higher fire intensity, which lead to greater forest mortality than the early-season burning. Forests burned in the warm and dry years had greater mortality than those burned in the cool and wet years. Our findings suggest that climate warming and drying not only stimulated boreal fire frequency, but also enhanced fire severity and forest mortality. Due to the significant effects of forest mortality on vegetation structure and ecosystem carbon dynamics, the spatiotemporal changes of fire-induced forest mortality should be explicitly considered to better understand fire impacts on regional and global climate change.

  8. Effects of fire on small mammal communities in frequent-fire forests in California

    USGS Publications Warehouse

    Roberts, Susan L.; Kelt, Douglas A.; Van Wagtendonk, Jan W.; Miles, A. Keith; Meyer, Marc D.

    2015-01-01

    Fire is a natural, dynamic process that is integral to maintaining ecosystem function. The reintroduction of fire (e.g., prescribed fire, managed wildfire) is a critical management tool for protecting many frequent-fire forests against stand-replacing fires while restoring an essential ecological process. Understanding the effects of fire on forests and wildlife communities is important in natural resource planning efforts. Small mammals are key components of forest food webs and essential to ecosystem function. To investigate the relationship of fire to small mammal assemblages, we live trapped small mammals in 10 burned and 10 unburned forests over 2 years in the central Sierra Nevada, California. Small mammal abundance was higher in unburned forests, largely reflecting the greater proportion of closed-canopy species such as Glaucomys sabrinus in unburned forests. The most abundant species across the entire study area was the highly adaptable generalist species, Peromyscus maniculatus. Species diversity was similar between burned and unburned forests, but burned forests were characterized by greater habitat heterogeneity and higher small mammal species evenness. The use and reintroduction of fire to maintain a matrix of burn severities, including large patches of unburned refugia, creates a heterogeneous and resilient landscape that allows for fire-sensitive species to proliferate and, as such, may help maintain key ecological functions and diverse small mammal assemblages.

  9. Storms over the Urban Forest: Planning, Responding, and Regreening-- A community Guide to Natural Disaster Relief

    Treesearch

    Lisa L. Burban; John W. Andresen

    1994-01-01

    Natural disasters which can occur in the United States include floods, hurricanes, tornadoes, and related high-velocity winds, as well as ice storms. Preparing for these natural disasters, which strike urban forests in large cities and small communities, should involve the cooperative effort of a wide array of municipal agencies, private arboricultural companies,...

  10. The influence of fire on lepidopteran abundance and community structure in forested habitats of eastern Texas

    Treesearch

    D. Craig Rudolph; Charles A. Ely

    2000-01-01

    Transect surveys were used to examine the influence of fire on lepidopteran communities (Papilionoidea and Hesperioidea) in forested habitats in eastern Texas. Lepidopteran abundance was greater in pine forests where prescribed fire maintained an open mid- and understory compared to forests where fire had less impact on forest structure. Ahundance of nectar sources...

  11. The Zoning of Forest Fire Potential of Gulestan Province Forests Using Granular Computing and MODIS Images

    NASA Astrophysics Data System (ADS)

    Jalilzadeh Shadlouei, A.; Delavar, M. R.

    2013-09-01

    There are many vegetation in Iran. This is because of extent of Iran and its width. One of these vegetation is forest vegetation most prevalent in Northern provinces named Guilan, Mazandaran, Gulestan, Ardebil as well as East Azerbaijan. These forests are always threatened by natural forest fires so much so that there have been reports of tens of fires in recent years. Forest fires are one of the major environmental as well as economic, social and security concerns in the world causing much damages. According to climatology, forest fires are one of the important factors in the formation and dispersion of vegetation. Also, regarding the environment, forest fires cause the emission of considerable amounts of greenhouse gases, smoke and dust into the atmosphere which in turn causes the earth temperature to rise up and are unhealthy to humans, animals and vegetation. In agriculture droughts are the usual side effects of these fires. The causes of forest fires could be categorized as either Human or Natural Causes. Naturally, it is impossible to completely contain forest fires; however, areas with high potentials of fire could be designated and analysed to decrease the risk of fires. The zoning of forest fire potential is a multi-criteria problem always accompanied by inherent uncertainty like other multi-criteria problems. So far, various methods and algorithm for zoning hazardous areas via Remote Sensing (RS) and Geospatial Information System (GIS) have been offered. This paper aims at zoning forest fire potential of Gulestan Province of Iran forests utilizing Remote Sensing, Geospatial Information System, meteorological data, MODIS images and granular computing method. Granular computing is part of granular mathematical and one way of solving multi-criteria problems such forest fire potential zoning supervised by one expert or some experts , and it offers rules for classification with the least inconsistencies. On the basis of the experts' opinion, 6 determinative criterias contributing to forest fires have been designated as follows: vegetation (NDVI), slope, aspect, temperature, humidity and proximity to roadways. By applying these variables on several tentatively selected areas and formation information tables and producing granular decision tree and extraction of rules, the zoning rules (for the areas in question) were extracted. According to them the zoning of the entire area has been conducted. The zoned areas have been classified into 5 categories: high hazard, medium hazard (high), medium hazard (low), low hazard (high), low hazard (low). According to the map, the zoning of most of the areas fall into the low hazard (high) class while the least number of areas have been classified as low hazard (low). Comparing the forest fires in these regions in 2010 with the MODIS data base for forest fires, it is concluded that areas with high hazards of forest fire have been classified with a 64 percent precision. In other word 64 percent of pixels that are in high hazard classification are classified according to MODIS data base. Using this method we obtain a good range of Perception. Manager will reduce forest fire concern using precautionary proceeding on hazardous area.

  12. Long-term effects of prescribed fire on mixed conifer forest structure in the Sierra Nevada, California

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Stephenson, Nathan L.; Knapp, Eric; Keeley, Jon E.

    2011-01-01

    The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before prescribed fire and up to eight years after fire at Sequoia National Park, California. Fire-induced declines in stem density (67% average decrease at eight years post-fire) were nonlinear, taking up to eight years to reach a presumed asymptote. Declines in live stem biomass were also nonlinear, but smaller in magnitude (32% average decrease at eight years post-fire) as most large trees survived the fires. The preferential survival of large trees following fire resulted in significant shifts in stem diameter distributions. Mortality rates remained significantly above background rates up to six years after the fires. Prescribed fire did not have a large influence on the representation of dominant species. Fire-caused mortality appeared to be spatially random, and therefore did not generally alter heterogeneous tree spatial patterns. Our results suggest that prescribed fire can bring about substantial changes to forest structure in old-growth mixed conifer forests in the Sierra Nevada, but that long-term observations are needed to fully describe some measures of fire effects.

  13. The impact of antecedent fire area on burned area in southern California coastal ecosystems

    USGS Publications Warehouse

    Price, Owen F.; Bradstock, Ross A.; Keeley, Jon E.; Syphard, Alexandra D.

    2012-01-01

    Frequent wildfire disasters in southern California highlight the need for risk reduction strategies for the region, of which fuel reduction via prescribed burning is one option. However, there is no consensus about the effectiveness of prescribed fire in reducing the area of wildfire. Here, we use 29 years of historical fire mapping to quantify the relationship between annual wildfire area and antecedent fire area in predominantly shrub and grassland fuels in seven southern California counties, controlling for annual variation in weather patterns. This method has been used elsewhere to measure leverage: the reduction in wildfire area resulting from one unit of prescribed fire treatment. We found little evidence for a leverage effect (leverage = zero). Specifically our results showed no evidence that wildfire area was negatively influenced by previous fires, and only weak relationships with weather variables rainfall and Santa Ana wind occurrences, which were variables included to control for inter-annual variation. We conclude that this is because only 2% of the vegetation burns each year and so wildfires rarely encounter burned patches and chaparral shrublands can carry a fire within 1 or 2 years after previous fire. Prescribed burning is unlikely to have much influence on fire regimes in this area, though targeted treatment at the urban interface may be effective at providing defensible space for protecting assets. These results fit an emerging global model of fire leverage which position California at the bottom end of a continuum, with tropical savannas at the top (leverage = 1: direct replacement of wildfire by prescribed fire) and Australian eucalypt forests in the middle (leverage ∼ 0.25).

  14. The impact of antecedent fire area on burned area in southern California coastal ecosystems.

    PubMed

    Price, Owen F; Bradstock, Ross A; Keeley, Jon E; Syphard, Alexandra D

    2012-12-30

    Frequent wildfire disasters in southern California highlight the need for risk reduction strategies for the region, of which fuel reduction via prescribed burning is one option. However, there is no consensus about the effectiveness of prescribed fire in reducing the area of wildfire. Here, we use 29 years of historical fire mapping to quantify the relationship between annual wildfire area and antecedent fire area in predominantly shrub and grassland fuels in seven southern California counties, controlling for annual variation in weather patterns. This method has been used elsewhere to measure leverage: the reduction in wildfire area resulting from one unit of prescribed fire treatment. We found little evidence for a leverage effect (leverage = zero). Specifically our results showed no evidence that wildfire area was negatively influenced by previous fires, and only weak relationships with weather variables rainfall and Santa Ana wind occurrences, which were variables included to control for inter-annual variation. We conclude that this is because only 2% of the vegetation burns each year and so wildfires rarely encounter burned patches and chaparral shrublands can carry a fire within 1 or 2 years after previous fire. Prescribed burning is unlikely to have much influence on fire regimes in this area, though targeted treatment at the urban interface may be effective at providing defensible space for protecting assets. These results fit an emerging global model of fire leverage which position California at the bottom end of a continuum, with tropical savannas at the top (leverage = 1: direct replacement of wildfire by prescribed fire) and Australian eucalypt forests in the middle (leverage ~ 0.25). Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Latent resilience in ponderosa pine forest: effects of resumed frequent fire.

    PubMed

    Larson, Andrew J; Belote, R Travis; Cansler, C Alina; Parks, Sean A; Dietz, Matthew S

    2013-09-01

    Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated the effects of reintroduced frequent wildfire in unlogged, fire-excluded, ponderosa pine forest in the Bob Marshall Wilderness, Montana, USA. Initial reintroduction of fire in 2003 reduced tree density and consumed surface fuels, but also stimulated establishment of a dense cohort of lodgepole pine, maintaining a trajectory toward an alternative state. Resumption of a frequent fire regime by a second fire in 2011 restored a low-density forest dominated by large-diameter ponderosa pine by eliminating many regenerating lodgepole pines and by continuing to remove surface fuels and small-diameter lodgepole pine and Douglas-fir that established during the fire suppression era. Our data demonstrate that some unlogged, fire-excluded, ponderosa pine forests possess latent resilience to reintroduced fire. A passive model of simply allowing lightning-ignited fires to burn appears to be a viable approach to restoration of such forests.

  16. Avian community responses to post-fire forest structure: implications for fire management in mixed conifer forests

    Treesearch

    Angela White; Patricia Manley; Gina Tarbill; T. W. Richardson; R. E. Russell; H. D. Safford; S. Z. Dobrowski

    2016-01-01

    Fire is a natural process and the dominant disturbance shaping plant and animal communities in many coniferous forests of the western US. Given that fire size and severity are predicted to increase in the future, it has become increasingly important to understand how wildlife responds to fire and post-fire management. The Angora Fire...

  17. Forest fires impact in semi arid lands in Algeria, analysis and followed of desertification by using remote sensing and GIS

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    The Forest in steppe present ecological diversity, and seen climatic unfavourable conditions in zone and impact of forest fires; we notes deterioration of physical environment particularly, deterioration of natural forest. This deterioration of forests provokes an unbalance of environment witch provokes a process of deterioration advanced in the ultimate stadium is desertification. By elsewhere, where climatic conditions are favourable, the fire is an ecological and acted agent like integral part of evolution of the ecosystems, the specific regeneration of plants are influenced greatly by the regime of fire (season of fire, intensity, interval), who leads to the recuperation of the vegetation of meadow- fire. In this survey we used the pictures ALSAT-1 for detection of zones with risk of forest fire and their impact on the naturals forests in region of Tlemcen. A thematic detailed analysis of forests well attended ecosystems some processing on the picture ALSAT-1, we allowed to identify and classifying the forests in there opinion components flowers. we identified ampleness of fire on this zone also. Some parameters as the slope, the proximity to the road and the forests formations were studied in the goal of determining the zones to risk of forest fire. A crossing of diaper of information in a SIG according to a very determined logic allowed to classify the zones in degree of risk of fire in a middle arid in a forest zone not encouraging the regeneration on the other hand permitting the installation of cash of steppe which encourages the desertification.

  18. The Challenges from Extreme Climate Events for Sustainable Development in Amazonia: the Acre State Experience

    NASA Astrophysics Data System (ADS)

    Araújo, M. D. N. M.

    2015-12-01

    In the past ten years Acre State, located in Brazil´s southwestern Amazonia, has confronted sequential and severe extreme events in the form of droughts and floods. In particular, the droughts and forest fires of 2005 and 2010, the 2012 flood within Acre, the 2014 flood of the Madeira River which isolated Acre for two months from southern Brazil, and the most severe flooding throughout the state in 2015 shook the resilience of Acrean society. The accumulated costs of these events since 2005 have exceeded 300 million dollars. For the last 17 years, successive state administrations have been implementing a socio-environmental model of development that strives to link sustainable economic production with environmental conservation, particularly for small communities. In this context, extreme climate events have interfered significantly with this model, increasing the risks of failure. The impacts caused by these events on development in the state have been exacerbated by: a) limitations in monitoring; b) extreme events outside of Acre territory (Madeira River Flood) affecting transportation systems; c) absence of reliable information for decision-making; and d) bureaucratic and judicial impediments. Our experience in these events have led to the following needs for scientific input to reduce the risk of disasters: 1) better monitoring and forecasting of deforestation, fires, and hydro-meteorological variables; 2) ways to increase risk perception in communities; 3) approaches to involve more effectively local and regional populations in the response to disasters; 4) more accurate measurements of the economic and social damages caused by these disasters. We must improve adaptation to and mitigation of current and future extreme climate events and implement a robust civil defense, adequate to these new challenges.

  19. Thirty-Two Years of Forest Service Research at the Southern Forest Fire Laboratory in Macon, GA

    Treesearch

    USDA Forest Service

    1991-01-01

    When completed in 1959, the Southern Forest Fire Laboratory was the world?s first devoted entirely to the study of forest fires, Since then the scientists at the Laboratory have: 1) performed basic and applied research on critical fire problems of national interest, 2) conducted special regional research on fire problems peculiar to the 13 Southern States, and 3)...

  20. Modern fire regime resembles historical fire regime in a ponderosa pine forest on Native American land

    Treesearch

    Amanda B. Stan; Peter Z. Fule; Kathryn B. Ireland; Jamie S. Sanderlin

    2014-01-01

    Forests on tribal lands in the western United States have seen the return of low-intensity surface fires for several decades longer than forests on non-tribal lands. We examined the surface fire regime in a ponderosa pinedominated (Pinus ponderosa) forest on the Hualapai tribal lands in the south-western United States. Using fire-scarred trees, we inferred temporal (...

  1. Simulations of Forest Fires by the Cellular Automata Model "ABBAMPAU"

    NASA Astrophysics Data System (ADS)

    di Gregorio, S.; Bendicenti, E.

    2003-04-01

    Forest fires represent a serious environmental problem, whose negative impact is becoming day by day more worrisome. Forest fires are very complex phenomena; that need an interdisciplinary approach. The adopted method to modelling involves the definition of local rules, from which the global behaviour of the system can emerge. The paradigm of Cellular Automata was applied and the model ABBAMPAU was projected to simulate the evolution of forest fires. Cellular Automata features (parallelism and a-centrism) seem to match the system "forest fire"; the parameters, describing globally a forest fire, i.e. propagation rate, flame length and direction, fireline intensity, fire duration time et c. are mainly depending on some local characteristics i.e. vegetation type (live and dead fuel), relative humidity, fuel moisture, heat, territory morphology (altitude, slope), et c.. The only global characteristic is given by wind velocity and direction, but wind velocity and direction is locally altered according to the morphology; therefore wind has also to be considered at local level. ABBAMPAU accounts for the following aspects of the phenomenon: effects of combustion in surface and crown fire inside the cell, crown fire triggering off; surface and crown fire spread, determination of the local wind rate and direction. A validation of ABBAMPAU was tested on a real case of forest fire, in the territory of Villaputzu, Sardinia island, August 22nd, 1998. First simulations account for the main characteristics of the phenomenon and agree with the observations. The results show that the model could be applied for the forest fire preventions, the productions of risk scenarios and the evaluation of the forest fire environmental impact.

  2. Fire-mediated dieback and compositional cascade in an Amazonian forest.

    PubMed

    Barlow, Jos; Peres, Carlos A

    2008-05-27

    The only fully coupled land-atmosphere global climate model predicts a widespread dieback of Amazonian forest cover through reduced precipitation. Although these predictions are controversial, the structural and compositional resilience of Amazonian forests may also have been overestimated, as current vegetation models fail to consider the potential role of fire in the degradation of forest ecosystems. We examine forest structure and composition in the Arapiuns River basin in the central Brazilian Amazon, evaluating post-fire forest recovery and the consequences of recurrent fires for the patterns of dominance of tree species. We surveyed tree plots in unburned and once-burned forests examined 1, 3 and 9 years after an unprecedented fire event, in twice-burned forests examined 3 and 9 years after fire and in thrice-burned forests examined 5 years after the most recent fire event. The number of trees recorded in unburned primary forest control plots was stable over time. However, in both once- and twice-burned forest plots, there was a marked recruitment into the 10-20cm diameter at breast height tree size classes between 3 and 9 years post-fire. Considering tree assemblage composition 9 years after the first fire contact, we observed (i) a clear pattern of community turnover among small trees and the most abundant shrubs and saplings, and (ii) that species that were common in any of the four burn treatments (unburned, once-, twice- and thrice-burned) were often rare or entirely absent in other burn treatments. We conclude that episodic wildfires can lead to drastic changes in forest structure and composition, with cascading shifts in forest composition following each additional fire event. Finally, we use these results to evaluate the validity of the savannization paradigm.

  3. Safety Education. A Guide To Help Prevent Accidents Associated with the Home, Student Transportation, Disasters, Pedestrians, Passengers, Fires, Consumerism, Recreation.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    This teacher's guide presents 10 instructional units for one portion of the Texas-approved course in driver and safety education. The units cover the following topics: what is safety?; accident causation and prevention; home safety; student transportation safety; disasters; pedestrian safety; passenger safety; fire safety; consumer safety; and…

  4. Stand structure, fuelloads, and fire behavior in riparian and upland forests, Sierra Nevada Mountains, USA; a comparison of current and reconstructed conditions

    Treesearch

    Kip Van de Water; Malcolm North

    2011-01-01

    Fire plays an important role in shaping many Sierran coniferous forests, but longer fire return intervals and reductions in area burned have altered forest conditions. Productive, mesic riparian forests can accumulate high stem densities and fuel loads, making them susceptible to high-severity fire. Fuels treatments applied to upland forests, however, are...

  5. The largest forest fires in Portugal: the constraints of burned area size on the comprehension of fire severity.

    PubMed

    Tedim, Fantina; Remelgado, Ruben; Martins, João; Carvalho, Salete

    2015-01-01

    Portugal is a European country with highest forest fires density and burned area. Since beginning of official forest fires database in 1980, an increase in number of fires and burned area as well as appearance of large and catastrophic fires have characterized fire activity in Portugal. In 1980s, the largest fires were just a little bit over 10,000 ha. However, in the beginning of 21st century several fires occurred with a burned area over 20,000 ha. Some of these events can be classified as mega-fires due to their ecological and socioeconomic severity. The present study aimed to discuss the characterization of large forest fires trend, in order to understand if the largest fires that occurred in Portugal were exceptional events or evidences of a new trend, and the constraints of fire size to characterize fire effects because, usually, it is assumed that larger the fire higher the damages. Using Portuguese forest fire database and satellite imagery, the present study showed that the largest fires could be seen at the same time as exceptional events and as evidence of a new fire regime. It highlighted the importance of size and patterns of unburned patches within fire perimeter as well as heterogeneity of fire ecological severity, usually not included in fire regime description, which are critical to fire management and research. The findings of this research can be used in forest risk reduction and suppression planning.

  6. Regulations of the Forest Law, 29 June 1988.

    PubMed

    1988-01-01

    These Regulations set forth the administration and duties of various government departments under the Mexican Forest Law. They provide that the National Forest Administration is, among other things, to promote operations designed for the conservation, protection, and restoration of forest resources, especially with respect to disasters of any kind that affect forests, such as pestilence, fires, disease, floods, and acid rain, as well as other destructive and contaminating elements. Further provisions of the Regulations describe efforts to aid reforestation and silviculture to be undertaken by the Secretariat and activities with respect to use permits and forest management. In its efforts to aid reforestation, the Secretariat is to establish nurseries, give assistance to local bodies to establish nurseries, and support reforestation programs financially. Regulations of the General Law on Ecological Equilibrium and Environmental Protection with Respect to Environmental Impact of 6 June 1988 contain provisions requiring the Secretariat of Urban Development and Ecology to formulate general rules on the environmental impact involved in the use of forests. These rules are to set forth measures on prevention, improvement, preservation, restoration, and control. The Secretariat is also to issue ecological protection restrictions on the use of forest resources, which are to be relied on in the evaluation of proposed forest use projects. The Regulations also set forth procedures to be followed in examining use permit applications and information that must be included in such applications. See Diario Oficial, Vol. 417, No. 5, 7 June 1988, p. 28. full text

  7. Non-supervised method for early forest fire detection and rapid mapping

    NASA Astrophysics Data System (ADS)

    Artés, Tomás; Boca, Roberto; Liberta, Giorgio; San-Miguel, Jesús

    2017-09-01

    Natural hazards are a challenge for the society. Scientific community efforts have been severely increased assessing tasks about prevention and damage mitigation. The most important points to minimize natural hazard damages are monitoring and prevention. This work focuses particularly on forest fires. This phenomenon depends on small-scale factors and fire behavior is strongly related to the local weather. Forest fire spread forecast is a complex task because of the scale of the phenomena, the input data uncertainty and time constraints in forest fire monitoring. Forest fire simulators have been improved, including some calibration techniques avoiding data uncertainty and taking into account complex factors as the atmosphere. Such techniques increase dramatically the computational cost in a context where the available time to provide a forecast is a hard constraint. Furthermore, an early mapping of the fire becomes crucial to assess it. In this work, a non-supervised method for forest fire early detection and mapping is proposed. As main sources, the method uses daily thermal anomalies from MODIS and VIIRS combined with land cover map to identify and monitor forest fires with very few resources. This method relies on a clustering technique (DBSCAN algorithm) and on filtering thermal anomalies to detect the forest fires. In addition, a concave hull (alpha shape algorithm) is applied to obtain rapid mapping of the fire area (very coarse accuracy mapping). Therefore, the method leads to a potential use for high-resolution forest fire rapid mapping based on satellite imagery using the extent of each early fire detection. It shows the way to an automatic rapid mapping of the fire at high resolution processing as few data as possible.

  8. Computer Cache. Natural Disasters: Earth, Wind, and Fire

    ERIC Educational Resources Information Center

    Brodie, Carolyn S.; Byerly, Greg

    2005-01-01

    Natural disasters come in all shapes and sizes and affect all areas of the earth, and studying natural disasters may make children more aware of their physical environment and their place in it. This column provides a list of websites on different types of natural disasters, including earthquakes, landslides, tsunamis, volcanoes, floods,…

  9. 78 FR 51203 - New Hampshire; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford... Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford Act''). Therefore, I... (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to Individuals and...

  10. 78 FR 64232 - North Carolina; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... authority of the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq... the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the... Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  11. 77 FR 20042 - West Virginia; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford... T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford Act... Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  12. 77 FR 15786 - Kentucky; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-16

    ... T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford Act... under the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the... Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  13. 77 FR 20044 - West Virginia; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford... under the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the... Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  14. 76 FR 72964 - Vermont; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq. (the ``Stafford Act''), as follows: I... declaration under the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq....046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to Individuals and...

  15. Fire regime in a Mexican forest under indigenous resource management.

    PubMed

    Fulé, Peter Z; Ramos-Gómez, Mauro; Cortés-Montaño, Citlali; Miller, Andrew M

    2011-04-01

    The Rarámuri (Tarahumara) people live in the mountains and canyons of the Sierra Madre Occidental of Chihuahua, Mexico. They base their subsistence on multiple-use strategies of their natural resources, including agriculture, pastoralism, and harvesting of native plants and wildlife. Pino Gordo is a Rarámuri settlement in a remote location where the forest has not been commercially logged. We reconstructed the forest fire regime from fire-scarred trees, measured the structure of the never-logged forest, and interviewed community members about fire use. Fire occurrence was consistent throughout the 19th and 20th centuries up to our fire scar collection in 2004. This is the least interrupted surface-fire regime reported to date in North America. Studies from other relict sites such as nature reserves in Mexico or the USA have all shown some recent alterations associated with industrialized society. At Pino Gordo, fires recurred frequently at the three study sites, with a composite mean fire interval of 1.9 years (all fires) to 7.6 years (fires scarring 25% or more of samples). Per-sample fire intervals averaged 10-14 years at the three sites. Approximately two-thirds of fires burned in the season of cambial dormancy, probably during the pre-monsoonal drought. Forests were dominated by pines and contained many large living trees and snags, in contrast to two nearby similar forests that have been logged. Community residents reported using fire for many purposes, consistent with previous literature on fire use by indigenous people. Pino Gordo is a valuable example of a continuing frequent-fire regime in a never-harvested forest. The Rarámuri people have actively conserved this forest through their traditional livelihood and management techniques, as opposed to logging the forest, and have also facilitated the fire regime by burning. The data contribute to a better understanding of the interactions of humans who live in pine forests and the fire regimes of these ecosystems, a topic that has been controversial and difficult to assess from historical or paleoecological evidence.

  16. Disturbance and productivity interactions mediate stability of forest composition and structure.

    PubMed

    O'Connor, Christopher D; Falk, Donald A; Lynch, Ann M; Swetnam, Thomas W; Wilcox, Craig P

    2017-04-01

    Fire is returning to many conifer-dominated forests where species composition and structure have been altered by fire exclusion. Ecological effects of these fires are influenced strongly by the degree of forest change during the fire-free period. Response of fire-adapted species assemblages to extended fire-free intervals is highly variable, even in communities with similar historical fire regimes. This variability in plant community response to fire exclusion is not well understood; however, ecological mechanisms such as individual species' adaptations to disturbance or competition and underlying site characteristics that facilitate or impede establishment and growth have been proposed as potential drivers of assemblage response. We used spatially explicit dendrochronological reconstruction of tree population dynamics and fire regimes to examine the influence of historical disturbance frequency (a proxy for adaptation to disturbance or competition), and potential site productivity (a proxy for underlying site characteristics) on the stability of forest composition and structure along a continuous ecological gradient of pine, dry mixed-conifer, mesic mixed-conifer, and spruce-fir forests following fire exclusion. While average structural density increased in all forests, species composition was relatively stable in the lowest productivity pine-dominated and highest productivity spruce-fir-dominated sites immediately following fire exclusion and for the next 100 years, suggesting site productivity as a primary control on species composition and structure in forests with very different historical fire regimes. Species composition was least stable on intermediate productivity sites dominated by mixed-conifer forests, shifting from primarily fire-adapted species to competition-adapted, fire-sensitive species within 20 years of fire exclusion. Rapid changes to species composition and stand densities have been interpreted by some as evidence of high-severity fire. We demonstrate that the very different ecological process of fire exclusion can produce similar changes by shifting selective pressures from disturbance-mediated to productivity-mediated controls. Restoring disturbance-adapted species composition and structure to intermediate productivity forests may help to buffer them against projected increasing temperatures, lengthening fire seasons, and more frequent and prolonged moisture stress. Fewer management options are available to promote adaptation in forest assemblages historically constrained by underlying site productivity. © 2016 by the Ecological Society of America.

  17. Variation in fire regimes of the Rocky Mountains: Implications for avian communities and fire management

    USGS Publications Warehouse

    Saab, Victoria A.; Powell, Hugo D.W.; Kotliar, Natasha B.; Newlon, Karen R.; Saab, Victoria A.; Powell, Hugo D.W.

    2005-01-01

    Information about avian responses to fire in the U.S. Rocky Mountains is based solely on studies of crown fires. However, fire management in this region is based primarily on studies of low-elevation ponderosa pine (Pinus ponderosa) forests maintained largely by frequent understory fires. In contrast to both of these trends, most Rocky Mountain forests are subject to mixed severity fire regimes. As a result, our knowledge of bird responses to fire in the region is incomplete and skewed toward ponderosa pine forests. Research in recent large wildfires across the Rocky Mountains indicates that large burns support diverse avifauna. In the absence of controlled studies of bird responses to fire, we compared reproductive success for six cavity-nesting species using results from studies in burned and unburned habitats. Birds in ponderosa pine forests burned by stand-replacement fire tended to have higher nest success than individuals of the same species in unburned habitats, but unburned areas are needed to serve species dependent upon live woody vegetation, especially foliage gleaners. Over the last century, fire suppression, livestock grazing, and logging altered the structure and composition of many low-elevation forests, leading to larger and more severe burns. In higher elevation forests, changes have been less marked. Traditional low-severity prescribed fire is not likely to replicate historical conditions in these mixed or high-severity fire regimes, which include many mixed coniferous forests and all lodgepole pine (Pinus contorta) and spruce-fi r (Picea-Abies) forests. We suggest four research priorities: (1) the effects of fire severity and patch size on species’ responses to fire, (2) the possibility that postfire forests are ephemeral sources for some bird species, (3) the effect of salvage logging prescriptions on bird communities, and (4) experiments that illustrate bird responses to prescribed fire and other forest restoration methods. This research is urgent if we are to develop fire management strategies that reduce fire risk and maintain habitat for avifauna and other wildlife of the Rocky Mountains.

  18. Variation in fire regimes of the rocky mountains: Implications for avian communities and fire management

    USGS Publications Warehouse

    Saab, V.A.; Powell, Hugo D.W.; Kotliar, N.B.; Newlon, K.R.

    2005-01-01

    Information about avian responses to fire in the U.S. Rocky Mountains is based solely on studies of crown fires. However, fire management in this region is based primarily on studies of low-elevation ponderosa pine (Pinus ponderosa) forests maintained largely by frequent understory fires. In contrast to both of these trends, most Rocky Mountain forests are subject to mixed severity fire regimes. As a result, our knowledge of bird responses to fire in the region is incomplete and skewed toward ponderosa pine forests. Research in recent large wildfires across the Rocky Mountains indicates that large burns support diverse avifauna. In the absence of controlled studies of bird responses to fire, we compared reproductive success for six cavity-nesting species using results from studies in burned and unburned habitats. Birds in ponderosa pine forests burned by stand-replacement fire tended to have higher nest success than individuals of the same species in unburned habitats, but unburned areas are needed to serve species dependent upon live woody vegetation, especially foliage gleaners. Over the last century, fire suppression, livestock grazing, and logging altered the structure and composition of many low-elevation forests, leading to larger and more severe burns. In higher elevation forests, changes have been less marked. Traditional low-severity prescribed fire is not likely to replicate historical conditions in these mixed or high-severity fire regimes, which include many mixed coniferous forests and all lodgepole pine (Pinus contorta) and spruce-fir (Picea-Abies) forests. We suggest four research priorities: (1) the effects of fire severity and patch size on species' responses to fire, (2) the possibility that postfire forests are ephemeral sources for some bird species, (3) the effect of salvage logging prescriptions on bird communities, and (4) experiments that illustrate bird responses to prescribed fire and other forest restoration methods. This research is urgent if we are to develop fire management strategies that reduce fire risk and maintain habitat for avifauna and other wildlife of the Rocky Mountains.

  19. The influence of weather and fuel type on the fuel composition of the area burned by forest fires in Ontario, 1996-2006.

    PubMed

    Podur, Justin J; Martell, David L

    2009-07-01

    Forest fires are influenced by weather, fuels, and topography, but the relative influence of these factors may vary in different forest types. Compositional analysis can be used to assess the relative importance of fuels and weather in the boreal forest. Do forest or wild land fires burn more flammable fuels preferentially or, because most large fires burn in extreme weather conditions, do fires burn fuels in the proportions they are available despite differences in flammability? In the Canadian boreal forest, aspen (Populus tremuloides) has been found to burn in less than the proportion in which it is available. We used the province of Ontario's Provincial Fuels Database and fire records provided by the Ontario Ministry of Natural Resources to compare the fuel composition of area burned by 594 large (>40 ha) fires that occurred in Ontario's boreal forest region, a study area some 430,000 km2 in size, between 1996 and 2006 with the fuel composition of the neighborhoods around the fires. We found that, over the range of fire weather conditions in which large fires burned and in a study area with 8% aspen, fires burn fuels in the proportions that they are available, results which are consistent with the dominance of weather in controlling large fires.

  20. Mathematical modeling of forest fire initiation in three dimensional setting

    Treesearch

    Valeriy Perminov

    2007-01-01

    In this study, the assignment and theoretical investigations of the problems of forest fire initiation were carried out, including development of a mathematical model for description of heat and mass transfer processes in overterrestrial layer of atmosphere at crown forest fire initiation, taking into account their mutual influence. Mathematical model of forest fire...

  1. Measurements of forest fire danger

    Treesearch

    Leo Shames

    1938-01-01

    Although the annual destruction of life and property attributable to forest fires is enormous, scientific methods of forest fire control in the United States are of comparatively recent origin. In one important phase of control, that of determining how large a network of observers is necessary for the purpose of discovering forest fires in their infancy, accurate means...

  2. Fire regimes and approaches for determining fire history

    Treesearch

    James K. Agee

    1996-01-01

    Fire has been an important evolutionary influence in forests, affecting species composition, structure, and functional aspects of forest biology. Restoration of wildland forests of the future will depend in part on restoring fire to an appropriate role in forest ecosystems. This may include the "range of natural variability" or other concepts associated with...

  3. Strategy for increasing the participation of masyarakat peduli api in forest fire control

    NASA Astrophysics Data System (ADS)

    Ni’mah, N. L. K.; Herdiansyah, H.; Soesilo, T. E. B.; Mutia, E. F.

