Sample records for forest fire spread

  1. Implications of the spatial dynamics of fire spread for the bistability of savanna and forest.

    PubMed

    Schertzer, E; Staver, A C; Levin, S A

    2015-01-01

    The role of fire in expanding the global distribution of savanna is well recognized. Empirical observations and modeling suggest that fire spread has a threshold response to fuel-layer continuity, which sets up a positive feedback that maintains savanna-forest bistability. However, modeling has so far failed to examine fire spread as a spatial process that interacts with vegetation. Here, we use simple, well-supported assumptions about fire spread as an infection process and its effects on trees to ask whether spatial dynamics qualitatively change the potential for savanna-forest bistability. We show that the spatial effects of fire spread are the fundamental reason that bistability is possible: because fire spread is an infection process, it exhibits a threshold response to fuel continuity followed by a rapid increase in fire size. Other ecological processes affecting fire spread may also contribute including temporal variability in demography or fire spread. Finally, including the potential for spatial aggregation increases the potential both for savanna-forest bistability and for savanna and forest to coexist in a landscape mosaic.

  2. Numerical study of propagation of forest fires in the presence of fire breaks using an averaged setting

    NASA Astrophysics Data System (ADS)

    Marzaeva, S. I.; Galtseva, O. V.

    2018-05-01

    The forest fires spread in the pine forests have been numerically simulated using a three-dimensional mathematical model. The model was integrated with respect to the vertical coordinate because horizontal sizes of forest are much greater than the heights of trees. In this paper, the assignment and theoretical investigations of the problems of crown forest fires spread pass the firebreaks were carried out. In this context, a study ( mathematical modeling) of the conditions of forest fire spreading that would make it possible to obtain a detailed picture of the change in the temperature and component concentration fields with time, and determine as well as the limiting condition of fire propagation in forest with these fire breaks.

  3. Fire spread estimation on forest wildfire using ensemble kalman filter

    NASA Astrophysics Data System (ADS)

    Syarifah, Wardatus; Apriliani, Erna

    2018-04-01

    Wildfire is one of the most frequent disasters in the world, for example forest wildfire, causing population of forest decrease. Forest wildfire, whether naturally occurring or prescribed, are potential risks for ecosystems and human settlements. These risks can be managed by monitoring the weather, prescribing fires to limit available fuel, and creating firebreaks. With computer simulations we can predict and explore how fires may spread. The model of fire spread on forest wildfire was established to determine the fire properties. The fire spread model is prepared based on the equation of the diffusion reaction model. There are many methods to estimate the spread of fire. The Kalman Filter Ensemble Method is a modified estimation method of the Kalman Filter algorithm that can be used to estimate linear and non-linear system models. In this research will apply Ensemble Kalman Filter (EnKF) method to estimate the spread of fire on forest wildfire. Before applying the EnKF method, the fire spread model will be discreted using finite difference method. At the end, the analysis obtained illustrated by numerical simulation using software. The simulation results show that the Ensemble Kalman Filter method is closer to the system model when the ensemble value is greater, while the covariance value of the system model and the smaller the measurement.

  4. The simulation of surface fire spread based on Rothermel model in windthrow area of Changbai Mountain (Jilin, China)

    NASA Astrophysics Data System (ADS)

    Yin, Hang; Jin, Hui; Zhao, Ying; Fan, Yuguang; Qin, Liwu; Chen, Qinghong; Huang, Liya; Jia, Xiang; Liu, Lijie; Dai, Yuhong; Xiao, Ying

    2018-03-01

    The forest-fire not only brings great loss to natural resources, but also destructs the ecosystem and reduces the soil fertility, causing some natural disasters as soil erosion and debris flow. However, due to the lack of the prognosis for forest fire spreading trend in forest fire fighting, it is difficult to formulate rational and effective fire-fighting scheme. In the event of forest fire, achieving accurate judgment to the fire behavior would greatly improve the fire-fighting efficiency, and reduce heavy losses caused by fire. Researches on forest fire spread simulation can effectively reduce the loss of disasters. The present study focused on the simulation of "29 May 2012" wildfire in windthrow area of Changbai Mountain. Basic data were retrieved from the "29 May 2012" wildfire and field survey. A self-development forest fire behavior simulated program based on Rothermel Model was used in the simulation. Kappa coefficient and Sørensen index were employed to evaluate the simulation accuracy. The results showed that: The perimeter of simulated burned area was 4.66 km, the area was 56.47 hm2 and the overlapped burned area was 33.68 hm2, and the estimated rate of fire spread was 0.259 m/s. Between the simulated fire and actual fire, the Kappa coefficient was 0.7398 and the Sørensen co-efficient was 0.7419. This proved the application of Rothermel model to conduct fire behavior simulation in windthrow meadow was feasible. It can achieve the goal of forecasting for the spread behavior in windthrow area of Changbai Mountain. Thus, our self-development program based on the Rothermel model can provide a effective forecast of fire spread, which will facilitate the fire suppression work.

  5. Forest-fire models

    Treesearch

    Haiganoush Preisler; Alan Ager

    2013-01-01

    For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...

  6. A numerical solution of the problem of crown forest fire initiation and spread

    NASA Astrophysics Data System (ADS)

    Marzaeva, S. I.; Galtseva, O. V.

    2018-05-01

    Mathematical model of forest fire was based on an analysis of known experimental data and using concept and methods from reactive media mechanics. The study takes in to account the mutual interaction of the forest fires and three-dimensional atmosphere flows. The research is done by means of mathematical modeling of physical processes. It is based on numerical solution of Reynolds equations for chemical components and equations of energy conservation for gaseous and condensed phases. It is assumed that the forest during a forest fire can be modeled as a two-temperature multiphase non-deformable porous reactive medium. A discrete analog for the system of equations was obtained by means of the control volume method. The developed model of forest fire initiation and spreading would make it possible to obtain a detailed picture of the variation in the velocity, temperature and chemical species concentration fields with time. Mathematical model and the result of the calculation give an opportunity to evaluate critical conditions of the forest fire initiation and spread which allows applying the given model for of means for preventing fires.

  7. How to predict the spread and intensity of forest and range fires

    Treesearch

    Richard C. Rothermel

    1983-01-01

    This manual documents procedures for estimating the rate of forward spread, intensity, flame length, and size of fires burning in forests and rangelands. Contains instructions for obtaining fuel and weather data, calculating fire behavior, and interpreting the results for application to actual fire problems. This is a companion publication to "

  8. A fundamental look at fire spread in California chaparral

    Treesearch

    David R. Weise; Thomas Fletcher; Larry Baxter; Shankar Mahalingam; Xiangyang Zhou; Patrick Pagni; Rod Linn; Bret Butler

    2004-01-01

    The USDA Forest Service National Fire Plan funded a research program to study fire spread in live fuels of the southwestern United States. In the U.S. current operational fire spread models do not distinguish between live and dead fuels in a sophisticated manner because the study of live fuels has been limited. The program is experimentally examining fire spread at 3...

  9. Fire spread probabilities for experimental beds composed of mixedwood boreal forest fuels

    Treesearch

    M.B. Dickinson; E.A. Johnson; R. Artiaga

    2013-01-01

    Although fuel characteristics are assumed to have an important impact on fire regimes through their effects on extinction dynamics, limited capabilities exist for predicting whether a fire will spread in mixedwood boreal forest surface fuels. To improve predictive capabilities, we conducted 347 no-wind, laboratory test burns in surface fuels collected from the mixed-...

  10. Improving the Interoperability of Disaster Models: a Case Study of Proposing Fireml for Forest Fire Model

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Wang, F.; Meng, Q.; Li, Z.; Liu, B.; Zheng, X.

    2018-04-01

    This paper presents a new standardized data format named Fire Markup Language (FireML), extended by the Geography Markup Language (GML) of OGC, to elaborate upon the fire hazard model. The proposed FireML is able to standardize the input and output documents of a fire model for effectively communicating with different disaster management systems to ensure a good interoperability. To demonstrate the usage of FireML and testify its feasibility, an adopted forest fire spread model being compatible with FireML is described. And a 3DGIS disaster management system is developed to simulate the dynamic procedure of forest fire spread with the defined FireML documents. The proposed approach will enlighten ones who work on other disaster models' standardization work.

  11. A simple physical model for forest fire spread

    Treesearch

    E. Koo; P. Pagni; J. Woycheese; S. Stephens; D. Weise; J. Huff

    2005-01-01

    Based on energy conservation and detailed heat transfer mechanisms, a simple physical model for fire spread is presented for the limit of one-dimensional steady-state contiguous spread of a line fire in a thermally-thin uniform porous fuel bed. The solution for the fire spread rate is found as an eigenvalue from this model with appropriate boundary conditions through a...

  12. Influence of landscape structure, topography, and forest type on spatial variation in historical fire regimes, central Oregon, USA

    USGS Publications Warehouse

    Merschel, Andrew; Heyerdahl, Emily K.; Spies, Thomas A; Loehman, Rachel A.

    2018-01-01

    Context In the interior Northwest, debate over restoring mixed-conifer forests after a century of fire exclusion is hampered by poor understanding of the pattern and causes of spatial variation in historical fire regimes. Objectives To identify the roles of topography, landscape structure, and forest type in driving spatial variation in historical fire regimes in mixed-conifer forests of central Oregon. Methods We used tree rings to reconstruct multicentury fire and forest histories at 105 plots over 10,393 ha. We classified fire regimes into four types and assessed whether they varied with topography, the location of fuel-limited pumice basins that inhibit fire spread, and an updated classification of forest type. Results We identified four fire-regime types and six forest types. Although surface fires were frequent and often extensive, severe fires were rare in all four types. Fire regimes varied with some aspects of topography (elevation), but not others (slope or aspect) and with the distribution of pumice basins. Fire regimes did not strictly co-vary with mixed-conifer forest types. Conclusions Our work reveals the persistent influence of landscape structure on spatial variation in historical fire regimes and can help inform discussions about appropriate restoration of fire-excluded forests in the interior Northwest. Where the goal is to restore historical fire regimes at landscape scales, managers may want to consider the influence of topoedaphic and vegetation patch types that could affect fire spread and ignition frequency.

  13. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands.

    PubMed

    Yang, Jian; He, Hong S; Shifley, Stephen R

    2008-07-01

    Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of biotic, abiotic, and anthropogenic constraints on the spatial pattern of fire occurrence with that on burn probability (i.e., the probability that fire will spread to a particular location). Spatial point pattern analysis and landscape succession fire model (LANDIS) were used to create maps to show the contrast. We quantified spatial controls on both fire occurrence and fire spread in the Midwest Ozark Highlands region, USA. This area exhibits a typical anthropogenic surface fire regime. We found that (1) human accessibility and land ownership were primary limiting factors in shaping clustered fire origin locations; (2) vegetation and topography had a negligible influence on fire occurrence in this anthropogenic regime; (3) burn probability was higher in grassland and open woodland than in closed-canopy forest, even though fire occurrence density was less in these vegetation types; and (4) biotic and abiotic factors were secondary descriptive ingredients for determining the spatial patterns of burn probability. This study demonstrates how fire occurrence and spread interact with landscape patterns to affect the spatial distribution of wildfire risk. The application of spatial point pattern data analysis would also be valuable to researchers working on landscape forest fire models to integrate historical ignition location patterns in fire simulation.

  14. [Fire behavior of Mongolian oak leaves fuel-bed under no-wind and zero-slope conditions. I. Factors affecting fire spread rate and modeling].

    PubMed

    Jin, Sen; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Zhang, Ji-Li

    2012-01-01

    Aimed to understand the fire behavior of Mongolian oak leaves fuel-bed under field condition, the leaves of a secondary Mongolian oak forest in Northeast Forestry University experimental forest farm were collected and brought into laboratory to construct fuel-beds with varied loading, height, and moisture content, and a total of 100 experimental fires were burned under no-wind and zero-slope conditions. It was observed that the fire spread rate of the fuel-beds was less than 0.5 m x min(-1). Fuel-bed loading, height, and moisture contents all had significant effects on the fire spread rate. The effect of fuel-bed moisture content on the fire spread had no significant correlations with fuel-bed loading and height, but the effect of fuel-bed height was related to the fuel-bed loading. The packing ratio of fuel-beds had less effect on the fire spread rate. Taking the fuel-bed loading, height, and moisture content as predictive variables, a prediction model for the fire spread rate of Mongolian oak leaves fuel-bed was established, which could explain 83% of the variance of the fire spread rate, with a mean absolute error 0.04 m x min(-1) and a mean relative error less than 17%.

  15. Development at the wildland-urban interface and the mitigation of forest-fire risk.

    PubMed

    Spyratos, Vassilis; Bourgeron, Patrick S; Ghil, Michael

    2007-09-04

    This work addresses the impacts of development at the wildland-urban interface on forest fires that spread to human habitats. Catastrophic fires in the western United States and elsewhere make these impacts a matter of urgency for decision makers, scientists, and the general public. Using a simple fire-spread model, along with housing and vegetation data, we show that fire size probability distributions can be strongly modified by the density and flammability of houses. We highlight a sharp transition zone in the parameter space of vegetation flammability and house density. Many actual fire landscapes in the United States appear to have spreading properties close to this transition. Thus, the density and flammability of buildings should be taken into account when assessing fire risk at the wildland-urban interface. Moreover, our results highlight ways for regulation at this interface to help mitigate fire risk.

  16. The National Fire Danger Rating System: Derivation of Spread Index for Eastern and Southern States

    Treesearch

    Ralph M. Nelson

    1964-01-01

    Presents standards for locating, operating, and maintaining forest fire danger stations in Eastern and Southern States. Includes tables and forms for deriving the Spread Index of the new National Fire-Danger Rating System.

  17. Atmospheric turbulence observations in the vicinity of surface fires in forested environments

    Treesearch

    Warren E. Heilman; Xindi Bian; Kenneth L. Clark; Nicholas S. Skowronski; John L. Hom; Michael R. Gallagher

    2017-01-01

    Ambient and fire-induced atmospheric turbulence in the vicinity of wildland fires can affect the behavior of those fires and the dispersion of smoke. The presence of forest overstory vegetation can further complicate the evolution of local turbulence regimes and their interaction with spreading fires and smoke plumes. Previous observational studies of wildland fire...

  18. Use of fire spread and hydrology models to target forest management on a municipal watershed

    Treesearch

    Anurag Srivastava; William J. Elliot; Joan Wu

    2015-01-01

    A small town relies on a forested watershed for its water supply. The forest is at risk for a wildfire. To reduce this risk, some of the watershed will be thinned followed by a prescribed burn. This paper reports on a study to evaluate the impact of such watershed disturbances on water yield. To target management activities, a fire spread model was applied to the...

  19. Thermocouples for forest fire research

    Treesearch

    Erwin H. Breuer

    1965-01-01

    Thermocouples have proved valuable in research conducted by the Fire Physics Project at the Northern Forest Fire Laboratory because they can measure several important fire variables besides flame and convection column temperatures. These include rate of spread and flame residence time. Describes a simple, rapid method of fabrication and reports useful and diverse...

  20. Satellite Analysis of the Severe 1987 Forest Fires in Northern China and Southeastern Siberia

    NASA Technical Reports Server (NTRS)

    Cahoon, Donald R., Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; Pierson, Joseph M.

    1994-01-01

    Meteorological conditions, extremely conducive to fire development and spread in the spring of 1987, resulted in forest fires burning over extremely large areas in the boreal forest zone in northeastern China and the southeastern region of Siberia. The great China fire, one of the largest and most destructive forest fires in recent history, occurred during this period in the Heilongjiang Province of China. Satellite imagery is used to examine the development and areal distribution of 1987 forest fires in this region. Overall trace gas emissions to the atmosphere from these fires are determined using a satellite-derived estimate of area burned in combination with fuel consumption figures and carbon emission ratios for boreal forest fires.

  1. Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia

    NASA Technical Reports Server (NTRS)

    Cahoon, Donald R, Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; Pierson, Joseph M.

    1994-01-01

    Meteorological conditions, extremely conducive to fire development and spread in the spring of 1987, resulted in forest fires burning over extremely large areas in the boreal forest zone in northeastern China and the southeastern region of Siberia. The great China fire, one of the largest and most destructive forest fires in recent history, occurred during this period in the Heilongjiang Province of China. Satellite imagery is used to examine the development and areal distribution of 1987 forest fires in this region. Overall trace gas emissions to the atmosphere from these fires are determined using a satellite-derived estimate of area burned in combination with fuel consumption figures and carbon emission ratios for boreal forest fires.

  2. Decree No. 849/988 of 14 December 1988 setting forth regulations on the prevention and combat of forest fires.

    PubMed

    1989-01-01

    This Uruguayan Decree sets forth regulations on the prevention and fighting of forest fires. Among other things, it does the following: 1) requires all public and private organizations, as well as all persons, to assist personally in and provide vehicles, machines, and tools for the fighting of forest fires; 2) requires the owners of property containing forests to maintain instruction in fighting fires for an adequate number of employees; 3) requires all forests to be kept cleared of vegetation capable of spreading fires and to have fire walls; 4) requires owners of forests larger than 30 hectares in size to present to the Forest Directorate an annual plan for forest fire defense; and 5) requires owners of forests larger than 30 hectares in size to maintain specified equipment for fighting fires. Persons violating the provisions of this Decree are subject to fines.

  3. Estimating canopy fuels in conifer forests

    Treesearch

    Joe H. Scott; Elizabeth D. Reinhardt

    2002-01-01

    Crown fires occur in a variety of coniferous forest types (Agee 1993), including some that are not historically prone to crown fire, such as ponderosa pine (Mutch and others 1993). The head fire spread rate of a crown fire is usually several times faster than that of a surface fire burning under the same conditions, which leads to a significant increase in the number...

  4. Rates of initial spread of free-burning fires on the National Forests of California

    Treesearch

    C.A. Abell

    1940-01-01

    As early as 1914 Coert DuBois and his staff recognized that knowledge of the rates which fires spread was essential to sound fire control planning, strategy, and tactics, and therefore designed the fire report form so that such data might be accumulated. Although the individual fire report form has changed appreciably since that time, the supply of data has grown...

  5. Putting out fire with gasoline: pitfalls in the silvicultural treatment of canopy fuels

    Treesearch

    Christopher R. Keyes; J. Morgan Varner

    2007-01-01

    There is little question that forest stand structure is directly related to fire behavior, and that canopy fuel structure may be altered using silvicultural methods to successfully modify forest fire behavior and reduce susceptibility to crown fire initiation and spread. Silvicultural treatments can remediate hazardous stand structures that have developed as a result...

  6. Two keys for appraising forest fire fuels.

    Treesearch

    George R. Fahnestock

    1970-01-01

    This is an attempt to characterize forest fire fuels in a new way. The immediate purpose is to provide means for recognizing and tentatively evaluating, in the field, the fire spread potential and the crowning potential of fuels on the basis of readily observed characteristics without need for prior technical knowledge of vegetation or experience with fire. The medium...

  7. The Bee Fire: a case study validation of BEHAVE in chaparral fuels

    Treesearch

    David Weise; A. Gelobter; J. Regelbrugge; J. Millar

    2002-01-01

    The Bee Fire burned 9,620 acres of grass and chaparral in the San Bernardino National Forest in southern California from June 29 to July 2, 1996. Rate of spread data were determined from successive fire perimeters and compared with rate of spread predicted by the Rothermel rate of spread model using fuel model 4 (heavy brush) and a custom fuel model for chamise...

  8. An examination of fire spread thresholds in discontinuous fuel beds

    Treesearch

    Mark A. Finney; Jack D. Cohen; Isaac C. Grenfell; Kara M. Yedinak

    2010-01-01

    Many fuel beds, especially live vegetation canopies (conifer forests, shrub fields, bunch-grasses) contain gaps between vegetation clumps. Fires burning in these fuel types often display thresholds for spread that are observed to depend on environmental factors like wind, slope, and fuel moisture content. To investigate threshold spread behaviours, we conducted a set...

  9. Meteorological conditions affecting the Freeman Lake (Idaho) fire

    Treesearch

    George M. Jemison

    1932-01-01

    Measurements of meteorological conditions prevailing during the rapid spread of forest fires are greatly needed so that when their recurrence seems probable, fire-weather forecasters may issue warnings of the danger. Such determinations also can be used by forest protective agencies which operate meteorological stations to guide their own action in the distribution of...

  10. Land cover change interacts with drought severity to change fire regimes in Western Amazonia.

    PubMed

    Gutiérrez-Vélez, Víctor H; Uriarte, María; DeFries, Ruth; Pinedo-Vásquez, Miguel; Fernandes, Katia; Ceccato, Pietro; Baethgen, Walter; Padoch, Christine

    Fire is becoming a pervasive driver of environmental change in Amazonia and is expected to intensify, given projected reductions in precipitation and forest cover. Understanding of the influence of post-deforestation land cover change on fires in Amazonia is limited, even though fires in cleared lands constitute a threat for ecosystems, agriculture, and human health. We used MODIS satellite data to map burned areas annually between 2001 and 2010. We then combined these maps with land cover and climate information to understand the influence of land cover change in cleared lands and dry-season severity on fire occurrence and spread in a focus area in the Peruvian Amazon. Fire occurrence, quantified as the probability of burning of individual 232-m spatial resolution MODIS pixels, was modeled as a function of the area of land cover types within each pixel, drought severity, and distance to roads. Fire spread, quantified as the number of pixels burned in 3 × 3 pixel windows around each focal burned pixel, was modeled as a function of land cover configuration and area, dry-season severity, and distance to roads. We found that vegetation regrowth and oil palm expansion are significantly correlated with fire occurrence, but that the magnitude and sign of the correlation depend on drought severity, successional stage of regrowing vegetation, and oil palm age. Burning probability increased with the area of nondegraded pastures, fallow, and young oil palm and decreased with larger extents of degraded pastures, secondary forests, and adult oil palm plantations. Drought severity had the strongest influence on fire occurrence, overriding the effectiveness of secondary forests, but not of adult plantations, to reduce fire occurrence in severely dry years. Overall, irregular and scattered land cover patches reduced fire spread but irregular and dispersed fallows and secondary forests increased fire spread during dry years. Results underscore the importance of land cover management for reducing fire proliferation in this landscape. Incentives for promoting natural regeneration and perennial crops in cleared lands might help to reduce fire risk if those areas are protected against burning in early stages of development and during severely dry years.

  11. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands

    Treesearch

    Jian Yang; Hong S. He; Stephen R. Shifley

    2008-01-01

    Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of...

  12. Fires and fuels: Vegetation change over time in the Zuni Mountains, New Mexico

    NASA Astrophysics Data System (ADS)

    Wylie, Luke Anthony

    The Zuni Mountains are a region that has been dramatically changed by human interference. Anthropogenically, fire suppression practices have allowed a buildup of fuels and caused a change in the fire-adapted ponderosa pine ecosystem such that the new ecosystem now incorporates many fire-intolerant species. As a result, the low-severity fires that the ecosystem once depended on to regenerate the forest are much reduced, and these low-severity fires are now replaced by crown-level infernos that threaten the forest and nearby towns. In order to combat these effects, land managers are implementing fuel reduction practices and are striving to better understand the local ecosystem. In this study, a predictive fire spread model (FARSITE) was implemented to predict spatio-temporal distribution of fire in the Zuni Mountains based on change in vegetation types that are most prone to fire. Using Landsat imagery and historical fire spread data from 2001 to 2014, the following research questions were investigated: (1) What variables are responsible for fire spread in the Zuni Mountains, New Mexico? (2) Which areas are prone to destructive and canopy level fires? and (3) How have the fuel model types that are most conducive to fire spread changed in the past twenty years? The utilization of spatial modeling and remote sensing to understand the interaction of meteorological variables and vegetation in predicting fire spread in this region is a novel approach. This study showed that (i) fires are more likely to occur in the valleys and high elevation grassland areas of the Zuni Mountains, (ii) certain vegetation types including grass and shrub lands in the area present a greater danger to canopy fire than others, and (iii) that these vegetation types have changed in the past sixteen years.

  13. Examining the relationship between fire history and sudden oak death patterns: a case study in Sonoma County

    Treesearch

    Max A. Moritz; Dennis C. Odion

    2006-01-01

    Fire is often integral to forest ecology and can affect forest disease dynamics. Sudden oak death has spread across a large, fire-prone portion of California, killing large numbers of oaks and tanoaks and infecting most associated woody plants. Building on our earlier study of fire-disease dynamics, we examined spatial patterns of confirmed infections in relation to...

  14. Potential fire behavior in California: an atlas and guide for forest and brushland managers

    Treesearch

    Bill C. Ryan

    1984-01-01

    Potential fire characteristics can be estimated as functions of weather, fuel, and terrain slope. Such information is needed by forest and other land managers--especially for anticipating fire suppression needs and planning prescribed burns. To provide this information, an Atlas has been developed for California. The Atlas includes statistical analyses of spread...

  15. Climatic stress increases forest fire severity across the western United States

    USGS Publications Warehouse

    van Mantgem, Philip J.; Nesmith, Jonathan C. B.; Keifer, MaryBeth; Knapp, Eric E.; Flint, Alan; Flint, Lorraine

    2013-01-01

    Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after accounting for fire defences and injuries, and appeared to influence the effects of crown and stem injuries. Climate and fire interactions did not vary substantially across geographical regions, major genera and tree sizes. Our findings support recent physiological evidence showing that both drought and heating from fire can impair xylem conductivity. Warming trends have been linked to increasing probabilities of severe fire weather and fire spread; our results suggest that warming may also increase forest fire severity (the number of trees killed) independent of fire intensity (the amount of heat released during a fire).

  16. Floodplains as an Achilles’ heel of Amazonian forest resilience

    PubMed Central

    Flores, Bernardo M.; Holmgren, Milena; van Nes, Egbert H.; Jakovac, Catarina C.; Mesquita, Rita C. G.; Scheffer, Marten

    2017-01-01

    The massive forests of central Amazonia are often considered relatively resilient against climatic variation, but this view is challenged by the wildfires invoked by recent droughts. The impact of such fires that spread from pervasive sources of ignition may reveal where forests are less likely to persist in a drier future. Here we combine field observations with remotely sensed information for the whole Amazon to show that the annually inundated lowland forests that run through the heart of the system may be trapped relatively easily into a fire-dominated savanna state. This lower forest resilience on floodplains is suggested by patterns of tree cover distribution across the basin, and supported by our field and remote sensing studies showing that floodplain fires have a stronger and longer-lasting impact on forest structure as well as soil fertility. Although floodplains cover only 14% of the Amazon basin, their fires can have substantial cascading effects because forests and peatlands may release large amounts of carbon, and wildfires can spread to adjacent uplands. Floodplains are thus an Achilles’ heel of the Amazon system when it comes to the risk of large-scale climate-driven transitions. PMID:28396440

  17. Effectiveness of mechanical thinning and prescribed burning on fire behavior in Pinus nigra forests in NE Spain.

    PubMed

    Piqué, Míriam; Domènech, Rut

    2018-03-15

    Fuel treatments can mitigate present and future impacts of climate change by reducing fire intensity and severity. In recent years, Pinus nigra forests in the Mediterranean basin have been dramatically affected by the new risk of highly intense and extreme fires and its distribution area has been reduced. New tools are necessary for assessing the management of these forests so they can adapt to the challenges to come. Our main goal was to evaluate the effects of different fuel treatments on Mediterranean Pinus nigra forests. We assessed the forest response, in terms of forest structure and fire behavior, to different intensities of low thinning treatments followed by different slash prescriptions (resulting in: light thinning and lop and scatter; light thinning and burn; heavy thinning and lop and scatter; heavy thinning and burn; and, untreated control). Treatments that used fire to decrease the resulting slash were the most effective for reducing active crown fires decreasing the rate of spread and flame length more than 89%. Low thinning had an effect on torching potential, but there was no difference between intensities of thinning. Only an outcoming crown fire could spread actively if it was sustained by a high-enough constant wind speed and enough surface fuel load. Overall, treatments reduce fire intensity and treated areas have a more homogenous fire behavior response than untreated areas. This provides opportunities to extinguish the fire and reduce the probability of trees dying from the fire. It would be helpful to include ecological principles and fire behavior criteria in silvicultural treatment guidelines in order to perform more efficient management techniques in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Prediction of fire spread following nuclear explosions

    Treesearch

    Craig C. Chandler; Theodore G. Storey; Charles D. Tangren

    1963-01-01

    Mass fires are likely to follow a nuclear attack. Since it is important to the civil defense program to be able to predict rate, duration, and extent of spread of such fires, the Office of Civil Defense, U.S. Department of Defense, issued a joint contract to the Forest Service and to United Research Services, Inc., to study this field. We surveyed the literature,...

  19. Dimensional Analysis on Forest Fuel Bed Fire Spread.

    PubMed

    Yang, Jiann C

    2018-01-01

    A dimensional analysis was performed to correlate the fuel bed fire rate of spread data previously reported in the literature. Under wind condition, six pertinent dimensionless groups were identified, namely dimensionless fire spread rate, dimensionless fuel particle size, fuel moisture content, dimensionless fuel bed depth or dimensionless fuel loading density, dimensionless wind speed, and angle of inclination of fuel bed. Under no-wind condition, five similar dimensionless groups resulted. Given the uncertainties associated with some of the parameters used to estimate the dimensionless groups, the dimensionless correlations using the resulting dimensionless groups correlate the fire rates of spread reasonably well under wind and no-wind conditions.

  20. A Complex Network Theory Approach for the Spatial Distribution of Fire Breaks in Heterogeneous Forest Landscapes for the Control of Wildland Fires

    PubMed Central

    Russo, Lucia; Russo, Paola; Siettos, Constantinos I.

    2016-01-01

    Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a) an artificial forest of randomly distributed density of vegetation, and (b) a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire. PMID:27780249

  1. A Complex Network Theory Approach for the Spatial Distribution of Fire Breaks in Heterogeneous Forest Landscapes for the Control of Wildland Fires.

    PubMed

    Russo, Lucia; Russo, Paola; Siettos, Constantinos I

    2016-01-01

    Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a) an artificial forest of randomly distributed density of vegetation, and (b) a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire.

  2. Distribution and demographics of Ailanthus altissima in an oak forest landscape managed with timber harvesting and prescribed fire

    Treesearch

    Joanne Rebbeck; Todd Hutchinson; Louis Iverson; Daniel Yaussy; Timothy Fox

    2017-01-01

    Ailanthus altissima ((Mill.) Swingle, tree-of-heaven), an exotic invasive tree that is common throughout much of the eastern United States, can invade and expand dramatically when forests are disturbed. Anecdotal evidence suggests that fire facilitates its spread, but the relationship between fire and this prolific invasive tree is poorly...

  3. Effect of certain chemical attributes of vegetation on forest inflammability

    Treesearch

    Leon W. Richards

    1940-01-01

    Forest Service administrators and fire-research men have long felt the need of information concerning the effect of vegetation such as shrubs, grasses, and forbs (nongrasslike herbs) on the rate of spread of fires. To date, all knowledge of the subject has been acquired empirically in the field, or deduced from knowledge of fire behavior as influenced by the condition...

  4. Numerical modeling of laboratory-scale surface-to-crown fire transition

    NASA Astrophysics Data System (ADS)

    Castle, Drew Clayton

    Understanding the conditions leading to the transition of fire spread from a surface fuel to an elevated (crown) fuel is critical to effective fire risk assessment and management. Surface fires that successfully transition to crown fires can be very difficult to suppress, potentially leading to damages in the natural and built environments. This is relevant to chaparral shrub lands which are common throughout parts of the Southwest U.S. and represent a significant part of the wildland urban interface. The ability of the Wildland-Urban Interface Fire Dynamic Simulator (WFDS) to model surface-to-crown fire transition was evaluated through comparison to laboratory experiments. The WFDS model is being developed by the U.S. Forest Service (USFS) and the National Institute of Standards and Technology. The experiments were conducted at the USFS Forest Fire Laboratory in Riverside, California. The experiments measured the ignition of chamise (Adenostoma fasciculatum) crown fuel held above a surface fire spreading through excelsior fuel. Cases with different crown fuel bulk densities, crown fuel base heights, and imposed wind speeds were considered. Cold-flow simulations yielded wind speed profiles that closely matched the experimental measurements. Next, fire simulations with only the surface fuel were conducted to verify the rate of spread while factors such as substrate properties were varied. Finally, simulations with both a surface fuel and a crown fuel were completed. Examination of specific surface fire characteristics (rate of spread, flame angle, etc.) and the corresponding experimental surface fire behavior provided a basis for comparison of the factors most responsible for transition from a surface fire to the raised fuel ignition. The rate of spread was determined by tracking the flame in the Smokeview animations using a tool developed for tracking an actual flame in a video. WFDS simulations produced results in both surface fire spread and raised fuel bed ignition which closely matched the trends reported in the laboratory experiments.

  5. Changing Weather Extremes Call for Early Warning of Potential for Catastrophic Fire

    NASA Astrophysics Data System (ADS)

    Boer, Matthias M.; Nolan, Rachael H.; Resco De Dios, Víctor; Clarke, Hamish; Price, Owen F.; Bradstock, Ross A.

    2017-12-01

    Changing frequencies of extreme weather events and shifting fire seasons call for enhanced capability to forecast where and when forested landscapes switch from a nonflammable (i.e., wet fuel) state to the highly flammable (i.e., dry fuel) state required for catastrophic forest fires. Current forest fire danger indices used in Europe, North America, and Australia rate potential fire behavior by combining numerical indices of fuel moisture content, potential rate of fire spread, and fire intensity. These numerical rating systems lack the physical basis required to reliably quantify forest flammability outside the environments of their development or under novel climate conditions. Here, we argue that exceedance of critical forest flammability thresholds is a prerequisite for major forest fires and therefore early warning systems should be based on a reliable prediction of fuel moisture content plus a regionally calibrated model of how forest fire activity responds to variation in fuel moisture content. We demonstrate the potential of this approach through a case study in Portugal. We use a physically based fuel moisture model with historical weather and fire records to identify critical fuel moisture thresholds for forest fire activity and then show that the catastrophic June 2017 forest fires in central Portugal erupted shortly after fuels in the region dried out to historically unprecedented levels.

  6. The potential and realized spread of wildfires across Canada

    Treesearch

    Xianli Wang; Marc-Andre Parisien; Mike D. Flannigan; Sean A. Parks; Kerry R. Anderson; John M. Little; Steve W. Taylor

    2014-01-01

    Given that they can burn for weeks or months, wildfires in temperate and boreal forests may become immense (eg., 100 - 04 km2). However, during the period within which a large fire is 'active', not all days experience weather that is conducive to fire spread; indeed most of the spread occurs on a small proportion (e.g., 1 - 15 days) of not necessarily...

  7. Warning signals for eruptive events in spreading fires.

    PubMed

    Fox, Jerome M; Whitesides, George M

    2015-02-24

    Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This paper describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., "wind-fire coupling"-a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. In this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind-fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., "blowup fires" in forests).

  8. Fire risk in California

    NASA Astrophysics Data System (ADS)

    Peterson, Seth Howard

    Fire is an integral part of ecosystems in the western United States. Decades of fire suppression have led to (unnaturally) large accumulations of fuel in some forest communities, such as the lower elevation forests of the Sierra Nevada. Urban sprawl into fire prone chaparral vegetation in southern California has put human lives at risk and the decreased fire return intervals have put the vegetation community at risk of type conversion. This research examines the factors affecting fire risk in two of the dominant landscapes in the state of California, chaparral and inland coniferous forests. Live fuel moisture (LFM) is important for fire ignition, spread rate, and intensity in chaparral. LFM maps were generated for Los Angeles County by developing and then inverting robust cross-validated regression equations from time series field data and vegetation indices (VIs) and phenological metrics from MODIS data. Fire fuels, including understory fuels which are not visible to remote sensing instruments, were mapped in Yosemite National Park using the random forests decision tree algorithm and climatic, topographic, remotely sensed, and fire history variables. Combining the disparate data sources served to improve classification accuracies. The models were inverted to produce maps of fuel models and fuel amounts, and these showed that fire fuel amounts are highest in the low elevation forests that have been most affected by fire suppression impacting the natural fire regime. Wildland fires in chaparral commonly burn in late summer or fall when LFM is near its annual low, however, the Jesusita Fire burned in early May of 2009, when LFM was still relatively high. The HFire fire spread model was used to simulate the growth of the Jesusita Fire using LFM maps derived from imagery acquired at the time of the fire and imagery acquired in late August to determine how much different the fire would have been if it had occurred later in the year. Simulated fires were 1.5 times larger, and the fire reached the wildland urban interface three hours earlier, when using August LFM.

  9. Use of models to study forest fire behavior

    Treesearch

    Wallace L. Fons

    1961-01-01

    The U.S. Forest Service has started a laboratory study with the ultimate objective of determining model laws for fire behavior. The study includes an examination of the effect of such variables as species of wood, density of wood, moisture content, size of fuel particle, spacing, dimensions of fuel bed, wind, and slope on the rate of spread of fire and the partition of...

  10. Climatic stress increases forest fire severity across the western United States.

    PubMed

    van Mantgem, Phillip J; Nesmith, Jonathan C B; Keifer, MaryBeth; Knapp, Eric E; Flint, Alan; Flint, Lorriane

    2013-09-01

    Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after accounting for fire defences and injuries, and appeared to influence the effects of crown and stem injuries. Climate and fire interactions did not vary substantially across geographical regions, major genera and tree sizes. Our findings support recent physiological evidence showing that both drought and heating from fire can impair xylem conductivity. Warming trends have been linked to increasing probabilities of severe fire weather and fire spread; our results suggest that warming may also increase forest fire severity (the number of trees killed) independent of fire intensity (the amount of heat released during a fire). Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  11. The global distribution of ecosystems in a world without fire.

    PubMed

    Bond, W J; Woodward, F I; Midgley, G F

    2005-02-01

    This paper is the first global study of the extent to which fire determines global vegetation patterns by preventing ecosystems from achieving the potential height, biomass and dominant functional types expected under the ambient climate (climate potential). To determine climate potential, we simulated vegetation without fire using a dynamic global-vegetation model. Model results were tested against fire exclusion studies from different parts of the world. Simulated dominant growth forms and tree cover were compared with satellite-derived land- and tree-cover maps. Simulations were generally consistent with results of fire exclusion studies in southern Africa and elsewhere. Comparison of global 'fire off' simulations with landcover and treecover maps show that vast areas of humid C(4) grasslands and savannas, especially in South America and Africa, have the climate potential to form forests. These are the most frequently burnt ecosystems in the world. Without fire, closed forests would double from 27% to 56% of vegetated grid cells, mostly at the expense of C(4) plants but also of C(3) shrubs and grasses in cooler climates. C(4) grasses began spreading 6-8 Ma, long before human influence on fire regimes. Our results suggest that fire was a major factor in their spread into forested regions, splitting biotas into fire tolerant and intolerant taxa.

  12. The potential and realized spread of wildfires across Canada.

    PubMed

    Wang, Xianli; Parisien, Marc-André; Flannigan, Mike D; Parks, Sean A; Anderson, Kerry R; Little, John M; Taylor, Steve W

    2014-08-01

    Given that they can burn for weeks or months, wildfires in temperate and boreal forests may become immense (eg., 10(0) - 10(4) km(2) ). However, during the period within which a large fire is 'active', not all days experience weather that is conducive to fire spread; indeed most of the spread occurs on a small proportion (e.g., 1 - 15 days) of not necessarily consecutive days during the active period. This study examines and compares the Canada-wide patterns in fire-conducive weather ('potential' spread) and the spread that occurs on the ground ('realized' spread). Results show substantial variability in distributions of potential and realized spread days across Canada. Both potential and realized spread are higher in western than in eastern Canada; however, whereas potential spread generally decreases from south to north, there is no such pattern with realized spread. The realized-to-potential fire-spread ratio is considerably higher in northern Canada than in the south, indicating that proportionally more fire-conducive days translate into fire progression. An exploration of environmental correlates to spread show that there may be a few factors compensating for the lower potential spread in northern Canada: a greater proportion of coniferous (i.e., more flammable) vegetation, lesser human impacts (i.e., less fragmented landscapes), sufficient fire ignitions, and intense droughts. Because a linear relationship exists between the frequency distributions of potential spread days and realized spread days in a fire zone, it is possible to obtain one from the other using a simple conversion factor. Our methodology thus provides a means to estimate realized fire spread from weather-based data in regions where fire databases are poor, which may improve our ability to predict future fire activity. © 2014 John Wiley & Sons Ltd.

  13. Projected changes in daily fire spread across Canada over the next century

    NASA Astrophysics Data System (ADS)

    Wang, Xianli; Parisien, Marc-André; Taylor, Steve W.; Candau, Jean-Noël; Stralberg, Diana; Marshall, Ginny A.; Little, John M.; Flannigan, Mike D.

    2017-02-01

    In the face of climate change, predicting and understanding future fire regimes across Canada is a high priority for wildland fire research and management. Due in large part to the difficulties in obtaining future daily fire weather projections, one of the major challenges in predicting future fire activity is to estimate how much of the change in weather potential could translate into on-the-ground fire spread. As a result, past studies have used monthly, annual, or multi-decadal weather projections to predict future fires, thereby sacrificing information relevant to day-to-day fire spread. Using climate projections from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), historical weather observations, MODIS fire detection data, and the national fire database of Canada, this study investigated potential changes in the number of active burning days of wildfires by relating ‘spread days’ to patterns of daily fire-conducive weather. Results suggest that climate change over the next century may have significant impacts on fire spread days in almost all parts of Canada’s forested landmass; the number of fire spread days could experience a 2-to-3-fold increase under a high CO2 forcing scenario in eastern Canada, and a greater than 50% increase in western Canada, where the fire potential is already high. The change in future fire spread is critical in understanding fire regime changes, but is also imminently relevant to fire management operations and in fire risk mitigation.

  14. Managing wildland fires: integrating weather models into fire projections

    Treesearch

    Anne M. Rosenthal; Francis Fujioka

    2004-01-01

    Flames from the Old Fire sweep through lands north of San Bernardino during late fall of 2003. Like many Southern California fires, the Old Fire consumed susceptible forests at the urban-wildland interface and spread to nearby city neighborhoods. By incorporating weather models into fire perimeter projections, scientist Francis Fujioka is improving fire modeling as a...

  15. Warning signals for eruptive events in spreading fires

    PubMed Central

    Fox, Jerome M.; Whitesides, George M.

    2015-01-01

    Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This paper describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., “wind–fire coupling”—a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. In this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind–fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., “blowup fires” in forests). PMID:25675491

  16. Predicting wildfire behavior in black spruce forests in Alaska.

    Treesearch

    Rodney A. Norum

    1982-01-01

    The current fire behavior system, when properly adjusted, accurately predicts forward rate of spread and flame length of wildfires in black spruce (Picea mariana (Mill.) B.S.P.) forests in Alaska. After fire behavior was observed and quantified, adjustment factors were calculated and assigned to the selected fuel models to correct the outputs to...

  17. Fire Patterns and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2015-12-01

    The West African tropical forest (referred to as the Upper Guinean forest, UGF), is a global biodiversity hotspot providing vital ecosystem services for the region's socio-economic and environmental wellbeing. It is also one of the most fragmented and human-modified tropical forest ecosystems, with the only remaining large patches of original forests contained in protected areas. However, these remnant forests are susceptible to continued fire-mediated degradation and forest loss due to intense climatic, demographic and land use pressures. We analyzed human and climatic drivers of fire activity in the sub-region to better understand the spatial and temporal patterns of these risks. We utilized MODIS active fire and burned area products to identify fire activity within the sub-region. We measured climatic variability using TRMM rainfall data and derived indicators of human land use from a variety of geospatial datasets. We used a boosted regression trees model to determine the influences of predictor variables on fire activity. Our analyses indicated that the spatial and temporal variability of precipitation is a key driving factor of fire activity in the UGF. Anthropogenic effects on fire activity in the area were evident through the influences of agriculture and low-density populations. These human footprints in the landscape make forests more susceptible to fires through forest fragmentation, degradation, and fire spread from agricultural areas. Forested protected areas within the forest savanna mosaic experienced frequent fires, whereas the more humid forest areas located in the south and south-western portions of the study area had fewer fires as these rainforests tend to offer some buffering against fire encroachment. These results improve characterization of UGF fire regime and expand our understanding of the spatio-temporal dynamics of tropical forest fires in response to human and climatic pressures.

  18. Joint modeling of human dwellings and the natural ecosystem at the wildland-urban interface helps mitigation of forest-fire risk

    NASA Astrophysics Data System (ADS)

    Ghil, M.; Spyratos, V.; Bourgeron, P. S.

    2007-12-01

    The late summer of 2007 has seen again a large number of catastrophic forest fires in the Western United States and Southern Europe. These fires arose in or spread to human habitats at the so-called wildland-urban interface (WUI). Within the conterminous United States alone, the WUI occupies just under 10 percent of the surface and contains almost 40 percent of all housing units. Recent dry spells associated with climate variability and climate change make the impact of such catastrophic fires a matter of urgency for decision makers, scientists and the general public. In order to explore the qualitative influence of the presence of houses on fire spread, we considered only uniform landscapes and fire spread as a simple percolation process, with given house densities d and vegetation flammabilities p. Wind, topography, fuel heterogeneities, firebrands and weather affect actual fire spread. The present theoretical results would therefore, need to be integrated into more detailed fire models before practical, quantitative applications of the present results. Our simple fire-spread model, along with housing and vegetation data, shows that fire-size probability distributions can be strongly modified by the density d and flammability of houses. We highlight a sharp transition zone in the parameter space of vegetation flammability p and house density d. The sharpness of this transition is related to the critical thresholds that arise in percolation theory for an infinite domain; it is their translation into our model's finite-area domain, which is a more realistic representation of actual fire landscapes. Many actual fire landscapes in the United States appear to have spreading properties close to this transition zone. Hence, and despite having neglected additional complexities, our idealized model's results indicate that more detailed models used for assessing fire risk in the WUI should integrate the density and flammability of houses in these areas. Furthermore, our results imply that fire proofing houses and their immediate surroundings within the WUI would not only reduce the houses' flammability and increase the security of the inhabitants, but also reduce fire risk for the entire landscape.

  19. Warning signals for eruptive events in spreading fires

    DOE PAGES

    Fox, Jerome M.; Whitesides, George M.

    2015-02-09

    Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This study describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., “wind–firemore » coupling”—a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. Here, in this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind–fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Lastly, findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., “blowup fires” in forests).« less

  20. Warning signals for eruptive events in spreading fires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Jerome M.; Whitesides, George M.

    Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This study describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., “wind–firemore » coupling”—a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. Here, in this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind–fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Lastly, findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., “blowup fires” in forests).« less

  1. Automatic forest-fire measuring using ground stations and Unmanned Aerial Systems.

    PubMed

    Martínez-de Dios, José Ramiro; Merino, Luis; Caballero, Fernando; Ollero, Anibal

    2011-01-01

    This paper presents a novel system for automatic forest-fire measurement using cameras distributed at ground stations and mounted on Unmanned Aerial Systems (UAS). It can obtain geometrical measurements of forest fires in real-time such as the location and shape of the fire front, flame height and rate of spread, among others. Measurement of forest fires is a challenging problem that is affected by numerous potential sources of error. The proposed system addresses them by exploiting the complementarities between infrared and visual cameras located at different ground locations together with others onboard Unmanned Aerial Systems (UAS). The system applies image processing and geo-location techniques to obtain forest-fire measurements individually from each camera and then integrates the results from all the cameras using statistical data fusion techniques. The proposed system has been extensively tested and validated in close-to-operational conditions in field fire experiments with controlled safety conditions carried out in Portugal and Spain from 2001 to 2006.

  2. Automatic Forest-Fire Measuring Using Ground Stations and Unmanned Aerial Systems

    PubMed Central

    Martínez-de Dios, José Ramiro; Merino, Luis; Caballero, Fernando; Ollero, Anibal

    2011-01-01

    This paper presents a novel system for automatic forest-fire measurement using cameras distributed at ground stations and mounted on Unmanned Aerial Systems (UAS). It can obtain geometrical measurements of forest fires in real-time such as the location and shape of the fire front, flame height and rate of spread, among others. Measurement of forest fires is a challenging problem that is affected by numerous potential sources of error. The proposed system addresses them by exploiting the complementarities between infrared and visual cameras located at different ground locations together with others onboard Unmanned Aerial Systems (UAS). The system applies image processing and geo-location techniques to obtain forest-fire measurements individually from each camera and then integrates the results from all the cameras using statistical data fusion techniques. The proposed system has been extensively tested and validated in close-to-operational conditions in field fire experiments with controlled safety conditions carried out in Portugal and Spain from 2001 to 2006. PMID:22163958

  3. Birth-jump processes and application to forest fire spotting.

    PubMed

    Hillen, T; Greese, B; Martin, J; de Vries, G

    2015-01-01

    Birth-jump models are designed to describe population models for which growth and spatial spread cannot be decoupled. A birth-jump model is a nonlinear integro-differential equation. We present two different derivations of this equation, one based on a random walk approach and the other based on a two-compartmental reaction-diffusion model. In the case that the redistribution kernels are highly concentrated, we show that the integro-differential equation can be approximated by a reaction-diffusion equation, in which the proliferation rate contributes to both the diffusion term and the reaction term. We completely solve the corresponding critical domain size problem and the minimal wave speed problem. Birth-jump models can be applied in many areas in mathematical biology. We highlight an application of our results in the context of forest fire spread through spotting. We show that spotting increases the invasion speed of a forest fire front.

  4. Landscape fuel reduction, forest fire, and biophysical linkages to local habitat use and local persistence of fishers (Pekania pennanti) in Sierra Nevada mixed-conifer forests

    Treesearch

    R.A. Sweitzer; B.J. Furnas; R.H. Barrett; Kathryn Purcell; Craig Thompson

    2016-01-01

    Fire suppression and logging have contributed to major changes in California’s Sierra Nevada forests. Strategically placed landscape treatments (SPLATS) are being used to reduce density of trees, shrubs, and surface fuels to limit wildfire intensity and spread, but may negatively impact fishers (Pekania pennanti). We used camera traps to survey for...

  5. Appraising fuels and flammability in western aspen: a prescribed fire guide

    Treesearch

    James K. Brown; Dennis G. Simmerman

    1986-01-01

    Describes a method for appraising fuels and fire behavior potential in aspen forests to guide the use of prescribed fire and the preparation of fire prescriptions. Includes an illustrated classification of aspen fuels; appraisals of fireline intensity, rate of spread, adjective ratings for fire behavior and probability of burn success; and evaluations of seasonal...

  6. Fire modeling in the Brazilian arc of deforestation through nested coupling of atmosphere, dynamic vegetation, LUCC and fire spread models

    NASA Astrophysics Data System (ADS)

    Tourigny, E.; Nobre, C.; Cardoso, M. F.

    2012-12-01

    Deforestation of tropical forests for logging and agriculture, associated to slash-and-burn practices, is a major source of CO2 emissions, both immediate due to biomass burning and future due to the elimination of a potential CO2 sink. Feedbacks between climate change and LUCC (Land-Use and Land-Cover Change) can potentially increase the loss of tropical forests and increase the rate of CO2 emissions, through mechanisms such as land and soil degradation and the increase in wildfire occurrence and severity. However, current understanding of the processes of fires (including ignition, spread and consequences) in tropical forests and climatic feedbacks are poorly understood and need further research. As the processes of LUCC and associated fires occur at local scales, linking them to large-scale atmospheric processes requires a means of up-scaling higher resolutions processes to lower resolutions. Our approach is to couple models which operate at various spatial and temporal scales: a Global Climate Model (GCM), Dynamic Global Vegetation Model (DGVM) and local-scale LUCC and fire spread model. The climate model resolves large scale atmospheric processes and forcings, which are imposed on the surface DGVM and fed-back to climate. Higher-resolution processes such as deforestation, land use management and associated (as well as natural) fires are resolved at the local level. A dynamic tiling scheme allows to represent local-scale heterogeneity while maintaining computational efficiency of the land surface model, compared to traditional landscape models. Fire behavior is modeled at the regional scale (~500m) to represent the detailed landscape using a semi-empirical fire spread model. The relatively coarse scale (as compared to other fire spread models) is necessary due to the paucity of detailed land-cover information and fire history (particularly in the tropics and developing countries). This work presents initial results of a spatially-explicit fire spread model coupled to the IBIS DGVM model. Our area of study comprises selected regions in and near the Brazilian "arc of deforestation". For model training and evaluation, several areas have been mapped using high-resolution imagery from the Landsat TM/ETM+ sensors (Figure 1). This high resolution reference data is used for local-scale simulations and also to evaluate the accuracy of the global MCD45 burned area product, which will be used in future studies covering the entire "arc of deforestation".; Area of study along the arc of deforestation and cerrado: landsat scenes used and burned area (2010) from MCD45 product.

  7. Spatiotemporal variability of wildland fuels in US Northern Rocky Mountain forests

    Treesearch

    Robert E. Keane

    2016-01-01

    Fire regimes are ultimately controlled by wildland fuel dynamics over space and time; spatial distributions of fuel influence the size, spread, and intensity of individual fires, while the temporal distribution of fuel deposition influences fire's frequency and controls fire size. These "shifting fuel mosaics" are both a cause and a consequence...

  8. Smouldering Subsurface Fires in the Earth System

    NASA Astrophysics Data System (ADS)

    Rein, Guillermo

    2010-05-01

    Smouldering fires, the slow, low-temperature, flameless form of combustion, are an important phenomena in the Earth system. These fires propagate slowly through organic layers of the forest ground and are responsible for 50% or more of the total biomass consumed during wildfires. Only after the 2002 study of the 1997 extreme haze event in South-East Asia, the scientific community recognised the environmental and economic threats posed by subsurface fires. This was caused by the spread of vast biomass fires in Indonesia, burning below the surface for months during the El Niño climate event. It has been calculated that these fires released between 0.81 and 2.57 Gton of carbon gases (13-40% of global emissions). Large smouldering fires are rare events at the local scale but occur regularly at a global scale. Once ignited, they are particularly difficult to extinguish despite extensive rains or fire-fighting attempts and can persist for long periods of time (months, years) spreading over very extensive areas of forest and deep into the soil. Indeed, these are the oldest continuously burning fires on Earth. Earth scientists are interested in smouldering fires because they destroy large amounts of biomass and cause greater damage to the soil ecosystem than flaming fires do. Moreover, these fires cannot be detected with current satellite remote sensing technologies causing inconsistencies between emission inventories and model predictions. Organic soils sustain smouldering fire (hummus, duff, peat and coal) which total carbon pool exceeds that of the world's forests or the atmosphere. This have important implications for climate change. Warmer temperatures at high latitudes are resulting in unprecedented permafrost thaw that is leaving large soil carbon pools exposed to fires. Because the CO2 flux from peat fires has been measured to be about 3000 times larger that the natural degradation flux, permafrost thaw is a risk for greater carbon release by fire and subsequently influence carbon-climate feedbacks. This presentation will revise the current knowledge on smouldering fires in the Earth system regarding ignition, spread patterns and emissions. It will explain the key differences between shallow and deep fires, and flaming fires.

  9. Simulations of Forest Fires by the Cellular Automata Model "ABBAMPAU"

    NASA Astrophysics Data System (ADS)

    di Gregorio, S.; Bendicenti, E.

    2003-04-01

    Forest fires represent a serious environmental problem, whose negative impact is becoming day by day more worrisome. Forest fires are very complex phenomena; that need an interdisciplinary approach. The adopted method to modelling involves the definition of local rules, from which the global behaviour of the system can emerge. The paradigm of Cellular Automata was applied and the model ABBAMPAU was projected to simulate the evolution of forest fires. Cellular Automata features (parallelism and a-centrism) seem to match the system "forest fire"; the parameters, describing globally a forest fire, i.e. propagation rate, flame length and direction, fireline intensity, fire duration time et c. are mainly depending on some local characteristics i.e. vegetation type (live and dead fuel), relative humidity, fuel moisture, heat, territory morphology (altitude, slope), et c.. The only global characteristic is given by wind velocity and direction, but wind velocity and direction is locally altered according to the morphology; therefore wind has also to be considered at local level. ABBAMPAU accounts for the following aspects of the phenomenon: effects of combustion in surface and crown fire inside the cell, crown fire triggering off; surface and crown fire spread, determination of the local wind rate and direction. A validation of ABBAMPAU was tested on a real case of forest fire, in the territory of Villaputzu, Sardinia island, August 22nd, 1998. First simulations account for the main characteristics of the phenomenon and agree with the observations. The results show that the model could be applied for the forest fire preventions, the productions of risk scenarios and the evaluation of the forest fire environmental impact.

  10. Model gives a 3-month warning of Amazonian forest fires

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-08-01

    The widespread drought suffered by the Amazon rain forest in the summer of 2005 was heralded at the time as the drought of the century. Because of the dehydrated conditions, supplemented by slash and burn agricultural practices, the drought led to widespread forest fires throughout the western Amazon, a portion of the rain forest usually too lush to support spreading wildfires. Only 5 years later, the 2005 season was outdone by even more widespread drought, with fires decimating more than 3000 square kilometers of western Amazonian rain forest. Blame for the wildfires has been consistently laid on deforestation and agricultural practices, but a convincing climatological explanation exists as well. (Geophysical Research Letters, doi:10.1029/2011GL047392, 2011)

  11. Simulating an Infection Growth Model in Certain Healthy Metabolic Pathways of Homo sapiens for Highlighting Their Role in Type I Diabetes mellitus Using Fire-Spread Strategy, Feedbacks and Sensitivities

    PubMed Central

    Tagore, Somnath; De, Rajat K.

    2013-01-01

    Disease Systems Biology is an area of life sciences, which is not very well understood to date. Analyzing infections and their spread in healthy metabolite networks can be one of the focussed areas in this regard. We have proposed a theory based on the classical forest fire model for analyzing the path of infection spread in healthy metabolic pathways. The theory suggests that when fire erupts in a forest, it spreads, and the surrounding trees also catch fire. Similarly, when we consider a metabolic network, the infection caused in the metabolites of the network spreads like a fire. We have constructed a simulation model which is used to study the infection caused in the metabolic networks from the start of infection, to spread and ultimately combating it. For implementation, we have used two approaches, first, based on quantitative strategies using ordinary differential equations and second, using graph-theory based properties. Furthermore, we are using certain probabilistic scores to complete this task and for interpreting the harm caused in the network, given by a ‘critical value’ to check whether the infection can be cured or not. We have tested our simulation model on metabolic pathways involved in Type I Diabetes mellitus in Homo sapiens. For validating our results biologically, we have used sensitivity analysis, both local and global, as well as for identifying the role of feedbacks in spreading infection in metabolic pathways. Moreover, information in literature has also been used to validate the results. The metabolic network datasets have been collected from the Kyoto Encyclopedia of Genes and Genomes (KEGG). PMID:24039701

  12. Physical characteristics of some northern California brush fuels

    Treesearch

    Clive M. Countryman

    1982-01-01

    Brush species make up much of the fuel load in forested wildlands. Basic physical and chemical characteristics of these species influence ease of ignition, rate of fire spread, burning time, and fire intensity. Quantitative knowledge of the variations in brush characteristics is essential to progress in fire control and effective use of fire in wildland management....

  13. Measuring fire behavior with photography

    Treesearch

    Hubert B. Clements; Darold E. Ward; Carl W. Adkins

    1983-01-01

    Photography is practical for recording and measuring some aspects of forest fire behavior if the scale and perspective can be determined. This paper describes a photogrammetric method for measuring flame height and rate of spread for fires on flat terrain. The flames are photographed at known times with a camera in front of the advancing fire. Scale and perspective of...

  14. Post-fire reproduction of herbs at a savanna-gallery forest boundary in Distrito Federal, Brazil.

    PubMed

    Massi, K G; Eugênio, C U O; Franco, A C

    2017-11-01

    In Cerrado, studies of post-fire vegetation recovery show that some herbaceous species are able to flower shortly after fires. However, these were mainly short-term studies that focused on grasslands and savannas. Little is known about the effects of fire on ground layer of forests that border the savannas in Central Brazil. Thus, an accidental burning gave us the opportunity to describe the reproductive activity of the ground layer vegetation after a fire event along a savanna-forest boundary at the IBGE Ecological Reserve, Brasília, Brazil. During the 16-month of the inventory, we registered 170 herbaceous species flowering or fruiting, of which 52 species (31%) may have been influenced by fire that changed their times of reproduction. In the savanna plots reproduction peaked at the end of the rainy season. Of the total number of reproducing species, 90 species occurred only in the savanna and four in the forest. Five herbs were recorded in the forest, savanna and border environments. Late dry season fire probably lead the majority of herbaceous species to have their reproduction spread throughout the study time.

  15. Non-supervised method for early forest fire detection and rapid mapping

    NASA Astrophysics Data System (ADS)

    Artés, Tomás; Boca, Roberto; Liberta, Giorgio; San-Miguel, Jesús

    2017-09-01

    Natural hazards are a challenge for the society. Scientific community efforts have been severely increased assessing tasks about prevention and damage mitigation. The most important points to minimize natural hazard damages are monitoring and prevention. This work focuses particularly on forest fires. This phenomenon depends on small-scale factors and fire behavior is strongly related to the local weather. Forest fire spread forecast is a complex task because of the scale of the phenomena, the input data uncertainty and time constraints in forest fire monitoring. Forest fire simulators have been improved, including some calibration techniques avoiding data uncertainty and taking into account complex factors as the atmosphere. Such techniques increase dramatically the computational cost in a context where the available time to provide a forecast is a hard constraint. Furthermore, an early mapping of the fire becomes crucial to assess it. In this work, a non-supervised method for forest fire early detection and mapping is proposed. As main sources, the method uses daily thermal anomalies from MODIS and VIIRS combined with land cover map to identify and monitor forest fires with very few resources. This method relies on a clustering technique (DBSCAN algorithm) and on filtering thermal anomalies to detect the forest fires. In addition, a concave hull (alpha shape algorithm) is applied to obtain rapid mapping of the fire area (very coarse accuracy mapping). Therefore, the method leads to a potential use for high-resolution forest fire rapid mapping based on satellite imagery using the extent of each early fire detection. It shows the way to an automatic rapid mapping of the fire at high resolution processing as few data as possible.

  16. An ecosystem services framework for multidisciplinary research in the Colorado River headwaters

    USGS Publications Warehouse

    Semmens, D.J.; Briggs, J.S.; Martin, D.A.

    2009-01-01

    A rapidly spreading Mountain Pine Beetle epidemic is killing lodgepole pine forest in the Rocky Mountains, causing landscape change on a massive scale. Approximately 1.5 million acres of lodgepoledominated forest is already dead or dying in Colorado, the infestation is still spreading rapidly, and it is expected that in excess of 90 percent of all lodgepole forest will ultimately be killed. Drought conditions combined with dramatically reduced foliar moisture content due to stress or mortality from Mountain Pine Beetle have combined to elevate the probability of large fires throughout the Colorado River headwaters. Large numbers of homes in the wildland-urban interface, an extensive water supply infrastructure, and a local economy driven largely by recreational tourism make the potential costs associated with such a fire very large. Any assessment of fire risk for strategic planning of pre-fire management actions must consider these and a host of other important socioeconomic benefits derived from the Rocky Mountain Lodgepole Pine Forest ecosystem. This paper presents a plan to focus U.S. Geological Survey (USGS) multidisciplinary fire/beetle-related research in the Colorado River headwaters within a framework that integrates a wide variety of discipline-specific research to assess and value the full range of ecosystem services provided by the Rocky Mountain Lodgepole Pine Forest ecosystem. Baseline, unburned conditions will be compared with a hypothetical, fully burned scenario to (a) identify where services would be most severely impacted, and (b) quantify potential economic losses. Collaboration with the U.S. Forest Service will further yield a distributed model of fire probability that can be used in combination with the ecosystem service valuation to develop comprehensive, distributed maps of fire risk in the Upper Colorado River Basin. These maps will be intended for use by stakeholders as a strategic planning tool for pre-fire management activities and can be updated and improved adaptively on an annual basis as tree mortality, climatic conditions, and management actions unfold. 

  17. High resolution fire risk mapping in Italy

    NASA Astrophysics Data System (ADS)

    Fiorucci, Paolo; Biondi, Guido; Campo, Lorenzo; D'Andrea, Mirko

    2014-05-01

    The high topographic and vegetation heterogeneity makes Italy vulnerable to forest fires both in the summer and in winter. In particular, northern regions are predominantly characterized by a winter fire regime, mainly due to frequent extremely dry winds from the north, while southern and central regions and the large islands are characterized by a severe summer fire regime, because of the higher temperatures and prolonged lack of precipitation. The threat of wildfires in Italy is not confined to wooded areas as they extend to agricultural areas and urban-forest interface areas. The agricultural and rural areas, in the last century, have been gradually abandoned, especially in areas with complex topography. Many of these areas were subject to reforestation, leading to the spread of pioneer species mainly represented by Mediterranean conifer, which are highly vulnerable to fire. Because of the frequent spread of fire, these areas are limited to the early successional stages, consisting mainly of shrub vegetation; its survival in the competition with the climax species being ensured by the spread of fire itself. Due to the frequency of fire ignition — almost entirely man caused — the time between fires on the same area is at least an order of magnitude less than the time that would allow the establishment of forest climax species far less vulnerable to fire. In view of the limited availability of fire risk management resources, most of which are used in the management of national and regional air services, it is necessary to precisely identify the areas most vulnerable to fire risk. The few resources available can thus be used on a yearly basis to mitigate problems in the areas at highest risk by defining a program of forest management interventions, which is expected to make a significant contribution to the problem in a few years' time. The goal of such detailed planning is to dramatically reduce the costs associated with water bombers fleet management and fire extinguishing actions, leaving more resources to improve safety in areas at risk. With the availability of fire perimeters mapped over a period spanning from 5 to 10 years, depending by the region, a procedure was defined in order to assess areas at risk with high spatial resolution (900 m2) based on objective criteria by observing past fire events. The availability of fire perimeters combined with a detailed knowledge of topography and land cover allowed to understand which are the main features involved in forest fire occurrences and their behaviour. The seasonality of the fire regime was also considered, partitioning the analysis in two macro season (November- April and May- October). In addition, the total precipitation obtained from the interpolation of 30 years-long time series from 460 raingauges and the average air temperature obtained downscaling 30 years ERA-INTERIM data series were considered. About 48000 fire perimeters which burnt about 5500 km2 were considered in the analysis. The analysis has been carried out at 30 m spatial resolution. Some important considerations relating to climate and the territorial features that characterize the fire regime at national level contribute to better understand the forest fire phenomena. These results allow to define new strategies for forest fire prevention and management extensible to other geographical areas.

  18. Validation of BEHAVE fire behavior predictions in oak savannas using five fuel models

    Treesearch

    Keith Grabner; John Dwyer; Bruce Cutter

    1997-01-01

    Prescribed fire is a valuable tool in the restoration and management of oak savannas. BEHAVE, a fire behavior prediction system developed by the United States Forest Service, can be a useful tool when managing oak savannas with prescribed fire. BEHAVE predictions of fire rate-of-spread and flame length were validated using four standardized fuel models: Fuel Model 1 (...

  19. Protection against fire in the mountainous forests of Greece case study: forest complex of W. Nestos

    NASA Astrophysics Data System (ADS)

    Drosos, Vasileios C.; Giannoulas, Vasileios J.; Stergiadou, Anastasia; Karagiannis, Evaggelos; Doukas, Aristotelis-Kosmas G.

    2014-08-01

    Forest fires are an ancient phenomenon. Appear, however, with devastating frequency and intensity over the last 30 years. In our country, the climatic conditions in combination with the intense relief, favor their rapid spread. Considering the fact that environmental conditions provided for decades even worse (increased temperature, drought and vegetation), then the problem of forest fires in our country, is expected to become more intense. The work focuses on the optimization model of the opening up of the forest mountain areas taking into account the prevention and suppression of forest fires. Research area is the mountain forest complex of W. Nestos of Drama Prefecture. The percentage of forest protection area is examined under the light whether the total hose length corresponds to the actual operational capacity to reach a fire source. For this reason are decided to present a three case study concerning area of the forest being protected by fire extinguishing vehicles. The first one corresponds to a fire suppression bandwidth (buffer zone) with a capacity radius of 150m uphill and 250m downhill from the origin point where the fire extinguishing vehicle stands. The second one corresponds to a fire suppression capacity of 200m uphill and 400m downhill and the third one corresponds to a fire suppression capacity of 300m uphill and 500m downhill. The most important forest technical infrastructures to prevent fire are roads network (opening up) for fire protection and buffer zones. Patrols of small and agile 4 × 4 appropriately equipped (pipe length of 500 meters and putting pressure on uphill to 300 meters) for the first attack of the fire in the summer months coupled with early warning of fire observatories adequately cover the forest protection of W. Nestos complex. But spatial distribution needed improvements to a road density of the optimum economic Dec, both forest protection and for better management (skidding) of woody capital.

  20. Amazon Forest Responses to Drought and Fire

    NASA Astrophysics Data System (ADS)

    Morton, D. C.

    2015-12-01

    Deforestation and agricultural land uses provide a consistent source of ignitions along the Amazon frontier during the dry season. The risk of understory fires in Amazon forests is amplified by drought conditions, when fires at the forest edge may spread for weeks before rains begin. Fire activity also impacts the regional response of intact forests to drought through diffuse light effects and nutrient redistribution, highlighting the complexity of feedbacks in this coupled human and natural system. This talk will focus on recent advances in our understanding of fire-climate feedbacks in the Amazon, building on research themes initiated under NASA's Large-scale Biosphere-Atmosphere Experiment in Amazonia (LBA). NASA's LBA program began in the wake of the 1997-1998 El Niño, a strong event that exposed the vulnerability of Amazon forests to drought and fire under current climate and projections of climate change. With forecasts of another strong El Niño event in 2015-2016, this talk will provide a multi-scale synthesis of Amazon forest responses to drought and fire based on field measurements, airborne lidar data, and satellite observations of fires, rainfall, and terrestrial water storage. These studies offer new insights into the mechanisms governing fire season severity in the southern Amazon and regional variability in carbon losses from understory fires. The contributions from remote sensing to our understanding of drought and fire in Amazon forests reflect the legacy of NASA's LBA program and the sustained commitment to interdisciplinary research across the Amazon region.

  1. Burning experiments and late Paleozoic high O2 levels

    NASA Astrophysics Data System (ADS)

    Wildman, R.; Essenhigh, R.; Berner, R.; Hickey, L.; Wildman, C.

    2003-04-01

    The Paleozoic rise of land plants brought about increased burial of organic matter and a resulting increase in atmospheric oxygen concentrations. Levels as high as 30-35% O2 may have been reached during the Permo-Carboniferous (Berner and Canfield, 1989; Berner, 2001). However, burning experiments based solely on paper (Watson, 1978) have challenged these results, the claim being that if the oxygen made up more than 25% of the atmosphere, the frequency and intensity of forest fires would increase sufficiently to prevent the continued existence of plant life. Thus, since plants have persisted, it is possible that fires served as a negative feedback against excessive oxygen levels. An initial study of Paleozoic wildfire behavior via thermogravimetric analysis (TGA) was conducted under ambient and enriched oxygen conditions to simulate present and ancient atmospheres. The tests focused on natural fuels, specifically tree leaves and wood, tree fern fibers, and sphagnum peat-moss, simulating Permo-Carboniferous upland and swampland ecosystems, respectively. Three conclusions are: (1) enriched oxygen increases the rate of mass loss during burning; (2) fuel chemistry (cellulose vs. lignin) influences burning patterns; and (3) in geometrically heterogeneous fuels, geometry affects burning rate significantly. Both geometrically and chemically, paper resists fire poorly; thus, we found that it loses its mass at lower temperatures than forest materials and is therefore a poor proxy for Paleozoic ecosystems. Further study of Paleozoic wildfire spread behavior is currently being conducted. Fires are lit using pine dowels, which allow for reproducible fuel density. Steady-state, one-dimensional flame-spread is measured with thermocouples anchored two inches above the fuel bed. Both oxygen concentration of the air supply to the fire and moisture content of the fuels are varied, as we suspect that these are two main controls of wildfire spread. Burning fuels of varying moisture contents is central to this study, for fuel moisture is a fire retardant that may offset the fire-enhancing effects of high oxygen conditions. Earliest preliminary results at low moisture show that, as expected, increasing oxygen concentration significantly increases the rate of fuel consumption. This is expressed as both an increase in the speed of the flame spread and the temperature of the flames. It was found that a 35% oxygen (balance nitrogen) gas mixture caused fire to spread at about five times the rate of a fire in ambient air. The fire in the high-oxygen gas mixture was roughly 1.3 times the temperature of the fire in ambient air. The current work is not intended to exactly represent forest ecosystems; rather, it is intended to establish an understanding of flame-spread behavior in natural fuels and future work will include fuels that better represent natural ecosystems such as those used in the TGA experimentation.

  2. Forest Fire Danger Rating (FFDR) Prediction over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Song, B.; Won, M.; Jang, K.; Yoon, S.; Lim, J.

    2016-12-01

    Approximately five hundred forest fires occur and inflict the losses of both life and property each year in Korea during the forest fire seasons in the spring and autumn. Thus, an accurate prediction of forest fire is essential for effective forest fire prevention. The meteorology is one of important factors to predict and understand the fire occurrence as well as its behaviors and spread. In this study, we present the Forest Fire Danger Rating Systems (FFDRS) on the Korean Peninsula based on the Daily Weather Index (DWI) which represents the meteorological characteristics related to forest fire. The thematic maps including temperature, humidity, and wind speed produced from Korea Meteorology Administration (KMA) were applied to the forest fire occurrence probability model by logistic regression to analyze the DWI over the Korean Peninsula. The regional data assimilation and prediction system (RDAPS) and the improved digital forecast model were used to verify the sensitivity of DWI. The result of verification test revealed that the improved digital forecast model dataset showed better agreements with the real-time weather data. The forest fire danger rating index (FFDRI) calculated by the improved digital forecast model dataset showed a good agreement with the real-time weather dataset at the 233 administrative districts (R2=0.854). In addition, FFDRI were compared with observation-based FFDRI at 76 national weather stations. The mean difference was 0.5 at the site-level. The results produced in this study indicate that the improved digital forecast model dataset can be useful to predict the FFDRI in the Korean Peninsula successfully.

  3. Canadian and Siberian Boreal Fire Activity during ARCTAS Spring and Summer Phases

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Fromm, M. D.; Soja, A. J.; Servranckx, R.; Lindsey, D.; Hyer, E.

    2009-12-01

    The summer phase of ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) was designed specifically around forest fire activity in the Canadian boreal forest, and located in areas of northern Canada where summer forest fires are ubiquitous. Lightning fires are most often allowed to burn naturally in these regions, and a number of large free-burning fires in northern Saskatchewan in late June/early July 2008 provided excellent targets during the summer phase of ARCTAS. Smoke generated by a large number of early spring fires in Kazakhstan and southern Siberia unexpectedly made a significant contribution to arctic haze during the Alaska-based spring phase of ARCTAS, Numerous smoke plumes were sampled during the spring phase of ARCTAS, creating interest in the origin and characteristics of the fires in the source regions of East Asia. This presentation is designed to connect aircraft and satellite smoke chemistry/transport measurements with ground-based measurements of fire activity during the spring and summer phases of ARCTAS. The Canadian Forest Fire Danger Rating System (CFFDRS) is used to determine forest fire danger conditions in regions of fire activity, and these measurements are in turn used to project fire behavior characteristics. Fuel consumption, spread rates, and frontal fire intensity are calculated using the CFFDRS. Energy release rates at ground level are related to convection/smoke column development and smoke injection heights.

  4. Fire regime in Mediterranean ecosystem

    NASA Astrophysics Data System (ADS)

    Biondi, Guido; Casula, Paolo; D'Andrea, Mirko; Fiorucci, Paolo

    2010-05-01

    The analysis of burnt areas time series in Mediterranean regions suggests that ecosystems characterising this area consist primarily of species highly vulnerable to the fire but highly resilient, as characterized by a significant regenerative capacity after the fire spreading. In a few years the area burnt may once again be covered by the same vegetation present before the fire. Similarly, Mediterranean conifer forests, which often refers to plantations made in order to reforest the areas most severely degraded with high erosion risk, regenerate from seed after the fire resulting in high resilience to the fire as well. Only rarely, and usually with negligible damages, fire affects the areas covered by climax species in relation with altitude and soil types (i.e, quercus, fagus, abies). On the basis of these results, this paper shows how the simple Drossel-Schwabl forest fire model is able to reproduce the forest fire regime in terms of number of fires and burned area, describing whit good accuracy the actual fire perimeters. The original Drossel-Schwabl model has been slightly modified in this work by introducing two parameters (probability of propagation and regrowth) specific for each different class of vegetation cover. Using model selection methods based on AIC, the model with the optimal number of classes with different fire behaviour was selected. Two different case studies are presented in this work: Regione Liguria and Regione Sardegna (Italy). Both regions are situated in the center of the Mediterranean and are characterized by a high number of fires and burned area. However, the two regions have very different fire regimes. Sardinia is affected by the fire phenomenon only in summer whilst Liguria is affected by fires also in winter, with higher number of fires and larger burned area. In addition, the two region are very different in vegetation cover. The presence of Mediterranean conifers, (Pinus Pinaster, Pinus Nigra, Pinus halepensis) is quite spread in Liguria and is limited in Sardinia. What is common in the two regions is the widespread presence of shrub species frequently spread by fire. The analysis in the two regions thus allows in a rather limited area to study almost all the species that characterize the Mediterranean region. This work shows that the fire regime in Mediterranean area is strongly related with vegetation patterns, is almost totally independent by the cause of ignition, and only partially dependent by fire extinguishing actions.

  5. Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA

    USGS Publications Warehouse

    Swetnam, Thomas W.; Farella, Joshua; Roos, Christopher I.; Liebmann, Matthew J.; Falk, Donald A.; Allen, Craig D.

    2016-01-01

    Interannual climate variations have been important drivers of wildfire occurrence in ponderosa pine forests across western North America for at least 400 years, but at finer scales of mountain ranges and landscapes human land uses sometimes over-rode climate influences. We reconstruct and analyse effects of high human population densities in forests of the Jemez Mountains, New Mexico from ca 1300 CE to Present. Prior to the 1680 Pueblo Revolt, human land uses reduced the occurrence of widespread fires while simultaneously adding more ignitions resulting in many small-extent fires. During the 18th and 19th centuries, wet/dry oscillations and their effects on fuels dynamics controlled widespread fire occurrence. In the late 19th century, intensive livestock grazing disrupted fuels continuity and fire spread and then active fire suppression maintained the absence of widespread surface fires during most of the 20th century. The abundance and continuity of fuels is the most important controlling variable in fire regimes of these semi-arid forests. Reduction of widespread fires owing to reduction of fuel continuity emerges as a hallmark of extensive human impacts on past forests and fire regimes.

  6. Landscape anthropogenic disturbance in the Mediterranean ecosystem: is the current landscape sustainable?

    NASA Astrophysics Data System (ADS)

    Biondi, Guido; D'Andrea, Mirko; Fiorucci, Paolo; Franciosi, Chiara; Lima, Marco

    2013-04-01

    Mediterranean landscape during the last centuries has been subject to strong anthropogenic disturbances who shifted natural vegetation cover in a cultural landscape. Most of the natural forest were destroyed in order to allow cultivation and grazing activities. In the last century, fast growing conifer plantations were introduced in order to increase timber production replacing slow growing natural forests. In addition, after the Second World War most of the grazing areas were changed in unmanaged mediterranean conifer forest frequently spread by fires. In the last decades radical socio economic changes lead to a dramatic abandonment of the cultural landscape. One of the most relevant result of these human disturbances, and in particular the replacement of deciduous forests with coniferous forests, has been the increasing in the number of forest fires, mainly human caused. The presence of conifers and shrubs, more prone to fire, triggered a feedback mechanism that makes difficult to return to the stage of potential vegetation causing huge economic, social and environmental damages. The aim of this work is to investigate the sustainability of the current landscape. A future landscape scenario has been simulated considering the natural succession in absence of human intervention assuming the current fire regime will be unaltered. To this end, a new model has been defined, implementing an ecological succession model coupled with a simply Forest Fire Model. The ecological succession model simulates the vegetation dynamics using a rule-based approach discrete in space and time. In this model Plant Functional Types (PFTs) are used to describe the landscape. Wildfires are randomly ignited on the landscape, and their propagation is simulated using a stochastic cellular automata model. The results show that the success of the natural succession toward a potential vegetation cover is prevented by the frequency of fire spreading. The actual landscape is then unsustainable because of the high cost of fire fighting activities. The right path to success consists in development of suitable land use planning and forest management to mitigate the consequences of past anthropogenic disturbances.

  7. Forest fire danger index based on modifying Nesterov Index, fuel, and anthropogenic activities using MODIS TERRA, AQUA and TRMM satellite datasets

    NASA Astrophysics Data System (ADS)

    Suresh Babu, K. V.; Roy, Arijit; Ramachandra Prasad, P.

    2016-05-01

    Forest fire has been regarded as one of the major causes of degradation of Himalayan forests in Uttarakhand. Forest fires occur annually in more than 50% of forests in Uttarakhand state, mostly due to anthropogenic activities and spreads due to moisture conditions and type of forest fuels. Empirical drought indices such as Keetch-Byram drought index, the Nesterov index, Modified Nesterov index, the Zhdanko index which belongs to the cumulative type and the Angstrom Index which belongs to the daily type have been used throughout the world to assess the potential fire danger. In this study, the forest fire danger index has been developed from slightly modified Nesterov index, fuel and anthropogenic activities. Datasets such as MODIS TERRA Land Surface Temperature and emissivity (MOD11A1), MODIS AQUA Atmospheric profile product (MYD07) have been used to determine the dew point temperature and land surface temperature. Precipitation coefficient has been computed from Tropical Rainfall measuring Mission (TRMM) product (3B42RT). Nesterov index has been slightly modified according to the Indian context and computed using land surface temperature, dew point temperature and precipitation coefficient. Fuel type danger index has been derived from forest type map of ISRO based on historical fire location information and disturbance danger index has been derived from disturbance map of ISRO. Finally, forest fire danger index has been developed from the above mentioned indices and MODIS Thermal anomaly product (MOD14) has been used for validating the forest fire danger index.

  8. Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA.

    PubMed

    Swetnam, Thomas W; Farella, Joshua; Roos, Christopher I; Liebmann, Matthew J; Falk, Donald A; Allen, Craig D

    2016-06-05

    Interannual climate variations have been important drivers of wildfire occurrence in ponderosa pine forests across western North America for at least 400 years, but at finer scales of mountain ranges and landscapes human land uses sometimes over-rode climate influences. We reconstruct and analyse effects of high human population densities in forests of the Jemez Mountains, New Mexico from ca 1300 CE to Present. Prior to the 1680 Pueblo Revolt, human land uses reduced the occurrence of widespread fires while simultaneously adding more ignitions resulting in many small-extent fires. During the 18th and 19th centuries, wet/dry oscillations and their effects on fuels dynamics controlled widespread fire occurrence. In the late 19th century, intensive livestock grazing disrupted fuels continuity and fire spread and then active fire suppression maintained the absence of widespread surface fires during most of the 20th century. The abundance and continuity of fuels is the most important controlling variable in fire regimes of these semi-arid forests. Reduction of widespread fires owing to reduction of fuel continuity emerges as a hallmark of extensive human impacts on past forests and fire regimes.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Authors.

  9. Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA

    PubMed Central

    Farella, Joshua; Liebmann, Matthew J.; Falk, Donald A.; Allen, Craig D.

    2016-01-01

    Interannual climate variations have been important drivers of wildfire occurrence in ponderosa pine forests across western North America for at least 400 years, but at finer scales of mountain ranges and landscapes human land uses sometimes over-rode climate influences. We reconstruct and analyse effects of high human population densities in forests of the Jemez Mountains, New Mexico from ca 1300 CE to Present. Prior to the 1680 Pueblo Revolt, human land uses reduced the occurrence of widespread fires while simultaneously adding more ignitions resulting in many small-extent fires. During the 18th and 19th centuries, wet/dry oscillations and their effects on fuels dynamics controlled widespread fire occurrence. In the late 19th century, intensive livestock grazing disrupted fuels continuity and fire spread and then active fire suppression maintained the absence of widespread surface fires during most of the 20th century. The abundance and continuity of fuels is the most important controlling variable in fire regimes of these semi-arid forests. Reduction of widespread fires owing to reduction of fuel continuity emerges as a hallmark of extensive human impacts on past forests and fire regimes. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216525

  10. Identifying the Threshold of Dominant Controls on Fire Spread in a Boreal Forest Landscape of Northeast China

    PubMed Central

    Liu, Zhihua; Yang, Jian; He, Hong S.

    2013-01-01

    The relative importance of fuel, topography, and weather on fire spread varies at different spatial scales, but how the relative importance of these controls respond to changing spatial scales is poorly understood. We designed a “moving window” resampling technique that allowed us to quantify the relative importance of controls on fire spread at continuous spatial scales using boosted regression trees methods. This quantification allowed us to identify the threshold value for fire size at which the dominant control switches from fuel at small sizes to weather at large sizes. Topography had a fluctuating effect on fire spread across the spatial scales, explaining 20–30% of relative importance. With increasing fire size, the dominant control switched from bottom-up controls (fuel and topography) to top-down controls (weather). Our analysis suggested that there is a threshold for fire size, above which fires are driven primarily by weather and more likely lead to larger fire size. We suggest that this threshold, which may be ecosystem-specific, can be identified using our “moving window” resampling technique. Although the threshold derived from this analytical method may rely heavily on the sampling technique, our study introduced an easily implemented approach to identify scale thresholds in wildfire regimes. PMID:23383247

  11. On wildfire complexity, simple models and environmental templates for fire size distributions

    NASA Astrophysics Data System (ADS)

    Boer, M. M.; Bradstock, R.; Gill, M.; Sadler, R.

    2012-12-01

    Vegetation fires affect some 370 Mha annually. At global and continental scales, fire activity follows predictable spatiotemporal patterns driven by gradients and seasonal fluctuations of primary productivity and evaporative demand that set constraints for fuel accumulation rates and fuel dryness, two key ingredients of fire. At regional scales, fires are also known to affect some landscapes more than others and within landscapes to occur preferentially in some sectors (e.g. wind-swept ridges) and rarely in others (e.g. wet gullies). Another common observation is that small fires occur relatively frequent yet collectively burn far less country than relatively infrequent large fires. These patterns of fire activity are well known to management agencies and consistent with their (informal) models of how the basic drivers and constraints of fire (i.e. fuels, ignitions, weather) vary in time and space across the landscape. The statistical behaviour of these landscape fire patterns has excited the (academic) research community by showing some consistency with that of complex dynamical systems poised at a phase transition. The common finding that the frequency-size distributions of actual fires follow power laws that resemble those produced by simple cellular models from statistical mechanics has been interpreted as evidence that flammable landscapes operate as self-organising systems with scale invariant fire size distributions emerging 'spontaneously' from simple rules of contagious fire spread and a strong feedback between fires and fuel patterns. In this paper we argue that the resemblance of simulated and actual fire size distributions is an example of equifinality, that is fires in model landscapes and actual landscapes may show similar statistical behaviour but this is reached by qualitatively different pathways or controlling mechanisms. We support this claim with two key findings regarding simulated fire spread mechanisms and fire-fuel feedbacks. Firstly, we demonstrate that the power law behaviour of fire size distributions in the widely used Drossel and Schwabl (1992) Forest Fire Model (FFM) is strictly conditional on simulating fire spread as a cell-to-cell contagion over a fixed distance; the invariant scaling of fire sizes breaks down under the slightest variation in that distance, suggesting that pattern formation in the FFM is irreconcilable with the reality of disparate rates and modes of fire spread observed in the field. Secondly, we review field evidence showing that fuel age effects on the probability of fire spread, a key assumption in simulation models like the FFM, do not generally apply across flammable environments. Finally, we explore alternative explanations for the formation of scale invariant fire sizes in real landscapes. Using observations from southern Australian forest regions we demonstrate that the spatiotemporal patterns of fuel dryness and magnitudes of fire driving weather events set strong environmental templates for regional fire size distributions.

  12. Validation of behave fire behavior predictions in oak savannas

    USGS Publications Warehouse

    Grabner, Keith W.; Dwyer, John; Cutter, Bruce E.

    1997-01-01

    Prescribed fire is a valuable tool in the restoration and management of oak savannas. BEHAVE, a fire behavior prediction system developed by the United States Forest Service, can be a useful tool when managing oak savannas with prescribed fire. BEHAVE predictions of fire rate-of-spread and flame length were validated using four standardized fuel models: Fuel Model 1 (short grass), Fuel Model 2 (timber and grass), Fuel Model 3 (tall grass), and Fuel Model 9 (hardwood litter). Also, a customized oak savanna fuel model (COSFM) was created and validated. Results indicate that standardized fuel model 2 and the COSFM reliably estimate mean rate-of-spread (MROS). The COSFM did not appreciably reduce MROS variation when compared to fuel model 2. Fuel models 1, 3, and 9 did not reliably predict MROS. Neither the standardized fuel models nor the COSFM adequately predicted flame lengths. We concluded that standardized fuel model 2 should be used with BEHAVE when predicting fire rates-of-spread in established oak savannas.

  13. A numerical study of atmospheric perturbations induced by heat from a wildland fire: sensitivity to vertical canopy structure and heat source strength

    Treesearch

    Michael T. Kiefer; Shiyuan Zhong; Warren E. Heilman; Joseph J. Charney; Xindi Bian

    2018-01-01

    An improved understanding of atmospheric perturbations within and above a forest during a wildland fire has relevance to many aspects of wildland fires including fire spread, smoke transport and dispersion, and tree mortality. In this study, the ARPS-CANOPY model, a version of the Advanced Regional Prediction System (ARPS) model with a canopy parameterization, is...

  14. Litter Species Composition and Topographic Effects on Fuels and Modeled Fire Behavior in an Oak-Hickory Forest in the Eastern USA

    PubMed Central

    Hutchinson, Todd F.; Dietenberger, Mark; Matt, Frederick; Peters, Matthew P.

    2016-01-01

    Mesophytic species (esp. Acer rubrum) are increasingly replacing oaks (Quercus spp.) in fire-suppressed, deciduous oak-hickory forests of the eastern US. A pivotal hypothesis is that fuel beds derived from mesophytic litter are less likely than beds derived from oak litter to carry a fire and, if they do, are more likely to burn at lower intensities. Species effects, however, are confounded by topographic gradients that affect overstory composition and fuel bed decomposition. To examine the separate and combined effects of litter species composition and topography on surface fuel beds, we conducted a common garden experiment in oak-hickory forests of the Ohio Hills. Each common garden included beds composed of mostly oak and mostly maple litter, representative of oak- and maple-dominated stands, respectively, and a mixture of the two. Beds were replenished each fall for four years. Common gardens (N = 16) were established at four topographic positions (ridges, benches on south- and northeast-facing slopes, and stream terraces) at each of four sites. Litter source and topographic position had largely independent effects on fuel beds and modeled fire dynamics after four years of development. Loading (kg m-2) of the upper litter layer (L), the layer that primarily supports flaming spread, was least in more mesic landscape positions and for maple beds, implying greater decomposition rates for those situations. Bulk density in the L layer (kg m-3) was least for oak beds which, along with higher loading, would promote fire spread and fireline intensity. Loading and bulk density of the combined fermentation and humic (FH) layers were least on stream terrace positions but were not related to species. Litter- and FH-layer moistures during a 5-day dry-down period after a rain event were affected by time and topographic effects while litter source effects were not evident. Characteristics of flaming combustion determined with a cone calorimeter pointed to greater fireline intensity for oak fuel beds and unexpected interactions between litter source and topography. A spread index, which synthesizes a suite of fuel bed, particle, and combustion characteristics to indicate spread (vs extinction) potential, was primarily affected by litter source and, secondarily, by the low spread potentials on mesic landscape positions early in the 5-day dry-down period. A similar result was obtained for modeled fireline intensity. Our results suggest that the continuing transition from oaks to mesophytic species in the Ohio Hills will reduce fire spread potentials and fire intensities. PMID:27536964

  15. Litter Species Composition and Topographic Effects on Fuels and Modeled Fire Behavior in an Oak-Hickory Forest in the Eastern USA.

    PubMed

    Dickinson, Matthew B; Hutchinson, Todd F; Dietenberger, Mark; Matt, Frederick; Peters, Matthew P

    2016-01-01

    Mesophytic species (esp. Acer rubrum) are increasingly replacing oaks (Quercus spp.) in fire-suppressed, deciduous oak-hickory forests of the eastern US. A pivotal hypothesis is that fuel beds derived from mesophytic litter are less likely than beds derived from oak litter to carry a fire and, if they do, are more likely to burn at lower intensities. Species effects, however, are confounded by topographic gradients that affect overstory composition and fuel bed decomposition. To examine the separate and combined effects of litter species composition and topography on surface fuel beds, we conducted a common garden experiment in oak-hickory forests of the Ohio Hills. Each common garden included beds composed of mostly oak and mostly maple litter, representative of oak- and maple-dominated stands, respectively, and a mixture of the two. Beds were replenished each fall for four years. Common gardens (N = 16) were established at four topographic positions (ridges, benches on south- and northeast-facing slopes, and stream terraces) at each of four sites. Litter source and topographic position had largely independent effects on fuel beds and modeled fire dynamics after four years of development. Loading (kg m-2) of the upper litter layer (L), the layer that primarily supports flaming spread, was least in more mesic landscape positions and for maple beds, implying greater decomposition rates for those situations. Bulk density in the L layer (kg m-3) was least for oak beds which, along with higher loading, would promote fire spread and fireline intensity. Loading and bulk density of the combined fermentation and humic (FH) layers were least on stream terrace positions but were not related to species. Litter- and FH-layer moistures during a 5-day dry-down period after a rain event were affected by time and topographic effects while litter source effects were not evident. Characteristics of flaming combustion determined with a cone calorimeter pointed to greater fireline intensity for oak fuel beds and unexpected interactions between litter source and topography. A spread index, which synthesizes a suite of fuel bed, particle, and combustion characteristics to indicate spread (vs extinction) potential, was primarily affected by litter source and, secondarily, by the low spread potentials on mesic landscape positions early in the 5-day dry-down period. A similar result was obtained for modeled fireline intensity. Our results suggest that the continuing transition from oaks to mesophytic species in the Ohio Hills will reduce fire spread potentials and fire intensities.

  16. [Prediction model of human-caused fire occurrence in the boreal forest of northern China].

    PubMed

    Guo, Fu-tao; Su, Zhang-wen; Wang, Guang-yu; Wang, Qiang; Sun, Long; Yang, Ting-ting

    2015-07-01

    The Chinese boreal forest is an important forest resource in China. However, it has been suffering serious disturbances of forest fires, which were caused equally by natural disasters (e.g., lightning) and human activities. The literature on human-caused fires indicates that climate, topography, vegetation, and human infrastructure are significant factors that impact the occurrence and spread of human-caused fires. But the studies on human-caused fires in the boreal forest of northern China are limited and less comprehensive. This paper applied the spatial analysis tools in ArcGIS 10.0 and Logistic regression model to investigate the driving factors of human-caused fires. Our data included the geographic coordinates of human-caused fires, climate factors during year 1974-2009, topographic information, and forest map. The results indicated that distance to railway (x1) and average relative humidity (x2) significantly impacted the occurrence of human-caused fire in the study area. The logistic model for predicting the fire occurrence probability was formulated as P= 1/[11+e-(3.026-0.00011x1-0.047x2)] with an accuracy rate of 80%. The above model was used to predict the monthly fire occurrence during the fire season of 2015 based on the HADCM2 future weather data. The prediction results showed that the high risk of human-caused fire occurrence concentrated in the months of April, May, June and August, while April and May had higher risk of fire occurrence than other months. According to the spatial distribution of possibility of fire occurrence, the high fire risk zones were mainly in the west and southwest of Tahe, where the major railways were located.

  17. Variability and persistence of post-fire biological legacies in jack pine-dominated ecosystems of northern Lower Michigan

    Treesearch

    Daniel Kashian; Gregory Corace; Lindsey Shartell; Deahn M. Donner; Philip Huber

    2011-01-01

    Stand-replacing wildfires have historically shaped the forest structure of dry, sandy jack pine-dominated ecosystems at stand and landscape scales in northern Lower Michigan. Unique fire behavior during large wildfire events often preserves long strips of unburned trees arranged perpendicular to the direction of fire spread. These biological legacies create...

  18. Carbon emissions caused by land-use change in tropical forests of Borneo island

    NASA Astrophysics Data System (ADS)

    Hirata, R.; Ito, A.

    2016-12-01

    Tropical forests in Borneo island have disappeared by 1.5%/year during the last decade. Land-use changes have been mainly caused by plantation and wild fire in Borneo island. We estimated regional scale carbon balance of Borneo island by using a terrestrial ecosystem model, VISIT. We took into account a land-use change map developed by using MODIS data. The land-use change map includes when wild fire occurred and when artificial trees (e.g. oil palm) were planted. Southern part of Borneo island was strongly affected by wild fire. Especially in 2002, 2006 and 2015, wild fire was spread widely because of ENSO. Carbon emissions in these years were larger than other year. Carbon emission in northern part of Borneo was mainly caused by conversion from forest to oil palm.

  19. Software applications to three-dimensional visualization of forest landscapes -- A case study demontrating the use of visual nature studio (VNS) in visualizing fire spread in forest landscapes

    Treesearch

    Brian J. Williams; Bo Song; Chou Chiao-Ying; Thomas M. Williams; John Hom

    2010-01-01

    Three-dimensional (3D) visualization is a useful tool that depicts virtual forest landscapes on computer. Previous studies in visualization have required high end computer hardware and specialized technical skills. A virtual forest landscape can be used to show different effects of disturbances and management scenarios on a computer, which allows observation of forest...

  20. Wildfires

    MedlinePlus

    Wildfires are fires that burn out of control in a natural area, like a forest, grassland, or prairie. They often begin unnoticed. They spread quickly, and can damage natural resources, destroy homes, and ...

  1. Best Longitudinal Adjustment of Satellite Trajectories for the Observation of Forest Fires (Blastoff): A Stochastic Programming Approach to Satellite System Design

    NASA Astrophysics Data System (ADS)

    Hoskins, Aaron B.

    Forest fires cause a significant amount of damage and destruction each year. Optimally dispatching resources reduces the amount of damage a forest fire can cause. Models predict the fire spread to provide the data required to optimally dispatch resources. However, the models are only as accurate as the data used to build them. Satellites are one valuable tool in the collection of data for the forest fire models. Satellites provide data on the types of vegetation, the wind speed and direction, the soil moisture content, etc. The current operating paradigm is to passively collect data when possible. However, images from directly overhead provide better resolution and are easier to process. Maneuvering a constellation of satellites to fly directly over the forest fire provides higher quality data than is achieved with the current operating paradigm. Before launch, the location of the forest fire is unknown. Therefore, it is impossible to optimize the initial orbits for the satellites. Instead, the expected cost of maneuvering to observe the forest fire determines the optimal initial orbits. A two-stage stochastic programming approach is well suited for this class of problem where initial decisions are made with an uncertain future and then subsequent decisions are made once a scenario is realized. A repeat ground track orbit provides a non-maneuvering, natural solution providing a daily flyover of the forest fire. However, additional maneuvers provide a second daily flyover of the forest fire. The additional maneuvering comes at a significant cost in terms of additional fuel, but provides more data collection opportunities. After data are collected, ground stations receive the data for processing. Optimally selecting the ground station locations reduce the number of built ground stations and reduces the data fusion issues. However, the location of the forest fire alters the optimal ground station sites. A two-stage stochastic programming approach optimizes the selection of ground stations to maximize the expected amount of data downloaded from a satellite. The approaches of selecting initial orbits and ground station locations including uncertainty will provide a robust system to reduce the amount of damage caused by forest fires.

  2. Climate effect on forest fire static risk assessment

    NASA Astrophysics Data System (ADS)

    Bodini, Antonella; Cossu, Antonello; Entrade, Erika; Fiorucci, Paolo; Gaetani, Francesco; Parodi, Ulderica

    2010-05-01

    The availability of a long data series of fire perimeters combined with a detailed knowledge of topography and land cover allow to understand which are the main features involved in forest fire occurrences and their behaviour. In addition, climate indexes obtained from the analysis of time series with more than 20 years of complete records allow to understand the role of climate on fire regime, both in terms of direct effects on fire behaviour and the effect on vegetation cover. In particular, indices of extreme events have been considered like CDD (maximum number of consecutive dry days) and HWDI (heat wave duration index: maximum period > 5 consecutive days with Tmax >5°C above the 1961-1990 daily Tmax normal), together with the usual indices describing rainfall and temperature regimes. As a matter of fact, based on this information it is possible to develop statistical methods for the objective classification of forest fire static risk at regional scale. Two different case studies are presented in this work: Regione Liguria and Regione Sardegna (Italy). Both regions are in the center of the Mediterranean and are characterized by a high number of fires and burned area. However, the two regions have very different fire regimes. Sardinia is affected by the fire phenomenon only in summer whilst Liguria is affected by fires also in winter, with higher number of fires and larger burned area. In addition, the two region are very different in vegetation cover. The presence of Mediterranean conifers, (Pinus Pinaster, Pinus Nigra, Pinus halepensis) is quite spread in Liguria and is almost absent in Sardinia. What is common in the two regions is the widespread presence of shrub species frequently spread by fire. The analysis in the two regions thus allows in a rather limited area to consider almost all the species and the climate conditions that characterize the Mediterranean region. More than 10000 fire perimeters that burnt about 800 km2 were considered in the analysis. The analysis has been carried out at 20 m spatial resolution. Some important considerations relating to climate and the territorial features that characterize the fire regime in the considered regions contribute to better understand the forest fire phenomena. These results allow to define new strategies for forest fire prevention and management extendable to other geographical areas. This research is part of the project PROTERINA C, funded by the EU under the Italy-France Maritime Programme, aiming at investigating the effects that climate change could have on the environment (fuels).

  3. Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Zhu, Xuan; Yebra, Marta; Harris, Sarah; Tapper, Nigel

    2016-10-01

    Fuel structural characteristics affect fire behavior including fire intensity, spread rate, flame structure, and duration, therefore, quantifying forest fuel structure has significance in understanding fire behavior as well as providing information for fire management activities (e.g., planned burns, suppression, fuel hazard assessment, and fuel treatment). This paper presents a method of forest fuel strata classification with an integration between terrestrial light detection and ranging (LiDAR) data and geographic information system for automatically assessing forest fuel structural characteristics (e.g., fuel horizontal continuity and vertical arrangement). The accuracy of fuel description derived from terrestrial LiDAR scanning (TLS) data was assessed by field measured surface fuel depth and fuel percentage covers at distinct vertical layers. The comparison of TLS-derived depth and percentage cover at surface fuel layer with the field measurements produced root mean square error values of 1.1 cm and 5.4%, respectively. TLS-derived percentage cover explained 92% of the variation in percentage cover at all fuel layers of the entire dataset. The outcome indicated TLS-derived fuel characteristics are strongly consistent with field measured values. TLS can be used to efficiently and consistently classify forest vertical layers to provide more precise information for forest fuel hazard assessment and surface fuel load estimation in order to assist forest fuels management and fire-related operational activities. It can also be beneficial for mapping forest habitat, wildlife conservation, and ecosystem management.

  4. Forest restoration as a strategy to mitigate climate impacts on wildfire, vegetation, and water in semiarid forests.

    PubMed

    O'Donnell, Frances C; Flatley, William T; Springer, Abraham E; Fulé, Peter Z

    2018-06-25

    Climate change and wildfire are interacting to drive vegetation change and potentially reduce water quantity and quality in the southwestern United States, Forest restoration is a management approach that could mitigate some of these negative outcomes. However, little information exists on how restoration combined with climate change might influence hydrology across large forest landscapes that incorporate multiple vegetation types and complex fire regimes. We combined spatially explicit vegetation and fire modeling with statistical water and sediment yield models for a large forested landscape (335,000 ha) on the Kaibab Plateau in northern Arizona, USA. Our objective was to assess the impacts of climate change and forest restoration on the future fire regime, forest vegetation, and watershed outputs. Our model results predict that the combination of climate change and high-severity fire will drive forest turnover, biomass declines, and compositional change in future forests. Restoration treatments may reduce the area burned in high-severity fires and reduce conversions from forested to non-forested conditions. Even though mid-elevation forests are the targets of restoration, the treatments are expected to delay the decline of high-elevation spruce-fir, aspen, and mixed conifer forests by reducing the occurrence of high-severity fires that may spread across ecoregions. We estimate that climate-induced vegetation changes will result in annual runoff declines of up to 10%, while restoration reduced or reversed this decline. The hydrologic model suggests that mid-elevation forests, which are the targets of restoration treatments, provide around 80% of runoff in this system and the conservation of mid- to high-elevation forests types provides the greatest benefit in terms of water conservation. We also predict that restoration treatments will conserve water quality by reducing patches of high-severity fire that are associated with high sediment yield. Restoration treatments are a management strategy that may reduce undesirable outcomes for multiple ecosystem services. © 2018 by the Ecological Society of America.

  5. The Ring of Fire: The Effects of Slope upon Pattern Formation in Simulated Forest Fire Systems

    NASA Astrophysics Data System (ADS)

    Morillo, Robin; Manz, Niklas

    We report about spreading fire fronts under sloped conditions using the general cellular automaton model and data from physical scaled-down experiments. Punckt et al. published experimental and computational results for planar systems and our preliminary results confirmed the expected speed-slope dependence of fire fronts propagating up or down the hill with a cut-off slope value above which no fire front can exist. Here we focus on two fascinating structures in reaction-diffusion systems: circular expanding target pattern and rotating spirals. We investigated the behaviors of both structures with varied values for the slope of the forest and the homogeneity of the trees. For both variables, a range of values was found for which target pattern or spiral formation was possible.

  6. Factor contribution to fire occurrence, size, and burn probability in a subtropical coniferous forest in East China.

    PubMed

    Ye, Tao; Wang, Yao; Guo, Zhixing; Li, Yijia

    2017-01-01

    The contribution of factors including fuel type, fire-weather conditions, topography and human activity to fire regime attributes (e.g. fire occurrence, size distribution and severity) has been intensively discussed. The relative importance of those factors in explaining the burn probability (BP), which is critical in terms of fire risk management, has been insufficiently addressed. Focusing on a subtropical coniferous forest with strong human disturbance in East China, our main objective was to evaluate and compare the relative importance of fuel composition, topography, and human activity for fire occurrence, size and BP. Local BP distribution was derived with stochastic fire simulation approach using detailed historical fire data (1990-2010) and forest-resource survey results, based on which our factor contribution analysis was carried out. Our results indicated that fuel composition had the greatest relative importance in explaining fire occurrence and size, but human activity explained most of the variance in BP. This implies that the influence of human activity is amplified through the process of overlapping repeated ignition and spreading events. This result emphasizes the status of strong human disturbance in local fire processes. It further confirms the need for a holistic perspective on factor contribution to fire likelihood, rather than focusing on individual fire regime attributes, for the purpose of fire risk management.

  7. A comparative study of fire weather indices in a semiarid south-eastern Europe region. Case of study: Murcia (Spain).

    PubMed

    Pérez-Sánchez, Julio; Senent-Aparicio, Javier; Díaz-Palmero, José María; Cabezas-Cerezo, Juan de Dios

    2017-07-15

    Forest fires are an important distortion in forest ecosystems, linked to their development and whose effects proceed beyond the destruction of ecosystems and material properties, especially in semiarid regions. Prevention of forest fires has to lean on indices based on available parameters that quantify fire risk ignition and spreading. The present study was conducted to compare four fire weather indices in a semiarid region of 11,314km 2 located in southern Spain, characterised as being part of the most damaged area by fire in the Iberian Peninsula. The studied period comprises 3033 wildfires in the region during 15years (2000-2014), of which 80% are >100m 2 and 14% >1000m 2 , resulting around 40km 2 of burnt area in this period. The indices selected have been Angström Index, Forest Fire Drought Index, Forest Moisture Index and Fire Weather Index. Likewise, four selection methods have been applied to compare the results of the studied indices: Mahalanobis distance, percentile method, ranked percentile method and Relative Operating Characteristic curves (ROC). Angström index gives good results in the coastal areas with higher temperatures, low rainfall and wider range of variations while Fire Weather Index has better results in inland areas with higher rainfall, dense forest mass and fewer changes in meteorological conditions throughout the year. ROC space rejects all the indices except Fire Weather Index with good performance all over the region. ROC analysis ratios can be used to assess the success (or lack thereof) of fire indices; thus, it benefits operational wildfire predictions in semiarid regions similar to that of the case study. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Hyperspectral and LiDAR remote sensing of fire fuels in Hawaii Volcanoes National Park.

    PubMed

    Varga, Timothy A; Asner, Gregory P

    2008-04-01

    Alien invasive grasses threaten to transform Hawaiian ecosystems through the alteration of ecosystem dynamics, especially the creation or intensification of a fire cycle. Across sub-montane ecosystems of Hawaii Volcanoes National Park on Hawaii Island, we quantified fine fuels and fire spread potential of invasive grasses using a combination of airborne hyperspectral and light detection and ranging (LiDAR) measurements. Across a gradient from forest to savanna to shrubland, automated mixture analysis of hyperspectral data provided spatially explicit fractional cover estimates of photosynthetic vegetation, non-photosynthetic vegetation, and bare substrate and shade. Small-footprint LiDAR provided measurements of vegetation height along this gradient of ecosystems. Through the fusion of hyperspectral and LiDAR data, a new fire fuel index (FFI) was developed to model the three-dimensional volume of grass fuels. Regionally, savanna ecosystems had the highest volumes of fire fuels, averaging 20% across the ecosystem and frequently filling all of the three-dimensional space represented by each image pixel. The forest and shrubland ecosystems had lower FFI values, averaging 4.4% and 8.4%, respectively. The results indicate that the fusion of hyperspectral and LiDAR remote sensing can provide unique information on the three-dimensional properties of ecosystems, their flammability, and the potential for fire spread.

  9. Effects of fire suppression under a changing climate in Pacific Northwest mixed-pine forests

    NASA Astrophysics Data System (ADS)

    Hanan, E. J.; Tague, C.; Bart, R. R.; Kennedy, M. C.; Abatzoglou, J. T.; Kolden, C.; Adam, J. C.

    2017-12-01

    The frequency of large and severe wildfires has increased over recent decades in many regions across the Western U.S., including the Pacific and Inland Northwest. This increase is likely driven in large part by wildfire suppression, which has promoted fuel accumulation in western landscapes. Recent studies also suggest that anthropogenic climate change intensifies wildfire activity by increasing fuel aridity. However, the contribution of these drivers to observed changes in fire regime is not well quantified at regional scales. Understanding the relative influence of climate and fire suppression is crucial for both projecting the effects of climate change on future fire spread, and for developing site-specific fuel management strategies under a new climate paradigm. To quantify the extent to which fire suppression and climate change have contributed to increases in wildfire activity in the Pacific Northwest, we conduct a modeling experiment using the ecohydrologic model RHESSys and the coupled stochastic fire spread model WMFire. Specifically, we use historical climate inputs from GCMs, combined with fire suppression scenarios to gauge the extent to which these drivers promote the spread of severe wildfires in Johnson Creek, a large (565-km2) mixed-pine dominated subcatchment of the Southfork Salmon River; part of the larger Columbia River Basin. We run 500 model iterations for suppressed, intermediate, and unsuppressed fire management scenarios, both with and without climate change in a factorial design, focusing on fire spread surrounding two extreme fire years in Johnson Creek (1998 and 2007). After deriving fire spread "fingerprints" for each combination of possible drivers, we evaluate the extent to which these fingerprints match observations in the fire record. We expect that climate change plays a role in the spread of large and severe wildfires in Johnson Creek, but the magnitude of this effect is mediated by prior suppression. Preliminary results suggest that management strategies aimed at reducing the extent of contiguous even-aged fuels may help curtail climate-driven increases in wildfire severity in Pacific Northwest watersheds.

  10. Did the summer 2003 forest fires in Portugal affect air quality over Europe?

    NASA Astrophysics Data System (ADS)

    Miranda, A. I.; Martins, V.; Sá, E.; Carvalho, A.; Amorim, J. H.; Borrego, C.

    2009-04-01

    A forest fire is a large-scale natural combustion process consuming various types, sizes and ages of botanical specimen growing outdoors in a defined geographical area. Although wildland fires are an integral part of ecosystems management and are essential to maintain functional ecosystems their dimensions can give rise to disastrous results. Due to the frequency of occurrence and the magnitude of effects on the environment, health, economy and security, forest fires have increasingly become a major subject of concern for decision-makers, firefighters, researchers and citizens in general. Among their consequences, is the emission of various environmentally significant gases and solid particulate matter to the atmosphere that interfere with local, regional and global phenomena in the biosphere. Smoke from forest fires contains important amounts of carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), nitrogen oxides (NOx), ammonia (NH3), particulate matter (PM) (that is usually referred in terms of particles with a mean diameter less than 2.5 μm, or PM2.5, and particles with a mean diameter less than 10 μm, or PM10), non-methane hydrocarbons (NMHC) and other chemical compounds. These air pollutants can cause serious consequences to local and regional air quality by reducing visibility, contributing to smog and impairing air quality in general, thus threatening human health and ecosystems. Pollutants emitted from forest fires are transported, chemically transformed, and dispersed in the atmosphere. Although major wildfires are limited to some hundreds of hectares, their impacts, with no natural or political boundaries, can be felt and reported far beyond the physical limits of the fire spread. Depending on meteorological conditions, smoke plumes and haze layers can persist in the atmosphere for long periods of time and prevailing conditions will influence the chemical and optical characteristics of the plume. The extreme fire events occurred in the summer of 2003 in Portugal highlighted the need to better analyze the link between forest fires and air quality. Portugal faced in 2003, the worst fire season ever recorded and this is clearly reflected in the values measured by the air quality-monitoring networks. There were 4,645 fires burning 8.6% of the total Portuguese forest area. The main purpose of this paper is to evaluate the contribution of summer 2003 Portuguese fires to air quality impairment in Europe. Portuguese forest fire emissions, namely CO2, CO, CH4, PM10, PM2.5, NMHC, NOx, SO2 and NH3, were estimated throughout the summer of 2003, based on specific southern European emissions factors, on type of vegetation and area burned. LOTOS-EUROS, which is an operational 3D chemistry transport model aimed to simulate air pollution in the lower troposphere, was specifically adapted to simulate forest fire emissions. The modelling system was applied first at a continental scale (with 0.5° x 0.25°, approximately 35 km x 25 km) and then to mainland Portugal domain, using the same physics and a simple one-way nesting technique, with 17.5 km x 12.5 km horizontal resolution. The simulation period covered the entire summer, aiming to estimate hourly concentration values of gaseous and particulate pollutants levels in the air. A baseline simulation (BS) was carried out, only including the "conventional" anthropogenic and biogenic emissions, and a forest fire simulation (FS), which also considered emissions from large forest fires (area burned higher than 100 ha). Hence, forest fire emissions values were added to the anthropogenic and biogenic grid emissions, according to the fire location and assuming a uniform fire spread and a constant injection altitude in the dynamic mixing layer. The modelling system indicates a severe degradation of particulate matter and ozone (O3) concentrations due to forest fires, not only in Portugal, but also in United Kingdom, France and Spain. Modelling results were compared to background monitoring data from the European Air quality dataBase (AIRBASE). A statistical analysis was performed to evaluate the simulations results, using some statistical parameters such as the root mean square error (RMSE), the systematic error (BIAS) and the Pearson correlation coefficient (r). The model performance increased substantially when forest fire emissions were included.

  11. Spatial and temporal dimensions of fire activity in the fire-prone eastern Canadian taiga.

    PubMed

    Erni, Sandy; Arseneault, Dominique; Parisien, Marc-André; Bégin, Yves

    2017-03-01

    The forest age mosaic is a fundamental attribute of the North American boreal forest. Given that fires are generally lethal to trees, the time since last fire largely determines the composition and structure of forest stands and landscapes. Although the spatiotemporal dynamics of such mosaics has long been assumed to be random under the overwhelming influence of severe fire weather, no long-term reconstruction of mosaic dynamics has been performed from direct field evidence. In this study, we use fire length as a proxy for fire extent across the fire-prone eastern Canadian taiga and systematically reconstruct the spatiotemporal variability of fire extent and fire intervals, as well as the resulting forest age along a 340-km transect for the 1840-2013 time period. Our results indicate an extremely active fire regime over the last two centuries, with an overall burn rate of 2.1% of the land area yr -1 , mainly triggered by seasonal anomalies of high temperature and severe drought. However, the rejuvenation of the age mosaic was strongly patterned in space and time due to the intrinsically lower burn rates in wetland-dominated areas and, more importantly, to the much-reduced likelihood of burning of stands up to 50 years postfire. An extremely high burn rate of ~5% yr -1 would have characterized our study region during the last century in the absence of such fuel age effect. Although recent burn rates and fire sizes are within their range of variability of the last 175 years, a particularly severe weather event allowed a 2013 fire to spread across a large fire refuge, thus shifting the abundance of mature and old forest to a historic low. These results provide reference conditions to evaluate the significance and predict the spatiotemporal dynamics and impacts of the currently strengthening fire activity in the North American boreal forest. © 2016 John Wiley & Sons Ltd.

  12. Remote measurement of energy and carbon flux from wildfires in Brazil

    Treesearch

    P.J. Riggan; R.G. Tissell; R.N. Lockwood; J.A. Brass; J.A.R. Pereira; H.S. Miranda; A.C. Miranda; T. Campos; R. Higgins

    2004-01-01

    Temperature, intensity, spread, and dimensions of fires burning in tropical savanna and slashed tropical forest in central Brazil were measured for the first time by remote sensing with an infrared imaging spectrometer that was designed to accommodate the high radiances of wildland fires. Furthermore, the first in situ airborne measurements of sensible heat and carbon...

  13. Animation of Sequoia Forest Fire

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Continued hot, dry weather in the American west contributed to the spread of numerous fires over the weekend of July 29-30, 2000. This is the most active fire season in the United States since 1988, when large portions of Yellowstone National Park burned. One of the largest fires currently burning has consumed more than 63,000 acres in Sequoia National Forest. This NOAA Geostationary Operational Environmental Satellite (GOES) image shows the fire on the afternoon of July 30, 2000. Note the clouds above the smoke plume. These often form during large fires because updrafts lift warm air near the ground high into the atmosphere, cooling the air and causing the water vapor it contains to condense into droplets. The soot particles in the smoke also act as condensation nuclei for the droplets. View the animation of GOES data to see the smoke forming clouds. Image and Animation by Robert Simmon and Marit-Jentoft Nilsen, NASA GSFC, based on data from NOAA.

  14. Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: Implications for fire risk management.