    2018-03-01

    Forest fires have negative impact on ecology, health, and damage economic activities. One of conservation areas facing the threat of forest fire is Gunung Ciremai National Park. This research aims to formulate a strategy to increase the participation of Masyarakat Peduli Api in the effort of forest fire control. This research use quantitative method with SWOT analysis. Expert consisting of representatives from the national park, Ministry of Environment and Forestry, and BPBD Kuningan Regency. An alternative strategy based on SWOT analysis is in quadrant 1 with coordinate point (0,39; 1,23). The position shows that sustainability of national park management through forest fire control can be done with an aggressive strategy. That is maximizing the strength that is owned with its potential as an ecotourism area to increase community motivation to engage in forest fire control activities. Provision of tourism management licenses will create employment opportunities and increase income for the community so it is expected to increase community participation to prevent the occurrence of forest fires rather than forest fire prevention.

  4. Effects of prescribed fire on wintering, bark-foraging birds in northern Arizona

    Treesearch

    Theresa L. Pope

    2006-01-01

    Forest management practices of the past century have led to an increase in unnatural and destructive crown fires in ponderosa pine (Pinus ponderosa) forests of the southwest. To combat large fires, forest managers are attempting to simulate past fire regimes of low-intensity surface fires using prescribed fire. While there have been many studies...

  5. Disturbance and productivity interactions mediate stability of forest composition and structure

    Treesearch

    Christopher D. O' Connor; Donald A. Falk; Ann M. Lynch; Thomas W. Swetnam; Craig P. Wilcox

    2017-01-01

    Fire is returning to many conifer-dominated forests where species composition and structure have been altered by fire exclusion. Ecological effects of these fires are influenced strongly by the degree of forest change during the fire-free period. Response of fire-adapted species assemblages to extended fire-free intervals is highly variable, even in communities with...

  6. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape.

    PubMed

    Zald, Harold S J; Dunn, Christopher J

    2018-04-26

    Many studies have examined how fuels, topography, climate, and fire weather influence fire severity. Less is known about how different forest management practices influence fire severity in multi-owner landscapes, despite costly and controversial suppression of wildfires that do not acknowledge ownership boundaries. In 2013, the Douglas Complex burned over 19,000 ha of Oregon & California Railroad (O&C) lands in Southwestern Oregon, USA. O&C lands are composed of a checkerboard of private industrial and federal forestland (Bureau of Land Management, BLM) with contrasting management objectives, providing a unique experimental landscape to understand how different management practices influence wildfire severity. Leveraging Landsat based estimates of fire severity (Relative differenced Normalized Burn Ratio, RdNBR) and geospatial data on fire progression, weather, topography, pre-fire forest conditions, and land ownership, we asked (1) what is the relative importance of different variables driving fire severity, and (2) is intensive plantation forestry associated with higher fire severity? Using Random Forest ensemble machine learning, we found daily fire weather was the most important predictor of fire severity, followed by stand age and ownership, followed by topographic features. Estimates of pre-fire forest biomass were not an important predictor of fire severity. Adjusting for all other predictor variables in a general least squares model incorporating spatial autocorrelation, mean predicted RdNBR was higher on private industrial forests (RdNBR 521.85 ± 18.67 [mean ± SE]) vs. BLM forests (398.87 ± 18.23) with a much greater proportion of older forests. Our findings suggest intensive plantation forestry characterized by young forests and spatially homogenized fuels, rather than pre-fire biomass, were significant drivers of wildfire severity. This has implications for perceptions of wildfire risk, shared fire management responsibilities, and developing fire resilience for multiple objectives in multi-owner landscapes. © 2018 by the Ecological Society of America.

  7. Impacts of the Canadian forest fires on atmospheric mercury and carbonaceous particles in Northern New York.

    PubMed

    Wang, Yungang; Huang, Jiaoyan; Zananski, Tiffany J; Hopke, Philip K; Holsen, Thomas M

    2010-11-15

    The impact of Canadian forest fires in Quebec on May 31, 2010 on PM(2.5), carbonaceous species, and atmospheric mercury species was observed at three rural sites in northern New York. The results were compared with previous studies during a 2002 Quebec forest fire episode. MODIS satellite images showed transport of forest fire smoke from southern Quebec, Canada to northern New York on May 31, 2010. Back-trajectories were consistent with this regional transport. During the forest fire event, as much as an 18-fold increase in PM(2.5) concentration was observed. The concentrations of episode-related OC, EC, BC, UVBC, and their difference (Delta-C), reactive gaseous mercury (RGM), and particle-bound mercury (PBM) were also significantly higher than those under normal conditions, suggesting a high impact of Canadian forest fire emissions on air quality in northern New York. PBM, RGM, and Delta-C are all emitted from forest fires. The correlation coefficient between Delta-C and other carbonaceous species may serve as an indicator of forest fire smoke. Given the marked changes in PBM, it may serve as a more useful tracer of forest fires over distances of several hundred kilometers relative to GEM. However, the Delta-C concentration changes are more readily measured.

  8. Web-GIS platform for forest fire danger prediction in Ukraine: prospects of RS technologies

    NASA Astrophysics Data System (ADS)

    Baranovskiy, N. V.; Zharikova, M. V.

    2016-10-01

    There are many different statistical and empirical methods of forest fire danger use at present time. All systems have not physical basis. Last decade deterministic-probabilistic method is rapidly developed in Tomsk Polytechnic University. Forest sites classification is one way to estimate forest fire danger. We used this method in present work. Forest fire danger estimation depends on forest vegetation condition, forest fire retrospective, precipitation and air temperature. In fact, we use modified Nesterov Criterion. Lightning activity is under consideration as a high temperature source in present work. We use Web-GIS platform for program realization of this method. The program realization of the fire danger assessment system is the Web-oriented geoinformation system developed by the Django platform in the programming language Python. The GeoDjango framework was used for realization of cartographic functions. We suggest using of Terra/Aqua MODIS products for hot spot monitoring. Typical territory for forest fire danger estimation is Proletarskoe forestry of Kherson region (Ukraine).

  9. Forest fires in Missouri.

    Treesearch

    Donald A. Haines; William A. Main; John S. Crosby

    1973-01-01

    Describes factors that contribute to forest fires on two of the State of Missouri's Protection Districts and the Clark National Forest. Includes an analysis of fire cause, annual distribution, weather, and activity by day of week; also discusses multiple-fire day.

  10. Interactive effects of historical logging and fire exclusion on ponderosa pine forest structure in the northern Rockies.

    PubMed

    Naficy, Cameron; Sala, Anna; Keeling, Eric G; Graham, Jon; DeLuca, Thomas H

    2010-10-01

    Increased forest density resulting from decades of fire exclusion is often perceived as the leading cause of historically aberrant, severe, contemporary wildfires and insect outbreaks documented in some fire-prone forests of the western United States. Based on this notion, current U.S. forest policy directs managers to reduce stand density and restore historical conditions in fire-excluded forests to help minimize high-severity disturbances. Historical logging, however, has also caused widespread change in forest vegetation conditions, but its long-term effects on vegetation structure and composition have never been adequately quantified. We document that fire-excluded ponderosa pine forests of the northern Rocky Mountains logged prior to 1960 have much higher average stand density, greater homogeneity of stand structure, more standing dead trees and increased abundance of fire-intolerant trees than paired fire-excluded, unlogged counterparts. Notably, the magnitude of the interactive effect of fire exclusion and historical logging substantially exceeds the effects of fire exclusion alone. These differences suggest that historically logged sites are more prone to severe wildfires and insect outbreaks than unlogged, fire-excluded forests and should be considered a high priority for fuels reduction treatments. Furthermore, we propose that ponderosa pine forests with these distinct management histories likely require distinct restoration approaches. We also highlight potential long-term risks of mechanical stand manipulation in unlogged forests and emphasize the need for a long-term view of fuels management.

  11. Development and analysis of a 12-year daily 1-km forest fire dataset across North America from NOAA/AVHRR

    Treesearch

    Ruiliang Pu; Zhanqing Li; Peng Gong; Ivan Csiszar; Robert Fraser; Wei-Min Hao; Shobha Kondragunta; Fuzhong Weng

    2007-01-01

    Fires in boreal and temperate forests play a significant role in the global carbon cycle. While forest fires in North America (NA) have been surveyed extensively by U.S. and Canadian forest services, most fire records are limited to seasonal statistics without information on temporal evolution and spatial expansion. Such dynamic information is crucial for modeling fire...

  12. Fire History of a Forest, Savanna, and Fen Mosaic at White Ranch State Forest

    Treesearch

    Daniel C. Dey; Ricahrd P. Guyette; Michael C. Stambaugh

    2004-01-01

    We present the fire history of a 1-km2 area that is a mosaic of oak forest, savanna, and fen on the White Ranch State Forest, Howell County, Missouri. We dated 135 fire scars on 35 cross-sections of post oak ( Quercus stellata) trees and constructed a fire chronology dating from 1705 to 1997. Mean fire return intervals by periods were 3.7 years (...

  13. Vulnerability and Resilience of Temperate Forest Landscapes to Broad-Scale Deforestation in Response to Changing Fire Regimes and Altered Post-Fire Vegetation Dynamics

    NASA Astrophysics Data System (ADS)

    Tepley, A. J.; Veblen, T. T.; Perry, G.; Anderson-Teixeira, K. J.

    2015-12-01

    In the face of on-going climatic warming and land-use change, there is growing concern that temperate forest landscapes could be near a tipping point where relatively small changes to the fire regime or altered post-fire vegetation dynamics could lead to extensive conversion to shrublands or savannas. To evaluate vulnerability and resilience to such conversion, we develop a simple model based on three factors we hypothesize to be key in predicting temperate forest responses to changing fire regimes: (1) the hazard rate (i.e., the probability of burning in the next year given the time since the last fire) in closed-canopy forests, (2) the hazard rate for recently-burned, open-canopy vegetation, and (3) the time to redevelop canopy closure following fire. We generate a response surface representing the proportions of the landscape potentially supporting closed-canopy forest and non-forest vegetation under nearly all combinations of these three factors. We then place real landscapes on this response surface to assess the type and magnitude of changes to the fire regime that would drive extensive forest loss. We show that the deforestation of much of New Zealand that followed initial human colonization and the introduction of a new ignition source ca. 750 years ago was essentially inevitable due to the slow rate of forest recovery after fire and the high flammability of post-fire vegetation. In North America's Pacific Northwest, by contrast, a predominantly forested landscape persisted despite two periods of widespread burning in the recent past due in large part to faster post-fire forest recovery and less pronounced differences in flammability between forests and the post-fire vegetation. We also assess the factors that could drive extensive deforestation in other regions to identify where management could reduce this potential and to guide field and modeling work to better understand the responses and ecological feedbacks to changing fire regimes.

  14. The human dimension of fire regimes on Earth.

    PubMed

    Bowman, David M J S; Balch, Jennifer; Artaxo, Paulo; Bond, William J; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Mack, Michelle; Moritz, Max A; Pyne, Stephen; Roos, Christopher I; Scott, Andrew C; Sodhi, Navjot S; Swetnam, Thomas W; Whittaker, Robert

    2011-12-01

    Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding of the development and diversification of fire regimes, covering the pre-human period, human domestication of fire, and the subsequent transition from subsistence agriculture to industrial economies. All of these phases still occur on Earth, providing opportunities for comparative research.

  15. The human dimension of fire regimes on Earth

    PubMed Central

    Bowman, David M J S; Balch, Jennifer; Artaxo, Paulo; Bond, William J; Cochrane, Mark A; D'Antonio, Carla M; DeFries, Ruth; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Mack, Michelle; Moritz, Max A; Pyne, Stephen; Roos, Christopher I; Scott, Andrew C; Sodhi, Navjot S; Swetnam, Thomas W; Whittaker, Robert

    2011-01-01

    Humans and their ancestors are unique in being a fire-making species, but ‘natural’ (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from ‘natural’ background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding of the development and diversification of fire regimes, covering the pre-human period, human domestication of fire, and the subsequent transition from subsistence agriculture to industrial economies. All of these phases still occur on Earth, providing opportunities for comparative research. PMID:22279247

  16. The human dimension of fire regimes on Earth

    USGS Publications Warehouse

    Bowman, David M.J.S.; Balch, Jennifer; Artaxo, Paulo; Bond, William J.; Cochrane, Mark A.; D'Antonio, Carla M.; DeFries, Ruth; Johnston, Fay H.; Keeley, Jon E.; Krawchuk, Meg A.; Kull, Christian A.; Michelle, Mack; Moritz, Max A.; Pyne, Stephen; Roos, Christopher I.; Scott, Andrew C.; Sodhi, Navjot S.; Swetnam, Thomas W.

    2011-01-01

    Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding of the development and diversification of fire regimes, covering the pre-human period, human domestication of fire, and the subsequent transition from subsistence agriculture to industrial economies. All of these phases still occur on Earth, providing opportunities for comparative research.

  17. Effects of fire and post-fire salvage logging on avian communities in conifer-dominated forests of the western United States

    USGS Publications Warehouse

    Kotliar, N.B.; Hejl, S.J.; Hutto, R.L.; Saab, V.; Melcher, Cynthia; McFadzen, M.E.; George, T.L.; Dobkin, D.S.

    2002-01-01

    Historically, fire was one of the most widespread natural disturbances in the western United States. More recently, however, significant anthropogenic activities, especially fire suppression and silvicultural practices, have altered fire regimes; as a result, landscapes and associated communities have changed as well. Herein, we review current knowledge of how fire and postfire salvaging practices affect avian communities in conifer-dominated forests of the western United States. Specifically, we contrast avian communities in (1) burned vs. unburned forest, and (2) unsalvaged vs. salvage-logged burns. We also examine how variation in burn characteristics (e.g., severity, age, size) and salvage logging can alter avian communities in burns.Of the 41 avian species observed in three or more studies comparing early postfire and adjacent unburned forests, 22% are consistently more abundant in burned forests, 34% are usually more abundant in unburned forests, and 44% are equally abundant in burned and unburned forests or have varied responses. In general, woodpeckers and aerial foragers are more abundant in burned forest, whereas most foliage-gleaning species are more abundant in unburned forests. Bird species that are frequently observed in stand-replacement burns are less common in understory burns; similarly, species commonly observed in unburned forests often decrease in abundance with increasing burn severity. Granivores and species common in open-canopy forests exhibit less consistency among studies. For all species, responses to tire may be influenced by a number of factors including burn severity, fire size and shape, proximity to unburned forests, pre-and post-fire cover types, and time since fire. In addition, postfire management can alter species’ responses to burns. Most cavity-nesting species do not use severely salvaged burns, whereas some cavity-nesters persist in partially salvaged burns. Early post fire specialists, in particular, appear to prefer unsalvaged burns. We discuss several alternatives to severe salvage-logging that will help provide habitat for cavity nesters.We provide an overview of critical research questions and design considerations crucial for evaluating the effects of prescribed fire and other anthropogenic disturbances, such as forest fragmentation. Management of native avifaunas may be most successful if natural disturbance regimes, including fire, are permitted to occur when possible. Natural fires could be augmented with practices, such as prescribed fire (including high-severity fire), that mimic inherent disturbance regimes.

  18. Real time forest fire warning and forest fire risk zoning: a Vietnamese case study

    NASA Astrophysics Data System (ADS)

    Chu, T.; Pham, D.; Phung, T.; Ha, A.; Paschke, M.

    2016-12-01

    Forest fire occurs seriously in Vietnam and has been considered as one of the major causes of forest lost and degradation. Several studies of forest fire risk warning were conducted using Modified Nesterov Index (MNI) but remaining shortcomings and inaccurate predictions that needs to be urgently improved. In our study, several important topographic and social factors such as aspect, slope, elevation, distance to residential areas and road system were considered as "permanent" factors while meteorological data were updated hourly using near-real-time (NRT) remotely sensed data (i.e. MODIS Terra/Aqua and TRMM) for the prediction and warning of fire. Due to the limited number of weather stations in Vietnam, data from all active stations (i.e. 178) were used with the satellite data to calibrate and upscale meteorological variables. These data with finer resolution were then used to generate MNI. The only significant "permanent" factors were selected as input variables based on the correlation coefficients that computed from multi-variable regression among true fire-burning (collected from 1/2007) and its spatial characteristics. These coefficients also used to suggest appropriate weight for computing forest fire risk (FR) model. Forest fire risk model was calculated from the MNI and the selected factors using fuzzy regression models (FRMs) and GIS based multi-criteria analysis. By this approach, the FR was slightly modified from MNI by the integrated use of various factors in our fire warning and prediction model. Multifactor-based maps of forest fire risk zone were generated from classifying FR into three potential danger levels. Fire risk maps were displayed using webgis technology that is easy for managing data and extracting reports. Reported fire-burnings thereafter have been used as true values for validating the forest fire risk. Fire probability has strong relationship with potential danger levels (varied from 5.3% to 53.8%) indicating that the higher potential risk, the more chance of fire happen. By adding spatial factors to continuous daily updated remote sensing based meteo-data, results are valuable for both mapping forest fire risk zones in short and long-term and real time fire warning in Vietnam. Key words: Near-real-time, forest fire warning, fuzzy regression model, remote sensing.

  19. Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results

    Treesearch

    Nancy H.F. French; Eric S. Kasischke; Ronald J. Hall; Karen A. Murphy; David L. Verbyla; Elizabeth E. Hoy; Jennifer L. Allen

    2008-01-01

    There has been considerable interest in the recent literature regarding the assessment of post-fire effects on forested areas within the North American boreal forest. Assessing the physical and ecological effects of fire in boreal forests has far-reaching implications for a variety of ecosystem processes -- such as post-fire forest succession -- and land management...

  20. Forest fires in Pennsylvania.

    Treesearch

    Donald A. Haines; William A. Main; Eugene F. McNamara

    1978-01-01

    Describes factors that contribute to forest fires in Pennsylvania. Includes an analysis of basic statistics; distribution of fires during normal, drought, and wet years; fire cause, fire activity by day-of-week; multiple-fire day; and fire climatology.

  1. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions.

    PubMed

    Aragão, Luiz E O C; Anderson, Liana O; Fonseca, Marisa G; Rosan, Thais M; Vedovato, Laura B; Wagner, Fabien H; Silva, Camila V J; Silva Junior, Celso H L; Arai, Egidio; Aguiar, Ana P; Barlow, Jos; Berenguer, Erika; Deeter, Merritt N; Domingues, Lucas G; Gatti, Luciana; Gloor, Manuel; Malhi, Yadvinder; Marengo, Jose A; Miller, John B; Phillips, Oliver L; Saatchi, Sassan

    2018-02-13

    Tropical carbon emissions are largely derived from direct forest clearing processes. Yet, emissions from drought-induced forest fires are, usually, not included in national-level carbon emission inventories. Here we examine Brazilian Amazon drought impacts on fire incidence and associated forest fire carbon emissions over the period 2003-2015. We show that despite a 76% decline in deforestation rates over the past 13 years, fire incidence increased by 36% during the 2015 drought compared to the preceding 12 years. The 2015 drought had the largest ever ratio of active fire counts to deforestation, with active fires occurring over an area of 799,293 km 2 . Gross emissions from forest fires (989 ± 504 Tg CO 2 year -1 ) alone are more than half as great as those from old-growth forest deforestation during drought years. We conclude that carbon emission inventories intended for accounting and developing policies need to take account of substantial forest fire emissions not associated to the deforestation process.

  2. Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA?

    PubMed

    Baker, William L

    2015-01-01

    Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used new reference data and records of high-severity fire from 1984-2012 across all dry forests (25.5 million ha) of the western USA to test these hypotheses. I also approximated projected effects of climatic change on high-severity fire in dry forests by applying existing projections. This analysis showed the rate of recent high-severity fire in dry forests is within the range of historical rates, or is too low, overall across dry forests and individually in 42 of 43 analysis regions. Significant upward trends were lacking overall from 1984-2012 for area burned and fraction burned at high severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis regions. Projections for A.D. 2046-2065 showed high-severity fire would generally be still operating at, or have been restored to historical rates, although high projections suggest high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change. Some adverse ecological effects of high-severity fires are concerns. Managers and communities can improve our ability to live with high-severity fire in dry forests.

  3. Fire Impact on Phytomass and Carbon Emissions in the Forests of Siberia

    NASA Astrophysics Data System (ADS)

    Ivanova, Galina A.; Zhila, Sergei V.; Ivanov, Valery A.; Kovaleva, Nataly M.; Kukavskaya, Elena A.; Platonova, Irina A.; Conard, Susan G.

    2014-05-01

    Siberian boreal forests contribute considerably to the global carbon budget, since they take up vast areas, accumulate large amount of carbon, and are sensitive to climatic changes. Fire is the main forest disturbance factor, covering up to millions of hectares of boreal forests annually, of which the majority is in Siberia. Carbon emissions released from phytomass burning influence atmospheric chemistry and global carbon cycling. Changing climate and land use influence the number and intensity of wildfires, forest state, and productivity, as well as global carbon balance. Fire effects on forest overstory, subcanopy woody layer, and ground vegetation phytomass were estimated on sites in light-conifer forests of the Central Siberia as a part of the project "The Influence of Changing Forestry Practices on the Effects of Wildfire and on Interactions Between Fire and Changing Climate in Central Siberia" supported by NASA (NEESPI). This study focuses on collecting quantitative data and modeling the influence of fires of varying intensity on fire emissions, carbon budget, and ecosystem processes in coniferous stands. Fires have a profound impact on forest-atmospheric carbon exchange and transform forests from carbon sinks to carbon sources lasting long after the time of burning. Our long-term experiments allowed us to identify vegetation succession patterns in taiga Scots pine stands after fires of known behavior. Estimating fire contributions to the carbon budget requires consideration of many factors, including vegetation type and fire type and intensity. Carbon emissions were found to depend on fire intensity and weather. In the first several years after fire, the above-ground phytomass appeared to be strongly controlled by fire intensity. However, the influence of burning intensity on organic matter accumulation was found to decrease with time.

  4. Short-term responses of birds to prescribed fire in fire-suppressed forests of California

    Treesearch

    Bagne Karen; Kathryn Purcell

    2011-01-01

    Prescribed fire is one tool for restoring fire-suppressed forests, but application of fire during spring coincides with breeding and arrival of migrant birds. We examined effects of low-severity prescribed fires on counts of birds in a managed forest in the Sierra Nevada of California immediately, 1 year, and 3–6 years after fire was applied in spring. Of 26 species...

  5. Dry forests of the Northeastern Cascades Fire and Fire Surrogate project site, Mission Creek, Okanogan-Wenatchee National Forest

    Treesearch

    James K. Agee; John F. (comps.) Lehmkuhl

    2009-01-01

    The Fire and Fire Surrogate (FFS) project is a large long-term metastudy established to assess the effectiveness and ecological impacts of burning and fire "surrogates" such as cuttings and mechanical fuel treatments that are used instead of fire, or in combination with fire, to restore dry forests. One of the 13 national FFS sites is the Northeastern...

  6. Effectiveness of Prescribed Fire as a Fuel Treatment in Californian Coniferous Forests

    Treesearch

    Nicole M. Vaillant; JoAnn Fites-Kaufman; Scott L. Stephens

    2006-01-01

    Effective fire suppression for the past century has altered forest structure and increased fuel loads. Prescribed fire as a fuels treatment can reduce wildfire size and severity. This study investigates how prescribed fire affects fuel loads, forest structure, potential fire behavior, and modeled tree mortality at 80th, 90th, and 97.5th percentile fire weather...

  7. A soil burn severity index for understanding soil-fire relations in tropical forests

    Treesearch

    Theresa B. Jain; William A. Gould; Russell T. Graham; David S. Pilliod; Leigh B. Lentile; Grizelle Gonzalez

    2008-01-01

    Methods for evaluating the impact of fires within tropical forests are needed as fires become more frequent and human populations and demands on forests increase. Short- and long-term fire effects on soils are determined by the prefire, fire, and postfire environments. We placed these components within a fire-disturbance continuum to guide our literature synthesis and...

  8. Glare-reducing goggles for lookouts.

    Treesearch

    Richard E. McArdle; William G. Morris; Thornton T. Munger

    1936-01-01

    Detection of forest fires while they are still small is so important in forest protection that studies of the visibility of forest fire smokes from lookout points has been one of the principal phases of the fire studies program of the Pacific Northwest Forest Experiment Station. One phase of fire detection is the personal efficiency of the lookout. The Station has...

  9. Influence of wildfires in the boreal forests of Eastern Siberia on atmospheric aerosol parameters

    NASA Astrophysics Data System (ADS)

    Tomshin, Oleg A.; Solovyev, Vladimir S.

    2017-11-01

    The results of studies of the dynamics of forest fires in the boreal forests of Yakutia (Eastern Siberia) for 2001-2016 are presented. Variations of aerosol optical thickness (AOT), aerosol index (AI) and total carbon monoxide content during May-September were studied depending on the different forest fire activity level. It is shown that the seasonal variations of AOT, AI and CO in the most fire-dangerous years differ significantly from the fire seasons when forest fire activity was medium or low.

  10. Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe)

    NASA Astrophysics Data System (ADS)

    Feurdean, Angelica; Veski, Siim; Florescu, Gabriela; Vannière, Boris; Pfeiffer, Mirjam; O'Hara, Robert B.; Stivrins, Normunds; Amon, Leeli; Heinsalu, Atko; Vassiljev, Jüri; Hickler, Thomas

    2017-08-01

    Disturbances by fire are essential for the functioning of boreal/hemiboreal forests, but knowledge of long-term fire regime dynamics is limited. We analysed macrocharcoal morphologies and pollen of a sediment record from Lake Lielais Svētiņu (eastern Latvia), and in conjunction with fire traits analysis present the first record of Holocene variability in fire regime, fuel sources and fire types in boreal forests of the Baltic region. We found a phase of moderate to high fire activity during the cool and moist early (mean fire return interval; mFRI of ∼280 years; 11,700-7500 cal yr BP) and the late (mFRI of ∼190 years; 4500-0 cal yr BP) Holocene and low fire activity (mFRI of ∼630 years) during the Holocene Thermal Optimum (7500-4500 cal yr BP). Charcoal morphotypes and the pollen record show the predominance of frequent surface fires, occasionally transitioning to the crown during Pinus sylvestris-Betula boreal forests and less frequent surface fires during the dominance of temperate deciduous forests. In contrast to the prevailing opinion that fires in boreal forests are mostly low to moderate severity surface fires, we found evidence for common occurrence of stand-replacing crown fires in Picea abies canopy. Our results highlight that charcoal morphotypes analysis allows for distinguishing the fuel types and surface from crown fires, therefore significantly advancing our interpretation of fire regime. Future warmer temperatures and increase in the frequency of dry spells and abundant biomass accumulation can enhance the fire risk on the one hand, but will probably promote the expansion of broadleaf deciduous forests to higher latitudes, on the other hand. By highlighting the capability of broadleaf deciduous forests to act as fire-suppressing landscape elements, our results suggest that fire activity may not increase in the Baltic area under future climate change.

  11. Prediction of forest fires occurrences with area-level Poisson mixed models.

    PubMed

    Boubeta, Miguel; Lombardía, María José; Marey-Pérez, Manuel Francisco; Morales, Domingo

    2015-05-01

    The number of fires in forest areas of Galicia (north-west of Spain) during the summer period is quite high. Local authorities are interested in analyzing the factors that explain this phenomenon. Poisson regression models are good tools for describing and predicting the number of fires per forest areas. This work employs area-level Poisson mixed models for treating real data about fires in forest areas. A parametric bootstrap method is applied for estimating the mean squared errors of fires predictors. The developed methodology and software are applied to a real data set of fires in forest areas of Galicia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes

    Treesearch

    Jamie Lydersen; Malcolm North; Brandon M. Collins

    2014-01-01

    The 2013 Rim Fire, originating on Forest Service land, burned into old-growth forests within Yosemite National Park with relatively restored frequent-fire regimes (¡Ý2 predominantly low and moderate severity burns within the last 35 years). Forest structure and fuels data were collected in the field 3-4 years before the fire, providing a rare chance to use pre-existing...

  13. Advanced Fire Information System - A real time fire information system for Africa

    NASA Astrophysics Data System (ADS)

    Frost, P. E.; Roy, D. P.

    2012-12-01

    The Council for Scientific and Industrial Research (CSIR) lead by the Meraka Institute and supported by the South African National Space Agency (SANSA) developed the Advanced Fire Information System (AFIS) to provide near real time fire information to a variety of operational and science fire users including disaster managers, fire fighters, farmers and forest managers located across Southern and Eastern Africa. The AFIS combines satellite data with ground based observations and statistics and distributes the information via mobile phone technology. The system was launched in 2004, and Eskom (South Africa' and Africa's largest power utility) quickly became the biggest user and today more than 300 Eskom line managers and support staff receive cell phone and email fire alert messages whenever a wildfire is within 2km of any of the 28 000km of Eskom electricity transmission lines. The AFIS uses Earth observation satellites from NASA and Europe to detect possible actively burning fires and their fire radiative power (FRP). The polar orbiting MODIS Terra and Aqua satellites provide data at around 10am, 15pm, 22am and 3am daily, while the European Geostationary MSG satellite provides 15 minute updates at lower spatial resolution. The AFIS processing system ingests the raw satellite data and within minutes of the satellite overpass generates fire location and FRP based fire intensity information. The AFIS and new functionality are presented including an incident report and permiting system that can be used to differentiate between prescribed burns and uncontrolled wild fires, and the provision of other information including 5-day fire danger forecasts, vegetation curing information and historical burned area maps. A new AFIS mobile application for IOS and Android devices as well as a fire reporting tool are showcased that enable both the dissemination and alerting of fire information and enable user upload of geo tagged photographs and on the fly creation of fire reports for user defined areas of interest.

  14. Assessing the Role and Impact of Geospatial Data for Wildland Fire Management Decisions

    NASA Astrophysics Data System (ADS)

    Klein, E. A.; Lev, S. M.

    2016-12-01

    The 2015 Wildland and Fire Science and Technology Task Force Final Report, produced by the National Science and Technology Council, Committee on Environment, Natural Resources, and Sustainability, Subcommittee on Disaster Reduction, highlighted the increasing frequency of large wildfires and the growing demand for science to inform critical resource decisions to manage, mitigate, respond to, and recover from wildland fires. Federal spending on fire suppression from 2005-2015 has more than doubled despite policy changes that prioritize the mitigation of fire risks through the use of fuel treatments, prescribed fire, and management of naturally occurring wildfires to protect life and property. Fire suppression policies over the last century have created forests primed for severe fire, and in the face of a changing climate, the benefits of re-introducing fire into once fire-resilient ecosystems are clear. There are a range of complex factors and regional variation associated with wildland fire risk that complicate our understanding and effective management of this hazard. Data derived from Earth-observing (EO) systems and networks are a crucial input for managers when making decisions about fire suppression and fuel management. EO data can also be used to develop pre- and post-fire metrics that can aid in the evaluating the effectiveness of wildland fire management decisions. A value-tree method for mapping the role of EO systems and networks in delivering societal benefit through key Federal objectives related to wildland fire management will be presented. The value-tree methodology utilizes input from subject matter experts to assess the availability and usability of data and data products and to evaluate the impact of individual EO data inputs for achieving wildland fire management objectives. The results provide a qualitative assessment of the value of the data for the objectives described and identify critical gaps and continuity issues associated with improvements to and continuous delivery of societal benefit.

  15. The forest fire season at different elevations in Idaho

    Treesearch

    J. A. Larsen

    1925-01-01

    In any fire-ridden forest region, such as north Idaho, there is great need for a tangible basis by which to judge the length and the intensity of the fire season in different forest types and at different elevations. The major and natural forest types, such as the western yellow pine forests, the western white-pine forests, and the subalpine forests occur in...

  16. 42 CFR 485.64 - Condition of participation: Disaster procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... their application, and be assigned specific responsibilities. (a) Standard: Disaster plan. The facility's written disaster plan must be developed and maintained with assistance of qualified fire, safety, and other appropriate experts. The plan must include— (1) Procedures for prompt transfer of casualties...

  17. 42 CFR 485.64 - Condition of participation: Disaster procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... their application, and be assigned specific responsibilities. (a) Standard: Disaster plan. The facility's written disaster plan must be developed and maintained with assistance of qualified fire, safety, and other appropriate experts. The plan must include— (1) Procedures for prompt transfer of casualties...

  18. 42 CFR 485.64 - Condition of participation: Disaster procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... their application, and be assigned specific responsibilities. (a) Standard: Disaster plan. The facility's written disaster plan must be developed and maintained with assistance of qualified fire, safety, and other appropriate experts. The plan must include— (1) Procedures for prompt transfer of casualties...

  19. 42 CFR 485.64 - Condition of participation: Disaster procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... their application, and be assigned specific responsibilities. (a) Standard: Disaster plan. The facility's written disaster plan must be developed and maintained with assistance of qualified fire, safety, and other appropriate experts. The plan must include— (1) Procedures for prompt transfer of casualties...

  20. Seed invasion filters and forest fire severity

    Treesearch

    Tom R. Cottrell; Paul F. Hessburg; Jonathan A. Betz

    2008-01-01

    Forest seed dispersal is altered after fire. Using seed traps, we studied impacts of fire severity on timing of seed dispersal, total seed rain, and seed rain richness in patches of high and low severity fire and unburned Douglas-fir (Pseudotsuga menziesii) forests in the Fischer and Tyee fire complexes in the eastern Washington Cascades. Unburned...

  1. Historical fire regime and forest variability on two eastern Great Basin fire-sheds (USA)

    Treesearch

    Stanley G. Kitchen

    2012-01-01

    Proper management of naturally forested landscapes requires knowledge of key disturbance processes and their effects on species composition and structure. Spatially-intensive fire and forest histories provide valuable information about how fire and vegetation may vary and interact on heterogeneous landscapes. I constructed 800-year fire and tree recruitment...

  2. Leading Preparedness for Local Fire Agencies

    DTIC Science & Technology

    2014-12-01

    tsunami that raced across coastal cities including Fukushima where the Fukushima - Daiichi nuclear power station was flooded. The disaster killed more than...emergency preparedness related governmental agencies and increased support at the federal level with a focus on natural disasters .13 The FEMA was...participation has led to increased safety and situational awareness through directed information sharing for all fire response personnel. The core capability of

  3. Effects of repeated fires on ecosystem C and N stocks along a fire induced forest/grassland gradient

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Hsin; Chen, Yung-Sheng; Huang, Yu-Hsuan; Chiou, Chyi-Rong; Lin, Chau-Chih; Menyailo, Oleg V.