    PubMed

    Marchal, Jean; Cumming, Steve G; McIntire, Eliot J B

    2017-01-01

    Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the consequences of climate warming on fire activity, and could be misleading. Assessments of vulnerability to climate change, and subsequent adaptation strategies, are directly dependent on integrated ecological forecasts. Thus, we stress the need to explicitly incorporate land-cover's direct effects and feedbacks in simulation models of coupled climate-fire-fuels systems.

  15. USGS Wildland Fire Workshop, EROS Data Center, Sioux Falls, SD, July 9-10, 1997.

    DTIC Science & Technology

    1998-04-01

    Montana , began by providing a brief over- view of research done at the U.S. Forest Service laborato- ries in East Lansing, Michigan and Seattle...Ecology and Fire Effects Panel; the Modeling: Fire Spread, Smoke Plume Panel; and the Postfire Rehabilitation, Hazards Assessment, and Habitat ...endangered species and criti- cal biological habitats . Ongoing research also is evaluat- ing the influences of seasonal burns, frequency of burns

  16. Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: Implications for fire risk management

    PubMed Central

    Marchal, Jean; Cumming, Steve G.; McIntire, Eliot J. B.

    2017-01-01

    Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the consequences of climate warming on fire activity, and could be misleading. Assessments of vulnerability to climate change, and subsequent adaptation strategies, are directly dependent on integrated ecological forecasts. Thus, we stress the need to explicitly incorporate land-cover’s direct effects and feedbacks in simulation models of coupled climate–fire–fuels systems. PMID:28609467

  17. Three-dimensional tracking for efficient fire fighting in complex situations

    NASA Astrophysics Data System (ADS)

    Akhloufi, Moulay; Rossi, Lucile

    2009-05-01

    Each year, hundred millions hectares of forests burn causing human and economic losses. For efficient fire fighting, the personnel in the ground need tools permitting the prediction of fire front propagation. In this work, we present a new technique for automatically tracking fire spread in three-dimensional space. The proposed approach uses a stereo system to extract a 3D shape from fire images. A new segmentation technique is proposed and permits the extraction of fire regions in complex unstructured scenes. It works in the visible spectrum and combines information extracted from YUV and RGB color spaces. Unlike other techniques, our algorithm does not require previous knowledge about the scene. The resulting fire regions are classified into different homogenous zones using clustering techniques. Contours are then extracted and a feature detection algorithm is used to detect interest points like local maxima and corners. Extracted points from stereo images are then used to compute the 3D shape of the fire front. The resulting data permits to build the fire volume. The final model is used to compute important spatial and temporal fire characteristics like: spread dynamics, local orientation, heading direction, etc. Tests conducted on the ground show the efficiency of the proposed scheme. This scheme is being integrated with a fire spread mathematical model in order to predict and anticipate the fire behaviour during fire fighting. Also of interest to fire-fighters, is the proposed automatic segmentation technique that can be used in early detection of fire in complex scenes.

  18. Factor contribution to fire occurrence, size, and burn probability in a subtropical coniferous forest in East China

    PubMed Central

    Guo, Zhixing; Li, Yijia

    2017-01-01

    The contribution of factors including fuel type, fire-weather conditions, topography and human activity to fire regime attributes (e.g. fire occurrence, size distribution and severity) has been intensively discussed. The relative importance of those factors in explaining the burn probability (BP), which is critical in terms of fire risk management, has been insufficiently addressed. Focusing on a subtropical coniferous forest with strong human disturbance in East China, our main objective was to evaluate and compare the relative importance of fuel composition, topography, and human activity for fire occurrence, size and BP. Local BP distribution was derived with stochastic fire simulation approach using detailed historical fire data (1990–2010) and forest-resource survey results, based on which our factor contribution analysis was carried out. Our results indicated that fuel composition had the greatest relative importance in explaining fire occurrence and size, but human activity explained most of the variance in BP. This implies that the influence of human activity is amplified through the process of overlapping repeated ignition and spreading events. This result emphasizes the status of strong human disturbance in local fire processes. It further confirms the need for a holistic perspective on factor contribution to fire likelihood, rather than focusing on individual fire regime attributes, for the purpose of fire risk management. PMID:28207837

  19. A vicious circle of fire, deforestation and climate change: an integrative study for the Amazon region

    NASA Astrophysics Data System (ADS)

    Thonicke, K.; Rammig, A.; Gumpenberger, M.; Vohland, K.; Poulter, B.; Cramer, W.

    2009-04-01

    The Amazon rainforest is threatened by deforestation due to wood extraction and agricultural production leading to increasing forest fragmentation and forest degradation. These changes in land surface characteristics and water fluxes are expected to further reduce convective precipitation. Under future climate change the stability of the Amazon rainforest is likely to decrease thus leading to forest dieback (savannization) or forest degradation (secondarization). This puts the Amazon rainforest at risk to reduce the generation of precipitation, to act as a carbon sink and biodiversity hotspot. Fires increased in the past during drought years and in open vegetation thereby further accelerating forest degradation. Deforestation as a result of socioeconomic development in the Amazon basin is projected to further increase in the 21st century and brings climate-induced changes forward. Combined effects of deforestation vs. climate change on the stability of the Amazon rainforest and the role of fire in this system need to be quantified in an integrated study. We present simulation results from future climate (AR4) and deforestation (SimAmazon) experiments using the LPJmL-SPITFIRE vegetation model. Land use change is the main driving factor of forest degradation before 2050, whereas extreme climate change scenarios lead to forest degradation by the end of 2100. Forest fires increase with increasing drought conditions during the 21st century. The resulting effects on vegetation secondarization and savannization and their feedbacks on fire spread and emissions will be presented. The effect of wildfires and intentional burning on forest degradation under future climate and socioeconomic change will be discussed, and recommendations for an integrated land use and fire management are given.

  20. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure

    PubMed Central

    Miquelajauregui, Yosune; Cumming, Steven G.; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity. PMID:26919456

  1. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure.

    PubMed

    Miquelajauregui, Yosune; Cumming, Steven G; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity.

  2. Assessing Potential Future Carbon Dynamics with Climate Change and Fire Management in a Mountainous Landscape on the Olympic Peninsula, Washington, USA

    NASA Astrophysics Data System (ADS)

    Kennedy, R. S.

    2010-12-01

    Forests of the mountainous landscapes of the maritime Pacific Northwestern USA may have high carbon sequestration potential via their high productivity and moderate to infrequent fire regimes. With climate change, there may be shifts in incidence and severity of fire, especially in the drier areas of the region, via changes to forest productivity and hydrology, and consequent effects to C sequestration and forest structure. To explore this issue, I assessed potential effects of fire management (little fire suppression/wildland fire management/highly effective fire suppression) under two climate change scenarios on future C sequestration dynamics (amounts and spatial pattern) in Olympic National Park, WA, over a 500-year simulation period. I used the simulation platform FireBGCv2, which contains a mechanistic, individual tree succession model, a spatially explicit climate-based biophysical model that uses daily weather data, and a spatially explicit fire model incorporating ignition, spread, and effects on ecosystem components. C sequestration patterns varied over time and spatial and temporal patterns differed somewhat depending on the climate change scenario applied and the fire management methods employed. Under the more extreme climate change scenario with little fire suppression, fires were most frequent and severe and C sequestration decreased. General trends were similar under the more moderate climate change scenario, as compared to current climate, but spatial patterns differed. Both climate change scenarios under highly effective fire suppression showed about 50% of starting total C after the initial transition phase, whereas with 10% fire suppression both scenarios exhibited about 10% of starting amounts. Areas of the landscape that served as refugia for older forest under increasing frequency of high severity fire were also hotspots for C sequestration in a landscape experiencing increasing frequency of disturbance with climate change.

  3. Coexistence of Trees and Grass: Importance of climate and fire within the tropics

    NASA Astrophysics Data System (ADS)

    Shuman, J. K.; Fisher, R.; Koven, C.; Knox, R. G.; Andre, B.; Kluzek, E. B.

    2017-12-01

    Tropical forests are characterized by transition zones where dominance shifts between trees and grasses with some areas exhibiting bistability of the two. The cause of this transition and bistability has been linked to the interacting effects of climate, vegetation structure and fire behavior. Utilizing the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a demographic vegetation model, and the CESM ESM, we explore the coexistence of trees and grass across the tropics with an active fire regime. FATES has been updated to use a fire module based on Spitfire. FATES-Spitfire tracks fire ignition, spread and impact based on fuel state and combustion. Fire occurs within the model with variable intensity that kills trees according to the combined effects of cambial damage and crown scorch due to flame height and fire intensity. As a size-structured model, FATES allows for variable mortality based on the size of tree cohorts, where larger trees experience lower morality compared to small trees. Results for simulation scenarios where vegetation is represented by all trees, all grass, or a combination of competing trees and grass are compared to assess changes in biomass, fire regime and tree-grass coexistence. Within the forest-grass transition area there is a critical time during which grass fuels fire spread and prevents the establishment of trees. If trees are able to escape mortality a tree-grass bistable area is successful. The ability to simulate the bistability and transition of trees and grass throughout the tropics is critical to representing vegetation dynamics in response to changing climate and CO2.

  4. Forest fire effects on transpiration: process modeling of sapwood area reduction

    NASA Astrophysics Data System (ADS)

    Michaletz, Sean; Johnson, Edward

    2010-05-01

    Transpiration is a hydrological process that is strongly affected by forest fires. In crown fires, canopy fine fuels (foliage, buds, and small branches) combust, which kills individual trees and stops transpiration of the entire stand. In surface fires (intensities ≤ 2500 kW m-1), however, effects on transpiration are less predictable becuase heat transfer from the passing fireline can injure or kill fine roots, leaves, and sapwood; post-fire transpiration of forest stands is thus governed by fire effects on individual tree water budgets. Here, we consider fire effects on cross-sectional sapwood area. A two-dimensional model of transient bole heating is used to estimate radial isotherms for a range of fireline intensities typical of surface fires. Isotherms are then used to drive three processes by which heat may reduce sapwood area: 1) necrosis of living cells in contact with xylem conduits, which prevents repair of natural embolism; 2) relaxation of viscoelastic conduit wall polymers (cellulose, hemicelloluse, and lignin), which reduces cross-sectional conduit area; and 3) boiling of metastable water under tension, which causes conduit embolism. Results show that these processes operate on different time scales, suggesting that fire effects on transpiration vary with time since fire. The model can be linked with a three-dimensional physical fire spread model to predict size-dependent effects on individual trees, which can be used to estimate scaling of individual tree and stand-level transpiration.

  5. Examining the strength and possible causes of the relationship between fire history and Sudden Oak Death.

    PubMed

    Moritz, Max A; Odion, Dennis C

    2005-06-01

    Fire can be a dominant process in the ecology of forest vegetation and can also affect forest disease dynamics. Little is known about the relationship between fire and an emerging disease epidemic called Sudden Oak Death, which is caused by a new pathogen, Phytophthora ramorum. This disease has spread across a large, fire-prone portion of California, killing great numbers of oaks and tanoaks and infecting most associated woody plants. Suitable hosts cover a much broader geographic range, raising concern over where the disease may spread. To understand the strength and potential sensitivities of a fire-disease relationship, we examined geographic patterns of confirmed P. ramorum infections in relation to past fire history. We found these infections to be extremely rare within the perimeter of any area burned since 1950. This finding is not caused by spatial bias in sampling for the disease, and is robust to variation in host abundance scenarios and to aggregation of closely spaced sampling locations. We therefore investigated known fire-related factors that could result in significantly lower incidence of the disease in relatively recently burned landscapes. Chemical trends in post-fire environments can influence the success of pathogens like P. ramorum, either by increasing plant nutrient stress or by reducing the occurrence of chemicals antagonistic to Phytophthoras. Succession in the absence of fire leads to greater abundance of host species, which will provide increased habitat for P. ramorum; this will also increase intraspecific competition where these trees are abundant, and other density-dependent effects (e.g. shading) can reduce resource allocation to defenses. Despite these findings about a fire-disease relationship, a much deeper understanding is necessary before fire can be actively used as a tool in slowing the epidemic.

  6. Controls on variations in MODIS fire radiative power in Alaskan boreal forests: implications for fire severity conditions

    USGS Publications Warehouse

    Barrett, Kirsten; Kasischke, Eric S.

    2013-01-01

    Fire activity in the Alaskan boreal forest, though episodic at annual and intra-annual time scales, has experienced an increase over the last several decades. Increases in burned area and fire severity are not only releasing more carbon to the atmosphere, but likely shifting vegetation composition in the region towards greater deciduous dominance and a reduction in coniferous stands. While some recent studies have addressed qualitative differences between large and small fire years in the Alaskan boreal forest, the ecological effects of a greater proportion of burning occurring during large fire years and during late season fires have not yet been examined. Some characteristics of wildfires that can be detected remotely are related to fire severity and can provide new information on spatial and temporal patterns of burning. This analysis focused on boreal wildfire intensity (fire radiative power, or FRP) contained in the Moderate Resolution Imaging Spectroradiometer (MODIS) daily active fire product from 2003 to 2010. We found that differences in FRP resulted from seasonality and intra-annual variability in fire activity levels, vegetation composition, latitudinal variation, and fire spread behavior. Our studies determined two general categories of active fire detections: new detections associated with the spread of the fire front and residual pixels in areas that had already experienced front burning. Residual pixels had a lower average FRP than front pixels, but represented a high percentage of all pixels during periods of high fire activity (large fire years, late season burning, and seasonal periods of high fire activity). As a result, the FRP from periods of high fire activity was less intense than those from periods of low fire activity. Differences related to latitude were greater than expected, with higher latitudes burning later in the season and at a higher intensity than lower latitudes. Differences in vegetation type indicate that coniferous vegetation is the most fire prone, but deciduous vegetation is not particularly fire resistant, as the proportion of active fire detections in deciduous stands is roughly the same as the fraction of deciduous vegetation in the region. Qualitative differences between periods of high and low fire activity are likely to reflect important differences in fire severity. Large fire years are likely to be more severe, characterized by more late season fires and a greater proportion of residual burning. Given the potential for severe fires to effect changes in vegetation cover, the shift toward a greater proportion of area burning during large fire years may influence vegetation patterns in the region over the medium to long term.

  7. Fire danger index efficiency as a function of fuel moisture and fire behavior.

    PubMed

    Torres, Fillipe Tamiozzo Pereira; Romeiro, Joyce Machado Nunes; Santos, Ana Carolina de Albuquerque; de Oliveira Neto, Ricardo Rodrigues; Lima, Gumercindo Souza; Zanuncio, José Cola

    2018-08-01

    Assessment of the performance of forest fire hazard indices is important for prevention and management strategies, such as planning prescribed burnings, public notifications and firefighting resource allocation. The objective of this study was to evaluate the performance of fire hazard indices considering fire behavior variables and susceptibility expressed by the moisture of combustible material. Controlled burns were carried out at different times and information related to meteorological conditions, characteristics of combustible material and fire behavior variables were recorded. All variables analyzed (fire behavior and fuel moisture content) can be explained by the prediction indices. The Brazilian EVAP/P showed the best performance, both at predicting moisture content of the fuel material and fire behavior variables, and the Canadian system showed the best performance to predicting the rate of spread. The coherence of the correlations between the indices and the variables analyzed makes the methodology, which can be applied anywhere, important for decision-making in regions with no records or with only unreliable forest fire data. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.

    PubMed

    Brando, Paulo M; Oliveria-Santos, Claudinei; Rocha, Wanderley; Cury, Roberta; Coe, Michael T

    2016-07-01

    Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire-induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low-intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high-intensity, catastrophic fires during nondrought years. © 2016 John Wiley & Sons Ltd.

  9. Fuel buildup and potential fire behavior after stand-replacing fires, logging fire-killed trees and herbicide shrub removal in Sierra Nevada forests

    USGS Publications Warehouse

    McGinnis, Thomas W.; Keeley, Jon E.; Stephens, Scott L.; Roller, Gary B.

    2010-01-01

    Typically, after large stand-replacing fires in mid-elevation Sierra Nevada forests, dense shrub fields occupy sites formerly occupied by mature conifers, until eventually conifers overtop and shade out shrubs. Attempting to reduce fuel loads and expedite forest regeneration in these areas, the USDA Forest Service often disrupts this cycle by the logging of fire-killed trees, replanting of conifers and killing of shrubs. We measured the effects of these treatments on live and dead fuel loads and alien species and modeled potential fire behavior and fire effects on regenerating forests. Sampling occurred in untreated, logged and herbicide-treated stands throughout the Sierra Nevada in four large fire areas 4–21 years after stand-replacing fires. Logging fire-killed trees significantly increased total available dead fuel loads in the short term but did not affect shrub cover, grass and forb cover, alien species cover or alien species richness. Despite the greater available dead fuel loads, fire behavior was not modeled to be different between logged and untreated stands, due to abundant shrub fuels in both logged and untreated stands. In contrast, the herbicide treatment directed at shrubs resulted in extremely low shrub cover, significantly greater alien species richness and significantly greater alien grass and forb cover. Grass and forb cover was strongly correlated with solar radiation on the ground, which may be the primary reason that grass and forb cover was higher in herbicide treated stands with low shrub and tree cover. Repeat burning exacerbated the alien grass problem in some stands. Although modeled surface fire flame lengths and rates of spread were found to be greater in stands dominated by shrubs, compared to low shrub cover conifer plantations, surface fire would still be intense enough to kill most trees, given their small size and low crown heights in the first two decades after planting.

  10. The 2007 southern California wildfires: Lessons in complexity

    USGS Publications Warehouse

    Keeley, J.E.; Safford, H.; Fotheringham, C.J.; Franklin, J.; Moritz, M.

    2009-01-01

    The 2007 wildfire season in southern California burned over 1,000,000 ac (400,000 ha) and included several megafires. We use the 2007 fires as a case study to draw three major lessons about wildfires and wildfire complexity in southern California. First, the great majority of large fires in southern California occur in the autumn under the influence of Santa Ana windstorms. These fires also cost the most to contain and cause the most damage to life and property, and the October 2007 fires were no exception because thousands of homes were lost and seven people were killed. Being pushed by wind gusts over 100 kph, young fuels presented little barrier to their spread as the 2007 fires reburned considerable portions of the area burned in the historic 2003 fire season. Adding to the size of these fires was the historic 2006-2007 drought that contributed to high dead fuel loads and long distance spotting. As in 2003, young chaparral stands and fuel treatments were not reliable barriers to fire in October 2007. Second, the Zaca Fire in July and August 2007 showed that other factors besides high winds can sometimes combine to create conditions for large fires in southern California. Spring and summer fires in southern California chaparral are usually easily contained because of higher fuel moisture and the general lack of high winds. However, the Zaca Fire burned in a remote wilderness area of rugged terrain that made access difficult. In addition, because of its remoteness, anthropogenic ignitions have been low and stand age and fuel loads were high. Coupled with this was severe drought that year that generated fuel moisture levels considerably below normal for early summer. A third lesson comes from 2007 conifer forest fires in the southern California mountains. In contrast to lower elevation chaparral, fire suppression has led to major increases in conifer forest fuels that can lead to unnaturally severe fires when ignitions escape control. The Slide and Grass Valley Fires of October 2007 occurred in forests that had been subject to extensive fuel treatment, but fire control was complicated by a patchwork of untreated private properties and mountain homes built of highly flammable materials. In a fashion reminiscent of other recent destructive conifer fires in California, burning homes themselves were a major source of fire spread. These lessons suggest that the most important advances in fire safety in this region are to come from advances in fire prevention, fire preparedness, and land-use planning that includes fire hazard patterns.

  11. Earth Observations taken by the Expedition 15 Crew

    NASA Image and Video Library

    2007-08-13

    ISS015-E-22269 (13 Aug. 2007) --- The crew aboard the International Space Station provided this image of the wide-spread forest fires in the Payette National Forest, Central Idaho within the Salmon River Mountains. North is toward the left of the image. The Salmon River is the feature in the bottom central part of the frame. Lake Cascade is seen at the lower right.

  12. The potential for LiDAR technology to map fire fuel hazard over large areas of Australian forest.

    PubMed

    Price, Owen F; Gordon, Christopher E

    2016-10-01

    Fuel load is a primary determinant of fire spread in Australian forests. In east Australian forests, litter and canopy fuel loads and hence fire hazard are thought to be highest at and beyond steady-state fuel loads 15-20 years post-fire. Current methods used to predict fuel loads often rely on course-scale vegetation maps and simple time-since-fire relationships which mask fine-scale processes influencing fuel loads. Here we use Light Detecting and Remote Sensing technology (LiDAR) and field surveys to quantify post-fire mid-story and crown canopy fuel accumulation and fire hazard in Dry Sclerophyll Forests of the Sydney Basin (Australia) at fine spatial-scales (20 × 20 m cell resolution). Fuel cover was quantified in three strata important for crown fire propagation (0.5-4 m, 4-15 m, >15 m) over a 144 km(2) area subject to varying fire fuel ages. Our results show that 1) LiDAR provided a precise measurement of fuel cover in each strata and a less precise but still useful predictor of surface fuels, 2) cover varied greatly within a mapped vegetation class of the same fuel age, particularly for elevated fuel, 3) time-since-fire was a poor predictor of fuel cover and crown fire hazard because fuel loads important for crown fire propagation were variable over a range of fire fuel ages between 2 and 38 years post-fire, and 4) fuel loads and fire hazard can be high in the years immediately following fire. Our results show the benefits of spatially and temporally specific in situ fuel sampling methods such as LiDAR, and are widely applicable for fire management actions which aim to decrease human and environmental losses due to wildfire. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Estimation of wildfire size and risk changes due to fuels treatments

    USGS Publications Warehouse

    Cochrane, M.A.; Moran, C.J.; Wimberly, M.C.; Baer, A.D.; Finney, M.A.; Beckendorf, K.L.; Eidenshink, J.; Zhu, Z.

    2012-01-01

    Human land use practices, altered climates, and shifting forest and fire management policies have increased the frequency of large wildfires several-fold. Mitigation of potential fire behaviour and fire severity have increasingly been attempted through pre-fire alteration of wildland fuels using mechanical treatments and prescribed fires. Despite annual treatment of more than a million hectares of land, quantitative assessments of the effectiveness of existing fuel treatments at reducing the size of actual wildfires or how they might alter the risk of burning across landscapes are currently lacking. Here, we present a method for estimating spatial probabilities of burning as a function of extant fuels treatments for any wildland fire-affected landscape. We examined the landscape effects of more than 72 000 ha of wildland fuel treatments involved in 14 large wildfires that burned 314 000 ha of forests in nine US states between 2002 and 2010. Fuels treatments altered the probability of fire occurrence both positively and negatively across landscapes, effectively redistributing fire risk by changing surface fire spread rates and reducing the likelihood of crowning behaviour. Trade offs are created between formation of large areas with low probabilities of increased burning and smaller, well-defined regions with reduced fire risk.

  14. Bispectral infrared forest fire detection and analysis using classification techniques

    NASA Astrophysics Data System (ADS)

    Aranda, Jose M.; Melendez, Juan; de Castro, Antonio J.; Lopez, Fernando

    2004-01-01

    Infrared cameras are well established as a useful tool for fire detection, but their use for quantitative forest fire measurements faces difficulties, due to the complex spatial and spectral structure of fires. In this work it is shown that some of these difficulties can be overcome by applying classification techniques, a standard tool for the analysis of satellite multispectral images, to bi-spectral images of fires. Images were acquired by two cameras that operate in the medium infrared (MIR) and thermal infrared (TIR) bands. They provide simultaneous and co-registered images, calibrated in brightness temperatures. The MIR-TIR scatterplot of these images can be used to classify the scene into different fire regions (background, ashes, and several ember and flame regions). It is shown that classification makes possible to obtain quantitative measurements of physical fire parameters like rate of spread, embers temperature, and radiated power in the MIR and TIR bands. An estimation of total radiated power and heat release per unit area is also made and compared with values derived from heat of combustion and fuel consumption.

  15. Fire risk and adaptation strategies in Northern Eurasian forests

    NASA Astrophysics Data System (ADS)

    Shvidenko, Anatoly; Schepaschenko, Dmitry

    2013-04-01

    On-going climatic changes substantially accelerate current fire regimes in Northern Eurasian ecosystems, particularly in forests. During 1998-2012, wildfires enveloped on average ~10.5 M ha year-1 in Russia with a large annual variation (between 3 and 30 M ha) and average direct carbon emissions at ~150 Tg C year-1. Catastrophic fires, which envelope large areas, spread in usually incombustible wetlands, escape from control and provide extraordinary negative impacts on ecosystems, biodiversity, economics, infrastructure, environment, and health of population, become a typical feature of the current fire regimes. There are new evidences of correlation between catastrophic fires and large-scale climatic anomalies at a continental scale. While current climatic predictions suggest the dramatic warming (at the average at 6-7 °C for the country and up to 10-12°C in some northern continental regions), any substantial increase of summer precipitation does not expected. Increase of dryness and instability of climate will impact fire risk and severity of consequences. Current models suggest a 2-3 fold increase of the number of fires by the end of this century in the boreal zone. They predict increases of the number of catastrophic fires; a significant increase in the intensity of fire and amount of consumed fuel; synergies between different types of disturbances (outbreaks of insects, unregulated anthropogenic impacts); acceleration of composition of the gas emissions due to enhanced soil burning. If boreal forests would become a typing element, the mass mortality of trees would increase fire risk and severity. Permafrost melting and subsequent change of hydrological regimes very likely will lead to the degradation and destruction of boreal forests, as well as to the widespread irreversible replacement of forests by other underproductive vegetation types. A significant feedback between warming and escalating fire regimes is very probable in Russia and particularly in the permafrost areas. Overall, Russia should expect a disproportionate escalation of fire regimes compared to increasing climatic fire danger. Thus, development and implementation of an efficient adaptation strategy is a pressing problem of current forest management of the country. An appropriate system of forest fire protection which would be able to meet challenges of future climates is a corner stone of such a strategy. We consider possible systems solutions of this complex problem including (1) integrated ecological and socio-economic analysis of current and future fire regimes; (2) regional requirements to and specific features of a new paradigm of forest fire protection in the boreal zone of Northern Eurasia; (3) anticipatory strategy of the prevention of large-scale disturbances in forests, including adaptation of forest landscapes to the future climates (regulation of tree composition; setup of relevant spatial structure of forest landscapes; etc.); (4) implementation of an effective system of forest monitoring as part of integrated observing systems; (5) transition to ecologically-friendly systems of industrial development of northern territories; (6) development of new/ improvement of existing legislation and institutional frameworks of forest management which would be satisfactory to react on challenges of climate change; and (6) international cooperation.

  16. Processing Infrared Images For Fire Management Applications

    NASA Astrophysics Data System (ADS)

    Warren, John R.; Pratt, William K.

    1981-12-01

    The USDA Forest Service has used airborne infrared systems for forest fire detection and mapping for many years. The transfer of the images from plane to ground and the transposition of fire spots and perimeters to maps has been performed manually. A new system has been developed which uses digital image processing, transmission, and storage. Interactive graphics, high resolution color display, calculations, and computer model compatibility are featured in the system. Images are acquired by an IR line scanner and converted to 1024 x 1024 x 8 bit frames for transmission to the ground at a 1.544 M bit rate over a 14.7 GHZ carrier. Individual frames are received and stored, then transferred to a solid state memory to refresh the display at a conventional 30 frames per second rate. Line length and area calculations, false color assignment, X-Y scaling, and image enhancement are available. Fire spread can be calculated for display and fire perimeters plotted on maps. The performance requirements, basic system, and image processing will be described.

  17. The role of fire in deep time ecosystems

    NASA Astrophysics Data System (ADS)

    Scott, Andrew C.; Bond, William J.; Collinson, Margaret E.; Glasspool, Ian J.; Brown, Sarah; Braman, Dennis R.

    2010-05-01

    Fires are very widespread in the world today and fire has also been common in the deep past. Fire is important in structuring contemporary World vegetation maintaining extensive open vegetation where the climate has the potential to support closed forests. The influence of fire on the structure of vegetation and plant traits present in a community vary depending on the fire regime. The fire regime is the characteristic pattern of fire frequency, severity (amount of biomass removed) and spatial extent. Fire regimes depend on the synergy between external physical factors and the properties of vegetation. Changes in the fire regime can be brought about by changes in external conditions such as climate, but also by changes in vegetation such as changes in flammability or productivity that influence the amount of fuel. For example, invasion of grasses into closed wooded habitats has initiated a ‘grass fire cycle' in many parts of the world triggering cascading changes in vegetation structure and composition from forest to open grassland or savanna woodland. The spread of flammable invasive species, especially grasses, has even altered fire regimes of fire-dependent flammable communities causing catastrophic ecosystem changes. We suggest that the spread of angiosperms in the Cretaceous was promoted by the development of novel fire regimes linked to the evolution of novel, highly productive (and flammable) plants. Within the limits of physical constraints on fire occurrence, Cretaceous angiosperms would have initiated a positive feedback analogous to the grass-fire cycle rapidly accumulating fuel that promoted more frequent fires, which maintained open habitats in which rapid growth-traits of angiosperms would be most favoured promoting rapid fuel accumulation etc. Frequent fires would have altered vegetation structure and composition both by increasing mortality rates of fire-damaged trees and reducing recruitment rates of seedlings and saplings where fires recurred before juveniles had reached "fire-proof" sizes. The effect would be to create more open conditions favouring plants with the angiosperm innovations of high photosynthetic rates, rapid maturation and rapid reproduction relative to gymnosperms. Fire has some analogies to large vertebrate herbivory, particularly in the potential to open forests and create habitat for low-growing sun-loving plants over extensive areas. The role of fire in favouring low-growing ‘ruderal', plants of open habitats is similar to that proposed for dinosaurs. A switch from high-browsing dinosaurs in the Jurassic to low-browsing dinosaurs in the Cretaceous has been noted and it has been argued that the switch in browse height would favour fast-growing angiosperms. The dinosaur hypothesis has recently been tested and found wanting, for example in the timing and coincidence of angiosperm abundance and low vs. high-browsing dinosaurs. Our research of the co-occurrence of dinosaur remains and charcoal assemblages in Dinosaur Provincial Park, Alberta, has suggested that it was a dominance of gymnospermous, woody vegetation that was ravaged by fire. In addition, the co-occurrence of dinosaur remains and charcoal is significant in demonstrating that the some dinosaur bone beds may have formed as a result of extensive post-fire erosion/rapid deposition cycles. In this paper we consider the evidence for and against fire as a major factor promoting vegetation change and angiosperm spread in the Cretaceous.

  18. Effect of prior disturbances on the extent and severity of wildfire in Colorado subalpine forests.

    PubMed

    Kulakowski, Dominik; Veblen, Thomas T

    2007-03-01

    Disturbances are important in creating spatial heterogeneity of vegetation patterns that in turn may affect the spread and severity of subsequent disturbances. Between 1997 and 2002 extensive areas of subalpine forests in northwestern Colorado were affected by a blowdown of trees, bark beetle outbreaks, and salvage logging. Some of these stands were also affected by severe fires in the late 19th century. During a severe drought in 2002, fires affected extensive areas of these subalpine forests. We evaluated and modeled the extent and severity of the 2002 fires in relation to these disturbances that occurred over the five years prior to the fires and in relation to late 19th century stand-replacing fires. Occurrence of disturbances prior to 2002 was reconstructed using a combination of tree-ring methods, aerial photograph interpretation, field surveys, and geographic information systems (GIS). The extent and severity of the 2002 fires were based on the normalized difference burn ratio (NDBR) derived from satellite imagery. GIS and classification trees were used to analyze the effects of prefire conditions on the 2002 fires. Previous disturbance history had a significant influence on the severity of the 2002 fires. Stands that were severely blown down (> 66% trees down) in 1997 burned more severely than other stands, and young (approximately 120 year old) postfire stands burned less severely than older stands. In contrast, prefire disturbances were poor predictors of fire extent, except that young (approximately 120 years old) postfire stands were less extensively burned than older stands. Salvage logging and bark beetle outbreaks that followed the 1997 blowdown (within the blowdown as well as in adjacent forest that was not blown down) did not appear to affect fire extent or severity. Conclusions regarding the influence of the beetle outbreaks on fire extent and severity are limited, however, by spatial and temporal limitations associated with aerial detection surveys of beetle activity. Thus, fire extent in these forests is largely independent of prefire disturbance history and vegetation conditions. In contrast, fire severity, even during extreme fire weather and in conjunction with a multiyear drought, is influenced by prefire stand conditions, including the history of previous disturbances.

  19. A steady-state technique for studying the properties of free-burning wood fires

    Treesearch

    Wallace L. Fons; H.D. Bruce; W.Y. Pong

    1961-01-01

    A laboratory study was set up by the U.S. Forest Service with the ultimate objective of determining model laws for properties of wood fires, including rate of spread. This is a report of the first phase of the work, the development of a suitable bed of solid fuel and the technique of study. The bed chosen for initial study is in the form of long cribs of wood sticks...

  20. Documenting PyroCb Development on High-Intensity Boreal Fires: Implications for the Arctic Atmosphere

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Fromm, M. D.; Servranckx, R.; Lindsey, D.

    2007-12-01

    The recent confirmation that smoke from high-intensity boreal forest fires can reach the Upper Troposphere/Lower Stratosphere (UTLS) through pyroconvection and be transported long distances has raised concern over the wider-scale environmental impact of boreal fire smoke. This concern is further elevated as climate change projections indicate a significant increase in the frequency and severity of boreal forest fires over the next century. Smoke in the UTLS is frequently transported to the Arctic and may have important implications for the radiative energy budget in the polar region. Soot deposition from fires may lead to enhanced melting of sea ice and glaciers, and the chemical impact of fire emissions at high altitudes is largely unknown. This knowledge gap will be addressed during the International Polar Year (IPY), as boreal fire emissions will be tracked and documented in detail through aerial, satellite and ground-based measurements, as a key component of the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) and ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) projects to be conducted in 2008. A large fire in the Canadian Northwest Territories burned throughout the month of June 2007, in a remote region where forest fires are not actively suppressed, eventually reaching 90,000 hectares in size. This fire was monitored for blowup one week in advance; it erupted into pyroconvection on June 25, 2007. We present an analysis of this event combining satellite data with ground-based measurements to document the development and impact of this classic pyroCb event. Under extreme fire danger conditions, the fire burned close to 20,000 hectares on that day. Fire behavior was consistent with predictions using the Canadian Fire Behavior Prediction System, with the fire spreading at 2.7 km/hr, consuming 33,000 kg of fuel hourly, generating an energy release rate of ~45,000 kW/m. This constitutes a typical high-intensity boreal crown fire, common across northern Canada every summer, and often capable of producing independent pyroconvection. The June 25 blowup was monitored using OMI AI, CALIPSO, Aqua MODIS, AVHRR and GOES satellite imagery, and these measurements validated the predicted fire behavior, including the development of a convection column that rose 10-11 km and injected smoke within the UTLS. Over subsequent days this smoke spread to Arctic latitudes (70-80 degrees N).

  1. Estimating live fuel status by drought indices: an approach for assessing local impact of climate change on fire danger

    NASA Astrophysics Data System (ADS)

    Pellizzaro, Grazia; Dubrovsky, Martin; Bortolu, Sara; Ventura, Andrea; Arca, Bachisio; Masia, Pierpaolo; Duce, Pierpaolo

    2014-05-01

    Mediterranean shrubs are an important component of both Mediterranean vegetation communities and understorey vegetation. They also constitute the surface fuels primarily responsible for the ignition and the spread of wildland fires in Mediterranean forests. Although fire spread and behaviour are dependent on several factors, the water content of live fuel plays an important role in determining fire occurrence and spread, especially in the Mediterranean shrubland, where live fuel is often the main component of the available fuel which catches fire. According to projections on future climate, an increase in risk of summer droughts is likely to take place in Southern Europe. More prolonged drought seasons induced by climatic changes are likely to influence general flammability characteristics of fuel, affecting load distribution in vegetation strata, floristic composition, and live and dead fuel ratio. In addition, variations in precipitation and mean temperature could directly affect fuel water status, and consequently flammability, and length of critical periods of high ignition danger for Mediterranean ecosystems. The main aim of this work was to propose a methodology for evaluating possible impacts of future climate change on moisture dynamic and length of fire danger period at local scale. Specific objectives were: i) evaluating performances of meteorological drought indices in describing seasonal pattern of live fuel moisture content (LFMC), and ii) simulating the potential impacts of future climate changes on the duration of fire danger period. Measurements of LFMC seasonal pattern of three Mediterranean shrub species were performed in North Western Sardinia (Italy) for 8 years. Seasonal patterns of LFMC were compared with the Drought Code of the Canadian Forest Fire Weather Index and the Keetch-Byram Drought Index. Analysis of frequency distribution and cumulative distribution curves were carried out in order to evaluate performance of codes and to identify threshold values of indices useful to determine the end of the potential fire season due to fuel status. A weather generator linked to climate change scenarios derived from 17 available General Circulation Models (GCMs) was used to produce synthetic weather series, representing present and future climates, for four selected sites located in North Sardinia, Italy. Finally, impacts of future climate change on fire season length at local scale were simulated. Results confirmed that the projected climate scenarios over the Mediterranean area will determine an overall increase of the fire season length.

  2. A Numerical Study of Atmospheric Perturbations Induced by Heat From a Wildland Fire: Sensitivity to Vertical Canopy Structure and Heat Source Strength

    NASA Astrophysics Data System (ADS)

    Kiefer, Michael T.; Zhong, Shiyuan; Heilman, Warren E.; Charney, Joseph J.; Bian, Xindi

    2018-03-01

    An improved understanding of atmospheric perturbations within and above a forest during a wildland fire has relevance to many aspects of wildland fires including fire spread, smoke transport and dispersion, and tree mortality. In this study, the ARPS-CANOPY model, a version of the Advanced Regional Prediction System (ARPS) model with a canopy parameterization, is utilized in a series of idealized numerical experiments to investigate the influence of vertical canopy structure on the atmospheric response to a stationary sensible heat flux at the ground ("fire heat flux"), broadly consistent in magnitude with the sensible heat flux from a low-intensity surface fire. Five vertical canopy structures are combined with five fire heat flux magnitudes to yield a matrix of 25 simulations. Analyses of the fire-heat-flux-perturbed u component of the wind, vertical velocity, kinetic energy, and temperature show that the spatial pattern and magnitude of the perturbations are sensitive to vertical canopy structure. Both vertical velocity and kinetic energy exhibit an increasing trend with increasing fire heat flux that is stronger for cases with some amount of overstory vegetation than cases with exclusively understory vegetation. A weaker trend in cases with exclusively understory vegetation indicates a damping of the atmospheric response to the sensible heat from a surface fire when vegetation is most concentrated near the surface. More generally, the results presented in this study suggest that canopy morphology should be considered when applying the results of a fire-atmosphere interaction study conducted in one type of forest to other forests with different canopy structures.

  3. Vegetation Fires in the Coupled Human-Earth System Under Future Environmental and Policy Perspectives

    NASA Astrophysics Data System (ADS)

    le page, Y.; Morton, D. C.; Hurtt, G. C.

    2013-12-01

    Fires play a major role in terrestrial ecosystems dynamics and the carbon cycle. Potential changes in fire regimes due to climate change, land use change, or human management could have substantial ecological, climatic and socio-economic impacts, and have recently been emphasized as a source of uncertainty for policy-makers and climate mitigation cost estimates. Anticipating these interactions thus entails interdisciplinary models. Here we describe the development of a new fire modeling framework, which features the essential integration of climatic, vegetation and anthropogenic drivers. The model is an attempt to realistically account for ignition, spread and termination processes, on a 12-hour time step and at 1 degree spatial resolution globally. Because the quantitative influence of fire drivers on these processes are often poorly constrained, the framework includes an optimization procedure whereby key parameters (e.g. influence of moisture on fire spread, probability of cloud-to-ground lightning flashes to actually ignite a fire, human ignition frequency as a function of land use density) are determined to maximize the agreement between modeled and observed burned area over the past decade. The model performs surprisingly well across all biomes, and shows good agreement on non-optimized features, such as seasonality and fire size, which suggests some potential for robust projections. We couple the model to an integrated assessment model and explore the consequences of mitigation policies, land use decisions and climate change on future fire regimes with a focus on the Amazon basin. The coupled model future projections show that business-as-usual land use expansion would increase the frequency of escaped fires in the remaining forest, especially when combined with models projecting a drier climate. Inversely, climate mitigation policies as projected in the IPCC RCP4.5 scenario achieve synergistic benefits, with increased forest extent, less fire ignitions, and higher moisture levels.

  4. Mapping fire probability and severity in a Mediterranean area using different weather and fuel moisture scenarios

    NASA Astrophysics Data System (ADS)

    Arca, B.; Salis, M.; Bacciu, V.; Duce, P.; Pellizzaro, G.; Ventura, A.; Spano, D.

    2009-04-01

    Although in many countries lightning is the main cause of ignition, in the Mediterranean Basin the forest fires are predominantly ignited by arson, or by human negligence. The fire season peaks coincide with extreme weather conditions (mainly strong winds, hot temperatures, low atmospheric water vapour content) and high tourist presence. Many works reported that in the Mediterranean Basin the projected impacts of climate change will cause greater weather variability and extreme weather conditions, with drier and hotter summers and heat waves. At long-term scale, climate changes could affect the fuel load and the dead/live fuel ratio, and therefore could change the vegetation flammability. At short-time scale, the increase of extreme weather events could directly affect fuel water status, and it could increase large fire occurrence. In this context, detecting the areas characterized by both high probability of large fire occurrence and high fire severity could represent an important component of the fire management planning. In this work we compared several fire probability and severity maps (fire occurrence, rate of spread, fireline intensity, flame length) obtained for a study area located in North Sardinia, Italy, using FlamMap simulator (USDA Forest Service, Missoula). FlamMap computes the potential fire behaviour characteristics over a defined landscape for given weather, wind and fuel moisture data. Different weather and fuel moisture scenarios were tested to predict the potential impact of climate changes on fire parameters. The study area, characterized by a mosaic of urban areas, protected areas, and other areas subject to anthropogenic disturbances, is mainly composed by fire-prone Mediterranean maquis. The input themes needed to run FlamMap were input as grid of 10 meters; the wind data, obtained using a computational fluid-dynamic model, were inserted as gridded file, with a resolution of 50 m. The analysis revealed high fire probability and severity in most of the areas, and therefore a high potential danger. The FlamMap outputs and the derived fire probability maps can be used in decision support systems for fire spread and behaviour and for fire danger assessment with actual and future fire regimes.

  5. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest

    PubMed Central

    Malhi, Yadvinder; Aragão, Luiz E. O. C.; Galbraith, David; Huntingford, Chris; Fisher, Rosie; Zelazowski, Przemyslaw; Sitch, Stephen; McSweeney, Carol; Meir, Patrick

    2009-01-01

    We examine the evidence for the possibility that 21st-century climate change may cause a large-scale “dieback” or degradation of Amazonian rainforest. We employ a new framework for evaluating the rainfall regime of tropical forests and from this deduce precipitation-based boundaries for current forest viability. We then examine climate simulations by 19 global climate models (GCMs) in this context and find that most tend to underestimate current rainfall. GCMs also vary greatly in their projections of future climate change in Amazonia. We attempt to take into account the differences between GCM-simulated and observed rainfall regimes in the 20th century. Our analysis suggests that dry-season water stress is likely to increase in E. Amazonia over the 21st century, but the region tends toward a climate more appropriate to seasonal forest than to savanna. These seasonal forests may be resilient to seasonal drought but are likely to face intensified water stress caused by higher temperatures and to be vulnerable to fires, which are at present naturally rare in much of Amazonia. The spread of fire ignition associated with advancing deforestation, logging, and fragmentation may act as nucleation points that trigger the transition of these seasonal forests into fire-dominated, low biomass forests. Conversely, deliberate limitation of deforestation and fire may be an effective intervention to maintain Amazonian forest resilience in the face of imposed 21st-century climate change. Such intervention may be enough to navigate E. Amazonia away from a possible “tipping point,” beyond which extensive rainforest would become unsustainable. PMID:19218454

  6. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest.

    PubMed

    Malhi, Yadvinder; Aragão, Luiz E O C; Galbraith, David; Huntingford, Chris; Fisher, Rosie; Zelazowski, Przemyslaw; Sitch, Stephen; McSweeney, Carol; Meir, Patrick

    2009-12-08

    We examine the evidence for the possibility that 21st-century climate change may cause a large-scale "dieback" or degradation of Amazonian rainforest. We employ a new framework for evaluating the rainfall regime of tropical forests and from this deduce precipitation-based boundaries for current forest viability. We then examine climate simulations by 19 global climate models (GCMs) in this context and find that most tend to underestimate current rainfall. GCMs also vary greatly in their projections of future climate change in Amazonia. We attempt to take into account the differences between GCM-simulated and observed rainfall regimes in the 20th century. Our analysis suggests that dry-season water stress is likely to increase in E. Amazonia over the 21st century, but the region tends toward a climate more appropriate to seasonal forest than to savanna. These seasonal forests may be resilient to seasonal drought but are likely to face intensified water stress caused by higher temperatures and to be vulnerable to fires, which are at present naturally rare in much of Amazonia. The spread of fire ignition associated with advancing deforestation, logging, and fragmentation may act as nucleation points that trigger the transition of these seasonal forests into fire-dominated, low biomass forests. Conversely, deliberate limitation of deforestation and fire may be an effective intervention to maintain Amazonian forest resilience in the face of imposed 21st-century climate change. Such intervention may be enough to navigate E. Amazonia away from a possible "tipping point," beyond which extensive rainforest would become unsustainable.

  7. Use of ordinary kriging to interpolate observations of fire radiative heat flux sampled with airborne imagery

    NASA Astrophysics Data System (ADS)

    Klauberg Silva, C.; Hudak, A. T.; Bright, B. C.; Dickinson, M. B.; Kremens, R.; Paugam, R.; Mell, W.

    2016-12-01

    Biomass burning has impacts on air pollution at local to regional scales and contributes to greenhouse gases and affects carbon balance at the global scale. Therefore, is important to accurately estimate and manage carbon pools (fuels) and fluxes (gases and particulate emissions having public health implications) associated with wildland fires. Fire radiative energy (FRE) has been shown to be linearly correlated with biomass burned in small-scale experimental fires but not at the landscape level. Characterization of FRE density (FRED) flux in J m-2 from a landscape-level fire presents an undersampling problem. Specifically, airborne acquisitions of long-wave infrared radiation (LWIR) from a nadir-viewing LWIR camera mounted on board fixed-wing aircraft provide only samples of FRED from a landscape-level fire, because of the time required to turn the plane around between passes, and a fire extent that is broader than the camera field of view. This undersampling in time and space produces apparent firelines in an image of observed FRED, capturing the fire spread only whenever and wherever the scene happened to be imaged. We applied ordinary kriging to images of observed FRED from five prescribed burns collected in forested and non-forested management units burned at Eglin Air Force Base in Florida USA in 2011 and 2012. The three objectives were to: 1. more realistically map FRED, 2. more accurately estimate total FRED as predicted from fuel consumption measurements, and 3. compare the sampled and kriged FRED maps to modeled estimates of fire rate of spread (ROS). Observed FRED was integrated from LWIR images calibrated to units of fire radiative flux density (FRFD) in W m-2. Iterating the kriging analysis 2-10 times (depending on the burn unit) led to more accurate FRED estimates, both in map form and in terms of total FRED, as corroborated by independent estimates of fuel consumption and ROS.

  8. Comparing fuel reduction treatments for reducing wildfire size and intensity in a boreal forest landscape of northeastern China.

    PubMed

    Wu, Zhiwei; He, Hong S; Liu, Zhihua; Liang, Yu

    2013-06-01

    Fuel load is often used to prioritize stands for fuel reduction treatments. However, wildfire size and intensity are not only related to fuel loads but also to a wide range of other spatially related factors such as topography, weather and human activity. In prioritizing fuel reduction treatments, we propose using burn probability to account for the effects of spatially related factors that can affect wildfire size and intensity. Our burn probability incorporated fuel load, ignition probability, and spread probability (spatial controls to wildfire) at a particular location across a landscape. Our goal was to assess differences in reducing wildfire size and intensity using fuel-load and burn-probability based treatment prioritization approaches. Our study was conducted in a boreal forest in northeastern China. We derived a fuel load map from a stand map and a burn probability map based on historical fire records and potential wildfire spread pattern. The burn probability map was validated using historical records of burned patches. We then simulated 100 ignitions and six fuel reduction treatments to compare fire size and intensity under two approaches of fuel treatment prioritization. We calibrated and validated simulated wildfires against historical wildfire data. Our results showed that fuel reduction treatments based on burn probability were more effective at reducing simulated wildfire size, mean and maximum rate of spread, and mean fire intensity, but less effective at reducing maximum fire intensity across the burned landscape than treatments based on fuel load. Thus, contributions from both fuels and spatially related factors should be considered for each fuel reduction treatment. Published by Elsevier B.V.

  9. The Impact of Indonesian Forest Fires on Singaporean Pollution and Health.

    PubMed

    Sheldon, Tamara L; Sankaran, Chandini

    2017-05-01

    Between 1990 and 2015, Indonesia lost nearly 25 percent of its forests, largely due to intentional burning to clear land for cultivation of palm oil and timber plantations.1 The neighboring "victim countries" experienced severe deteriorations in air quality as a result of these fires. For example, Singapore experienced record air pollution levels in June of 2013 and again in September of 2015 as a result of the Indonesian forest fires.2 This air pollution is associated with increased incidences of upper respiratory tract infections, acute conjunctivitis, lung disease, asthma, bronchitis, emphysema, and pneumonia, among other ailments.2 Quantifying the impact of air pollution on health outcomes is challenging because pollution levels are often nonrandom for a variety of reasons, including policy endogeneity and sorting (Dominici, Greenstone, and Sunstein 2014). In this paper we offer the first causal analysis of the transboundary health effects of the Indonesian forest burning. The Indonesian fires induce exogenous variation in Singaporean air quality. We take advantage of this by using satellite fire data to instrument for changes in Singaporean air quality. Since Singapore is only 277.6 square miles in area (two-thirds the size of New York City), air pollution resulting from the fires is homogeneously spread so that sorting is less likely to be an issue. Using a two-stage least squares approach, we find that from 2010 through mid-2016, the Indonesian fires caused a statistically significant increase in pollution levels in Singapore. Our study also provides evidence that polyclinic attendances for acute respiratory tract infections and acute conjunctivitis in Singapore increased as a result of the deterioration in air quality. The reduced form estimates show that a one standard deviation increase in our measure of fires causes a 0.7 standard deviation increase in polyclinic attendances for each of these illnesses. These findings provide causal evidence of the transboundary pollution and health impacts of the Indonesian forest burning on neighboring Singapore.

  10. Restoring productivity to cogograss-infested land through reforestation

    Treesearch

    W.H. Faircloth; M.G. Patterson; James H. Miller; D.H. Teem

    2004-01-01

    Cogongrass (Imperata cylindrica) is an invasive grass that is rapidly colonizing the Gulf coastal plain, with potential to spread well into the interior of the Southeastern U.S. Cogongrass is particularly harmful to forested land. In such situations, cogongrass hinders plantation establishment, may contribute to crowning fires in young stands,...

  11. How long do ponderosa pine snags stand?

    Treesearch

    Walter G. Dahms

    1949-01-01

    How long will the average ponderosa pine snag remain standing and thus contribute to greater rate of spread and resistance to control of forest fires? Are there any readily discernible characteristics that will enable us to predict which will fall soon and which will stand for a long time?

  12. Eco-hydrological Controls on Litter Moisture Dynamics in Complex Terrain: Implications for Fuel Moisture and Fire Regimes in Temperate Forests

    NASA Astrophysics Data System (ADS)

    Nyman, P.; Duff, T. J.; Sheridan, G. J.

    2016-12-01

    Moisture content in litter on the forest floor can control ignition and spread of forest fires. The micrometeorological factors driving variation in litter moisture at the landscape scale are poorly understood, particularly in areas with heterogeneous vegetation and complex terrain. In this research we seek to quantify how climate, vegetation and eco-hydrological feedbacks contribute to variation in net radiation and potential evaporation at the forest floor. Research sites were established at 12 locations in southeast Australia with variable precipitation, solar exposure, and drainage areas. Forests ranged from open woodland to tall temperate forests. We measured solar radiation, air temperature, relative humidity, litter moisture, soil moisture, and litter temperature. Forest structure was characterised using hemispherical photos and LIDAR. Using these data on microclimate and vegetation structure we parameterise a model of daily potential evaporation at the forest floor. Results show that variation in evaporation rates from litter is driven by net radiation and the role of vapour pressure deficit is almost negligible due to high aerodynamic resistance. In open woodlands the net radiation is directly related to short-wave radiation and evaporation remains high despite low temperatures. In the tall wet forests, commonly found along drainage lines and on slopes with polar-facing aspects, the long-wave radiation was just as important as the shortwave radiation. Air temperature is therefore important in determining the flammability of these more productive forests. By implication, in complex terrain with heterogeneous forests, the temperature in the wet parts of the landscape is important in controlling connectivity of fuels and large-scale fire activity.

  13. Assessing fire risk in Portugal during the summer fire season

    NASA Astrophysics Data System (ADS)

    Dacamara, C. C.; Pereira, M. G.; Trigo, R. M.

    2009-04-01

    Since 1998, Instituto de Meteorologia, the Portuguese Weather Service has relied on the Canadian Fire Weather Index (FWI) System (van Wagner, 1987) to produce daily forecasts of fire risk. The FWI System consists of six components that account for the effects of fuel moisture and wind on fire behavior. The first three components, i.e. the Fine Fuel Moisture Code (FFMC), the Duff Moisture Code (DMC) and the Drought Code (DC) respectively rate the average moisture content of surface litter, decomposing litter, and organic (humus) layers of the soil. Wind effects are then added to FFMC leading to the Initial Spread Index (ISI) that rates fire spread. The remaining two fuel moisture codes (DMC and DC) are in turn combined to produce the Buildup Index (BUI) that is a rating of the total amount of fuel available for combustion. BUI is finally combined with ISI to produce the Fire Weather Index (FWI) that represents the rate of fire intensity. Classes of fire danger and levels of preparedness are commonly defined on an empirical way for a given region by calibrating the FWI System against wildfire activity as defined by the recorded number of events and by the observed burned area over a given period of time (Bovio and Camia, 1998). It is also a well established fact that distributions of burned areas are heavily skewed to the right and tend to follow distributions of the exponential-type (Cumming, 2001). Based on the described context, a new procedure is presented for calibrating the FWI System during the summer fire season in Portugal. Two datasets were used covering a 28-year period (1980-2007); i) the official Portuguese wildfire database which contains detailed information on fire events occurred in the 18 districts of Continental Portugal and ii) daily values of the six components of the FWI System as derived from reanalyses (Uppala et al., 2005) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Calibration of the FWI System is then performed in two steps; 1) a truncated Weibull distribution is fitted to the sample of burned areas and 2) the quality of the fitted statistical model is improved by incorporating components of the FWI System as covariates. Obtained model allows estimating on a daily basis the probability of occurrence of fires larger than a given threshold as well as producing maps of fire risk. Results as obtained from a prototype currently being developed will be presented and discussed. In particular, it will be shown that results provide additional evidence of the known fact that the extent of burned area in Portugal is controlled by two main atmospheric factors (Pereira et al. 2005): i) a long-term control related to the regime of temperature and precipitation in spring and ii) a short-term control exerted by the occurrence of very intense dry spells in days of extreme synoptic situations. Bovio, G., and A. Camia. 1998. An analysis of large forest fire danger conditions in Europe. In Proc. 3rd Int. Conf. on Forest Fire Research & 14th Conf. on Fire and Forest Meteorology, Viegas, D.X. (Ed.), Luso, 16-20 Nov., ADAI, 975-994. Cumming, S.G., 2001. Parametric models of the fire size distribution. Can J. For. Res., 31, 1297-1303. Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C. and Leite, S.M., 2005. Synoptic patterns associated with large summer forest fires in Portugal. Agr. and For. Meteorol., 129 (1-2), 11-25. Uppala, S.M. et al., 2005: The ERA-40 re-analysis. Quart. J. R. Meteorol. Soc., 131, 2961-3012. Van Wagner, C.E., 1987. Development and structure of the Canadian forest fire weather index system. Canadian Forestry Service, Forest Technical Report 35, Ottawa, 37 pp.

  14. Fuel reduction and coarse woody debris dynamics with early season and late season prescribed fire in a Sierra Nevada mixed conifer forest

    USGS Publications Warehouse

    Knapp, E.E.; Keeley, J.E.; Ballenger, E.A.; Brennan, T.J.

    2005-01-01

    Fire exclusion has led to an unnatural accumulation and greater spatial continuity of organic material on the ground in many forests. This material serves both as potential fuel for forest fires and habitat for a large array of forest species. Managers must balance fuel reduction to reduce wildfire hazard with fuel retention targets to maintain other forest functions. This study reports fuel consumption and changes to coarse woody debris attributes with prescribed burns ignited under different fuel moisture conditions. Replicated early season burn, late season burn, and unburned control plots were established in old-growth mixed conifer forest in Sequoia National Park that had not experienced fire for more than 120 years. Early season burns were ignited during June 2002 when fuels were relatively moist, and late season burns were ignited during September/October 2001 when fuels were dry. Fuel loading and coarse woody debris abundance, cover, volume, and mass were evaluated prior to and after the burns. While both types of burns reduced fuel loading, early season burns consumed significantly less of the total dead and down organic matter than late season burns (67% versus 88%). This difference in fuel consumption between burning treatments was significant for most all woody fuel components evaluated, plus the litter and duff layers. Many logs were not entirely consumed - therefore the number of logs was not significantly changed by fire - but burning did reduce log length, cover, volume, and mass. Log cover, volume, and mass were reduced to a lesser extent by early season burns than late season burns, as a result of higher wood moisture levels. Early season burns also spread over less of the ground surface within the burn perimeter (73%) than late season burns (88%), and were significantly patchier. Organic material remaining after a fire can dam sediments and reduce erosion, while unburned patches may help mitigate the impact of fire on fire-sensitive species by creating refugia from which these species can recolonize burned areas. Early season burns may be an effective means of moderating potential ecosystem damage when treating heavy and/or continuous fuels resulting from long periods of fire exclusion, if burning during this season is not detrimental to other forest functions. ?? 2005 Elsevier B.V. All rights reserved.

  15. Changes to Cretaceous surface fire behaviour influenced the spread of the early angiosperms.

    PubMed

    Belcher, Claire M; Hudspith, Victoria A

    2017-02-01

    Angiosperms evolved and diversified during the Cretaceous period. Early angiosperms were short-stature weedy plants thought to have increased fire frequency and mortality in gymnosperm forest, aiding their own expansion. However, no explorations have considered whether the range of novel fuel types that diversified throughout the Cretaceous also altered fire behaviour, which should link more strongly to mortality than fire frequency alone. We measured ignitability and heat of combustion in analogue Cretaceous understorey fuels (conifer litter, ferns, weedy and shrubby angiosperms) and used these data to model palaeofire behaviour. Variations in ignition, driven by weedy angiosperms alone, were found to have been a less important feedback to changes in Cretaceous fire activity than previously estimated. Our model estimates suggest that fires in shrub and fern understories had significantly greater fireline intensities than those fuelled by conifer litter or weedy angiosperms, and whilst fern understories supported the most rapid fire spread, angiosperm shrubs delivered the largest amount of heat per unit area. The higher fireline intensities predicted by the models led to estimates of enhanced scorch of the gymnosperm canopy and a greater chance of transitioning to crown fires. Therefore, changes in fire behaviour driven by the addition of new Cretaceous fuel groups may have assisted the angiosperm expansion. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  16. Permafrost as an additional driving factor for the extreme fire event in the boreal Baikal region in 2003

    NASA Astrophysics Data System (ADS)

    Forkel, M.; Thonicke, K.; Beer, C.; Cramer, W.; Bartalev, S.; Schmullius, C.

    2012-04-01

    Wildfires are a natural and important element in the functioning of boreal forests. However, in some years, fires with extreme spread and severity occur. Such severe fires degrade the forest, affect human values, emit huge amount of carbon and aerosols and alter the land surface albedo. Usually, wind, slope, and dry conditions have been recognized as factors determining fire spread. In the Baikal region, 127,000 km2 burned in 2003, while the annual average burned area is approx. 8100 km2. In average years, 16% of the burned area occurred in the continuous permafrost zone but in 2003, 33% of these burned areas coincide with the existence of permanently frozen grounds. Permafrost and the associated upper active layer, which thaws during summer and refreezes during winter, is an important supply for soil moisture in boreal ecosystems. This leads to the question if permafrost hydrology is a potential additional driving factor for extreme fire events in boreal forests. Using temperature and precipitation data, we calculated the Nesterov index as indicator for fire weather conditions. Further, we used satellite observations of burned area and surface moisture, a digital elevation model, a land cover and a permafrost map to evaluate drivers for the temporal dynamic and spatial variability of surface moisture conditions and burned area in spring 2003. On the basis of time series decomposition, we separated the effect of drivers for fire activity on different time scales. We next computed cross-correlations to identify potential time lags between weather conditions, surface moisture and fire activity. Finally, we assessed the predictive capability of different combinations of driving variables for surface moisture conditions and burned area using multivariate spatial-temporal regression models. The results from this study demonstrate that permafrost in larch-dominated ecosystems regulates the inter-annual variability of surface moisture and thus increases the inter-annual variability of burned area. The drought conditions in spring 2003 were accelerated by the presence of permafrost because less water was stored in the upper active layer from the dry previous summer 2002 and the permafrost table prevents vegetative water uptake from deeper layers. In contrast, weather conditions (precipitation anomaly, Nesterov index) are weaker predictors for the 2003 fire event. Our analysis advances the understanding of complex interactions between the atmosphere, vegetation and soil on how feedback mechanisms can lead to extreme fire events. These findings emphasize the importance of a mechanistic coupling of soil thermodynamics, hydrology, and fire activity in earth system models for projecting climate change impacts over the next century.

  17. Human versus lightning ignition of presettlement surface fires in costal pine forests of the upper Great Lakes

    USGS Publications Warehouse

    Loope, Walter L.; Anderton, John B.

    1998-01-01

    To recover direct evidence of surface fires before European settlement, we sectioned fire-scarred logging-era stumps and trees in 39 small, physically isolated sand patches along the Great Lakes coast of northern Michigan and northern Wisconsin. While much information was lost to postharvest fire and stump deterioration, 147 fire-free intervals revealed in cross-sections from 29 coastal sand patches document numerous close interval surface fires before 1910; only one post-1910 fire was documented. Cross-sections from the 10 sections with records spanning >150 yr suggest local fire occurrence rates before 1910 ca. 10 times the present rate of lightning-caused fire. Since fire spread between or into coastal sand patches is rare, and seasonal use of the patches by Native people before 1910 is well documented, both historically and ethnographically, ignition by humans probably accounts for more than half of the pre-1910 fires recorded in cross-sections.

  18. The use of rainfall simulations to assess land degradation and soil erosion produced by an SLM technology, Portugal

    NASA Astrophysics Data System (ADS)

    Soares, J.; Coelho, C.; Carvalho, T.; Oliveira, E.; Valente, S.

    2012-04-01

    Forest fires represent the main threat to sustainable forest management in Portugal. During the last fifty years, a massive depopulation took place at rural areas, developing a landscape more prone to fire. The expansion of forest and shrubland into former agricultural areas, as well as, the rapid regeneration of vegetation after fire in some areas, highlighted the need to implement several measures to protect forest and rural areas against fires. Mação municipality suffered massive fires in 2003 and 2005, where more than 70% of the municipality area has been burnt. The implementation of a forest fire prevention and mitigation technology as well as the vegetation regeneration rate was assessed at this location, under the framework of DESIRE project1. Forest is the dominant land use at Mação municipality, consisting of Pinus pinaster, with some Eucalyptus globulus and residual oak forest and shrubland. An important part was burned recently and gave way to regeneration of stands and shrubs. In 2009, the municipality started to implement an SLM (Sustainable Land Management) technology, Primary Strips Network System for Fuel Management (RPFGC). This technology is integrated in the National System to Prevent and Protect Forest against Fires and it is defined by the National Forest Authority (AFN). The RPFGC are linear strips, strategically located in areas where total or partial removal of the forest biomass is possible. This technology contributes to prevent the occurrence and spread of large forest fires and to reduce their consequences for the environment, people, infrastructures, etc . However, the removal of vegetation tends to expose bare soil to the erosive effects of rainfall. Rainfall simulations were used to assess erosive processes, such as runoff and sediment loss, in three types of land cover: pine, eucalyptus and shrubland. The results from rainfall simulations on areas inside the RPFGC showed higher results for all studied parameters, while whether or not statistically significant, shrubland areas appear to be more sensitive to this technology and pine sites the least affected spots. Total soil loss was significant in shrubland areas, but the same did not happen in pine and in eucalyptus sites. Overall runoff production achieved no representative statistical differences in any of the studied cases, indicating its independence of either the technology or soil occupation. However, total soil loss was significantly different in shrubland areas. As for total organic matter loss, resulted to be the most affected parameter included in this study, which indicates that this SLM technology reduces the organic matter content on shrub and eucalyptus soils. (1) DESIRE Project (037046): Desertification Mitigation and Remediation of land - a global approach for local solutions, EU-funded project (2007-2012; http://www.desire-project.eu/).

  19. Simulating Fire Disturbance and Plant Mortality Using Antecedent Eco-hydrological Conditions to Inform a Physically Based Combustion Model

    NASA Astrophysics Data System (ADS)

    Atchley, A. L.; Linn, R.; Middleton, R. S.; Runde, I.; Coon, E.; Michaletz, S. T.

    2016-12-01

    Wildfire is a complex agent of change that both affects and depends on eco-hydrological systems, thereby constituting a tightly linked system of disturbances and eco-hydrological conditions. For example, structure, build-up, and moisture content of fuel are dependent on eco-hydrological regimes, which impacts fire spread and intensity. Fire behavior, on the other hand, determines the severity and extent of eco-hydrological disturbance, often resulting in a mosaic of untouched, stressed, damaged, or completely destroyed vegetation within the fire perimeter. This in turn drives new eco-hydrological system behavior. The cycles of disturbance and recovery present a complex evolving system with many unknowns especially in the face of climate change that has implications for fire risk, water supply, and forest composition. Physically-based numerical experiments that attempt to capture the complex linkages between eco-hydrological regimes that affect fire behavior and the echo-hydrological response from those fire disturbances help build the understanding required to project how fire disturbance and eco-hydrological conditions coevolve over time. Here we explore the use of FIRETEC—a physically-based 3D combustion model that solves conservation of mass, momentum, energy, and chemical species—to resolve fire spread over complex terrain and fuel structures. Uniquely, we couple a physically-based plant mortality model with FIRETEC and examine the resultant hydrologic impact. In this proof of concept demonstration we spatially distribute fuel structure and moisture content based on the eco-hydrological condition to use as input for FIRETEC. The fire behavior simulation then produces localized burn severity and heat injures which are used as input to a spatially-informed plant mortality model. Ultimately we demonstrate the applicability of physically-based models to explore integrated disturbance and eco-hydrologic response to wildfire behavior and specifically map how fire spread and intensity is affect by the antecedent eco-hydrological condition, which then affects the resulting tree mortality patterns.

  20. Evidence of compounded disturbance effects on vegetation recovery following high-severity wildfire and spruce beetle outbreak

    Treesearch

    Amanda R. Carlson; Jason S. Sibold; Timothy J. Assal; Jose F. Negron

    2017-01-01

    Spruce beetle (Dendroctonus rufipennis) outbreaks are rapidly spreading throughout subalpine forests of the Rocky Mountains, raising concerns that altered fuel structures may increase the ecological severity of wildfires. Although many recent studies have found no conclusive link between beetle outbreaks and increased fire size or canopy mortality, few studies have...

  1. Estimating forest canopy bulk density using six indirect methods

    Treesearch

    Robert E. Keane; Elizabeth D. Reinhardt; Joe Scott; Kathy Gray; James Reardon

    2005-01-01

    Canopy bulk density (CBD) is an important crown characteristic needed to predict crown fire spread, yet it is difficult to measure in the field. Presented here is a comprehensive research effort to evaluate six indirect sampling techniques for estimating CBD. As reference data, detailed crown fuel biomass measurements were taken on each tree within fixed-area plots...

  2. Thermochemical properties of flame gases from fine wildland fuels

    Treesearch

    Frank A. Albini

    1979-01-01

    Describes a theoretical model for calculating thermochemical properties of the gaseous fuel that burns in the free flame at the edge of a spreading fire in fine forest fuels. Predicted properties are the heat of combustion, stoichiometric air/fuel mass ratio, mass-averaged temperature, and mass fraction of unburned fuel in the gas mixture emitted from the flame-...

  3. Measuring the effect of fuel treatments on forest carbon using landscape risk analysis

    Treesearch

    A.A. Ager; M.A. Finney; A. McMahan; J. Carthcart

    2010-01-01

    Wildfire simulation modelling was used to examine whether fuel reduction treatments can potentially reduce future wildfire emissions and provide carbon benefits. In contrast to previous reports, the current study modelled landscape scale effects of fuel treatments on fire spread and intensity, and used a probabilistic framework to quantify wildfire effects on carbon...

  4. A range-wide restoration strategy for whitebark pine (Pinus albicaulis)

    Treesearch

    Robert E. Keane; D. F. Tomback; C. A. Aubry; A. D. Bower; E. M. Campbell; C. L. Cripps; M. B. Jenkins; M. F. Mahalovich; M. Manning; S. T. McKinney; M. P. Murray; D. L. Perkins; D. P. Reinhart; C. Ryan; A. W. Schoettle; C. M. Smith

    2012-01-01

    Whitebark pine (Pinus albicaulis), an important component of western high-elevation forests, has been declining in both the United States and Canada since the early Twentieth Century from the combined effects of mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the spread of the exotic disease white pine blister rust (caused by the...

  5. Forest fires in Mediterranean countries: CO2 emissions and mitigation possibilities through prescribed burning.

    PubMed

    Vilén, Terhi; Fernandes, Paulo M

    2011-09-01

    Forest fires are an integral part of the ecology of the Mediterranean Basin; however, fire incidence has increased dramatically during the past decades and fire is expected to become more prevalent in the future due to climate change. Fuel modification by prescribed burning reduces the spread and intensity potential of subsequent wildfires. We used the most recently published data to calculate the average annual wildfire CO(2) emissions in France, Greece, Italy, Portugal and Spain following the IPCC guidelines. The effect of prescribed burning on emissions was calculated for four scenarios of prescribed burning effectiveness based on data from Portugal. Results show that prescribed burning could have a considerable effect on the carbon balance of the land use, land-use change and forestry (LULUCF) sector in Mediterranean countries. However, uncertainty in emission estimates remains large, and more accurate data is needed, especially regarding fuel load and fuel consumption in different vegetation types and fuel layers and the total area protected from wildfire per unit area treated by prescribed burning, i.e. the leverage of prescribed burning.

  6. Estimating the direct radiative forcing due to haze from the 1997 forest fires in Indonesia

    NASA Astrophysics Data System (ADS)

    Davison, P. S.; Roberts, D. L.; Arnold, R. T.; Colvile, R. N.

    2004-05-01

    The El Niño event of 1997-1998 caused a severe reduction of rainfall in Indonesia that promoted the spread of forest fires, leading to a pervasive haze in the region. Here we use fire coverage data from the 1997 World Fire Atlas with a review of other available data and literature to estimate the distribution of particulate emissions from August to November 1997 and the particle size and radiative properties. Our preferred estimate of the total particulate emissions is approximately 41 Tg. The emissions have been used to drive an atmospheric model to simulate the distribution of the haze and its direct radiative effect, with and without allowing for the effects of the smoke on the atmospheric evolution. Model diagnostics of the aerosol and its radiative impact are compared with measurements and output from other models. Large decreases in the incident solar flux at the surface are obtained in the region. The simulated global mean shortwave radiative forcing at the top of the atmosphere, averaged over the 4 months, is -0.32 Wm-2. The accuracy of this calculation is discussed, and the importance of the Indonesian fires in particular and of biomass burning in general is assessed.

  7. Post-fire vegetation succession in Mediterranean gorse shrublands

    NASA Astrophysics Data System (ADS)

    De Luis, Martin; Raventós, José; González-Hidalgo, José Carlos

    2006-07-01

    In Western Mediterranean areas, forest fires are frequent in forests established on old croplands where post-fire regeneration is limited to obligate-seeder species. This has resulted in the spread of Mediterranean gorse ( Ulex parviflorus) increasing the risk and severity of fires. The aim of this paper is to test the autosuccessional hypothesis on a Mediterranean gorse shrubland dominated by seeders species. Particular objectives are: a) to analyze the effect of fire on seedling emergence, survival and growth on the main species involved on plant regeneration process. b) to identify changes in the relative abundance of species as consequence of fire by using a before-after experiment. Then, after experimental fires, seedling emergence, survival and growth rates were analyzed for the main species present in the vegetation regeneration process. Our results show that Mediterranean gorse communities are dominated by Fabaceae species (64% of individuals, mainly of Ulex parviflorus). However, our study demonstrates that vegetation regeneration after fire does not display an autosuccessional pattern and is produced a change on dominance from Fabaceae (mainly U. parviflorus) to Cistaceae (mainly C. albidus) species. Cistaceae seedlings (mainly Cistus albidus and Helianthemum marifolium) were the most abundant post-fire (63% of total germination) while species of Fabaceae (including U. parviflorus and Ononis fruticosa) represented 25%, and Lamiaceae (restricted to Rosmarinus officinalis) comprised only 3% of total emergences. Seedling survival did not differ significantly from one species to another (25-30% of initial individuals over 3 years) but seedling growth rates were also higher for Cistaceae than for Fabaceae individuals. Then, after fire, in terms of biomass, Fabaceae presence decreased from 78.7% to 13.1% while Cistaceae increase from 8% to 83.4%. Given that fire frequency, intensity or severity is partially controlled by the composition and structure of the plant community population changes in the main species, could affect the future fire regime and in turn, affect the hydrological, ecological and economic role of a large stretch of forest and woodland areas in western Mediterranean ecosystems.

  8. Holocene fire activity and vegetation response in South-Eastern Iberia

    NASA Astrophysics Data System (ADS)

    Gil-Romera, Graciela; Carrión, José S.; Pausas, Juli G.; Sevilla-Callejo, Miguel; Lamb, Henry F.; Fernández, Santiago; Burjachs, Francesc

    2010-05-01

    Since fire has been recognized as an essential disturbance in Mediterranean landscapes, the study of long-term fire ecology has developed rapidly. We have reconstructed a sequence of vegetation dynamics and fire changes across south-eastern Iberia by coupling records of climate, fire, vegetation and human activities. We calculated fire activity anomalies (FAAs) in relation to 3 ka cal BP for 10-8 ka cal BP, 6 ka cal BP, 4 ka cal BP and the present. For most of the Early to the Mid-Holocene uneven, but low fire events were the main vegetation driver at high altitudes where broadleaved and coniferous trees presented a highly dynamic post-fire response. At mid-altitudes in the mainland Segura Mountains, fire activity remained relatively stable, at similar levels to recent times. We hypothesize that coastal areas, both mountains and lowlands, were more fire-prone landscapes as biomass was more likely to have accumulated than in the inland regions, triggering regular fire events. The wet and warm phase towards the Mid-Holocene (between ca 8 and 6 ka cal BP) affected the whole region and promoted the spread of mesophytic forest co-existing with Pinus, as FAAs appear strongly negative at 6 ka cal BP, with a less important role of fire. Mid and Late Holocene landscapes were shaped by an increasing aridity trend and the rise of human occupation, especially in the coastal mountains where forest disappeared from ca 2 ka cal BP. Mediterranean-type vegetation (evergreen oaks and Pinus pinaster- halepensis types) showed the fastest post-fire vegetation dynamics over time.

  9. A human-driven decline in global burned area

    NASA Astrophysics Data System (ADS)

    Andela, N.

    2017-12-01

    Fire regimes are changing rapidly across the globe, driven by human land management and climate. We assessed long-term trends in fire activity using multiple satellite data sets and developed a new global data set on individual fire dynamics to understand the implications of changing fire regimes. Despite warming climate, burned area declined across most of the tropics, contributing to a global decline in burned area of 24.3 ± 8.8% over the past 18 years. The estimated decrease in burned area was largest in savannas and grasslands, where agricultural expansion and intensification were primary drivers of declining fire activity. In tropical forests, frequent fires for deforestation and agricultural management yield a sharp rise in fire activity with the expansion of settled land uses, but the use of fire decreases with increasing investment in agricultural areas in both savanna and forested landscapes. Disparate patterns of recent socieconomic development resulted in contrasting fire trends between southern Africa (increase) and South America (decrease). A strong inverse relationship between burned area and economic development in savannas and grasslands suggests that despite potential increasing fire risk from climate change, ongoing socioeconomic development will likely sustain observed declines in fire in these ecosystems during coming decades. Fewer and smaller fires reduced aerosol concentrations, modified vegetation structure, and increased the magnitude of the terrestrial carbon sink. The spatiotemporal distribution of fire size, duration, speed and direction of spread provided new insights in continental scale differences in fire regimes driven by human and climatic factors. Understanding these dynamics over larger scales is critical to achieve a balance between conservation of fire-dependent ecosystems and increasing agricultural production to support growing populations that will require careful management of fire activity in human-dominated landscapes.

  10. Use of regionalisation approach to develop fire frequency curves for Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Khastagir, Anirban; Jayasuriya, Niranjali; Bhuyian, Muhammed A.

    2017-11-01

    It is important to perform fire frequency analysis to obtain fire frequency curves (FFC) based on fire intensity at different parts of Victoria. In this paper fire frequency curves (FFCs) were derived based on forest fire danger index (FFDI). FFDI is a measure related to fire initiation, spreading speed and containment difficulty. The mean temperature (T), relative humidity (RH) and areal extent of open water (LC2) during summer months (Dec-Feb) were identified as the most important parameters for assessing the risk of occurrence of bushfire. Based on these parameters, Andrews' curve equation was applied to 40 selected meteorological stations to identify homogenous stations to form unique clusters. A methodology using peak FFDI from cluster averaged FFDIs was developed by applying Log Pearson Type III (LPIII) distribution to generate FFCs. A total of nine homogeneous clusters across Victoria were identified, and subsequently their FFC's were developed in order to estimate the regionalised fire occurrence characteristics.

  11. Does seeding after severe forest fires in western USA mitigate negative impacts on soils and plant communities?

    Treesearch

    D. Peppin; P. Fule; J. Beyers; C. Sieg; M. Hunter

    2011-01-01

    Broadcast seeding is one of the most widely used post-wildfire emergency response treatments intended to reduce soil erosion, increase vegetative ground cover, and minimize establishment and spread of non-native plant species. However, seeding treatments can also have negative effects such as competition with recovering native plant communities and inadvertent...

  12. Oriental bittersweet (Celastrus orbiculatus): Spreading by fire

    USGS Publications Warehouse

    Pavlovic, Noel B.; Leicht-Young, Stacey A.; Grundel, Ralph

    2016-01-01

    In many forest ecosystems, fire is critical in maintaining indigenous plant communities, but can either promote or arrest the spread of invasive species depending on their regeneration niche and resprouting ability. We examined the effects of cutting and burning treatments on the vegetative response (cover, stem density) and root resources of Oriental bittersweet (Celastrus orbiculatus), a liana invasive to North America that was introduced from East Asia. Treatments were control, spring cut, spring burn, spring cut & burn, summer cut, fall cut, fall burn, fall cut & burn, and fall herbicide. Cover was reduced the greatest by herbicide and summer cutting treatments, but increased more in the second year on moraine soils than on sandy soils. Burning and cutting & burning combined resulted in a resprout density four times greater than stem density prior to treatment for stems <2.5 mm diameter than cutting alone. For stems, across all diameter classes, there was a more than 100% increase in stem density with burning and almost a 300% increase in stem density with cutting & burning in the spring. Density of resprouts and root-suckers, and survival increased with increasing stem size. While cutting of C. orbiculatus during the growing season (summer) reduced total nonstructural carbohydrates by 50% below early growing season levels and 75% below dormant season levels, burning did not significantly reduce total nonstructural carbohydrates. Thus, Oriental bittersweet is quite responsive to burning as a disturbance and resprouting and root-suckering creates additional opportunities for growth and attainment of the forest canopy. The positive response of Oriental bittersweet to burning has important implications for management of invasive lianas in fire-dependent forest landscapes.

  13. Remote Sensing of Forest Fires from Space

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.

    1999-01-01

    Forest fires, and fires used for deforestation and agriculture are sporadic. Some may last an hour others several days. It is difficult to find the fires or to estimate their effect on atmospheric pollution without an "eye in the sky" a satellite or an array of satellites that monitors them routinely from space. Since fires have a significant effect on the quality of air that we breath, on the surface vegetation, on clouds and precipitation and even on climate, NASA and other space agencies try to develop fire monitoring capability from space. Presently satellites were not designed to monitor fires. But the AVHRR and GOES satellites were used for fire monitoring. AVHRR is an orbiter that passes over the same area twice a day with detailed observations of fires from a distance of 800 km, GOES is a stationary satellite located above the equator, and observes the larger fires from a distance of 20,000 km. Field experiments, such as the "SCAR-B" experiment in Brazil conducted in 1995 by INPE, NASA and Universities of Sao Paulo, Washington and Wisconsin, were used to determine the ability of satellites to observe fires and the emitted pollution. They are the basis of a new system of satellites designed by NASA to observe fires and pollution, the Earth Observing System AM1 and PM1. NASA plans to use the information for four observations a day of the fires and the emitted smoke. The information can be used to determine the location of the fires, to distinguish between small and large fires and monitor their development. The satellites will measure the emitted smoke and with trajectory models can be used to predict the density and spread of the smoke.

  14. Shifting Patterns of Boreal Forest Succession and Browning Over the Last 30 Years

    NASA Astrophysics Data System (ADS)

    Goulden, M.; Czimczik, C. I.; Randerson, J. T.

    2017-12-01

    Climate and fire largely control the productivity ("greenness") and biodiversity of boreal forests in North America. Our research focuses on better understanding: 1) the patterns of, controls on, and recent changes in North American Boreal Forest "Browning" and the declining Normalized Difference Vegetation Index (NDVI) observed in satellite records, and 2) the patterns of, controls on, and recent changes in North American Boreal Forest fire recovery and succession. Much of our effort has used the Landsat archive to analyze the patterns of wildfire and forest recovery along a transect cutting across central Canada; this study areas covers 3 Landsat rows x 25 paths with 2500 summer images. Key findings include: 1) Most (80-90%) of the recent NDVI trends in our study area are attributable to wildfire (areas that burned after 1995 and also before 1975 show browning; areas that burned in 1975-1995 show greening). 2) There are a significant number of non-fire related patches that show either browning or greening; some of these patches are related to fires or human disturbances that aren't in our disturbance database, but others occur in wetter areas, where there is a general tendency toward browning with many specific cases of greening. 3) Various remote sensing metrics yield complementary information providing a clearer sense of the biophysical trends during succession. 4) We see evidence of accelerating succession from 1985-1995 to 2005-2015. This acceleration isn't dramatic, just 1-3 years during early recovery and more during later succession, but it is a consistent feature of the analysis. We are not seeing a systematic decline in old-stand LAI. While NDVI declines in old stands with the loss of deciduous trees, we are not seeing a systematic decrease in old stand LAI or wide spread mortality.

  15. Israel wildfires: future trends, impacts and mitigation strategies

    NASA Astrophysics Data System (ADS)

    Wittenberg, Lea

    2017-04-01

    Forest fires in the Euro-Mediterranean region burn about 450,000 ha each year. In Israel, the frequency and extent of wildfires have been steadily increasing over the past decades, culminating in several large and costly fires in 2010, 2012 and 2016. The extensive development of forest areas since the 1950's and the accumulation of fuel in the forests, has led to increased occurrences of high intensity fires. Land-use changes and human population growth are the most prevailing and common determinant of wildfire occurrence and impacts. Climate extremes, possibly already a sign of regional climate change, are another frequent determinant of increasing wildfire risk. Therefore, the combination of extreme dry spells, high fuel loads and increased anthropogenic pressure on the open spaces result in an overall amplified wildfire risk. These fires not only cause loss of life and damage to properties but also carry serious environmental repercussions. Combustion of standing vegetation and the leaf litter leave the soil bare and vulnerable to runoff and erosion, thereby increasing risks of flooding. Today, all of Israel's open spaces, forests, natural parks, major metropolitan centers, towns and villages are embedded within the wildland urban interface (WUI). Typically, wildfires near or in the WUI occur on uplands and runoff generated from the burned area poses flooding risks in urban and agricultural zones located downstream. Post-fire management aims at reducing associated hazards as collapsing trees and erosion risk. Often the time interval between a major fire and the definition of priority sites is in the order of days-to-weeks since administrative procedures, financial estimates and implementation of post-fire salvage logging operations require time. Defining the magnitude of the burn scar and estimating its potential impact on runoff and erosion must therefore be done quickly. A post-fire burn severity, runoff and erosion model is a useful tool in estimating potential risks and management strategic. Moreover, national agencies and local authorities must decide on a range of post-fire measures to mitigate risks quickly since most large fires occur late in summer shortly before the winter season. Possible climate changes, socio-economic trends, and intense land use pressures are contributing factors in a national challenge to deal with forest fires along the WUI. However, in order to support integrated fire preparedness, response, management and recovery at the national, regional and local scales, stronger research and planning effort are required. This includes long-term monitoring programs and a systematic, standardized data acquisition scheme, compiling fire history, landscape-fire spread, mitigation and assessment of the immediate fire effects, land use changes and weather data. Knowledge of both short and long-term impacts of wildfire is essential for effective risk assessment, policy formulation and wildfire management.

  16. Late Glacial to Holocene paleoenvironmental change on the northwestern Pacific seaboard, Kamchatka Peninsula (Russia)

    NASA Astrophysics Data System (ADS)

    Pendea, Ionel Florin; Ponomareva, Vera; Bourgeois, Joanne; Zubrow, Ezra B. W.; Portnyagin, Maxim; Ponkratova, Irina; Harmsen, Hans; Korosec, Gregory

    2017-02-01

    We used a new sedimentary record from a small kettle wetland to reconstruct the Late Glacial and Holocene vegetation and fire history of the Krutoberegovo-Ust Kamchatsk region in eastern Kamchatka Peninsula (Russia). Pollen and charcoal data suggest that the Late Glacial landscape was dominated by a relatively fire-prone Larix forest-tundra during the Greenland Interstadial complex (GI 1) and a subarctic steppe during the Younger Dryas (GS1). The onset of the Holocene is marked by the reappearance of trees (mainly Alnus incana) within a fern and shrub dominated landscape. The Holocene Thermal Maximum (HTM) features shifting vegetational communities dominated by Alnus shrubs, diverse forb species, and locally abundant aquatic plants. The HTM is further defined by the first appearance of stone birch forests (Betula ermanii) - Kamchatka's most abundant modern tree species. The Late Holocene is marked by shifts in forest dynamics and forest-graminoid ratio and the appearance of new non-arboreal taxa such as bayberry (Myrica) and meadow rue (Filipendula). Kamchatka is one of Earth's most active volcanic regions. During the Late Glacial and Holocene, Kamchatka's volcanoes spread large quantities of tephra over the study region. Thirty-four tephra falls have been identified at the site. The events represented by most of these tephra falls have not left evidence of major impacts on the vegetation although some of the thicker tephras caused expansion of grasses (Poaceae) and, at least in one case, forest die-out and increased fire activity.

  17. Fuel type characterization and potential fire behavior estimation in Sardinia and Corsica islands

    NASA Astrophysics Data System (ADS)

    Bacciu, V.; Pellizzaro, G.; Santoni, P.; Arca, B.; Ventura, A.; Salis, M.; Barboni, T.; Leroy, V.; Cancellieri, D.; Leoni, E.; Ferrat, L.; Perez, Y.; Duce, P.; Spano, D.

    2012-04-01

    Wildland fires represent a serious threat to forests and wooded areas of the Mediterranean Basin. As recorded by the European Commission (2009), during the last decade Southern Countries have experienced an annual average of about 50,000 forest fires and about 470,000 burned hectares. The factor that can be directly manipulated in order to minimize fire intensity and reduce other fire impacts, such as three mortality, smoke emission, and soil erosion, is wildland fuel. Fuel characteristics, such as vegetation cover, type, humidity status, and biomass and necromass loading are critical variables in affecting wildland fire occurrence, contributing to the spread, intensity, and severity of fires. Therefore, the availability of accurate fuel data at different spatial and temporal scales is needed for fire management applications, including fire behavior and danger prediction, fire fighting, fire effects simulation, and ecosystem simulation modeling. In this context, the main aims of our work are to describe the vegetation parameters involved in combustion processes and develop fire behavior fuel maps. The overall work plan is based firstly on the identification and description of the different fuel types mainly affected by fire occurrence in Sardinia (Italy) and Corsica (France) Islands, and secondly on the clusterization of the selected fuel types in relation to their potential fire behavior. In the first part of the work, the available time series of fire event perimeters and the land use map data were analyzed with the purpose of identifying the main land use types affected by fires. Thus, field sampling sites were randomly identified on the selected vegetation types and several fuel variables were collected (live and dead fuel load partitioned following Deeming et al., (1977), depth of fuel layer, plant cover, surface area-to-volume ratio, heat content). In the second part of the work, the potential fire behavior for every experimental site was simulated using BEHAVE fire behavior prediction system (Andrews, 1989) and experimental fuel data. Fire behavior was simulated by setting different weather scenarios representing the most frequent summer meteorological conditions. The simulation outputs (fireline intensity, rate of spread, flame length) were then analyzed for clustering the different fuel types in relation to their potential fire behavior. The results of this analysis can be used to produce fire behavior fuel maps that are important tools in evaluating fire hazard and risk for land management planning, locating and rating fuel treatments, and aiding in environmental assessments and fire danger programs modeling. This work is supported by FUME Project FP7-ENV-2009-1, Grant Agreement Number 243888 and Proterina-C Project, EU Italia-Francia Marittimo 2007-2013 Programme.

  18. Links between Plant Invasion, Anthropogenic Nitrogen Enrichment, and Wildfires: A Systematic Review

    NASA Astrophysics Data System (ADS)

    Felker-Quinn, E.; Gooding Lassiter, M.; Maxwell, A.; Housego, R.; Young, B.

    2014-12-01

    Wildfires can become positive feedbacks in climate change scenarios, because wildfires release large amounts of carbon sequestered in plants and soil to the atmosphere, and because their frequency increases with increasing temperatures. Invasive plants represent an important biotic link between anthropogenic activity and wildfire, as many of these species benefit from human disturbance while increasing fire frequency and severity. A robust body of literature addresses the response of invasive species to nitrogen enrichment, and a separate body of research assesses the feedbacks between invasive plant species and wildfire. We have undertaken a systematic review of these fields in order to evaluate the hypothesis that anthropogenic nitrogen loading contributes to increasing wildfires by promoting the growth and spread of fire-adapted invasive plant species. We identified invasive plant species using the Fire Effects Information System (FEIS), a Forest Service database that evaluates fire ecology of species identified as being of concern by land managers. We used information contained in the FEIS as well as more recent studies to characterize species on a continuum from fire-adapted to fire-intolerant based on traits related to interactions of fire with survival, reproduction, and spread. Of the 107 invasive plant species with fire ecology reports in the FEIS, we have initially classified 18 as fire-adapted, possessing traits that intensify fire regimes. Additionally, 33 species are fire-tolerant, benefiting from fire primarily because it creates a high-resource, low-competition environment. In continuing work, we are evaluating the responses of the invasive plant species to increased anthropogenic nitrogen with a focus on traits such as germination, productivity, and survival, as these traits contribute to wildfire frequency and severity. The views expressed in this abstract are those of the authors and do not necessarily represent the views or policies of the U.S. EPA.

  19. Synthesis of palm oil fatty acid as foaming agent for firefighting application

    NASA Astrophysics Data System (ADS)

    Rivai, M.; Hambali, E.; Suryani, A.; Fitria, R.; Firmansyah, S.; Pradesi, J.

    2017-05-01

    Many factors including natural factor, human carelessness, new land clearance or agricultural burning/act of vandalism and ground fire are suspected as the causes of forest fire. Foam, which cools the fire down, covers the burning material/fuel, and avoids contact between burning materials with oxygen, is an effective material used to fight large-scale fires. For this purpose, surfactant which can facilitate foam formation and inhibit the spread of smoke is required. This study was aimed at producing prototype product of foaming agent from palm oil and its formulation as a fire fighting material. Before the formulation stage, the foaming agent was resulted from saponification process of oleic, lauric, and palmitic acids by using NaOH and KOH alkaline. Foam stability was used as the main indicator of foaming agent. Results showed that potassium palmitate had the highest foam stability of 82% until the 3rd day. The best potassium palmitate concentration was 7%.

  20. Incorporating Resource Protection Constraints in an Analysis of Landscape Fuel-Treatment Effectiveness in the Northern Sierra Nevada, CA, USA.

    PubMed

    Dow, Christopher B; Collins, Brandon M; Stephens, Scott L

    2016-03-01

    Finding novel ways to plan and implement landscape-level forest treatments that protect sensitive wildlife and other key ecosystem components, while also reducing the risk of large-scale, high-severity fires, can prove to be difficult. We examined alternative approaches to landscape-scale fuel-treatment design for the same landscape. These approaches included two different treatment scenarios generated from an optimization algorithm that reduces modeled fire spread across the landscape, one with resource-protection constrains and one without the same. We also included a treatment scenario that was the actual fuel-treatment network implemented, as well as a no-treatment scenario. For all the four scenarios, we modeled hazardous fire potential based on conditional burn probabilities, and projected fire emissions. Results demonstrate that in all the three active treatment scenarios, hazardous fire potential, fire area, and emissions were reduced by approximately 50 % relative to the untreated condition. Results depict that incorporation of constraints is more effective at reducing modeled fire outputs, possibly due to the greater aggregation of treatments, creating greater continuity of fuel-treatment blocks across the landscape. The implementation of fuel-treatment networks using different planning techniques that incorporate real-world constraints can reduce the risk of large problematic fires, allow for landscape-level heterogeneity that can provide necessary ecosystem services, create mixed forest stand structures on a landscape, and promote resilience in the uncertain future of climate change.

  1. [Relationships of forest fire with lightning in Daxing' anling Mountains, Northeast China].

    PubMed

    Lei, Xiao-Li; Zhou, Guang-Sheng; Jia, Bing-Rui; Li, Shuai

    2012-07-01

    Forest fire is an important factor affecting forest ecosystem succession. Recently, forest fire, especially forest lightning fire, shows an increasing trend under global warming. To study the relationships of forest fire with lightning is essential to accurately predict the forest fire in time. Daxing' anling Mountains is a region with high frequency of forest lightning fire in China, and an important experiment site to study the relationships of forest fire with lightning. Based on the forest fire records and the corresponding lightning and meteorological observation data in the Mountains from 1966 to 2007, this paper analyzed the relationships of forest fire with lightning in this region. In the period of 1966-2007, both the lightning fire number and the fired forest area in this region increased significantly. The meteorological factors affecting the forest lighting fire were related to temporal scales. At yearly scale, the forest lightning fire was significantly correlated with precipitation, with a correlation coefficient of -0.489; at monthly scale, it had a significant correlation with air temperature, the correlation coefficient being 0.18. The relationship of the forest lightning fire with lightning was also related to temporal scales. At yearly scale, there was no significant correlation between them; at monthly scale, the forest lightning fire was strongly correlated with lightning and affected by precipitation; at daily scale, a positive correlation was observed between forest lightning fire and lightning when the precipitation was less than 5 mm. According to these findings, a fire danger index based on ADTD lightning detection data was established, and a forest lightning fire forecast model was developed. The prediction accuracy of this model for the forest lightning fire in Daxing' anling Mountains in 2005-2007 was > 80%.

  2. Carbon Consequences of Forest Disturbance and Recovery Across the Conterminous United States

    NASA Technical Reports Server (NTRS)

    Williams, Christopher A.; Collatz, G. James; Masek, Jeffrey; Goward, Samuel N.

    2012-01-01

    Forests of North America are thought to constitute a significant long term sink for atmospheric carbon. The United States Forest Service Forest Inventory and Analysis (FIA) program has developed a large data base of stock changes derived from consecutive estimates of growing stock volume in the US. These data reveal a large and relatively stable increase in forest carbon stocks over the last two decades or more. The mechanisms underlying this national increase in forest stocks may include recovery of forests from past disturbances, net increases in forest area, and growth enhancement driven by climate or fertilization by CO2 and Nitrogen. Here we estimate the forest recovery component of the observed stock changes using FIA data on the age structure of US forests and carbon stocks as a function of age. The latter are used to parameterize forest disturbance and recovery processes in a carbon cycle model. We then apply resulting disturbance/recovery dynamics to landscapes and regions based on the forest age distributions. The analysis centers on 28 representative climate settings spread about forested regions of the conterminous US. We estimate carbon fluxes for each region and propagate uncertainties in calibration data through to the predicted fluxes. The largest recovery-driven carbon sinks are found in the South central, Pacific Northwest, and Pacific Southwest regions, with spatially averaged net ecosystem productivity (NEP) of about 100 g C / square m / a driven by forest age structure. Carbon sinks from recovery in the Northeast and Northern Lake States remain moderate to large owing to the legacy of historical clearing and relatively low modern disturbance rates from harvest and fire. At the continental scale, we find a conterminous U.S. forest NEP of only 0.16 Pg C/a from age structure in 2005, or only 0.047 Pg C/a of forest stock change after accounting for fire emissions and harvest transfers. Recent estimates of NEP derived from inventory stock change, harvest, and fire data show twice the NEP sink we derive from forest age distributions. We discuss possible reasons for the discrepancies including modeling errors and the possibility of climate and/or fertilization (CO2 or N) growth enhancements.

  3. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states.

    PubMed

    Staver, A Carla; Archibald, Sally; Levin, Simon

    2011-05-01

    Savannas are known as ecosystems with tree cover below climate-defined equilibrium values. However, a predictive framework for understanding constraints on tree cover is lacking. We present (a) a spatially extensive analysis of tree cover and fire distribution in sub-Saharan Africa, and (b) a model, based on empirical results, demonstrating that savanna and forest may be alternative stable states in parts of Africa, with implications for understanding savanna distributions. Tree cover does not increase continuously with rainfall, but rather is constrained to low (<50%, "savanna") or high tree cover (>75%, "forest"). Intermediate tree cover rarely occurs. Fire, which prevents trees from establishing, differentiates high and low tree cover, especially in areas with rainfall between 1000 mm and 2000 mm. Fire is less important at low rainfall (<1000 mm), where rainfall limits tree cover, and at high rainfall (>2000 mm), where fire is rare. This pattern suggests that complex interactions between climate and disturbance produce emergent alternative states in tree cover. The relationship between tree cover and fire was incorporated into a dynamic model including grass, savanna tree saplings, and savanna trees. Only recruitment from sapling to adult tree varied depending on the amount of grass in the system. Based on our empirical analysis and previous work, fires spread only at tree cover of 40% or less, producing a sigmoidal fire probability distribution as a function of grass cover and therefore a sigmoidal sapling to tree recruitment function. This model demonstrates that, given relatively conservative and empirically supported assumptions about the establishment of trees in savannas, alternative stable states for the same set of environmental conditions (i.e., model parameters) are possible via a fire feedback mechanism. Integrating alternative stable state dynamics into models of biome distributions could improve our ability to predict changes in biome distributions and in carbon storage under climate and global change scenarios.

  4. Scientists assess impact of Indonesia fires

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The fires burning in Indonesia over the past several months are setting aflame the biomass and wildlife habitat of the tropical forests, spreading a dangerously unhealthy haze across the populous country and nearby nations in southeast Asia, causing transportation hazards, and sending plumes of smoke up into the troposphere.Most of the fires have been set—by big landowners, commercial loggers, and small farmers—in attempts to clear and cultivate the land, as people have done in the past. But this year a drought induced by El Niño limited the rainfall that could help extinguish the flames and wash away the smoke and haze. In addition, some scientists say that smoke could even delay the monsoon, which usually arrives in early November.

  5. Extreme Fire Severity Patterns in Topographic, Convective and Wind-Driven Historical Wildfires of Mediterranean Pine Forests

    PubMed Central

    Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier

    2014-01-01

    Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires. PMID:24465492

  6. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.

    PubMed

    Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier

    2014-01-01

    Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires.

  7. Wildfire simulation using LES with synthetic-velocity SGS models

    NASA Astrophysics Data System (ADS)

    McDonough, J. M.; Tang, Tingting

    2016-11-01

    Wildland fires are becoming more prevalent and intense worldwide as climate change leads to warmer, drier conditions; and large-eddy simulation (LES) is receiving increasing attention for fire spread predictions as computing power continues to improve (see, e.g.,). We report results from wildfire simulations over general terrain employing implicit LES for solution of the incompressible Navier-Stokes (N.-S.) and thermal energy equations with Boussinesq approximation, altered with Darcy, Forchheimer and Brinkman extensions, to represent forested regions as porous media with varying (in both space and time) porosity and permeability. We focus on subgrid-scale (SGS) behaviors computed with a synthetic-velocity model, a discrete dynamical system, based on the poor man's N.-S. equations and investigate the ability of this model to produce fire whirls (tornadoes of fire) at the (unresolved) SGS level. Professor, Mechanical Engineering and Mathematics.

  8. Mapping forest canopy fuels in Yellowstone National Park using lidar and hyperspectral data

    NASA Astrophysics Data System (ADS)

    Halligan, Kerry Quinn

    The severity and size of wildland fires in the forested western U.S have increased in recent years despite improvements in fire suppression efficiency. This, along with increased density of homes in the wildland-urban interface, has resulted in high costs for fire management and increased risks to human health, safety and property. Crown fires, in comparison to surface fires, pose an especially high risk due to their intensity and high rate of spread. Crown fire models require a range of quantitative fuel parameters which can be difficult and costly to obtain, but advances in lidar and hyperspectral sensor technologies hold promise for delivering these inputs. Further research is needed, however, to assess the strengths and limitations of these technologies and the most appropriate analysis methodologies for estimating crown fuel parameters from these data. This dissertation focuses on retrieving critical crown fuel parameters, including canopy height, canopy bulk density and proportion of dead canopy fuel, from airborne lidar and hyperspectral data. Remote sensing data were used in conjunction with detailed field data on forest parameters and surface reflectance measurements. A new method was developed for retrieving Digital Surface Model (DSM) and Digital Canopy Models (DCM) from first return lidar data. Validation data on individual tree heights demonstrated the high accuracy (r2 0.95) of the DCMs developed via this new algorithm. Lidar-derived DCMs were used to estimate critical crown fire parameters including available canopy fuel, canopy height and canopy bulk density with linear regression model r2 values ranging from 0.75 to 0.85. Hyperspectral data were used in conjunction with Spectral Mixture Analysis (SMA) to assess fuel quality in the form of live versus dead canopy proportions. Severity and stage of insect-caused forest mortality were estimated using the fractional abundance of green vegetation, non-photosynthetic vegetation and shade obtained from SMA. Proportion of insect attack was estimated with a linear model producing an r2 of 0.6 using SMA and bark endmembers from image and reference libraries. Fraction of red attack, with a possible link to increased crown fire risk, was estimated with an r2 of 0.45.

  9. Reconstruction of the long-term fire history of an old-growth deciduous forest in Southern Québec, Canada, from charred wood in mineral soils

    NASA Astrophysics Data System (ADS)

    Talon, Brigitte; Payette, Serge; Filion, Louise; Delwaide, Ann

    2005-07-01

    Charcoal particles are widespread in terrestrial and lake environments of the northern temperate and boreal biomes where they are used to reconstruct past fire events and regimes. In this study, we used botanically identified and radiocarbon-dated charcoal macrofossils in mineral soils as a paleoecological tool to reconstruct past fire activity at the stand scale. Charcoal macrofossils buried in podzolic soils by tree uprooting were analyzed to reconstruct the long-term fire history of an old-growth deciduous forest in southern Québec. Charcoal fragments were sampled from the uppermost mineral soil horizons and identified based on anatomical characters. Spruce ( Picea spp.) fragments dominated the charcoal assemblage, along with relatively abundant wood fragments of sugar maple ( Acer saccharum) and birch ( Betula spp.), and rare fragments of pine ( Pinus cf. strobus) and white cedar ( Thuja canadensis). AMS radiocarbon dates from 16 charcoal fragments indicated that forest fires were widespread during the early Holocene, whereas no fires were recorded from the mid-Holocene to present. The paucity of charcoal data during this period, however, does not preclude that a fire event of lower severity may have occurred. At least eight forest fires occurred at the study site between 10,400 and 6300 cal yr B.P., with a dominance of burned conifer trees between 10,400 and 9000 cal yr B.P. and burned conifer and deciduous trees between 9000 and 6300 cal yr B.P. Based on the charcoal record, the climate at the study site was relatively dry during the early Holocene, and more humid from 6300 cal yr B.P. to present. However, it is also possible that the predominance of conifer trees in the charcoal record between 10,400 and 6300 cal yr B.P. created propitious conditions for fire spreading. The charcoal record supports inferences based on pollen influx data (Labelle, C., Richard, P.J.H. 1981. Végétation tardiglaciaire et postglaciaire au sud-est du Parc des Laurentides, Québec. Géographie Physique et Quaternaire 35, 345-359) of the early arrival of spruce and sugar maple in the study area shortly after deglaciation. We conclude that macroscopic charcoal analysis of mineral soils subjected to disturbance by tree uprooting may be a useful paleoecological tool to reconstruct long-term forest fire history at the stand scale.

  10. Sensitivity analysis of a FMC model for improving forecasting forest fires: Comparison with real fires in Spain

    NASA Astrophysics Data System (ADS)

    San Jose, Roberto; Perez, Juan Luis; Gonzalez-Barras, Rosa M.; Pecci, Julia; Palacios, Marino

    2014-05-01

    Forest fires continue to be a very dangerous and extreme violent episode jeopardizing the human lives and owns. Spain is plagued by forest and brush fires every summer, when extremely dry weather sets in along with high temperatures. The use of fire behavior models requires the availability of high resolution environmental and fuel data; in absence of realistic data, errors on the simulated fire spread con be compounded to produce o decrease of the spatial and temporal accuracy of predicted data. In this work we have carried out a sensitivity analysis of different components of the fire model and particularly the fuel moisture content (FMC) such as microphysics and solar radiation model. Three different real fire models have been used: Murcia (September, 7, 2010 19h09 and 9 hours duration), Gabiel (March, 7, 2007, 22h15 and 38 hours duration) and Culla (Marzo, 7, 2007, 23h36 and 37 hours duration). We use the 100 m European Corine Land Cover map. We use the WRF-Fire model developed by NCAR (USA). The WRF mode is run using the GFS global data and over the Iberian Peninsula with 15 km spatial resolution. We apply the nesting approach over the fires areas (located in the South East of the Iberian Peninsula) with 3 km, 1 km and 200 m spatial resolution. The Fire module included into WRF is run with 20 m spatial resolution and the landuse is interpolated from the Corine 100 m land use map. The results show that the Thompson et al. microphysics scheme and the RRTM solar radiation scheme are those with the best combination using a specific counting score to classify the goodness of the results compare with the real burned area. Those pixels not burned by the simulations but burned by the observational data sets are penalized double compare with the vice versa process. The NDVI obtained by satellite on the day of starting the fire is included in the simulations and a substantial improving in the final score is obtained.

  11. Spatio-temporal evolution of forest fires in Portugal

    NASA Astrophysics Data System (ADS)

    Tonini, Marj; Pereira, Mário G.; Parente, Joana

    2017-04-01

    A key issue in fire management is the ability to explore and try to predict where and when fires are more likely to occur. This information can be useful to understand the triggering factors of ignitions and for planning strategies to reduce forest fires, to manage the sources of ignition and to identify areas and frame period at risk. Therefore, producing maps displaying forest fires location and their occurrence in time can be of great help for accurately forecasting these hazardous events. In a fire prone country as Portugal, where thousands of events occurs each year, it is involved to drive information about fires over densities and recurrences just by looking at the original arrangement of the mapped ignition points or burnt areas. In this respect, statistical methods originally developed for spatio-temporal stochastic point processes can be employed to find a structure within these large datasets. In the present study, the authors propose an approach to analyze and visualize the evolution in space and in time of forest fires occurred in Portugal during a long frame period (1990 - 2013). Data came from the Portuguese mapped burnt areas official geodatabase (by the Institute for the Conservation of Nature and Forests), which is the result of interpreted satellite measurements. The following statistical analyses were performed: the geographically-weighted summary statistics, to analyze the local variability of the average burned area; the space-time Kernel density, to elaborate smoothed density surfaces representing over densities of fires classed by size and on North vs South region. Finally, we emploied the volume rendering thecnique to visualize the spatio-temporal evolution of these events into a unique map: this representation allows visually inspecting areas and time-step more affected from a high aggregation of forest fires. It results that during the whole investigated period over densities are mainly located in the northern regions, while in the southern areas spread hot-spot are spatially randomly distributed and temporally more concentrated in the frame 2000 - 2004. To conclude, this study let us to identify a multitude of clustering space-time features of forest fires in Portugal, which can be useful for a better planning of educational activities and prevention campaigns as well as for a better allocation of monitoring systems and firefighting. References: Tonini M., Pereira M. G., Parente J. (2016) - Evolution of forest fires in Portugal: from spatio-temporal point events to smoothed density maps. Natural Hazard, doi:10.1007/s11069-016-2637-x Lu B., Harris P., Charlton M., Brunsdon C. (2014) - The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models. Geo-spatial Information Science, Vol. 17: 85-101 Rowlingson B., Diggle P., Bivand M.R. (2012) - Splancs: spatial point pattern analysis code in S-Plus. Computers and Geosciences, Vol. 19: 627-655 Acknowledgements: This work was supported by: (i) the FIREXTR project, PTDC/ATP¬GEO/0462/2014; (ii) the project Interact - Integrative Research in Environment,Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, cofinanced by FEDER/NORTE 2020; and, (iii) European Investment Funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033. We are especially grateful to ICNF for providing the fire.

  12. Optimizing prescribed fire allocation for managing fire risk in central Catalonia.

    PubMed

    Alcasena, Fermín J; Ager, Alan A; Salis, Michele; Day, Michelle A; Vega-Garcia, Cristina

    2018-04-15

    We used spatial optimization to allocate and prioritize prescribed fire treatments in the fire-prone Bages County, central Catalonia (northeastern Spain). The goal of this study was to identify suitable strategic locations on forest lands for fuel treatments in order to: 1) disrupt major fire movements, 2) reduce ember emissions, and 3) reduce the likelihood of large fires burning into residential communities. We first modeled fire spread, hazard and exposure metrics under historical extreme fire weather conditions, including node influence grid for surface fire pathways, crown fraction burned and fire transmission to residential structures. Then, we performed an optimization analysis on individual planning areas to identify production possibility frontiers for addressing fire exposure and explore alternative prescribed fire treatment configurations. The results revealed strong trade-offs among different fire exposure metrics, showed treatment mosaics that optimize the allocation of prescribed fire, and identified specific opportunities to achieve multiple objectives. Our methods can contribute to improving the efficiency of prescribed fire treatment investments and wildfire management programs aimed at creating fire resilient ecosystems, facilitating safe and efficient fire suppression, and safeguarding rural communities from catastrophic wildfires. The analysis framework can be used to optimally allocate prescribed fire in other fire-prone areas within the Mediterranean region and elsewhere. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Using NPP-Suomi VIIRS I-band data to delineate high- and low-intensity burn areas for forest fires in interior Alaska

    NASA Astrophysics Data System (ADS)

    Waigl, C. F.; Prakash, A.; Stuefer, M.; Ichoku, C. M.

    2016-12-01

    The aim of this work is to present and evaluate an algorithm that generates near real-time fire detections suitable for use by fire and related hazard management agencies in Alaska. Our scheme offers benefits over available global products and is sensitive to low-intensity residual burns while at the same time avoiding common sources of false detections as they are observed in the Alaskan boreal forest, such as refective river banks and old fire scars. The algorithm is based on I-band brightness temperature data form the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NOAA's NPP Suomi spacecraft. Using datasets covering the entire 2015 Alaska fire season, we first evaluate the performance of two global fire products: MOD14/MYD14, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the more recent global VIIRS I-band product. A comparison with the fire perimeter and properties data published by the Alaska Interagency Coordination Center (AICC) shows that both MODIS and VIIRS fire products successfully detect all fires larger than approx. 1000 hectares, with the VIIRS I-band product only moderately outperforming MOD14/MYD14. For smaller fires, the VIIRS I-band product offers higher detection likelihood, but still misses one fifth of the fire events overall. Furthermore, some daytime detections are missing, possibly due to processing difficulties or incomplete data transfer. Second, as an alternative, we present a simple algorithm that uses the normalized difference between the 3.74µm and 11.45 µm VIIRS-I band at-sensor brightness temperatures to map both low- and high-intensity burn areas. Such an approach has the advantage that it makes use of data that is available via the direct readout station operated by Geographic Information Network of Alaska (GINA). We apply this scheme to known Alaskan boreal forest fires and validate it using GIS data produced by fire management agencies, fire detections from near simultanous Landsat imagery, and sub-pixel analysis. We find that our VIIRS derived fire product more accurately captures the fire spread, can differentiate well between low- and high-intensity burn areas, and has fewer errors of omission compared to the MODIS and VIIRS global fire products.

  14. Focused sunlight factor of forest fire danger assessment using Web-GIS and RS technologies

    NASA Astrophysics Data System (ADS)

    Baranovskiy, Nikolay V.; Sherstnyov, Vladislav S.; Yankovich, Elena P.; Engel, Marina V.; Belov, Vladimir V.

    2016-08-01

    Timiryazevskiy forestry of Tomsk region (Siberia, Russia) is a study area elaborated in current research. Forest fire danger assessment is based on unique technology using probabilistic criterion, statistical data on forest fires, meteorological conditions, forest sites classification and remote sensing data. MODIS products are used for estimating some meteorological conditions and current forest fire situation. Geonformation technologies are used for geospatial analysis of forest fire danger situation on controlled forested territories. GIS-engine provides opportunities to construct electronic maps with different levels of forest fire probability and support raster layer for satellite remote sensing data on current forest fires. Web-interface is used for data loading on specific web-site and for forest fire danger data representation via World Wide Web. Special web-forms provide interface for choosing of relevant input data in order to process the forest fire danger data and assess the forest fire probability.

  15. Exploring the future change space for fire weather in southeast Australia

    NASA Astrophysics Data System (ADS)

    Clarke, Hamish; Evans, Jason P.

    2018-05-01

    High-resolution projections of climate change impacts on fire weather conditions in southeast Australia out to 2080 are presented. Fire weather is represented by the McArthur Forest Fire Danger Index (FFDI), calculated from an objectively designed regional climate model ensemble. Changes in annual cumulative FFDI vary widely, from - 337 (- 21%) to + 657 (+ 24%) in coastal areas and - 237 (- 12%) to + 1143 (+ 26%) in inland areas. A similar spread is projected in extreme FFDI values. In coastal regions, the number of prescribed burning days is projected to change from - 11 to + 10 in autumn and - 10 to + 3 in spring. Across the ensemble, the most significant increases in fire weather and decreases in prescribed burn windows are projected to take place in spring. Partial bias correction of FFDI leads to similar projections but with a greater spread, particularly in extreme values. The partially bias-corrected FFDI performs similarly to uncorrected FFDI compared to the observed annual cumulative FFDI (ensemble root mean square error spans 540 to 1583 for uncorrected output and 695 to 1398 for corrected) but is generally worse for FFDI values above 50. This emphasizes the need to consider inter-variable relationships when bias-correcting for complex phenomena such as fire weather. There is considerable uncertainty in the future trajectory of fire weather in southeast Australia, including the potential for less prescribed burning days and substantially greater fire danger in spring. Selecting climate models on the basis of multiple criteria can lead to more informative projections and allow an explicit exploration of uncertainty.

  16. Selective Cutting Impact on Carbon Storage in Fremont-Winema National Forest, Oregon

    NASA Astrophysics Data System (ADS)

    Huybrechts, C.; Cleve, C. T.

    2004-12-01

    Management personnel of the Fremont-Winema National Forest in southern Oregon were interested in investigating how selective cutting or fuel load reduction treatments affect forest carbon sinks and as an ancillary product, fire risk. This study was constructed with the objective of providing this information to the forest administrators, as well as to satisfy a directive to study carbon management, a component of the 2004 NASA's Application Division Program Plan. During the summer of 2004, a request for decision support tools by the forest management was addressed by a NASA sponsored student-led, student-run internship group called DEVELOP. This full-time10-week program was designed to be an introduction to work done by earth scientists, professional business / client relationships and the facilities available at NASA Ames. Four college and graduate students from varying educational backgrounds designed the study and implementation plan. The team collected data for five consecutive days in Oregon throughout the Fremont-Winema forest and the surrounding terrain, consisting of soil sampling for underground carbon dynamics, fire model and vegetation map validation. The goal of the carbon management component of the project was to model current carbon levels, then to gauge the effect of fuel load reduction treatments. To study carbon dynamics, MODIS derived fraction photosynthetically active radiation (FPAR) maps, regional climate data, and Landsat 5 generated dominant vegetation species and land cover maps were used in conjunction with the NASA - Carnegie-Ames-Stanford-Approach (CASA) model. To address fire risk the dominant vegetation species map was used to estimate fuel load based on species biomass in conjunction with a mosaic of digital elevation models (DEMs) as components to the creation of an Anderson-inspired fuel map, a rate of spread in meters/minute map and a flame length map using ArcMap 9 and FlamMap. Fire risk results are to be viewed qualitatively as maps output spatial distribution of data rather then quantitative assessment of risk. For the first time ever, the resource managers at the Fremont-Winema forest will be taking into consideration the value of carbon as a resource in their decision making process for the 2005 Fremont-Winema forest management plan.

  17. Multi-temporal analysis of forest fire risk driven by environmental and socio-economic change in the Republic of Korea

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Lim, C. H.; Kim, G. S.; Lee, W. K.

    2017-12-01

    Analysis of forest fire risk is important in disaster risk reduction (DRR) since it provides a way to manage forest fires. Climate and socio-economic factors are important in the cause of forest fires, and the role of the socio-economic factors in prevention and preparedness of forest fires is increasing. As most of the forest fires in the Republic of Korea are highly related to human activities, both environmental factors and socio-economic factors were considered into the analysis of forest fire risk. In this study, the Maximum Entropy (MaxEnt) model was used to predict the potential geographical distribution and probability of forest fire occurrence spatially and temporally from 1980s to the 2010s in the Republic of Korea by multi-temporal analysis and analyze the relationship between forest fires and the factors. As a result of the risk analysis, there was an overall increasing trend in forest fire risk from the 1980s to the 2000s, and socio-economic factors were highly correlated with the occurrence of forest fires. The study demonstrates that the socio-economic factors considered as human activities can increase the occurrence of forest fires. The result implies that managing human activities are significant to prevent forest fire occurrence. In addition, timely forest fire prevention and control is necessary as drought index such as Standardized Precipitation Index (SPI) also affected forest fires.