    2013-03-01

    Repeated fires might have different effect on ecosystem carbon storage than a single fire event, but information on repeated fires and their effects on forest ecosystems and carbon storage is scarce. However, changes in climate, vegetation composition, and human activities are expected to make forests more susceptible to fires that recur with relatively high frequency. In this study, the effects of repeated fires on ecosystem carbon and nitrogen stocks were examined along a fire-induced forest/grassland gradient wherein the fire events varied from an unburned forest to repeatedly burned grassland. Results from the study show repeated fires drastically decreased ecosystem carbon and nitrogen stocks along the forest/grassland gradient. The reduction began with the disappearance of living tree biomass, and followed by the loss of soil carbon and nitrogen. Within 4 years of the onset of repeated fires on the unburned forest, the original ecosystem carbon and nitrogen stocks were reduced by 42% and 21%, respectively. Subsequent fires caused cumulative reductions in ecosystem carbon and nitrogen stocks by 68% and 44% from the original ecosystem carbon and nitrogen stocks, respectively. The analyses of carbon budgets calculated by vegetation composition and stable isotopic δ13C values indicate that 84% of forest-derived carbon is lost at grassland, whereas the gain of grass-derived carbon only compensates 18% for this loss. Such significant losses in ecosystem carbon and nitrogen stocks suggest that the effects of repeated fires have substantial impacts on ecosystem and soil carbon and nitrogen cycling.

  4. Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park

    USGS Publications Warehouse

    Kane, Van R.; Lutz, James A.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Povak, Nicholas A.; Brooks, Matthew L.

    2013-01-01

    While fire shapes the structure of forests and acts as a keystone process, the details of how fire modifies forest structure have been difficult to evaluate because of the complexity of interactions between fires and forests. We studied this relationship across 69.2 km2 of Yosemite National Park, USA, that was subject to 32 fires ⩾40 ha between 1984 and 2010. Forests types included ponderosa pine (Pinus ponderosa), white fir-sugar pine (Abies concolor/Pinus lambertiana), and red fir (Abies magnifica). We estimated and stratified burned area by fire severity using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR). Airborne LiDAR data, acquired in July 2010, measured the vertical and horizontal structure of canopy material and landscape patterning of canopy patches and gaps. Increasing fire severity changed structure at the scale of fire severity patches, the arrangement of canopy patches and gaps within fire severity patches, and vertically within tree clumps. Each forest type showed an individual trajectory of structural change with increasing fire severity. As a result, the relationship between estimates of fire severity such as RdNBR and actual changes appears to vary among forest types. We found three arrangements of canopy patches and gaps associated with different fire severities: canopy-gap arrangements in which gaps were enclosed in otherwise continuous canopy (typically unburned and low fire severities); patch-gap arrangements in which tree clumps and gaps alternated and neither dominated (typically moderate fire severity); and open-patch arrangements in which trees were scattered across open areas (typically high fire severity). Compared to stands outside fire perimeters, increasing fire severity generally resulted first in loss of canopy cover in lower height strata and increased number and size of gaps, then in loss of canopy cover in higher height strata, and eventually the transition to open areas with few or no trees. However, the estimated fire severities at which these transitions occurred differed for each forest type. Our work suggests that low severity fire in red fir forests and moderate severity fire in ponderosa pine and white fir-sugar pine forests would restore vertical and horizontal canopy structures believed to have been common prior to the start of widespread fire suppression in the early 1900s. The fusion of LiDAR and Landsat data identified post-fire structural conditions that would not be identified by Landsat alone, suggesting a broad applicability of combining Landsat and LiDAR data for landscape-scale structural analysis for fire management.

  5. Fire performance in traditional silvicultural and fire and fire surrogate treatments in Sierran mixed-conifer forests: a brief summary

    Treesearch

    Jason J. Moghaddas; Scott L. Stephens

    2007-01-01

    Mixed conifer forests cover 7.9 million acres of California’s total land base. Forest structure in these forests has been influenced by harvest practices and silvicultural systems implemented since the beginning of the California Gold Rush in 1849. Today, the role of fire in coniferous forests, both in shaping past stand structure and its ability to shape future...

  6. MODIS NDVI Response Following Fires in Siberia

    NASA Technical Reports Server (NTRS)

    Ranson, K. Jon; Sun, G.; Kovacs, K.; Kharuk, V. I.

    2003-01-01

    The Siberian boreal forest is considered a carbon sink but may become an important source of carbon dioxide if climatic warming predictions are correct. The forest is continually changing through various disturbance mechanisms such as insects, logging, mineral exploitation, and especially fires. Patterns of disturbance and forest recovery processes are important factors regulating carbon flux in this area. NASA's Terra MODIS provides useful information for assessing location of fires and post fire changes in forests. MODIS fire (MOD14), and NDVI (MOD13) products were used to examine fire occurrence and post fire variability in vegetation cover as indicated by NDVI. Results were interpreted for various post fire outcomes, such as decreased NDVI after fire, no change in NDVI after fire and positive NDVI change after fire. The fire frequency data were also evaluated in terms of proximity to population centers, and transportation networks.

  7. A heuristic expert system for forest fire guidance in Greece.

    PubMed

    Iliadis, Lazaros S; Papastavrou, Anastasios K; Lefakis, Panagiotis D

    2002-07-01

    Forests and forestlands are common inheritance for all Greeks and a piece of the national wealth that must be handed over to the next generations in the best possible condition. After 1974, Greece faces a severe forest fire problem and forest fire forecasting is the process that will enable the Greek ministry of Agriculture to reduce the destruction. This paper describes the basic design principles of an Expert System that performs forest fire forecasting (for the following fire season) and classification of the prefectures of Greece into forest fire risk zones. The Expert system handles uncertainty and uses heuristics in order to produce scenarios based on the presence or absence of various qualitative factors. The initial research focused on the construction of a mathematical model which attempted to describe the annual number of forest fires and burnt area in Greece based on historical data. However this has proven to be impossible using regression analysis and time series. A closer analysis of the fire data revealed that two qualitative factors dramatically affect the number of forest fires and the hectares of burnt areas annually. The first is political stability and national elections and the other is drought cycles. Heuristics were constructed that use political stability and drought cycles, to provide forest fire guidance. Fuzzy logic was applied to produce a fuzzy expected interval for each prefecture of Greece. A fuzzy expected interval is a narrow interval of values that best describes the situation in the country or a part of the country for a certain time period. A successful classification of the prefectures of Greece in forest fire risk zones was done by the system, by comparing the fuzzy expected intervals to each other. The system was tested for the years 1994 and 1995. The testing has clearly shown that the system can predict accurately, the number of forest fires for each prefecture for the following year. The average accuracy was as high as 85.25% for 1995 and 80.89% for 1994. This makes the Expert System a very important tool for forest fire prevention planning.

  8. A Disaster Preparedness Plan for Small Public Libraries, 2002.

    ERIC Educational Resources Information Center

    Haines, Jan, Comp.

    The State Library of Ohio designed this disaster preparedness plan to assist small libraries in gathering information that will be invaluable in the event of an emergency. This plan, which focuses on fire and water disaster prevention, is devoted to using simple and inexpensive measures to prevent a disaster or to lessen its effect. The plan…

  9. 75 FR 51837 - Montana; Amendment No. 3 to Notice of a Major Disaster Declaration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... authority of the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121 et seq.... Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. 5121-5207 (the Stafford Act). Therefore, I... Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  10. Synergy between land use and climate change increases future fire risk in Amazon forests

    NASA Astrophysics Data System (ADS)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; Bond-Lamberty, Ben; Cardoso Pereira, José Miguel; Hurtt, George; Asrar, Ghassem

    2017-12-01

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change - Representative Concentration Pathway (RCP) 8.5 - projected understory fires increase in frequency and duration, burning 4-28 times more forest in 2080-2100 than during 1990-2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9-5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.

  11. Recording and Evaluating the Role of Volunteers Regarding Natural Hazards Prevention and Disaster Management in Greece

    NASA Astrophysics Data System (ADS)

    Papanikolaou, Ioannis; Papanikolaou, Dimitrios; Diakakis, Michalis; Deligiannakis, Georgios

    2013-04-01

    The role of volunteers in disaster management is of decisive importance, particularly for major catastrophes. In Northern Europe, volunteers are the main group that responds even in regular low impact incidents. On the other hand, in Southern Europe, state professionals hold the primary role. This is partly cultural, but it is also defined by the different types of hazards involved. For example, Southern Europe suffers from earthquakes and wildfires that can cause severe and widespread damage. This implies that there is a need for highly trained and skilled personnel, not only for efficiency purposes, but also in order to avoid casualties among the operating staff. However, the need of volunteers' involvement is well recognised both for prevention measures (mainly regarding forest fires) and for disaster management purposes particularly during major catastrophes whereas the professional personnel are outsourced. Moreover, the economic crisis stretches the public sector, decreasing the capability and resources of the state mechanism. The latter increases the need for the volunteers' active participation, which is also regarded as cost effective. Greece has a short tradition regarding volunteers and their official involvement with natural hazards. This is also due to the fact that civil protection has a short history in Greece, since it was established in 1995, whereas its legal framework was only shaped in 2002. The act 3013/2002 introduces officially the role of volunteers within the legal framework. In particular, the act N3013/2002 offers a detailed description of the role of voluntary organizations within the civil protection system, the interagency cooperation, and the financial instruments through which the various bodies secure their funding along with the establishment of an inventory from the General Secretariat of Civil Protection. However, several provisions described in the 2002 Act have not been applied yet. For instance voluntary organizations are not insured and not properly trained. The Civil Protection Research Center designed to provide training to civil protection officers and volunteers by the 2002 act, was never established. Moreover, following the economic crisis in Greece, its establishment was cancelled. Overall, volunteers are scattered in small groups with a predominant local supportive character and resources. However, despite the lack of support a few volunteer groups manage to organise and set up a significant network across the country. Two of these organizations are the ESEPA (The Voluntary Corp of Greek Firemen and Replanters) focused on forest fires and HRT (Hellenic Rescue Team) focused on earthquakes. Lately both groups started to cooperate by setting up a bilateral agreement. As one of the major problems is the lack of training, these groups try to cover this important gap by establishing training camps or executing regular drills in coordination with state agencies. Despite their short history volunteer groups are highly valued by the municipalities' civil protection officials. Working through a LIFE+ project on "Local Authorities Alliance for Forest Fire Prevention - LIFE08/ENV/GR/000553 " which is implemented with the contribution of the LIFE financial instrument of the European Community, we conducted the largest questionnaire survey in Greece regarding Civil Protection issues, among the municipalities of Greece. Overall 36% (117/325) of the country municipalities responded (heads of civil protection offices), offering an adequate statistical sample. Results showed that in 66% of the municipalities, volunteers get involved in forest fire prevention actions. From these municipalities 67.5% evaluate the volunteers' involvement as necessary, 27.5% as supportive (subsidiary) and 5% support that their involvement is not substantial. However, only 41,5% replied that they keep registry of each voluntary organization, regarding its capabilities, availability and equipment, whereas 42.5% support that a record does exist, but it has not been properly exploited and finally 16% keep no records.

  12. A dendrochronology based fire history of Jeffry pine-mixed conifer forests in the Sierra San Pedro Martir, Mexico

    Treesearch

    Scott L. Stephens; Carl N. Skinner; Samantha J. Gill

    2003-01-01

    Conifer forests in northwestern Mexico have not experienced systematic fire suppression or logging, making them unique in western North America. Fire regimes of Pinus jeffreyi Grev. & Balf. mixed conifer forests in the Sierra San Pedro Martir, Baja California, Mexico, were determined by identifying 105 fire dates from 1034 fire scars in 105 specimens. Fires were...

  13. Initial tree regeneration responses to fire and thinning treatments in a Sierra Nevada mixed-conifer forest, USA

    Treesearch

    Harold S.J. Zald; Andrew N. Gray; Malcolm North; Ruth A. Kern

    2008-01-01

    Fire is a driver of ecosystem patterns and processes in forests globally, but natural fire regimes have often been altered by decades of active fire management. Following almost a century of fire suppression, many Western U.S. forests have greater fuel levels, higher tree densities, and are now dominated by fire-sensitive, shade-tolerant species. These fuel-loaded...

  14. A soil burn severity index for understanding soil-fire relations in tropical forests [Chinese version

    Treesearch

    Theresa B. Jain; William A. Gould; Russell T. Graham; David S. Pilliod; Leigh B. Lentile; Grizelle Gonzalez

    2008-01-01

    Methods for evaluating the impact of fires within tropical forests are needed as fires become more frequent and human populations and demands on forests increase. Short- and long-term fire effects on soils are determined by the prefire, fire, and postfire environments. We placed these components within a fire-disturbance continuum to guide our literature synthesis and...

  15. The ecology of mixed severity fire regimes in Washington, Oregon, and Northern California

    Treesearch

    David Perry; Paul Hessburg; Carl Skinner; Thomas Spies; Scott Stephens; Alan Henry Taylor; Jerry Franklin; Brenda McComb; Greg Riegel

    2011-01-01

    Forests characterized by mixed-severity fires occupy a broad moisture gradient between lower elevation forests typified by low-severity fires and higher elevation forests in which high-severity, stand replacing fires are the norm. Mixed-severity forest types are poorly documented and little understood but likely occupy significant areas in the western United States. By...

  16. Long-term impacts of prescribed fire on stand structure, growth, mortality, and individual tree vigor in Pinus resinosa forests

    Treesearch

    Sawyer S. Scherer; Anthony W. D' Amato; Christel C. Kern; Brian J. Palik; Matthew B. Russell

    2016-01-01

    Prescribed fire is increasingly being viewed as a valuable tool for mitigating the ecological consequences of long-term fire suppression within fire-adapted forest ecosystems. While the use of burning treatments in northern temperate conifer forests has at times received considerable attention, the long-term (>10 years) effects on forest structure and...

  17. Forest health in the Blue Mountains: a management strategy for fire-adapted ecosystems.

    Treesearch

    R.W. Mutch; S.F. Arno; J.K. Brown; C.E. Carlson; R.D. Ottmar; J.L. Peterson

    1993-01-01

    The fire-adapted forests of the Blue Mountains are suffering from a forest health problem of catastrophic proportions. Contributing to the decline of forest health are such factors as the extensive harvesting of the western larch and ponderosa pine overstory during the 1900s, attempted exclusion of fire from a fire-dependent ecosystem, and the continuing drought. The...

  18. Climatic stress increases forest fire severity across the western United States

    USGS Publications Warehouse

    van Mantgem, Philip J.; Nesmith, Jonathan C. B.; Keifer, MaryBeth; Knapp, Eric E.; Flint, Alan; Flint, Lorraine

    2013-01-01

    Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after accounting for fire defences and injuries, and appeared to influence the effects of crown and stem injuries. Climate and fire interactions did not vary substantially across geographical regions, major genera and tree sizes. Our findings support recent physiological evidence showing that both drought and heating from fire can impair xylem conductivity. Warming trends have been linked to increasing probabilities of severe fire weather and fire spread; our results suggest that warming may also increase forest fire severity (the number of trees killed) independent of fire intensity (the amount of heat released during a fire).

  19. Decadal time-scale monitoring of forest fires in Similipal Biosphere Reserve, India using remote sensing and GIS.

    PubMed

    Saranya, K R L; Reddy, C Sudhakar; Rao, P V V Prasada; Jha, C S

    2014-05-01

    Analyzing the spatial extent and distribution of forest fires is essential for sustainable forest resource management. There is no comprehensive data existing on forest fires on a regular basis in Biosphere Reserves of India. The present work have been carried out to locate and estimate the spatial extent of forest burnt areas using Resourcesat-1 data and fire frequency covering decadal fire events (2004-2013) in Similipal Biosphere Reserve. The anomalous quantity of forest burnt area was recorded during 2009 as 1,014.7 km(2). There was inconsistency in the fire susceptibility across the different vegetation types. The spatial analysis of burnt area shows that an area of 34.2 % of dry deciduous forests, followed by tree savannah, shrub savannah, and grasslands affected by fires in 2013. The analysis based on decadal time scale satellite data reveals that an area of 2,175.9 km(2) (59.6 % of total vegetation cover) has been affected by varied rate of frequency of forest fires. Fire density pattern indicates low count of burnt area patches in 2013 estimated at 1,017 and high count at 1,916 in 2004. An estimate of fire risk area over a decade identifies 12.2 km(2) is experiencing an annual fire damage. Summing the fire frequency data across the grids (each 1 km(2)) indicates 1,211 (26 %) grids are having very high disturbance regimes due to repeated fires in all the 10 years, followed by 711 grids in 9 years and 418 in 8 years and 382 in 7 years. The spatial database offers excellent opportunities to understand the ecological impact of fires on biodiversity and is helpful in formulating conservation action plans.

  20. Climate change and forest fires.

    PubMed

    Flannigan, M D; Stocks, B J; Wotton, B M

    2000-11-15

    This paper addresses the impacts of climate change on forest fires and describes how this, in turn, will impact on the forests of the United States. In addition to reviewing existing studies on climate change and forest fires we have used two transient general circulation models (GCMs), namely the Hadley Centre and the Canadian GCMs, to estimate fire season severity in the middle of the next century. Ratios of 2 x CO2 seasonal severity rating (SSR) over present day SSR were calculated for the means and maximums for North America. The results suggest that the SSR will increase by 10-50% over most of North America; although, there are regions of little change or where the SSR may decrease by the middle of the next century. Increased SSRs should translate into increased forest fire activity. Thus, forest fires could be viewed as an agent of change for US forests as the fire regime will respond rapidly to climate warming. This change in the fire regime has the potential to overshadow the direct effects of climate change on species distribution and migration.

  1. Wildfire and drought dynamics destabilize carbon stores of fire-suppressed forests.

    PubMed

    Earles, J Mason; North, Malcolm P; Hurteau, Matthew D

    2014-06-01

    Widespread fire suppression and thinning have altered the structure and composition of many forests in the western United States, making them more susceptible to the synergy of large-scale drought and fire events. We examine how these changes affect carbon storage and stability compared to historic fire-adapted conditions. We modeled carbon dynamics under possible drought and fire conditions over a 300-year simulation period in two mixed-conifer conditions common in the western United States: (1) pine-dominated with an active fire regime and (2) fir-dominated, fire suppressed forests. Fir-dominated stands, with higher live- and dead-wood density, had much lower carbon stability as drought and fire frequency increased compared to pine-dominated forest. Carbon instability resulted from species (i.e., fir's greater susceptibility to drought and fire) and stand (i.e., high density of smaller trees) conditions that develop in the absence of active management. Our modeling suggests restoring historic species composition and active fire regimes can significantly increase carbon stability in fire-suppressed, mixed-conifer forests. Long-term management of forest carbon should consider the relative resilience of stand structure and composition to possible increases in disturbance frequency and intensity under changing climate.

  2. Factors affecting collective action for forest fire management: a comparative study of community forest user groups in central Siwalik, Nepal.

    PubMed

    Sapkota, Lok Mani; Shrestha, Rajendra Prasad; Jourdain, Damien; Shivakoti, Ganesh P

    2015-01-01

    The attributes of social ecological systems affect the management of commons. Strengthening and enhancing social capital and the enforcement of rules and sanctions aid in the collective action of communities in forest fire management. Using a set of variables drawn from previous studies on the management of commons, we conducted a study across 20 community forest user groups in Central Siwalik, Nepal, by dividing the groups into two categories based on the type and level of their forest fire management response. Our study shows that the collective action in forest fire management is consistent with the collective actions in other community development activities. However, the effectiveness of collective action is primarily dependent on the complex interaction of various variables. We found that strong social capital, strong enforcement of rules and sanctions, and users' participation in crafting the rules were the major variables that strengthen collective action in forest fire management. Conversely, users' dependency on a daily wage and a lack of transparency were the variables that weaken collective action. In fire-prone forests such as the Siwalik, our results indicate that strengthening social capital and forming and enforcing forest fire management rules are important variables that encourage people to engage in collective action in fire management.

  3. Ecological responses to el Niño-induced surface fires in central Brazilian Amazonia: management implications for flammable tropical forests.

    PubMed Central

    Barlow, Jos; Peres, Carlos A

    2004-01-01

    Over the past 20 years the combined effects of El Niño-induced droughts and land-use change have dramatically increased the frequency of fire in humid tropical forests. Despite the potential for rapid ecosystem alteration and the current prevalence of wildfire disturbance, the consequences of such fires for tropical forest biodiversity remain poorly understood. We provide a pan-tropical review of the current state of knowledge of these fires, and include data from a study in a seasonally dry terra firme forest of central Brazilian Amazonia. Overall, this study supports predictions that rates of tree mortality and changes in forest structure are strongly linked to burn severity. The potential consequences for biomass loss and carbon emissions are explored. Despite the paucity of data on faunal responses to tropical forest fires, some trends are becoming apparent; for example, large canopy frugivores and understorey insectivorous birds appear to be highly sensitive to changes in forest structure and composition during the first 3 years after fires. Finally, we appraise the management implications of fires and evaluate the viability of techniques and legislation that can be used to reduce forest flammability, prevent anthropogenic ignition sources from coming into contact with flammable forests and aid the post-fire recovery process. PMID:15212091

  4. Post-fire debris flow prediction in Western United States: Advancements based on a nonparametric statistical technique

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, E. I.; Destro, E.; Bhuiyan, M. A. E.; Borga, M., Sr.; Anagnostou, E. N.

    2017-12-01

    Fire disasters affect modern societies at global scale inducing significant economic losses and human casualties. In addition to their direct impacts they have various adverse effects on hydrologic and geomorphologic processes of a region due to the tremendous alteration of the landscape characteristics (vegetation, soil properties etc). As a consequence, wildfires often initiate a cascade of hazards such as flash floods and debris flows that usually follow the occurrence of a wildfire thus magnifying the overall impact in a region. Post-fire debris flows (PFDF) is one such type of hazards frequently occurring in Western United States where wildfires are a common natural disaster. Prediction of PDFD is therefore of high importance in this region and over the last years a number of efforts from United States Geological Survey (USGS) and National Weather Service (NWS) have been focused on the development of early warning systems that will help mitigate PFDF risk. This work proposes a prediction framework that is based on a nonparametric statistical technique (random forests) that allows predicting the occurrence of PFDF at regional scale with a higher degree of accuracy than the commonly used approaches that are based on power-law thresholds and logistic regression procedures. The work presented is based on a recently released database from USGS that reports a total of 1500 storms that triggered and did not trigger PFDF in a number of fire affected catchments in Western United States. The database includes information on storm characteristics (duration, accumulation, max intensity etc) and other auxiliary information of land surface properties (soil erodibility index, local slope etc). Results show that the proposed model is able to achieve a satisfactory prediction accuracy (threat score > 0.6) superior of previously published prediction frameworks highlighting the potential of nonparametric statistical techniques for development of PFDF prediction systems.

  5. Fire, climate change, and forest resilience in interior Alaska

    Treesearch

    Jill F. Johnstone; F. Stuart Chapin; Teresa N. Hollingsworth; Michelle C. Mack; Vladimir Romanovsky; Merritt Turetsky

    2010-01-01

    In the boreal forests of interior Alaska, feedbacks that link forest soils, fire characteristics, and plant traits have supported stable cycles of forest succession for the past 6000 years. This high resilience of forest stands to fire disturbance is supported by two interrelated feedback cycles: (i) interactions among disturbance regime and plant-soil-microbial...

  6. The impact of anthropogenic climate change on wildfire across western US forests

    NASA Astrophysics Data System (ADS)

    Williams, P.; Abatzoglou, J. T.

    2016-12-01

    Increased forest fire activity across the western United States (US) in recent decades has contributed to widespread forest mortality, carbon emissions, periods of degraded air quality, and substantial fire suppression expenditures. The increase in forest fire activity has likely been enabled by a number of factors including the legacy of fire suppression and human settlement, changes in suppression policies, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western US. Anthropogenic increases in temperature and vapor pressure deficit have significantly enhanced fuel aridity across western US forests over the past several decades. Comparing observational climate records to records recalculated after removal of modeled anthropogenic trends, we find that anthropogenic climate change accounted for approximately 55% of observed increases in the eight-metric mean fuel aridity during 1979-2015 across western US forests. This implicates anthropogenic climate change as an important driver of observed increases in fuel aridity, and also highlights the importance of natural multi-decadal climate variability in influencing trends in forest fire potential on the timescales of human lives. Based on a very strong (R2 = 0.76) and mechanistically reasonable relationship between interannual variability in the eight-metric mean fuel aridity and forest-fire area in the western US, we estimate that anthropogenic increases in fuel aridity contributed to an additional 4.2 million ha (95% confidence range: 2.7-6.5 million ha) of forest fire area during 1984-2015, nearly doubling the total forest fire area expected in the absence of anthropogenic climate change. The relationship between annual forest fire area and fuel aridity is exponential and the proportion of total forest area burned in a given year has grown rapidly over the past 32 years. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a chronic driver of increased forest fire activity and should continue to do so where fuels are not limiting.

  7. Fire Impact on Surface Fuels and Carbon Emissions in Scots pine Logged Sites of Siberia

    NASA Astrophysics Data System (ADS)

    Ivanova, G. A.; Kukavskaya, E. A.; Bogorodskaya, A. V.; Ivanov, V. A.; Zhila, S. V.; Conard, S. G.

    2012-04-01

    Forest fire and large-scale forest harvesting are the two major disturbances in the Russian boreal forests. Non-recovered logged sites total about a million hectares. Logged sites are characterized by higher fire hazard than forest sites due great amounts of logging slash, which dries out much more rapidly compared to understory fuels. Moreover, most logging sites can be easily accessed by local population. Both legal and illegal logging are also increasing rapidly in many forest areas of Siberia. Fire effects on forest overstory, subcanopy woody layer, and ground vegetation biomass were estimated on logged vs. unlogged sites in the Central Siberia region in 2009-2012 as a part of the project "The Influence of Changing Forestry Practices on the Effects of Wildfire and on Interactions Between Fire and Changing Climate in Central Siberia" supported by NASA (NEESPI). Dead down woody fuels are significantly less at unburned/logged area of dry southern regions compared to more humid northern regions. Fuel consumption was typically less in spring fires than during summer fires. Fire-caused carbon emissions on logged sites appeared to be twice that on unlogged sites. Soil respiration is less at logged areas compared to undisturbed forest. After fire soil respiration decreases both at logged and unlogged areas. arbon emissions from fire and post-fire ecosystem damage on logged sites are expected to increase under changing climate conditions and as a result of anticipated increases in future forest harvesting in Siberia.

  8. 78 FR 13074 - Connecticut; Emergency and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... under Title V of the Stafford Act, to save lives and to protect property and public health and safety....046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to Individuals and...--Disaster Housing Operations for Individuals and Households; 97.050, Presidentially Declared Disaster...

  9. Learning by Erring: fire!

    PubMed

    Bjugn, Roger; Hansen, Jarle

    2013-08-01

    Biorepositories may be affected by a number of emergencies ranging from bad publicity to natural disasters, and biorepositories should have plans for handling such situations. The emergency management process includes all phases from mitigation to recovery. Fire is one disaster that may cause extensive damage to both physical structures and humans. In this article, we analyze events related to a fire in a storage facility for mechanical freezers. The analysis covers both the pre-crisis stage, the fire itself, and the post-crisis stage. Even the best intended planning cannot stop a crisis from happening. However, an open-minded analysis of the crisis with focus on learning and quality improvement can improve an organization's ability to handle the next emergency situation.

  10. Climatic stress increases forest fire severity across the western United States

    Treesearch

    Phillip J. van Mantgem; Jonathan C.B. Nesmith; MaryBeth Keifer; Eric E. Knapp; Alan Flint; Lorriane Flint

    2013-01-01

    Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after...

  11. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests

    Treesearch

    Danny L. Fry; Scott L. Stephens; Brandon M. Collins; Malcolm North; Ernesto Franco-Vizcaino; Samantha J. Gill

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference...

  12. Reintroducing fire in regenerated dry forests following stand-replacing wildfire.

    Treesearch

    David W. Peterson; Paul F. Hessburg; Brion Salter; Kevin M. James; Matthew C. Dahlgreen; John A. Barnes

    2007-01-01

    Prescribed fire use may be effective for increasing fire resilience in young coniferous forests by reducing surface fuels, modifying overstory stand structure, and promoting development of large trees of fire resistant species. Questions remain, however, about when and how to reintroduce fire in regenerated forests, and to what end. We studied the effects of spring...

  13. Lessons learned from prescribed fire in ponderosa pine forests of the southern Sierra Nevada

    Treesearch

    Karen E. Bagne; Kathryn L. Purcell

    2009-01-01

    Prescribed fire is a commonly used management tool in fire-suppressed ponderosa pine (Pinus ponderosa) forests, but effects of these fires on birds are largely unstudied. We investigated both direct and indirect impacts on breeding birds in ponderosa pine forests of the southern Sierra Nevada where fires were applied in the spring. Following...

  14. Detection, Emission Estimation and Risk Prediction of Forest Fires in China Using Satellite Sensors and Simulation Models in the Past Three Decades—An Overview

    PubMed Central

    Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K.

    2011-01-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status. PMID:21909297

  15. Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades--an overview.

    PubMed

    Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K

    2011-08-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status.

  16. 75 FR 3193 - Information Collection; Annual Wildfire Summary Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... addressed to Tim Melchert, Fire and Aviation Management, National Interagency Fire Center, Forest Service... Forest Service State and Private Forestry Cooperative Fire Program. The program provides supplemental funding for State and local fire fighting agencies. The Forest Service works cooperatively with State and...

  17. Numerical study of fire whirlwind taking into account radiative heat transfer

    NASA Astrophysics Data System (ADS)

    Sakai, S.; Miyagi, N.

    2010-06-01

    The fire whirlwind is a strong swirling flow with flame and spark, which may occur in the case of, widespread fire in the urban region by an earthquake disaster or an air raid, and a large-scale fire such as a forest fire. Fire whirlwind moves and promotes spread of fire and may extend serious damage rapidly. In this study, performing the numerical analysis of fire whirlwind with respect to scale effect, it is examined whether a relationship exists between a real phenomenon and the phenomenon in the reduction model with taking into account radiative heat transfer. Three dimensional analyses are performed to investigate the thermal and flow fields by using the analytical software FLUENT6.3. It is analyzed that those swirling flow in original scale, 1/10 scale, 1/50 scale, 1/100 scale from the original brake out to vanish. As an analytical condition, parameter calculation is repeated to get the velocity of a parallel flow which is the easiest to occur the swirling flow for each reduction model, and then scale effect is discussed by comparing the velocity of the natural convection, the velocity of the parallel flow, the center pressure of the whirlwind and the continuance time of the swirling flow. The analysis model of C-character heat source model is performed as well as the analysis in L-character model, which is one of the representative example of the fire whirlwind occurred at Tokyo in the Great Kanto Earthquake (1923). The result of the numerical analysis shows that there is a scale effect to the speed of the parallel flow to generate the swirling flow.

  18. 78 FR 45282 - Pennsylvania Disaster #PA-00058

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 13669 and 13670] Pennsylvania Disaster PA... Administrative declaration of a disaster for the Commonwealth of Pennsylvania dated 07/16/2013. Incident: Severe...: Pennsylvania: Armstrong; Blair; Cambria; Cameron; Centre; Clarion; Clinton; Elk; Forest; Greene; Indiana...

  19. Suggested Guide for Fire Service Standard Operating Procedures.

    ERIC Educational Resources Information Center

    Gillett, Merl; Hertzler, Simon L.

    Suggested guidelines for the development of fire service standard operating procedures are presented in this document. Section topics are as follow: chain of command; communications; emergency response; apparatus; fire service training; disaster response; aircraft fire safety; mutual aid; national reporting system (example reporting forms);…

  20. Economic vulnerability of timber resources to forest fires.

    PubMed

    y Silva, Francisco Rodríguez; Molina, Juan Ramón; González-Cabán, Armando; Machuca, Miguel Ángel Herrera

    2012-06-15

    The temporal-spatial planning of activities for a territorial fire management program requires knowing the value of forest ecosystems. In this paper we extend to and apply the economic valuation principle to the concept of economic vulnerability and present a methodology for the economic valuation of the forest production ecosystems. The forest vulnerability is analyzed from criteria intrinsically associated to the forest characterization, and to the potential behavior of surface fires. Integrating a mapping process of fire potential and analytical valuation algorithms facilitates the implementation of fire prevention planning. The availability of cartography of economic vulnerability of the forest ecosystems is fundamental for budget optimization, and to help in the decision making process. Published by Elsevier Ltd.

  1. Multi-season climate synchronized forest fires throughout the 20th century, Northern Rockies, USA

    Treesearch

    Penelope Morgan; Emily K. Heyerdahl; Carly E. Gibson

    2008-01-01

    We inferred climate drivers of 20th-century years with regionally synchronous forest fires in the U.S. northern Rockies. We derived annual fire extent from an existing fire atlas that includes 5038 fire polygons recorded from 12 070 086 ha, or 71% of the forested land in Idaho and Montana west of the Continental Divide. The 11 regional-fire years, those exceeding the...

  2. Increasing resiliency in frequent fire forests: Lessons from the Sierra Nevada and western Australia

    Treesearch

    Scott L. Stephens

    2014-01-01

    This paper will primarily focus on the management and restoration of forests adapted to frequent, low-moderate intensity fire regimes. These are the forest types that are most at risk from large, high-severity wildfires and in many regions their fire regimes are changing. Fire as a landscape process can exhibit self-limiting characteristics in some forests which can...

  3. Average stand age from forest inventory plots does not describe historical fire regimes in ponderosa pine and mixed-conifer forests of western North America

    Treesearch

    Jens T. Stevens; Hugh D. Safford; Malcolm P. North; Jeremy S. Fried; Andrew N. Gray; Peter M. Brown; Christopher R. Dolanc; Solomon Z. Dobrowski; Donald A. Falk; Calvin A. Farris; Jerry F. Franklin; Peter Z. Fulé; R. Keala Hagmann; Eric E. Knapp; Jay D. Miller; Douglas F. Smith; Thomas W. Swetnam; Alan H. Taylor; Julia A. Jones

    2016-01-01

    Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests...

  4. Dry forests and wildland fires of the inland Northwest USA: contrasting the landscape ecology of the pre-settlement and modern eras.

    Treesearch

    Paul F. Hessburg; James K. Agee; Jerry F. Franklin

    2005-01-01

    Prior to Euro-American settlement, dry ponderosa pine and mixed conifer forests (hereafter, the "dry forests") of the Inland Northwest were burned by frequent low- or mixed-severity fires. These mostly surface fires maintained low and variable tree densities, light and patchy ground fuels, simplified forest structure, and favored fire-tolerant trees, such as...

  5. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.