  18. Analysis of Architectural Building Design Influences on Fire Spread in Densely Urban Settlement using Cellular Automata

    NASA Astrophysics Data System (ADS)

    Tambunan, L.; Salamah, H.; Asriana, N.

    2017-03-01

    This study aims to determine the influence of architectural design on the risk of fire spread in densely urban settlement area. Cellular Automata (CA) is used to analyse the fire spread pattern, speed, and the extent of damage. Four cells represent buildings, streets, and fields characteristic in the simulated area, as well as their flammability level and fire spread capabilities. Two fire scenarios are used to model the spread of fire: (1) fire origin in a building with concrete and wood material majority, and (2) fire origin in building with wood material majority. Building shape, building distance, road width, and total area of wall openings are considered constant, while wind is ignored. The result shows that fire spread faster in the building area with wood majority than with concrete majority. Significant amount of combustible building material, absence of distance between buildings, narrow streets and limited fields are factors which influence fire spread speed and pattern as well as extent of damage when fire occurs in the densely urban settlement area.

  19. Assessment of multi-wildfire occurrence data for machine learning based risk modelling

    NASA Astrophysics Data System (ADS)

    Lim, C. H.; Kim, M.; Kim, S. J.; Yoo, S.; Lee, W. K.

    2017-12-01

    The occurrence of East Asian wildfires is mainly caused by human-activities, but the extreme drought increased due to the climate change caused wildfires and they spread to large-scale fires. Accurate occurrence location data is required for modelling wildfire probability and risk. In South Korea, occurrence data surveyed through KFS (Korea Forest Service) and MODIS (MODerate-resolution Imaging Spectroradiometer) satellite-based active fire data can be utilized. In this study, two sorts of wildfire occurrence data were applied to select suitable occurrence data for machine learning based wildfire risk modelling. MaxEnt (Maximum Entropy) model based on machine learning is used for wildfire risk modelling, and two types of occurrence data and socio-economic and climate-environment data are applied to modelling. In the results with KFS survey based data, the low relationship was shown with climate-environmental factors, and the uncertainty of coordinate information appeared. The MODIS-based active fire data were found outside the forests, and there were a lot of spots that did not match the actual wildfires. In order to utilize MODIS-based active fire data, it was necessary to extract forest area and utilize only high-confidence level data. In KFS data, it was necessary to separate the analysis according to the damage scale to improve the modelling accuracy. Ultimately, it is considered to be the best way to simulate the wildfire risk by constructing more accurate information by combining two sorts of wildfire occurrence data.

  20. Mitigating wildland fire hazard using complex network centrality measures

    NASA Astrophysics Data System (ADS)

    Russo, Lucia; Russo, Paola; Siettos, Constantinos I.

    2016-12-01

    We show how to distribute firebreaks in heterogeneous forest landscapes in the presence of strong wind using complex network centrality measures. The proposed framework is essentially a two-tire one: at the inner part a state-of- the-art Cellular Automata model is used to compute the weights of the underlying lattice network while at the outer part the allocation of the fire breaks is scheduled in terms of a hierarchy of centralities which influence the most the spread of fire. For illustration purposes we applied the proposed framework to a real-case wildfire that broke up in Spetses Island, Greece in 1990. We evaluate the scheme against the benchmark of random allocation of firebreaks under the weather conditions of the real incident i.e. in the presence of relatively strong winds.

  1. Global vegetation-fire pattern under different land use and climate conditions

    NASA Astrophysics Data System (ADS)

    Thonicke, K.; Poulter, B.; Heyder, U.; Gumpenberger, M.; Cramer, W.

    2008-12-01

    Fire is a process of global significance in the Earth System influencing vegetation dynamics, biogeochemical cycling and biophysical feedbacks. Naturally ignited wildfires have long history in the Earth System. Humans have been using fire to shape the landscape for their purposes for many millenia, sometimes influencing the status of the vegetation remarkably as for example in Mediterranean-type ecosystems. Processes and drivers describing fire danger, ignitions, fire spread and effects are relatively well-known for many fire-prone ecosystems. Modeling these has a long tradition in fire-affected regions to predict fire risk and behavior for fire-fighting purposes. On the other hand, the global vegetation community realized the importance of disturbances to be recognized in their global vegetation models with fire being globally most important and so-far best studied. First attempts to simulate fire globally considered a minimal set of drivers, whereas recent developments attempt to consider each fire process separately. The process-based fire model SPITFIRE (SPread and InTensity of FIRE) simulates these processes embedded in the LPJ DGVM. Uncertainties still arise from missing measurements for some parameters in less-studied fire regimes, or from broad PFT classifications which subsume different fire-ecological adaptations and tolerances. Some earth observation data sets as well as fire emission models help to evaluate seasonality and spatial distribution of simulated fire ignitions, area burnt and fire emissions within SPITFIRE. Deforestation fires are a major source of carbon released to the atmosphere in the tropics; in the Amazon basin it is the second-largest contributor to Brazils GHG emissions. How ongoing deforestation affects fire regimes, forest stability and biogeochemical cycling in the Amazon basin under present climate conditions will be presented. Relative importance of fire vs. climate and land use change is analyzed. Emissions resulting from wildfires, agricultural and woodfuel burning will be quantified and drivers identified. Future projections of climate and land use change are applied to the model to investigate joint effects on future changes in fire, deforestation and vegetation dynamics in the Amazon basin.

  2. A new method for the analysis of fire spread modeling errors

    Treesearch

    Francis M. Fujioka

    2002-01-01

    Fire spread models have a long history, and their use will continue to grow as they evolve from a research tool to an operational tool. This paper describes a new method to analyse two-dimensional fire spread modeling errors, particularly to quantify the uncertainties of fire spread predictions. Measures of error are defined from the respective spread distances of...

  3. Understanding the Spatio-Temporal Pattern of Fire Disturbance in the Eastern Mongolia Using Modis Product

    NASA Astrophysics Data System (ADS)

    Wurihan; Zhang, H.; Zhang, Z.; Guo, X.; Zhao, J.; Duwala; Shan, Y.; Hongying

    2018-04-01

    Fire disturbance plays an important role in maintaining ecological balance, biodiversity and self-renewal. In this paper, the spatio-temporal pattern of fire disturbances in eastern Mongolia are studied by using the ArcGIS spatial analysis method, using the MCD45A1 data of MODIS fire products with long time series. It provides scientific basis and reference for the regional ecological environment security construction and international ecological security. Research indicates: (1) The fire disturbance in eastern Mongolia has obvious high and low peak interleaving phenomenon in the year, and the seasonal change is obvious. (2) The distribution pattern of fire disturbance in eastern Mongolia is aggregated, which indicates that the fire disturbance is not random and it is caused by certain influence. (3) Fire disturbance is mainly distributed in the eastern province of Mongolia, the border between China and Mongolia and the northern forest area of Sukhbaatar province. (4) The fire disturbance in the eastern part of the study area is strong and the southwest is weaker. The spreading regularity of fire disturbances in eastern Mongolia is closer to the natural level of ecosystem.

  4. A robust scientific workflow for assessing fire danger levels using open-source software

    NASA Astrophysics Data System (ADS)

    Vitolo, Claudia; Di Giuseppe, Francesca; Smith, Paul

    2017-04-01

    Modelling forest fires is theoretically and computationally challenging because it involves the use of a wide variety of information, in large volumes and affected by high uncertainties. In-situ observations of wildfire, for instance, are highly sparse and need to be complemented by remotely sensed data measuring biomass burning to achieve homogeneous coverage at global scale. Fire models use weather reanalysis products to measure energy release and rate of spread but can only assess the potential predictability of fire danger as the actual ignition is due to human behaviour and, therefore, very unpredictable. Lastly, fire forecasting systems rely on weather forecasts to extend the advance warning but are currently calibrated using fire danger thresholds that are defined at global scale and do not take into account the spatial variability of fuel availability. As a consequence, uncertainties sharply increase cascading from the observational to the modelling stage and they might be further inflated by non-reproducible analyses. Although uncertainties in observations will only decrease with technological advances over the next decades, the other uncertainties (i.e. generated during modelling and post-processing) can already be addressed by developing transparent and reproducible analysis workflows, even more if implemented within open-source initiatives. This is because reproducible workflows aim to streamline the processing task as they present ready-made solutions to handle and manipulate complex and heterogeneous datasets. Also, opening the code to the scrutiny of other experts increases the chances to implement more robust solutions and avoids duplication of efforts. In this work we present our contribution to the forest fire modelling community: an open-source tool called "caliver" for the calibration and verification of forest fire model results. This tool is developed in the R programming language and publicly available under an open license. We will present the caliver R package, illustrate the main functionalities and show the results of our preliminary experiments calculating fire danger thresholds for various regions on Earth. We will compare these with the existing global thresholds and, lastly, demonstrate how these newly-calculated regional thresholds can lead to improved calibration of fire forecast models in an operational setting.

  5. Multiple UAV Cooperation for Wildfire Monitoring

    NASA Astrophysics Data System (ADS)

    Lin, Zhongjie

    Wildfires have been a major factor in the development and management of the world's forest. An accurate assessment of wildfire status is imperative for fire management. This thesis is dedicated to the topic of utilizing multiple unmanned aerial vehicles (UAVs) to cooperatively monitor a large-scale wildfire. This is achieved through wildfire spreading situation estimation based on on-line measurements and wise cooperation strategy to ensure efficiency. First, based on the understanding of the physical characteristics of the wildfire propagation behavior, a wildfire model and a Kalman filter-based method are proposed to estimate the wildfire rate of spread and the fire front contour profile. With the enormous on-line measurements from on-board sensors of UAVs, the proposed method allows a wildfire monitoring mission to benefit from on-line information updating, increased flexibility, and accurate estimation. An independent wildfire simulator is utilized to verify the effectiveness of the proposed method. Second, based on the filter analysis, wildfire spreading situation and vehicle dynamics, the influence of different cooperation strategies of UAVs to the overall mission performance is studied. The multi-UAV cooperation problem is formulated in a distributed network. A consensus-based method is proposed to help address the problem. The optimal cooperation strategy of UAVs is obtained through mathematical analysis. The derived optimal cooperation strategy is then verified in an independent fire simulation environment to verify its effectiveness.

  6. Augmentation of freeze-thaw cycles in the alpine soil triggered by the fire on the alpine slopes, Mount Shirouma-dake, northern Japanese Alps

    NASA Astrophysics Data System (ADS)

    Sasaki, A.; Suzuki, K.

    2015-12-01

    This is the continuous study to clarify the geo-environmental changes on the post-fire alpine slopes of Mount Shirouma-dake in the northern Japanese Alps. The fire occurred at May 9, 2009 on the alpine slopes of Mount Shirouma-dake, and the fire spread to the Pinus pumila communities and grasslands. Although the grass had a little damage by the fire, the P. pumila received nearly impact of the fire. In the P. pumila communities where the leaf burnt, forest floor is exposed and become easy to be affected by atmospheric condition such as rain, wind, snow, and etc. First, we illustrated a map of micro-landforms, based on geomorphological fieldworks. We observed these micro-landforms repeatedly for fifth years after the fire. As the results of the observation, it is clear that remarkable changes of these micro-landforms have not occurred but some litters on the forest-floor in the P. pumila communities are flushed out to surroundings. The litter layer on the forest-floor in the P. pumila communities were 3-4 cm thick in August of 2011, but it became 0.5 cm thick in September of 2014. The P. pumila communities established on the slopes consists of angular and sub-angular gravel with openwork texture, which are covered by thin soil layer. Therefore, it is necessary to pay attention to soil erosion following the outflow of the litter. In addition, we observe the ground temperature and soil moisture, under the fired P. pumila communities and the no fired P. pumila communities after the fire, to find influence of the fire. The ground temperature sensors were installed into at 1 cm, 10 cm, and 40 cm depth. The soil moisture sensors were installed into at 1 cm and 10 cm depth. The 1 cm depth of the soil on the post-fire slopes, diurnal freeze-thaw cycles occurred in October and November of 2011, 2012, 2013, and 2014 but it had not occurred in 2009 and 2010. In addition, the period of seasonal frost at 10 cm and 40 cm depth on the post-fire slopes are extended for two weeks. These thermal condition changes are triggered by decrease in the thickness of the litter layer on the fired P. pumila communities.

  7. Forest fire risk zonation mapping using remote sensing technology

    NASA Astrophysics Data System (ADS)

    Chandra, Sunil; Arora, M. K.

    2006-12-01

    Forest fires cause major losses to forest cover and disturb the ecological balance in our region. Rise in temperature during summer season causing increased dryness, increased activity of human beings in the forest areas, and the type of forest cover in the Garhwal Himalayas are some of the reasons that lead to forest fires. Therefore, generation of forest fire risk maps becomes necessary so that preventive measures can be taken at appropriate time. These risk maps shall indicate the zonation of the areas which are in very high, high, medium and low risk zones with regard to forest fire in the region. In this paper, an attempt has been made to generate the forest fire risk maps based on remote sensing data and other geographical variables responsible for the occurrence of fire. These include altitude, temperature and soil variations. Key thematic data layers pertaining to these variables have been generated using various techniques. A rule-based approach has been used and implemented in GIS environment to estimate fuel load and fuel index leading to the derivation of fire risk zonation index and subsequently to fire risk zonation maps. The fire risk maps thus generated have been validated on the ground for forest types as well as for forest fire risk areas. These maps would help the state forest departments in prioritizing their strategy for combating forest fires particularly during the fire seasons.

  8. Modelling leaf, plant and stand flammability for ecological and operational decision making

    NASA Astrophysics Data System (ADS)

    Zylstra, Philip

    2014-05-01

    Numerous factors have been found to affect the flammability of individual leaves and plant parts; however the way in which these factors relate to whole plant flammability, fire behaviour and the overall risk imposed by fire is not straightforward. Similarly, although the structure of plant communities is known to affect the flammability of the stand, a quantified, broadly applicable link has proven difficult to establish and validate. These knowledge gaps have presented major obstacles to the integration into fire behaviour science of research into factors affecting plant flammability, physiology, species succession and structural change, so that the management of ecosystems for fire risk is largely uninformed by these fields. The Forest Flammability Model (Zylstra, 2011) is a process-driven, complex systems model developed specifically to address this disconnect. Flame dimensions and position are calculated as properties emerging from the capacity for convective heat to propagate flame between horizontally and vertically separated leaves, branches, plants and plant strata, and this capacity is determined dynamically from the ignitability, combustibility and sustainability of those objects, their spatial arrangement and a vector-based model of the plume temperature from each burning fuel. All flammability properties as well as the physics of flame dimensions, angle and temperature distributions and the vertical structure of wind within the plant array use published sub-models which can be replaced as further work is developed. This modular structure provides a platform for the immediate application of new work on any aspect of leaf flammability or fire physics. Initial validation of the model examined its qualitative predictions for trends in forest flammability as a function of time since fire. The positive feedback predicted for the subalpine forest examined constituted a 'risky prediction' by running counter to the expectations of the existing approach, however examination of historical fire sizes confirmed the positive feedback (Zylstra, 2013). The capacity to model even counter-intuitive trends in flammability represents a fundamental advance in the management of fire risk, underpinning the importance of work on those fields that compose the sub-models. Ongoing validation work has focused on accuracy in flame height and fire severity prediction, with excellent results to date. Further studies will examine quantitative estimates of fire risk parameters and the reliability of rate of spread predictions. By accurately modelling the relationship between seemingly disparate studies of leaf flammability, moisture, physiology and forest structure, the Forest Flammability Model has the potential to resolve some long-standing questions (Yebra et al., 2013) as well as to provide insight into the effect of climate or management-induced ecosystem changes on fire behaviour and risk. References Yebra, M., Dennison, P. E., Chuvieco, E., Riaño, D., Zylstra, P., Hunt, E. R., … Jurdao, S. (2013). A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sensing of Environment, 136, 455-468. doi:10.1016/j.rse.2013.05.029 Zylstra, P. (2011). Forest Flammability: Modelling and Managing a Complex System. PhD Thesis, University of NSW @ ADFA. Retrieved from http://handle.unsw.edu.au/1959.4/51656 Zylstra, P. (2013). The historical influence of fire on the flammability of subalpine Snowgum forest and woodland. Victorian Naturalist, 130(6), 232-239.

  9. An approach to the real time risk evaluation system of boreal forest fire

    NASA Astrophysics Data System (ADS)

    Nakau, K.; Fukuda, M.; Kimura, K.; Hayasaka, H.; Tani, H.; Kushida, K.

    2005-12-01

    Huge boreal forest fire may cause massive impacts not only on global warming gas emission but also local communities. Thus, it is important to control forest fire. We collected data about boreal forest fire as satellite imagery and fire observation simultaneously in Alaska and east Siberia in summer fire seasons for these three years. Fire observation data was collected from aircraft flying between Japan and Europe. Fire detection results were compared with observed data to evaluate the accuracy and earliness of automatic detection. NOAA and MODIS satellite images covering Alaska and East Siberia are collected. We are also developing fire expansion simulation model to forecast the possible fire expansion area. On the basis of fire expansion forecast, risk analysis of possible fire expansion for decision aid of fire-fighting activities will be analyzed. To identify the risk of boreal forest fire and public concern about forest fire, we collected local news paper in Fairbanks, AK and discuss the statistics of articles related to forest fire on the newspaper.

  10. Influence of slope on fire spread rate

    Treesearch

    B.W. Butler; W.R. Anderson; E.A. Catchpole

    2007-01-01

    Data demonstrate the effect of slope on heading and backing fires burning through woody fuels. The data indicate that the upper limit of heading fire rate of spread is defined by the rate of spread up a vertical fuel array, and the lower limit is defined by the rate of spread of a backing fire burning downslope. The minimum spread rate is found to occur at nominally --...

  11. Fire intensity impacts on post-fire temperate coniferous forest net primary productivity

    NASA Astrophysics Data System (ADS)

    Sparks, Aaron M.; Kolden, Crystal A.; Smith, Alistair M. S.; Boschetti, Luigi; Johnson, Daniel M.; Cochrane, Mark A.

    2018-02-01

    Fire is a dynamic ecological process in forests and impacts the carbon (C) cycle through direct combustion emissions, tree mortality, and by impairing the ability of surviving trees to sequester carbon. While studies on young trees have demonstrated that fire intensity is a determinant of post-fire net primary productivity, wildland fires on landscape to regional scales have largely been assumed to either cause tree mortality, or conversely, cause no physiological impact, ignoring the impacted but surviving trees. Our objective was to understand how fire intensity affects post-fire net primary productivity in conifer-dominated forested ecosystems on the spatial scale of large wildland fires. We examined the relationships between fire radiative power (FRP), its temporal integral (fire radiative energy - FRE), and net primary productivity (NPP) using 16 years of data from the MOderate Resolution Imaging Spectrometer (MODIS) for 15 large fires in western United States coniferous forests. The greatest NPP post-fire loss occurred 1 year post-fire and ranged from -67 to -312 g C m-2 yr-1 (-13 to -54 %) across all fires. Forests dominated by fire-resistant species (species that typically survive low-intensity fires) experienced the lowest relative NPP reductions compared to forests with less resistant species. Post-fire NPP in forests that were dominated by fire-susceptible species were not as sensitive to FRP or FRE, indicating that NPP in these forests may be reduced to similar levels regardless of fire intensity. Conversely, post-fire NPP in forests dominated by fire-resistant and mixed species decreased with increasing FRP or FRE. In some cases, this dose-response relationship persisted for more than a decade post-fire, highlighting a legacy effect of fire intensity on post-fire C dynamics in these forests.

  12. Fire, Fuel Composition and Resilience Threshold in Subalpine Ecosystem

    PubMed Central

    Blarquez, Olivier; Carcaillet, Christopher

    2010-01-01

    Background Forecasting the effects of global changes on high altitude ecosystems requires an understanding of the long-term relationships between biota and forcing factors to identify resilience thresholds. Fire is a crucial forcing factor: both fuel build-up from land-abandonment in European mountains, and more droughts linked to global warming are likely to increase fire risks. Methods To assess the vegetation response to fire on a millennium time-scale, we analyzed evidence of stand-to-local vegetation dynamics derived from sedimentary plant macroremains from two subalpine lakes. Paleobotanical reconstructions at high temporal resolution, together with a fire frequency reconstruction inferred from sedimentary charcoal, were analyzed by Superposed Epoch Analysis to model plant behavior before, during and after fire events. Principal Findings We show that fuel build-up from arolla pine (Pinus cembra) always precedes fires, which is immediately followed by a rapid increase of birch (Betula sp.), then by ericaceous species after 25–75 years, and by herbs after 50–100 years. European larch (Larix decidua), which is the natural co-dominant species of subalpine forests with Pinus cembra, is not sensitive to fire, while the abundance of Pinus cembra is altered within a 150-year period after fires. A long-term trend in vegetation dynamics is apparent, wherein species that abound later in succession are the functional drivers, loading the environment with fuel for fires. This system can only be functional if fires are mainly driven by external factors (e.g. climate), with the mean interval between fires being longer than the minimum time required to reach the late successional stage, here 150 years. Conclusion Current global warming conditions which increase drought occurrences, combined with the abandonment of land in European mountain areas, creates ideal ecological conditions for the ignition and the spread of fire. A fire return interval of less than 150 years would threaten the dominant species and might override the resilience of subalpine forests. PMID:20814580

  13. Fires in the Cenozoic: a late flowering of flammable ecosystems.

    PubMed

    Bond, William J

    2014-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system.

  14. Fires in the Cenozoic: a late flowering of flammable ecosystems

    PubMed Central

    Bond, William J.

    2015-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system. PMID:25601873

  15. Wildfires in California, August 17, 2015

    NASA Image and Video Library

    2017-12-08

    Very hot, dry and unstable conditions in California and across the Pacific Northwest add to the challenges facing firefighters as they battle blazes around the region. Cal Fire is urging Californians to be extremely cautious, especially for the next few days, as the current conditions increase the dangers authorities face. This image was taken by NASA-NOAA's Suomi NPP satellite's VIIRS instrument around 2145 UTC (5:45 p.m. EDT) on August 17, 2015. Northern California is seeing smoke from the River Complex, Route Complex, South Complex, Fork Complex and Mad River Complex fires combine over a large area of the Shasta-Trinity National Forest west of Redding, California, while the Rough Fire in Fresno County is spreading toward the Black Rock Reservoir, causing evacuations and road closures. Fires across the Pacific Northwest aren't limited to California. Please see the Suomi NPP VIIRS composites in NOAA View to see the growth and extent of fires over the past weeks. Credit: NASA/NOAA via NOAA Environmental Visualization Laboratory

  16. Panarchy

    USGS Publications Warehouse

    Garmestani, Ahjond S.; Allen, Craig R.; El-Shaarawi, Abdel H.; Piegorsch, Walter W.

    2012-01-01

    Panarchy is the term coined to describe hierarchical systems where control is not only top down, as typically considered, but also bottom up. A panarchy is composed of adaptive cycles, and an adaptive cycle describes the processes of development and decay in a system. Complex systems self-organize into hierarchies because this structure limits the possible spread of destructive phenomena (e.g., forest fires, epidemics) that could result in catastrophic system failure. Thus, hierarchical organization enhances the resilience of complex systems.

  17. Using HFire for spatial modeling of fire in shrublands

    Treesearch

    Seth H. Peterson; Marco E. Morais; Jean M. Carlson; Philip E. Dennison; Dar A. Roberts; Max A. Moritz; David R. Weise

    2009-01-01

    An efficient raster fire-spread model named HFire is introduced. HFire can simulate single-fire events or long-term fire regimes, using the same fire-spread algorithm. This paper describes the HFire algorithm, benchmarks the model using a standard set of tests developed for FARSITE, and compares historical and predicted fire spread perimeters for three southern...

  18. Differences in simulated fire spread over Askervein Hill using two advanced wind models and a traditional uniform wind field

    Treesearch

    Jason Forthofer; Bret Butler

    2007-01-01

    A computational fluid dynamics (CFD) model and a mass-consistent model were used to simulate winds on simulated fire spread over a simple, low hill. The results suggest that the CFD wind field could significantly change simulated fire spread compared to traditional uniform winds. The CFD fire spread case may match reality better because the winds used in the fire...

  19. Modeling Forest Understory Fires in an Eastern Amazonian Landscape

    NASA Technical Reports Server (NTRS)

    Alencar, A. A. C.; Solorzano, L. A.; Nepstad, D. C.

    2004-01-01

    Forest understory fires are an increasingly important cause of forest impoverishment in Ammonia, but little is known of the landscape characteristics and climatic phenomena that determine their occurrence. We developed empirical functions relating the occurrence of understory fires to landscape features near Paragominas, a 35- yr-old ranching and logging center in eastern Ammonia. An historical sequence of maps of forest understory fire was created based on field interviews With local farmers and Landsat TM images. Several landscape features that might explain spatial variations in the occurrence of understory fires were also mapped and co-registered for each of the sample dates, including: forest fragment size and shape, forest impoverishment through logging and understory fires, source of ignition (settlements and charcoal pits), roads, forest edges, and others. The spatial relationship between forest understory fire and each landscape characteristic was tested by regression analyses. Fire probability models were then developed for various combinations of landscape characteristics. The analyses were conducted separately for years of the El Nino Southern Oscillation (ENSO), which are associated with severe drought in eastern Amazonia, and non-ENS0 years. Most (91 %) of the forest area that burned during the 10-yr sequence caught fire during ENSO years, when severe drought may have increased both forest flammability and the escape of agricultural management fires. Forest understory fires were associated with forest edges, as reported in previous studies from Ammonia. But the strongest predictor of forest fire was the percentage of the forest fragment that had been previously logged or burned. Forest fragment size, distance to charcoal pits, distance to agricultural settlement, proximity to forest edge, and distance to roads were also correlated with forest understory fire. Logistic regression models using information on fragment degradation and distance to ignition sources accurately predicted the location of lss than 80% of the forest fires observed during the ENSO event of 1997- 1998. In this Amazon landscape, forest understory fire is a complex function of several variables that influence both the flammability and ignition exposure of the forest.

  20. Gis-Based Multi-Criteria Decision Analysis for Forest Fire Risk Mapping

    NASA Astrophysics Data System (ADS)

    Akay, A. E.; Erdoğan, A.

    2017-11-01

    The forested areas along the coastal zone of the Mediterranean region in Turkey are classified as first-degree fire sensitive areas. Forest fires are major environmental disaster that affects the sustainability of forest ecosystems. Besides, forest fires result in important economic losses and even threaten human lives. Thus, it is critical to determine the forested areas with fire risks and thereby minimize the damages on forest resources by taking necessary precaution measures in these areas. The risk of forest fire can be assessed based on various factors such as forest vegetation structures (tree species, crown closure, tree stage), topographic features (slope and aspect), and climatic parameters (temperature, wind). In this study, GIS-based Multi-Criteria Decision Analysis (MCDA) method was used to generate forest fire risk map. The study was implemented in the forested areas within Yayla Forest Enterprise Chiefs at Dursunbey Forest Enterprise Directorate which is classified as first degree fire sensitive area. In the solution process, "extAhp 2.0" plug-in running Analytic Hierarchy Process (AHP) method in ArcGIS 10.4.1 was used to categorize study area under five fire risk classes: extreme risk, high risk, moderate risk, and low risk. The results indicated that 23.81 % of the area was of extreme risk, while 25.81 % was of high risk. The result indicated that the most effective criterion was tree species, followed by tree stages. The aspect had the least effective criterion on forest fire risk. It was revealed that GIS techniques integrated with MCDA methods are effective tools to quickly estimate forest fire risk at low cost. The integration of these factors into GIS can be very useful to determine forested areas with high fire risk and also to plan forestry management after fire.

  1. [Change trends of summer fire danger in great Xing' an Mountains forest region of Heilongjiang Province, Northeast China under climate change].

    PubMed

    Yang, Guang; Shu, Li-Fu; Di, Xue-Ying

    2012-11-01

    By using Delta and WGEN downscaling methods and Canadian Forest Fire Weather Index, this paper analyzed the variation characteristics of summer fire in Great Xing' an Mountains forest region of Heilongjiang Province in 1966-2010, estimated the change trends of the summer fire danger in 2010-2099, compared the differences of the forest fire in summer, spring, and autumn, and proposed the prevention and control strategies of the summer fire based on the fire environment. Under the background of climate warming, the summer forest fire in the region in 2000-2010 showed a high incidence trend. In foreseeable future, the summer forest fire across the region in 2010-2099, as compared to that in the baseline period 1961-1990, would be increased by 34%, and the increment would be obviously greater than that of spring and autumn fire. Relative to that in 1961-1990, the summer fire in 2010-2099 under both SRES A2a and SRES B2a scenarios would have an increasing trend, and, with the lapse of time, the trend would be more evident, and the area with high summer fire would become wider and wider. Under the scenario of SRES A2a, the summer fire by the end of the 21st century would be doubled, as compared to that in 1961-1990, and the area with high summer fire would be across the region. In the characteristics of fire source, attributes of forest fuel, and fire weather conditions, the summer forest fire was different from the spring and autumn forest fire, and thus, the management of fire source and forest fuel load as well as the forest fire forecast (mid-long term forecast in particular) in the region should be strengthened to control the summer forest fire.

  2. Fire ecology of western Montana forest habitat types

    Treesearch

    William C. Fischer; Anne F. Bradley

    1987-01-01

    Provides information on fire as an ecological factor for forest habitat types in western Montana. Identifies Fire Groups of habitat types based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  3. Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere-fire numerical model

    NASA Astrophysics Data System (ADS)

    Simpson, C. C.; Sharples, J. J.; Evans, J. P.

    2014-05-01

    Fire channelling is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep lee-facing slope in a direction transverse to the background winds, and is often accompanied by a downwind extension of the active flaming region and extreme pyro-convection. Recent work using the WRF-Fire coupled atmosphere-fire model has demonstrated that fire channelling can be characterised as vorticity-driven lateral fire spread (VDLS). In this study, 16 simulations are conducted using WRF-Fire to examine the sensitivity of resolving VDLS to spatial resolution and atmosphere-fire coupling within the WRF-Fire model framework. The horizontal grid spacing is varied between 25 and 90 m, and the two-way atmosphere-fire coupling is either enabled or disabled. At high spatial resolution, the atmosphere-fire coupling increases the peak uphill and lateral spread rate by a factor of up to 2.7 and 9.5. The enhancement of the uphill and lateral spread rate diminishes at coarser spatial resolution, and VDLS is not modelled for a horizontal grid spacing of 90 m. The laterally spreading fire fronts become the dominant contributors of the extreme pyro-convection. The resolved fire-induced vortices responsible for driving the lateral spread in the coupled simulations have non-zero vorticity along each unit vector direction, and develop due to an interaction between the background winds and vertical return circulations generated at the flank of the fire front as part of the pyro-convective updraft. The results presented in this study demonstrate that both high spatial resolution and two-way atmosphere-fire coupling are required to reproduce VDLS within the current WRF-Fire model framework.

  4. Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA.

    PubMed

    Scholl, Andrew E; Taylor, Alan H

    2010-03-01

    Fire is recognized as a keystone process in dry mixed-conifer forests that have been altered by decades of fire suppression, Restoration of fire disturbance to these forests is a guiding principle of resource management in the U.S. National Park Service. Policy implementation is often hindered by a poor understanding of forest conditions before fire exclusion, the characteristics of forest changes since excluding fire, and the influence of topographic or self-organizing controls on forest structure. In this study the spatial and temporal characteristics of fire regimes and forest structure are reconstructed in a 2125-ha mixed-conifer forest. Forests were multi-aged, burned frequently at low severity and fire-return interval, and forest structure did not vary with slope aspect, elevation, or slope position. Fire exclusion has caused an increase in forest density and basal area and a compositional shift to shade-tolerant and fire-intolerant species. The median point fire-return interval and extent of a fire was 10 yr and 115 ha, respectively. The pre-Euro-American settlement fire rotation of 13 yr increased to 378 yr after 1905. The position of fire scars within tree rings indicates that 79% of fires burned in the midsummer to fall period. The spatial pattern of burns exhibited self-organizing behavior. Area burned was 10-fold greater when an area had not been burned by the previous fire. Fires were frequent and widespread, but patches of similar aged trees were < 0.2 ha, suggesting small fire-caused canopy openings. Managers need to apply multiple burns at short intervals for a sustained period to reduce surface fuels and create small canopy openings characteristic of the reference forest. By coupling explicit reference conditions with consideration of current conditions and projected climate change, management activities can balance restoration and risk management.

  5. Estimating wildland fire rate of spread in a spatially nonuniform environment

    Treesearch

    Francis M Fujioka

    1985-01-01

    Estimating rate of fire spread is a key element in planning for effective fire control. Land managers use the Rothermel spread model, but the model assumptions are violated when fuel, weather, and topography are nonuniform. This paper compares three averaging techniques--arithmetic mean of spread rates, spread based on mean fuel conditions, and harmonic mean of spread...

  6. Examining Historical and Current Mixed-Severity Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America

    PubMed Central

    Odion, Dennis C.; Hanson, Chad T.; Arsenault, André; Baker, William L.; DellaSala, Dominick A.; Hutto, Richard L.; Klenner, Walt; Moritz, Max A.; Sherriff, Rosemary L.; Veblen, Thomas T.; Williams, Mark A.

    2014-01-01

    There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to “restore” forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa pine and mixed-conifer forests of western North America. PMID:24498383

  7. Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America.

    PubMed

    Odion, Dennis C; Hanson, Chad T; Arsenault, André; Baker, William L; Dellasala, Dominick A; Hutto, Richard L; Klenner, Walt; Moritz, Max A; Sherriff, Rosemary L; Veblen, Thomas T; Williams, Mark A

    2014-01-01

    There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to "restore" forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa pine and mixed-conifer forests of western North America.

  8. The Tapanui region of New Zealand: Site of a Tunguska around 800 years ago?

    NASA Technical Reports Server (NTRS)

    Steel, Duncan; Snow, Peter

    1992-01-01

    Evidence is discussed that the wide-spread fires ca. 800 years ago which denuded the southern provinces of the South Island of New Zealand of the extensive forests present at that time were due to the entry of a large bolide into the atmosphere, the conflagration being ignited by the intense heat generated as this extraterrestrial projectile ablated/detonated in a similar manner to that of the Tunguska object of 1908. These fires led to the extinction of the giant terrestrial bird known as the Moa, and the end of the archaic epoch of Maori history known as the Moa Hunter period. This interpretation is well attested to in Maori myth and legend.

  9. The Tapanui region of New Zealand: Site of a Tunguska around 800 years ago?

    NASA Astrophysics Data System (ADS)

    Steel, Duncan; Snow, Peter

    1992-12-01

    Evidence is discussed that the wide-spread fires ca. 800 years ago which denuded the southern provinces of the South Island of New Zealand of the extensive forests present at that time were due to the entry of a large bolide into the atmosphere, the conflagration being ignited by the intense heat generated as this extraterrestrial projectile ablated/detonated in a similar manner to that of the Tunguska object of 1908. These fires led to the extinction of the giant terrestrial bird known as the Moa, and the end of the archaic epoch of Maori history known as the Moa Hunter period. This interpretation is well attested to in Maori myth and legend.

  10. Hydrologic Vulnerability and Risk Assessment Associated With the Increased Role of Fire on Western Landscapes, Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Williams, C. J.; Pierson, F. B.; Robichaud, P. R.; Spaeth, K. E.; Hardegree, S. P.; Clark, P. E.; Moffet, C. A.; Al-Hamdan, O. Z.; Boll, J.

    2010-12-01

    Landscape-scale plant community transitions and altered fire regimes across Great Basin, USA, rangelands have increased the likelihood of post-fire flooding and erosion events. These hazards are particularly concerning for western urban centers along the rangeland urban-wildland interface where natural resources, property, and human life are at risk. Extensive conversion of 4-7 million hectares of Great Basin shrub-steppe to cheatgrass-dominated (Bromus tectorum) grasslands has increased the frequency and size of wildland fires within these ecosystems. Fire frequencies have increased by more than an order of magnitude and occur on 3-10 year intervals across much of the cheatgrass-dominated landscape. Extensive tree (Pinus spp. and Juniperus spp.) encroachment into wooded shrub-steppe has increased heavy fuel loads. Ladder fuels in these ecosystems promote rapidly spreading, high-intensity and severe ground-surface-crown fires. These altered fuel structures across much of the historical Great Basin shrub-steppe have initiated an upsurge in large rangeland wildfires and have increased the spatial and temporal vulnerability of these landscapes to amplified runoff and erosion. Resource and infrastructure damages, and loss of life have been reported due to flooding following recent large-scale burning of western rangelands and dry forests. We present a decade of post-fire rangeland hydrologic research that provides a foundation for conceptual modeling of the hydrologic impacts associated with an increased role of rangeland wildfires. We highlight advancements in predictive tools to address this large-scale phenomenon and discuss vital research voids requiring attention. Our geographic emphasis is the Great Basin Region, however, these concepts likely extend elsewhere given the increased role of fire in many geographic regions and across rangeland-to-forest ecotones in the western United States.

  11. The Habitat Susceptibility of Bali Starling (Leucopsar rothschildi Stresemann> 1912) Based on Forest Fire Vulnerability Mappin in West Bali National Park

    NASA Astrophysics Data System (ADS)

    Pramatana, F.; Prasetyo, L. B.; Rushayati, S. B.

    2017-10-01

    Bali starling is an endemic and endangered species which tend to decrease of its population in the wild. West Bali National Park (WBNP) is the only habitat of bali starling, however it is threatened nowadays by forest fire. Understanding the sensitivity of habitat to forest & land fire is urgently needed. Geographic Information System (GIS) can be used for mapping the vulnerability of forest fire. This study aims to analyze the contributed factor of forest fire, to develop vulnerability level map of forest fire in WBNP, to estimate habitat vulnerability of bali starling. The variable for mapping forest fire in WBNP were road distance, village distance, land cover, NDVI, NDMI, surface temperature, and slope. Forest fire map in WBNP was created by scoring from each variable, and classified into four classes of forest fire vulnerability which are very low (9 821 ha), low (5 015.718 ha), middle (6 778.656 ha), and high (2 126.006 ha). Bali starling existence in the middle and high vulnerability forest fire class in WBNP, consequently the population and habitat of bali starling is a very vulnerable. Management of population and habitat of bali starling in WBNP must be implemented focus on forest fire impact.

  12. [Do volcanic eruptions and wide-spread fires affect our climate?].

    PubMed

    Primault, B

    1992-03-31

    During the first half of 1991, the press, radio and TV have often reported about large fires (Kuwait, forest fires in Portugal) or volcanic eruptions (Mount Unzen, Pinatubo). Starting with the facts, the author investigates first the kind of particles constituting such smoke clouds and in particular their size. He places the main cloud in the atmosphere and asks; the cloud remains near the soil, whether it reaches the upper layers of the troposphere or it breaks out into the stratosphere? The transport of the cloud depends on particle-size and of the winds blowing in the reached layer. All these clouds have an impact on the weather. The author analyses finally the credible influence of such clouds on weather elements: radiation and temperature as well as the extent of these effects. He corroborates his analysis by visual observations or measurements.

  13. Scientific support to prescribed underburning in southern Europe: What do we know?

    PubMed

    Fernandes, Paulo M

    2018-07-15

    Prescribed burning is a technically demanding and usually highly scrutinized and debated practice. Barriers of various natures have constrained the development of prescribed burning in forests (PUB) in southern Europe, with insufficient research and outreach among the contributing factors. This paper synthesizes PUB knowledge in the region and identifies research needs. PUB research in the western Mediterranean basin was fostered by international cooperative projects that studied the ecological and management ramifications of low-intensity burning for fire hazard mitigation. Effects of PUB on soil and vegetation are minor and short-lived and regulated through forest floor moisture content, fire intensity, tree resistance to fire, and ignition patterns. Generic burn prescriptions are available and specific burn windows targeting site-specific burn objectives can be developed with the existing software tools. However, the need to increase the depth and breadth of PUB research is apparent. Current knowledge is based upon pine forests, particularly Pinus pinaster, as past research has overlooked hardwoods; was obtained across a limited number of research teams and study sites; and essentially reflects short-term treatments. Fuel consumption by PUB effectively decreases fire potential, but post-treatment fuel dynamics and effects on wildfire spread and severity warrant further study. Future work should devote more attention to the socioeconomic, biodiversity and carbon storage implications of PUB and should expand to encompass cumulative effects and the whole PUB regime and its variation; long-term experiments and monitored management programs are crucial to this end. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Fire ecology of forests and woodlands in Utah

    Treesearch

    Anne F. Bradley; Nonan V. Noste; William C. Fischer

    1992-01-01

    Provides information on fire as an ecological factor in forest habitat types, and in pinyon-juniper woodland and oak-maple brushland communities occurring in Utah. Identifies Fire Groups based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  15. Fire ecology of the forest habitat types of eastern Idaho and western Wyoming

    Treesearch

    Anne F. Bradley; William C. Fischer; Nonan V. Noste

    1992-01-01

    Provides information on fire as an ecological factor in the forest habitat types occurring in eastern Idaho and western Wyoming. Identifies Fire Groups based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  16. Impact of forest fires on particulate matter and ozone levels during the 2003, 2004 and 2005 fire seasons in Portugal.

    PubMed

    Martins, V; Miranda, A I; Carvalho, A; Schaap, M; Borrego, C; Sá, E

    2012-01-01

    The main purpose of this work is to estimate the impact of forest fires on air pollution applying the LOTOS-EUROS air quality modeling system in Portugal for three consecutive years, 2003-2005. Forest fire emissions have been included in the modeling system through the development of a numerical module, which takes into account the most suitable parameters for Portuguese forest fire characteristics and the burnt area by large forest fires. To better evaluate the influence of forest fires on air quality the LOTOS-EUROS system has been applied with and without forest fire emissions. Hourly concentration results have been compared to measure data at several monitoring locations with better modeling quality parameters when forest fire emissions were considered. Moreover, hourly estimates, with and without fire emissions, can reach differences in the order of 20%, showing the importance and the influence of this type of emissions on air quality. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Monitoring the Impacts of Wildfires on Forest Ecosystems and Public Health in the Exo-Urban Environment Using High-Resolution Satellite Aerosol Products from the Visible Infrared Imaging Radiometer Suite (VIIRS).

    PubMed

    Huff, Amy K; Kondragunta, Shobha; Zhang, Hai; Hoff, Raymond M

    2015-01-01

    Increasing development of exo-urban environments and the spread of urbanization into forested areas is making humans and forest ecosystems more susceptible to the risks associated with wildfires. Larger and more damaging wildfires are having a negative impact on forest ecosystem services, and smoke from wildfires adversely affects the public health of people living in exo-urban environments. Satellite aerosol measurements are valuable tools that can track the evolution of wildfires and monitor the transport of smoke plumes. Operational users, such as air quality forecasters and fire management officials, can use satellite observations to complement ground-based and aircraft measurements of wildfire activity. To date, wildfire applications of satellite aerosol products, such as aerosol optical depth (AOD), have been limited by the relatively coarse resolution of available AOD data. However, the new Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has high-resolution AOD that is ideally suited to monitoring wildfire impacts on the exo-urban scale. Two AOD products are available from VIIRS: the 750-m × 750-m nadir resolution Intermediate Product (IP) and the 6-km × 6-km resolution Environmental Data Record product, which is aggregated from IP measurements. True color (red, green, and blue [RGB]) imagery and a smoke mask at 750-m × 750-m resolution are also available from VIIRS as decision aids for wildfire applications; they serve as counterparts to AOD measurements by providing visible information about areas of smoke in the atmosphere. To meet the needs of operational users, who do not have time to process raw data files and need access to VIIRS products in near-real time (NRT), VIIRS AOD and RGB NRT imagery are available from the Infusing satellite Data into Environmental Applications (IDEA) web site. A key feature of IDEA is an interactive visualization tool that allows users to display tailored combinations of AOD and RGB imagery, as well as overlay the VIIRS smoke mask and fire hotspots at pixel resolution (~750-m × 750-m), and zoom into the county level. Two case studies of recent wildfires in the Western US are presented to show how operational users can access and display VIIRS aerosol products to monitor the transport of smoke plumes and evolution of fires in the exo-urban environment on the regional and county scales. The new National Oceanic and Atmospheric Administration (NOAA) Western Region Fire and Smoke Initiative is also discussed, which will enhance IDEA to allow visualization of VIIRS aerosol products down to the neighborhood scale. The new high-resolution VIIRS aerosol products can be used for NRT monitoring of human exposure to smoke, and they can be used to gauge the spread of fires and, thus, provide advanced warning for evacuations and fire suppression efforts, thereby reducing risks to human populations and forest ecosystems in the exo-urban environment.

  18. Monitoring the Impacts of Wildfires on Forest Ecosystems and Public Health in the Exo-Urban Environment Using High-Resolution Satellite Aerosol Products from the Visible Infrared Imaging Radiometer Suite (VIIRS)

    PubMed Central

    Huff, Amy K; Kondragunta, Shobha; Zhang, Hai; Hoff, Raymond M

    2015-01-01

    Increasing development of exo-urban environments and the spread of urbanization into forested areas is making humans and forest ecosystems more susceptible to the risks associated with wildfires. Larger and more damaging wildfires are having a negative impact on forest ecosystem services, and smoke from wildfires adversely affects the public health of people living in exo-urban environments. Satellite aerosol measurements are valuable tools that can track the evolution of wildfires and monitor the transport of smoke plumes. Operational users, such as air quality forecasters and fire management officials, can use satellite observations to complement ground-based and aircraft measurements of wildfire activity. To date, wildfire applications of satellite aerosol products, such as aerosol optical depth (AOD), have been limited by the relatively coarse resolution of available AOD data. However, the new Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has high-resolution AOD that is ideally suited to monitoring wildfire impacts on the exo-urban scale. Two AOD products are available from VIIRS: the 750-m × 750-m nadir resolution Intermediate Product (IP) and the 6-km × 6-km resolution Environmental Data Record product, which is aggregated from IP measurements. True color (red, green, and blue [RGB]) imagery and a smoke mask at 750-m × 750-m resolution are also available from VIIRS as decision aids for wildfire applications; they serve as counterparts to AOD measurements by providing visible information about areas of smoke in the atmosphere. To meet the needs of operational users, who do not have time to process raw data files and need access to VIIRS products in near-real time (NRT), VIIRS AOD and RGB NRT imagery are available from the Infusing satellite Data into Environmental Applications (IDEA) web site. A key feature of IDEA is an interactive visualization tool that allows users to display tailored combinations of AOD and RGB imagery, as well as overlay the VIIRS smoke mask and fire hotspots at pixel resolution (~750-m × 750-m), and zoom into the county level. Two case studies of recent wildfires in the Western US are presented to show how operational users can access and display VIIRS aerosol products to monitor the transport of smoke plumes and evolution of fires in the exo-urban environment on the regional and county scales. The new National Oceanic and Atmospheric Administration (NOAA) Western Region Fire and Smoke Initiative is also discussed, which will enhance IDEA to allow visualization of VIIRS aerosol products down to the neighborhood scale. The new high-resolution VIIRS aerosol products can be used for NRT monitoring of human exposure to smoke, and they can be used to gauge the spread of fires and, thus, provide advanced warning for evacuations and fire suppression efforts, thereby reducing risks to human populations and forest ecosystems in the exo-urban environment. PMID:26078588

  19. Fire and forest history at Mount Rushmore.

    PubMed

    Brown, Peter M; Wienk, Cody L; Symstad, Amy J

    2008-12-01

    Mount Rushmore National Memorial in the Black Hills of South Dakota is known worldwide for its massive sculpture of four of the United States' most respected presidents. The Memorial landscape also is covered by extensive ponderosa pine (Pinus ponderosa) forest that has not burned in over a century. We compiled dendroecological and forest structural data from 29 plots across the 517-ha Memorial and used fire behavior modeling to reconstruct the historical fire regime and forest structure and compare them to current conditions. The historical fire regime is best characterized as one of low-severity surface fires with occasional (> 100 years) patches (< 100 ha) of passive crown fire. We estimate that only approximately 3.3% of the landscape burned as crown fire during 22 landscape fire years (recorded at > or = 25% of plots) between 1529 and 1893. The last landscape fire was in 1893. Mean fire intervals before 1893 varied depending on spatial scale, from 34 years based on scar-to-scar intervals on individual trees to 16 years between landscape fire years. Modal fire intervals were 11-15 years and did not vary with scale. Fire rotation (the time to burn an area the size of the study area) was estimated to be 30 years for surface fire and 800+ years for crown fire. The current forest is denser and contains more small trees, fewer large trees, lower canopy base heights, and greater canopy bulk density than a reconstructed historical (1870) forest. Fire behavior modeling using the NEXUS program suggests that surface fires would have dominated fire behavior in the 1870 forest during both moderate and severe weather conditions, while crown fire would dominate in the current forest especially under severe weather. Changes in the fire regime and forest structure at Mount Rushmore parallel those seen in ponderosa pine forests from the southwestern United States. Shifts from historical to current forest structure and the increased likelihood of crown fire justify the need for forest restoration before a catastrophic wildfire occurs and adversely impacts the ecological and aesthetic setting of the Mount Rushmore sculpture.

  20. Fire ecology of Montana forest habitat types east of the Continental Divide

    Treesearch

    William C. Fischer; Bruce D. Clayton

    1983-01-01

    Provides information on fire as an ecological factor for forest habitat types occurring east of the Continental Divide in Montana. Identifies "Fire Groups" of habitat types based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  1. Mixed-severity fire history at a forest-grassland ecotone in west central British Columbia, Canada.

    PubMed

    Harvey, Jill E; Smith, Dan J; Veblen, Thomas T

    2017-09-01

    This study examines spatially variable stand structure and fire-climate relationships at a low elevation forest-grassland ecotone in west central British Columbia, Canada. Fire history reconstructions were based on samples from 92 fire-scarred trees and stand demography from 27 plots collected over an area of about 7 km 2 . We documented historical chronologies of widespread fires and localized grassland fires between AD 1600 and 1900. Relationships between fire events, reconstructed values of the Palmer Drought Severity Index, and annual precipitation were examined using superposed epoch and bivariate event analyses. Widespread fires occurred during warm, dry years and were preceded by multiple anomalously dry, warm years. Localized fires that affected only grassland-proximal forests were more frequent than widespread fires. These localized fires showed a lagged, positive relationship with wetter conditions. The landscape pattern of forest structure provided further evidence of complex fire activity with multiple plots shown to have experienced low-, mixed-, and/or high-severity fires over the last four centuries. We concluded that this forest-grassland ecotone was characterized by fires of mixed severity, dominated by frequent, low-severity fires punctuated by widespread fires of moderate to high severity. This landscape-level variability in fire-climate relationships and patterns in forest structure has important implications for fire and grassland management in west central British Columbia and similar environments elsewhere. Forest restoration techniques such as prescribed fire and thinning are oftentimes applied at the forest-grassland ecotone on the basis that historically high frequency, low-severity fires defined the character of past fire activity. This study provides forest managers and policy makers with important information on mixed-severity fire activity at a low elevation forest-grassland ecotone, a crucial prerequisite for the effective management of these complex ecosystems. © 2017 by the Ecological Society of America.

  2. Brazil Fire Characterization and Burn Area Estimation Using the Airborne Infrared Disaster Assessment (AIRDAS) System

    NASA Technical Reports Server (NTRS)

    Brass, J. A.; Riggan, P. J.; Ambrosia, V. G.; Lockwood, R. N.; Pereira, J. A.; Higgins, R. G.; Peterson, David L. (Technical Monitor)

    1995-01-01

    Remotely sensed estimations of regional and global emissions from biomass combustion have been used to characterize fire behavior, determine fire intensity, and estimate burn area. Highly temporal, low resolution satellite data have been used to calculate estimates of fire numbers and area burned. These estimates of fire activity and burned area have differed dramatically, resulting in a wide range of predictions on the ecological and environmental impacts of fires. As part of the Brazil/United States Fire Initiative, an aircraft campaign was initiated in 1992 and continued in 1994. This multi-aircraft campaign was designed to assist in the characterization of fire activity, document fire intensity and determine area burned over prescribed, agricultural and wildland fires in the savanna and forests of central Brazil. Using a unique, multispectral scanner (AIRDAS), designed specifically for fire characterization, a variety of fires and burned areas were flown with a high spatial and high thermal resolution scanner. The system was used to measure flame front size, rate of spread, ratio of smoldering to flaming fronts and fire intensity. In addition, long transects were flown to determine the size of burned areas within the cerrado and transitional ecosystems. The authors anticipate that the fire activity and burned area estimates reported here will lead to enhanced information for precise regional trace gas prediction.

  3. Historical dominance of low-severity fire in dry and wet mixed-conifer forest habitats of the endangered terrestrial Jemez Mountains salamander (Plethodon neomexicanus)

    USGS Publications Warehouse

    Margolis, Ellis; Malevich, Steven B.

    2016-01-01

    Anthropogenic alteration of ecosystem processes confounds forest management and conservation of rare, declining species. Restoration of forest structure and fire hazard reduction are central goals of forest management policy in the western United States, but restoration priorities and treatments have become increasingly contentious. Numerous studies have documented changes in fire regimes, forest stand structure and species composition following a century of fire exclusion in dry, frequent-fire forests of the western U.S. (e.g., ponderosa pine and dry mixed-conifer). In contrast, wet mixed-conifer forests are thought to have historically burned infrequently with mixed- or high-severity fire—resulting in reduced impacts from fire exclusion and low restoration need—but data are limited. In this study we quantified the current forest habitat of the federally endangered, terrestrial Jemez Mountains salamander (Plethodon neomexicanus) and compared it to dendroecological reconstructions of historical habitat (e.g., stand structure and composition), and fire regime parameters along a gradient from upper ponderosa pine to wet mixed-conifer forests. We found that current fire-free intervals in Jemez Mountains salamander habitat (116–165 years) are significantly longer than historical intervals, even in wet mixed-conifer forests. Historical mean fire intervals ranged from 10 to 42 years along the forest gradient. Low-severity fires were historically dominant across all forest types (92 of 102 fires). Although some mixed- or highseverity fire historically occurred at 67% of the plots over the last four centuries, complete mortality within 1.0 ha plots was rare, and asynchronous within and among sites. Climate was an important driver of temporal variability in fire severity, such that mixed- and high-severity fires were associated with more extreme drought than low-severity fires. Tree density in dry conifer forests historically ranged from open (90 trees/ha) to moderately dense (400 trees/ha), but has doubled on average since fire exclusion. Infill of fire-sensitive tree species has contributed to the conversion of historically dry mixedconifer to wet mixed-conifer forest. We conclude that low-severity fire, which has been absent for over a century, was a critical ecosystem process across the forest gradient in Jemez Mountains salamander habitat, and thus is an important element of ecosystem restoration, resilience, and rare species recovery.

  4. Effects of forest fire and logging on forest degradation in Mongolia

    Treesearch

    Yeong Dae Park; Don Koo Lee; Jamsran Tsogtbaatar; John A. Stanturf

    2010-01-01

    Forests in Mongolia have been severely degraded by forest fire and exploitive logging. This study investigate changes in vegetation and soil properties after forest fire or clearfelling. Microclimate conditions such as temperature and relative humidity (RH) changed drastically after forest fire or logging; temperature increased 1.6-1.7 ºC on average, whereas...

  5. The drivers of wildfire enlargement do not exhibit scale thresholds in southeastern Australian forests.

    PubMed

    Price, Owen F; Penman, Trent; Bradstock, Ross; Borah, Rittick

    2016-10-01

    Wildfires are complex adaptive systems, and have been hypothesized to exhibit scale-dependent transitions in the drivers of fire spread. Among other things, this makes the prediction of final fire size from conditions at the ignition difficult. We test this hypothesis by conducting a multi-scale statistical modelling of the factors determining whether fires reached 10 ha, then 100 ha then 1000 ha and the final size of fires >1000 ha. At each stage, the predictors were measures of weather, fuels, topography and fire suppression. The objectives were to identify differences among the models indicative of scale transitions, assess the accuracy of the multi-step method for predicting fire size (compared to predicting final size from initial conditions) and to quantify the importance of the predictors. The data were 1116 fires that occurred in the eucalypt forests of New South Wales between 1985 and 2010. The models were similar at the different scales, though there were subtle differences. For example, the presence of roads affected whether fires reached 10 ha but not larger scales. Weather was the most important predictor overall, though fuel load, topography and ease of suppression all showed effects. Overall, there was no evidence that fires have scale-dependent transitions in behaviour. The models had a predictive accuracy of 73%, 66%, 72% and 53% accuracy at 10 ha, 100 ha, 1000 ha and final size scales. When these steps were combined, the overall accuracy for predicting the size of fires was 62%, while the accuracy of the one step model was only 20%. Thus, the multi-scale approach was an improvement on the single scale approach, even though the predictive accuracy was probably insufficient for use as an operational tool. The analysis has also provided further evidence of the important role of weather, compared to fuel, suppression and topography in driving fire behaviour. Copyright © 2016. Published by Elsevier Ltd.

  6. Forest Fire Advanced System Technology (FFAST): A Conceptual Design for Detection and Mapping

    Treesearch

    J. David Nichols; John R. Warren

    1987-01-01

    The Forest Fire Advanced System Technology (FFAST) project is developing a data system to provide near-real-time forest fire information to fire management at the fire Incident Command Post (ICP). The completed conceptual design defined an integrated forest fire detection and mapping system that is based upon technology available in the 1990's. System component...

  7. An examination of fuel particle heating during fire spread

    Treesearch

    Jack D. Cohen; Mark A. Finney

    2010-01-01

    Recent high intensity wildfires and our demonstrated inability to control extreme fire behavior suggest a need for alternative approaches for preventing wildfire disasters. Current fire spread models are not sufficiently based on a basic understanding of fire spread processes to provide more effective management alternatives. An experimental and theoretical approach...

  8. Relation of weather forecasts to the prediction of dangerous forest fire conditions

    Treesearch

    R. H. Weidman

    1923-01-01

    The purpose of predicting dangerous forest-fire conditions, of course, is to reduce the great cost and damage caused by forest fires. In the region of Montana and northern Idaho alone the average cost to the United States Forest Service of fire protection and suppression is over $1,000,000 a year. Although the causes of forest fires will gradually be reduced by...

  9. Mexican forest fires and their decadal variations

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Graciela

    2016-11-01

    A high forest fire season of two to three years is regularly observed each decade in Mexican forests. This seems to be related to the presence of the El Niño phenomenon and to the amount of total solar irradiance. In this study, the results of a multi-cross wavelet analysis are reported based on the occurrence of Mexican forest fires, El Niño and the total solar irradiance for the period 1970-2014. The analysis shows that Mexican forest fires and the strongest El Niño phenomena occur mostly around the minima of the solar cycle. This suggests that the total solar irradiance minima provide the appropriate climatological conditions for the occurrence of these forest fires. The next high season for Mexican forest fires could start in the next solar minimum, which will take place between the years 2017 and 2019. A complementary space analysis based on MODIS active fire data for Mexican forest fires from 2005 to 2014 shows that most of these fires occur in cedar and pine forests, on savannas and pasturelands, and in the central jungles of the Atlantic and Pacific coasts.

  10. Meteorological factors in the Quartz Creek forest fire

    Treesearch

    H. T. Gisborne

    1927-01-01

    It is not often that a large forest fire occurs conveniently near a weather station specially equipped for measuring forest-fire weather. The 13,000-acre Quartz Creek fire on the Kaniksu National Forest during the summer of 1936 was close enough to the Priest River Experimental Forest of the Northern Rocky Mountain Forest Experiment Station for the roar of the flumes...

  11. A Coupled Model for Simulating Future Wildfire Regimes in the Western U.S.

    NASA Astrophysics Data System (ADS)

    Bart, R. R.; Kennedy, M. C.; Tague, C.; Hanan, E. J.

    2017-12-01

    Higher temperatures and larger fuel loads in the western U.S. have increased the size and intensity of wildfires over the past decades. However, it is unclear if this trend will continue over the long-term since increased wildfire activity has the countering effect of reducing landscape fuel loads, while higher temperatures alter the rate of vegetation recovery following fire. In this study, we introduce a coupled ecohydrologic-fire model for investigating how changes in vegetation, forest management, climate, and hydrology may affect future fire regimes. The spatially-distributed ecohydrologic model, RHESSys, simulates hydrologic, carbon and nutrient fluxes at watershed scales; the fire-spread model, WMFire, stochastically propagates fire on a landscape based on conditions in the ecohydrologic model. We use the coupled model to replicate fire return intervals in multiple ecoregions within the western U.S., including the southern Sierra Nevada and southern California. We also examine the sensitivity of fire return intervals to various model processes, including litter production, fire severity, and post-fire vegetation recovery rates. Results indicate that the coupled model is able to replicate expected fire return intervals in the selected locations. Fire return intervals were highly sensitive to the rate of vegetation growth, with longer fire return intervals associated with slower growing vegetation. Application of the model is expected to aid in our understanding of how fuel treatments, climate change and droughts may affect future fire regimes.

  12. Understorey fire frequency and the fate of burned forests in southern Amazonia.

    PubMed

    Morton, D C; Le Page, Y; DeFries, R; Collatz, G J; Hurtt, G C

    2013-06-05

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999-2010) and deforestation (2001-2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km(2) between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk.

  13. Understorey fire frequency and the fate of burned forests in southern Amazonia

    PubMed Central

    Morton, D. C.; Le Page, Y.; DeFries, R.; Collatz, G. J.; Hurtt, G. C.

    2013-01-01

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999–2010) and deforestation (2001–2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km2 between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk. PMID:23610169

  14. Fire ecology of the forest habitat types of northern Idaho

    Treesearch

    Jane Kapler Smith; William C. Fischer

    1997-01-01

    Provides information on fire ecology in forest habitat and community types occurring in northern Idaho. Identifies fire groups based on presettlement fire regimes and patterns of succession and stand development after fire. Describes forest fuels and suggests considerations for fire management.

  15. Southwestern Oregon's Biscuit Fire: An Analysis of Forest Resources, Fire Severity, and Fire Hazard

    Treesearch

    David L. Azuma; Glenn A. Christensen

    2005-01-01

    This study compares pre-fire field inventory data (collected from 1993 to 1997) in relation to post-fire mapped fire severity classes and the Fire and Fuels Extension of the Forest Vegetation Simulator growth and yield model measures of fire hazard for the portion of the Siskiyou National Forest in the 2002 Biscuit fire perimeter of southwestern Oregon. Post-fire...

  16. Fire ecology of the forest habitat types of central Idaho

    Treesearch

    M. F. Crane; William C. Fischer

    1986-01-01

    Discusses fire as an ecological factor for forest habitat types occurring in central Idaho. Identifies "Fire Groups" of habitat types based on fire's role in forest succession. Considerations for fire management are suggested.

  17. Short- and long-term effects of fire on carbon in US dry temperate forest systems

    USGS Publications Warehouse

    Hurteau, Matthew D.; Brooks, Matthew L.

    2011-01-01

    Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires, resulting in greater tree mortality, have caused a decrease in forest carbon stability. Fire management actions can mitigate the risk of high-severity fires, but these actions often require a trade-off between maximizing carbon stocks and carbon stability. We discuss the effects of fire on forest carbon stocks and recommend that managing forests on the basis of their specific ecologies should be the foremost goal, with carbon sequestration being an ancillary benefit. ?? 2011 by American Institute of Biological Sciences. All rights reserved.

  18. Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere-fire numerical model

    NASA Astrophysics Data System (ADS)

    Simpson, C. C.; Sharples, J. J.; Evans, J. P.

    2014-09-01

    Vorticity-driven lateral fire spread (VLS) is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep leeward slope in a direction approximately transverse to the background winds. VLS is often accompanied by a downwind extension of the active flaming region and intense pyro-convection. In this study, the WRF-Fire (WRF stands for Weather Research and Forecasting) coupled atmosphere-fire model is used to examine the sensitivity of resolving VLS to both the horizontal and vertical grid spacing, and the fire-to-atmosphere coupling from within the model framework. The atmospheric horizontal and vertical grid spacing are varied between 25 and 90 m, and the fire-to-atmosphere coupling is either enabled or disabled. At high spatial resolutions, the inclusion of fire-to-atmosphere coupling increases the upslope and lateral rate of spread by factors of up to 2.7 and 9.5, respectively. This increase in the upslope and lateral rate of spread diminishes at coarser spatial resolutions, and VLS is not modelled for a horizontal and vertical grid spacing of 90 m. The lateral fire spread is driven by fire whirls formed due to an interaction between the background winds and the vertical circulation generated at the flank of the fire front as part of the pyro-convective updraft. The laterally advancing fire fronts become the dominant contributors to the extreme pyro-convection. The results presented in this study demonstrate that both high spatial resolution and two-way atmosphere-fire coupling are required to model VLS with WRF-Fire.

  19. [Fire behavior of ground surface fuels in Pinus koraiensis and Quercus mongolica mixed forest under no wind and zero slope condition: a prediction with extended Rothermel model].

    PubMed

    Zhang, Ji-Li; Liu, Bo-Fei; Chu, Teng-Fei; Di, Xue-Ying; Jin, Sen

    2012-06-01

    A laboratory burning experiment was conducted to measure the fire spread speed, residual time, reaction intensity, fireline intensity, and flame length of the ground surface fuels collected from a Korean pine (Pinus koraiensis) and Mongolian oak (Quercus mongolica) mixed stand in Maoer Mountains of Northeast China under the conditions of no wind, zero slope, and different moisture content, load, and mixture ratio of the fuels. The results measured were compared with those predicted by the extended Rothermel model to test the performance of the model, especially for the effects of two different weighting methods on the fire behavior modeling of the mixed fuels. With the prediction of the model, the mean absolute errors of the fire spread speed and reaction intensity of the fuels were 0.04 m X min(-1) and 77 kW X m(-2), their mean relative errors were 16% and 22%, while the mean absolute errors of residual time, fireline intensity and flame length were 15.5 s, 17.3 kW X m(-1), and 9.7 cm, and their mean relative errors were 55.5%, 48.7%, and 24%, respectively, indicating that the predicted values of residual time, fireline intensity, and flame length were lower than the observed ones. These errors could be regarded as the lower limits for the application of the extended Rothermel model in predicting the fire behavior of similar fuel types, and provide valuable information for using the model to predict the fire behavior under the similar field conditions. As a whole, the two different weighting methods did not show significant difference in predicting the fire behavior of the mixed fuels by extended Rothermel model. When the proportion of Korean pine fuels was lower, the predicted values of spread speed and reaction intensity obtained by surface area weighting method and those of fireline intensity and flame length obtained by load weighting method were higher; when the proportion of Korean pine needles was higher, the contrary results were obtained.

  20. Spatial patterns and controls on historical fire regimes and forest structure in the Klamath Mountains

    Treesearch

    Alan H. Taylor; Carl N. Skinner

    2003-01-01

    Fire exclusion in mixed conifer forests has increased the risk of fire due to decades of fuel accumulation. Restoration of fire into altered forests is a challenge because of a poor understanding of the spatial and temporal dynamics of fire regimes. In this study the spatial and temporal characteristics of fire regimes and forest age structure are reconstructed in a...

  1. Fuel variability following wildfire in forests with mixed severity fire regimes, Cascade Range, USA

    Treesearch

    Jessica L. Hudec; David L. Peterson

    2012-01-01

    Fire severity influences post-burn structure and composition of a forest and the potential for a future fire to burn through the area. The effects of fire on forests with mixed severity fire regimes are difficult to predict and interpret because the quantity, structure, and composition of forest fuels vary considerably. This study examines the relationship between fire...

  2. Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries

    NASA Astrophysics Data System (ADS)

    Armenteras, Dolors; Barreto, Joan Sebastian; Tabor, Karyn; Molowny-Horas, Roberto; Retana, Javier

    2017-06-01

    Tropical forests in NW Amazonia are highly threatened by the expansion of the agricultural frontier and subsequent deforestation. Fire is used, both directly and indirectly, in Brazilian Amazonia to propagate deforestation and increase forest accessibility. Forest fragmentation, a measure of forest degradation, is also attributed to fire occurrence in the tropics. However, outside the Brazilian Legal Amazonia the role of fire in increasing accessibility and forest fragmentation is less explored. In this study, we compared fire regimes in five countries that share this tropical biome in the most north-westerly part of the Amazon Basin (Venezuela, Colombia, Ecuador, Peru and Brazil). We analysed spatial differences in the timing of peak fire activity and in relation to proximity to roads and rivers using 12 years of MODIS active fire detections. We also distinguished patterns of fire in relation to forest fragmentation by analysing fire distance to the forest edge as a measure of fragmentation for each country. We found significant hemispheric differences in peak fire occurrence with the highest number of fires in the south in 2005 vs. 2007 in the north. Despite this, both hemispheres are equally affected by fire. We also found difference in peak fire occurrence by country. Fire peaked in February in Colombia and Venezuela, whereas it peaked in September in Brazil and Peru, and finally Ecuador presented two fire peaks in January and October. We confirmed the relationship between fires and forest fragmentation for all countries and also found significant differences in the distance between the fire and the forest edge for each country. Fires were associated with roads and rivers in most countries. These results can inform land use planning at the regional, national and subnational scales to minimize the contribution of road expansion and subsequent access to the Amazonian natural resources to fire occurrence and the associated deforestation and carbon emissions.

  3. A second-order impact model for forest fire regimes.

    PubMed

    Maggi, Stefano; Rinaldi, Sergio

    2006-09-01

    We present a very simple "impact" model for the description of forest fires and show that it can mimic the known characteristics of wild fire regimes in savannas, boreal forests, and Mediterranean forests. Moreover, the distribution of burned biomasses in model generated fires resemble those of burned areas in numerous large forests around the world. The model has also the merits of being the first second-order model for forest fires and the first example of the use of impact models in the study of ecosystems.

  4. [Effects of fire recurrence on fire behaviour in cork oak woodlands (Quercus suber L.) and Mediterranean shrublands over the last fifty years].

    PubMed

    Schaffhauser, Alice; Pimont, François; Curt, Thomas; Cassagne, Nathalie; Dupuy, Jean-Luc; Tatoni, Thierry

    2015-12-01

    Past fire recurrence impacts the vegetation structure, and it is consequently hypothesized to alter its future fire behaviour. We examined the fire behaviour in shrubland-forest mosaics of southeastern France, which were organized along a range of fire frequency (0 to 3-4 fires along the past 50 years) and had different time intervals between fires. The mosaic was dominated by Quercus suber L. and Erica-Cistus shrubland communities. We described the vegetation structure through measurements of tree height, base of tree crown or shrub layer, mean diameter, cover, plant water content and bulk density. We used the physical model Firetec to simulate the fire behaviour. Fire intensity, fire spread, plant water content and biomass loss varied significantly according to fire recurrence and vegetation structure, mainly linked to the time since the last fire, then the number of fires. These results confirm that past fire recurrence affects future fire behaviour, with multi-layered vegetation (particularly high shrublands) producing more intense fires, contrary to submature Quercus woodlands that have not burnt since 1959 and that are unlikely to reburn. Further simulations, with more vegetation scenes according to shrub and canopy covers, will complete this study in order to discuss the fire propagation risk in heterogeneous vegetation, particularly in the Mediterranean area, with a view to a local management of these ecosystems. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  5. Modeling the Effects of Fire Frequency and Severity on Forests in the Northwestern United States

    USGS Publications Warehouse

    Busing, Richard T.; Solomon, Allen M.

    2006-01-01

    This study used a model of forest dynamics (FORCLIM) and actual forest survey data to demonstrate the effects of various fire regimes on different forest types in the Pacific Northwest. We examined forests in eight ecoregions ranging from wet coastal forests dominated by Pseudotsuga menziesii and other tall conifers to dry interior forests dominated by Pinus ponderosa. Fire effects simulated as elevated mortality of trees based on their species and size did alter forest structure and species composition. Low frequency fires characteristic of wetter forests (return interval >200 yr) had minor effects on composition. When fires were severe, they tended to reduce total basal area with little regard to species differences. High frequency fires characteristic of drier forests (return interval <30 yr) had major effects on species composition and on total basal area. Typically, they caused substantial reductions in total basal area and shifts in dominance toward highly fire tolerant species. With the addition of fire, simulated basal areas averaged across ecoregions were reduced to levels approximating observed basal areas.

  6. Assessment of Post Forest Fire Landslides in Uttarakhand Himalaya, India

    NASA Astrophysics Data System (ADS)

    Sharma, N.; Singh, R. B.

    2017-12-01

    According to Forest Survey of India-State Forest Report (2015), the total geographical area of Uttarakhand is 53, 483 covers km2 out of which 24,402 km2 area covers under total forest covers. As noticed during last week of April, 2016 forest of Uttarakhand mountains was gutted down due to major incidences of fire. This incident caused huge damage to different species of flora-fauna, human being, livestock, property and destruction of mountain ecosystem. As per media reports, six people were lost their lives and recorded several charred carcasses of livestock's due to this incident. The forest fire was affected the eleven out of total thirteen districts which roughly covers the 0.2% (approx.) of total vegetation covers.The direct impact of losses are easy to be estimated but indirect impacts of this forest fire are yet to be occurred. The threat of post Forest fire induced landslides during rainfall is themain concern. Since, after forest fire top soil and rocks are loose due to loss of vegetation as binding and protecting agent against rainfall. Therefore, the pore water pressure and weathering will be very high during rainy season which can cause many landslides in regions affected by forest fire. The demarcation of areas worse affected by forest fire is necessary for issuing alerts to habitations and important infrastructures. These alerts will be based upon region specific probable rainfall forecasting through Indian Meteorological Department (IMD). The main objective is to develop a tool for detecting early forest fire and to create awareness amongst mountain community, researchers and concerned government agencies to take an appropriate measures to minimize the incidences of Forest fire and impact of post forest fire landslides in future through implementation of sustainable mountain strategy.

  7. Computer program for calculating and plotting fire direction and rate of spread.

    Treesearch

    James E. Eenigenburg

    1987-01-01

    Presents an analytical procedure that uses a FORTRAN 77 program to estimate fire direction and rate of spread. The program also calculates the variability of these parameters, both for subsections of the fire and for the fires as a whole. An option in the program allows users with a CALCOMP plotter to obtain a map of the fire with spread vectors.

  8. Estimation of Wild Fire Risk Area based on Climate and Maximum Entropy in Korean Peninsular

    NASA Astrophysics Data System (ADS)

    Kim, T.; Lim, C. H.; Song, C.; Lee, W. K.

    2015-12-01

    The number of forest fires and accompanying human injuries and physical damages has been increased by frequent drought. In this study, forest fire danger zone of Korea is estimated to predict and prepare for future forest fire hazard regions. The MaxEnt (Maximum Entropy) model is used to estimate the forest fire hazard region which estimates the probability distribution of the status. The MaxEnt model is primarily for the analysis of species distribution, but its applicability for various natural disasters is getting recognition. The detailed forest fire occurrence data collected by the MODIS for past 5 years (2010-2014) is used as occurrence data for the model. Also meteorology, topography, vegetation data are used as environmental variable. In particular, various meteorological variables are used to check impact of climate such as annual average temperature, annual precipitation, precipitation of dry season, annual effective humidity, effective humidity of dry season, aridity index. Consequently, the result was valid based on the AUC(Area Under the Curve) value (= 0.805) which is used to predict accuracy in the MaxEnt model. Also predicted forest fire locations were practically corresponded with the actual forest fire distribution map. Meteorological variables such as effective humidity showed the greatest contribution, and topography variables such as TWI (Topographic Wetness Index) and slope also contributed on the forest fire. As a result, the east coast and the south part of Korea peninsula were predicted to have high risk on the forest fire. In contrast, high-altitude mountain area and the west coast appeared to be safe with the forest fire. The result of this study is similar with former studies, which indicates high risks of forest fire in accessible area and reflects climatic characteristics of east and south part in dry season. To sum up, we estimated the forest fire hazard zone with existing forest fire locations and environment variables and had meaningful result with artificial and natural effect. It is expected to predict future forest fire risk with future climate variables as the climate changes.

  9. Predicting fire effects on water quality: a perspective and future needs

    NASA Astrophysics Data System (ADS)

    Smith, Hugh; Sheridan, Gary; Nyman, Petter; Langhans, Christoph; Noske, Philip; Lane, Patrick

    2017-04-01

    Forest environments are a globally significant source of drinking water. Fire presents a credible threat to the supply of high quality water in many forested regions. The post-fire risk to water supplies depends on storm event characteristics, vegetation cover and fire-related changes in soil infiltration and erodibility modulated by landscape position. The resulting magnitude of runoff generation, erosion and constituent flux to streams and reservoirs determines the severity of water quality impacts in combination with the physical and chemical composition of the entrained material. Research to date suggests that most post-fire water quality impacts are due to large increases in the supply of particulates (fine-grained sediment and ash) and particle-associated chemical constituents. The largest water quality impacts result from high magnitude erosion events, including debris flow processes, which typically occur in response to short duration, high intensity storm events during the recovery period. Most research to date focuses on impacts on water quality after fire. However, information on potential water quality impacts is required prior to fire events for risk planning. Moreover, changes in climate and forest management (e.g. prescribed burning) that affect fire regimes may alter water quality risks. Therefore, prediction requires spatial-temporal representation of fire and rainfall regimes coupled with information on fire-related changes to soil hydrologic parameters. Recent work has applied such an approach by combining a fire spread model with historic fire weather data in a Monte Carlo simulation to quantify probabilities associated with fire and storm events generating debris flows and fine sediment influx to a reservoir located in Victoria, Australia. Prediction of fire effects on water quality would benefit from further research in several areas. First, more work on regional-scale stochastic modelling of intersecting fire and storm events with landscape zones of erosion vulnerability is required to support quantitative evaluation of water quality risk and the effect of future changes in climate and land management. Second, we underscore previous calls for characterisation of landscape-scale domains to support regionalisation of parameter sets derived from empirical studies. Recent examples include work identifying aridity as a control of hydro-geomorphic response to fire and the use of spectral-based indices to predict spatial heterogeneity in ash loadings. Third, information on post-fire erosion from colluvial or alluvial stores is needed to determine their significance as both sediment-contaminant sinks and sources. Such sediment stores may require explicit spatial representation in risk models for some environments and sediment tracing can be used to determine their relative importance as secondary sources. Fourth, increased dating of sediment archives could provide regional datasets of fire-related erosion event frequency. Presently, the lack of such data hinders evaluation of risk models linking fire and storm events to erosion and water quality impacts.

  10. Assessment of forest fire impacts and emissions in the European Union based on the European forest fire information system

    Treesearch

    Paulo Barbosa; Andrea Camia; Jan Kucera; Giorgio Libertá; Ilaria Palumbo; Jesus San-Miguel-Ayanz; Guido Schmuck

    2009-01-01

    An analysis on the number of forest fires and burned area distribution as retrieved by the European Forest Fire Information System (EFFIS) database is presented. On average, from 2000 to 2005 about...

  11. Natural and social factors influencing forest fire occurrence at a local spatial scale

    Treesearch

    Maria Luisa Chas-Amil; Julia M. Touza; Jeffrey P. Prestemon; Colin J. McClean

    2012-01-01

    Development of efficient forest fire policies requires an understanding of the underlying reasons behind forest fire ignitions. Globally, there is a close relationship between forest fires and human activities, i.e., fires understood as human events due to negligence (e.g., agricultural burning escapes), and deliberate actions (e.g., pyromania, revenge, land use change...

  12. Modeling impacts of fire severity on successional trajectories and future fire behavior in Alaskan boreal forests

    Treesearch

    Jill F. Johnstone; T. Scott Rupp; Mark Olson; David. Verbyla

    2011-01-01

    Much of the boreal forest in western North America and Alaska experiences frequent, stand-replacing wildfires. Secondary succession after fire initiates most forest stands and variations in fire characteristics can have strong effects on pathways of succession. Variations in surface fire severity that influence whether regenerating forests are dominated by coniferous...

  13. Fire risk in east-side forests.

    Treesearch

    Valerie. Rapp

    2002-01-01

    Wildfire was a natural part of ecosystems in east-side Oregon and Washington before the 20th century. The fire regimes, or characteristic patterns of fire—how often, how hot, how big, what time of year—helped create and maintain various types of forests.Forests are dynamic, and fire interacts with other ecological processes. Fires, forests...

  14. Land-use history as a major driver for long-term forest dynamics in the Sierra de Guadarrama National Park (central Spain) during the last millennia: implications for forest conservation and management

    NASA Astrophysics Data System (ADS)

    Morales-Molino, César; Colombaroli, Daniele; Valbuena-Carabaña, María; Tinner, Willy; Salomón, Roberto L.; Carrión, José S.; Gil, Luis

    2017-05-01

    In the Mediterranean Basin, long-lasting human activities have largely resulted in forest degradation or destruction. Consequently, conservation efforts aimed at preserving and restoring Mediterranean forests often lack well-defined targets when using current forest composition and structure as a reference. In the Iberian mountains, the still widespread Pinus sylvestris and Quercus pyrenaica woodlands have been heavily impacted by land-use. To assess future developments and as a baseline for planning, forest managers are interested in understanding the origins of present ecosystems to disclose effects on forest composition that may influence future vegetation trajectories. Quantification of land-use change is particularly interesting to understand vegetation responses. Here we use three well-dated multi-proxy palaeoecological sequences from the Guadarrama Mountains (central Spain) to quantitatively reconstruct changes occurred in P. sylvestris forests and the P. sylvestris-Q. pyrenaica ecotone at multi-decadal to millennial timescales, and assess the driving factors. Our results show millennial stability of P. sylvestris forests under varying fire and climate conditions, with few transient declines caused by the combined effects of fire and grazing. The high value of pine timber in the past would account for long-lasting pine forest preservation and partly for the degradation of native riparian vegetation (mostly composed of Betula and Corylus). Pine forests further spread after planned forest management started at 1890 CE. In contrast, intensive coppicing and grazing caused Q. pyrenaica decline some centuries ago (ca. 1500-1650 CE), with unprecedented grazing during the last decades seriously compromising today's oak regeneration. Thus, land-use history played a major role in determining vegetation changes. Finally, we must highlight that the involvement of forest managers in this work has guaranteed a practical use of palaeoecological data in conservation and management practice.

  15. Landscape fragmentation, severe drought, and the new Amazon forest fire regime.

    PubMed

    Alencar, Ane A; Brando, Paulo M; Asner, Gregory P; Putz, Francis E

    2015-09-01

    Changes in weather and land use are transforming the spatial and temporal characteristics of fire regimes in Amazonia, with important effects on the functioning of dense (i.e., closed-canopy), open-canopy, and transitional forests across the Basin. To quantify, document, and describe the characteristics and recent changes in forest fire regimes, we sampled 6 million ha of these three representative forests of the eastern and southern edges of the Amazon using 24 years (1983-2007) of satellite-derived annual forest fire scar maps and 16 years of monthly hot pixel information (1992-2007). Our results reveal that changes in forest fire regime properties differentially affected these three forest types in terms of area burned and fire scar size, frequency, and seasonality. During the study period, forest fires burned 15% (0.3 million ha), 44% (1 million ha), and 46% (0.6 million ha) of dense, open, and transitional forests, respectively. Total forest area burned and fire scar size tended to increase over time (even in years of average rainfall in open canopy and transitional forests). In dense forests, most of the temporal variability in fire regime properties was linked to El Nino Southern Oscillation (ENSO)-related droughts. Compared with dense forests, transitional and open forests experienced fires twice as frequently, with at least 20% of these forests' areas burning two or more times during the 24-year study period. Open and transitional forests also experienced higher deforestation rates than dense forests. During drier years, the end of the dry season was delayed by about a month, which resulted in larger burn scars and increases in overall area burned later in the season. These observations suggest that climate-mediated forest flammability is enhanced by landscape fragmentation caused by deforestation, as observed for open and transitional forests in the Eastern portion of the Amazon Basin.

  16. Creation and implementation of a certification system for insurability and fire risk classification for forest plantations

    Treesearch

    Veronica Loewe M.; Victor Vargas; Juan Miguel Ruiz; Andrea Alvarez C.; Felipe Lobo Q.

    2015-01-01

    Currently, the Chilean insurance market sells forest fire insurance policies and agricultural weather risk policies. However, access to forest fire insurance is difficult for small and medium enterprises (SMEs), with a significant proportion (close to 50%) of forest plantations being without coverage. Indeed, the insurance market that sells forest fire insurance...

  17. 77 FR 18997 - Rim Lakes Forest Restoration Project; Apache-Sitgreavese National Forest, Black Mesa Ranger...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... uncharacteristicly high-severity wild fires, which can lead to loss of entire stands during one fire event. About 67..., fire, and wind. The purpose of the project is to restore forest health, move forests toward an uneven-aged forest structure with all age classes represented, and restore frequent, periodic surface fire as...

  18. To burn or not to burn Oriental bittersweet: A fire manager's conundrum

    USGS Publications Warehouse

    Leicht-Young, Stacey A.; Murphy, Marilyn K.; Pavlovic, Noel B.; Grundel, Ralph; Weyenberg, Scott A.; Mulconrey, Neal

    2012-01-01

    Oriental bittersweet (Celastrus orbiculatus) is an introduced liana (woody vine) that has invaded much of the Eastern United States and is expanding west into the Great Plains. In forests, it can girdle and damage canopy trees. At Indiana Dunes, we have discovered that it is invading non-forested dune habitats as well. Anecdotal evidence suggests that fire might facilitate its spread, but the relationship between fire and this aggressive invader is poorly understood. We investigated four areas important to fire management of oriental bittersweet, each of which we will briefly summarize here. 1) What fire temperatures cause seed mortality? For seeds, temperatures above 140°C for three minute or more kills the embryo. For fruits, temperatures above 140°C kill the seeds inside after five minutes. While oriental bittersweet fruits ripen in October and November, the seeds are not dispersed until later in the early to mid December. Thus fall fires will not have any impact on the seeds unless perhaps if they are near the ground. Late winter and early spring fires are likely to kill seeds in the top litter at least. Thus spring fire can reduce the pool of seeds available to germinate. 2) Does fire modify habitat susceptibility to invasion? We found that post fire environment had no effect on the emergence and survival of oriental bittersweet, except that the tallest plants, after two years since sowing, were in the control plots. Highest establishment occurred in mesic silt loam prairie and oak forest. Survival was greatest in mesic prairie and greatest biomass occurred in the oak forest. 3) Both fire and cutting can cause oriental bittersweet to resprout and root sucker. Does the resprouting response differ between these two treatments and can a combination of cutting and pre- or post-fire treatment facilitate its removal? Cutting sometimes increased stem density between one and two times, but burning increased density by two or more times depending on the maximum fire temperature and duration. Cutting in early July reduced total nonstructural carbohydrates by 50% from normal July levels and 75% below dormant season levels. Thus burning established populations will only serve to increase their local density. 4) How does oriental bittersweet abundance vary with fire regime and can we predict the abundance of this species in a fire mosaic landscape based on fire return interval and time since last fire? At the landscape scale, we can predict the presence and abundance of oriental bittersweet, but have less success predicting its cover and distribution. The presence of oriental bittersweet was significantly negatively influenced by canopy closure, burn frequency, and distance to roads and railroads. In plots where C. orbiculatus was present, abundance was significantly greater in plots with low to moderate burn frequency, and marginally (p = 0.056) lower in plots with greater canopy cover. Both cover and distribution of C. orbiculatus was not significantly affected by the measured variables. These results suggest the frequent fire may be effective in preventing the establishment of oriental bittersweet.

  19. Fuel age and fire spread: Natural conditions versus opportunities for fire suppression

    USGS Publications Warehouse

    Halsey, Richard W.; Keeley, Jon E.; Wilson, Kit

    2009-01-01

    Wildfires are driven and restrained by an interplay of variables that can lead to many potential outcomes. As every wildland firefighter learns in basic training, the ability of a fire to spread is determined by three basic variables: fuel type and condition, weather, and topography. Fire suppression obviously plays a significant role in determining fire spread as well, so firefighter activity becomes an additional variable.

  20. Alternative characterization of forest fire regimes: incorporating spatial patterns

    Treesearch

    Brandon M. Collins; Jens T. Stevens; Jay D. Miller; Scott L. Stephens; Peter M. Brown; Malcolm P. North

    2017-01-01

    ContextThe proportion of fire area that experienced stand-replacing fire effects is an important attribute of individual fires and fire regimes in forests, and this metric has been used to group forest types into characteristic fire regimes. However, relying on proportion alone ignores important spatial characteristics...

  1. A study of forest fire danger district division in Lushan Mountain based on RS and GIS

    NASA Astrophysics Data System (ADS)

    Xiao, Jinxiang; Huang, Shu-E.; Zhong, Anjian; Zhu, Biqin; Ye, Qing; Sun, Lijun

    2009-09-01

    The study selected 9 factors, average maximum temperature, average temperature, average precipitation, average the longest days of continuous drought and average wind speed during fire prevention period, vegetation type, altitude, slope and aspect as the index of forest fire danger district division, which has taken the features of Lushan Mountain's forest fire history into consideration, then assigned subjective weights to each factor according to their sensitivity to fire or their fire-inducing capability. By remote sensing and GIS, vegetation information layer were gotten from Landsat TM image and DEM with a scale of 1:50000 was abstracted from the digital scanned relief map. Topography info. (elevation, slope, aspect) layers could be gotten after that. A climate resource databank that contained the data from the stations of Lushan Mountain and other nearby 7 stations was built up and extrapolated through the way of grid extrapolation in order to make the distribution map of climate resource. Finally synthetical district division maps were made by weighing and integrating all the single factor special layers,and the study area were divided into three forest fire danger district, include special fire danger district, I-fire danger district and II-fire danger district. It could be used as a basis for developing a forest fire prevention system, preparing the annual investment plan, allocating reasonably the investment of fire prevention, developing the program of forest fire prevention and handle, setting up forest fire brigade, leaders' decisions on forest fire prevention work.

  2. Analysis of zone of vulnurability and impact of forest fires in forest ecosystems in north algeria by susing remote sensing

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    2010-05-01

    The Forest in steppe present ecological diversity, and seen climatic unfavourable conditions in zone and impact of forest fires; we notes deterioration of physical environment particularly, deterioration of natural forest. This deterioration of forests provokes an unbalance of environment witch provokes a process of deterioration advanced in the ultimate stadium is desertification. By elsewhere, where climatic conditions are favourable, the fire is an ecological and acted agent like integral part of evolution of the ecosystems, the specific regeneration of plants are influenced greatly by the regime of fire (season of fire, intensity, interval), witch leads to the recuperation of the vegetation of meadow- fire. In this survey we used the pictures ALSAT-1 for detection of zones with risk of forest fire and their impact on the naturals forests in region named TLEMCEN in the north west of Algeria. A thematic detailed analysis of forests well attended ecosystems some processing on the picture ALSAT-1, we allowed to identify and classifying the forests in there opinion components flowers. We identified ampleness of fire on this zone also. Some parameters as the slope, the proximity to the road and the forests formations were studied in the goal of determining the zones to risk of forest fire. A crossing of diaper of information in a GIS according to a very determined logic allowed classifying the zones in degree of risk of fire in semi arid zone witch forest zone not encouraging the regeneration but permitting the installation of cash of steppe which encourages the desertification.

  3. Examining fire-induced forest changes using novel remote sensing technique: a case study in a mixed pine-oak forest

    NASA Astrophysics Data System (ADS)

    Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2017-12-01

    Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.

  4. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada

    NASA Astrophysics Data System (ADS)

    Wotton, B. M.; Flannigan, M. D.; Marshall, G. A.

    2017-09-01

    Much research has been carried out on the potential impacts of climate change on forest fire activity in the boreal forest. Indeed, there is a general consensus that, while change will vary regionally across the vast extent of the boreal, in general the fire environment will become more conducive to fire. Land management agencies must consider ways to adapt to these new conditions. This paper examines the impact of that changed fire environment on overall wildfire suppression capability. We use multiple General Circulation Models and carbon emission pathways to generate future fire environment scenarios for Canada’s forested region. We then use these scenarios with the Canadian Forest Fire Behaviour Prediction System and spatial coverages of the current forest fuel composition across the landscape to examine potential variation in key fire behaviour outputs that influence whether fire management resources can effectively suppress fire. Specifically, we evaluate how the potential for crown fire occurrence and active growth of fires changes with the changing climate. We also examine future fire behaviour through the lens of operational fire intensity thresholds used to guide decisions about resources effectiveness. Results indicate that the proportion of days in fire seasons with the potential for unmanageable fire will increase across Canada’s forest, more than doubling in some regions in northern and eastern boreal forest.

  5. Decreases in net primary production and net ecosystem production along a repeated-fires induced forest/grassland gradient

    NASA Astrophysics Data System (ADS)

    Cheng, C. H.; Huang, Y. H.; Chung-Yu, L.; Menyailo, O.

    2016-12-01

    Fire is one of the most important disturbances in ecosystems. Fire rapidly releases stored carbon into atmosphere and also plays critical roles on soil properties, light and moisture regimes, and plant structures and communities. With the interventions of climate change and human activities, fire regimes become more severe and frequent. In many parts of world, forest fire regimes can be further altered by grass invasion because the invasive grasses create a positive feedback cycle through their rapid recovery after fires and their high flammability during dry periods and allow forests to be burned repeatedly in a relatively short time. For such invasive grass-fire cycle, a great change of native vegetation community can occur. In this study, we examined a C4 invasive grass () fire-induced forest/grassland gradient to quantify the changes of net primary production (NPP) and net ecosystem production (NEP) from an unburned forest to repeated fire grassland. Our results demonstrated negative effects of repeated fires on NPP and NEP. Within 4 years of the onset of repeated fires on the unburned forest, NPP declined by 14%, mainly due to the reduction in aboveground NPP but offset by increase of belowground NPP. Subsequent fires cumulatively caused reductions in both aboveground and belowground NPP. A total of 40% reduction in the long-term repeated fire induced grassland was found. Soil respiration rate were not significantly different along the forest/grassland gradient. Thus, a great reduction in NEP were shown in grassland, which shifted from 4.6 Mg C ha-1 yr-1 in unburnt forest to -2.6 Mg C ha-1 yr-1. Such great losses are critical within the context of forest carbon cycling and long-term sustainability. Forest management practices that can effectively reduce the likelihood of repeated fires and consequent likelihood of establishment of the grass fire cycle are essential for protecting the forest.

  6. Shifts in functional traits elevate risk of fire-driven tree dieback in tropical savanna and forest biomes.

    PubMed

    Pellegrini, Adam F A; Franco, Augusto C; Hoffmann, William A

    2016-03-01

    Numerous predictions indicate rising CO2 will accelerate the expansion of forests into savannas. Although encroaching forests can sequester carbon over the short term, increased fires and drought-fire interactions could offset carbon gains, which may be amplified by the shift toward forest plant communities more susceptible to fire-driven dieback. We quantify how bark thickness determines the ability of individual tree species to tolerate fire and subsequently determine the fire sensitivity of ecosystem carbon across 180 plots in savannas and forests throughout the 2.2-million km(2) Cerrado region in Brazil. We find that not accounting for variation in bark thickness across tree species underestimated carbon losses in forests by ~50%, totaling 0.22 PgC across the Cerrado region. The lower bark thicknesses of plant species in forests decreased fire tolerance to such an extent that a third of carbon gains during forest encroachment may be at risk of dieback if burned. These results illustrate that consideration of trait-based differences in fire tolerance is critical for determining the climate-carbon-fire feedback in tropical savanna and forest biomes. © 2015 John Wiley & Sons Ltd.

  7. Defining fire environment zones in the boreal forests of northeastern China.

    PubMed

    Wu, Zhiwei; He, Hong S; Yang, Jian; Liang, Yu

    2015-06-15

    Fire activity in boreal forests will substantially increase with prolonged growing seasons under a warming climate. This trend poses challenges to managing fires in boreal forest landscapes. A fire environment zone map offers a basis for evaluating these fire-related problems and designing more effective fire management plans to improve the allocation of management resources across a landscape. Toward that goal, we identified three fire environment zones across boreal forest landscapes in northeastern China using analytical methods to identify spatial clustering of the environmental variables of climate, vegetation, topography, and human activity. The three fire environment zones were found to be in strong agreement with the spatial distributions of the historical fire data (occurrence, size, and frequency) for 1966-2005. This paper discusses how the resulting fire environment zone map can be used to guide forest fire management and fire regime prediction. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Early forest dynamics in stand-replacing fire patches in the northern Sierra Nevada, California, USA

    Treesearch

    Brandon M. Collins; Gary B. Roller

    2013-01-01

    There is considerable concern over the occurrence of stand-replacing fire in forest types historically associated with low- to moderate-severity fire. The concern is largely over whether contemporary levels of stand-replacing fire are outside the historical range of variability, and what natural forest recovery is in these forest types following stand-replacing fire....

  9. Spatiotemporal patterns of fire-induced forest mortality in boreal regions and its potential drivers

    NASA Astrophysics Data System (ADS)

    Yang, J.; Tian, H.; Pan, S.; Hansen, M.; Wang, Y.

    2017-12-01

    Wildfire is the major natural disturbance in boreal forests, which have substantially affected various biological and biophysical processes. Although a few previous studies examined fire severity in boreal regions and reported a higher fire-induced forest mortality in boreal North America than in boreal Eurasia, it remains unclear how this mortality changes over time and how environmental factors affect the temporal dynamics of mortality at a large scale. By using a combination of multiple sources of satellite observations, we investigate the spatiotemporal patterns of fire-induced forest mortality in boreal regions, and examine the contributions of potential drivers. Our results show that forest composition is the key factor influencing the spatial variations of fire mortality across ecoregions. For the temporal variations, we find that the late-season burning was associated with higher fire intensity, which lead to greater forest mortality than the early-season burning. Forests burned in the warm and dry years had greater mortality than those burned in the cool and wet years. Our findings suggest that climate warming and drying not only stimulated boreal fire frequency, but also enhanced fire severity and forest mortality. Due to the significant effects of forest mortality on vegetation structure and ecosystem carbon dynamics, the spatiotemporal changes of fire-induced forest mortality should be explicitly considered to better understand fire impacts on regional and global climate change.

  10. Effects of fire on small mammal communities in frequent-fire forests in California

    USGS Publications Warehouse

    Roberts, Susan L.; Kelt, Douglas A.; Van Wagtendonk, Jan W.; Miles, A. Keith; Meyer, Marc D.

    2015-01-01

    Fire is a natural, dynamic process that is integral to maintaining ecosystem function. The reintroduction of fire (e.g., prescribed fire, managed wildfire) is a critical management tool for protecting many frequent-fire forests against stand-replacing fires while restoring an essential ecological process. Understanding the effects of fire on forests and wildlife communities is important in natural resource planning efforts. Small mammals are key components of forest food webs and essential to ecosystem function. To investigate the relationship of fire to small mammal assemblages, we live trapped small mammals in 10 burned and 10 unburned forests over 2 years in the central Sierra Nevada, California. Small mammal abundance was higher in unburned forests, largely reflecting the greater proportion of closed-canopy species such as Glaucomys sabrinus in unburned forests. The most abundant species across the entire study area was the highly adaptable generalist species, Peromyscus maniculatus. Species diversity was similar between burned and unburned forests, but burned forests were characterized by greater habitat heterogeneity and higher small mammal species evenness. The use and reintroduction of fire to maintain a matrix of burn severities, including large patches of unburned refugia, creates a heterogeneous and resilient landscape that allows for fire-sensitive species to proliferate and, as such, may help maintain key ecological functions and diverse small mammal assemblages.

  11. The influence of fire on lepidopteran abundance and community structure in forested habitats of eastern Texas

    Treesearch

    D. Craig Rudolph; Charles A. Ely

    2000-01-01

    Transect surveys were used to examine the influence of fire on lepidopteran communities (Papilionoidea and Hesperioidea) in forested habitats in eastern Texas. Lepidopteran abundance was greater in pine forests where prescribed fire maintained an open mid- and understory compared to forests where fire had less impact on forest structure. Ahundance of nectar sources...

  12. Using cellular automata to simulate forest fire propagation in Portugal

    NASA Astrophysics Data System (ADS)

    Freire, Joana; daCamara, Carlos

    2017-04-01

    Wildfires in the Mediterranean region have severe damaging effects mainly due to large fire events [1, 2]. When restricting to Portugal, wildfires have burned over 1:4 million ha in the last decade. Considering the increasing tendency in the extent and severity of wildfires [1, 2], the availability of modeling tools of fire episodes is of crucial importance. Two main types of mathematical models are generally available, namely deterministic and stochastic models. Deterministic models attempt a description of fires, fuel and atmosphere as multiphase continua prescribing mass, momentum and energy conservation, which typically leads to systems of coupled PDEs to be solved numerically on a grid. Simpler descriptions, such as FARSITE, neglect the interaction with atmosphere and propagate the fire front using wave techniques. One of the most important stochastic models are Cellular Automata (CA), in which space is discretized into cells, and physical quantities take on a finite set of values at each cell. The cells evolve in discrete time according to a set of transition rules, and the states of the neighboring cells. In the present work, we implement and then improve a simple and fast CA model designed to operationally simulate wildfires in Portugal. The reference CA model chosen [3] has the advantage of having been applied successfully in other Mediterranean ecosystems, namely to historical fires in Greece. The model is defined on a square grid with propagation to 8 nearest and next-nearest neighbors, where each cell is characterized by 4 possible discrete states, corresponding to burning, not-yet burned, fuel-free and completely burned cells, with 4 possible rules of evolution which take into account fuel properties, meteorological conditions, and topography. As a CA model, it offers the possibility to run a very high number of simulations in order to verify and apply the model, and is easily modified by implementing additional variables and different rules for the evolution of the fire spread. We present and discuss the application of the CA model to the "Tavira wildfire" in which approximately 24,800ha were burned. The event took place in summer 2012, between July 18 and 21, and spread in the Tavira and São Brás de Alportel municipalities of Algarve, a province in the southern coast of Portugal. [1] DaCamara et. al. (2014), International Journal of Wildland Fire 23. [2] Amraoui et. al. (2013), Forest Ecology and Management 294. [3] Alexandridis et. al. (2008), Applied Mathematics and Computation 204.

  13. Grizzly Gulch Fire, South Dakota

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Burning next door to the South Dakota towns of Deadwood and Lead, the Grizzly Gulch fire forced the evacuation of many residents in the first week of July, 2002. In addition, smoke closed many of the roads in the area. At the time the fire's behavior was extreme, with 'torching, spotting, and running.' In other words, the fire was primarily burning along the ground, with entire trees occasionally erupting into flame (torching). At the same time, burning embers were being thrown ahead of the fire (spotting). In some areas the fire was spreading from the crown of one tree to another (running). (This glossary of fire terms has a good list of definitions) The above image shows the fire on the morning of July 1, 2002. Actively burning areas, concentrated on the east (right) side of the fire, are colored red and orange. Dark red areas indicate burn scars, while forest and other vegetation appears green. The exposed rock of the Homestake gold mine, now the National Underground Science Laboratory, is pinkish-brown. The total extent of the fire is oulined in yellow. The image was acquired by the Enhanced Thematic Mapper plus (ETM+) aboard the Landsat 7 satellite. More news about current wildfires in the United States is available from the National Fire Information Center. Image provided by the USGS EROS Data Center Satellite Systems Branch.

  14. Intensification of freeze-thaw cycles in the soil on post-fire alpine slopes of Mount Shirouma-dake, northern Japanese Alps central Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, A.; Suzuki, K.

    2016-12-01

    This is the continuous study to clarify the geo-environmental changes on the post-fire alpine slopes of Mount Shirouma-dake in the Northern Japanese Alps. The fire occurred at May 9, 2009 on the alpine slopes of Mount Shirouma-dake, and the fire spread to the Pinus pumila communities and grasslands. Although the grass had a little damage by the fire, the P. pumila received nearly impact of the fire. In the P. pumila communities where the leaf burnt, forest floor is exposed and become easy to be affected by atmospheric condition such as rain, wind, snow, and etc. First, we observed condition of the micro-landforms on post-fire slopes repeatedly for seventh years after the fire. As the results of the observation, it is clear that remarkable changes of these micro-landforms have not occurred but some litters on the forest-floor in the fired P. pumila communities are flushed out to surroundings. The litter layer on the forest-floor in the fired P. pumila communities were 3-4 cm thick in August of 2011, but it became 0.5 cm thick in September of 2014. The P. pumila communities established on the slopes consists of angular and sub-angular gravel with openwork texture, which are covered by thin soil layer. On July of 2016, the litter layer almost entirely flushed out and surface of soil layer is exposed to atmosphere. In addition, we observe the ground temperature and soil moisture, under the fired P. pumila communities and the no fired P. pumila communities since October 2009, to find influence of the fire. The ground temperature sensors were installed into at 1 cm, 10 cm, and 40 cm depth. The soil moisture sensors were installed into at 1 cm and 10 cm depth. The 1 cm depth of the soil on the post-fire slopes, several times of diurnal freeze-thaw cycles occurred on October and November since 2011, but it had not occurred in 2009 and 2010. In particular, more than 20 times of diurnal freeze-thaw cycles occurred on freezing period of 2014. The diurnal freeze-thaw cycles continue to be increasing until thawing period of 2016. The period of seasonal frost at 10 cm and 40 cm depth on the post-fire slopes are extended for two weeks. Snowmelt water is especially thought to be act on re-freezing of post-fire slopes on thawing period. These thermal condition changes are triggered by decrease in the thickness of the litter layer on the fired P. pumila communities.

  15. The Zoning of Forest Fire Potential of Gulestan Province Forests Using Granular Computing and MODIS Images

    NASA Astrophysics Data System (ADS)

    Jalilzadeh Shadlouei, A.; Delavar, M. R.

    2013-09-01

    There are many vegetation in Iran. This is because of extent of Iran and its width. One of these vegetation is forest vegetation most prevalent in Northern provinces named Guilan, Mazandaran, Gulestan, Ardebil as well as East Azerbaijan. These forests are always threatened by natural forest fires so much so that there have been reports of tens of fires in recent years. Forest fires are one of the major environmental as well as economic, social and security concerns in the world causing much damages. According to climatology, forest fires are one of the important factors in the formation and dispersion of vegetation. Also, regarding the environment, forest fires cause the emission of considerable amounts of greenhouse gases, smoke and dust into the atmosphere which in turn causes the earth temperature to rise up and are unhealthy to humans, animals and vegetation. In agriculture droughts are the usual side effects of these fires. The causes of forest fires could be categorized as either Human or Natural Causes. Naturally, it is impossible to completely contain forest fires; however, areas with high potentials of fire could be designated and analysed to decrease the risk of fires. The zoning of forest fire potential is a multi-criteria problem always accompanied by inherent uncertainty like other multi-criteria problems. So far, various methods and algorithm for zoning hazardous areas via Remote Sensing (RS) and Geospatial Information System (GIS) have been offered. This paper aims at zoning forest fire potential of Gulestan Province of Iran forests utilizing Remote Sensing, Geospatial Information System, meteorological data, MODIS images and granular computing method. Granular computing is part of granular mathematical and one way of solving multi-criteria problems such forest fire potential zoning supervised by one expert or some experts , and it offers rules for classification with the least inconsistencies. On the basis of the experts' opinion, 6 determinative criterias contributing to forest fires have been designated as follows: vegetation (NDVI), slope, aspect, temperature, humidity and proximity to roadways. By applying these variables on several tentatively selected areas and formation information tables and producing granular decision tree and extraction of rules, the zoning rules (for the areas in question) were extracted. According to them the zoning of the entire area has been conducted. The zoned areas have been classified into 5 categories: high hazard, medium hazard (high), medium hazard (low), low hazard (high), low hazard (low). According to the map, the zoning of most of the areas fall into the low hazard (high) class while the least number of areas have been classified as low hazard (low). Comparing the forest fires in these regions in 2010 with the MODIS data base for forest fires, it is concluded that areas with high hazards of forest fire have been classified with a 64 percent precision. In other word 64 percent of pixels that are in high hazard classification are classified according to MODIS data base. Using this method we obtain a good range of Perception. Manager will reduce forest fire concern using precautionary proceeding on hazardous area.

  16. Influence of contemporary carbon originating from the 2003 Siberian forest fire on organic carbon in PM2.5 in Nagoya, Japan.

    PubMed

    Ikemori, Fumikazu; Honjyo, Koji; Yamagami, Makiko; Nakamura, Toshio

    2015-10-15

    In May 2003, high concentrations of organic carbon (OC) in PM2.5 were measured in Nagoya, a representative metropolitan area in Japan. To investigate the influence of possible forest fires on PM2.5 in Japan via long-range aerosol transport, the radiocarbon ((14)C) concentrations of PM2.5 samples from April 2003 to March 2004 were measured. (14)C concentrations in total carbon (TC) from May to early June showed higher values than those in other periods. The OC/elemental carbon (EC) ratios from May to early June were also significantly higher than the ones in other periods. In addition, OC concentrations from May to early June were typically high. These results indicate that the abundant OC fraction from May to early June in Nagoya consisted predominantly of contemporary carbon. Furthermore, simulations of diffusion and transport of organic matter (OM) in East Asia showed that abundant OM originating from East Siberia spread over East Asia and Japan in May and early June. Backward air mass trajectories from this time frame indicate that the air mass in Nagoya likely first passed through East Siberia where fire events were prevalent. However, the backward trajectories showed that the air mass after early June did not originate mainly from Siberia, and correspondingly, the (14)C and OC concentrations showed lower values than those from May to early June. Therefore, the authors conclude that contemporary carbon originating from the forest fire in East Siberia was transported to Nagoya, where it significantly contributed to the high observed concentrations of both OC and (14)C. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Long-term effects of prescribed fire on mixed conifer forest structure in the Sierra Nevada, California

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Stephenson, Nathan L.; Knapp, Eric; Keeley, Jon E.

    2011-01-01

    The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before prescribed fire and up to eight years after fire at Sequoia National Park, California. Fire-induced declines in stem density (67% average decrease at eight years post-fire) were nonlinear, taking up to eight years to reach a presumed asymptote. Declines in live stem biomass were also nonlinear, but smaller in magnitude (32% average decrease at eight years post-fire) as most large trees survived the fires. The preferential survival of large trees following fire resulted in significant shifts in stem diameter distributions. Mortality rates remained significantly above background rates up to six years after the fires. Prescribed fire did not have a large influence on the representation of dominant species. Fire-caused mortality appeared to be spatially random, and therefore did not generally alter heterogeneous tree spatial patterns. Our results suggest that prescribed fire can bring about substantial changes to forest structure in old-growth mixed conifer forests in the Sierra Nevada, but that long-term observations are needed to fully describe some measures of fire effects.

  18. Latent resilience in ponderosa pine forest: effects of resumed frequent fire.

    PubMed

    Larson, Andrew J; Belote, R Travis; Cansler, C Alina; Parks, Sean A; Dietz, Matthew S

    2013-09-01

    Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated the effects of reintroduced frequent wildfire in unlogged, fire-excluded, ponderosa pine forest in the Bob Marshall Wilderness, Montana, USA. Initial reintroduction of fire in 2003 reduced tree density and consumed surface fuels, but also stimulated establishment of a dense cohort of lodgepole pine, maintaining a trajectory toward an alternative state. Resumption of a frequent fire regime by a second fire in 2011 restored a low-density forest dominated by large-diameter ponderosa pine by eliminating many regenerating lodgepole pines and by continuing to remove surface fuels and small-diameter lodgepole pine and Douglas-fir that established during the fire suppression era. Our data demonstrate that some unlogged, fire-excluded, ponderosa pine forests possess latent resilience to reintroduced fire. A passive model of simply allowing lightning-ignited fires to burn appears to be a viable approach to restoration of such forests.

  19. The Application of a WEPP Technology to a Complex Watershed Analysis

    NASA Astrophysics Data System (ADS)

    Elliot, William; Miller, Ina Sue; Dobre, Mariana

    2017-04-01

    Forest restoration activities are essential in many forest stands, where previous management and fire suppression has resulted in stands with high density, diseased trees and excessive fuel loads. Trying to balance the watershed impacts of restoration activities such as thinning, selective harvesting, and prescribed fire against the significant impact of wildfire is challenging. The process is further aggravated by the necessity of a road network if management activities include timber removal. We propose to present an approach to a watershed analysis for a 3400-ha of fuel reduction project within an 18,0000-ha sensitive watershed in the Nez Perce National Forest in Northern Idaho, USA. The FlamMap fire spread model was first used to predict the distribution of potential fire severity on the landscape for the current fuel load, and for a landscape that had been treated by thinning and/or prescribed fire. FlamMap predicts the flame length by 30-m pixel as a function of fuel load and water content, wind speed, and slope steepness and aspect. The flame length distribution was then classified so that the distribution of burn severity (unburned, low, moderate and high severity) was similar to the distributions observed on recent wildfires in the Forest. The flame length classes determined for the current fuel loads were also used for the treated condition flame lengths, where predominantly unburned or low severity fire severities were predicted. The burn severity maps were uploaded to a web site that was developed to provide soil and management files reflecting burn severity and soil texture, formatted for the Geospatial interface to the Water Erosion Prediction Project (GeoWEPP). The study area was divided into 40 sub watersheds under 2.5 km2 each for GeoWEPP analysis. GeoWEPP was run for an undisturbed forest; for the burn severity following wildfire for the current and treated fuel loads; for prescribed fire, either broadcast or jack pot burn; and for thinning either by tractor or by skyline logging. The GeoWEPP erosion estimates by hillslope polygon were merged with the proposed treatment polygons to produce maps of erosion for each condition for each treatment polygon. Road network erosion was estimated using a new online GIS tool to estimate road segment length and steepness, and linking those topographic values to the WEPP model for erosion prediction by road segment. The results were summarized and compared to earlier estimates of sediment delivery using a locally-developed cumulative watershed effects analysis. The results were similar from both tools, in spite of using very different erosion estimation methods, and similar to regional observations of forest watershed sediment delivery ( 12.5 Mg/sq km). The study found that the erosion risk from wildfire was 5 times greater than sediment generated by forest management, justifying the proposed restoration activities to reduce fire risk. Sediment generated from the road network, however, was unacceptably high suggesting that methods improve road erosion prediction and/or to reduce road erosion are warranted.

  20. Avian community responses to post-fire forest structure: implications for fire management in mixed conifer forests

    Treesearch

    Angela White; Patricia Manley; Gina Tarbill; T. W. Richardson; R. E. Russell; H. D. Safford; S. Z. Dobrowski

    2016-01-01

    Fire is a natural process and the dominant disturbance shaping plant and animal communities in many coniferous forests of the western US. Given that fire size and severity are predicted to increase in the future, it has become increasingly important to understand how wildlife responds to fire and post-fire management. The Angora Fire...

  1. Forest fires impact in semi arid lands in Algeria, analysis and followed of desertification by using remote sensing and GIS

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    The Forest in steppe present ecological diversity, and seen climatic unfavourable conditions in zone and impact of forest fires; we notes deterioration of physical environment particularly, deterioration of natural forest. This deterioration of forests provokes an unbalance of environment witch provokes a process of deterioration advanced in the ultimate stadium is desertification. By elsewhere, where climatic conditions are favourable, the fire is an ecological and acted agent like integral part of evolution of the ecosystems, the specific regeneration of plants are influenced greatly by the regime of fire (season of fire, intensity, interval), who leads to the recuperation of the vegetation of meadow- fire. In this survey we used the pictures ALSAT-1 for detection of zones with risk of forest fire and their impact on the naturals forests in region of Tlemcen. A thematic detailed analysis of forests well attended ecosystems some processing on the picture ALSAT-1, we allowed to identify and classifying the forests in there opinion components flowers. we identified ampleness of fire on this zone also. Some parameters as the slope, the proximity to the road and the forests formations were studied in the goal of determining the zones to risk of forest fire. A crossing of diaper of information in a SIG according to a very determined logic allowed to classify the zones in degree of risk of fire in a middle arid in a forest zone not encouraging the regeneration on the other hand permitting the installation of cash of steppe which encourages the desertification.

  2. Smoking Pyrocumulonimbus: analysis of a major Canadian boreal fire blowup from satellite and ground measurements

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Fromm, M.; Servranckx, R.; Miller, S.; Turk, J.; Diner, D.

    2005-12-01

    On 17 August 2003 a high-intensity forest fire close to the border of northern Alberta and the Northwest Territories in northwestern Canada exploded into a pyrocumulonimbus (pyroCb for short). PyroCb have in recent years been confirmed as an agent for transport of biomass burning emissions deeply into the lower stratosphere. The blowup was spawned by the Conibear Lake Fire, burning in the Wood Buffalo National Park (the largest boreal park in the world), where large fires are common/natural and seldom suppressed directly. The Conibear Lake Fire pyroCb created a plume of smoke that, on 18 August, was an optically opaque plume spanning from the lower troposphere to the lower stratosphere. A remarkable distinction of the pyroCb was that it grew to convective maturity during midday, enabling four true-color sensors (SeaWiFS, MISR, Terra MODIS, and Aqua MODIS) to observe the growth and spread of the tropopause-level anvil-and the anvil was smoky in color throughout. In this paper we will give a multiple nadir-viewer description of the entire life cycle of this pyroconvection. In addition to the unique smoky composition of the mature pyroCb, we will show the fire hot spot evolution, the cloud-top changes in terms of IR brightness temperature, an analysis of the cloud top altitude, and the deposition/advection of the smoke pall during and after convection. We will complement the satellite analysis with several ground-based indicators of fuel consumption, spread rates, energy release rates, and convection column dynamics that support the satellite observations of the pyroCb development.

  3. Thirty-Two Years of Forest Service Research at the Southern Forest Fire Laboratory in Macon, GA

    Treesearch

    USDA Forest Service

    1991-01-01

    When completed in 1959, the Southern Forest Fire Laboratory was the world?s first devoted entirely to the study of forest fires, Since then the scientists at the Laboratory have: 1) performed basic and applied research on critical fire problems of national interest, 2) conducted special regional research on fire problems peculiar to the 13 Southern States, and 3)...

  4. Modern fire regime resembles historical fire regime in a ponderosa pine forest on Native American land

    Treesearch

    Amanda B. Stan; Peter Z. Fule; Kathryn B. Ireland; Jamie S. Sanderlin

    2014-01-01

    Forests on tribal lands in the western United States have seen the return of low-intensity surface fires for several decades longer than forests on non-tribal lands. We examined the surface fire regime in a ponderosa pinedominated (Pinus ponderosa) forest on the Hualapai tribal lands in the south-western United States. Using fire-scarred trees, we inferred temporal (...

  5. A study of flame spread in engineered cardboard fuelbeds: Part II: Scaling law approach

    Treesearch

    Brittany A. Adam; Nelson K. Akafuah; Mark Finney; Jason Forthofer; Kozo Saito

    2013-01-01

    In this second part of a two part exploration of dynamic behavior observed in wildland fires, time scales differentiating convective and radiative heat transfer is further explored. Scaling laws for the two different types of heat transfer considered: Radiation-driven fire spread, and convection-driven fire spread, which can both occur during wildland fires. A new...