    2013-04-01

    Stand-replacing fires are the dominant fire type in North American boreal forest and leave a historical legacy of a mosaic landscape of different aged forest cohorts. To accurately quantify the role of fire in historical and current regional forest carbon balance using models, one needs to explicitly simulate the new forest cohort that is established after fire. The present study adapted the global process-based vegetation model ORCHIDEE to simulate boreal forest fire CO2 emissions and follow-up recovery after a stand-replacing fire, with representation of postfire new cohort establishment, forest stand structure and the following self-thinning process. Simulation results are evaluated against three clusters of postfire forest chronosequence observations in Canada and Alaska. Evaluation variables for simulated postfire carbon dynamics include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index (LAI), and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). The model simulation results, when forced by local climate and the atmospheric CO2 history on each chronosequence site, generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that current postfire forest carbon sink on evaluation sites observed by chronosequence methods is mainly driven by historical atmospheric CO2 increase when forests recover from fire disturbance. Historical climate generally exerts a negative effect, probably due to increasing water stress caused by significant temperature increase without sufficient increase in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon stocks evolution after fire, making it suitable for regional simulations in boreal regions where fire regimes play a key role on ecosystem carbon balance.

  6. Forest structure and fire hazard in dry forests of the Western United States

    Treesearch

    David L. Peterson; Morris C. Johnson; James K. Agee; Theresa B. Jain; Donald McKenzie; Elizabeth D. Reinhardt

    2005-01-01

    Fire, in conjunction with landforms and climate, shapes the structure and function of forests throughout the Western United States, where millions of acres of forest lands contain accumulations of flammable fuel that are much higher than historical conditions owing to various forms of fire exclusion. The Healthy Forests Restoration Act mandates that public land...

  7. Contribution of forensic autopsy to scene reconstruction in mass fire casualties: a case of alleged arson on a floor consisting of small compartments in a building.

    PubMed

    Michiue, Tomomi; Ishikawa, Takaki; Oritani, Shigeki; Maeda, Hitoshi

    2015-01-01

    A fire is an important cause of mass disasters, involving various forensic issues. Before dawn on an early morning, 16 male visitors in their twenties to sixties were killed in a possibly incendiary fire at a 'private video parlor' consisting of small compartments in a building. The main causes of death as determined by forensic autopsy were acute carbon monoxide (CO) intoxication for all of the 15 found-dead victims, and hypoxic-ischemic encephalopathy following acute CO intoxication for a victim who died in hospital. Burns were mild (<20% of body surface) in most victims, except for three victims found between the entrance and the estimated fire-outbreak site; thus, identification was completed without difficulty, supported by DNA analysis. Blood carboxyhemoglobin saturation (COHb) was higher for victims found dead in the inner area. Blood cyanide levels were sublethal, moderately correlated to COHb, but were higher in victims found around the estimated fire-outbreak site. There was no evidence of thinner, alcohol or drug abuse, or an attack of disease as a possible cause of an accidental fire outbreak. These observations contribute to evidence-based reconstruction of the fire disaster, and suggest how deaths could have been prevented by appropriate disaster measures. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Fire effects on temperate forest soil C and N storage.

    PubMed

    Nave, Lucas E; Vance, Eric D; Swanston, Christopher W; Curtis, Peter S

    2011-06-01

    Temperate forest soils store globally significant amounts of carbon (C) and nitrogen (N). Understanding how soil pools of these two elements change in response to disturbance and management is critical to maintaining ecosystem services such as forest productivity, greenhouse gas mitigation, and water resource protection. Fire is one of the principal disturbances acting on forest soil C and N storage and is also the subject of enormous management efforts. In the present article, we use meta-analysis to quantify fire effects on temperate forest soil C and N storage. Across a combined total of 468 soil C and N response ratios from 57 publications (concentrations and pool sizes), fire had significant overall effects on soil C (-26%) and soil N (-22%). The impacts of fire on forest floors were significantly different from its effects on mineral soils. Fires reduced forest floor C and N storage (pool sizes only) by an average of 59% and 50%, respectively, but the concentrations of these two elements did not change. Prescribed fires caused smaller reductions in forest floor C and N storage (-46% and -35%) than wildfires (-67% and -69%), and the presence of hardwoods also mitigated fire impacts. Burned forest floors recovered their C and N pools in an average of 128 and 103 years, respectively. Among mineral soils, there were no significant changes in C or N storage, but C and N concentrations declined significantly (-11% and -12%, respectively). Mineral soil C and N concentrations were significantly affected by fire type, with no change following prescribed burns, but significant reductions in response to wildfires. Geographic variation in fire effects on mineral soil C and N storage underscores the need for region-specific fire management plans, and the role of fire type in mediating C and N shifts (especially in the forest floor) indicates that averting wildfires through prescribed burning is desirable from a soils perspective.

  9. Are you ready. Your guide to disaster preparedness. Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-09-01

    The handbook outlines basic steps to take in case of natural disasters (such as floods or tornadoes), man-made disasters (such as a nuclear power plant incident or industrial fire) and national security emergencies (such as an attack on the country). Each chapter ends with a list of publications one can get to find out more about disaster planning.

  10. Forest fire laboratory at Riverside and fire research in California: past, present, and future

    Treesearch

    Carl C. Wilson; James B. Davis

    1988-01-01

    The need for protection from uncontrolled fire in California was identified by Abbott Kinney, Chairman of the State Board of Forestry, more than 75 years before the construction of the Riverside Forest Fire Laboratory. With the organization of the USDA Forest Service the need for an effective fire protection organization became apparent. In response, a...

  11. The Missoula Fire Sciences Laboratory: A 50-year dedication to understanding wildlands and fire

    Treesearch

    Diane M. Smith

    2012-01-01

    In 1960, the USDA Forest Service established the Northern Forest Fire Laboratory (now the Missoula Fire Sciences Laboratory) to find scientific solutions for better managing the nation's wildland resources and to research ways to improve forest fire prevention and suppression. This new state-of-the-art research facility did not emerge from a vacuum, however. This...

  12. Modeling of multi-strata forest fire severity using Landsat TM data

    Treesearch

    Q. Meng; R.K. Meentemeyer

    2011-01-01

    Most of fire severity studies use field measures of composite burn index (CBI) to represent forest fire severity and fit the relationships between CBI and Landsat imagery derived differenced normalized burn ratio (dNBR) to predict and map fire severity at unsampled locations. However, less attention has been paid on the multi-strata forest fire severity, which...

  13. Lightning fires in southwestern forests

    Treesearch

    Jack S. Barrows

    1978-01-01

    Lightning is the leading cause of fires in southwestern forests. On all protected private, state and federal lands in Arizona and New Mexico, nearly 80 percent of the forest, brush and range fires are ignited by lightning. The Southwestern region leads all other regions of the United States both in total number of lightning fires and in the area burned by these fires...

  14. 1954 forest fire weather in western Oregon and Washington.

    Treesearch

    Owen P. Cramer

    1954-01-01

    For the second successive fire season forest fire weather in western Oregon and Washington was far below normal severity. The low danger is reflected in record low numbers of fires reported by forestry offices of both States and by the U. S. Forest Service for their respective protection areas. Although spring and fall fire weather was near normal, a rain-producing...

  15. Post-fire surface fuel dynamics in California forests across three burn severity classes

    Treesearch

    Bianca N. I. Eskelson; Vicente J. Monleon

    2018-01-01

    Forest wildfires consume fuel and are followed by post-fire fuel accumulation. This study examines post-fire surface fuel dynamics over 9 years across a wide range of conditions characteristic of California fires in dry conifer and hardwood forests. We estimated post-fire surface fuel loadings (Mg ha _1) from 191 repeatedly measured United States...

  16. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions

    NASA Technical Reports Server (NTRS)

    Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.

    2004-01-01

    "Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.

  17. Synergy between land use and climate change increases future fire risk in Amazon forests

    DOE PAGES

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; ...

    2017-12-20

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less

  18. Forest Fire Danger Rating (FFDR) Prediction over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Song, B.; Won, M.; Jang, K.; Yoon, S.; Lim, J.

    2016-12-01

    Approximately five hundred forest fires occur and inflict the losses of both life and property each year in Korea during the forest fire seasons in the spring and autumn. Thus, an accurate prediction of forest fire is essential for effective forest fire prevention. The meteorology is one of important factors to predict and understand the fire occurrence as well as its behaviors and spread. In this study, we present the Forest Fire Danger Rating Systems (FFDRS) on the Korean Peninsula based on the Daily Weather Index (DWI) which represents the meteorological characteristics related to forest fire. The thematic maps including temperature, humidity, and wind speed produced from Korea Meteorology Administration (KMA) were applied to the forest fire occurrence probability model by logistic regression to analyze the DWI over the Korean Peninsula. The regional data assimilation and prediction system (RDAPS) and the improved digital forecast model were used to verify the sensitivity of DWI. The result of verification test revealed that the improved digital forecast model dataset showed better agreements with the real-time weather data. The forest fire danger rating index (FFDRI) calculated by the improved digital forecast model dataset showed a good agreement with the real-time weather dataset at the 233 administrative districts (R2=0.854). In addition, FFDRI were compared with observation-based FFDRI at 76 national weather stations. The mean difference was 0.5 at the site-level. The results produced in this study indicate that the improved digital forecast model dataset can be useful to predict the FFDRI in the Korean Peninsula successfully.

  19. Early recruitment responses to interactions between frequent fires, nutrients, and herbivory in the southern Amazon.

    PubMed

    Massad, Tara Joy; Balch, Jennifer K; Mews, Cândida Lahís; Porto, Pábio; Marimon Junior, Ben Hur; Quintino, Raimundo Mota; Brando, P M; Vieira, Simone A; Trumbore, Susan E

    2015-07-01

    Understanding tropical forest diversity is a long-standing challenge in ecology. With global change, it has become increasingly important to understand how anthropogenic and natural factors interact to determine diversity. Anthropogenic increases in fire frequency are among the global change variables affecting forest diversity and functioning, and seasonally dry forest of the southern Amazon is among the ecosystems most affected by such pressures. Studying how fire will impact forests in this region is therefore important for understanding ecosystem functioning and for designing effective conservation action. We report the results of an experiment in which we manipulated fire, nutrient availability, and herbivory. We measured the effects of these interacting factors on the regenerative capacity of the ecotone between humid Amazon forest and Brazilian savanna. Regeneration density, diversity, and community composition were severely altered by fire. Additions of P and N + P reduced losses of density and richness in the first year post-fire. Herbivory was most important just after germination. Diversity was positively correlated with herbivory in unburned forest, likely because fire reduced the number of reproductive individuals. This contrasts with earlier results from the same study system in which herbivory was related to increased diversity after fire. We documented a significant effect of fire frequency; diversity in triennially burned forest was more similar to that in unburned than in annually burned forest, and the community composition of triennially burned forest was intermediate between unburned and annually burned areas. Preventing frequent fires will therefore help reduce losses in diversity in the southern Amazon's matrix of human-altered landscapes.

  20. Synergy between land use and climate change increases future fire risk in Amazon forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less

  1. Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA?

    PubMed Central

    Baker, William L.

    2015-01-01

    Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used new reference data and records of high-severity fire from 1984–2012 across all dry forests (25.5 million ha) of the western USA to test these hypotheses. I also approximated projected effects of climatic change on high-severity fire in dry forests by applying existing projections. This analysis showed the rate of recent high-severity fire in dry forests is within the range of historical rates, or is too low, overall across dry forests and individually in 42 of 43 analysis regions. Significant upward trends were lacking overall from 1984–2012 for area burned and fraction burned at high severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis regions. Projections for A.D. 2046–2065 showed high-severity fire would generally be still operating at, or have been restored to historical rates, although high projections suggest high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change. Some adverse ecological effects of high-severity fires are concerns. Managers and communities can improve our ability to live with high-severity fire in dry forests. PMID:26351850

  2. Climatic conditions preceding historically great fires in the North Central Region.

    Treesearch

    Donald A. Haines; Rodney W. Sando

    1969-01-01

    This paper examines the importance of various climatic variables before seven well-known fires of the past. Also, the 1871 synoptic weather pattern preceding the Chicago-Peshtigo-Michigan fire disaster is examined in detail.

  3. Hayman Fire case study: Summary [RMRS-GTR-114

    Treesearch

    Russell T. Graham

    2003-01-01

    Historically, wildfires burned Western forests creating and maintaining a variety of forest compositions and structures (Agee 1993). Prior to European settlement lightning along with Native Americans ignited fires routinely across many forested landscapes. After Euro-American settlement, fires continued to be quite common with fires ignited by settlers, railroads, and...

  4. 36 CFR 211.4 - Cooperation for fire prevention and control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Cooperation for fire... AGRICULTURE ADMINISTRATION Cooperation § 211.4 Cooperation for fire prevention and control. The Forest Service... will result in mutual benefit in the prevention and suppression of forest fires: Provided, That the...

  5. 36 CFR 211.4 - Cooperation for fire prevention and control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Cooperation for fire... AGRICULTURE ADMINISTRATION Cooperation § 211.4 Cooperation for fire prevention and control. The Forest Service... will result in mutual benefit in the prevention and suppression of forest fires: Provided, That the...

  6. Analysing Forst Fores in China

    NASA Astrophysics Data System (ADS)

    Casanova, Jose-Luis; Sanz, Julia; Garcia, Miguel; Salvador, Pablo; Quin, Xianlin; Li, Zengyuan; Yin, Lingyu; Sun, Guifen; Goldammer, Johann

    2016-08-01

    Forest fires are a major concern in China because of the economical and biodiversity looses and because the emission of trace gases into the atmosphere. During 12 years LATUV has been working in the development of forest fires products, especially in North China. A catalogue of products has been generated like: forest fire detection, burnt area mapping, gas emissions, severity and burnt biomass.Forest fires can be detected by different platforms and sensor but the rate of false alarms is high because of industrial activity. The gas emissions are important, because of the forest fires inside China and because the forest fires between China and Russia that have a considerable impact in the atmosphere composition in China.The availability of new sensors on board sentinel 2 and sentinel 3 platforms will increase the product catalogue with new products more accurate and increasing the periodicity information.

  7. Chlorine leak on Mumbai Port Trust's Sewri yard: A case study

    PubMed Central

    Sharma, Rakesh Kumar; Chawla, Raman; Kumar, Surendra

    2010-01-01

    Chemical emergencies involving hazardous chemicals are not uncommon in India. More than 25 incidents have been identified in National Disaster Management Guidelines – Chemical (Industrial) Disaster Management, released in May 2007. In a recent occurrence on the morning of 14 July 2010, nearly at 3:00 a.m., chlorine leak was reported from a gas cylinder referred as turner, weighing about 650 kg, corroding with time at the Haji Bunder hazardous cargo warehouse in Mumbai Port Trust, Sewri, affecting over 120 people in the neighborhood, including students, laborers, port workers and fire fighters, of whom 70 were reported critical. It has been observed to be a blatant case of ignorance and negligence as well as contraventions to the safety and environmental safeguard requirements under existing statues as well as non-maintenance of failsafe conditions at the site requisite for chlorine storage. The analysis revealed significant gaps in the availability of neutralization mechanism and the chlorine stored in open increased the possibility of formation of ingress mixture due to busting of chlorine filled tankers. The Government of India has institutionalized emergency preparedness framework at national, state and district level as envisaged in Disaster Management Act, 2005, to prepare the nation to mitigate such incidences, if all the preventive safety provisions fail. Ministry of Environment and Forests (MoEF) is preparing National Action Plan-Chemical (Industrial) Disaster Management based on National Guidelines to implement all the mechanisms of capacity development across the country. PMID:21829311

  8. Long-term boreal forest dynamics and disturbances: a multi-proxy approach

    NASA Astrophysics Data System (ADS)

    Stivrins, Normunds; Aakala, Tuomas; Kuuluvainen, Timo; Pasanen, Leena; Ilvonen, Liisa; Holmström, Lasse; Seppä, Heikki

    2017-04-01

    The boreal forest provides a variety of ecosystem services that are threatened under the ongoing climate warming. Along with the climate, there are several factors (fire, human-impact, pathogens), which influence boreal forest dynamics. Combination of short and long-term studies allowing complex assessment of forest response to natural abiotic and biotic stress factors is necessary for sustainable management of the boreal forest now and in the future. The ongoing EBOR (Ecological history and long-term dynamics of the boreal forest ecosystem) project integrates forest ecological and palaeoecological approaches to study boreal forest dynamics and disturbances. Using pollen, non-pollen palynomorphs, micro- and macrocharcoal, tree rings and fire scars, we analysed forest dynamics at stand-scale by sampling small forest hollows (small paludified depressions) and the surrounding forest stands in Finland and western Russia. Using charcoal data, we estimated a fire return interval of 320 years for the Russian sites, and, based on the fungi Neurospora that can grow on charred tree bark after a low-intensity fire, we were able to distinguish low- and high-intensity fire-events. In addition to the influence of fire events and/or fire regime changes, we further assessed potential relationships between tree species and herbivore presence and pathogens. As an example of such a relationship, our preliminary findings indicated a negative relationship between Picea and fungi Lasiosphaeria (caudata), which occurred during times of Picea decline.

  9. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests.

    PubMed

    Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.

  10. Fire disaster caused by LPG tanker explosion at Lice in Diyarbakır (Turkey): July 21, 2014.

    PubMed

    Zengin, Yılmaz; Dursun, Recep; İçer, Mustafa; Gündüz, Ercan; Durgun, Hasan Mansur; Erbatur, Serkan; Damar, Ömer; Güloğlu, Cahfer

    2015-09-01

    A disaster can be defined as a situation where the affected society cannot overcome its own resources. Our aim was to present the case of a fire disaster caused by a liquefied petroleum gas (LPG) tanker-based explosion on the Diyarbakır-Bingöl road in Lice to determine the various kinds of challenges and patient groups that an emergency department faces and to discuss more effective interventions for similar disasters. This is a retrospective cross-sectional study. To find out the factors that affected mortality, we investigated the patient conditions presented at the time of admission. Among 69 patients included in the study, 62 were male (89.9%) and seven were female (10.1%). The average age of patients was 32.10±14.01 years, and the burn percentage was 51.1±32.2. One patient died during the first response, and a total of 34 patients (49.3%) died during the patient follow-up. Factors statistically related to mortality were determined to be inclusion in the severe burn group, presence of inhalation injuries, use of central venous catheter on patients, application of fasciotomy, presence of a tracheostomy opening, use of endotracheal intubation and sedoanalgesia, and transfer to centers outside the city (p-values <0.001, <0.001, <0.001, <0.001, <0.001, <0.001, 0.001, and 0.003, respectively). In conclusion, although fire disasters caused by LPG tanker explosions are rare, the frequency of such disasters will increase with the increase in LPG use. The factors affecting mortality should be determined to decrease mortality. We recommend that all personnel members who engage in work related to LPG from production to use, in addition to rescue and first-response personnel, be trained comprehensively and that advanced technological fire equipment be used to prevent such disasters. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  11. Forecasting European Wildfires Today and in the Future

    NASA Astrophysics Data System (ADS)

    Navarro Abellan, Maria; Porras Alegre, Ignasi; María Sole, Josep; Gálvez, Pedro; Bielski, Conrad; Nurmi, Pertti

    2017-04-01

    Society as a whole is increasingly exposed and vulnerable to natural disasters due to extreme weather events exacerbated by climate change. The increased frequency of wildfires is not only a result of a changing climate, but wildfires themselves also produce a significant amount of greenhouse gases that, in-turn, further contribute to global warming. I-REACT (Improving Resilience to Emergencies through Advanced Cyber Technologies) is an innovation project funded by the European Commission , which aims to use social media, smartphones and wearables to improve natural disaster management by integrating existing services, both local and European, into a platform that supports the entire emergency management cycle. In order to assess the impact of climate change on wildfire hazards, METEOSIM designed two different System Processes (SP) that will be integrated into the I-REACT service that can provide information on a variety of time scales. SP1 - Climate Change Impact The climate change impact on climate variables related to fires is calculated by building an ensemble based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) and CORDEX data. A validation and an Empirical-Statistical Downscaling (ESD) calibration are done to assess the changes in the past of the climatic variables related to wildfires (temperature, precipitation, wind, relative humidity and Fire Weather Index). Calculations in the trend and the frequency of extreme events of those variables are done for three time scales: near-term (2011-2040), mid-term (2041-2070) and long term (2071-2100). SP2 - Operational daily forecast of the Canadian Forest Fire Weather Index (FWI) Using ensemble data from the ECMWF and from the GLAMEPS (multi-model ensemble) models, both supplied by the Finnish Meteorological Institute (FMI), the Fire Weather Index (FWI) and its index components are produced for each ensemble member within a wide forecast time range, from a few hours up to 10 days resulting in a probabilistic output of the FWI for different regions in Europe. This work will improve the currently available information to various wildfire information users such as fire departments, the civil protection, local authorities, etc., where accurate and reliable information in extreme weather situations are vital for improving planning and risk management.

  12. Impact of anthropogenic climate change on wildfire across western US forests.

    PubMed

    Abatzoglou, John T; Williams, A Park

    2016-10-18

    Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000-2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ∼55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984-2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.

  13. Impact of anthropogenic climate change on wildfire across western US forests

    NASA Astrophysics Data System (ADS)

    Abatzoglou, John T.; Park Williams, A.

    2016-10-01

    Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000-2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ˜55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984-2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.

  14. Long-term effects of fire and harvest on carbon stocks of boreal forests in northeastern China

    NASA Astrophysics Data System (ADS)

    Huang, C.; He, H. S.; Hawbaker, T. J.; Zhu, Z.; Liang, Y.; Gong, P.

    2017-12-01

    Fire, harvest and their interactions have strong effects on boreal forests carbon stocks. Repeated disturbances associated with relatively short fire return intervals and harvest rotations, and their interactions caused their effects to increase over simulation time.Boreal forests in the northeastern of China cover 8.46×105 km2, store about 350 Tg aboveground carbon, and play an important role in maintaining China's carbon balance. Boreal forests in this region are facing pressures from repeated fires and timber harvesting activities.The objectives of our study were to evaluate the effects of fire, harvest and their interactions on boreal forest carbon stocks of northeastern China.We used the LANDIS PRO-LINKAGES model-coupling framework to simulate the landscape-level effects of fire and harvest and their interactions over 150 years. Our simulation results suggested that aboveground and soil organic carbon are significantly reduced by fire and harvest over 150 years. The long-term effects of fire and harvest on carbon stocks were greater than the short-term effects in the Great Xing' an Mountains. The total effects of fire-harvest interactions on boreal forests are less than the sum of separate effects of fire and harvest. The response of carbon stocks among ecoregions diverged and was due to the spatial variability of fire and harvest regimes.These results emphasize that fire, harvest, and their interactions play an important role in regulating boreal forest carbon stocks, the extent of fire and harvest effects depended on the intensity of these disturbances.

  15. Modeling forest fire occurrences using count-data mixed models in Qiannan autonomous prefecture of Guizhou province in China.

    PubMed

    Xiao, Yundan; Zhang, Xiongqing; Ji, Ping

    2015-01-01

    Forest fires can cause catastrophic damage on natural resources. In the meantime, it can also bring serious economic and social impacts. Meteorological factors play a critical role in establishing conditions favorable for a forest fire. Effective prediction of forest fire occurrences could prevent or minimize losses. This paper uses count data models to analyze fire occurrence data which is likely to be dispersed and frequently contain an excess of zero counts (no fire occurrence). Such data have commonly been analyzed using count data models such as a Poisson model, negative binomial model (NB), zero-inflated models, and hurdle models. Data we used in this paper is collected from Qiannan autonomous prefecture of Guizhou province in China. Using the fire occurrence data from January to April (spring fire season) for the years 1996 through 2007, we introduced random effects to the count data models. In this study, the results indicated that the prediction achieved through NB model provided a more compelling and credible inferential basis for fitting actual forest fire occurrence, and mixed-effects model performed better than corresponding fixed-effects model in forest fire forecasting. Besides, among all meteorological factors, we found that relative humidity and wind speed is highly correlated with fire occurrence.

  16. Modeling Forest Fire Occurrences Using Count-Data Mixed Models in Qiannan Autonomous Prefecture of Guizhou Province in China

    PubMed Central

    Ji, Ping

    2015-01-01

    Forest fires can cause catastrophic damage on natural resources. In the meantime, it can also bring serious economic and social impacts. Meteorological factors play a critical role in establishing conditions favorable for a forest fire. Effective prediction of forest fire occurrences could prevent or minimize losses. This paper uses count data models to analyze fire occurrence data which is likely to be dispersed and frequently contain an excess of zero counts (no fire occurrence). Such data have commonly been analyzed using count data models such as a Poisson model, negative binomial model (NB), zero-inflated models, and hurdle models. Data we used in this paper is collected from Qiannan autonomous prefecture of Guizhou province in China. Using the fire occurrence data from January to April (spring fire season) for the years 1996 through 2007, we introduced random effects to the count data models. In this study, the results indicated that the prediction achieved through NB model provided a more compelling and credible inferential basis for fitting actual forest fire occurrence, and mixed-effects model performed better than corresponding fixed-effects model in forest fire forecasting. Besides, among all meteorological factors, we found that relative humidity and wind speed is highly correlated with fire occurrence. PMID:25790309

  17. Historical, observed, and modeled wildfire severity in montane forests of the Colorado Front Range.

    PubMed

    Sherriff, Rosemary L; Platt, Rutherford V; Veblen, Thomas T; Schoennagel, Tania L; Gartner, Meredith H

    2014-01-01

    Large recent fires in the western U.S. have contributed to a perception that fire exclusion has caused an unprecedented occurrence of uncharacteristically severe fires, particularly in lower elevation dry pine forests. In the absence of long-term fire severity records, it is unknown how short-term trends compare to fire severity prior to 20th century fire exclusion. This study compares historical (i.e. pre-1920) fire severity with observed modern fire severity and modeled potential fire behavior across 564,413 ha of montane forests of the Colorado Front Range. We used forest structure and tree-ring fire history to characterize fire severity at 232 sites and then modeled historical fire-severity across the entire study area using biophysical variables. Eighteen (7.8%) sites were characterized by low-severity fires and 214 (92.2%) by mixed-severity fires (i.e. including moderate- or high-severity fires). Difference in area of historical versus observed low-severity fire within nine recent (post-1999) large fire perimeters was greatest in lower montane forests. Only 16% of the study area recorded a shift from historical low severity to a higher potential for crown fire today. An historical fire regime of more frequent and low-severity fires at low elevations (<2260 m) supports a convergence of management goals of ecological restoration and fire hazard mitigation in those habitats. In contrast, at higher elevations mixed-severity fires were predominant historically and continue to be so today. Thinning treatments at higher elevations of the montane zone will not return the fire regime to an historic low-severity regime, and are of questionable effectiveness in preventing severe wildfires. Based on present-day fuels, predicted fire behavior under extreme fire weather continues to indicate a mixed-severity fire regime throughout most of the montane forest zone. Recent large wildfires in the Front Range are not fundamentally different from similar events that occurred historically under extreme weather conditions.

  18. Strategies for preventing invasive plant outbreaks after prescribed fire in ponderosa pine forest

    USGS Publications Warehouse

    Symstad, Amy J.; Newton, Wesley E.; Swanson, Daniel J.

    2014-01-01

    Land managers use prescribed fire to return a vital process to fire-adapted ecosystems, restore forest structure from a state altered by long-term fire suppression, and reduce wildfire intensity. However, fire often produces favorable conditions for invasive plant species, particularly if it is intense enough to reveal bare mineral soil and open previously closed canopies. Understanding the environmental or fire characteristics that explain post-fire invasive plant abundance would aid managers in efficiently finding and quickly responding to fire-caused infestations. To that end, we used an information-theoretic model-selection approach to assess the relative importance of abiotic environmental characteristics (topoedaphic position, distance from roads), pre-and post-fire biotic environmental characteristics (forest structure, understory vegetation, fuel load), and prescribed fire severity (measured in four different ways) in explaining invasive plant cover in ponderosa pine forest in South Dakota’s Black Hills. Environmental characteristics (distance from roads and post-fire forest structure) alone provided the most explanation of variation (26%) in post-fire cover of Verbascum thapsus (common mullein), but a combination of surface fire severity and environmental characteristics (pre-fire forest structure and distance from roads) explained 36–39% of the variation in post-fire cover of Cirsium arvense (Canada thistle) and all invasives together. For four species and all invasives together, their pre-fire cover explained more variation (26–82%) in post-fire cover than environmental and fire characteristics did, suggesting one strategy for reducing post-fire invasive outbreaks may be to find and control invasives before the fire. Finding them may be difficult, however, since pre-fire environmental characteristics explained only 20% of variation in pre-fire total invasive cover, and less for individual species. Thus, moderating fire intensity or targeting areas of high severity for post-fire invasive control may be the most efficient means for reducing the chances of post-fire invasive plant outbreaks when conducting prescribed fires in this region.

  19. Historical, Observed, and Modeled Wildfire Severity in Montane Forests of the Colorado Front Range

    PubMed Central

    Sherriff, Rosemary L.; Platt, Rutherford V.; Veblen, Thomas T.; Schoennagel, Tania L.; Gartner, Meredith H.

    2014-01-01

    Large recent fires in the western U.S. have contributed to a perception that fire exclusion has caused an unprecedented occurrence of uncharacteristically severe fires, particularly in lower elevation dry pine forests. In the absence of long-term fire severity records, it is unknown how short-term trends compare to fire severity prior to 20th century fire exclusion. This study compares historical (i.e. pre-1920) fire severity with observed modern fire severity and modeled potential fire behavior across 564,413 ha of montane forests of the Colorado Front Range. We used forest structure and tree-ring fire history to characterize fire severity at 232 sites and then modeled historical fire-severity across the entire study area using biophysical variables. Eighteen (7.8%) sites were characterized by low-severity fires and 214 (92.2%) by mixed-severity fires (i.e. including moderate- or high-severity fires). Difference in area of historical versus observed low-severity fire within nine recent (post-1999) large fire perimeters was greatest in lower montane forests. Only 16% of the study area recorded a shift from historical low severity to a higher potential for crown fire today. An historical fire regime of more frequent and low-severity fires at low elevations (<2260 m) supports a convergence of management goals of ecological restoration and fire hazard mitigation in those habitats. In contrast, at higher elevations mixed-severity fires were predominant historically and continue to be so today. Thinning treatments at higher elevations of the montane zone will not return the fire regime to an historic low-severity regime, and are of questionable effectiveness in preventing severe wildfires. Based on present-day fuels, predicted fire behavior under extreme fire weather continues to indicate a mixed-severity fire regime throughout most of the montane forest zone. Recent large wildfires in the Front Range are not fundamentally different from similar events that occurred historically under extreme weather conditions. PMID:25251103

  20. Sanford Prescribed Fire Review

    Treesearch

    Scott Conroy; Jim Saveland; Mark Beighley; John Shive; Joni Ward; Marcus Trujillo; Paul Keller

    2003-01-01

    The Dixie National Forest has a long-standing history of successfully implementing prescribed fire and suppression programs. The Forest's safety record has been exemplary. The Forest is known Region-wide for its aggressive and innovative prescribed fire program. In particular, the Dixie National Forest is recognized for its leadership in introducing landscape-...

  1. Prescribed fire in upland harwood forests

    Treesearch

    T.L. Keyser; C.H. Greenberg; H. McNab

    2014-01-01

    In upland hardwood forests of the Southeastern U.S.,prescribed fire is increasingly used by land managers citing objectives that include hazardous fuels reduction, wildlife habitat improvement, promoting oak regeneration, or restoring forest composition or structure to an historic condition. Research suggests that prescribed fire effects on hardwood forests and...

  2. Early Forest Fire Detection Using Radio-Acoustic Sounding System

    PubMed Central

    Sahin, Yasar Guneri; Ince, Turker

    2009-01-01

    Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967

  3. Warm Dry Weather Conditions Cause of 2016 Fort McMurray Wild Forest Fire and Associated Air Quality

    NASA Astrophysics Data System (ADS)

    de Azevedo, S. C.; Singh, R. P.; da Silva, E. A., Sr.

    2016-12-01

    The climate change is evident from the increasing temperature around the world, day to day life and increasing frequency of natural hazards. The warm and dry conditions are the cause of frequent forest fires around the globe. Forest fires severely affect the air quality and human health. Multi sensor satellites and dense network of ground stations provide information about vegetation health, meteorological, air quality and atmospheric parameters. We have carried out detailed analysis of satellite and ground data of wild forest fire that occurred in May 2016 in Fort McMurray, Alberta, Canada. This wild forest fire destroyed 10 per cent of Fort McMurray's housing and forced more than 90,000 people to evacuate the surrounding areas. Our results show that the warm and dry conditions with low rainfall were the cause of Fort McMurray wild fire. The air quality parameters (particulate matter, CO, ozone, NO2, methane) and greenhouse gases measured from Atmospheric Infrared Sounder (AIRS) satellite show enhanced levels soon after the forest fire. The emissions from the forest fire affected health of population living in surrounding areas up to 300 km radius.

  4. Dynamic model of forest area on flood zone of Padang City, West Sumatra Province-Indonesia

    NASA Astrophysics Data System (ADS)

    Dewata, Indang; Iswandi, U.

    2018-05-01

    The flood disaster has caused many harm to human life, and the change of watershed characteristic is one of the factors causing the flood disaster. The increase of deforestation due to the increase of water causes the occurrence of flood disaster in the rainy season. The research objective was to develop a dynamic model of forest on flood hazard zone using powersim 10.1. In model development, there are three scenarios: optimistic, moderate, and pessimistic. The study shows that in Padang there are about 13 percent of high flood hazard zones. Deforestation of 4.5 percent/year is one cause that may increased the flooding intensity in Padang. There will be 14 percent of total forest area when management policy of forest absence in 2050.

  5. Your Chance to Live.

    ERIC Educational Resources Information Center

    Far West Lab. for Educational Research and Development, San Francisco, CA.

    Disaster is a fact of life. More than 68 disasters occur every day in the United States. These catastrophes range from hurricanes, tornadoes and earthquakes to train wrecks and neighborhood fires. All people face these and many other kinds of disasters, both natural and man-made. Air and water pollution, industrial accidents, and the possibility…

  6. 75 FR 51832 - Rhode Island; Amendment No. 4 to Notice of an Emergency Declaration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... concerning Federal funds provided under the authority of the Robert T. Stafford Disaster Relief and Emergency... Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to... Assistance--Disaster Housing Operations for Individuals and Households; 97.050, Presidentially Declared...

  7. Spatially explicit measurements of forest structure and fire behavior following restoration treatments in dry forests

    Treesearch

    Justin Paul Ziegler; Chad Hoffman; Michael Battaglia; William Mell

    2017-01-01

    Restoration treatments in dry forests of the western US often attempt silvicultural practices to restore the historical characteristics of forest structure and fire behavior. However, it is suggested that a reliance on non-spatial metrics of forest stand structure, along with the use of wildland fire behavior models that lack the ability to handle complex structures,...