  6. Applying fire spread simulators in New Zealand and Australia: Results from an international seminar

    Treesearch

    Tonja Opperman; Jim Gould; Mark Finney; Cordy Tymstra

    2006-01-01

    There is currently no spatial wildfire spread and growth simulation model used commonly across New Zealand or Australia. Fire management decision-making would be enhanced through the use of spatial fire simulators. Various groups from around the world met in January 2006 to evaluate the applicability of different spatial fire spread applications for common use in both...

  7. Wildfire risk for main vegetation units in a biodiversity hotspot: modeling approach in New Caledonia, South Pacific.

    PubMed

    Gomez, Céline; Mangeas, Morgan; Curt, Thomas; Ibanez, Thomas; Munzinger, Jérôme; Dumas, Pascal; Jérémy, André; Despinoy, Marc; Hély, Christelle

    2015-01-01

    Wildfire has been recognized as one of the most ubiquitous disturbance agents to impact on natural environments. In this study, our main objective was to propose a modeling approach to investigate the potential impact of wildfire on biodiversity. The method is illustrated with an application example in New Caledonia where conservation and sustainable biodiversity management represent an important challenge. Firstly, a biodiversity loss index, including the diversity and the vulnerability indexes, was calculated for every vegetation unit in New Caledonia and mapped according to its distribution over the New Caledonian mainland. Then, based on spatially explicit fire behavior simulations (using the FLAMMAP software) and fire ignition probabilities, two original fire risk assessment approaches were proposed: a one-off event model and a multi-event burn probability model. The spatial distribution of fire risk across New Caledonia was similar for both indices with very small localized spots having high risk. The patterns relating to highest risk are all located around the remaining sclerophyll forest fragments and are representing 0.012% of the mainland surface. A small part of maquis and areas adjacent to dense humid forest on ultramafic substrates should also be monitored. Vegetation interfaces between secondary and primary units displayed high risk and should represent priority zones for fire effects mitigation. Low fire ignition probability in anthropogenic-free areas decreases drastically the risk. A one-off event associated risk allowed localizing of the most likely ignition areas with potential for extensive damage. Emergency actions could aim limiting specific fire spread known to have high impact or consist of on targeting high risk areas to limit one-off fire ignitions. Spatially explicit information on burning probability is necessary for setting strategic fire and fuel management planning. Both risk indices provide clues to preserve New Caledonia hot spot of biodiversity facing wildfires.

  8. Wildfire risk for main vegetation units in a biodiversity hotspot: modeling approach in New Caledonia, South Pacific

    PubMed Central

    Gomez, Céline; Mangeas, Morgan; Curt, Thomas; Ibanez, Thomas; Munzinger, Jérôme; Dumas, Pascal; Jérémy, André; Despinoy, Marc; Hély, Christelle

    2015-01-01

    Wildfire has been recognized as one of the most ubiquitous disturbance agents to impact on natural environments. In this study, our main objective was to propose a modeling approach to investigate the potential impact of wildfire on biodiversity. The method is illustrated with an application example in New Caledonia where conservation and sustainable biodiversity management represent an important challenge. Firstly, a biodiversity loss index, including the diversity and the vulnerability indexes, was calculated for every vegetation unit in New Caledonia and mapped according to its distribution over the New Caledonian mainland. Then, based on spatially explicit fire behavior simulations (using the FLAMMAP software) and fire ignition probabilities, two original fire risk assessment approaches were proposed: a one-off event model and a multi-event burn probability model. The spatial distribution of fire risk across New Caledonia was similar for both indices with very small localized spots having high risk. The patterns relating to highest risk are all located around the remaining sclerophyll forest fragments and are representing 0.012% of the mainland surface. A small part of maquis and areas adjacent to dense humid forest on ultramafic substrates should also be monitored. Vegetation interfaces between secondary and primary units displayed high risk and should represent priority zones for fire effects mitigation. Low fire ignition probability in anthropogenic-free areas decreases drastically the risk. A one-off event associated risk allowed localizing of the most likely ignition areas with potential for extensive damage. Emergency actions could aim limiting specific fire spread known to have high impact or consist of on targeting high risk areas to limit one-off fire ignitions. Spatially explicit information on burning probability is necessary for setting strategic fire and fuel management planning. Both risk indices provide clues to preserve New Caledonia hot spot of biodiversity facing wildfires. PMID:25691965

  9. Fire-mediated dieback and compositional cascade in an Amazonian forest.

    PubMed

    Barlow, Jos; Peres, Carlos A

    2008-05-27

    The only fully coupled land-atmosphere global climate model predicts a widespread dieback of Amazonian forest cover through reduced precipitation. Although these predictions are controversial, the structural and compositional resilience of Amazonian forests may also have been overestimated, as current vegetation models fail to consider the potential role of fire in the degradation of forest ecosystems. We examine forest structure and composition in the Arapiuns River basin in the central Brazilian Amazon, evaluating post-fire forest recovery and the consequences of recurrent fires for the patterns of dominance of tree species. We surveyed tree plots in unburned and once-burned forests examined 1, 3 and 9 years after an unprecedented fire event, in twice-burned forests examined 3 and 9 years after fire and in thrice-burned forests examined 5 years after the most recent fire event. The number of trees recorded in unburned primary forest control plots was stable over time. However, in both once- and twice-burned forest plots, there was a marked recruitment into the 10-20cm diameter at breast height tree size classes between 3 and 9 years post-fire. Considering tree assemblage composition 9 years after the first fire contact, we observed (i) a clear pattern of community turnover among small trees and the most abundant shrubs and saplings, and (ii) that species that were common in any of the four burn treatments (unburned, once-, twice- and thrice-burned) were often rare or entirely absent in other burn treatments. We conclude that episodic wildfires can lead to drastic changes in forest structure and composition, with cascading shifts in forest composition following each additional fire event. Finally, we use these results to evaluate the validity of the savannization paradigm.

  10. Supporting FIRE-suppression strategies combining fire spread MODelling and SATellite data in an operational context in Portugal: the FIRE-MODSAT project

    NASA Astrophysics Data System (ADS)

    Sá, Ana C. L.; Benali, Akli; Pinto, Renata M. S.; Pereira, José M. C.; Trigo, Ricardo M.; DaCamara, Carlos C.

    2014-05-01

    Large wildfires are infrequent but account for the most severe environmental, ecological and socio-economic impacts. In recent years Portugal has suffered the impact of major heat waves that fuelled records of burnt area exceeding 400.000ha and 300.000ha in 2003 and 2005, respectively. According to the latest IPCC reports, the frequency and amplitude of summer heat waves over Iberia will very likely increase in the future. Therefore, most climate change studies point to an increase in the number and extent of wildfires. Thus, an increase in both wildfire impacts and fire suppression difficulties is expected. The spread of large wildfires results from a complex interaction between topography, meteorology and fuel properties. Wildfire spread models (e.g. FARSITE) are commonly used to simulate fire growth and behaviour and are an essential tool to understand their main drivers. Additionally, satellite active-fire data have been used to monitor the occurrence, extent, and spread of wildfires. Both satellite data and fire spread models provide different types of information about the spatial and temporal distribution of large wildfires and can potentially be used to support strategic decisions regarding fire suppression resource allocation. However, they have not been combined in a manner that fully exploits their potential and minimizes their limitations. A knowledge gap still exists in understanding how to minimize the impacts of large wildfires, leading to the following research question: What can we learn from past large wildfires in order to mitigate future fire impacts? FIRE-MODSAT is a one-year funded project by the Portuguese Foundation for the Science and Technology (FCT) that is founded on this research question, with the main goal of improving our understanding on the interactions between fire spread and its environmental drivers, to support fire management decisions in an operational context and generate valuable information to improve the efficiency of the fire suppression system. This project proposes to explore an innovative combination of remote sensing and fire spread models in order to 1) better understand the interactions of fire spread drivers that lead to large wildfires; 2) identify the spatio-temporal frames in which large wildfires can be suppressed more efficiently, and 3) explore the essential steps towards an operational use of both tools to assist fire suppression decisions. Preliminary results combine MODIS active-fire data and burn scar perimeters, to derive the main fire spread paths for the 10 largest wildfires that occurred in Portugal between 2001 and 2012. Fire growth and behavior simulations of some of those wildfires are assessed using the active fires data. Results are also compared with the major fire paths to understand the main drivers of fire propagation, through their interactions with topography, vegetation and meteorology. These combined results are also used for spatial and temporal identification of opportunity windows for a more efficient suppression intervention for each fire event. The approach shows promising results, providing a valuable reconstruction of the fire events and retrieval of important parameters related to the complex spread patterns of individual fire events.

  11. Fire weather conditions and fire-atmosphere interactions observed during low-intensity prescribed fires - RxCADRE 2012

    Treesearch

    Craig B. Clements; Neil P. Lareau; Daisuke Seto; Jonathan Contezac; Braniff Davis; Casey Teske; Thomas J. Zajkowski; Andrew T. Hudak; Benjamin C. Bright; Matthew B. Dickinson; Bret W. Butler; Daniel Jimenez; J. Kevin Hiers

    2016-01-01

    The role of fire-atmosphere coupling on fire behaviour is not well established, and to date few field observations have been made to investigate the interactions between fire spread and fire-induced winds. Therefore, comprehensive field observations are needed to better understand micrometeorological aspects of fire spread. To address this need, meteorological...

  12. Relation between the National Fire Danger spread component and fire activity in the Lake States.

    Treesearch

    Donald A. Haines; William A. Main; Von J. Johnson

    1970-01-01

    Relationships between the 1964 version of the spread component of the National Fire Danger Rating System and fire activity were established for Michigan, Minnesota, and Wisconsin. The measures of fire activity included the probability of a fire-day as well as a C, D, or E fire-day, number of fires per fire-day, and acres burned per fire. These measures were examined by...

  13. Stand structure, fuelloads, and fire behavior in riparian and upland forests, Sierra Nevada Mountains, USA; a comparison of current and reconstructed conditions

    Treesearch

    Kip Van de Water; Malcolm North

    2011-01-01

    Fire plays an important role in shaping many Sierran coniferous forests, but longer fire return intervals and reductions in area burned have altered forest conditions. Productive, mesic riparian forests can accumulate high stem densities and fuel loads, making them susceptible to high-severity fire. Fuels treatments applied to upland forests, however, are...

  14. The Effects of Vegetative Type, Edges, Fire History, Rainfall and Management in Fire-Maintained Habitat

    NASA Technical Reports Server (NTRS)

    Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.

    2018-01-01

    The combined effects of fire history, climate, and landscape features (e.g., edges) on habitat specialists need greater focus in fire ecology studies, which usually only emphasize characteristics of the most recent fire. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights, which are dynamic because of frequent fires. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells (that represented potential territories) because fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities vary between states as functions of environmental covariates. Covariates included vegetative type, edges (e.g., roads, forests), precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presence/absence of fire covariate, but also fire history covariates: time since the previous fire, the longest fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Edges reduced the effectiveness of fires in setting degraded scrub and flatwoods into earlier successional states making mechanical cutting an important tool to compliment frequent prescribed fires.

  15. The largest forest fires in Portugal: the constraints of burned area size on the comprehension of fire severity.

    PubMed

    Tedim, Fantina; Remelgado, Ruben; Martins, João; Carvalho, Salete

    2015-01-01

    Portugal is a European country with highest forest fires density and burned area. Since beginning of official forest fires database in 1980, an increase in number of fires and burned area as well as appearance of large and catastrophic fires have characterized fire activity in Portugal. In 1980s, the largest fires were just a little bit over 10,000 ha. However, in the beginning of 21st century several fires occurred with a burned area over 20,000 ha. Some of these events can be classified as mega-fires due to their ecological and socioeconomic severity. The present study aimed to discuss the characterization of large forest fires trend, in order to understand if the largest fires that occurred in Portugal were exceptional events or evidences of a new trend, and the constraints of fire size to characterize fire effects because, usually, it is assumed that larger the fire higher the damages. Using Portuguese forest fire database and satellite imagery, the present study showed that the largest fires could be seen at the same time as exceptional events and as evidence of a new fire regime. It highlighted the importance of size and patterns of unburned patches within fire perimeter as well as heterogeneity of fire ecological severity, usually not included in fire regime description, which are critical to fire management and research. The findings of this research can be used in forest risk reduction and suppression planning.

  16. Uncertainty in Wildfire Behavior

    NASA Astrophysics Data System (ADS)

    Finney, M.; Cohen, J. D.

    2013-12-01

    The challenge of predicting or modeling fire behavior is well recognized by scientists and managers who attempt predictions of fire spread rate or growth. At the scale of the spreading fire, the uncertainty in winds, moisture, fuel structure, and fire location make accurate predictions difficult, and the non-linear response of fire spread to these conditions means that average behavior is poorly represented by average environmental parameters. Even more difficult are estimations of threshold behaviors (e.g. spread/no-spread, crown fire initiation, ember generation and spotting) because the fire responds as a step-function to small changes in one or more environmental variables, translating to dynamical feedbacks and unpredictability. Recent research shows that ignition of fuel particles, itself a threshold phenomenon, depends on flame contact which is absolutely not steady or uniform. Recent studies of flame structure in both spreading and stationary fires reveals that much of the non-steadiness of the flames as they contact fuel particles results from buoyant instabilities that produce quasi-periodic flame structures. With fuel particle ignition produced by time-varying heating and short-range flame contact, future improvements in fire behavior modeling will likely require statistical approaches to deal with the uncertainty at all scales, including the level of heat transfer, the fuel arrangement, and weather.

  17. Fire regime in a Mexican forest under indigenous resource management.

    PubMed

    Fulé, Peter Z; Ramos-Gómez, Mauro; Cortés-Montaño, Citlali; Miller, Andrew M

    2011-04-01

    The Rarámuri (Tarahumara) people live in the mountains and canyons of the Sierra Madre Occidental of Chihuahua, Mexico. They base their subsistence on multiple-use strategies of their natural resources, including agriculture, pastoralism, and harvesting of native plants and wildlife. Pino Gordo is a Rarámuri settlement in a remote location where the forest has not been commercially logged. We reconstructed the forest fire regime from fire-scarred trees, measured the structure of the never-logged forest, and interviewed community members about fire use. Fire occurrence was consistent throughout the 19th and 20th centuries up to our fire scar collection in 2004. This is the least interrupted surface-fire regime reported to date in North America. Studies from other relict sites such as nature reserves in Mexico or the USA have all shown some recent alterations associated with industrialized society. At Pino Gordo, fires recurred frequently at the three study sites, with a composite mean fire interval of 1.9 years (all fires) to 7.6 years (fires scarring 25% or more of samples). Per-sample fire intervals averaged 10-14 years at the three sites. Approximately two-thirds of fires burned in the season of cambial dormancy, probably during the pre-monsoonal drought. Forests were dominated by pines and contained many large living trees and snags, in contrast to two nearby similar forests that have been logged. Community residents reported using fire for many purposes, consistent with previous literature on fire use by indigenous people. Pino Gordo is a valuable example of a continuing frequent-fire regime in a never-harvested forest. The Rarámuri people have actively conserved this forest through their traditional livelihood and management techniques, as opposed to logging the forest, and have also facilitated the fire regime by burning. The data contribute to a better understanding of the interactions of humans who live in pine forests and the fire regimes of these ecosystems, a topic that has been controversial and difficult to assess from historical or paleoecological evidence.

  18. Disturbance and productivity interactions mediate stability of forest composition and structure.

    PubMed

    O'Connor, Christopher D; Falk, Donald A; Lynch, Ann M; Swetnam, Thomas W; Wilcox, Craig P

    2017-04-01

    Fire is returning to many conifer-dominated forests where species composition and structure have been altered by fire exclusion. Ecological effects of these fires are influenced strongly by the degree of forest change during the fire-free period. Response of fire-adapted species assemblages to extended fire-free intervals is highly variable, even in communities with similar historical fire regimes. This variability in plant community response to fire exclusion is not well understood; however, ecological mechanisms such as individual species' adaptations to disturbance or competition and underlying site characteristics that facilitate or impede establishment and growth have been proposed as potential drivers of assemblage response. We used spatially explicit dendrochronological reconstruction of tree population dynamics and fire regimes to examine the influence of historical disturbance frequency (a proxy for adaptation to disturbance or competition), and potential site productivity (a proxy for underlying site characteristics) on the stability of forest composition and structure along a continuous ecological gradient of pine, dry mixed-conifer, mesic mixed-conifer, and spruce-fir forests following fire exclusion. While average structural density increased in all forests, species composition was relatively stable in the lowest productivity pine-dominated and highest productivity spruce-fir-dominated sites immediately following fire exclusion and for the next 100 years, suggesting site productivity as a primary control on species composition and structure in forests with very different historical fire regimes. Species composition was least stable on intermediate productivity sites dominated by mixed-conifer forests, shifting from primarily fire-adapted species to competition-adapted, fire-sensitive species within 20 years of fire exclusion. Rapid changes to species composition and stand densities have been interpreted by some as evidence of high-severity fire. We demonstrate that the very different ecological process of fire exclusion can produce similar changes by shifting selective pressures from disturbance-mediated to productivity-mediated controls. Restoring disturbance-adapted species composition and structure to intermediate productivity forests may help to buffer them against projected increasing temperatures, lengthening fire seasons, and more frequent and prolonged moisture stress. Fewer management options are available to promote adaptation in forest assemblages historically constrained by underlying site productivity. © 2016 by the Ecological Society of America.

  19. Variation in fire regimes of the Rocky Mountains: Implications for avian communities and fire management

    USGS Publications Warehouse

    Saab, Victoria A.; Powell, Hugo D.W.; Kotliar, Natasha B.; Newlon, Karen R.; Saab, Victoria A.; Powell, Hugo D.W.

    2005-01-01

    Information about avian responses to fire in the U.S. Rocky Mountains is based solely on studies of crown fires. However, fire management in this region is based primarily on studies of low-elevation ponderosa pine (Pinus ponderosa) forests maintained largely by frequent understory fires. In contrast to both of these trends, most Rocky Mountain forests are subject to mixed severity fire regimes. As a result, our knowledge of bird responses to fire in the region is incomplete and skewed toward ponderosa pine forests. Research in recent large wildfires across the Rocky Mountains indicates that large burns support diverse avifauna. In the absence of controlled studies of bird responses to fire, we compared reproductive success for six cavity-nesting species using results from studies in burned and unburned habitats. Birds in ponderosa pine forests burned by stand-replacement fire tended to have higher nest success than individuals of the same species in unburned habitats, but unburned areas are needed to serve species dependent upon live woody vegetation, especially foliage gleaners. Over the last century, fire suppression, livestock grazing, and logging altered the structure and composition of many low-elevation forests, leading to larger and more severe burns. In higher elevation forests, changes have been less marked. Traditional low-severity prescribed fire is not likely to replicate historical conditions in these mixed or high-severity fire regimes, which include many mixed coniferous forests and all lodgepole pine (Pinus contorta) and spruce-fi r (Picea-Abies) forests. We suggest four research priorities: (1) the effects of fire severity and patch size on species’ responses to fire, (2) the possibility that postfire forests are ephemeral sources for some bird species, (3) the effect of salvage logging prescriptions on bird communities, and (4) experiments that illustrate bird responses to prescribed fire and other forest restoration methods. This research is urgent if we are to develop fire management strategies that reduce fire risk and maintain habitat for avifauna and other wildlife of the Rocky Mountains.

  20. Variation in fire regimes of the rocky mountains: Implications for avian communities and fire management

    USGS Publications Warehouse

    Saab, V.A.; Powell, Hugo D.W.; Kotliar, N.B.; Newlon, K.R.

    2005-01-01

    Information about avian responses to fire in the U.S. Rocky Mountains is based solely on studies of crown fires. However, fire management in this region is based primarily on studies of low-elevation ponderosa pine (Pinus ponderosa) forests maintained largely by frequent understory fires. In contrast to both of these trends, most Rocky Mountain forests are subject to mixed severity fire regimes. As a result, our knowledge of bird responses to fire in the region is incomplete and skewed toward ponderosa pine forests. Research in recent large wildfires across the Rocky Mountains indicates that large burns support diverse avifauna. In the absence of controlled studies of bird responses to fire, we compared reproductive success for six cavity-nesting species using results from studies in burned and unburned habitats. Birds in ponderosa pine forests burned by stand-replacement fire tended to have higher nest success than individuals of the same species in unburned habitats, but unburned areas are needed to serve species dependent upon live woody vegetation, especially foliage gleaners. Over the last century, fire suppression, livestock grazing, and logging altered the structure and composition of many low-elevation forests, leading to larger and more severe burns. In higher elevation forests, changes have been less marked. Traditional low-severity prescribed fire is not likely to replicate historical conditions in these mixed or high-severity fire regimes, which include many mixed coniferous forests and all lodgepole pine (Pinus contorta) and spruce-fir (Picea-Abies) forests. We suggest four research priorities: (1) the effects of fire severity and patch size on species' responses to fire, (2) the possibility that postfire forests are ephemeral sources for some bird species, (3) the effect of salvage logging prescriptions on bird communities, and (4) experiments that illustrate bird responses to prescribed fire and other forest restoration methods. This research is urgent if we are to develop fire management strategies that reduce fire risk and maintain habitat for avifauna and other wildlife of the Rocky Mountains.

  1. The influence of weather and fuel type on the fuel composition of the area burned by forest fires in Ontario, 1996-2006.

    PubMed

    Podur, Justin J; Martell, David L

    2009-07-01

    Forest fires are influenced by weather, fuels, and topography, but the relative influence of these factors may vary in different forest types. Compositional analysis can be used to assess the relative importance of fuels and weather in the boreal forest. Do forest or wild land fires burn more flammable fuels preferentially or, because most large fires burn in extreme weather conditions, do fires burn fuels in the proportions they are available despite differences in flammability? In the Canadian boreal forest, aspen (Populus tremuloides) has been found to burn in less than the proportion in which it is available. We used the province of Ontario's Provincial Fuels Database and fire records provided by the Ontario Ministry of Natural Resources to compare the fuel composition of area burned by 594 large (>40 ha) fires that occurred in Ontario's boreal forest region, a study area some 430,000 km2 in size, between 1996 and 2006 with the fuel composition of the neighborhoods around the fires. We found that, over the range of fire weather conditions in which large fires burned and in a study area with 8% aspen, fires burn fuels in the proportions that they are available, results which are consistent with the dominance of weather in controlling large fires.

  2. Mathematical modeling of forest fire initiation in three dimensional setting

    Treesearch

    Valeriy Perminov

    2007-01-01

    In this study, the assignment and theoretical investigations of the problems of forest fire initiation were carried out, including development of a mathematical model for description of heat and mass transfer processes in overterrestrial layer of atmosphere at crown forest fire initiation, taking into account their mutual influence. Mathematical model of forest fire...

  3. Measurements of forest fire danger

    Treesearch

    Leo Shames

    1938-01-01

    Although the annual destruction of life and property attributable to forest fires is enormous, scientific methods of forest fire control in the United States are of comparatively recent origin. In one important phase of control, that of determining how large a network of observers is necessary for the purpose of discovering forest fires in their infancy, accurate means...

  4. Fire regimes and approaches for determining fire history

    Treesearch

    James K. Agee

    1996-01-01

    Fire has been an important evolutionary influence in forests, affecting species composition, structure, and functional aspects of forest biology. Restoration of wildland forests of the future will depend in part on restoring fire to an appropriate role in forest ecosystems. This may include the "range of natural variability" or other concepts associated with...

  5. Strategy for increasing the participation of masyarakat peduli api in forest fire control

    NASA Astrophysics Data System (ADS)

    Ni’mah, N. L. K.; Herdiansyah, H.; Soesilo, T. E. B.; Mutia, E. F.

    2018-03-01

    Forest fires have negative impact on ecology, health, and damage economic activities. One of conservation areas facing the threat of forest fire is Gunung Ciremai National Park. This research aims to formulate a strategy to increase the participation of Masyarakat Peduli Api in the effort of forest fire control. This research use quantitative method with SWOT analysis. Expert consisting of representatives from the national park, Ministry of Environment and Forestry, and BPBD Kuningan Regency. An alternative strategy based on SWOT analysis is in quadrant 1 with coordinate point (0,39; 1,23). The position shows that sustainability of national park management through forest fire control can be done with an aggressive strategy. That is maximizing the strength that is owned with its potential as an ecotourism area to increase community motivation to engage in forest fire control activities. Provision of tourism management licenses will create employment opportunities and increase income for the community so it is expected to increase community participation to prevent the occurrence of forest fires rather than forest fire prevention.

  6. Effects of prescribed fire on wintering, bark-foraging birds in northern Arizona

    Treesearch

    Theresa L. Pope

    2006-01-01

    Forest management practices of the past century have led to an increase in unnatural and destructive crown fires in ponderosa pine (Pinus ponderosa) forests of the southwest. To combat large fires, forest managers are attempting to simulate past fire regimes of low-intensity surface fires using prescribed fire. While there have been many studies...

  7. Disturbance and productivity interactions mediate stability of forest composition and structure

    Treesearch

    Christopher D. O' Connor; Donald A. Falk; Ann M. Lynch; Thomas W. Swetnam; Craig P. Wilcox

    2017-01-01

    Fire is returning to many conifer-dominated forests where species composition and structure have been altered by fire exclusion. Ecological effects of these fires are influenced strongly by the degree of forest change during the fire-free period. Response of fire-adapted species assemblages to extended fire-free intervals is highly variable, even in communities with...

  8. Improvement of Forest Fire Detection Algorithm Using Brightness Temperature Lapse Rate Correction in HIMAWARI-8 IR Channels: Application to the 6 may 2017 Samcheok City, Korea

    NASA Astrophysics Data System (ADS)

    Park, S. H.; Park, W.; Jung, H. S.

    2018-04-01

    Forest fires are a major natural disaster that destroys a forest area and a natural environment. In order to minimize the damage caused by the forest fire, it is necessary to know the location and the time of day and continuous monitoring is required until fire is fully put out. We have tried to improve the forest fire detection algorithm by using a method to reduce the variability of surrounding pixels. We focused that forest areas of East Asia, part of the Himawari-8 AHI coverage, are mostly located in mountainous areas. The proposed method was applied to the forest fire detection in Samcheok city, Korea on May 6 to 10, 2017.

  9. Using Airborne LIDAR Data for Assessment of Forest Fire Fuel Load Potential

    NASA Astrophysics Data System (ADS)

    İnan, M.; Bilici, E.; Akay, A. E.

    2017-11-01

    Forest fire incidences are one of the most detrimental disasters that may cause long terms effects on forest ecosystems in many parts of the world. In order to minimize environmental damages of fires on forest ecosystems, the forested areas with high fire risk should be determined so that necessary precaution measurements can be implemented in those areas. Assessment of forest fire fuel load can be used to estimate forest fire risk. In order to estimate fuel load capacity, forestry parameters such as number of trees, tree height, tree diameter, crown diameter, and tree volume should be accurately measured. In recent years, with the advancements in remote sensing technology, it is possible to use airborne LIDAR for data estimation of forestry parameters. In this study, the capabilities of using LIDAR based point cloud data for assessment of the forest fuel load potential was investigated. The research area was chosen in the Istanbul Bentler series of Bahceköy Forest Enterprise Directorate that composed of mixed deciduous forest structure.

  10. Temporal scaling behavior of forest and urban fires

    NASA Astrophysics Data System (ADS)

    Wang, J.; Song, W.; Zheng, H.; Telesca, L.

    2009-04-01

    It has been found that many natural systems are characterized by scaling behavior. In such systems natural factors dominate the event dynamics. Forest fires in different countries have been found to exhibit frequency-size power law over many orders of magnitude and with similar value of parameters. But in countries with high population density such as China and Japan, more than 95% of the forest fire disasters are caused by human activities. Furthermore, with the development of society, the wildland-urban interface (WUI) area is becoming more and more populated, and the forest fire is much connected with urban fire. Therefore exploring the scaling behavior of fires dominated by human-related factors is very challenging. The present paper explores the temporal scaling behavior of forest fires and urban fires in Japan with mathematical methods. Two factors, Allan factor (AF) and Fano factor (FF) are used to investigate time-scaling of fire systems. It is found that the FF for both forest fires and urban fires increases linearly in log-log scales, and this indicates that it behaves as a power-law for all the investigated timescales. From the AF plot a 7 days cycle is found, which indicates a weekly cycle. This may be caused by human activities which has a weekly periodicity because on weekends people usually have more outdoor activities, which may cause more hidden trouble of fire disasters. Our findings point out that although the human factors are the main cause, both the forest fires and urban fires exhibit time-scaling behavior. At the same time, the scaling exponents for urban fires are larger than forest fires, signifying a more intense clustering. The reason may be that fires are affected not only by weather condition, but also by human activities, which play a more important role for urban fires than forest fires and have a power law distribution and scaling behavior. Then some work is done to the relative humidity. Similar distribution law characterizes the relative humidity. The AF plot and FF plot of relative humidity validate the existence of a strong link between weather and fires, and it is very likely that the daily humidity cycle determines the daily fire periodicity.

  11. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape.

    PubMed

    Zald, Harold S J; Dunn, Christopher J

    2018-04-26

    Many studies have examined how fuels, topography, climate, and fire weather influence fire severity. Less is known about how different forest management practices influence fire severity in multi-owner landscapes, despite costly and controversial suppression of wildfires that do not acknowledge ownership boundaries. In 2013, the Douglas Complex burned over 19,000 ha of Oregon & California Railroad (O&C) lands in Southwestern Oregon, USA. O&C lands are composed of a checkerboard of private industrial and federal forestland (Bureau of Land Management, BLM) with contrasting management objectives, providing a unique experimental landscape to understand how different management practices influence wildfire severity. Leveraging Landsat based estimates of fire severity (Relative differenced Normalized Burn Ratio, RdNBR) and geospatial data on fire progression, weather, topography, pre-fire forest conditions, and land ownership, we asked (1) what is the relative importance of different variables driving fire severity, and (2) is intensive plantation forestry associated with higher fire severity? Using Random Forest ensemble machine learning, we found daily fire weather was the most important predictor of fire severity, followed by stand age and ownership, followed by topographic features. Estimates of pre-fire forest biomass were not an important predictor of fire severity. Adjusting for all other predictor variables in a general least squares model incorporating spatial autocorrelation, mean predicted RdNBR was higher on private industrial forests (RdNBR 521.85 ± 18.67 [mean ± SE]) vs. BLM forests (398.87 ± 18.23) with a much greater proportion of older forests. Our findings suggest intensive plantation forestry characterized by young forests and spatially homogenized fuels, rather than pre-fire biomass, were significant drivers of wildfire severity. This has implications for perceptions of wildfire risk, shared fire management responsibilities, and developing fire resilience for multiple objectives in multi-owner landscapes. © 2018 by the Ecological Society of America.

  12. Impacts of the Canadian forest fires on atmospheric mercury and carbonaceous particles in Northern New York.

    PubMed

    Wang, Yungang; Huang, Jiaoyan; Zananski, Tiffany J; Hopke, Philip K; Holsen, Thomas M

    2010-11-15

    The impact of Canadian forest fires in Quebec on May 31, 2010 on PM(2.5), carbonaceous species, and atmospheric mercury species was observed at three rural sites in northern New York. The results were compared with previous studies during a 2002 Quebec forest fire episode. MODIS satellite images showed transport of forest fire smoke from southern Quebec, Canada to northern New York on May 31, 2010. Back-trajectories were consistent with this regional transport. During the forest fire event, as much as an 18-fold increase in PM(2.5) concentration was observed. The concentrations of episode-related OC, EC, BC, UVBC, and their difference (Delta-C), reactive gaseous mercury (RGM), and particle-bound mercury (PBM) were also significantly higher than those under normal conditions, suggesting a high impact of Canadian forest fire emissions on air quality in northern New York. PBM, RGM, and Delta-C are all emitted from forest fires. The correlation coefficient between Delta-C and other carbonaceous species may serve as an indicator of forest fire smoke. Given the marked changes in PBM, it may serve as a more useful tracer of forest fires over distances of several hundred kilometers relative to GEM. However, the Delta-C concentration changes are more readily measured.

  13. Web-GIS platform for forest fire danger prediction in Ukraine: prospects of RS technologies

    NASA Astrophysics Data System (ADS)

    Baranovskiy, N. V.; Zharikova, M. V.

    2016-10-01

    There are many different statistical and empirical methods of forest fire danger use at present time. All systems have not physical basis. Last decade deterministic-probabilistic method is rapidly developed in Tomsk Polytechnic University. Forest sites classification is one way to estimate forest fire danger. We used this method in present work. Forest fire danger estimation depends on forest vegetation condition, forest fire retrospective, precipitation and air temperature. In fact, we use modified Nesterov Criterion. Lightning activity is under consideration as a high temperature source in present work. We use Web-GIS platform for program realization of this method. The program realization of the fire danger assessment system is the Web-oriented geoinformation system developed by the Django platform in the programming language Python. The GeoDjango framework was used for realization of cartographic functions. We suggest using of Terra/Aqua MODIS products for hot spot monitoring. Typical territory for forest fire danger estimation is Proletarskoe forestry of Kherson region (Ukraine).

  14. Forest fires in Missouri.

    Treesearch

    Donald A. Haines; William A. Main; John S. Crosby

    1973-01-01

    Describes factors that contribute to forest fires on two of the State of Missouri's Protection Districts and the Clark National Forest. Includes an analysis of fire cause, annual distribution, weather, and activity by day of week; also discusses multiple-fire day.

  15. Interactive effects of historical logging and fire exclusion on ponderosa pine forest structure in the northern Rockies.

    PubMed

    Naficy, Cameron; Sala, Anna; Keeling, Eric G; Graham, Jon; DeLuca, Thomas H

    2010-10-01

    Increased forest density resulting from decades of fire exclusion is often perceived as the leading cause of historically aberrant, severe, contemporary wildfires and insect outbreaks documented in some fire-prone forests of the western United States. Based on this notion, current U.S. forest policy directs managers to reduce stand density and restore historical conditions in fire-excluded forests to help minimize high-severity disturbances. Historical logging, however, has also caused widespread change in forest vegetation conditions, but its long-term effects on vegetation structure and composition have never been adequately quantified. We document that fire-excluded ponderosa pine forests of the northern Rocky Mountains logged prior to 1960 have much higher average stand density, greater homogeneity of stand structure, more standing dead trees and increased abundance of fire-intolerant trees than paired fire-excluded, unlogged counterparts. Notably, the magnitude of the interactive effect of fire exclusion and historical logging substantially exceeds the effects of fire exclusion alone. These differences suggest that historically logged sites are more prone to severe wildfires and insect outbreaks than unlogged, fire-excluded forests and should be considered a high priority for fuels reduction treatments. Furthermore, we propose that ponderosa pine forests with these distinct management histories likely require distinct restoration approaches. We also highlight potential long-term risks of mechanical stand manipulation in unlogged forests and emphasize the need for a long-term view of fuels management.

  16. Development and analysis of a 12-year daily 1-km forest fire dataset across North America from NOAA/AVHRR

    Treesearch

    Ruiliang Pu; Zhanqing Li; Peng Gong; Ivan Csiszar; Robert Fraser; Wei-Min Hao; Shobha Kondragunta; Fuzhong Weng

    2007-01-01

    Fires in boreal and temperate forests play a significant role in the global carbon cycle. While forest fires in North America (NA) have been surveyed extensively by U.S. and Canadian forest services, most fire records are limited to seasonal statistics without information on temporal evolution and spatial expansion. Such dynamic information is crucial for modeling fire...

  17. Fire History of a Forest, Savanna, and Fen Mosaic at White Ranch State Forest

    Treesearch

    Daniel C. Dey; Ricahrd P. Guyette; Michael C. Stambaugh

    2004-01-01

    We present the fire history of a 1-km2 area that is a mosaic of oak forest, savanna, and fen on the White Ranch State Forest, Howell County, Missouri. We dated 135 fire scars on 35 cross-sections of post oak ( Quercus stellata) trees and constructed a fire chronology dating from 1705 to 1997. Mean fire return intervals by periods were 3.7 years (...

  18. Vegetation, climate and fire-dynamics in East Africa inferred from the Maundi crater pollen record from Mt Kilimanjaro during the last glacial-interglacial cycle

    NASA Astrophysics Data System (ADS)

    Schüler, Lisa; Hemp, Andreas; Zech, Wolfgang; Behling, Hermann

    2012-04-01

    The pollen, charcoal and sedimentological record from the Maundi crater, located at 2780 m elevation on the south-eastern slope of Mt Kilimanjaro, is one of the longest terrestrial records in equatorial East Africa, giving an interesting insight into the vegetation and climate dynamics back to the early last Glacial period. Our sediment record has a reliable chronology until 42 ka BP. An extrapolation of the age-depth model, as well as matching with other palaeo-records from tropical East Africa, suggest a total age of about 90 ka BP at the bottom of the record. During the last Glacial the distribution as well as the composition of the vegetation belts classified as colline savanna, submontane woodland, montane forest, ericaceous belt, and alpine vegetation changed. The early last Glacial is characterized by high amounts of Poaceae and Asteraceae pollen suggesting a climatically dry but stable phase. Based on the absence of pollen grains in samples deposited around 70 ka BP, we assume the occurrence of distinct drought periods. During the pre-LGM (Last Glacial Maximum) a higher taxa diversity of the ericaceous and montane zone is recorded and suggests a spread of forest and shrub vegetation, thus indicating a more humid period. The taxa diversity increases steadily during the recorded time span. The decent of vegetation zones indicate dry and cold conditions during the LGM and seem to have been detrimental for many taxa, especially those of the forest vegetation; however, the early last Glacial seems to have been markedly drier than the LGM. The reappearance of most of the taxa (most importantly Alchemilla, Araliaceae, Dodonea, Hagenia, Ilex, Myrsine, Moraceae, Piperaceae) during the deglacial and Holocene period suggest a shift into humid conditions. An increase in ferns and the decrease in grasses during the Holocene also indicate increasing humidity. Fire played an important role in controlling the development and elevation of the ericaceous zone and the tree line. During the Holocene no increased anthropogenic impact around the Maundi crater can be observed, since neither higher fire activity nor a spread of hemerophilic plants is recorded. This pollen archive reveals shifts in the upper vegetation zones (ericaceous zone and montane forest zone) of at least 1100 m but underlines the role of Mt Kilimanjaro as a glacial refuge for montane forest species similar to that of the Eastern Arc Mountains.

  19. Design and realization of disaster assessment algorithm after forest fire

    NASA Astrophysics Data System (ADS)

    Xu, Aijun; Wang, Danfeng; Tang, Lihua

    2008-10-01

    Based on GIS technology, this paper mainly focuses on the application of disaster assessment algorithm after forest fire and studies on the design and realization of disaster assessment based on GIS. After forest fire through the analysis and processing of multi-sources and heterogeneous data, this paper integrates the foundation that the domestic and foreign scholars laid of the research on assessment for forest fire loss with the related knowledge of assessment, accounting and forest resources appraisal so as to study and approach the theory framework and assessment index of the research on assessment for forest fire loss. The technologies of extracting boundary, overlay analysis, and division processing of multi-sources spatial data are available to realize the application of the investigation method of the burnt forest area and the computation of the fire area. The assessment provides evidence for fire cleaning in burnt areas and new policy making on restoration in terms of the direct and the indirect economic loss and ecological and environmental damage caused by forest fire under the condition of different fire danger classes and different amounts of forest accumulation, thus makes forest resources protection operated in a faster, more efficient and more economical way. Finally, this paper takes Lin'an city of Zhejiang province as a test area to confirm the method mentioned in the paper in terms of key technologies.

  20. Vulnerability and Resilience of Temperate Forest Landscapes to Broad-Scale Deforestation in Response to Changing Fire Regimes and Altered Post-Fire Vegetation Dynamics

    NASA Astrophysics Data System (ADS)

    Tepley, A. J.; Veblen, T. T.; Perry, G.; Anderson-Teixeira, K. J.

    2015-12-01

    In the face of on-going climatic warming and land-use change, there is growing concern that temperate forest landscapes could be near a tipping point where relatively small changes to the fire regime or altered post-fire vegetation dynamics could lead to extensive conversion to shrublands or savannas. To evaluate vulnerability and resilience to such conversion, we develop a simple model based on three factors we hypothesize to be key in predicting temperate forest responses to changing fire regimes: (1) the hazard rate (i.e., the probability of burning in the next year given the time since the last fire) in closed-canopy forests, (2) the hazard rate for recently-burned, open-canopy vegetation, and (3) the time to redevelop canopy closure following fire. We generate a response surface representing the proportions of the landscape potentially supporting closed-canopy forest and non-forest vegetation under nearly all combinations of these three factors. We then place real landscapes on this response surface to assess the type and magnitude of changes to the fire regime that would drive extensive forest loss. We show that the deforestation of much of New Zealand that followed initial human colonization and the introduction of a new ignition source ca. 750 years ago was essentially inevitable due to the slow rate of forest recovery after fire and the high flammability of post-fire vegetation. In North America's Pacific Northwest, by contrast, a predominantly forested landscape persisted despite two periods of widespread burning in the recent past due in large part to faster post-fire forest recovery and less pronounced differences in flammability between forests and the post-fire vegetation. We also assess the factors that could drive extensive deforestation in other regions to identify where management could reduce this potential and to guide field and modeling work to better understand the responses and ecological feedbacks to changing fire regimes.

  1. Effects of fire and post-fire salvage logging on avian communities in conifer-dominated forests of the western United States

    USGS Publications Warehouse

    Kotliar, N.B.; Hejl, S.J.; Hutto, R.L.; Saab, V.; Melcher, Cynthia; McFadzen, M.E.; George, T.L.; Dobkin, D.S.

    2002-01-01

    Historically, fire was one of the most widespread natural disturbances in the western United States. More recently, however, significant anthropogenic activities, especially fire suppression and silvicultural practices, have altered fire regimes; as a result, landscapes and associated communities have changed as well. Herein, we review current knowledge of how fire and postfire salvaging practices affect avian communities in conifer-dominated forests of the western United States. Specifically, we contrast avian communities in (1) burned vs. unburned forest, and (2) unsalvaged vs. salvage-logged burns. We also examine how variation in burn characteristics (e.g., severity, age, size) and salvage logging can alter avian communities in burns.Of the 41 avian species observed in three or more studies comparing early postfire and adjacent unburned forests, 22% are consistently more abundant in burned forests, 34% are usually more abundant in unburned forests, and 44% are equally abundant in burned and unburned forests or have varied responses. In general, woodpeckers and aerial foragers are more abundant in burned forest, whereas most foliage-gleaning species are more abundant in unburned forests. Bird species that are frequently observed in stand-replacement burns are less common in understory burns; similarly, species commonly observed in unburned forests often decrease in abundance with increasing burn severity. Granivores and species common in open-canopy forests exhibit less consistency among studies. For all species, responses to tire may be influenced by a number of factors including burn severity, fire size and shape, proximity to unburned forests, pre-and post-fire cover types, and time since fire. In addition, postfire management can alter species’ responses to burns. Most cavity-nesting species do not use severely salvaged burns, whereas some cavity-nesters persist in partially salvaged burns. Early post fire specialists, in particular, appear to prefer unsalvaged burns. We discuss several alternatives to severe salvage-logging that will help provide habitat for cavity nesters.We provide an overview of critical research questions and design considerations crucial for evaluating the effects of prescribed fire and other anthropogenic disturbances, such as forest fragmentation. Management of native avifaunas may be most successful if natural disturbance regimes, including fire, are permitted to occur when possible. Natural fires could be augmented with practices, such as prescribed fire (including high-severity fire), that mimic inherent disturbance regimes.

  2. Real time forest fire warning and forest fire risk zoning: a Vietnamese case study

    NASA Astrophysics Data System (ADS)

    Chu, T.; Pham, D.; Phung, T.; Ha, A.; Paschke, M.

    2016-12-01

    Forest fire occurs seriously in Vietnam and has been considered as one of the major causes of forest lost and degradation. Several studies of forest fire risk warning were conducted using Modified Nesterov Index (MNI) but remaining shortcomings and inaccurate predictions that needs to be urgently improved. In our study, several important topographic and social factors such as aspect, slope, elevation, distance to residential areas and road system were considered as "permanent" factors while meteorological data were updated hourly using near-real-time (NRT) remotely sensed data (i.e. MODIS Terra/Aqua and TRMM) for the prediction and warning of fire. Due to the limited number of weather stations in Vietnam, data from all active stations (i.e. 178) were used with the satellite data to calibrate and upscale meteorological variables. These data with finer resolution were then used to generate MNI. The only significant "permanent" factors were selected as input variables based on the correlation coefficients that computed from multi-variable regression among true fire-burning (collected from 1/2007) and its spatial characteristics. These coefficients also used to suggest appropriate weight for computing forest fire risk (FR) model. Forest fire risk model was calculated from the MNI and the selected factors using fuzzy regression models (FRMs) and GIS based multi-criteria analysis. By this approach, the FR was slightly modified from MNI by the integrated use of various factors in our fire warning and prediction model. Multifactor-based maps of forest fire risk zone were generated from classifying FR into three potential danger levels. Fire risk maps were displayed using webgis technology that is easy for managing data and extracting reports. Reported fire-burnings thereafter have been used as true values for validating the forest fire risk. Fire probability has strong relationship with potential danger levels (varied from 5.3% to 53.8%) indicating that the higher potential risk, the more chance of fire happen. By adding spatial factors to continuous daily updated remote sensing based meteo-data, results are valuable for both mapping forest fire risk zones in short and long-term and real time fire warning in Vietnam. Key words: Near-real-time, forest fire warning, fuzzy regression model, remote sensing.

  3. Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results

    Treesearch

    Nancy H.F. French; Eric S. Kasischke; Ronald J. Hall; Karen A. Murphy; David L. Verbyla; Elizabeth E. Hoy; Jennifer L. Allen

    2008-01-01

    There has been considerable interest in the recent literature regarding the assessment of post-fire effects on forested areas within the North American boreal forest. Assessing the physical and ecological effects of fire in boreal forests has far-reaching implications for a variety of ecosystem processes -- such as post-fire forest succession -- and land management...

  4. Safety Performance of Exterior Wall Insulation Material Based on Large Security Concept

    NASA Astrophysics Data System (ADS)

    Zuo, Q. L.; Wang, Y. J.; Li, J. S.

    2018-05-01

    In order to evaluate the fire spread characteristics of building insulation materials under corner fire, an experiment is carried out with small-scale fire spread test system. The change rule of the parameters such as the average height of the flame, the average temperature of the flame and the shape of the flame are analyzed. The variations of the fire spread characteristic parameters of the building insulation materials are investigated. The results show that the average temperature of Expanded Polystyrene (EPS) board, with different thickness, decrease - rise - decrease - increase. During the combustion process, the fire of 4cm thick plate spreads faster.

  5. Forest fires in Pennsylvania.

    Treesearch

    Donald A. Haines; William A. Main; Eugene F. McNamara

    1978-01-01

    Describes factors that contribute to forest fires in Pennsylvania. Includes an analysis of basic statistics; distribution of fires during normal, drought, and wet years; fire cause, fire activity by day-of-week; multiple-fire day; and fire climatology.

  6. Postfire logging in riparian areas.

    PubMed

    Reeves, Gordon H; Bisson, Peter A; Rieman, Bruce E; Benda, Lee E

    2006-08-01

    We reviewed the behavior of wildfire in riparian zones, primarily in the western United States, and the potential ecological consequences of postfire logging. Fire behavior in riparian zones is complex, but many aquatic and riparian organisms exhibit a suite of adaptations that allow relatively rapid recovery after fire. Unless constrained by other factors, fish tend to rebound relatively quickly, usually within a decade after a wildfire. Additionally, fire and subsequent erosion events contribute wood and coarse sediment that can create and maintain productive aquatic habitats over time. The potential effects of postfire logging in riparian areas depend on the landscape context and disturbance history of a site; however available evidence suggests two key management implications: (1) fire in riparian areas creates conditions that may not require intervention to sustain the long-term productivity of the aquatic network and (2) protection of burned riparian areas gives priority to what is left rather than what is removed. Research is needed to determine how postfire logging in riparian areas has affected the spread of invasive species and the vulnerability of upland forests to insect and disease outbreaks and how postfire logging will affect the frequency and behavior of future fires. The effectiveness of using postfire logging to restore desired riparian structure and function is therefore unproven, but such projects are gaining interest with the departure of forest conditions from those that existed prior to timber harvest, fire suppression, and climate change. In the absence of reliable information about the potential consequence of postfire timber harvest, we conclude that providing postfire riparian zones with the same environmental protections they received before they burned isjustified ecologically Without a commitment to monitor management experiments, the effects of postfire riparian logging will remain unknown and highly contentious.

  7. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions.

    PubMed

    Aragão, Luiz E O C; Anderson, Liana O; Fonseca, Marisa G; Rosan, Thais M; Vedovato, Laura B; Wagner, Fabien H; Silva, Camila V J; Silva Junior, Celso H L; Arai, Egidio; Aguiar, Ana P; Barlow, Jos; Berenguer, Erika; Deeter, Merritt N; Domingues, Lucas G; Gatti, Luciana; Gloor, Manuel; Malhi, Yadvinder; Marengo, Jose A; Miller, John B; Phillips, Oliver L; Saatchi, Sassan

    2018-02-13

    Tropical carbon emissions are largely derived from direct forest clearing processes. Yet, emissions from drought-induced forest fires are, usually, not included in national-level carbon emission inventories. Here we examine Brazilian Amazon drought impacts on fire incidence and associated forest fire carbon emissions over the period 2003-2015. We show that despite a 76% decline in deforestation rates over the past 13 years, fire incidence increased by 36% during the 2015 drought compared to the preceding 12 years. The 2015 drought had the largest ever ratio of active fire counts to deforestation, with active fires occurring over an area of 799,293 km 2 . Gross emissions from forest fires (989 ± 504 Tg CO 2 year -1 ) alone are more than half as great as those from old-growth forest deforestation during drought years. We conclude that carbon emission inventories intended for accounting and developing policies need to take account of substantial forest fire emissions not associated to the deforestation process.

  8. A laboratory-scale comparison of rate of spread model predictions using chaparral fuel beds – preliminary results

    Treesearch

    D.R. Weise; E. Koo; X. Zhou; S. Mahalingam

    2011-01-01

    Observed fire spread rates from 240 laboratory fires in horizontally-oriented single-species live fuel beds were compared to predictions from various implementations and modifications of the Rothermel rate of spread model and a physical fire spread model developed by Pagni and Koo. Packing ratio of the laboratory fuel beds was generally greater than that observed in...

  9. Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA?

    PubMed

    Baker, William L

    2015-01-01

    Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used new reference data and records of high-severity fire from 1984-2012 across all dry forests (25.5 million ha) of the western USA to test these hypotheses. I also approximated projected effects of climatic change on high-severity fire in dry forests by applying existing projections. This analysis showed the rate of recent high-severity fire in dry forests is within the range of historical rates, or is too low, overall across dry forests and individually in 42 of 43 analysis regions. Significant upward trends were lacking overall from 1984-2012 for area burned and fraction burned at high severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis regions. Projections for A.D. 2046-2065 showed high-severity fire would generally be still operating at, or have been restored to historical rates, although high projections suggest high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change. Some adverse ecological effects of high-severity fires are concerns. Managers and communities can improve our ability to live with high-severity fire in dry forests.

  10. Fire Impact on Phytomass and Carbon Emissions in the Forests of Siberia

    NASA Astrophysics Data System (ADS)

    Ivanova, Galina A.; Zhila, Sergei V.; Ivanov, Valery A.; Kovaleva, Nataly M.; Kukavskaya, Elena A.; Platonova, Irina A.; Conard, Susan G.

    2014-05-01

    Siberian boreal forests contribute considerably to the global carbon budget, since they take up vast areas, accumulate large amount of carbon, and are sensitive to climatic changes. Fire is the main forest disturbance factor, covering up to millions of hectares of boreal forests annually, of which the majority is in Siberia. Carbon emissions released from phytomass burning influence atmospheric chemistry and global carbon cycling. Changing climate and land use influence the number and intensity of wildfires, forest state, and productivity, as well as global carbon balance. Fire effects on forest overstory, subcanopy woody layer, and ground vegetation phytomass were estimated on sites in light-conifer forests of the Central Siberia as a part of the project "The Influence of Changing Forestry Practices on the Effects of Wildfire and on Interactions Between Fire and Changing Climate in Central Siberia" supported by NASA (NEESPI). This study focuses on collecting quantitative data and modeling the influence of fires of varying intensity on fire emissions, carbon budget, and ecosystem processes in coniferous stands. Fires have a profound impact on forest-atmospheric carbon exchange and transform forests from carbon sinks to carbon sources lasting long after the time of burning. Our long-term experiments allowed us to identify vegetation succession patterns in taiga Scots pine stands after fires of known behavior. Estimating fire contributions to the carbon budget requires consideration of many factors, including vegetation type and fire type and intensity. Carbon emissions were found to depend on fire intensity and weather. In the first several years after fire, the above-ground phytomass appeared to be strongly controlled by fire intensity. However, the influence of burning intensity on organic matter accumulation was found to decrease with time.

  11. Slope effects on the fluid dynamics of a fire spreading across a fuel bed: PIV measurements and OH* chemiluminescence imaging

    NASA Astrophysics Data System (ADS)

    Morandini, F.; Silvani, X.; Honoré, D.; Boutin, G.; Susset, A.; Vernet, R.

    2014-08-01

    Slope is among the most influencing factor affecting the spread of wildfires. A contribution to the understanding of the fluid dynamics of a fire spreading in these terrain conditions is provided in the present paper. Coupled optical diagnostics are used to study the slope effects on the flow induced by a fire at laboratory scale. Optical diagnostics consist of particle image velocimetry, for investigating the 2D (vertical) velocity field of the reacting flow and chemiluminescence imaging, for visualizing the region of spontaneous emission of OH radical occurring during gaseous combustion processes. The coupling of these two techniques allows locating accurately the contour of the reaction zone within the computed velocity field. The series of experiments are performed across a bed of vegetative fuel, under both no-slope and 30° upslope conditions. The increase in the rate of fire spread with increasing slope is attributed to a significant change in fluid dynamics surrounding the flame. For horizontal fire spread, flame fronts exhibit quasi-vertical plume resulting in the buoyancy forces generated by the fire. These buoyancy effects induce an influx of ambient fresh air which is entrained laterally into the fire, equitably from both sides. For upward flame spread, the induced flow is strongly influenced by air entrainment on the burnt side of the fire and fire plume is tilted toward unburned vegetation. A particular attention is paid to the induced air flow ahead of the spreading flame. With increasing the slope angle beyond a threshold, highly dangerous conditions arise because this configuration induces wind blows away from the fire rather than toward it, suggesting the presence of convective heat transfers ahead of the fire front.

  12. Short-term responses of birds to prescribed fire in fire-suppressed forests of California

    Treesearch

    Bagne Karen; Kathryn Purcell

    2011-01-01

    Prescribed fire is one tool for restoring fire-suppressed forests, but application of fire during spring coincides with breeding and arrival of migrant birds. We examined effects of low-severity prescribed fires on counts of birds in a managed forest in the Sierra Nevada of California immediately, 1 year, and 3–6 years after fire was applied in spring. Of 26 species...

  13. Dry forests of the Northeastern Cascades Fire and Fire Surrogate project site, Mission Creek, Okanogan-Wenatchee National Forest

    Treesearch

    James K. Agee; John F. (comps.) Lehmkuhl

    2009-01-01

    The Fire and Fire Surrogate (FFS) project is a large long-term metastudy established to assess the effectiveness and ecological impacts of burning and fire "surrogates" such as cuttings and mechanical fuel treatments that are used instead of fire, or in combination with fire, to restore dry forests. One of the 13 national FFS sites is the Northeastern...

  14. Effectiveness of Prescribed Fire as a Fuel Treatment in Californian Coniferous Forests

    Treesearch

    Nicole M. Vaillant; JoAnn Fites-Kaufman; Scott L. Stephens

    2006-01-01

    Effective fire suppression for the past century has altered forest structure and increased fuel loads. Prescribed fire as a fuels treatment can reduce wildfire size and severity. This study investigates how prescribed fire affects fuel loads, forest structure, potential fire behavior, and modeled tree mortality at 80th, 90th, and 97.5th percentile fire weather...

  15. A soil burn severity index for understanding soil-fire relations in tropical forests

    Treesearch

    Theresa B. Jain; William A. Gould; Russell T. Graham; David S. Pilliod; Leigh B. Lentile; Grizelle Gonzalez

    2008-01-01

    Methods for evaluating the impact of fires within tropical forests are needed as fires become more frequent and human populations and demands on forests increase. Short- and long-term fire effects on soils are determined by the prefire, fire, and postfire environments. We placed these components within a fire-disturbance continuum to guide our literature synthesis and...

  16. Glare-reducing goggles for lookouts.

    Treesearch

    Richard E. McArdle; William G. Morris; Thornton T. Munger

    1936-01-01

    Detection of forest fires while they are still small is so important in forest protection that studies of the visibility of forest fire smokes from lookout points has been one of the principal phases of the fire studies program of the Pacific Northwest Forest Experiment Station. One phase of fire detection is the personal efficiency of the lookout. The Station has...

  17. Influence of wildfires in the boreal forests of Eastern Siberia on atmospheric aerosol parameters

    NASA Astrophysics Data System (ADS)

    Tomshin, Oleg A.; Solovyev, Vladimir S.

    2017-11-01

    The results of studies of the dynamics of forest fires in the boreal forests of Yakutia (Eastern Siberia) for 2001-2016 are presented. Variations of aerosol optical thickness (AOT), aerosol index (AI) and total carbon monoxide content during May-September were studied depending on the different forest fire activity level. It is shown that the seasonal variations of AOT, AI and CO in the most fire-dangerous years differ significantly from the fire seasons when forest fire activity was medium or low.

  18. Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe)

    NASA Astrophysics Data System (ADS)

    Feurdean, Angelica; Veski, Siim; Florescu, Gabriela; Vannière, Boris; Pfeiffer, Mirjam; O'Hara, Robert B.; Stivrins, Normunds; Amon, Leeli; Heinsalu, Atko; Vassiljev, Jüri; Hickler, Thomas

    2017-08-01

    Disturbances by fire are essential for the functioning of boreal/hemiboreal forests, but knowledge of long-term fire regime dynamics is limited. We analysed macrocharcoal morphologies and pollen of a sediment record from Lake Lielais Svētiņu (eastern Latvia), and in conjunction with fire traits analysis present the first record of Holocene variability in fire regime, fuel sources and fire types in boreal forests of the Baltic region. We found a phase of moderate to high fire activity during the cool and moist early (mean fire return interval; mFRI of ∼280 years; 11,700-7500 cal yr BP) and the late (mFRI of ∼190 years; 4500-0 cal yr BP) Holocene and low fire activity (mFRI of ∼630 years) during the Holocene Thermal Optimum (7500-4500 cal yr BP). Charcoal morphotypes and the pollen record show the predominance of frequent surface fires, occasionally transitioning to the crown during Pinus sylvestris-Betula boreal forests and less frequent surface fires during the dominance of temperate deciduous forests. In contrast to the prevailing opinion that fires in boreal forests are mostly low to moderate severity surface fires, we found evidence for common occurrence of stand-replacing crown fires in Picea abies canopy. Our results highlight that charcoal morphotypes analysis allows for distinguishing the fuel types and surface from crown fires, therefore significantly advancing our interpretation of fire regime. Future warmer temperatures and increase in the frequency of dry spells and abundant biomass accumulation can enhance the fire risk on the one hand, but will probably promote the expansion of broadleaf deciduous forests to higher latitudes, on the other hand. By highlighting the capability of broadleaf deciduous forests to act as fire-suppressing landscape elements, our results suggest that fire activity may not increase in the Baltic area under future climate change.