  8. Long-term effects of prescribed fire on mixed conifer forest structure in the Sierra Nevada, California

    Treesearch

    Phillip J. Van Mantgem; Nathan L. Stephenson; Eric Knapp; John Barrles; Jon E. Keeley

    2011-01-01

    The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before...

  9. Using fire to increase the scale, benefits and future maintenance of fuels treatments

    Treesearch

    Malcolm P. North; Brandon M. Collins; Scott L Stephens

    2012-01-01

    The Forest Service is implementing a new planning rule and starting to revise forest plans for many of the 155 National Forests. In forests that historically had frequent fire regimes, the scale of current fuels reduction treatments has often been too limited to affect fire severity and the Forest Service has predominantly focused on suppression. In addition to...

  10. Climatic stress increases forest fire severity across the western United States.

    PubMed

    van Mantgem, Phillip J; Nesmith, Jonathan C B; Keifer, MaryBeth; Knapp, Eric E; Flint, Alan; Flint, Lorriane

    2013-09-01

    Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after accounting for fire defences and injuries, and appeared to influence the effects of crown and stem injuries. Climate and fire interactions did not vary substantially across geographical regions, major genera and tree sizes. Our findings support recent physiological evidence showing that both drought and heating from fire can impair xylem conductivity. Warming trends have been linked to increasing probabilities of severe fire weather and fire spread; our results suggest that warming may also increase forest fire severity (the number of trees killed) independent of fire intensity (the amount of heat released during a fire). Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  11. Fire-induced changes in boreal forest canopy volume and soil organic matter from multi-temporal airborne lidar

    NASA Astrophysics Data System (ADS)

    Alonzo, M.; Cook, B.; Andersen, H. E.; Babcock, C. R.; Morton, D. C.

    2016-12-01

    Fire in boreal forests initiates a cascade of biogeochemical and biophysical processes. Over typical fire return intervals, net radiative forcing from boreal forest fires depends on the offsetting impacts of greenhouse gas emissions and post-fire changes in land surface albedo. Whether boreal forest fires warm or cool the climate over these multi-decadal intervals depends on the magnitude of fire emissions and the time scales of decomposition, albedo changes, and forest regrowth. Our understanding of vegetation and surface organic matter (SOM) changes from boreal forest fires is shaped by field measurements and moderate resolution remote sensing data. Intensive field plot measurements offer detailed data on overstory, understory, and SOM changes from fire, but sparse plot data can be difficult to extend across the heterogeneous boreal forest landscape. Conversely, satellite measurements of burn severity are spatially extensive but only provide proxy measures of fire effects. In this research, we seek to bridge the scale gap between existing intensive and extensive methods using a combination of airborne lidar data and time series of Landsat data to evaluate pre- and post-fire conditions across Alaska's Kenai Peninsula. Lidar-based estimates of pre-fire stand structure and composition were essential to characterize the loss of canopy volume from fires between 2001 and 2014, quantify transitions from live to dead standing carbon pools, and isolate vegetation recovery following fire over 1 to 13 year time scales. Results from this study demonstrate the utility of lidar for estimating pre-fire structure and species composition at the scale of individual tree crowns. Multi-temporal airborne lidar data also provide essential insights regarding the heterogeneity of canopy and SOM losses at a sub-Landsat pixel scale. Fire effects are forest-structure and species dependent with variable temporal lags in carbon release due to delayed mortality (>5 years post fire) and standing dead trees. Establishing the spatial and temporal scales of canopy structural change will aid in constraining estimates of net radiative forcing from both carbon release and albedo in the years following fire.

  12. Forest construction infrastructures for the prevision, suppression, and protection before and after forest fires

    NASA Astrophysics Data System (ADS)

    Drosos, Vasileios C.; Giannoulas, Vasileios J.; Daoutis, Christodoulos

    2014-08-01

    Climatic changes cause temperature rise and thus increase the risk of forest fires. In Greece the forests with the greatest risk to fire are usually those located near residential and tourist areas where there are major pressures on land use changes, while there are no currently guaranteed cadastral maps and defined title deeds because of the lack of National and Forest Cadastre. In these areas the deliberate causes of forest fires are at a percentage more than 50%. This study focuses on the forest opening up model concerning both the prevention and suppression of forest fires. The most urgent interventions that can be done after the fire destructions is also studied in relation to soil protection constructions, in order to minimize the erosion and the torrential conditions. Digital orthophotos were used in order to produce and analyze spatial data using Geographical Information Systems (GIS). Initially, Digital Elevation Models were generated, based on photogrammetry and forest areas as well as the forest road network were mapped. Road density, road distance, skidding distance and the opening up percentage were accurately measured for a forest complex. Finally, conclusions and suggestions have been drawn about the environmental compatibility of forest protection and wood harvesting works. In particular the contribution of modern technologies such as digital photogrammetry, remote sensing and Geographical Information Systems is very important, allowing reliable, effective and fast process of spatial analysis contributing to a successful planning of opening up works and fire protection.

  13. [Estimation of carbonaceous gases emission from forest fires in Xiao Xing'an Mountains of Northeast China in 1953-2011].

    PubMed

    Hu, Hai-Qing; Luo, Bi-Zhen; Wei, Shu-Jing; Sun, Long; Wei, Shu-Wei; Wen, Zheng-Min

    2013-11-01

    Based on the forest resources investigation data and the forest fire inventory in 1953-2011, in combining with our field research in burned areas and our laboratory experiments, this paper estimated the carbonaceous gases carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and nonmethane hydrocarbons (NMHC) emission from the forest fires in Xiao Xing' an Mountains of Heilongjiang Province, Northeast China in 1953-2011. The total carbon emission from the forest fires in the Xiao Xing'an Mountains in 1953-2011 was 1.12 x 10(7) t, and the annual emission was averagely 1.90 x10(5) t, accounting for 1.7% of the annual average total carbon emission from the forest fires in China. The emission of CO2, CO, CH4, and NMHC was 3.39 x 10(7), 1.94 x 10(5), 1.09 x 10(5), and 7.46 x 10(4) t, respectively, and the corresponding annual average emission was 5.74 x 10(5), 3.29 x 10(4), 1.85 x 10(3), and 1.27 x 10(3) t, accounting for 1.4%, 1.2%, 1.7%, and 1.1% of the annual carbonaceous gases emitted from the forest fires in China, respectively. The combustion efficiency and the carbon emission per unit burned area of different forest types decreased in order of coniferous forest > broad-leaved forest > coniferous broadleaved mixed forest. Some rational forest fire management measures were put forward.

  14. A numerical solution of the problem of crown forest fire initiation and spread

    NASA Astrophysics Data System (ADS)

    Marzaeva, S. I.; Galtseva, O. V.

    2018-05-01

    Mathematical model of forest fire was based on an analysis of known experimental data and using concept and methods from reactive media mechanics. The study takes in to account the mutual interaction of the forest fires and three-dimensional atmosphere flows. The research is done by means of mathematical modeling of physical processes. It is based on numerical solution of Reynolds equations for chemical components and equations of energy conservation for gaseous and condensed phases. It is assumed that the forest during a forest fire can be modeled as a two-temperature multiphase non-deformable porous reactive medium. A discrete analog for the system of equations was obtained by means of the control volume method. The developed model of forest fire initiation and spreading would make it possible to obtain a detailed picture of the variation in the velocity, temperature and chemical species concentration fields with time. Mathematical model and the result of the calculation give an opportunity to evaluate critical conditions of the forest fire initiation and spread which allows applying the given model for of means for preventing fires.

  15. Opposing effects of fire severity on climate feedbacks in Siberian larch forests

    NASA Astrophysics Data System (ADS)

    Loranty, M. M.; Alexander, H. D.; Natali, S.; Kropp, H.; Mack, M. C.; Bunn, A. G.; Davydov, S. P.; Erb, A.; Kholodov, A. L.; Schaaf, C.; Wang, Z.; Zimov, N.; Zimov, S. A.

    2017-12-01

    Boreal larch forests in northeastern Siberia comprise nearly 25% of the continuous permafrost zone. Structural and functional changes in these ecosystems will have important climate feedbacks at regional and global scales. Like boreal ecosystems in North America, fire is an important determinant of landscape scale forest distribution, and fire regimes are intensifying as climate warms. In Siberian larch forests are dominated by a single tree species, and there is evidence that fire severity influences post-fire forest density via impacts on seedling establishment. The extent to which these effects occur, or persist, and the associated climate feedbacks are not well quantified. In this study we use forest stand inventories, in situ observations, and satellite remote sensing to examine: 1) variation in forest density within and between fire scars, and 2) changes in land surface albedo and active layer dynamics associated with forest density variation. At the landscape scale we observed declines in Landsat derived albedo as forests recovered in the first several decades after fire, though canopy cover varied widely within and between individual fire scars. Within an individual mid-successional fire scar ( 75 years) we observed canopy cover ranging from 15-90% with correspondingly large ranges of albedo during periods of snow cover, and relatively small differences in albedo during the growing season. We found an inverse relationship between canopy density and soil temperature within this fire scar; high-density low-albedo stands had cooler soils and shallower active layers, while low-density stands had warmer soils and deeper active layers. Intensive energy balance measurements at a high- and low- density site show that canopy cover alters the magnitude and timing of ground heat fluxes that affect active layer properties. Our results show that fire impacts on stand structure in Siberian larch forests affect land surface albedo and active layer dynamics in ways that may lead to opposing climate feedbacks. At effectively large scales these changes constitute positive and negative climate feedbacks, respectively. Accurate predictive understanding of terrestrial Arctic climate feedbacks requires improved knowledge regarding the ecological consequences of changing fire regimes in Siberian boreal forests.

  16. Best Longitudinal Adjustment of Satellite Trajectories for the Observation of Forest Fires (Blastoff): A Stochastic Programming Approach to Satellite System Design

    NASA Astrophysics Data System (ADS)

    Hoskins, Aaron B.

    Forest fires cause a significant amount of damage and destruction each year. Optimally dispatching resources reduces the amount of damage a forest fire can cause. Models predict the fire spread to provide the data required to optimally dispatch resources. However, the models are only as accurate as the data used to build them. Satellites are one valuable tool in the collection of data for the forest fire models. Satellites provide data on the types of vegetation, the wind speed and direction, the soil moisture content, etc. The current operating paradigm is to passively collect data when possible. However, images from directly overhead provide better resolution and are easier to process. Maneuvering a constellation of satellites to fly directly over the forest fire provides higher quality data than is achieved with the current operating paradigm. Before launch, the location of the forest fire is unknown. Therefore, it is impossible to optimize the initial orbits for the satellites. Instead, the expected cost of maneuvering to observe the forest fire determines the optimal initial orbits. A two-stage stochastic programming approach is well suited for this class of problem where initial decisions are made with an uncertain future and then subsequent decisions are made once a scenario is realized. A repeat ground track orbit provides a non-maneuvering, natural solution providing a daily flyover of the forest fire. However, additional maneuvers provide a second daily flyover of the forest fire. The additional maneuvering comes at a significant cost in terms of additional fuel, but provides more data collection opportunities. After data are collected, ground stations receive the data for processing. Optimally selecting the ground station locations reduce the number of built ground stations and reduces the data fusion issues. However, the location of the forest fire alters the optimal ground station sites. A two-stage stochastic programming approach optimizes the selection of ground stations to maximize the expected amount of data downloaded from a satellite. The approaches of selecting initial orbits and ground station locations including uncertainty will provide a robust system to reduce the amount of damage caused by forest fires.

  17. Characterization of biomass burning aerosols from forest fire in Indonesia

    NASA Astrophysics Data System (ADS)

    Fujii, Y.; Iriana, W.; Okumura, M.; Lestari, P.; Tohno, S.; Akira, M.; Okuda, T.

    2012-12-01

    Biomass burning (forest fire, wild fire) is a major source of pollutants, generating an estimate of 104 Tg per year of aerosol particles worldwide. These particles have adverse human health effects and can affect the radiation budget and climate directly and indirectly. Eighty percent of biomass burning aerosols are generated in the tropics and about thirty percent of them originate in the tropical regions of Asia (Andreae, 1991). Several recent studies have reported on the organic compositions of biomass burning aerosols in the tropical regions of South America and Africa, however, there is little data about forest fire aerosols in the tropical regions of Asia. It is important to characterize biomass burning aerosols in the tropical regions of Asia because the aerosol properties vary between fires depending on type and moisture of wood, combustion phase, wind conditions, and several other variables (Reid et al., 2005). We have characterized PM2.5 fractions of biomass burning aerosols emitted from forest fire in Indonesia. During the dry season in 2012, PM2.5 aerosols from several forest fires occurring in Riau, Sumatra, Indonesia were collected on quartz and teflon filters with two mini-volume samplers. Background aerosols in forest were sampled during transition period of rainy season to dry season (baseline period). Samples were analyzed with several analytical instruments. The carbonaceous content (organic and elemental carbon, OC and EC) of the aerosols was analyzed by a thermal optical reflectance technique using IMPROVE protocol. The metal, inorganic ion and organic components of the aerosols were analyzed by X-ray Fluorescence (XRF), ion chromatography and gas chromatography-mass spectrometry, respectively. There was a great difference of chemical composition between forest fire and non-forest fire samples. Smoke aerosols for forest fires events were composed of ~ 45 % OC and ~ 2.5 % EC. On the other hand, background aerosols for baseline periods were composed of ~ 18 % OC and ~ 10 % EC. OC/EC ratio was consistently lower (~ 2) for baseline periods than that for forest fire events (~ 20). OC and EC concentrations for forest fire events were more than 150 times and 10 times higher than those for baseline periods.

  18. Land surveys show regional variability of historical fire regimes and dry forest structure of the western United States.

    PubMed

    Baker, William L; Williams, Mark A

    2018-03-01

    An understanding of how historical fire and structure in dry forests (ponderosa pine, dry mixed conifer) varied across the western United States remains incomplete. Yet, fire strongly affects ecosystem services, and forest restoration programs are underway. We used General Land Office survey reconstructions from the late 1800s across 11 landscapes covering ~1.9 million ha in four states to analyze spatial variation in fire regimes and forest structure. We first synthesized the state of validation of our methods using 20 modern validations, 53 historical cross-validations, and corroborating evidence. These show our method creates accurate reconstructions with low errors. One independent modern test reported high error, but did not replicate our method and made many calculation errors. Using reconstructed parameters of historical fire regimes and forest structure from our validated methods, forests were found to be non-uniform across the 11 landscapes, but grouped together in three geographical areas. Each had a mixture of fire severities, but dominated by low-severity fire and low median tree density in Arizona, mixed-severity fire and intermediate to high median tree density in Oregon-California, and high-severity fire and intermediate median tree density in Colorado. Programs to restore fire and forest structure could benefit from regional frameworks, rather than one size fits all. © 2018 by the Ecological Society of America.

  19. The experience of community residents in a fire-prone ecosystem: A case study on the San Bernardino National Forest

    Treesearch

    George T. Cvetkovich; Patricia L. Winter

    2008-01-01

    This report presents results from a study of San Bernardino National Forest community residents’ experiences with and perceptions of fire, fire management, and the Forest Service. Using self-administered surveys and focus group discussions, we found that participants had personal experiences with fire, were concerned about fire, and felt knowledgeable about effective...

  20. Fire exclusion as a disturbance in the temperate forests of the USA: examples from longleaf pine forests

    Treesearch

    W. Keith Moser; Dale D. Wade

    2005-01-01

    Forest fires are a disturbance where the effects can range from benign to extreme devastation within a given ecosystem. The stage of stand development coupled with prior management dictates the amount and composition of potential fuels. Thus, fire policy exerts a strong influence on fire effects. Changes in cultural acceptance and use of tire typically drive fire...

  1. Proposed wildland fire amendment to the Coronado National Forest Land and Resource Management Plan

    Treesearch

    Sherry A. Tune; Erin M. Boyle

    2005-01-01

    The Coronado National Forest proposed amending its 1986 Land and Resource Management Plan to conform to the 2001 Federal Wildland Fire Management Policy. This Policy emphasizes fire’s essential role in maintaining natural ecosystems and allows a broader range of management options for wildland fires. Under the current Forest Plan, fires must be suppressed in areas...

  2. Fire and fire surrogate study in the Sierra Nevada: evaluating restoration treatments at Blodgett Forest and Sequoia National Park

    Treesearch

    Eric E. Knapp; Scott L. Stephens; James D. McIver; Jason J. Moghaddas; Jon E. Keeley

    2004-01-01

    Management practices have altered both the structure and function of forests throughout the United States. Some of the most dramatic changes have resulted from fire exclusion, especially in forests that historically experienced relatively frequent, low- to moderate-intensity fire regimes. In the Sierra Nevada, fire exclusion is believed to have resulted in widespread...

  3. Assessment of fire effects based on Forest Inventory and Analysis data and a long-term fire mapping data set

    Treesearch

    John D. Shaw; Sara A. Goeking; James Menlove; Charles E. Werstak

    2017-01-01

    Integration of Forest Inventory and Analysis (FIA) plot data with Monitoring Trends in Burn Severity (MTBS) data can provide new information about fire effects on forests. This integration allowed broad-scale assessment of the cover types burned in large fires, the relationship between prefire stand conditions and fire severity, and postfire stand conditions. Of the 42...

  4. A Drought Index for Forest Fire Control

    Treesearch

    John J. Keetch; George M. Byram

    1968-01-01

    The moisture content of the upper soil, as well as that of the covering layer of duff, has an important effect on the fire suppression effort in forest and wildland areas. In certain forested areas of the United States, fires in deep duff fuels are of particular concern to the fire control manager. When these fuels are dry, fires burn deeply, dam-age is excessive, and...

  5. Fire effects in southwestern forests: Proceedings of the second La Mesa Fire Symposium

    Treesearch

    Craig D. Allen

    1996-01-01

    In 1977, the La Mesa Fire burned across 15,444 acres of ponderosa pine forests on the adjoining lands of Bandelier National Monument, the Santa Fe National Forest, and Los Alamos National Laboratory. Following this event, several fire effects studies were initiated. The 16 papers herein document longer-term knowledge gained about the ecological effects of the fire and...

  6. Ecological consequences of alternative fuel reduction treatments in seasonally dry forests: the national fire and fire surrogate study

    Treesearch

    J.D. McIver; C.J. Fettig

    2010-01-01

    This special issue of Forest Science features the national Fire and Fire Surrogate study (FFS), a niultisite, multivariate research project that evaluates the ecological consequences of prescribed fire and its mechanical surrogates in seasonally dry forests of the United States. The need for a comprehensive national FFS study stemmed from concern that information on...

  7. Tree mortality based fire severity classification for forest inventories: A Pacific Northwest national forests example

    Treesearch

    Thomas R. Whittier; Andrew N. Gray

    2016-01-01

    Determining how the frequency, severity, and extent of forest fires are changing in response to changes in management and climate is a key concern in many regions where fire is an important natural disturbance. In the USA the only national-scale fire severity classification uses satellite image changedetection to produce maps for large (>400 ha) fires, and is...

  8. Prioritizing forest fuels treatments based on the probability of high-severity fire restores adaptive capacity in Sierran forests

    Treesearch

    Daniel J. Krofcheck; Matthew D. Hurteau; Robert M. Scheller; E. Louise Loudermilk

    2017-01-01

    In frequent fire forests of the western United States, a legacy of fire suppression coupled with increases in fire weather severity have altered fire regimes and vegetation dynamics. When coupled with projected climate change, these conditions have the potential to lead to vegetation type change and altered carbon (C) dynamics. In the Sierra Nevada, fuels...

  9. Assessing fire impacts on the carbon stability of fire-tolerant forests.

    PubMed

    Bennett, Lauren T; Bruce, Matthew J; Machunter, Josephine; Kohout, Michele; Krishnaraj, Saravanan Jangammanaidu; Aponte, Cristina

    2017-12-01

    The carbon stability of fire-tolerant forests is often assumed but less frequently assessed, limiting the potential to anticipate threats to forest carbon posed by predicted increases in forest fire activity. Assessing the carbon stability of fire-tolerant forests requires multi-indicator approaches that recognize the myriad ways that fires influence the carbon balance, including combustion, deposition of pyrogenic material, and tree death, post-fire decomposition, recruitment, and growth. Five years after a large-scale wildfire in southeastern Australia, we assessed the impacts of low- and high-severity wildfire, with and without prescribed fire (≤10 yr before), on carbon stocks in multiple pools, and on carbon stability indicators (carbon stock percentages in live trees and in small trees, and carbon stocks in char and fuels) in fire-tolerant eucalypt forests. Relative to unburned forest, high-severity wildfire decreased short-term (five-year) carbon stability by significantly decreasing live tree carbon stocks and percentage stocks in live standing trees (reflecting elevated tree mortality), by increasing the percentage of live tree carbon in small trees (those vulnerable to the next fire), and by potentially increasing the probability of another fire through increased elevated fine fuel loads. In contrast, low-severity wildfire enhanced carbon stability by having negligible effects on aboveground stocks and indicators, and by significantly increasing carbon stocks in char and, in particular, soils, indicating pyrogenic carbon accumulation. Overall, recent preceding prescribed fire did not markedly influence wildfire effects on short-term carbon stability at stand scales. Despite wide confidence intervals around mean stock differences, indicating uncertainty about the magnitude of fire effects in these natural forests, our assessment highlights the need for active management of carbon assets in fire-tolerant eucalypt forests under contemporary fire regimes. Decreased live tree carbon and increased reliance on younger cohorts for carbon recovery after high-severity wildfire could increase vulnerabilities to imminent fires, leading to decisions about interventions to maintain the productivity of some stands. Our multi-indicator assessment also highlights the importance of considering all carbon pools, particularly pyrogenic reservoirs like soils, when evaluating the potential for prescribed fire regimes to mitigate the carbon costs of wildfires in fire-prone landscapes. © 2017 by the Ecological Society of America.

  10. Fire-induced Carbon Emissions and Regrowth Uptake in Western U.S. Forests: Documenting Variation Across Forest Types, Fire Severity, and Climate Regions

    NASA Technical Reports Server (NTRS)

    Ghimire, Bardan; Williams, Christopher A.; Collatz, George James; Vanderhoof, Melanie

    2012-01-01

    The forest area in the western United States that burns annually is increasing with warmer temperatures, more frequent droughts, and higher fuel densities. Studies that examine fire effects for regional carbon balances have tended to either focus on individual fires as examples or adopt generalizations without considering how forest type, fire severity, and regional climate influence carbon legacies. This study provides a more detailed characterization of fire effects and quantifies the full carbon impacts in relation to direct emissions, slow release of fire-killed biomass, and net carbon uptake from forest regrowth. We find important variations in fire-induced mortality and combustion across carbon pools (leaf, live wood, dead wood, litter, and duff) and across low- to high-severity classes. This corresponds to fire-induced direct emissions from 1984 to 2008 averaging 4 TgC/yr and biomass killed averaging 10.5 TgC/yr, with average burn area of 2723 sq km/yr across the western United States. These direct emission and biomass killed rates were 1.4 and 3.7 times higher, respectively, for high-severity fires than those for low-severity fires. The results show that forest regrowth varies greatly by forest type and with severity and that these factors impose a sustained carbon uptake legacy. The western U.S. fires between 1984 and 2008 imposed a net source of 12.3 TgC/yr in 2008, accounting for both direct fire emissions (9.5 TgC/yr) and heterotrophic decomposition of fire-killed biomass (6.1 TgC yr1) as well as contemporary regrowth sinks (3.3 TgC/yr). A sizeable trend exists toward increasing emissions as a larger area burns annually.

  11. An examination of fuel particle heating during fire spread

    Treesearch

    Jack D. Cohen; Mark A. Finney

    2010-01-01

    Recent high intensity wildfires and our demonstrated inability to control extreme fire behavior suggest a need for alternative approaches for preventing wildfire disasters. Current fire spread models are not sufficiently based on a basic understanding of fire spread processes to provide more effective management alternatives. An experimental and theoretical approach...

  12. Allocation strategies of savanna and forest tree seedlings in response to fire and shading: outcomes of a field experiment

    NASA Astrophysics Data System (ADS)

    Gignoux, Jacques; Konaté, Souleymane; Lahoreau, Gaëlle; Le Roux, Xavier; Simioni, Guillaume

    2016-12-01

    The forest-savanna ecotone may be very sharp in fire-prone areas. Fire and competition for light play key roles in its maintenance, as forest and savanna tree seedlings are quickly excluded from the other ecosystem. We hypothesized a tradeoff between seedling traits linked to fire resistance and to competition for light to explain these exclusions. We compared growth- and survival-related traits of two savanna and two forest species in response to shading and fire in a field experiment. To interpret the results, we decomposed our broad hypothesis into elementary tradeoffs linked to three constraints, biomass allocation, plant architecture, and shade tolerance, that characterize both savanna and adjacent forest ecosystems. All seedlings reached similar biomasses, but forest seedlings grew taller. Savanna seedlings better survived fire after topkill and required ten times less biomass than forest seedlings to survive. Finally, only savanna seedlings responded to shading. Although results were consistent with the classification of our species as mostly adapted to shade tolerance, competition for light in the open, and fire tolerance, they raised new questions: how could savanna seedlings survive better with a 10-times lower biomass than forest seedlings? Is their shade intolerance sufficient to exclude them from forest understory?

  13. 75 FR 52713 - Nationwide Aerial Application of Fire Retardant on National Forest System Lands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... DEPARTMENT OF AGRICULTURE Forest Service Nationwide Aerial Application of Fire Retardant on... statement for the continued nationwide aerial application of fire retardant on National Forest System lands... 26667, Salt Lake City, UT 84126-0667. Comments may also be sent via e- mail to Fire[email protected

  14. A guide for salvaging white pine injured by forest fires

    Treesearch

    Thomas W. McConkey; Donald R. Gedney

    1951-01-01

    White pine forests are severely damaged by forest fires. Generally a fire kills all trees less than 20 feet high immediately. Larger trees may die later, depending on the degree of injury. Salvage operations must be started soon after a fire, because insects and fungi quickly attack trees that are killed.

  15. A review of the relationships between drought and forest fire in the United States

    Treesearch

    Jeremy S. Littell; David L. Peterson; Karin L. Riley; Yongqiang Liu; Charlie H. Luce

    2016-01-01

    The historical and presettlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity,...

  16. Refining the oak-fire hypothesis for management of oak-dominated forests of the eastern United States

    Treesearch

    Mary A. Arthur; Heather D. Alexander; Daniel C. Dey; Callie J. Schweitzer; David L. Loftis

    2012-01-01

    Prescribed fires are increasingly implemented throughout eastern deciduous forests to accomplish various management objectives, including maintenance of oak-dominated (Quercus spp.) forests. Despite a regional research-based understanding of prehistoric and historic fire regimes, a parallel understanding of contemporary fire use to preserve oak...

  17. Areas of Agreement and Disagreement Regarding Ponderosa Pine and Mixed Conifer Forest Fire Regimes: A Dialogue with Stevens et al.

    PubMed Central

    Odion, Dennis C.; Hanson, Chad T.; Baker, William L.; DellaSala, Dominick A.; Williams, Mark A.

    2016-01-01

    In a recent PLOS ONE paper, we conducted an evidence-based analysis of current versus historical fire regimes and concluded that traditionally defined reference conditions of low-severity fire regimes for ponderosa pine (Pinus ponderosa) and mixed-conifer forests were incomplete, missing considerable variability in forest structure and fire regimes. Stevens et al. (this issue) agree that high-severity fire was a component of these forests, but disagree that one of the several sources of evidence, stand age from a large number of forest inventory and analysis (FIA) plots across the western USA, support our findings that severe fire played more than a minor role ecologically in these forests. Here we highlight areas of agreement and disagreement about past fire, and analyze the methods Stevens et al. used to assess the FIA stand-age data. We found a major problem with a calculation they used to conclude that the FIA data were not useful for evaluating fire regimes. Their calculation, as well as a narrowing of the definition of high-severity fire from the one we used, leads to a large underestimate of conditions consistent with historical high-severity fire. The FIA stand age data do have limitations but they are consistent with other landscape-inference data sources in supporting a broader paradigm about historical variability of fire in ponderosa and mixed-conifer forests than had been traditionally recognized, as described in our previous PLOS paper. PMID:27195808

  18. Areas of Agreement and Disagreement Regarding Ponderosa Pine and Mixed Conifer Forest Fire Regimes: A Dialogue with Stevens et al.

    PubMed

    Odion, Dennis C; Hanson, Chad T; Baker, William L; DellaSala, Dominick A; Williams, Mark A

    2016-01-01

    In a recent PLOS ONE paper, we conducted an evidence-based analysis of current versus historical fire regimes and concluded that traditionally defined reference conditions of low-severity fire regimes for ponderosa pine (Pinus ponderosa) and mixed-conifer forests were incomplete, missing considerable variability in forest structure and fire regimes. Stevens et al. (this issue) agree that high-severity fire was a component of these forests, but disagree that one of the several sources of evidence, stand age from a large number of forest inventory and analysis (FIA) plots across the western USA, support our findings that severe fire played more than a minor role ecologically in these forests. Here we highlight areas of agreement and disagreement about past fire, and analyze the methods Stevens et al. used to assess the FIA stand-age data. We found a major problem with a calculation they used to conclude that the FIA data were not useful for evaluating fire regimes. Their calculation, as well as a narrowing of the definition of high-severity fire from the one we used, leads to a large underestimate of conditions consistent with historical high-severity fire. The FIA stand age data do have limitations but they are consistent with other landscape-inference data sources in supporting a broader paradigm about historical variability of fire in ponderosa and mixed-conifer forests than had been traditionally recognized, as described in our previous PLOS paper.

  19. Amazon Forest Responses to Drought and Fire

    NASA Astrophysics Data System (ADS)

    Morton, D. C.

    2015-12-01

    Deforestation and agricultural land uses provide a consistent source of ignitions along the Amazon frontier during the dry season. The risk of understory fires in Amazon forests is amplified by drought conditions, when fires at the forest edge may spread for weeks before rains begin. Fire activity also impacts the regional response of intact forests to drought through diffuse light effects and nutrient redistribution, highlighting the complexity of feedbacks in this coupled human and natural system. This talk will focus on recent advances in our understanding of fire-climate feedbacks in the Amazon, building on research themes initiated under NASA's Large-scale Biosphere-Atmosphere Experiment in Amazonia (LBA). NASA's LBA program began in the wake of the 1997-1998 El Niño, a strong event that exposed the vulnerability of Amazon forests to drought and fire under current climate and projections of climate change. With forecasts of another strong El Niño event in 2015-2016, this talk will provide a multi-scale synthesis of Amazon forest responses to drought and fire based on field measurements, airborne lidar data, and satellite observations of fires, rainfall, and terrestrial water storage. These studies offer new insights into the mechanisms governing fire season severity in the southern Amazon and regional variability in carbon losses from understory fires. The contributions from remote sensing to our understanding of drought and fire in Amazon forests reflect the legacy of NASA's LBA program and the sustained commitment to interdisciplinary research across the Amazon region.

  20. Respiratory tract deposition efficiencies: evaluation of effects from smoke released in the Cerro Grande forest fire.

    PubMed

    Schöllnberger, H; Aden, J; Scott, B R

    2002-01-01

    Forest-fire smoke inhaled by humans can cause various health effects. This smoke contains toxic chemicals and naturally occurring radionuclides. In northern New Mexico, a large wildfire occurred in May 2000. Known as the Cerro Grande Fire, it devastated the town of Los Alamos and damaged Los Alamos National Laboratory (LANL). Residents were concerned about the possible dissemination of radionuclides from LANL via smoke from the fire. To evaluate potential health effects of inhaling radionuclides contained in the smoke from the Cerro Grande Fire, it was first necessary to evaluate how much smoke would deposit in the human respiratory tract. The purpose of this study was to evaluate respiratory-tract deposition efficiencies of airborne forest-fire smoke for persons of different ages exposed while inside their homes. Potential non-radiological health effects of a forest fire are reviewed. The deposition efficiencies presented can be used to evaluate in-home smoke deposition in the respiratory tract and expected radionuclide intake related to forest fires. The impact of smoke exposure on firemen fighting a forest fire is quantitatively discussed and compared. They primarily inhaled forest-fire smoke while outdoors where the smoke concentration was much higher than inside. Radionuclides released at the LANL site via the Cerro Grande Fire were restricted to naturally occurring radionuclides from burning trees and vegetation. Radiation doses from inhaled airborne radionuclides to individuals inside and outside the Los Alamos area were likely very small.

  1. OverView of Space Applications for Environment (SAFE) initiative

    NASA Astrophysics Data System (ADS)

    Hamamoto, Ko; Fukuda, Toru; Tajima, Yoshimitsu; Takeuchi, Wataru; Sobue, Shinichi; Nukui, Tomoyuki

    2014-06-01

    Climate change and human activities have a direc or indirect influence on the acceleration of environmental problems and natural hazards such as forest fires, draughts and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these disasters and related phenomenon. However, there are still gaps between science and application of satellite technology in real-world usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of satellite technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of satellite technology. This paper describes the overview of SAFE initiative and outcomes of two selected prototypes; agricultural drought monitoring in Indonesia and coastal management in Sri Lanka, as well as the current status of on-going prototypes.

  2. Post-fire reconstructions of fire intensity from fire severity data: quantifying the role of spatial variability of fire intensity on forest dynamics

    NASA Astrophysics Data System (ADS)

    Baker, Patrick; Oborne, Lisa

    2015-04-01

    Large, high-intensity fires have direct and long-lasting effects on forest ecosystems and present a serious threat to human life and property. However, even within the most catastrophic fires there is important variability in local-scale intensity that has important ramifications for forest mortality and regeneration. Quantifying this variability is difficult due to the rarity of catastrophic fire events, the extreme conditions at the time of the fires, and their large spatial extent. Instead fire severity is typically measured or estimated from observed patterns of vegetation mortality; however, differences in species- and size-specific responses to fires often makes fire severity a poor proxy for fire intensity. We developed a statistical method using simple, plot-based measurements of individual tree mortality to simultaneously estimate plot-level fire intensity and species-specific mortality patterns as a function of tree size. We applied our approach to an area of forest burned in the catastrophic Black Saturday fires that occurred near Melbourne, Australia, in February 2009. Despite being the most devastating fire in the past 70 years and our plots being located in the area that experienced some of the most intense fires in the 350,000 ha fire complex, we found that the estimated fire intensity was highly variable at multiple spatial scales. All eight tree species in our study differed in their susceptibility to fire-induced mortality, particularly among the largest size classes. We also found that seedling height and species richness of the post-fire seedling communities were both positively correlated with fire intensity. Spatial variability in disturbance intensity has important, but poorly understood, consequences for the short- and long-term dynamics of forests in the wake of catastrophic wildfires. Our study provides a tool to estimate fire intensity after a fire has passed, allowing new opportunities for linking spatial variability in fire intensity to forest ecosystem dynamics.

  3. Disaster Analysis: Police and Fire Departments. Phase 2.

    DTIC Science & Technology

    1989-03-01

    more important conclusions are the following. Fire depart- ments have changed more than police departments in the last decade, taking on new tasks (e.g...than ten officers ( News Journal, 1989:A2). * 13 I! While there is considerable structural variation, the functions or tasks of the various departments...1966), organized responses in major disasters can be differentiated according to whether a new or old structure and a new or old function is manifested

  4. Visibility analysis of fire lookout towers in the Boyabat State Forest Enterprise in Turkey.

    PubMed

    Kucuk, Omer; Topaloglu, Ozer; Altunel, Arif Oguz; Cetin, Mehmet

    2017-07-01

    For a successful fire suppression, it is essential to detect and intervene forest fires as early as possible. Fire lookout towers are crucial assets in detecting forest fires, in addition to other technological advancements. In this study, we performed a visibility analysis on a network of fire lookout towers currently operating in a relatively fire-prone region in Turkey's Western Black Sea region. Some of these towers had not been functioning properly; it was proposed that these be taken out of the grid and replaced with new ones. The percentage of visible areas under the current network of fire lookout towers was 73%; it could rise to 81% with the addition of newly proposed towers. This study was the first research to conduct a visibility analysis of current and newly proposed fire lookout towers in the Western Black Sea region and focus on its forest fire problem.

  5. Implications of the spatial dynamics of fire spread for the bistability of savanna and forest.

    PubMed

    Schertzer, E; Staver, A C; Levin, S A

    2015-01-01

    The role of fire in expanding the global distribution of savanna is well recognized. Empirical observations and modeling suggest that fire spread has a threshold response to fuel-layer continuity, which sets up a positive feedback that maintains savanna-forest bistability. However, modeling has so far failed to examine fire spread as a spatial process that interacts with vegetation. Here, we use simple, well-supported assumptions about fire spread as an infection process and its effects on trees to ask whether spatial dynamics qualitatively change the potential for savanna-forest bistability. We show that the spatial effects of fire spread are the fundamental reason that bistability is possible: because fire spread is an infection process, it exhibits a threshold response to fuel continuity followed by a rapid increase in fire size. Other ecological processes affecting fire spread may also contribute including temporal variability in demography or fire spread. Finally, including the potential for spatial aggregation increases the potential both for savanna-forest bistability and for savanna and forest to coexist in a landscape mosaic.

  6. Prescribed fire as the minimum tool for wilderness forest and fire regime restoration: a case study from the Sierra Nevada, California

    Treesearch

    MaryBeth Keifer; Nathan L. Stephenson; Jeff Manley

    2000-01-01

    Changes in forest structure were monitored in areas treated with prescribed fire in Sequoia and Kings Canyon National Parks. Five years after the initial prescribed fires, tree density was reduced by 61% in the giant sequoia-mixed conifer forest, with the greatest reduction in the smaller trees. This post-burn forest structure falls within the range that may have been...

  7. The carbon debt from Amazon forest degradation: integrating airborne lidar, field measurements, and an ecosystem demography model.

    NASA Astrophysics Data System (ADS)

    Longo, M.; Keller, M. M.; dos-Santos, M. N.; Scaranello, M. A., Sr.; Pinagé, E. R.; Leitold, V.; Morton, D. C.

    2016-12-01

    Amazon deforestation has declined over the last decade, yet forest degradation from logging, fire, and fragmentation continue to impact forest carbon stocks and fluxes. The magnitude of this impact remains uncertain, and observation-based studies are often limited by short time intervals or small study areas. To better understand the long-term impact of forest degradation and recovery, we have been developing a framework that integrates field plot measurements and airborne lidar surveys into an individual- and process-based model (Ecosystem Demography model, ED). We modeled forest dynamics for three forest landscapes in the Amazon with diverse degradation histories: conventional and reduced-impact logging, logging and burning, and multiple burns. Based on the initialization with contemporary forest structure and composition, model results suggest that degraded forests rapidly recover (30 years) water and energy fluxes compared with old-growth, even at sites that were affected by multiple fires. However, degraded forests maintained different carbon stocks and fluxes even after 100 years without further disturbances, because of persistent differences in forest structure and composition. Recurrent disturbances may hinder the recovery of degraded forests. Simulations using a simple fire model entirely dependent on environmental controls indicate that the most degraded forests would take much longer to reach biomass typical of old-growth forests, because drier conditions near the ground make subsequent fires more intense and more recurrent. Fires in tropical forests are also closely related to nearby human activities; while results suggest an important feedback between fires and the microenvironment, additional work is needed to improve how the model represents the human impact on current and future fire regimes. Our study highlights that recovery of degraded forests may act as an important carbon sink, but efficient recovery depends on controlling future disturbances.

  8. The changing role of fire in mediating the relationships among oaks, grasslands, mesic temperate forests, and boreal forests in the Lake States

    Treesearch

    Lee E. Frelich; Peter B. Reich; David W. Peterson

    2017-01-01

    Historically, oak forests and woodlands intergraded with southern boreal forest, temperate mesic forest, and grassland biomes, forming complex fire-mediated relationships in the Great Lakes region of Minnesota, Wisconsin, and Michigan, USA. Variability in fire recurrence intervals allowed oaks to mix with grasses or with mesic forest species in areas with high (2–10 yr...

  9. Soils of Mountainous Forests and Their Transformation under the Impact of Fires in Baikal Region

    NASA Astrophysics Data System (ADS)

    Krasnoshchekov, Yu. N.

    2018-04-01

    Data on postpyrogenic dynamics of soils under mountainous taiga cedar ( Pinus sibirica) and pine ( Pinus sylvestris) forests and subtaiga-forest-steppe pine ( Pinus sylvestris) forests in the Baikal region are analyzed. Ground litter-humus fires predominating in this region transform the upper diagnostic organic soil horizons and lead to the formation of new pyrogenic organic horizons (Opir). Adverse effects of ground fires on the stock, fractional composition, and water-physical properties of forest litters are shown. Some quantitative parameters of the liquid and solid surface runoff in burnt areas related to the slope gradient, fire intensity, and the time passed after the fire are presented. Pyrogenic destruction of forest ecosystems inevitably induces the degradation of mountainous soils, whose restoration after fires takes tens of years. The products of soil erosion from the burnt out areas complicate the current situation with the pollution of coastal waters of Lake Baikal.

  10. Quantifying Fire's Impacts on Total and Pyrogenic Carbon Stocks in Mixed-Conifer Forests: Results from Pre- and Post-Fire Measurements in Active Wildfire Incidents

    NASA Astrophysics Data System (ADS)

    Miesel, J. R.; Reiner, A. L.; Ewell, C. M.; Sanderman, J.; Maestrini, B.; Adkins, J.

    2016-12-01

    Widespread US fire suppression policy has contributed to an accumulation of vegetation in many western forests relative to historic conditions, and these changes can exacerbate wildfire severity and carbon (C) emissions. Serious concern exists about positive feedbacks between wildfire emissions and global climate; however, fires not only release C from terrestrial to atmospheric pools, they also create "black" or pyrogenic C (PyC) which contributes to longer-term C stability. Our objective was to quantify wildfire impacts on aboveground and belowground total C and PyC stocks in California mixed-conifer forests. We worked with incident management teams to access five active wildfires to establish and measure plots within days before and after fire. We measured pre- and post-fire aboveground forest structure and woody fuels to calculate aboveground biomass, biomass C, and PyC, and we collected pre- and post-fire forest floor and 0-5 cm mineral soil samples to measure belowground C and PyC stocks. Our preliminary results show that fire had minimal impact on the number of trees per hectare, whereas C losses from the tree layer occurred via consumption of foliage, and PyC gain occurred in tree bark. Fire released 54% to 100% of surface fuel C. In the forest floor layer, we observed 33 to 100% C loss, whereas changes in PyC stocks ranged from 100% loss to 186% gain relative to pre-fire samples. In general, fire had minimal to no impact on 0-5 cm mineral soil C. We will present relationships between total C, PyC and post-fire C and N dynamics in one of the five wildfire sites. Our data are unique because they represent nearly immediate pre- and post-fire measurements in major wildfires in a widespread western U.S. forest type. This research advances understanding of the role of fire on forest C fluxes and C sequestration potential as PyC.

  11. Predicting Fire Susceptibility in the Forests of Amazonia

    NASA Technical Reports Server (NTRS)

    Nepstad, Daniel C.; Brown, I. Foster; Setzer, Alberto

    2000-01-01

    Although fire is the single greatest threat to the ecological integrity of Amazon forests, our ability to predict the occurrence of Amazon forest fires is rudimentary. Part of the difficulty encountered in making such predictions is the remarkable capacity of Amazon forests to tolerate drought by tapping moisture stored in deep soil. These forests can avoid drought-induced leaf shedding by withdrawing moisture to depths of 8 meters and more. Hence, the absorption of deep soil moisture allows these forests to maintain their leaf canopies following droughts of several months duration, thereby maintaining the deep shade and high relative humidity of the forest interior that prevents these ecosystems from burning. But the drought- and fire-avoidance that is conferred by this deep-rooting phenomenon is not unlimited. During successive years of drought, such as those provoked by El Nino episodes, deep soil moisture can be depleted, and drought-induced leaf shedding begins. The goal of this project was to incorporate this knowledge of Amazon forest fire ecology into a predictive model of forest flammability.

  12. Wildfire, Fuels Reduction, and Herpetofaunas across Diverse Landscape Mosaics in Northwestern Forests

    USGS Publications Warehouse

    Bury, R. Bruce

    2004-01-01

    The herpetofauna (amphibians and reptiles) of northwestern forests (U.S.A.) is diverse, and many species are locally abundant. Most forest amphibians west of the Cascade Mountain crest are associated with cool, cascading streams or coarse woody material on the forest floor, which are characteristics of mature forests. Extensive loss and fragmentation of habitat resulted from logging across approximately 50% of old-growth forests in northern California and approximately 80% of stands in Oregon and Washington. There is a complex landscape mosaic and overlap of northern and southern biotic elements in the Klamath-Siskiyou Region along the Oregon and California border, creating a biodiversity hotspot. The region experiences many low-severity fires annually, punctuated by periodic major fires, including the Biscuit fire, the largest in North America in 2002. In the fire's northern portion, severe fire occurred on >50% of stands of young, managed trees but on only about 25a??33% of old-growth stands. This suggests that the legacy of timber harvest may produce fire-prone stands. Calls for prescribed fire and thinning to reduce fuel loads will remove large amounts of coarse woody material from forests, which reduces cover for amphibians and alters nutrient inputs to streams. Our preliminary evidence suggests no negative effects of wildfire on terrestrial amphibians, but stream amphibians decrease following wildfire. Most reptiles are adapted to open terrain, so fire usually improves their habitat. Today, the challenge is to maintain biodiversity in western forests in the face of intense political pressures designed to 'prevent' catastrophic fires. We need a dedicated research effort to understanding how fire affects biota and to proactively investigate outcomes of fuel-reduction management on wildlife in western forests.

  13. Decreases in Soil Moisture and Organic Matter Quality Suppress Microbial Decomposition Following a Boreal Forest Fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, Sandra R.; Berhe, Asmeret A.; Treseder, Kathleen K.

    Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burnedmore » boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.« less

  14. Reintroducing fire into a ponderosa pine forest with and without cattle grazing: understory vegetation response

    Treesearch

    Becky K. Kerns; Michelle Buonopane; Walter G. Thies; Christine. Niwa

    2011-01-01

    Reestablishing historical fire regimes is a high priority for North American coniferous forests, particularly ponderosa pine (Pinus ponderosa) ecosystems. These forests are also used extensively for cattle (Bos spp.) grazing. Prescribed fires are being applied on or planned for millions of hectares of these forests to reduce...

  15. Measuring forest-fire danger in northern Idaho

    Treesearch

    H. T. Gisborne

    1928-01-01

    In most of the forest regions of the United States the fire problem is the greatest forest problem. Wasteful methods of logging and lumbering may result in the loss of a large proportion of the remaining forest growth, but the land will usually produce a new crop of timber without undue delay, unless fire occurs.

  16. Meta-analysis of avian and small-mammal response to fire severity and fire surrogate treatments in U.S. fire-prone forests.

    PubMed

    Fontaine, Joseph B; Kennedy, Patricia L

    2012-07-01

    Management in fire-prone ecosystems relies widely upon application of prescribed fire and/or fire surrogate (e.g., forest thinning) treatments to maintain biodiversity and ecosystem function. Recently, published literature examining wildlife response to fire and fire management has increased rapidly. However, none of this literature has been synthesized quantitatively, precluding assessment of consistent patterns of wildlife response among treatment types. Using meta-analysis, we examined the scientific literature on vertebrate demographic responses to burn severity (low/moderate, high), fire surrogates (forest thinning), and fire and fire surrogate combined treatments in the most extensively studied fire-prone, forested biome (forests of the United States). Effect sizes (magnitude of response) and their 95% confidence limits (response consistency) were estimated for each species-by-treatment combination with two or more observations. We found 41 studies of 119 bird and 17 small-mammal species that examined short-term responses (< or =4 years) to thinning, low/moderate- and high-severity fire, and thinning plus prescribed fire; data on other taxa and at longer time scales were too sparse to permit quantitative assessment. At the stand scale (<50 ha), thinning and low/moderate-severity fire demonstrated similar response patterns in these forests. Combined thinning plus prescribed fire produced a higher percentage of positive responses. High-severity fire provoked stronger responses, with a majority of species possessing higher or lower effect sizes relative to fires of lower severity. In the short term and at fine spatial scales, fire surrogate forest-thinning treatments appear to effectively mimic low/moderate-severity fire, whereas low/moderate-severity fire is not a substitute for high-severity fire. The varied response of taxa to each of the four conditions considered makes it clear that the full range of fire-based disturbances (or their surrogates) is necessary to maintain a full complement of vertebrate species, including fire-sensitive taxa. This is especially true for high-severity fire, where positive responses from many avian taxa suggest that this disturbance (either as wildfire or prescribed fire) should be included in management plans where it is consistent with historic fire regimes and where maintenance of regional vertebrate biodiversity is a goal.

  17. Influence of weather factors on moisture content of light fuels in forests of the northern Rocky Mountains

    Treesearch

    George M. Jemison

    1935-01-01

    The necessity of forest-fire protection is generally recognized in the United Slates. The tremendous damage done by forest fires each year to valuable timber, watershed cover, forest range, wildlife, recreational facilities, and personal property has impressed upon the people the need for preventing and controlling forest fires so far as this is humanly possible.

  18. Fire effects in southwestern forests: Proceedings of the Second La Mesa Fire symposium

    USGS Publications Warehouse

    Allen, Craig D.

    1996-01-01

    In 1977, the La Mesa Fire burned across 15,444 acres of ponderosa pine forests on the adjoining lands of Bandelier National Monument, the Santa Fe National Forest, and Los Alamos National Laboratory. Following this event, several fire effects studies were initiated. The 16 papers herein document longer-term knowledge gained about the ecological effects of the fire and about Southwestern fire ecology in general. The presentations are also designed to give resource managers practical information for managing fire in local landscapes. Studies presented range from fire histories and avifauna to geomorphology and arthropods.

  19. A hierarchical fire frequency model to simulate temporal patterns of fire regimes in LANDIS

    Treesearch

    Jian Yang; Hong S. He; Eric J. Gustafson

    2004-01-01

    Fire disturbance has important ecological effects in many forest landscapes. Existing statistically based approaches can be used to examine the effects of a fire regime on forest landscape dynamics. Most examples of statistically based fire models divide a fire occurrence into two stages--fire ignition and fire initiation. However, the exponential and Weibull fire-...

  20. Simulating the Effects of Fire on Forests in the Russian Far East: Integrating a Fire Danger Model and the FAREAST Forest Growth Model Across a Complex Landscape

    NASA Astrophysics Data System (ADS)

    Sherman, N. J.; Loboda, T.; Sun, G.; Shugart, H. H.; Csiszar, I.

    2008-12-01

    The remaining natural habitat of the critically endangered Amur tiger (Panthera tigris altaica) and Amur leopard (Panthera pardus orientalis) is a vast, biologically and topographically diverse area in the Russian Far East (RFE). Although wildland fire is a natural component of ecosystem functioning in the RFE, severe or repeated fires frequently re-set the process of forest succession, which may take centuries to return the affected forests to the pre-fire state and thus significantly alters habitat quality and long-term availability. The frequency of severe fire events has increased over the last 25 years, leading to irreversible modifications of some parts of the species' habitats. Moreover, fire regimes are expected to continue to change toward more frequent and severe events under the influence of climate change. Here we present an approach to developing capabilities for a comprehensive assessment of potential Amur tiger and leopard habitat availability throughout the 21st century by integrating regionally parameterized fire danger and forest growth models. The FAREAST model is an individual, gap-based model that simulates forest growth in a single location and demonstrates temporally explicit forest succession leading to mature forests. Including spatially explicit information on probabilities of fire occurrence at 1 km resolution developed from the regionally specific remotely -sensed data-driven fire danger model improves our ability to provide realistic long-term projections of potential forest composition in the RFE. This work presents the first attempt to merge the FAREAST model with a fire disturbance model, to validate its outputs across a large region, and to compare it to remotely-sensed data products as well as in situ assessments of forest structure. We ran the FAREAST model at 1,000 randomly selected points within forested areas in the RFE. At each point, the model was calibrated for temperature, precipitation, slope, elevation, and fire probability. The output of the model includes biomass estimates for 44 tree species that occur in the RFE, grouped by genus. We compared the model outputs with land cover classifications derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data and LIDAR-based estimates of biomass across the entire region, and Russian forest inventory records at selected sites. Overall, we find that the FAREAST estimates of forest biomass and general composition are consistent with the observed distribution of forest types.

  1. Contrasting Spatial Patterns in Active-Fire and Fire-Suppressed Mediterranean Climate Old-Growth Mixed Conifer Forests

    PubMed Central

    Fry, Danny L.; Stephens, Scott L.; Collins, Brandon M.; North, Malcolm P.; Franco-Vizcaíno, Ernesto; Gill, Samantha J.

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha−1, and occupied 27–46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11–20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥56%) in large patches (≥10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types. PMID:24586472

  2. Automated Burned Area Delineation Using IRS AWiFS satellite data

    NASA Astrophysics Data System (ADS)

    Singhal, J.; Kiranchand, T. R.; Rajashekar, G.; Jha, C. S.

    2014-12-01

    India is endowed with a rich forest cover. Over 21% of country's area is covered by forest of varied composition and structure. Out of 67.5 million ha of Indian forests, about 55% of the forest cover is being subjected to fires each year, causing an economic loss of over 440 crores of rupees apart from other ecological effects. Studies carried out by Forest Survey of India reveals that on an average 53% forest cover of the country is prone to fires and 6.17% of the forests are prone to severe fire damage. Forest Survey of India in a countrywide study in 1995 estimated that about 1.45 million hectares of forest are affected by fire annually. According to Forest Protection Division of the Ministry of Environment and Forest (GOI), 3.73 million ha of forests are affected by fire annually in India. Karnataka is one of the southern states of India extending in between latitude 110 30' and 180 25' and longitudes 740 10' and 780 35'. As per Forest Survey of India's State of Forest Report (SFR) 2009, of the total geographic area of 191791sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Typical forest fire season in the study area is from February-May with a peak during March-April every year, though sporadic fire episodes occur in other parts of the year sq.km, the state harbors 38284 sq.km of recorded forest area. Major forest types occurring in the study area are tropical evergreen and semi-evergreen, tropical moist and dry deciduous forests along with tropical scrub and dry grasslands. Significant area of the deciduous forests, scrub and grasslands is prone to recurrent forest fires every year. In this study we evaluate the feasibility of burned area mapping over a large area (Karnataka state, India) using a semi-automated detection algorithm applied to medium resolution multi spectral data from the IRS AWiFS sensor. The method is intended to be used by non-specialist users for diagnostic rapid burnt area mapping.

  3. Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques

    DOE PAGES

    Meng, Ran; Wu, Jin; Zhao, Feng; ...

    2018-06-01

    Understanding post-fire forest recovery is pivotal to the study of forest dynamics and global carbon cycle. Field-based studies indicated a convex response of forest recovery rate to burn severity at the individual tree level, related with fire-induced tree mortality; however, these findings were constrained in spatial/temporal extents, while not detectable by traditional optical remote sensing studies, largely attributing to the contaminated effect from understory recovery. For this work, we examined whether the combined use of multi-sensor remote sensing techniques (i.e., 1m simultaneous airborne imaging spectroscopy and LiDAR and 2m satellite multi-spectral imagery) to separate canopy recovery from understory recovery wouldmore » enable to quantify post-fire forest recovery rate spanning a large gradient in burn severity over large-scales. Our study was conducted in a mixed pine-oak forest in Long Island, NY, three years after a top-killing fire. Our studies remotely detected an initial increase and then decline of forest recovery rate to burn severity across the burned area, with a maximum canopy area-based recovery rate of 10% per year at moderate forest burn severity class. More intriguingly, such remotely detected convex relationships also held at species level, with pine trees being more resilient to high burn severity and having a higher maximum recovery rate (12% per year) than oak trees (4% per year). These results are one of the first quantitative evidences showing the effects of fire adaptive strategies on post-fire forest recovery, derived from relatively large spatial-temporal domains. Our study thus provides the methodological advance to link multi-sensor remote sensing techniques to monitor forest dynamics in a spatially explicit manner over large-scales, with important implications for fire-related forest management, and for constraining/benchmarking fire effect schemes in ecological process models.« less

  4. Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ran; Wu, Jin; Zhao, Feng

    Understanding post-fire forest recovery is pivotal to the study of forest dynamics and global carbon cycle. Field-based studies indicated a convex response of forest recovery rate to burn severity at the individual tree level, related with fire-induced tree mortality; however, these findings were constrained in spatial/temporal extents, while not detectable by traditional optical remote sensing studies, largely attributing to the contaminated effect from understory recovery. For this work, we examined whether the combined use of multi-sensor remote sensing techniques (i.e., 1m simultaneous airborne imaging spectroscopy and LiDAR and 2m satellite multi-spectral imagery) to separate canopy recovery from understory recovery wouldmore » enable to quantify post-fire forest recovery rate spanning a large gradient in burn severity over large-scales. Our study was conducted in a mixed pine-oak forest in Long Island, NY, three years after a top-killing fire. Our studies remotely detected an initial increase and then decline of forest recovery rate to burn severity across the burned area, with a maximum canopy area-based recovery rate of 10% per year at moderate forest burn severity class. More intriguingly, such remotely detected convex relationships also held at species level, with pine trees being more resilient to high burn severity and having a higher maximum recovery rate (12% per year) than oak trees (4% per year). These results are one of the first quantitative evidences showing the effects of fire adaptive strategies on post-fire forest recovery, derived from relatively large spatial-temporal domains. Our study thus provides the methodological advance to link multi-sensor remote sensing techniques to monitor forest dynamics in a spatially explicit manner over large-scales, with important implications for fire-related forest management, and for constraining/benchmarking fire effect schemes in ecological process models.« less

  5. Cost-effective fire management for southern California's chaparral wilderness: an analytical procedure

    Treesearch

    Chris A. Childers; Douglas D. Piirto

    1989-01-01

    Fire management has always meant fire suppression to the managers of the chaparral covered southern California National Forests. Today, Forest Service fire management programs must be cost effective, while wilderness fire management objectives are aimed at recreating natural fire regimes. A cost-effectiveness analysis has been developed to compare fire management...

  6. Mapping Forest Fire Susceptibility in Temperate Mountain Areas with Expert Knowledge. A Case Study from Iezer Mountains, Romanian Carpathians

    NASA Astrophysics Data System (ADS)

    Mihai, Bogdan; Savulescu, Ionut

    2014-05-01

    Forest fires in Romanian Carpathians became a frequent phenomenon during the last decade, although local climate and other environmental features did not create typical conditions. From 2004, forest fires affect in Romania more than 100 hectares/year of different forest types (deciduous and coniferous). Their magnitude and frequency are not known, since a historical forest fire inventory does not exist (only press papers and local witness for some selected events). Forest fires features the summer dry periods but there are dry autumns and early winter periods with events of different magnitudes. The application we propose is based on an empirical modeling of forest fire susceptibility in a typical mountain area from the Southern Carpathians, the Iezer Mountains (2462 m). The study area features almost all the altitudinal vegetation zones of the European temperate mountains, from the beech zone, to the coniferous zone, the subalpine and the alpine zones (Mihai et al., 2007). The analysis combines GIS and remote sensing models (Chuvieco et al., 2012), starting from the ideas that forest fires are featured by the ignition zones and then by the fire propagation zones. The first data layer (ignition zones) is the result of the crossing between the ignition factors: lightning - points of multitemporal occurence and anthropogenic activities (grazing, tourism and traffic) and the ignition zones (forest fuel zonation - forest stands, soil cover and topoclimatic factor zonation). This data is modelled from different sources: the MODIS imagery fire product (Hantson et al., 2012), detailed topographic maps, multitemporal orthophotos at 0.5 m resolution, Landsat multispectral imagery, forestry cadastre maps, detailed soil maps, meteorological data (the WorldClim digital database) as well as the field survey (mapping using GPS and local observation). The second data layer (fire propagation zones) is the result of the crossing between the forest fuel zonation, obtained with the help of forestry data, the wind regime data and the topographic features of the mountain area (elevation, slope declivity, slope aspect). The analysis also consider the insolation degree of mountain slopes, that creates favourable conditions for fire propagation between different canopies. These data layers are integrated within a simple GIS analysis in order to intersect the ignition zones with the fire propagation zones in order to obtain the potential areas to be affected by fire. The digital map show three levels of forest fire susceptibility, differenced on the basis of expert knowledge. The map can be validated from the statistical point of view with the polygons of the forest fire affected areas mapped from Landsat TM, ETM+ and OLI satellite imagery. The mapping results could be integrated within the forest management strategies and especially within the forest cadastre and development maps (updated every ten years). The result can confirm that the data gap in terms of forest fire events can be filled with expert knowledge. References Chuvieco, E, Aguado, I., Jurdao, S., Pettinari, M., Yebra, M., Salas, J., Hantson, S., de la Riva, J., Ibarra, P., Rodrigues, M., Echeverria, M., Azqueta, D., Roman, M., Bastarrika, A., Martinez, S., Recondo, C., Zapico, E., Martinez-Vega F.J. (2012) Integrating geospatial information into fire risk assessment, International Journal of Wildland Fire, 2,2, 69-86. Hantson, S., Padilla, M., Corti., D, Chuvieco, E. (2013) Strenghts and weaknesses of MODIS hotspots to characterize Global fire occurence, Remote Sensing of Environment, 131, 1, 152-159. Mihai, B., Savulescu, I.,Sandric, I. (2007) Change detection analysis (1986/2002) for the alpine, subalpine and forest landscape in Iezer Mountains (Southern Carpathians, Romania), Mountain Research and Development, 27, 250-258.

  7. Impact of anthropogenic climate change on wildfire across western US forests

    PubMed Central

    Williams, A. Park

    2016-01-01

    Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000–2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ∼55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984–2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting. PMID:27791053

  8. Effects of fire season on vegetation in longleaf pine (Pinus palustris) forests

    Treesearch

    Bryan T. Mudder; G. Geoff Wang; Joan L. Walker; J. Drew Lanham; Ralph Costa

    2010-01-01

    Forest managers in the Southeastern United States are interested in the restoration of not only longleaf pine (Pinus palustris) trees, but also the characteristic forest structure and ground-layer vegetation of the longleaf pine ecosystem. Season of burn, fire intensity, and fire frequency are critical components of a fire regime that supports...

  9. Comparing the costs of agency and contract fire crews.

    Treesearch

    G.H. Donovan

    2007-01-01

    This paper compares the cost of using Forest Service fire crews versus contract fire crews. Results suggest that if sufficient work is available to keep a Forest Service crew productively employed throughout a fire season, then the daily cost of a Forest Service type II crew is lower than the daily cost of a contract crew.

  10. Changing spatial patterns of stand-replacing fire in California conifer forests

    Treesearch

    Jens T. Stevens; Brandon M. Collins; Jay D. Miller; Malcolm P. North; Scott L. Stephens

    2017-01-01

    Stand-replacing fire has profound ecological impacts in conifer forests, yet there is continued uncertainty over how best to describe the scale of stand-replacing effects within individual fires, and how these effects are changing over time. In forests where regeneration following stand-replacing fire depends on seed dispersal from surviving trees, the size and shape...

  11. Chapter 2: Fire and Fuels Extension: Model description

    Treesearch

    Sarah J. Beukema; Elizabeth D. Reinhardt; Julee A. Greenough; Donald C. E. Robinson; Werner A. Kurz

    2003-01-01

    The Fire and Fuels Extension to the Forest Vegetation Simulator is a model that simulates fuel dynamics and potential fire behavior over time, in the context of stand development and management. Existing models are used to represent forest stand development (the Forest Vegetation Simulator, Wykoff and others 1982), fire behavior (Rothermel 1972, Van Wagner 1977, and...

  12. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 04: role of silviculture in fuel treatments

    Treesearch

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The principal goals of fuel treatments are to reduce fireline intensities, reduce the potential for crown fires, improve opportunities for successful fire suppression, and improve forest resilience to forest fires. This fact sheet discusses thinning, and surface fuel treatments, as well as challenges associated with those treatments.

  13. Quantifying the effect of fuel reduction treatments on fire behavior in boreal forests

    Treesearch

    B.W. Butler; R.D. Ottmar; T.S. Rupp; R. Jandt; E. Miller; K. Howard; R. Schmoll; S. Theisen; R.E. Vihnanek; D. Jimenez

    2013-01-01

    Mechanical (e.g., shearblading) and manual (e.g., thinning) fuel treatments have become the preferred strategy of many fire managers and agencies for reducing fire hazard in boreal forests. This study attempts to characterize the effectiveness of four fuel treatments through direct measurement of fire intensity and forest floor consumption during a single prescribed...

  14. Evaluating potential trade-offs among fuel treatment strategies in mixed-conifer forests of the Sierra Nevada

    Treesearch

    Jens T. Stevens; Brandon M. Collins; Jonathan W. Long; Malcolm P. North; Susan J. Prichard; Leland W. Tarnay; Angela M. White

    2016-01-01

    Fuel treatments in fire-suppressed mixed-conifer forests are designed to moderate potential wildfire behavior and effects. However, the objectives for modifying potential fire effects can vary widely, from improving fire suppression efforts and protecting infrastructure, to reintroducing low-severity fire, to restoring and maintaining variable forest structure and...

  15. Varied ecosystems need different fire protection

    USGS Publications Warehouse

    Gutsell, Sheri L.; Johnson, Edward A.; Miyanishi, Kiyoko; Keeley, Jon E.; Dickinson, Matthew; Bridge, Simon R. J.

    2001-01-01

    Covington states in his Commentary1 that the open ponderosa pine forests of the western United States are "in widespread collapse" because fire suppression by humans has eliminated the low-intensity surface fire regime that maintained the open, park-like structure of these forests. He fears this will lead to an "unprecedented" crown fire regime that will eliminate forests.

  16. Climate change, forests, fire, water, and fish: Building resilient landscapes, streams, and managers

    Treesearch

    Charles Luce; Penny Morgan; Kathleen Dwire; Daniel Isaak; Zachary Holden; Bruce Rieman

    2012-01-01

    Fire will play an important role in shaping forest and stream ecosystems as the climate changes. Historic observations show increased dryness accompanying more widespread fire and forest die-off. These events punctuate gradual changes to ecosystems and sometimes generate stepwise changes in ecosystems. Climate vulnerability assessments need to account for fire in their...

  17. Post-fire comparisons of forest floor and soil carbon, nitrogen, and mercury pools with fire severity indices

    Treesearch

    Randy Kolka; Brian Sturtevant; Philip Townsend; Jessica Miesel; Peter Wolter; Shawn Fraver; Tom DeSutter

    2014-01-01

    Forest fires are important contributors of C, N, and Hg to the atmosphere. In the fall of 2011, a large wildfire occurred in northern Minnesota and we were able to quickly access the area to sample the forest floor and mineral soil for C, N, and Hg pools. When compared with unburned reference soils, the mean loss of C resulting from fire in the forest floor and the...

  18. Forest fire danger index based on modifying Nesterov Index, fuel, and anthropogenic activities using MODIS TERRA, AQUA and TRMM satellite datasets

    NASA Astrophysics Data System (ADS)

    Suresh Babu, K. V.; Roy, Arijit; Ramachandra Prasad, P.

    2016-05-01

    Forest fire has been regarded as one of the major causes of degradation of Himalayan forests in Uttarakhand. Forest fires occur annually in more than 50% of forests in Uttarakhand state, mostly due to anthropogenic activities and spreads due to moisture conditions and type of forest fuels. Empirical drought indices such as Keetch-Byram drought index, the Nesterov index, Modified Nesterov index, the Zhdanko index which belongs to the cumulative type and the Angstrom Index which belongs to the daily type have been used throughout the world to assess the potential fire danger. In this study, the forest fire danger index has been developed from slightly modified Nesterov index, fuel and anthropogenic activities. Datasets such as MODIS TERRA Land Surface Temperature and emissivity (MOD11A1), MODIS AQUA Atmospheric profile product (MYD07) have been used to determine the dew point temperature and land surface temperature. Precipitation coefficient has been computed from Tropical Rainfall measuring Mission (TRMM) product (3B42RT). Nesterov index has been slightly modified according to the Indian context and computed using land surface temperature, dew point temperature and precipitation coefficient. Fuel type danger index has been derived from forest type map of ISRO based on historical fire location information and disturbance danger index has been derived from disturbance map of ISRO. Finally, forest fire danger index has been developed from the above mentioned indices and MODIS Thermal anomaly product (MOD14) has been used for validating the forest fire danger index.

  19. The effect of remnant forest on insect successional response in tropical fire-impacted peatland: A bi-taxa comparison.

    PubMed

    Neoh, Kok-Boon; Bong, Lee-Jin; Muhammad, Ahmad; Itoh, Masayuki; Kozan, Osamu; Takematsu, Yoko; Yoshimura, Tsuyoshi

    2017-01-01

    Fire has become a common feature in tropical drained peatlands, and it may have detrimental impacts on the overall biodiversity of the forest ecosystem. We investigated the effect of fire on termite and ant assemblages and the importance of remnant forest in restoring species diversity in fire-impacted tropical peat swamp forests. The species loss of both termites and ants was as high as 50% in some fire-impacted peats compared to remnant forests, but in most cases the species richness for termites and ants was statistically equal along the land uses surveyed. However, a pronounced difference in functional group composition of termites was detected. In particular, sites close to remnant forests contained two additional termite feeding groups so that they shared a similar composition structure with remnant forests but were significantly different from sites distant from remnant forests. In general, ants were resilient to fire, and the similarity index showed a high degree of similarity among ant communities in all land uses surveyed. The Shannon diversity index for termites and ants decreased with increasing distance from the remnant forests and level of ecological degradation. Peat vegetation variables and ecological degradation were important in shaping termite and ant communities in the tropical peatlands, but their relative importance was not significant in fire-impacted peats regardless of distance from the remnant forests. This study highlights the importance of remnant forests as a biodiversity repository and natural buffer that can enhance species diversity and recolonization of forest-adapted species.

  20. The effect of remnant forest on insect successional response in tropical fire-impacted peatland: A bi-taxa comparison

    PubMed Central

    Neoh, Kok-Boon; Bong, Lee-Jin; Muhammad, Ahmad; Itoh, Masayuki; Kozan, Osamu; Takematsu, Yoko; Yoshimura, Tsuyoshi

    2017-01-01

    Fire has become a common feature in tropical drained peatlands, and it may have detrimental impacts on the overall biodiversity of the forest ecosystem. We investigated the effect of fire on termite and ant assemblages and the importance of remnant forest in restoring species diversity in fire-impacted tropical peat swamp forests. The species loss of both termites and ants was as high as 50% in some fire-impacted peats compared to remnant forests, but in most cases the species richness for termites and ants was statistically equal along the land uses surveyed. However, a pronounced difference in functional group composition of termites was detected. In particular, sites close to remnant forests contained two additional termite feeding groups so that they shared a similar composition structure with remnant forests but were significantly different from sites distant from remnant forests. In general, ants were resilient to fire, and the similarity index showed a high degree of similarity among ant communities in all land uses surveyed. The Shannon diversity index for termites and ants decreased with increasing distance from the remnant forests and level of ecological degradation. Peat vegetation variables and ecological degradation were important in shaping termite and ant communities in the tropical peatlands, but their relative importance was not significant in fire-impacted peats regardless of distance from the remnant forests. This study highlights the importance of remnant forests as a biodiversity repository and natural buffer that can enhance species diversity and recolonization of forest-adapted species. PMID:28334021

  1. 38 CFR 17.115 - Claims in cases of incompetent patients.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AFFAIRS MEDICAL Reimbursement for Loss by Natural Disaster of Personal Effects of Hospitalized Or Nursing... fire, earthquake, or other natural disaster as required under the provisions of § 17.113. The...

  2. 38 CFR 17.115 - Claims in cases of incompetent patients.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AFFAIRS MEDICAL Reimbursement for Loss by Natural Disaster of Personal Effects of Hospitalized Or Nursing... fire, earthquake, or other natural disaster as required under the provisions of § 17.113. The...

  3. 38 CFR 17.115 - Claims in cases of incompetent patients.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AFFAIRS MEDICAL Reimbursement for Loss by Natural Disaster of Personal Effects of Hospitalized Or Nursing... fire, earthquake, or other natural disaster as required under the provisions of § 17.113. The...

  4. Disaster Recovery: Courting Disaster

    ERIC Educational Resources Information Center

    O'Hanlon, Charlene

    2007-01-01

    An inadequate or nonexistent disaster recovery plan can have dire results. Fire, power outage, and severe weather all can brin down the best of networks in an instant. This article draws on the experiences of the Charlotte County Public Schools (Port Charlotte, Florida), which were able to lessen the damage caused by Hurricane Charley when it hit…

  5. Gotcha! Nonfiction Booktalks To Get Kids Excited about Reading.

    ERIC Educational Resources Information Center

    Baxter, Kathleen A.; Kochel, Marcia Agness

    This book presents ideas for more than 350 booktalks to use with children in grades 1-8. It is written in a conversational style and is divided thematically into the following seven high-interest chapters: (1) "Great Disasters," including shipwrecks and disasters at sea, fires, floods, diseases and other natural disasters; (2) "Fun…

  6. Determination of pumper truck intervention ratios in zones with high fire potential by using geographical information system

    NASA Astrophysics Data System (ADS)

    Aricak, Burak; Kucuk, Omer; Enez, Korhan

    2014-01-01

    Fighting forest fires not only depends on the forest type, topography, and weather conditions, but is also closely related to the technical properties of fire-fighting equipment. Firefighting is an important part of fire management planning. However, because of the complex nature of forests, creating thematic layers to generate potential fire risk maps is difficult. The use of remote sensing data has become an efficient method for the discrete classification of potential fire risks. The study was located in the Central District of the Kastamonu Regional Forest Directorate, covering an area of 24,320 ha, 15,685 ha of which is forested. On the basis of stand age, crown closure, and tree species, the sizes and distributions of potential fire risk zones within the study area were determined using high-resolution GeoEye satellite imagery and geographical information system data. The status of pumper truck intervention in zones with high fire risk and the sufficiency of existing forest roads within an existing forest network were discussed based on combustible matter characteristics. Pumper truck intervention was 83% for high-risk zones, 79% for medium-risk zones, and 78% for low-risk zones. A pumper truck intervention area map along existing roads was also created.

  7. Forest fire spatial pattern analysis in Galicia (NW Spain).

    PubMed

    Fuentes-Santos, I; Marey-Pérez, M F; González-Manteiga, W

    2013-10-15

    Knowledge of fire behaviour is of key importance in forest management. In the present study, we analysed the spatial structure of forest fire with spatial point pattern analysis and inference techniques recently developed in the Spatstat package of R. Wildfires have been the primary threat to Galician forests in recent years. The district of Fonsagrada-Ancares is one of the most seriously affected by fire in the region and, therefore, the central focus of the study. Our main goal was to determine the spatial distribution of ignition points to model and predict fire occurrence. These data are of great value in establishing enhanced fire prevention and fire fighting plans. We found that the spatial distribution of wildfires is not random and that fire occurrence may depend on ownership conflicts. We also found positive interaction between small and large fires and spatial independence between wildfires in consecutive years. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Carbon dynamics of forest in Washington, USA: 21st century projections based on climate-driven changes in fire regimes

    Treesearch

    Crystal L. Raymond; Donald McKenzie

    2012-01-01

    During the 21st century, climate-driven changes in fire regimes will be a key agent of change in forests of the U.S. Pacific Northwest (PNW). Understanding the response of forest carbon (C) dynamics to increases in fire will help quantify limits on the contribution of forest C storage to climate change mitigation and prioritize forest types for...

  9. Efficacy of variable density thinning and prescribed fire for restoring forest heterogeneity to mixed-conifer forest in the central Sierra Nevada, CA

    Treesearch

    Eric E. Knapp; Jamie M. Lydersen; Malcolm P. North; Brandon M. Collins

    2017-01-01

    Frequent-fire forests were historically characterized by lower tree density, a higher proportion of pine species, and greater within-stand spatial variability, compared to many contemporary forests where fire has been excluded. As a result, such forests are now increasingly unstable, prone to uncharacteristically severe wildfire or high levels of tree mortality in...

  10. Roost selection by male Indiana Myotis following forest fires in central Appalachian hardwoods forests

    Treesearch

    Joshua B. Johnson; W. Mark Ford; Jane L. Rodrigue; John W. Edwards; Catherine Johnson

    2010-01-01

    Despite the potential for prescribed fire and natural wildfire to increase snag abundance in hardwood forests, few studies have investigated effects of fire on bat roosting habitat, particularly that of the endangered Indiana myotis Myotis sodalis. From 2001 to 2009, we examined roost selection of Indiana myotis in burned and unburned forests in...

  11. Defining old growth for fire-adapted forests of the Western United States

    Treesearch

    Merrill R. Kaufmann; Daniel Binkley; Peter Z. Fule; Johnson Marlin; Scott L. Stephens; Thomas W. Swetnam

    2007-01-01

    There are varying definitions of old-growth forests because of differences in environment and differing fire influence across the Intermountain West. Two general types of forests reflect the role of fire: 1) forests shaped by natural changes in structure and species makeup-plant succession-that are driven by competitive differences among species and individual trees...

  12. Role of fire in restoration of a ponderosa pine forest, Washington

    Treesearch

    Richy J. Harrod; Richard W. Fonda; Mara K. McGrath

    2007-01-01

    Ponderosa pine forests in the Eastern Cascades of Washington support dense, overstocked stands in which crown fires are probable, owing to postsettlement sheep grazing, logging, and fire exclusion. In 1991, the Okanogan-Wenatchee National Forests began to apply long-term management techniques to reverse postsettlement changes in ponderosa pine forests. For 9 years, the...

  13. Restoring forest health: fire and thinning effects on mixed-conifer forests

    Treesearch

    Malcolm P. North

    2006-01-01

    Even after 140 years without a fire, mixed-conifer forest such as Teakettle's Experimental Forest has a distinct patch pattern and complex structure. Researcher Malcolm North and colleagues examined the structure and function of these ecosystems and their response to widely used restoration treatments. Collectively the studies found fire was essential to restoring...

  14. Natural phenomena exhibited by forest fires

    Treesearch

    J. S. Barrows

    1961-01-01

    Forest fire phenomena are presented through a series of motion pictures and 35 mm slides. These films have been taken by the staffs of the Southeastern, Pacific Southwest, and Intermountain Forest and Range Experiment Stations of the U. S. Forest Service and by Dr. Vincent J. Schaefer during the course of fire research activities. Both regular speed and time-lapse...

  15. Spatial and temporal corroboration of a fire-scar-based fire history in a frequently burned ponderosa pine forest

    Treesearch

    Calvin A. Farris; Christopher H. Baisan; Donald A. Falk; Stephen R. Yool; Thomas W. Swetnam

    2010-01-01

    Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire...

  16. Summer moisture of forest fire fuels in Oregon and Washington in 1948 and previous years.

    Treesearch

    William G. Morris

    1948-01-01

    The forest fire season of 1948 in Oregon and Washington was regarded by fire suppression agencies as the most favorable for many years. The number of fires started and area burned were, in general, less than for many years. On the national forests the number of fires was the least since 1912 and the acreage burned was the least ever recorded. Was this primarily due to...

  17. Impacts of fire exclusion and recent managed fire on forest structure in old growth Sierra Nevada mixed-conifer forests

    Treesearch

    Brandon M. Collins; Richard G. Everett; Scott L. Stephens

    2011-01-01

    We re-sampled areas included in an unbiased 1911 timber inventory conducted by the U.S. Forest Service over a 4000 ha study area. Over half of the re-sampled area burned in relatively recent management- and lightning-ignited fires. This allowed for comparisons of both areas that have experienced recent fire and areas with no recent fire, to the same areas historically...

  18. Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: Implications for fire risk management.

    PubMed

    Marchal, Jean; Cumming, Steve G; McIntire, Eliot J B

    2017-01-01

    Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the consequences of climate warming on fire activity, and could be misleading. Assessments of vulnerability to climate change, and subsequent adaptation strategies, are directly dependent on integrated ecological forecasts. Thus, we stress the need to explicitly incorporate land-cover's direct effects and feedbacks in simulation models of coupled climate-fire-fuels systems.

  19. [Measurement model of carbon emission from forest fire: a review].

    PubMed

    Hu, Hai-Qing; Wei, Shu-Jing; Jin, Sen; Sun, Long

    2012-05-01

    Forest fire is the main disturbance factor for forest ecosystem, and an important pathway of the decrease of vegetation- and soil carbon storage. Large amount of carbonaceous gases in forest fire can release into atmosphere, giving remarkable impacts on the atmospheric carbon balance and global climate change. To scientifically and effectively measure the carbonaceous gases emission from forest fire is of importance in understanding the significance of forest fire in the carbon balance and climate change. This paper reviewed the research progress in the measurement model of carbon emission from forest fire, which covered three critical issues, i. e., measurement methods of forest fire-induced total carbon emission and carbonaceous gases emission, affecting factors and measurement parameters of measurement model, and cause analysis of the uncertainty in the measurement of the carbon emissions. Three path selections to improve the quantitative measurement of the carbon emissions were proposed, i. e., using high resolution remote sensing data and improving algorithm and estimation accuracy of burned area in combining with effective fuel measurement model to improve the accuracy of the estimated fuel load, using high resolution remote sensing images combined with indoor controlled environment experiments, field measurements, and field ground surveys to determine the combustion efficiency, and combining indoor controlled environment experiments with field air sampling to determine the emission factors and emission ratio.

  20. Fire weather technology for fire agrometeorology operations

    Treesearch

    Francis Fujioka

    2008-01-01

    Even as the magnitude of wildfire problems increases globally, United Nations agencies are acting to mitigate the risk of wildfire disasters to members. Fire management organizations worldwide may vary considerably in operational scope, depending on the number and type of resources an organization manages. In any case, good fire weather information is vital. This paper...

  1. Edge fires drive the shape and stability of tropical forests.

    PubMed

    Hébert-Dufresne, Laurent; Pellegrini, Adam F A; Bhat, Uttam; Redner, Sidney; Pacala, Stephen W; Berdahl, Andrew M

    2018-06-01

    In tropical regions, fires propagate readily in grasslands but typically consume only edges of forest patches. Thus, forest patches grow due to tree propagation and shrink by fires in surrounding grasslands. The interplay between these competing edge effects is unknown, but critical in determining the shape and stability of individual forest patches, as well the landscape-level spatial distribution and stability of forests. We analyze high-resolution remote-sensing data from protected Brazilian Cerrado areas and find that forest shapes obey a robust perimeter-area scaling relation across climatic zones. We explain this scaling by introducing a heterogeneous fire propagation model of tropical forest-grassland ecotones. Deviations from this perimeter-area relation determine the stability of individual forest patches. At a larger scale, our model predicts that the relative rates of tree growth due to propagative expansion and long-distance seed dispersal determine whether collapse of regional-scale tree cover is continuous or discontinuous as fire frequency changes. © 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  2. Impact of prescribed fire and other factors on cheatgrass persistence in a Sierra Nevada ponderosa pine forest

    USGS Publications Warehouse

    Keeley, J.E.; McGinnis, T.W.

    2007-01-01

    Following the reintroduction of fire Bromus tectorum has invaded the low elevation ponderosa pine forests in parts of Kings Canyon National Park, California. We used prescribed burns, other field manipulations, germination studies, and structural equation modelling, to investigate how fire and other factors affect the persistence of cheatgrass in these forests. Our studies show that altering burning season to coincide with seed maturation is not likely to control cheatgrass because sparse fuel loads generate low fire intensity. Increasing time between prescribed fires may inhibit cheatgrass by increasing surface fuels (both herbaceous and litter), which directly inhibit cheatgrass establishment, and by creating higher intensity fires capable of killing a much greater fraction of the seed bank. Using structural equation modelling, postfire cheatgrass dominance was shown to be most strongly controlled by the prefire cheatgrass seedbank; other factors include soil moisture, fire intensity, soil N, and duration of direct sunlight. Current fire management goals in western conifer forests are focused on restoring historical fire regimes; however, these frequent fire regimes may enhance alien plant invasion in some forest types. Where feasible, fire managers should consider the option of an appropriate compromise between reducing serious fire hazards and exacerbating alien plant invasions. ?? IAWF 2007.

  3. Alaska's Changing Fire Regime - Implications for the Vulnerability of Its Boreal Forests

    NASA Technical Reports Server (NTRS)

    Kasischke, E. S.; Hoy, E. E.; Verbyla, D. L.; Rupp, T. S.; Duffy, P. A.; McGuire, A. D.; Murphy, K. A.; Jandt, R.; Barnes, J. L.; Calef, M.; hide

    2010-01-01

    A synthesis was carried out to examine Alaska s boreal forest fire regime. During the 2000s, an average of 767 000 ha/year burned, 50% higher than in any previous decade since the 1940s. Over the past 60 years, there was a decrease in the number of lightning-ignited fires, an increase in extreme lightning-ignited fire events, an increase in human-ignited fires, and a decrease in the number of extreme human-ignited fire events. The fraction of area burned from humanignited fires fell from 26% for the 1950s and 1960s to 5% for the 1990s and 2000s, a result from the change in fire policy that gave the highest suppression priorities to fire events that occurred near human settlements. The amount of area burned during late-season fires increased over the past two decades. Deeper burning of surface organic layers in black spruce (Picea mariana (Mill.) BSP) forests occurred during late-growing-season fires and on more well-drained sites. These trends all point to black spruce forests becoming increasingly vulnerable to the combined changes of key characteristics of Alaska s fire regime, except on poorly drained sites, which are resistant to deep burning. The implications of these fire regime changes to the vulnerability and resilience of Alaska s boreal forests and land and fire management are discussed.

  4. Alaska’s changing fire regime - Implications for the vulnerability of its boreal forests

    USGS Publications Warehouse

    Kasischke, Eric S.; Verbyla, David L.; Rupp, T. Scott; McGuire, A. David; Murphy, Karen A.; Jandt, R.; Barnes, Jennifer L.; Hoy, E.; Duffy, Paul A.; Calef, Monika; Turetsky, Merritt R.

    2010-01-01

    A synthesis was carried out to examine Alaska’s boreal forest fire regime. During the 2000s, an average of 767 000 ha·year–1 burned, 50% higher than in any previous decade since the 1940s. Over the past 60 years, there was a decrease in the number of lightning-ignited fires, an increase in extreme lightning-ignited fire events, an increase in human-ignited fires, and a decrease in the number of extreme human-ignited fire events. The fraction of area burned from human-ignited fires fell from 26% for the 1950s and 1960s to 5% for the 1990s and 2000s, a result from the change in fire policy that gave the highest suppression priorities to fire events that occurred near human settlements. The amount of area burned during late-season fires increased over the past two decades. Deeper burning of surface organic layers in black spruce (Picea mariana (Mill.) BSP) forests occurred during late-growing-season fires and on more well-drained sites. These trends all point to black spruce forests becoming increasingly vulnerable to the combined changes of key characteristics of Alaska’s fire regime, except on poorly drained sites, which are resistant to deep burning. The implications of these fire regime changes to the vulnerability and resilience of Alaska’s boreal forests and land and fire management are discussed.

  5. Resistance to wildfire and early regeneration in natural broadleaved forest and pine plantation

    NASA Astrophysics Data System (ADS)

    Proença, Vânia; Pereira, Henrique M.; Vicente, Luís

    2010-11-01

    The response of an ecosystem to disturbance reflects its stability, which is determined by two components: resistance and resilience. We addressed both components in a study of early post-fire response of natural broadleaved forest ( Quercus robur, Ilex aquifolium) and pine plantation ( Pinus pinaster, Pinus sylvestris) to a wildfire that burned over 6000 ha in NW Portugal. Fire resistance was assessed from fire severity, tree mortality and sapling persistence. Understory fire resistance was similar between forests: fire severity at the surface level was moderate to low, and sapling persistence was low. At the canopy level, fire severity was generally low in broadleaved forest but heterogeneous in pine forest, and mean tree mortality was significantly higher in pine forest. Forest resilience was assessed by the comparison of the understory composition, species diversity and seedling abundance in unburned and burned plots in each forest type. Unburned broadleaved communities were dominated by perennial herbs (e.g., Arrhenatherum elatius) and woody species (e.g., Hedera hibernica, Erica arborea), all able to regenerate vegetatively. Unburned pine communities presented a higher abundance of shrubs, and most dominant species relied on post-fire seeding, with some species also being able to regenerate vegetatively (e.g., Ulex minor, Daboecia cantabrica). There were no differences in diversity measures in broadleaved forest, but burned communities in pine forest shared less species and were less rich and diverse than unburned communities. Seedling abundance was similar in burned and unburned plots in both forests. The slower reestablishment of understory pine communities is probably explained by the slower recovery rate of dominant species. These findings are ecologically relevant: the higher resistance and resilience of native broadleaved forest implies a higher stability in the maintenance of forest processes and the delivery of ecosystem services.

  6. IMPLEMENTATION OF INFORMATION SHARING DEMONSTRATION AMONG ORGANIZATIONS IN CHARGE OF DISASTER MANAGEMENT IN TOKYO METROPOLITAN NEAR FIELD EARTHQUAKE DISASTER

    NASA Astrophysics Data System (ADS)

    Hada, Yasunori; Kondo, Shinya; Meguro, Kimiro; Ohara, Miho; Zama, Shinsaku; Endo, Makoto; Kobayashi, Keiji; Suzuki, Takeyasu; Noda, Itsuki; Shimora, Hiroki; Takeuchi, Ikuo; Kobayashi, Satoshi; Arakawa, Junpei; Yoshimoto, Kenichi

    For realizing cross-sectional inform ation sharing in the Tokyo metropolitan area, we develop disaster management applications to reduce negative impact due to vital issue in phase of initial response, and cooperation of those applications are demonstrated toward public officials in charge of disaster management. The demonstration of information sharing among disaster related organizations focusing on issues about simultaneous multiple post-earthquake fires and rescue operations after an earthquake directly underneath Tokyo are reported.

  7. Characterization of the Fire Regime and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2016-12-01

    The Upper Guinean forest (UGF), encompassing the tropical regions of West Africa, is a globally significant biodiversity hotspot and a critically important socio-economic and ecological resource for the region. However, the UGF is one of the most human-disturbed tropical forest ecosystems with the only remaining large patches of original forests distributed in protected areas, which are embedded in a hotspot of climate stress & land use pressures, increasing their vulnerability to fire. We hypothesized that human impacts and climate interact to drive spatial and temporal variability in fire, with fire exhibiting distinctive seasonality and sensitivity to drought in areas characterized by different population densities, agricultural practices, vegetation types, and levels of forest degradation. We used the MODIS active fire product to identify and characterize fire activity in the major ecoregions of the UGF. We used TRMM rainfall data to measure climatic variability and derived indicators of human land use from a variety of geospatial datasets. We employed time series modeling to identify the influences of drought indices and other antecedent climatic indicators on temporal patterns of active fire occurrence. We used a variety of modeling approaches to assess the influences of human activities and land cover variables on the spatial pattern of fire activity. Our results showed that temporal patterns of fire activity in the UGF were related to precipitation, but these relationships were spatially heterogeneous. The pattern of fire seasonality varied geographically, reflecting both climatological patterns and agricultural practices. The spatial pattern of fire activity was strongly associated with vegetation gradients and anthropogenic activities occurring at fine spatial scales. The Guinean forest-savanna mosaic ecoregion had the most fires. This study contributes to our understanding of UGF fire regime and the spatio-temporal dynamics of tropical forest fires in response to intense human and climatic drivers.

  8. Human ecological intervention and the role of forest fires in human ecology.

    PubMed

    Caldararo, N

    2002-06-26

    The present text is a summary of research on the relationship between forest fires and human activities. Numerous theories have been created to explain changes in forests during the late Pleistocene and early Holocene, and a general understanding has developed in the past 50 years regarding natural fire regimes. The present summary is directed to assess the validity of these theories. A re-analysis of the literature argues that the intense forest fires we experience today are an artifact of human intervention in forest ecology, especially by the reduction of herbivores and are relatively recent, approximately 100,000-250,000 BP. The history of fire, especially in the context of the increased dominance of humans, has produced a progressively fire-adapted ecology, which argues for human-free wildlife areas and against prescribed burns under many circumstances.

  9. The use of fire in forest restoration

    Treesearch

    Colin C. Hardy; Stephen F. Arno

    1996-01-01

    The 26 papers in this document address the current knowledge of fire as a disturbance agent, fire history and fire regimes, applications of prescribed fire for ecological restoration, and the effects of fire on the various forested ecosystems of the north-western United States. The main body of this document is organized in three sections: Assessing Needs for Fire in...

  10. 77 FR 58492 - Prohibitions Governing Fire

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... DEPARTMENT OF AGRICULTURE Forest Service 36 CFR Part 261 RIN 0596-AD08 Prohibitions Governing Fire AGENCY: Forest Service, USDA. ACTION: Direct final rule. SUMMARY: The Forest Service is making purely... Fire. * * * * * (j) Operating or using any internal or external combustion engine without a spark...

  11. Estimation of the Forest Fire Risk in Indonesia based on Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Takahashi, Y.; Hashimoto, A.; Akita, M.; Hasegawa, Y.; Ogino, Y.; Naruse, N.; Takahashi, Y.

    2016-12-01

    To minimize forest fires in tropical area is extremely important, because the fire has a large impact on global warming, biodiversity, and human society. In the previous study, Shimada and Ishibashi monitored the ground-water lever from the value of Normalized Difference Vegetation Index (NDVI) obtained in Kalimantan Island to predict where the forest fires will happen. We have developed a method to map the forest fire risk by calculating the value of Modified Soil Adjusted Vegetation Index 2 (MSAVI2). Moreover, we investigated the relation between the distance from a road as an artificial factor and the occurrence of the fire.First, calculating the MSAVI2 from Landsat 7 and 8 images of August, 2015 around Martapura in South Sumatra, Indonesia, we mapped the area where the plants were stressed. Next, we checked the degrees of matching between the area of low MSAVI2 and the forest fire points.As a result, half of the fires happened in the area having the MSAVI2 values of 0.20 to 0.35. When we focused on only the area which is over 5 kilometers far from a road, the degrees of matching became higher; it rose up to 62 percent.Those results indicate that the fire risks relate to the dry area calculated as low MSAVI2 in the case with less human activities. We need to consider an effect of artificial factors to estimate the whole risk of forest fire.In conclusion, the map of forest fire risk by calculating the value of MSAVI2 is applicable to an area with less artificial factor, while we have to take the effect of artificial fire factor into the consideration.

  12. Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: Implications for fire risk management

    PubMed Central

    Marchal, Jean; Cumming, Steve G.; McIntire, Eliot J. B.

    2017-01-01

    Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the consequences of climate warming on fire activity, and could be misleading. Assessments of vulnerability to climate change, and subsequent adaptation strategies, are directly dependent on integrated ecological forecasts. Thus, we stress the need to explicitly incorporate land-cover’s direct effects and feedbacks in simulation models of coupled climate–fire–fuels systems. PMID:28609467

  13. Using weather forecasts for predicting forest-fire danger

    Treesearch

    H. T. Gisborne

    1925-01-01

    Three kinds of weather control the fluctuations of forest-fire danger-wet weather, dry weather, and windy weather. Two other conditions also contribute to the fluctuation of fire danger. These are the occurrence of lightning and the activities of man. But neither of these fire-starting agencies is fully effective unless the weather has dried out the forest materials so...

  14. The tropical forest and fire emissions experiment: Laboratory fire measurement and synthesis of campaign data

    Treesearch

    R. J. Yokelson; T. J. Christian; T. G. Karl; A. Guenther

    2008-01-01

    As part of the Tropical Forest and Fire Emissions Experiment (TROFFEE), tropical forest fuels were burned in a large, biomass-fire simulation facility and the smoke was characterized with open-path Fourier transform infrared spectroscopy (FTIR), proton-transfer reaction mass spectrometry (PTR-MS), gas chromatography (GC), GC/PTRMS, and filter sampling of the particles...

  15. Mechanical mid-story reduction treatments for forest fuel management

    Treesearch

    B. Rummer; K. Outcalt; D. Brockway

    2002-01-01

    There are many forest stands where exclusion of fire or lack of management has led to dense understorys and fuel accumulation. Generally, the least expensive treatment is to introduce a regime of prescribed fire as a surrogate for natural forest fire processes in these stands. However, in some cases prescribed fire is not an option. For example, heavy fuel loadings may...

  16. The enigmatic fire regime of coast redwood forests and why it matters

    Treesearch

    J. Morgan Varner; Erik S. Jules

    2017-01-01

    Of perhaps all forests in North America, the fire regime of coast redwoods (Sequoia sempervirens (D. Don) Endl.) is most enigmatic. Widely considered a temperate rainforest, a large number of fire history studies depict a forest dominated by frequent surface fire regimes. Coast redwood also has a long list of traits that allow it to persist and...

  17. Tested by fire: the cone fire and the lessons of an accidental experiment

    Treesearch

    Sussanne Maleki; Carl Featured: Skinner; Martin Ritchie

    2007-01-01

    Catastrophic wildfires burn every year in the forests of the Western United States. In the past, low-intensity wildfires were common and played an important ecological role that benefited these forests. But fire suppression policies over the last century have interrupted natural fire regimes. As a result, forests that were once characterized by an open structure and...

  18. Hornby's principles of fire control planning

    Treesearch

    H. T. Gisborne

    1939-01-01

    On August 27, 1937, Lloyd G. Hornby died of heart failure on the Toboggan Creek forest fire in the Clearwater National Forest. Few if any men in or out of the U.S. Forest Service have made a greater contribution to fire control planning than did he. In the following article, H. T. Gisborne outlines the principles of fire control planning developed by Mr. Hornby,...

  19. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  20. Forest fires and air quality issues in southern Europe

    Treesearch

    Ana Isabel Miranda; Enrico Marchi; Marco Ferretti; Millán M. Millán

    2009-01-01

    Each summer forest fires in southern Europe emit large quantities of pollutants to the atmosphere. These fires can generate a number of air pollution episodes as measured by air quality monitoring networks. We analyzed the impact of forest fires on air quality of specific regions of southern Europe. Data from several summer seasons were studied with the aim of...

  1. Chapter 3 - Large-scale patterns of forest fire occurrence in the conterminous United States, Alaska and Hawaii, 2016

    Treesearch

    Kevin M. Potter

    2018-01-01

    As a pervasive disturbance agent operating at many spatial and temporal scales, wildland fire is a key abiotic factor affecting forest health both positively and negatively. In some ecosystems, for example, wildland fires have been essential for regulating processes that maintain forest health (Lundquist and others 2011). Wildland fire is an important ecological...

  2. Restoring fire-adapted ecosystems: proceedings of the 2005 national silviculture workshop

    Treesearch

    Robert F. Powers

    2007-01-01

    Many federal forests are at risk to catastrophic wild fire owing to past management practices and policies. Mangers of these forests face the immense challenge of making their forests resilient to wild fire, and the problem is complicated by the specter of climate change that may affect wild fire frequency and intensity. Some of the Nation’s leading...

  3. Different fire-climate relationships on forested and non-forested landscapes in the Sierra Nevada ecoregion

    USGS Publications Warehouse

    Keeley, Jon E.; Syphard, Alexandra D.

    2015-01-01

    In the California Sierra Nevada region, increased fire activity over the last 50 years has only occurred in the higher-elevation forests on US Forest Service (USFS) lands, and is not characteristic of the lower-elevation grasslands, woodlands and shrublands on state responsibility lands (Cal Fire). Increased fire activity on USFS lands was correlated with warmer and drier springs. Although this is consistent with recent global warming, we found an equally strong relationship between fire activity and climate in the first half of the 20th century. At lower elevations, warmer and drier conditions were not strongly tied to fire activity over the last 90 years, although prior-year precipitation was significant. It is hypothesised that the fire–climate relationship in forests is determined by climatic effects on spring and summer fuel moisture, with hotter and drier springs leading to a longer fire season and more extensive burning. In contrast, future fire activity in the foothills may be more dependent on rainfall patterns and their effect on the herbaceous fuel load. We predict spring and summer warming will have a significant impact on future fire regimes, primarily in higher-elevation forests. Lower elevation ecosystems are likely to be affected as much by global changes that directly involve land-use patterns as by climate change.

  4. Vegetation recovery after fire in the Klamath-Siskiyou region, southern Oregon

    USGS Publications Warehouse

    Hibbs, David; Jacobs, Ruth

    2011-01-01

    In July 2002, lightning strikes started five forest fires that merged into one massive wildfire in the Klamath-Siskiyou Ecoregion of southern Oregon. Aided by drought, severe weather conditions, dry fuels, and steep topography, the fire grew to more than 200,000 hectares of mostly public forest land. Known as the Biscuit Fire, it was Oregon's largest forest fire in more than 130 years and one of the largest wildfires on record in the United States. Discussions centered around why such a massive fire was happening, how large would it become, who was keeping communities and homes safe, and what would be the final economic and ecological outcome. Weeks later when the fire was out, conversations turned to other questions, including what, if anything, should happen for forest recovery.

  5. Understanding fire drivers and relative impacts in different Chinese forest ecosystems.

    PubMed

    Guo, Futao; Su, Zhangwen; Wang, Guangyu; Sun, Long; Tigabu, Mulualem; Yang, Xiajie; Hu, Haiqing

    2017-12-15

    In this study, spatial patterns and driving factors of fires were identified from 2000 to 2010 using Ripley's K (d) function and logistic regression (LR) model in two different forest ecosystems of China: the boreal forest (Daxing'an Mountains) and sub-tropical forest (Fujian province). Relative effects of each driving factor on fire occurrence were identified based on standardized coefficients in the LR model. Results revealed that fires were spatially clustered and that fire drivers vary amongst differing forest ecosystems in China. Fires in the Daxing'an Mountains respond primarily to human factors, of which infrastructure is recognized as the most influential. In contrast, climate factors played a critical role in fire occurrence in Fujian, of which the temperature of fire season was found to be of greater importance than other climate factors. Selected factors can predict nearly 80% of the total fire occurrence in the Daxing'an Mountains and 66% in Fujian, wherein human and climate factors contributed the greatest impact in the two study areas, respectively. This study suggests that different fire prevention and management strategies are required in the areas of study, as significant variations of the main fire-driving exist. Rapid socio-economic development has produced similar effects in different forest ecosystems within China, implying a strong correlation between socio-economic development and fire regimes. It can be concluded that the influence of human factors will increase in the future as China's economy continues to grow - an issue of concern that should be further addressed in future national fire management. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. 78 FR 32413 - Oklahoma; Amendment No. 1 to Notice of a Major Disaster Declaration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... adjustments. Further, under this pilot program, FEMA shall obtain any applicable private insurance payments... Services; 97.034, Disaster Unemployment Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048...

  7. 76 FR 34243 - Mississippi; Amendment No. 4 to Notice of a Major Disaster Declaration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ..., FEMA shall obtain any applicable private insurance payments for debris removal to reimburse Federal... Assistance (DUA); 97.046, Fire Management Assistance Grant; 97.048, Disaster Housing Assistance to...

  8. Forest edge burning in the Brazilian Amazon promoted by escaping fires from managed pastures

    NASA Astrophysics Data System (ADS)

    Cano-Crespo, Ana; Oliveira, Paulo J. C.; Boit, Alice; Cardoso, Manoel; Thonicke, Kirsten

    2015-10-01

    Understanding to what extent different land uses influence fire occurrence in the Amazonian forest is particularly relevant for its conservation. We evaluate the relationship between forest fires and different anthropogenic activities linked to a variety of land uses in the Brazilian states of Mato Grosso, Pará, and Rondônia. We combine the new high-resolution (30 m) TerraClass land use database with Moderate Resolution Imaging Spectroradiometer burned area data for 2008 and the extreme dry year of 2010. Excluding the non-forest class, most of the burned area was found in pastures, primary and secondary forests, and agricultural lands across all three states, while only around 1% of the total was located in deforested areas. The trend in burned area did not follow the declining deforestation rates from 2001 to 2010, and the spatial overlap between deforested and burned areas was only 8% on average. This supports the claim of deforestation being disconnected from burning since 2005. Forest degradation showed an even lower correlation with burned area. We found that fires used in managing pastoral and agricultural lands that escape into the neighboring forests largely contribute to forest fires. Such escaping fires are responsible for up to 52% of the burned forest edges adjacent to burned pastures and up to 22% of the burned forest edges adjacent to burned agricultural fields, respectively. Our findings call for the development of control and monitoring plans to prevent fires from escaping from managed lands into forests to support effective land use and ecosystem management.

  9. Amazon rain-forest fires.

    PubMed

    Sanford, R L; Saldarriaga, J; Clark, K E; Uhl, C; Herrera, R

    1985-01-04

    Charcoal is common in the soils of mature rain forests within 75 kilometers of San Carlos de Rio Negro in the north central Amazon Basin. Carbon-14 dates of soil charcoal from this region indicate that numerous fires have occurred since the mid-Holocene epoch. Charcoal is most common in tierra firme forest Oxisols and Ultisols and less common in caatinga and igapo forest soils. Climatic changes or human activities, or both, have caused rain-forest fires.

  10. Fuel reduction and coarse woody debris dynamics with early season and late season prescribed fires in a Sierra Nevada mixed conifer forest

    Treesearch

    Eric E. Knapp; Jon E. Keeley; Elizabeth A. Ballenger; Teresa J. Brennan

    2005-01-01

    Fire exclusion has led to an unnatural accumulation and greater spatial continuity of organic material on the ground in many forests. This material serves both as potential fuel for forest fires and habitat for a large array of forest species. Managers must balance fuel reduction to reduce wildfire hazard with fuel retention targets to maintain other forest functions....

  11. Sensitivity of ALOS/PALSAR imagery to forest degradation by fire in northern Amazon

    NASA Astrophysics Data System (ADS)

    Martins, Flora da Silva Ramos Vieira; dos Santos, João Roberto; Galvão, Lênio Soares; Xaud, Haron Abrahim Magalhães

    2016-07-01

    We evaluated the sensitivity of the full polarimetric Phased Array type L-band Synthetic Aperture Radar (PALSAR), onboard the Advanced Land Observing Satellite (ALOS), to forest degradation caused by fires in northern Amazon, Brazil. We searched for changes in PALSAR signal and tri-dimensional polarimetric responses for different classes of fire disturbance defined by fire frequency and severity. Since the aboveground biomass (AGB) is affected by fire, multiple regression models to estimate AGB were obtained for the whole set of coherent and incoherent attributes (general model) and for each set separately (specific models). The results showed that the polarimetric L-band PALSAR attributes were sensitive to variations in canopy structure and AGB caused by forest fire. However, except for the unburned and thrice burned classes, no single PALSAR attribute was able to discriminate between the intermediate classes of forest degradation by fire. Both the coherent and incoherent polarimetric attributes were important to explain AGB variations in tropical forests affected by fire. The HV backscattering coefficient, anisotropy, double-bounce component, orientation angle, volume index and HH-VV phase difference were PALSAR attributes selected from multiple regression analysis to estimate AGB. The general regression model, combining phase and power radar metrics, presented better results than specific models using coherent or incoherent attributes. The polarimetric responses indicated the dominance of VV-oriented backscattering in primary forest and lightly burned forests. The HH-oriented backscattering predominated in heavily and frequently burned forests. The results suggested a greater contribution of horizontally arranged constituents such as fallen trunks or branches in areas severely affected by fire.

  12. Deforestation and Forest Fires in Roraima and Their Relationship with Phytoclimatic Regions in the Northern Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Barni, Paulo Eduardo; Pereira, Vaneza Barreto; Manzi, Antonio Ocimar; Barbosa, Reinaldo Imbrozio

    2015-05-01

    Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 103 km2 (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 103 km2 (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.

  13. Opportunities for making wood products from small diameter trees in Colorado

    Treesearch

    Dennis L. Lynch; Kurt H. Mackes

    2002-01-01

    Colorado's forests are at risk to forest health problems and catastrophic fire. Forest areas at high risk to catastrophic fire, commonly referred to as Red Zones, contain 2.4 million acres in the Colorado Front Range and 6.3 million acres Statewide. The increasing frequency, size, and intensity of recent forest fires have prompted large appropriations of Federal...

  14. Thunderstorm analysis in the northern Rocky Mountains

    Treesearch

    DeVer Colson

    1957-01-01

    Lightning-caused fires are a continuing serious threat to forests in the northern Rocky Mountain area. More than 70 percent of all forest fires in this area are caused by lightning. In one 10-day period in July 1940 the all-time record of 1,488 lightning fires started on the national forests in Region l of the U.S. Forest Service.

  15. Fire effects on infiltration rates after prescribed fire in northern Rocky Mountain forests, USA

    Treesearch

    Peter R. Robichaud

    2000-01-01

    Infiltration rates in undisturbed forest environments are generally high. These high infiltration rates may be reduced when forest management activities such as timber harvesting and/or prescribed fires are used. Post-harvest residue burning is a common site preparation treatment used in the Northern Rocky Mountains, USA, to reduce forest fuels and to prepare sites for...

  16. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. forests

    Treesearch

    Scott L. Stephens; Jason J. Moghaddas; Carl Edminster; Carl E. Fiedler; Sally Haase; Michael Harrington; Jon E. Keeley; Eric E. Knapp; James D. McIver; Kerry Metlen; Carl N. Skinner; Andrew Youngblood

    2009-01-01

    Forest structure and species composition in many western U.S. coniferous forests have been altered through fire exclusion, past and ongoing harvesting practices, and livestock grazing over the 20th century. The effects of these activities have been most pronounced in seasonally dry, low and mid-elevation coniferous forests that once experienced frequent, low to...

  17. Managed wildfire effects on forest resilience and water in the Sierra Nevada

    Treesearch

    Gabrielle Boisramé; Sally Thompson; Brandon Collins; Scott Stephens

    2017-01-01

    Fire suppression in many dry forest types has left a legacy of dense, homogeneous forests. Such landscapes have high water demands and fuel loads, and when burned can result in catastrophically large fires. These characteristics are undesirable in the face of projected warming and drying in the western US. Alternative forest and fire treatments based on managed...

  18. Longleaf pine forests and woodlands: old growth under fire!

    Treesearch

    Joan L. Walker

    1999-01-01

    The author discusses a once widespread forest type of the Southeast – longleaf pine dominated forests and woodlands. This system depends on fire – more or less frequent, and often of low intensity. Because human-mediated landscape fragmentation has drastically changed the behavior of fire on longleaf pine dominated landscapes, these forests and woodlands will never be...

  19. Carbon tradeoffs of restoration and provision of endangered species habitat in a fire-maintained forest

    Treesearch

    Katherine L. Martin; Matthew D. Hurteau; Bruce A. Hungate; George W. Koch; Malcolm P. North

    2015-01-01

    Forests are a significant part of the global carbon cycle and are increasingly viewed as tools for mitigating climate change. Natural disturbances, such as fire, can reduce carbon storage. However, many forests and dependent species evolved with frequent fire as an integral ecosystem process. We used a landscape forest simulation model to evaluate the effects of...

  20. Bird Responses to burns and clear cuts in the boreal forest of Canada

    Treesearch

    Susan J. Hannon; Pierre Drapeau

    2005-01-01

    Unlike many other ecosystems in North America, the boreal forest in Canada still retains a natural fire regime. However, increasing industrial forestry, primarily clear cutting, could alter natural fire dynamics and adversely affect some species. A possible solution to this, promoted by many forest managers, is to cut the forest in a way that emulates natural fire...

  1. Solar radiation and forest fuel moisture

    Treesearch

    George M. Byram; George M. Jemison

    1943-01-01

    A major contribution to progress in forest fire prevention and control during the past 10 years has been the development and widespread application of methods of rating forest fire danger. Fire danger rating systems are now in use in all the forest regions of the United States. They have been described by Gisborne, Brown and Davis, Curry et al., Matthews, Jemison, and...

  2. Forest fuel characterization using direct sampling in forest plantations

    Treesearch

    Eva Reyna Esmeralda Díaz García; Marco Aurelio González Tagle; Javier Jiménez Pérez; Eduardo JavierTreviño Garza; Diana Yemilet Ávila Flores

    2013-01-01

    One of the essential elements for a fire to occur is the flammable material. This is defined as the total biomass that has the ability to ignite and burn when exposed to a heat source. Fuel characterization in Mexican forest ecosystems is very scarce. However, this information is very important for estimating flammability and forest fire risk, fire behavior,...

  3. Soil responses to the fire and fire surrogate study in the Sierra Nevada

    Treesearch

    Emily E.Y. Moghaddas; Scott L. Stephens

    2007-01-01

    The Fire and Fire Surrogate Study utilizes forest thinning and prescribed burning in attempt to create forest stand structures that reduce the risk of catastrophic wildfire. Replicated treatments consisting of mechanical tree harvest (commercial harvest plus mastication of submerchantable material), mechanical harvest followed by prescribed fire, prescribed fire alone...

  4. Forest fires in the insular Caribbean

    Treesearch

    A.M.J. Robbins; C.M. Eckelmann; M. Quinones

    2008-01-01

    This paper presents a summary of the forest fire reports in the insular Caribbean derived from both management reports and an analysis of publicly available Moderate Resolution Imaging Spectrodiometer (MODIS) satellite active fire products from the region. A vast difference between the amount of fires reported by land managers and fire points in the MODIS Fire...

  5. Forest Fires Darken Snow for Years following Disturbance: Magnitude, Duration, and Composition of Light Absorbing Impurities in Seasonal Snow across a Chronosequence of Burned Forests in the Colorado River Headwaters

    NASA Astrophysics Data System (ADS)

    Gleason, K. E.; Arienzo, M. M.; Chellman, N.; McConnell, J.

    2017-12-01

    Charred forests shed black carbon and burned debris, which accumulates and concentrates on winter snowpack, reducing snow surface albedo, and subsequently increasing snowmelt rates, and advancing the date of snow disappearance. Forest fires have occurred across vast areas of the seasonal snow zone in recent decades, however we do not understand the long-term implications of burned forests in montane headwaters to snow hydrology and downstream water resources. Across a chronosequence of nine burned forests in the Colorado River Headwaters, we sampled snow throughout the complete snowpack profile to conserve the composition, properties, and vertical stratigraphy of impurities in the snowpack during maximum snow accumulation. Using state-of-the-art geochemical analyses, we determined the magnitude, composition, and particle size distribution of black carbon, dust, and other impurities in the snowpack relative to years-since fire. Forest fires continue to darken snow for many years following fire, however the magnitude, composition, and particle size distribution of impurities change through time, altering the post-fire radiative forcing on snow as a burned forest ages.

  6. Surface forcing of non-stand-replacing fires in Siberian larch forests

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Loboda, Tatiana V.

    2018-04-01

    Wildfires are the dominant disturbance agent in the Siberian larch forests. Extensive low- to mediate-intensity non-stand-replacing fires are a notable property of fire regime in these forests. Recent large scale studies of these fires have focused mostly on their impacts on carbon budget; however, their potential impacts on energy budget through post-fire albedo changes have not been considered. This study quantifies the post-fire surface forcing for Siberian larch forests that experienced non-stand-replacing fires between 2001 and 2012 using the full record of MODIS MCD43A3 albedo product and a burned area product developed specifically for the Russian forests. Despite a large variability, the mean effect of non-stand-replacing fires imposed through albedo is a negative forcing which lasts for at least 14 years. However, the magnitude of the forcing is much smaller than that imposed by stand-replacing fires, highlighting the importance of differentiating between the two fire types in the studies involving the fire impacts in the region. The results of this study also show that MODIS-based summer differenced normalized burn ratio (dNBR) provides a reliable metric for differentiating non-stand-replacing from stand-replacing fires with an overall accuracy of 88%, which is of considerable importance for future work on modeling post-fire energy budget and carbon budget in the region.

  7. Application of remote sensing and geographical information system in mapping forest fire risk zone at Bhadra wildlife sanctuary, India.

    PubMed

    Sowmya, S V; Somashekar, R K

    2010-11-01

    Fire is the most spectacular natural disturbance that affects the forest ecosystem composition and diversity. Fire has a devastating effect on the landscape and its impact is felt at every level of the ecosystem and it is possible to map forest fire risk zone and thereby minimize the frequency of fire. There is a need for supranational approaches that analyze wide scenarios of factors involved and global fire effects. Fires can be monitored and analyzed over large areas in a timely and cost effective manner by using satellite imagery. Also Geographical Information System (GIS) can be used effectively to demarcate the fire risk zone map. Bhadra wildlife Sanctuary located in Kamataka, India was selected for this study. Vegetation, slope, distance from roads, settlements parameters were derived for a study area using topographic maps and field information. The Remote Sensing (RS) and Geographical Information System (GIS)-based forest fire risk model of the study area appeared to be highly compatible with the actual fire-affected sites. The temporal satellite data from 1989 to2006 have been analyzed to map the burnt areas. These classes were weighted according to their influence on forest fire. Four categories of fire risk regions such as Low, Moderate, High and Very high fire intensity zones were identified. It is predicted that around 10.31% of the area falls undermoderate risk zone.

  8. Canadian and Siberian Boreal Fire Activity during ARCTAS Spring and Summer Phases

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Fromm, M. D.; Soja, A. J.; Servranckx, R.; Lindsey, D.; Hyer, E.

    2009-12-01

    The summer phase of ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) was designed specifically around forest fire activity in the Canadian boreal forest, and located in areas of northern Canada where summer forest fires are ubiquitous. Lightning fires are most often allowed to burn naturally in these regions, and a number of large free-burning fires in northern Saskatchewan in late June/early July 2008 provided excellent targets during the summer phase of ARCTAS. Smoke generated by a large number of early spring fires in Kazakhstan and southern Siberia unexpectedly made a significant contribution to arctic haze during the Alaska-based spring phase of ARCTAS, Numerous smoke plumes were sampled during the spring phase of ARCTAS, creating interest in the origin and characteristics of the fires in the source regions of East Asia. This presentation is designed to connect aircraft and satellite smoke chemistry/transport measurements with ground-based measurements of fire activity during the spring and summer phases of ARCTAS. The Canadian Forest Fire Danger Rating System (CFFDRS) is used to determine forest fire danger conditions in regions of fire activity, and these measurements are in turn used to project fire behavior characteristics. Fuel consumption, spread rates, and frontal fire intensity are calculated using the CFFDRS. Energy release rates at ground level are related to convection/smoke column development and smoke injection heights.

  9. Effects of fire on spotted owl site occupancy in a late-successional forest

    USGS Publications Warehouse

    Roberts, Susan L.; van Wagtendonk, Jan W.; Miles, A. Keith; Kelt, Douglas A.

    2011-01-01

    The spotted owl (Strix occidentalis) is a late-successional forest dependent species that is sensitive to forest management practices throughout its range. An increase in the frequency and spatial extent of standreplacing fires in western North America has prompted concern for the persistence of spotted owls and other sensitive late-successional forest associated species. However, there is sparse information on the effects of fire on spotted owls to guide conservation policies. In 2004-2005, we surveyed for California spotted owls during the breeding season at 32 random sites (16 burned, 16 unburned) throughout late-successional montane forest in Yosemite National Park, California. Our burned areas burned at all severities, but predominately involved low to moderate fire severity. Based on an information theoretic approach, spotted owl detection and occupancy rates were similar between burned and unburned sites. Nest and roost site occupancy was best explained by a model that combined total tree basal area (positive effect) with cover by coarse woody debris (negative effect). The density estimates of California spotted owl pairs were similar in burned and unburned forests, and the overall mean density estimate for Yosemite was higher than previously reported for montane forests. Our results indicate that low to moderate severity fires, historically common within montane forests of the Sierra Nevada, California, maintain habitat characteristics essential for spotted owl site occupancy. These results suggest that managed fires that emulate the historic fire regime of these forests may maintain spotted owl habitat and protect this species from the effects of future catastrophic fires.

  10. Prolonged Effect of Severe Wildfires on Mercury and Other Volatiles in Forest Soils of the Lake Superior Region, USA

    NASA Astrophysics Data System (ADS)

    Cannon, W. F.; Woodruff, L. G.

    2003-12-01

    Soils in Isle Royale National Park, Michigan and Voyageurs National Park, Minnesota show spatial patterns of depletion of total Hg, organic C, Se, total S, P, and Pb within areas of severe, stand-replacing wildfires that burned in 1936, approximately 65 years prior to our current study. The fires burned during a regional drought, were of high severity, and likely consumed a high percentage of organic forest-floor material (O-horizon). A "fire factor" is defined by positive correlations among Hg, C, Se, S, P, and Pb. A factor score for this six-element grouping derived from factor analysis was assigned to each sample. The scores show a high spatial correlation with the footprint of the 1936 fires in both parks, particularly for A-horizon soils. Because many of these elements are volatile, and are highly correlated with soil organic matter, observed depletions likely represent instantaneous atmospheric release during combustion of O-horizon soils coupled with decades-long reduction of organic matter on the forest floor and near-surface soils. Nearly complete combustion of the modern O-horizon would release roughly 1 mg Hg/m2 from the forest floor. Decades-long disturbance resulting from destruction of mature forests and gradual regrowth following fire also play an important role in Hg cycling. Destruction of a mature forest results in decreased deposition of Hg from litterfall as well as throughfall, which contributes Hg by wash-off of dry deposited Hg from foliar surfaces. Hg in forest soils may follow a fire-dependent cycle in which sudden Hg loss during fire is followed by a period of continued Hg loss as evasion exceeds sequestration in the early stand-replacement stage, finally to resume gradual buildup in later stages of forest regrowth. In the Lake Superior region this cycle exceeds 65 years in duration and is of the same magnitude as the fire return interval for this region. Forests that are controlled by fire-induced cycles of stand replacement may also be in continuous cycles of Hg sequestration and emission. Fire history appears to be a major determinant in the amount of Hg stored in forest soils. Fire almost certainly releases Hg to the atmosphere as forest floor material is burned and thus contributes to atmospheric Hg loads. Fire also appears to cleanse burned areas of Hg both by the atmospheric release during combustion and longer-term release during post-fire forest reorganization. Fire cleansing appears to persist for decades after severe fires and may ameliorate Hg contamination of aquatic food webs by decreasing the soil Hg load of burned watersheds.

  11. Mapping Canopy Damage from Understory Fires in Amazon Forests Using Annual Time Series of Landsat and MODIS Data

    NASA Technical Reports Server (NTRS)

    Morton, Douglas C.; DeFries, Ruth S.; Nagol, Jyoteshwar; Souza, Carlos M., Jr.; Kasischke, Eric S.; Hurtt, George C.; Dubayah, Ralph

    2011-01-01

    Understory fires in Amazon forests alter forest structure, species composition, and the likelihood of future disturbance. The annual extent of fire-damaged forest in Amazonia remains uncertain due to difficulties in separating burning from other types of forest damage in satellite data. We developed a new approach, the Burn Damage and Recovery (BDR) algorithm, to identify fire-related canopy damages using spatial and spectral information from multi-year time series of satellite data. The BDR approach identifies understory fires in intact and logged Amazon forests based on the reduction and recovery of live canopy cover in the years following fire damages and the size and shape of individual understory burn scars. The BDR algorithm was applied to time series of Landsat (1997-2004) and MODIS (2000-2005) data covering one Landsat scene (path/row 226/068) in southern Amazonia and the results were compared to field observations, image-derived burn scars, and independent data on selective logging and deforestation. Landsat resolution was essential for detection of burn scars less than 50 ha, yet these small burns contributed only 12% of all burned forest detected during 1997-2002. MODIS data were suitable for mapping medium (50-500 ha) and large (greater than 500 ha) burn scars that accounted for the majority of all fire-damaged forest in this study. Therefore, moderate resolution satellite data may be suitable to provide estimates of the extent of fire-damaged Amazon forest at a regional scale. In the study region, Landsat-based understory fire damages in 1999 (1508 square kilometers) were an order of magnitude higher than during the 1997-1998 El Nino event (124 square kilometers and 39 square kilometers, respectively), suggesting a different link between climate and understory fires than previously reported for other Amazon regions. The results in this study illustrate the potential to address critical questions concerning climate and fire risk in Amazon forests by applying the BDR algorithm over larger areas and longer image time series.

  12. An Opinion on the Nitrate Film Fire, Suitland, Maryland, 7 December 1978.

    ERIC Educational Resources Information Center

    Utterback, W. H., Jr.

    1980-01-01

    Examines the storage conditions and the circumstances surrounding the film storage facility fire in Suitland, Maryland, which destroyed over 13 million feet of film. Outlines possible causes for the fire and offers recommendations for prevention of such future disasters. (JMF)

  13. Restoring and managing low-severity fire in dry-forest landscapes of the western USA.

    PubMed

    Baker, William L

    2017-01-01

    Low-severity fires that killed few canopy trees played a significant historical role in dry forests of the western USA and warrant restoration and management, but historical rates of burning remain uncertain. Past reconstructions focused on on dating fire years, not measuring historical rates of burning. Past statistics, including mean composite fire interval (mean CFI) and individual-tree fire interval (mean ITFI) have biases and inaccuracies if used as estimators of rates. In this study, I used regression, with a calibration dataset of 96 cases, to test whether these statistics could accurately predict two equivalent historical rates, population mean fire interval (PMFI) and fire rotation (FR). The best model, using Weibull mean ITFI, had low prediction error and R2adj = 0.972. I used this model to predict historical PMFI/FR at 252 sites spanning dry forests. Historical PMFI/FR for a pool of 342 calibration and predicted sites had a mean of 39 years and median of 30 years. Short (< 25 years) mean PMFI/FRs were in Arizona and New Mexico and scattered in other states. Long (> 55 years) mean PMFI/FRs were mainly from northern New Mexico to South Dakota. Mountain sites often had a large range in PMFI/FR. Nearly all 342 estimates are for old forests with a history of primarily low-severity fire, found across only about 34% of historical dry-forest area. Frequent fire (PMFI/FR < 25 years) was found across only about 14% of historical dry-forest area, with 86% having multidecadal rates of low-severity fire. Historical fuels (e.g., understory shrubs and small trees) could fully recover between multidecadal fires, allowing some denser forests and some ecosystem processes and wildlife habitat to be less limited by fire. Lower historical rates mean less restoration treatment is needed before beginning managed fire for resource benefits, where feasible. Mimicking patterns of variability in historical low-severity fire regimes would likely benefit biological diversity and ecosystem functioning.

  14. Restoring and managing low-severity fire in dry-forest landscapes of the western USA

    PubMed Central

    2017-01-01

    Low-severity fires that killed few canopy trees played a significant historical role in dry forests of the western USA and warrant restoration and management, but historical rates of burning remain uncertain. Past reconstructions focused on on dating fire years, not measuring historical rates of burning. Past statistics, including mean composite fire interval (mean CFI) and individual-tree fire interval (mean ITFI) have biases and inaccuracies if used as estimators of rates. In this study, I used regression, with a calibration dataset of 96 cases, to test whether these statistics could accurately predict two equivalent historical rates, population mean fire interval (PMFI) and fire rotation (FR). The best model, using Weibull mean ITFI, had low prediction error and R2adj = 0.972. I used this model to predict historical PMFI/FR at 252 sites spanning dry forests. Historical PMFI/FR for a pool of 342 calibration and predicted sites had a mean of 39 years and median of 30 years. Short (< 25 years) mean PMFI/FRs were in Arizona and New Mexico and scattered in other states. Long (> 55 years) mean PMFI/FRs were mainly from northern New Mexico to South Dakota. Mountain sites often had a large range in PMFI/FR. Nearly all 342 estimates are for old forests with a history of primarily low-severity fire, found across only about 34% of historical dry-forest area. Frequent fire (PMFI/FR < 25 years) was found across only about 14% of historical dry-forest area, with 86% having multidecadal rates of low-severity fire. Historical fuels (e.g., understory shrubs and small trees) could fully recover between multidecadal fires, allowing some denser forests and some ecosystem processes and wildlife habitat to be less limited by fire. Lower historical rates mean less restoration treatment is needed before beginning managed fire for resource benefits, where feasible. Mimicking patterns of variability in historical low-severity fire regimes would likely benefit biological diversity and ecosystem functioning. PMID:28199416

  15. The effect of climate anomalies and human ignition factor on wildfires in Russian boreal forests.

    PubMed

    Achard, Frédéric; Eva, Hugh D; Mollicone, Danilo; Beuchle, René

    2008-07-12

    Over the last few years anomalies in temperature and precipitation in northern Russia have been regarded as manifestations of climate change. During the same period exceptional forest fire seasons have been reported, prompting many authors to suggest that these in turn are due to climate change. In this paper, we examine the number and areal extent of forest fires across boreal Russia for the period 2002-2005 within two forest categories: 'intact forests' and 'non-intact forests'. Results show a far lower density of fire events in intact forests (5-14 times less) and that those events tend to be in the first 10 km buffer zone inside intact forest areas. Results also show that, during exceptional climatic years (2002 and 2003), fire event density is twice that found during normal years (2004 and 2005) and average areal extent of fire events (burned area) in intact forests is 2.5 times larger than normal. These results suggest that a majority of the fire events in boreal Russia are of human origin and a maximum of one-third of their impact (areal extension) can be attributed to climate anomalies alone, the rest being due to the combined effect of human disturbances and climate anomalies.

  16. Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County, China.

    PubMed

    Hong, Haoyuan; Tsangaratos, Paraskevas; Ilia, Ioanna; Liu, Junzhi; Zhu, A-Xing; Xu, Chong

    2018-07-15

    The main objective of the present study was to utilize Genetic Algorithms (GA) in order to obtain the optimal combination of forest fire related variables and apply data mining methods for constructing a forest fire susceptibility map. In the proposed approach, a Random Forest (RF) and a Support Vector Machine (SVM) was used to produce a forest fire susceptibility map for the Dayu County which is located in southwest of Jiangxi Province, China. For this purpose, historic forest fires and thirteen forest fire related variables were analyzed, namely: elevation, slope angle, aspect, curvature, land use, soil cover, heat load index, normalized difference vegetation index, mean annual temperature, mean annual wind speed, mean annual rainfall, distance to river network and distance to road network. The Natural Break and the Certainty Factor method were used to classify and weight the thirteen variables, while a multicollinearity analysis was performed to determine the correlation among the variables and decide about their usability. The optimal set of variables, determined by the GA limited the number of variables into eight excluding from the analysis, aspect, land use, heat load index, distance to river network and mean annual rainfall. The performance of the forest fire models was evaluated by using the area under the Receiver Operating Characteristic curve (ROC-AUC) based on the validation dataset. Overall, the RF models gave higher AUC values. Also the results showed that the proposed optimized models outperform the original models. Specifically, the optimized RF model gave the best results (0.8495), followed by the original RF (0.8169), while the optimized SVM gave lower values (0.7456) than the RF, however higher than the original SVM (0.7148) model. The study highlights the significance of feature selection techniques in forest fire susceptibility, whereas data mining methods could be considered as a valid approach for forest fire susceptibility modeling. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Climate change impacts on forest fires: the stakeholders' perspective

    NASA Astrophysics Data System (ADS)

    Giannakopoulos, C.; Roussos, A.; Karali, A.; Hatzaki, M.; Xanthopoulos, G.; Chatzinikos, E.; Fyllas, N.; Georgiades, N.; Karetsos, G.; Maheras, G.; Nikolaou, I.; Proutsos, N.; Sbarounis, T.; Tsaggari, K.; Tzamtzis, I.; Goodess, C.

    2012-04-01

    In this work, we present a synthesis of the presentations and discussions which arose during a workshop on 'Impacts of climate change on forest fires' held in September 2011 at the National Observatory of Athens, Greece in the framework of EU project CLIMRUN. At first, a general presentation about climate change and extremes in the Greek territory provided the necessary background to the audience and highlighted the need for data and information exchange between scientists and stakeholders through climate services within CLIMRUN. Discussions and presentations that followed linked climate with forest science through the use of a meteorological index for fire risk and future projections of fire danger using regional climate models. The current situation on Greek forests was also presented, as well as future steps that should be taken to ameliorate the situation under a climate change world. A time series analysis of changes in forest fires using available historical data on forest ecosystems in Greece was given in this session. This led to the topic of forest fire risk assessment and fire prevention, stating all actions towards sustainable management of forests and effective mechanisms to control fires under climate change. Options for a smooth adaptation of forests to climate change were discussed together with the lessons learned on practical level on prevention, repression and rehabilitation of forest fires. In between there were useful interventions on sustainable hunting and biodiversity protection and on climate change impacts on forest ecosystems dynamics. The importance of developing an educational program for primary/secondary school students on forest fire management was also highlighted. The perspective of forest stakeholders on climate change and how this change can affect their current or future activities was addressed through a questionnaire they were asked to complete. Results showed that the majority of the participants consider climate variability to be important or very important and to influence their activities. Extreme climate events, desertification and drought were regarded as the most important environmental problems along with loss of biodiversity. Most of the participants answered that they use historical data for research, and would welcome climate data and services targeted to their sector if offered. Acknowledgement: This work was supported by the EU project CLIMRUN under contract FP7-ENV-2010- 265192.

  18. Comparing modern and presettlement forest dynamics of a subboreal wilderness: Does spruce budworm enhance fire risk?

    USGS Publications Warehouse

    Sturtevant, Brian R.; Miranda, Brian R.; Shinneman, Douglas J.; Gustafson, Eric J.; Wolter, Peter T.

    2012-01-01

    Insect disturbance is often thought to increase fire risk through enhanced fuel loadings, particularly in coniferous forest ecosystems. Yet insect disturbances also affect successional pathways and landscape structure that interact with fire disturbances (and vice-versa) over longer time scales. We applied a landscape succession and disturbance model (LANDIS-II) to evaluate the relative strength of interactions between spruce budworm (Choristoneura fumiferana) outbreaks and fire disturbances in the Boundary Waters Canoe Area (BWCA) in northern Minnesota (USA). Disturbance interactions were evaluated for two different scenarios: presettlement forests and fire regimes vs. contemporary forests and fire regimes. Forest composition under the contemporary scenario trended toward mixtures of deciduous species (primarily Betula papyrifera and Populus spp.) and shade-tolerant conifers (Picea mariana, Abies balsamea, Thuja occidentalis), with disturbances dominated by a combination of budworm defoliation and high-severity fires. The presettlement scenario retained comparatively more “big pines” (i.e., Pinus strobus, P. resinosa) and tamarack (L. laricina), and experienced less budworm disturbance and a comparatively less-severe fire regime. Spruce budworm disturbance decreased area burned and fire severity under both scenarios when averaged across the entire 300-year simulations. Contrary to past research, area burned and fire severity during outbreak decades were each similar to that observed in non-outbreak decades. Our analyses suggest budworm disturbances within forests of the BWCA have a comparatively weak effect on long-term forest composition due to a combination of characteristics. These include strict host specificity, fine-scaled patchiness created by defoliation damage, and advance regeneration of its primary host, balsam fir (A. balsamea) that allows its host to persist despite repeated disturbances. Understanding the nature of the three-way interaction between budworm, fire, and composition has important ramifications for both fire mitigation strategies and ecosystem restoration initiatives. We conclude that budworm disturbance can partially mitigate long-term future fire risk by periodically reducing live ladder fuel within the mixed forest types of the BWCA but will do little to reverse the compositional trends caused in part by reduced fire rotations.

  19. The role of anger and ongoing stressors in mental health following a natural disaster.

    PubMed

    Forbes, David; Alkemade, Nathan; Waters, Elizabeth; Gibbs, Lisa; Gallagher, Colin; Pattison, Phillipa; Lusher, Dean; MacDougall, Colin; Harms, Louise; Block, Karen; Snowdon, Elyse; Kellet, Connie; Sinnott, Vikki; Ireton, Greg; Richardson, John; Bryant, Richard A

    2015-08-01

    Research has established the mental health sequelae following disaster, with studies now focused on understanding factors that mediate these outcomes. This study focused on anger, alcohol, subsequent life stressors and traumatic events as mediators in the development of mental health disorders following the 2009 Black Saturday Bushfires, Australia's worst natural disaster in over 100 years. This study examined data from 1017 (M = 404, F = 613) adult residents across 25 communities differentially affected by the fires and participating in the Beyond Bushfires research study. Data included measures of fire exposure, posttraumatic stress disorder, depression, alcohol abuse, anger and subsequent major life stressors and traumatic events. Structural equation modeling assessed the influence of factors mediating the effects of fire exposure on mental health outcomes. Three mediation models were tested. The final model recorded excellent fit and observed a direct relationship between disaster exposure and mental health outcomes (b = .192, p < .001) and mediating relationships via Anger (b = .102, p < .001) and Major Life Stressors (b = .128, p < .001). Each gender was compared with multiple group analyses and while the mediation relationships were still significant for both genders, the direct relationship between exposure and outcome was no longer significant for men (p = .069), but remained significant (b = .234, p < .001) for women. Importantly, anger and major life stressors mediate the relationship between disaster exposure and development of mental health problems. The findings have significant implications for the assessment of anger post disaster, the provision of targeted anger-focused interventions and delivery of government and community assistance and support in addressing ongoing stressors in the post-disaster context to minimize subsequent mental health consequences. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  20. Long-term, landscape patterns of past fire events in a montane ponderosa pine forest of central Colorado

    Treesearch

    Peter M. Brown; Merrill R. Kaufmann; Wayne D. Shepperd

    1999-01-01

    Parameters of fire regimes, including fire frequency, spatial extent of burned areas, fire severity, and season of fire occurrence, influence vegetation patterns over multiple scales. In this study, centuries-long patterns of fire events in a montane ponderosa pine - Douglas-fir forest landscape surrounding Cheesman Lake in central Colorado were reconstructed from fire...

Top