  19. Fire and Smoke Model Evaluation Experiment (FASMEE): Modeling gaps and data needs

    Treesearch

    Yongqiang Liu; Adam Kochanski; Kirk Baker; Ruddy Mell; Rodman Linn; Ronan Paugam; Jan Mandel; Aime Fournier; Mary Ann Jenkins; Scott Goodrick; Gary Achtemeier; Andrew Hudak; Matthew Dickson; Brian Potter; Craig Clements; Shawn Urbanski; Roger Ottmar; Narasimhan Larkin; Timothy Brown; Nancy French; Susan Prichard; Adam Watts; Derek McNamara

    2017-01-01

    Fire and smoke models are numerical tools for simulating fire behavior, smoke dynamics, and air quality impacts of wildland fires. Fire models are developed based on the fundamental chemistry and physics of combustion and fire spread or statistical analysis of experimental data (Sullivan 2009). They provide information on fire spread and fuel consumption for safe and...

  20. Prediction of forest fires occurrences with area-level Poisson mixed models.

    PubMed

    Boubeta, Miguel; Lombardía, María José; Marey-Pérez, Manuel Francisco; Morales, Domingo

    2015-05-01

    The number of fires in forest areas of Galicia (north-west of Spain) during the summer period is quite high. Local authorities are interested in analyzing the factors that explain this phenomenon. Poisson regression models are good tools for describing and predicting the number of fires per forest areas. This work employs area-level Poisson mixed models for treating real data about fires in forest areas. A parametric bootstrap method is applied for estimating the mean squared errors of fires predictors. The developed methodology and software are applied to a real data set of fires in forest areas of Galicia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes

    Treesearch

    Jamie Lydersen; Malcolm North; Brandon M. Collins

    2014-01-01

    The 2013 Rim Fire, originating on Forest Service land, burned into old-growth forests within Yosemite National Park with relatively restored frequent-fire regimes (¡Ý2 predominantly low and moderate severity burns within the last 35 years). Forest structure and fuels data were collected in the field 3-4 years before the fire, providing a rare chance to use pre-existing...

  2. The forest fire season at different elevations in Idaho

    Treesearch

    J. A. Larsen

    1925-01-01

    In any fire-ridden forest region, such as north Idaho, there is great need for a tangible basis by which to judge the length and the intensity of the fire season in different forest types and at different elevations. The major and natural forest types, such as the western yellow pine forests, the western white-pine forests, and the subalpine forests occur in...

  3. The potential of satellite data to study individual wildfire events

    NASA Astrophysics Data System (ADS)

    Benali, Akli; López-Saldana, Gerardo; Russo, Ana; Sá, Ana C. L.; Pinto, Renata M. S.; Nikos, Koutsias; Owen, Price; Pereira, Jose M. C.

    2014-05-01

    Large wildfires have important social, economic and environmental impacts. In order to minimize their impacts, understand their main drivers and study their dynamics, different approaches have been used. The reconstruction of individual wildfire events is usually done by collection of field data, interviews and by implementing fire spread simulations. All these methods have clear limitations in terms of spatial and temporal coverage, accuracy, subjectivity of the collected information and lack of objective independent validation information. In this sense, remote sensing is a promising tool with the potential to provide relevant information for stakeholders and the research community, by complementing or filling gaps in existing information and providing independent accurate quantitative information. In this work we show the potential of satellite data to provide relevant information regarding the dynamics of individual large wildfire events, filling an important gap in wildfire research. We show how MODIS active-fire data, acquired up to four times per day, and satellite-derived burnt perimeters can be combined to extract relevant information wildfire events by describing the methods involved and presenting results for four regions of the world: Portugal, Greece, SE Australia and California. The information that can be retrieved encompasses the start and end date of a wildfire event and its ignition area. We perform an evaluation of the information retrieved by comparing the satellite-derived parameters with national databases, highlighting the strengths and weaknesses of both and showing how the former can complement the latter leading to more complete and accurate datasets. We also show how the spatio-temporal distribution of wildfire spread dynamics can be reconstructed using satellite-derived active-fires and how relevant descriptors can be extracted. Applying graph theory to satellite active-fire data, we define the major fire spread paths that yield information about the major spatial corridors through which fires spread, and their relative importance in the full fire event. These major fire paths are then used to extract relevant descriptors, such as the distribution of fire spread direction, rate of spread and fire intensity (i.e. energy emitted). The reconstruction of the fire spread is shown for some case studies for Portugal and is also compared with fire progressions obtained by air-borne sensors for SE Australia. The approach shows solid results, providing a valuable tool for the reconstruction of individual fire events, understand their complex spread patterns and their main drivers of fire propagation. The major fire pathsand the spatio-temporal distribution of active fires are being currently combined with fire spread simulations within the scope oftheFIRE-MODSATproject, to provideuseful information to support and improve fire suppression strategies.

  4. Seed invasion filters and forest fire severity

    Treesearch

    Tom R. Cottrell; Paul F. Hessburg; Jonathan A. Betz

    2008-01-01

    Forest seed dispersal is altered after fire. Using seed traps, we studied impacts of fire severity on timing of seed dispersal, total seed rain, and seed rain richness in patches of high and low severity fire and unburned Douglas-fir (Pseudotsuga menziesii) forests in the Fischer and Tyee fire complexes in the eastern Washington Cascades. Unburned...

  5. Historical fire regime and forest variability on two eastern Great Basin fire-sheds (USA)

    Treesearch

    Stanley G. Kitchen

    2012-01-01

    Proper management of naturally forested landscapes requires knowledge of key disturbance processes and their effects on species composition and structure. Spatially-intensive fire and forest histories provide valuable information about how fire and vegetation may vary and interact on heterogeneous landscapes. I constructed 800-year fire and tree recruitment...

  6. Fuelling the palaeoatmospheric oxygen debate: how much atmospheric oxygen is required for ignition and propagation of smouldering fires?

    NASA Astrophysics Data System (ADS)

    Belcher, Claire M.; Hadden, Rory; McElwain, Jennifer C.; Rein, Guillermo

    2010-05-01

    Fire is a natural process integral to ecosystems at a wide range of temporal and spatial scales and is a key driver of change in the Earth system. Fire has been a major influence on Earth's systems since the Carboniferous. Whilst, climate is considered the ultimate control on global vegetation, fire is now known to play a key role in determining vegetation structure and composition, such that many of the world's ecosystems can be considered fire-dependant. Products of fire include chars, soots and aromatic hydrocarbon species all of which can be traced in ancient through to modern sediments. Atmospheric oxygen has played a key role in the development of life on Earth, with the rise of oxygen in the Precambrian being closely linked to biological evolution. Variations in the concentration of atmospheric oxygen throughout the Phanerozoic are predicted from models based on geochemical cycling of carbon and sulphur. Such models predict that low atmospheric oxygen concentrations prevailed in the Mesozoic (251-65ma) and have been hypothesised to be the primary driver of at least two of the ‘big five' mass extinction events in the Phanerozoic. Here we assess the levels of atmospheric oxygen required to ignite a fire and infer the likely levels of atmospheric oxygen to support smouldering combustion. Smouldering fire dynamics and its effects on ecosystems are very different from flaming fires. Smouldering fires propagate slowly, are usually low in temperature and represent a flameless form of combustion. These fires creep through organic layers of forest ground and peat lands and are responsible for a large fraction of the total biomass consumed in wildfires globally and are also a major contributor of carbon dioxide to the atmosphere. Once ignited, they can persist for long periods of time (months, years) spreading over very extensive areas of forest and deep into soil. Smouldering fires are therefore, the oldest continuously burning fires on Earth. We have combined expertise from both the Earth science and fire engineering disciplines to develop realistic ignition mechanisms and measurements of fire propagation within different levels of atmospheric oxygen. We present data from experimental burns run in the fully controlled and realistic atmospheric environment of the UCD PÉAC facility. The burns are designed to develop our understanding of ignition of fires in the natural world. We have studied ignition and propagation of fire in peat, a natural and highly flammable substance. Peat samples of approximately 100mm by 100mm in cross section and 50mm in depth were exposed to an ignition source (~100W of electric power) for 30 minutes. Thermocouples were placed throughout the sample to measure temperature changes during the initial 30 minute ignition phase and in order to observe ignition of the peat, intensity of combustion and spread of the smouldering front within the different atmospheric oxygen settings. We show that ignition and propagation of smouldering in peat does not occur below 16% atmospheric oxygen and that smouldering combustion continues for long periods (~4 hours in the size sample used) at 18% atmospheric oxygen and above. This suggests that atmospheric levels above 16% atmospheric are required to allow ignition and propagation of smouldering fires and that frequent occurrences of wildfires might only be expected in the geological past when atmospheric levels were above 18% oxygen. Fires play an important role in Earth's biogeochemical cycles; this work suggests that fire feedbacks into the Earth system would likely have been suppressed during periods of low atmospheric oxygen.

  7. Effects of repeated fires on ecosystem C and N stocks along a fire induced forest/grassland gradient

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Hsin; Chen, Yung-Sheng; Huang, Yu-Hsuan; Chiou, Chyi-Rong; Lin, Chau-Chih; Menyailo, Oleg V.

    2013-03-01

    Repeated fires might have different effect on ecosystem carbon storage than a single fire event, but information on repeated fires and their effects on forest ecosystems and carbon storage is scarce. However, changes in climate, vegetation composition, and human activities are expected to make forests more susceptible to fires that recur with relatively high frequency. In this study, the effects of repeated fires on ecosystem carbon and nitrogen stocks were examined along a fire-induced forest/grassland gradient wherein the fire events varied from an unburned forest to repeatedly burned grassland. Results from the study show repeated fires drastically decreased ecosystem carbon and nitrogen stocks along the forest/grassland gradient. The reduction began with the disappearance of living tree biomass, and followed by the loss of soil carbon and nitrogen. Within 4 years of the onset of repeated fires on the unburned forest, the original ecosystem carbon and nitrogen stocks were reduced by 42% and 21%, respectively. Subsequent fires caused cumulative reductions in ecosystem carbon and nitrogen stocks by 68% and 44% from the original ecosystem carbon and nitrogen stocks, respectively. The analyses of carbon budgets calculated by vegetation composition and stable isotopic δ13C values indicate that 84% of forest-derived carbon is lost at grassland, whereas the gain of grass-derived carbon only compensates 18% for this loss. Such significant losses in ecosystem carbon and nitrogen stocks suggest that the effects of repeated fires have substantial impacts on ecosystem and soil carbon and nitrogen cycling.

  8. Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park

    USGS Publications Warehouse

    Kane, Van R.; Lutz, James A.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Povak, Nicholas A.; Brooks, Matthew L.

    2013-01-01

    While fire shapes the structure of forests and acts as a keystone process, the details of how fire modifies forest structure have been difficult to evaluate because of the complexity of interactions between fires and forests. We studied this relationship across 69.2 km2 of Yosemite National Park, USA, that was subject to 32 fires ⩾40 ha between 1984 and 2010. Forests types included ponderosa pine (Pinus ponderosa), white fir-sugar pine (Abies concolor/Pinus lambertiana), and red fir (Abies magnifica). We estimated and stratified burned area by fire severity using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR). Airborne LiDAR data, acquired in July 2010, measured the vertical and horizontal structure of canopy material and landscape patterning of canopy patches and gaps. Increasing fire severity changed structure at the scale of fire severity patches, the arrangement of canopy patches and gaps within fire severity patches, and vertically within tree clumps. Each forest type showed an individual trajectory of structural change with increasing fire severity. As a result, the relationship between estimates of fire severity such as RdNBR and actual changes appears to vary among forest types. We found three arrangements of canopy patches and gaps associated with different fire severities: canopy-gap arrangements in which gaps were enclosed in otherwise continuous canopy (typically unburned and low fire severities); patch-gap arrangements in which tree clumps and gaps alternated and neither dominated (typically moderate fire severity); and open-patch arrangements in which trees were scattered across open areas (typically high fire severity). Compared to stands outside fire perimeters, increasing fire severity generally resulted first in loss of canopy cover in lower height strata and increased number and size of gaps, then in loss of canopy cover in higher height strata, and eventually the transition to open areas with few or no trees. However, the estimated fire severities at which these transitions occurred differed for each forest type. Our work suggests that low severity fire in red fir forests and moderate severity fire in ponderosa pine and white fir-sugar pine forests would restore vertical and horizontal canopy structures believed to have been common prior to the start of widespread fire suppression in the early 1900s. The fusion of LiDAR and Landsat data identified post-fire structural conditions that would not be identified by Landsat alone, suggesting a broad applicability of combining Landsat and LiDAR data for landscape-scale structural analysis for fire management.

  9. Fire performance in traditional silvicultural and fire and fire surrogate treatments in Sierran mixed-conifer forests: a brief summary

    Treesearch

    Jason J. Moghaddas; Scott L. Stephens

    2007-01-01

    Mixed conifer forests cover 7.9 million acres of California’s total land base. Forest structure in these forests has been influenced by harvest practices and silvicultural systems implemented since the beginning of the California Gold Rush in 1849. Today, the role of fire in coniferous forests, both in shaping past stand structure and its ability to shape future...

  10. MODIS NDVI Response Following Fires in Siberia

    NASA Technical Reports Server (NTRS)

    Ranson, K. Jon; Sun, G.; Kovacs, K.; Kharuk, V. I.

    2003-01-01

    The Siberian boreal forest is considered a carbon sink but may become an important source of carbon dioxide if climatic warming predictions are correct. The forest is continually changing through various disturbance mechanisms such as insects, logging, mineral exploitation, and especially fires. Patterns of disturbance and forest recovery processes are important factors regulating carbon flux in this area. NASA's Terra MODIS provides useful information for assessing location of fires and post fire changes in forests. MODIS fire (MOD14), and NDVI (MOD13) products were used to examine fire occurrence and post fire variability in vegetation cover as indicated by NDVI. Results were interpreted for various post fire outcomes, such as decreased NDVI after fire, no change in NDVI after fire and positive NDVI change after fire. The fire frequency data were also evaluated in terms of proximity to population centers, and transportation networks.

  11. A heuristic expert system for forest fire guidance in Greece.

    PubMed

    Iliadis, Lazaros S; Papastavrou, Anastasios K; Lefakis, Panagiotis D

    2002-07-01

    Forests and forestlands are common inheritance for all Greeks and a piece of the national wealth that must be handed over to the next generations in the best possible condition. After 1974, Greece faces a severe forest fire problem and forest fire forecasting is the process that will enable the Greek ministry of Agriculture to reduce the destruction. This paper describes the basic design principles of an Expert System that performs forest fire forecasting (for the following fire season) and classification of the prefectures of Greece into forest fire risk zones. The Expert system handles uncertainty and uses heuristics in order to produce scenarios based on the presence or absence of various qualitative factors. The initial research focused on the construction of a mathematical model which attempted to describe the annual number of forest fires and burnt area in Greece based on historical data. However this has proven to be impossible using regression analysis and time series. A closer analysis of the fire data revealed that two qualitative factors dramatically affect the number of forest fires and the hectares of burnt areas annually. The first is political stability and national elections and the other is drought cycles. Heuristics were constructed that use political stability and drought cycles, to provide forest fire guidance. Fuzzy logic was applied to produce a fuzzy expected interval for each prefecture of Greece. A fuzzy expected interval is a narrow interval of values that best describes the situation in the country or a part of the country for a certain time period. A successful classification of the prefectures of Greece in forest fire risk zones was done by the system, by comparing the fuzzy expected intervals to each other. The system was tested for the years 1994 and 1995. The testing has clearly shown that the system can predict accurately, the number of forest fires for each prefecture for the following year. The average accuracy was as high as 85.25% for 1995 and 80.89% for 1994. This makes the Expert System a very important tool for forest fire prevention planning.

  12. The quest for all-purpose plants

    Treesearch

    Susan L. Frommer; David R. Weise

    1995-01-01

    The fire safety of a home in the wildland/urban interface is influenced by several factors-one of which is the presence and proximity of vegetation to the home. Landscaping may either provide a significant barrier to fire spread and thus potentially increase a home's fire safety or favor fire spread and reduce a home's fire safety. However, fire safety of...

  13. Comparison of crown fire modeling systems used in three fire management applications

    Treesearch

    Joe H. Scott

    2006-01-01

    The relative behavior of surface-crown fire spread rate modeling systems used in three fire management applications-CFIS (Crown Fire Initiation and Spread), FlamMap and NEXUS- is compared using fire environment characteristics derived from a dataset of destructively measured canopy fuel and associated stand characteristics. Although the surface-crown modeling systems...

  14. An Overview of FlamMap Fire Modeling Capabilities

    Treesearch

    Mark A. Finney

    2006-01-01

    Computerized and manual systems for modeling wildland fire behavior have long been available (Rothermel 1983, Andrews 1986). These systems focus on one-dimensional behaviors and assume the fire geometry is a spreading line-fire (in contrast with point or area-source fires). Models included in these systems were developed to calculate fire spread rate (Rothermel 1972,...

  15. Fire spread in chaparral – a comparison of laboratory data and model predictions in burning live fuels

    Treesearch

    David R. Weise; Eunmo Koo; Xiangyang Zhou; Shankar Mahalingam; Frédéric Morandini; Jacques-Henri Balbi

    2016-01-01

    Fire behaviour data from 240 laboratory fires in high-density live chaparral fuel beds were compared with model predictions. Logistic regression was used to develop a model to predict fire spread success in the fuel beds and linear regression was used to predict rate of spread. Predictions from the Rothermel equation and three proposed changes as well as two physically...

  16. Synergy between land use and climate change increases future fire risk in Amazon forests

    NASA Astrophysics Data System (ADS)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; Bond-Lamberty, Ben; Cardoso Pereira, José Miguel; Hurtt, George; Asrar, Ghassem

    2017-12-01

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change - Representative Concentration Pathway (RCP) 8.5 - projected understory fires increase in frequency and duration, burning 4-28 times more forest in 2080-2100 than during 1990-2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9-5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.

  17. A scale-up field experiment for the monitoring of a burning process using chemical, audio, and video sensors.

    PubMed

    Stavrakakis, P; Agapiou, A; Mikedi, K; Karma, S; Statheropoulos, M; Pallis, G C; Pappa, A

    2014-01-01

    Fires are becoming more violent and frequent resulting in major economic losses and long-lasting effects on communities and ecosystems; thus, efficient fire monitoring is becoming a necessity. A novel triple multi-sensor approach was developed for monitoring and studying the burning of dry forest fuel in an open field scheduled experiment; chemical, optical, and acoustical sensors were combined to record the fire spread. The results of this integrated field campaign for real-time monitoring of the fire event are presented and discussed. Chemical analysis, despite its limitations, corresponded to the burning process with a minor time delay. Nevertheless, the evolution profile of CO2, CO, NO, and O2 were detected and monitored. The chemical monitoring of smoke components enabled the observing of the different fire phases (flaming, smoldering) based on the emissions identified in each phase. The analysis of fire acoustical signals presented accurate and timely response to the fire event. In the same content, the use of a thermographic camera, for monitoring the biomass burning, was also considerable (both profiles of the intensities of average gray and red component greater than 230) and presented similar promising potentials to audio results. Further work is needed towards integrating sensors signals for automation purposes leading to potential applications in real situations.

  18. A dendrochronology based fire history of Jeffry pine-mixed conifer forests in the Sierra San Pedro Martir, Mexico

    Treesearch

    Scott L. Stephens; Carl N. Skinner; Samantha J. Gill

    2003-01-01

    Conifer forests in northwestern Mexico have not experienced systematic fire suppression or logging, making them unique in western North America. Fire regimes of Pinus jeffreyi Grev. & Balf. mixed conifer forests in the Sierra San Pedro Martir, Baja California, Mexico, were determined by identifying 105 fire dates from 1034 fire scars in 105 specimens. Fires were...

  19. Initial tree regeneration responses to fire and thinning treatments in a Sierra Nevada mixed-conifer forest, USA

    Treesearch

    Harold S.J. Zald; Andrew N. Gray; Malcolm North; Ruth A. Kern

    2008-01-01

    Fire is a driver of ecosystem patterns and processes in forests globally, but natural fire regimes have often been altered by decades of active fire management. Following almost a century of fire suppression, many Western U.S. forests have greater fuel levels, higher tree densities, and are now dominated by fire-sensitive, shade-tolerant species. These fuel-loaded...

  20. A soil burn severity index for understanding soil-fire relations in tropical forests [Chinese version

    Treesearch

    Theresa B. Jain; William A. Gould; Russell T. Graham; David S. Pilliod; Leigh B. Lentile; Grizelle Gonzalez

    2008-01-01

    Methods for evaluating the impact of fires within tropical forests are needed as fires become more frequent and human populations and demands on forests increase. Short- and long-term fire effects on soils are determined by the prefire, fire, and postfire environments. We placed these components within a fire-disturbance continuum to guide our literature synthesis and...

  1. The ecology of mixed severity fire regimes in Washington, Oregon, and Northern California

    Treesearch

    David Perry; Paul Hessburg; Carl Skinner; Thomas Spies; Scott Stephens; Alan Henry Taylor; Jerry Franklin; Brenda McComb; Greg Riegel

    2011-01-01

    Forests characterized by mixed-severity fires occupy a broad moisture gradient between lower elevation forests typified by low-severity fires and higher elevation forests in which high-severity, stand replacing fires are the norm. Mixed-severity forest types are poorly documented and little understood but likely occupy significant areas in the western United States. By...

  2. Long-term impacts of prescribed fire on stand structure, growth, mortality, and individual tree vigor in Pinus resinosa forests

    Treesearch

    Sawyer S. Scherer; Anthony W. D' Amato; Christel C. Kern; Brian J. Palik; Matthew B. Russell

    2016-01-01

    Prescribed fire is increasingly being viewed as a valuable tool for mitigating the ecological consequences of long-term fire suppression within fire-adapted forest ecosystems. While the use of burning treatments in northern temperate conifer forests has at times received considerable attention, the long-term (>10 years) effects on forest structure and...

  3. Forest health in the Blue Mountains: a management strategy for fire-adapted ecosystems.

    Treesearch

    R.W. Mutch; S.F. Arno; J.K. Brown; C.E. Carlson; R.D. Ottmar; J.L. Peterson

    1993-01-01

    The fire-adapted forests of the Blue Mountains are suffering from a forest health problem of catastrophic proportions. Contributing to the decline of forest health are such factors as the extensive harvesting of the western larch and ponderosa pine overstory during the 1900s, attempted exclusion of fire from a fire-dependent ecosystem, and the continuing drought. The...

  4. Decadal time-scale monitoring of forest fires in Similipal Biosphere Reserve, India using remote sensing and GIS.

    PubMed

    Saranya, K R L; Reddy, C Sudhakar; Rao, P V V Prasada; Jha, C S

    2014-05-01

    Analyzing the spatial extent and distribution of forest fires is essential for sustainable forest resource management. There is no comprehensive data existing on forest fires on a regular basis in Biosphere Reserves of India. The present work have been carried out to locate and estimate the spatial extent of forest burnt areas using Resourcesat-1 data and fire frequency covering decadal fire events (2004-2013) in Similipal Biosphere Reserve. The anomalous quantity of forest burnt area was recorded during 2009 as 1,014.7 km(2). There was inconsistency in the fire susceptibility across the different vegetation types. The spatial analysis of burnt area shows that an area of 34.2 % of dry deciduous forests, followed by tree savannah, shrub savannah, and grasslands affected by fires in 2013. The analysis based on decadal time scale satellite data reveals that an area of 2,175.9 km(2) (59.6 % of total vegetation cover) has been affected by varied rate of frequency of forest fires. Fire density pattern indicates low count of burnt area patches in 2013 estimated at 1,017 and high count at 1,916 in 2004. An estimate of fire risk area over a decade identifies 12.2 km(2) is experiencing an annual fire damage. Summing the fire frequency data across the grids (each 1 km(2)) indicates 1,211 (26 %) grids are having very high disturbance regimes due to repeated fires in all the 10 years, followed by 711 grids in 9 years and 418 in 8 years and 382 in 7 years. The spatial database offers excellent opportunities to understand the ecological impact of fires on biodiversity and is helpful in formulating conservation action plans.

  5. Climate change and forest fires.

    PubMed

    Flannigan, M D; Stocks, B J; Wotton, B M

    2000-11-15

    This paper addresses the impacts of climate change on forest fires and describes how this, in turn, will impact on the forests of the United States. In addition to reviewing existing studies on climate change and forest fires we have used two transient general circulation models (GCMs), namely the Hadley Centre and the Canadian GCMs, to estimate fire season severity in the middle of the next century. Ratios of 2 x CO2 seasonal severity rating (SSR) over present day SSR were calculated for the means and maximums for North America. The results suggest that the SSR will increase by 10-50% over most of North America; although, there are regions of little change or where the SSR may decrease by the middle of the next century. Increased SSRs should translate into increased forest fire activity. Thus, forest fires could be viewed as an agent of change for US forests as the fire regime will respond rapidly to climate warming. This change in the fire regime has the potential to overshadow the direct effects of climate change on species distribution and migration.

  6. Wildfire and drought dynamics destabilize carbon stores of fire-suppressed forests.

    PubMed

    Earles, J Mason; North, Malcolm P; Hurteau, Matthew D

    2014-06-01

    Widespread fire suppression and thinning have altered the structure and composition of many forests in the western United States, making them more susceptible to the synergy of large-scale drought and fire events. We examine how these changes affect carbon storage and stability compared to historic fire-adapted conditions. We modeled carbon dynamics under possible drought and fire conditions over a 300-year simulation period in two mixed-conifer conditions common in the western United States: (1) pine-dominated with an active fire regime and (2) fir-dominated, fire suppressed forests. Fir-dominated stands, with higher live- and dead-wood density, had much lower carbon stability as drought and fire frequency increased compared to pine-dominated forest. Carbon instability resulted from species (i.e., fir's greater susceptibility to drought and fire) and stand (i.e., high density of smaller trees) conditions that develop in the absence of active management. Our modeling suggests restoring historic species composition and active fire regimes can significantly increase carbon stability in fire-suppressed, mixed-conifer forests. Long-term management of forest carbon should consider the relative resilience of stand structure and composition to possible increases in disturbance frequency and intensity under changing climate.

  7. Factors affecting collective action for forest fire management: a comparative study of community forest user groups in central Siwalik, Nepal.

    PubMed

    Sapkota, Lok Mani; Shrestha, Rajendra Prasad; Jourdain, Damien; Shivakoti, Ganesh P

    2015-01-01

    The attributes of social ecological systems affect the management of commons. Strengthening and enhancing social capital and the enforcement of rules and sanctions aid in the collective action of communities in forest fire management. Using a set of variables drawn from previous studies on the management of commons, we conducted a study across 20 community forest user groups in Central Siwalik, Nepal, by dividing the groups into two categories based on the type and level of their forest fire management response. Our study shows that the collective action in forest fire management is consistent with the collective actions in other community development activities. However, the effectiveness of collective action is primarily dependent on the complex interaction of various variables. We found that strong social capital, strong enforcement of rules and sanctions, and users' participation in crafting the rules were the major variables that strengthen collective action in forest fire management. Conversely, users' dependency on a daily wage and a lack of transparency were the variables that weaken collective action. In fire-prone forests such as the Siwalik, our results indicate that strengthening social capital and forming and enforcing forest fire management rules are important variables that encourage people to engage in collective action in fire management.

  8. Ecological responses to el Niño-induced surface fires in central Brazilian Amazonia: management implications for flammable tropical forests.

    PubMed Central

    Barlow, Jos; Peres, Carlos A

    2004-01-01

    Over the past 20 years the combined effects of El Niño-induced droughts and land-use change have dramatically increased the frequency of fire in humid tropical forests. Despite the potential for rapid ecosystem alteration and the current prevalence of wildfire disturbance, the consequences of such fires for tropical forest biodiversity remain poorly understood. We provide a pan-tropical review of the current state of knowledge of these fires, and include data from a study in a seasonally dry terra firme forest of central Brazilian Amazonia. Overall, this study supports predictions that rates of tree mortality and changes in forest structure are strongly linked to burn severity. The potential consequences for biomass loss and carbon emissions are explored. Despite the paucity of data on faunal responses to tropical forest fires, some trends are becoming apparent; for example, large canopy frugivores and understorey insectivorous birds appear to be highly sensitive to changes in forest structure and composition during the first 3 years after fires. Finally, we appraise the management implications of fires and evaluate the viability of techniques and legislation that can be used to reduce forest flammability, prevent anthropogenic ignition sources from coming into contact with flammable forests and aid the post-fire recovery process. PMID:15212091

  9. Fire, climate change, and forest resilience in interior Alaska

    Treesearch

    Jill F. Johnstone; F. Stuart Chapin; Teresa N. Hollingsworth; Michelle C. Mack; Vladimir Romanovsky; Merritt Turetsky

    2010-01-01

    In the boreal forests of interior Alaska, feedbacks that link forest soils, fire characteristics, and plant traits have supported stable cycles of forest succession for the past 6000 years. This high resilience of forest stands to fire disturbance is supported by two interrelated feedback cycles: (i) interactions among disturbance regime and plant-soil-microbial...

  10. Assessing the effects of multiple stressors on the recruitment of fruit harvested trees in a tropical dry forest, Western Ghats, India.

    PubMed

    Varghese, Anita; Ticktin, Tamara; Mandle, Lisa; Nath, Snehlata

    2015-01-01

    The harvest of non-timber forest products (NTFPs), together with other sources of anthropogenic disturbance, impact plant populations greatly. Despite this, conservation research on NTFPs typically focuses on harvest alone, ignoring possible confounding effects of other anthropogenic and ecological factors. Disentangling anthropogenic disturbances is critical in regions such as India's Western Ghats, a biodiversity hotspot with high human density. Identifying strategies that permit both use and conservation of resources is essential to preserving biodiversity while meeting local needs. We assessed the effects of NTFP harvesting (fruit harvest from canopy and lopping of branches for fruit) in combination with other common anthropogenic disturbances (cattle grazing, fire frequency and distance from village), in order to identify which stressors have greater effects on recruitment of three tropical dry forest fruit tree species. Specifically, we assessed the structure of 54 populations of Phyllanthus emblica, P. indofischeri and Terminalia chebula spread across the Nilgiri Biosphere Reserve, Western Ghats to ask: (1) How are populations recruiting? and (2) What anthropogenic disturbance and environmental factors, specifically forest type and elevation, are the most important predictors of recruitment status? We combined participatory research with an information-theoretic model-averaging approach to determine which factors most affect population structure and recruitment status. Our models illustrate that for T. chebula, high fire frequency and high fruit harvest intensity decreased the proportion of saplings, while lopping branches or stems to obtain fruit increased it. For Phyllanthus spp, recruitment was significantly lower in plots with more frequent fire. Indices of recruitment of both species were significantly higher for plots in more open-canopy environments of savanna woodlands than in dry forests. Our research illustrates an approach for identifying which factors are most important in limiting recruitment of NTFP populations and other plant species that may be in decline, in order to design effective management strategies.

  11. The impact of anthropogenic climate change on wildfire across western US forests

    NASA Astrophysics Data System (ADS)

    Williams, P.; Abatzoglou, J. T.

    2016-12-01

    Increased forest fire activity across the western United States (US) in recent decades has contributed to widespread forest mortality, carbon emissions, periods of degraded air quality, and substantial fire suppression expenditures. The increase in forest fire activity has likely been enabled by a number of factors including the legacy of fire suppression and human settlement, changes in suppression policies, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western US. Anthropogenic increases in temperature and vapor pressure deficit have significantly enhanced fuel aridity across western US forests over the past several decades. Comparing observational climate records to records recalculated after removal of modeled anthropogenic trends, we find that anthropogenic climate change accounted for approximately 55% of observed increases in the eight-metric mean fuel aridity during 1979-2015 across western US forests. This implicates anthropogenic climate change as an important driver of observed increases in fuel aridity, and also highlights the importance of natural multi-decadal climate variability in influencing trends in forest fire potential on the timescales of human lives. Based on a very strong (R2 = 0.76) and mechanistically reasonable relationship between interannual variability in the eight-metric mean fuel aridity and forest-fire area in the western US, we estimate that anthropogenic increases in fuel aridity contributed to an additional 4.2 million ha (95% confidence range: 2.7-6.5 million ha) of forest fire area during 1984-2015, nearly doubling the total forest fire area expected in the absence of anthropogenic climate change. The relationship between annual forest fire area and fuel aridity is exponential and the proportion of total forest area burned in a given year has grown rapidly over the past 32 years. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a chronic driver of increased forest fire activity and should continue to do so where fuels are not limiting.

  12. Fire Impact on Surface Fuels and Carbon Emissions in Scots pine Logged Sites of Siberia

    NASA Astrophysics Data System (ADS)

    Ivanova, G. A.; Kukavskaya, E. A.; Bogorodskaya, A. V.; Ivanov, V. A.; Zhila, S. V.; Conard, S. G.

    2012-04-01

    Forest fire and large-scale forest harvesting are the two major disturbances in the Russian boreal forests. Non-recovered logged sites total about a million hectares. Logged sites are characterized by higher fire hazard than forest sites due great amounts of logging slash, which dries out much more rapidly compared to understory fuels. Moreover, most logging sites can be easily accessed by local population. Both legal and illegal logging are also increasing rapidly in many forest areas of Siberia. Fire effects on forest overstory, subcanopy woody layer, and ground vegetation biomass were estimated on logged vs. unlogged sites in the Central Siberia region in 2009-2012 as a part of the project "The Influence of Changing Forestry Practices on the Effects of Wildfire and on Interactions Between Fire and Changing Climate in Central Siberia" supported by NASA (NEESPI). Dead down woody fuels are significantly less at unburned/logged area of dry southern regions compared to more humid northern regions. Fuel consumption was typically less in spring fires than during summer fires. Fire-caused carbon emissions on logged sites appeared to be twice that on unlogged sites. Soil respiration is less at logged areas compared to undisturbed forest. After fire soil respiration decreases both at logged and unlogged areas. arbon emissions from fire and post-fire ecosystem damage on logged sites are expected to increase under changing climate conditions and as a result of anticipated increases in future forest harvesting in Siberia.

  13. Climatic stress increases forest fire severity across the western United States

    Treesearch

    Phillip J. van Mantgem; Jonathan C.B. Nesmith; MaryBeth Keifer; Eric E. Knapp; Alan Flint; Lorriane Flint

    2013-01-01

    Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after...

  14. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests

    Treesearch

    Danny L. Fry; Scott L. Stephens; Brandon M. Collins; Malcolm North; Ernesto Franco-Vizcaino; Samantha J. Gill

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference...

  15. Reintroducing fire in regenerated dry forests following stand-replacing wildfire.

    Treesearch

    David W. Peterson; Paul F. Hessburg; Brion Salter; Kevin M. James; Matthew C. Dahlgreen; John A. Barnes

    2007-01-01

    Prescribed fire use may be effective for increasing fire resilience in young coniferous forests by reducing surface fuels, modifying overstory stand structure, and promoting development of large trees of fire resistant species. Questions remain, however, about when and how to reintroduce fire in regenerated forests, and to what end. We studied the effects of spring...

  16. Lessons learned from prescribed fire in ponderosa pine forests of the southern Sierra Nevada

    Treesearch

    Karen E. Bagne; Kathryn L. Purcell

    2009-01-01

    Prescribed fire is a commonly used management tool in fire-suppressed ponderosa pine (Pinus ponderosa) forests, but effects of these fires on birds are largely unstudied. We investigated both direct and indirect impacts on breeding birds in ponderosa pine forests of the southern Sierra Nevada where fires were applied in the spring. Following...

  17. Detection, Emission Estimation and Risk Prediction of Forest Fires in China Using Satellite Sensors and Simulation Models in the Past Three Decades—An Overview

    PubMed Central

    Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K.

    2011-01-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status. PMID:21909297

  18. Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades--an overview.

    PubMed

    Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K

    2011-08-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status.

  19. 75 FR 3193 - Information Collection; Annual Wildfire Summary Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... addressed to Tim Melchert, Fire and Aviation Management, National Interagency Fire Center, Forest Service... Forest Service State and Private Forestry Cooperative Fire Program. The program provides supplemental funding for State and local fire fighting agencies. The Forest Service works cooperatively with State and...

  20. Economic vulnerability of timber resources to forest fires.

    PubMed

    y Silva, Francisco Rodríguez; Molina, Juan Ramón; González-Cabán, Armando; Machuca, Miguel Ángel Herrera

    2012-06-15

    The temporal-spatial planning of activities for a territorial fire management program requires knowing the value of forest ecosystems. In this paper we extend to and apply the economic valuation principle to the concept of economic vulnerability and present a methodology for the economic valuation of the forest production ecosystems. The forest vulnerability is analyzed from criteria intrinsically associated to the forest characterization, and to the potential behavior of surface fires. Integrating a mapping process of fire potential and analytical valuation algorithms facilitates the implementation of fire prevention planning. The availability of cartography of economic vulnerability of the forest ecosystems is fundamental for budget optimization, and to help in the decision making process. Published by Elsevier Ltd.

  1. Synoptic weather types associated with critical fire weather

    Treesearch

    Mark J. Schroeder; Monte Glovinsky; Virgil F. Hendricks; Frank C. Hood; Melvin K. Hull; Henry L. Jacobson; Robert Kirkpatrick; Daniel W. Krueger; Lester P. Mallory; Albert G. Oeztel; Robert H. Reese; Leo A. Sergius; Charles E. Syverson

    1964-01-01

    Recognizing that weather is an important factor in the spread of both urban and wildland fires, a study was made of the synoptic weather patterns and types which produce strong winds, low relative humidities, high temperatures, and lack of rainfall--the conditions conducive to rapid fire spread. Such historic fires as the San Francisco fire of 1906, the Berkeley fire...

  2. Performance of a Protected Wireless Sensor Network in a Fire. Analysis of Fire Spread and Data Transmission

    PubMed Central

    Antoine-Santoni, Thierry; Santucci, Jean-François; de Gentili, Emmanuelle; Silvani, Xavier; Morandini, Frederic

    2009-01-01

    The paper deals with a Wireless Sensor Network (WSN) as a reliable solution for capturing the kinematics of a fire front spreading over a fuel bed. To provide reliable information in fire studies and support fire fighting strategies, a Wireless Sensor Network must be able to perform three sequential actions: 1) sensing thermal data in the open as the gas temperature; 2) detecting a fire i.e., the spatial position of a flame; 3) tracking the fire spread during its spatial and temporal evolution. One of the great challenges in performing fire front tracking with a WSN is to avoid the destruction of motes by the fire. This paper therefore shows the performance of Wireless Sensor Network when the motes are protected with a thermal insulation dedicated to track a fire spreading across vegetative fuels on a field scale. The resulting experimental WSN is then used in series of wildfire experiments performed in the open in vegetation areas ranging in size from 50 to 1,000 m2. PMID:22454563

  3. Performance of a protected wireless sensor network in a fire. Analysis of fire spread and data transmission.

    PubMed

    Antoine-Santoni, Thierry; Santucci, Jean-François; de Gentili, Emmanuelle; Silvani, Xavier; Morandini, Frederic

    2009-01-01

    The paper deals with a Wireless Sensor Network (WSN) as a reliable solution for capturing the kinematics of a fire front spreading over a fuel bed. To provide reliable information in fire studies and support fire fighting strategies, a Wireless Sensor Network must be able to perform three sequential actions: 1) sensing thermal data in the open as the gas temperature; 2) detecting a fire i.e., the spatial position of a flame; 3) tracking the fire spread during its spatial and temporal evolution. One of the great challenges in performing fire front tracking with a WSN is to avoid the destruction of motes by the fire. This paper therefore shows the performance of Wireless Sensor Network when the motes are protected with a thermal insulation dedicated to track a fire spreading across vegetative fuels on a field scale. The resulting experimental WSN is then used in series of wildfire experiments performed in the open in vegetation areas ranging in size from 50 to 1,000 m(2).

  4. Multi-season climate synchronized forest fires throughout the 20th century, Northern Rockies, USA

    Treesearch

    Penelope Morgan; Emily K. Heyerdahl; Carly E. Gibson

    2008-01-01

    We inferred climate drivers of 20th-century years with regionally synchronous forest fires in the U.S. northern Rockies. We derived annual fire extent from an existing fire atlas that includes 5038 fire polygons recorded from 12 070 086 ha, or 71% of the forested land in Idaho and Montana west of the Continental Divide. The 11 regional-fire years, those exceeding the...

  5. Satellite data based method for general survey of forest insect disturbance in British Columbia

    NASA Astrophysics Data System (ADS)

    Ranson, J.; Montesano, P.

    2008-12-01

    Regional forest disturbances caused by insects are important to monitor and quantify because of their influence on local ecosystems and the global carbon cycle. Local damage to forest trees disrupts food supplies and shelter for a variety of organisms. Changes in the global carbon budget, its sources and its sinks affect the way the earth functions as a whole, and has an impact on global climate. Furthermore, the ability to detect nascent outbreaks and monitor the spread of regional infestations helps managers mitigate the damage done by catastrophic insect outbreaks. While detection is needed at a fine scale to support local mitigation efforts, detection at a broad regional scale is important for carbon flux modeling on the landscape scale, and needed to direct the local efforts. This paper presents a method for routinely detecting insect damage to coniferous forests using MODIS vegetation indices, thermal anomalies and land cover. The technique is validated using insect outbreak maps and accounts for fire disturbance effects. The range of damage detected may be used to interpret and quantify possible forest damage by insects.

  6. Increasing resiliency in frequent fire forests: Lessons from the Sierra Nevada and western Australia

    Treesearch

    Scott L. Stephens

    2014-01-01

    This paper will primarily focus on the management and restoration of forests adapted to frequent, low-moderate intensity fire regimes. These are the forest types that are most at risk from large, high-severity wildfires and in many regions their fire regimes are changing. Fire as a landscape process can exhibit self-limiting characteristics in some forests which can...

  7. Average stand age from forest inventory plots does not describe historical fire regimes in ponderosa pine and mixed-conifer forests of western North America

    Treesearch

    Jens T. Stevens; Hugh D. Safford; Malcolm P. North; Jeremy S. Fried; Andrew N. Gray; Peter M. Brown; Christopher R. Dolanc; Solomon Z. Dobrowski; Donald A. Falk; Calvin A. Farris; Jerry F. Franklin; Peter Z. Fulé; R. Keala Hagmann; Eric E. Knapp; Jay D. Miller; Douglas F. Smith; Thomas W. Swetnam; Alan H. Taylor; Julia A. Jones

    2016-01-01

    Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests...

  8. Dry forests and wildland fires of the inland Northwest USA: contrasting the landscape ecology of the pre-settlement and modern eras.

    Treesearch

    Paul F. Hessburg; James K. Agee; Jerry F. Franklin

    2005-01-01

    Prior to Euro-American settlement, dry ponderosa pine and mixed conifer forests (hereafter, the "dry forests") of the Inland Northwest were burned by frequent low- or mixed-severity fires. These mostly surface fires maintained low and variable tree densities, light and patchy ground fuels, simplified forest structure, and favored fire-tolerant trees, such as...

  9. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.

    2013-04-01

    Stand-replacing fires are the dominant fire type in North American boreal forest and leave a historical legacy of a mosaic landscape of different aged forest cohorts. To accurately quantify the role of fire in historical and current regional forest carbon balance using models, one needs to explicitly simulate the new forest cohort that is established after fire. The present study adapted the global process-based vegetation model ORCHIDEE to simulate boreal forest fire CO2 emissions and follow-up recovery after a stand-replacing fire, with representation of postfire new cohort establishment, forest stand structure and the following self-thinning process. Simulation results are evaluated against three clusters of postfire forest chronosequence observations in Canada and Alaska. Evaluation variables for simulated postfire carbon dynamics include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index (LAI), and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). The model simulation results, when forced by local climate and the atmospheric CO2 history on each chronosequence site, generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that current postfire forest carbon sink on evaluation sites observed by chronosequence methods is mainly driven by historical atmospheric CO2 increase when forests recover from fire disturbance. Historical climate generally exerts a negative effect, probably due to increasing water stress caused by significant temperature increase without sufficient increase in precipitation. Our simulation results demonstrate that a global vegetation model such as ORCHIDEE is able to capture the essential ecosystem processes in fire-disturbed boreal forests and produces satisfactory results in terms of both carbon fluxes and carbon stocks evolution after fire, making it suitable for regional simulations in boreal regions where fire regimes play a key role on ecosystem carbon balance.

  10. Towards Data-Driven Simulations of Wildfire Spread using Ensemble-based Data Assimilation

    NASA Astrophysics Data System (ADS)

    Rochoux, M. C.; Bart, J.; Ricci, S. M.; Cuenot, B.; Trouvé, A.; Duchaine, F.; Morel, T.

    2012-12-01

    Real-time predictions of a propagating wildfire remain a challenging task because the problem involves both multi-physics and multi-scales. The propagation speed of wildfires, also called the rate of spread (ROS), is indeed determined by complex interactions between pyrolysis, combustion and flow dynamics, atmospheric dynamics occurring at vegetation, topographical and meteorological scales. Current operational fire spread models are mainly based on a semi-empirical parameterization of the ROS in terms of vegetation, topographical and meteorological properties. For the fire spread simulation to be predictive and compatible with operational applications, the uncertainty on the ROS model should be reduced. As recent progress made in remote sensing technology provides new ways to monitor the fire front position, a promising approach to overcome the difficulties found in wildfire spread simulations is to integrate fire modeling and fire sensing technologies using data assimilation (DA). For this purpose we have developed a prototype data-driven wildfire spread simulator in order to provide optimal estimates of poorly known model parameters [*]. The data-driven simulation capability is adapted for more realistic wildfire spread : it considers a regional-scale fire spread model that is informed by observations of the fire front location. An Ensemble Kalman Filter algorithm (EnKF) based on a parallel computing platform (OpenPALM) was implemented in order to perform a multi-parameter sequential estimation where wind magnitude and direction are in addition to vegetation properties (see attached figure). The EnKF algorithm shows its good ability to track a small-scale grassland fire experiment and ensures a good accounting for the sensitivity of the simulation outcomes to the control parameters. As a conclusion, it was shown that data assimilation is a promising approach to more accurately forecast time-varying wildfire spread conditions as new airborne-like observations of the fire front location get available. [*] Rochoux, M.C., Delmotte, B., Cuenot, B., Ricci, S., and Trouvé, A. (2012) "Regional-scale simulations of wildland fire spread informed by real-time flame front observations", Proc. Combust. Inst., 34, in press http://dx.doi.org/10.1016/j.proci.2012.06.090 EnKF-based tracking of small-scale grassland fire experiment, with estimation of wind and fuel parameters.

  11. Trends and Variability of Global Fire Emissions Due To Historical Anthropogenic Activities

    NASA Astrophysics Data System (ADS)

    Ward, Daniel S.; Shevliakova, Elena; Malyshev, Sergey; Rabin, Sam

    2018-01-01

    Globally, fires are a major source of carbon from the terrestrial biosphere to the atmosphere, occurring on a seasonal cycle and with substantial interannual variability. To understand past trends and variability in sources and sinks of terrestrial carbon, we need quantitative estimates of global fire distributions. Here we introduce an updated version of the Fire Including Natural and Agricultural Lands model, version 2 (FINAL.2), modified to include multiday burning and enhanced fire spread rate in forest crowns. We demonstrate that the improved model reproduces the interannual variability and spatial distribution of fire emissions reported in present-day remotely sensed inventories. We use FINAL.2 to simulate historical (post-1700) fires and attribute past fire trends and variability to individual drivers: land use and land cover change, population growth, and lightning variability. Global fire emissions of carbon increase by about 10% between 1700 and 1900, reaching a maximum of 3.4 Pg C yr-1 in the 1910s, followed by a decrease to about 5% below year 1700 levels by 2010. The decrease in emissions from the 1910s to the present day is driven mainly by land use change, with a smaller contribution from increased fire suppression due to increased human population and is largest in Sub-Saharan Africa and South Asia. Interannual variability of global fire emissions is similar in the present day as in the early historical period, but present-day wildfires would be more variable in the absence of land use change.

  12. Forest structure and fire hazard in dry forests of the Western United States

    Treesearch

    David L. Peterson; Morris C. Johnson; James K. Agee; Theresa B. Jain; Donald McKenzie; Elizabeth D. Reinhardt

    2005-01-01

    Fire, in conjunction with landforms and climate, shapes the structure and function of forests throughout the Western United States, where millions of acres of forest lands contain accumulations of flammable fuel that are much higher than historical conditions owing to various forms of fire exclusion. The Healthy Forests Restoration Act mandates that public land...

  13. Fire effects on temperate forest soil C and N storage.

    PubMed

    Nave, Lucas E; Vance, Eric D; Swanston, Christopher W; Curtis, Peter S

    2011-06-01

    Temperate forest soils store globally significant amounts of carbon (C) and nitrogen (N). Understanding how soil pools of these two elements change in response to disturbance and management is critical to maintaining ecosystem services such as forest productivity, greenhouse gas mitigation, and water resource protection. Fire is one of the principal disturbances acting on forest soil C and N storage and is also the subject of enormous management efforts. In the present article, we use meta-analysis to quantify fire effects on temperate forest soil C and N storage. Across a combined total of 468 soil C and N response ratios from 57 publications (concentrations and pool sizes), fire had significant overall effects on soil C (-26%) and soil N (-22%). The impacts of fire on forest floors were significantly different from its effects on mineral soils. Fires reduced forest floor C and N storage (pool sizes only) by an average of 59% and 50%, respectively, but the concentrations of these two elements did not change. Prescribed fires caused smaller reductions in forest floor C and N storage (-46% and -35%) than wildfires (-67% and -69%), and the presence of hardwoods also mitigated fire impacts. Burned forest floors recovered their C and N pools in an average of 128 and 103 years, respectively. Among mineral soils, there were no significant changes in C or N storage, but C and N concentrations declined significantly (-11% and -12%, respectively). Mineral soil C and N concentrations were significantly affected by fire type, with no change following prescribed burns, but significant reductions in response to wildfires. Geographic variation in fire effects on mineral soil C and N storage underscores the need for region-specific fire management plans, and the role of fire type in mediating C and N shifts (especially in the forest floor) indicates that averting wildfires through prescribed burning is desirable from a soils perspective.

  14. WebGIS Platform Adressed to Forest Fire Management Methodologies

    NASA Astrophysics Data System (ADS)

    André Ramos-Simões, Nuno; Neto Paixão, Helena Maria; Granja Martins, Fernando Miguel; Pedras, Celestina; Lança, Rui; Silva, Elisa; Jordán, António; Zavala, Lorena; Soares, Cristina

    2015-04-01

    Forest fires are one of the natural disasters that causes more damages in nature, as well as high material costs, and sometimes, a significant losses in human lives. In summer season, when high temperatures are attained, fire may rapidly progress and destroy vast areas of forest and also rural and urban areas. The forest fires have effect on forest species, forest composition and structure, soil properties and soil capacity for nutrient retention. In order to minimize the negative impact of the forest fires in the environment, many studies have been developed, e.g. Jordán et al (2009), Cerdà & Jordán (2010), and Gonçalves & Vieira (2013). Nowadays, Remote Sensing (RS) and Geographic Information System (GIS) technologies are used as support tools in fire management decisions, namely during the fire, but also before and after. This study presents the development of a user-friendly WebGIS dedicated to share data, maps and provide updated information on forest fire management for stakeholders in Iberia Peninsula. The WebGIS platform was developed with ArcGIS Online, ArcGIS for Desktop; HyperText Markup Language (HTML) and Javascript. This platform has a database that includes spatial and alphanumeric information, such as: origin, burned areas, vegetation change over time, terrain natural slope, land use, soil erosion and fire related hazards. The same database contains also the following relevant information: water sources, forest tracks and traffic ways, lookout posts and urban areas. The aim of this study is to provide the authorities with a tool to assess risk areas and manage more efficiently forest fire hazards, giving more support to their decisions and helping the populations when facing this kind of phenomena.

  15. Forest fire laboratory at Riverside and fire research in California: past, present, and future

    Treesearch

    Carl C. Wilson; James B. Davis

    1988-01-01

    The need for protection from uncontrolled fire in California was identified by Abbott Kinney, Chairman of the State Board of Forestry, more than 75 years before the construction of the Riverside Forest Fire Laboratory. With the organization of the USDA Forest Service the need for an effective fire protection organization became apparent. In response, a...

  16. The Missoula Fire Sciences Laboratory: A 50-year dedication to understanding wildlands and fire

    Treesearch

    Diane M. Smith

    2012-01-01

    In 1960, the USDA Forest Service established the Northern Forest Fire Laboratory (now the Missoula Fire Sciences Laboratory) to find scientific solutions for better managing the nation's wildland resources and to research ways to improve forest fire prevention and suppression. This new state-of-the-art research facility did not emerge from a vacuum, however. This...

  17. Modeling of multi-strata forest fire severity using Landsat TM data

    Treesearch

    Q. Meng; R.K. Meentemeyer

    2011-01-01

    Most of fire severity studies use field measures of composite burn index (CBI) to represent forest fire severity and fit the relationships between CBI and Landsat imagery derived differenced normalized burn ratio (dNBR) to predict and map fire severity at unsampled locations. However, less attention has been paid on the multi-strata forest fire severity, which...

  18. Lightning fires in southwestern forests

    Treesearch

    Jack S. Barrows

    1978-01-01

    Lightning is the leading cause of fires in southwestern forests. On all protected private, state and federal lands in Arizona and New Mexico, nearly 80 percent of the forest, brush and range fires are ignited by lightning. The Southwestern region leads all other regions of the United States both in total number of lightning fires and in the area burned by these fires...

  19. 1954 forest fire weather in western Oregon and Washington.

    Treesearch

    Owen P. Cramer

    1954-01-01

    For the second successive fire season forest fire weather in western Oregon and Washington was far below normal severity. The low danger is reflected in record low numbers of fires reported by forestry offices of both States and by the U. S. Forest Service for their respective protection areas. Although spring and fall fire weather was near normal, a rain-producing...

  20. Post-fire surface fuel dynamics in California forests across three burn severity classes

    Treesearch

    Bianca N. I. Eskelson; Vicente J. Monleon

    2018-01-01

    Forest wildfires consume fuel and are followed by post-fire fuel accumulation. This study examines post-fire surface fuel dynamics over 9 years across a wide range of conditions characteristic of California fires in dry conifer and hardwood forests. We estimated post-fire surface fuel loadings (Mg ha _1) from 191 repeatedly measured United States...

  1. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions

    NASA Technical Reports Server (NTRS)

    Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.

    2004-01-01

    "Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.

  2. Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data.

    PubMed

    González-Ferreiro, Eduardo; Arellano-Pérez, Stéfano; Castedo-Dorado, Fernando; Hevia, Andrea; Vega, José Antonio; Vega-Nieva, Daniel; Álvarez-González, Juan Gabriel; Ruiz-González, Ana Daría

    2017-01-01

    The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.

  3. Synergy between land use and climate change increases future fire risk in Amazon forests

    DOE PAGES

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; ...

    2017-12-20

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less

  4. Early recruitment responses to interactions between frequent fires, nutrients, and herbivory in the southern Amazon.

    PubMed

    Massad, Tara Joy; Balch, Jennifer K; Mews, Cândida Lahís; Porto, Pábio; Marimon Junior, Ben Hur; Quintino, Raimundo Mota; Brando, P M; Vieira, Simone A; Trumbore, Susan E

    2015-07-01

    Understanding tropical forest diversity is a long-standing challenge in ecology. With global change, it has become increasingly important to understand how anthropogenic and natural factors interact to determine diversity. Anthropogenic increases in fire frequency are among the global change variables affecting forest diversity and functioning, and seasonally dry forest of the southern Amazon is among the ecosystems most affected by such pressures. Studying how fire will impact forests in this region is therefore important for understanding ecosystem functioning and for designing effective conservation action. We report the results of an experiment in which we manipulated fire, nutrient availability, and herbivory. We measured the effects of these interacting factors on the regenerative capacity of the ecotone between humid Amazon forest and Brazilian savanna. Regeneration density, diversity, and community composition were severely altered by fire. Additions of P and N + P reduced losses of density and richness in the first year post-fire. Herbivory was most important just after germination. Diversity was positively correlated with herbivory in unburned forest, likely because fire reduced the number of reproductive individuals. This contrasts with earlier results from the same study system in which herbivory was related to increased diversity after fire. We documented a significant effect of fire frequency; diversity in triennially burned forest was more similar to that in unburned than in annually burned forest, and the community composition of triennially burned forest was intermediate between unburned and annually burned areas. Preventing frequent fires will therefore help reduce losses in diversity in the southern Amazon's matrix of human-altered landscapes.

  5. Synergy between land use and climate change increases future fire risk in Amazon forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less

  6. Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA?

    PubMed Central

    Baker, William L.

    2015-01-01

    Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used new reference data and records of high-severity fire from 1984–2012 across all dry forests (25.5 million ha) of the western USA to test these hypotheses. I also approximated projected effects of climatic change on high-severity fire in dry forests by applying existing projections. This analysis showed the rate of recent high-severity fire in dry forests is within the range of historical rates, or is too low, overall across dry forests and individually in 42 of 43 analysis regions. Significant upward trends were lacking overall from 1984–2012 for area burned and fraction burned at high severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis regions. Projections for A.D. 2046–2065 showed high-severity fire would generally be still operating at, or have been restored to historical rates, although high projections suggest high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change. Some adverse ecological effects of high-severity fires are concerns. Managers and communities can improve our ability to live with high-severity fire in dry forests. PMID:26351850

  7. Hayman Fire case study: Summary [RMRS-GTR-114

    Treesearch

    Russell T. Graham

    2003-01-01

    Historically, wildfires burned Western forests creating and maintaining a variety of forest compositions and structures (Agee 1993). Prior to European settlement lightning along with Native Americans ignited fires routinely across many forested landscapes. After Euro-American settlement, fires continued to be quite common with fires ignited by settlers, railroads, and...

  8. 36 CFR 211.4 - Cooperation for fire prevention and control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Cooperation for fire... AGRICULTURE ADMINISTRATION Cooperation § 211.4 Cooperation for fire prevention and control. The Forest Service... will result in mutual benefit in the prevention and suppression of forest fires: Provided, That the...

  9. 36 CFR 211.4 - Cooperation for fire prevention and control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Cooperation for fire... AGRICULTURE ADMINISTRATION Cooperation § 211.4 Cooperation for fire prevention and control. The Forest Service... will result in mutual benefit in the prevention and suppression of forest fires: Provided, That the...

  10. Analysing Forst Fores in China

    NASA Astrophysics Data System (ADS)

    Casanova, Jose-Luis; Sanz, Julia; Garcia, Miguel; Salvador, Pablo; Quin, Xianlin; Li, Zengyuan; Yin, Lingyu; Sun, Guifen; Goldammer, Johann

    2016-08-01

    Forest fires are a major concern in China because of the economical and biodiversity looses and because the emission of trace gases into the atmosphere. During 12 years LATUV has been working in the development of forest fires products, especially in North China. A catalogue of products has been generated like: forest fire detection, burnt area mapping, gas emissions, severity and burnt biomass.Forest fires can be detected by different platforms and sensor but the rate of false alarms is high because of industrial activity. The gas emissions are important, because of the forest fires inside China and because the forest fires between China and Russia that have a considerable impact in the atmosphere composition in China.The availability of new sensors on board sentinel 2 and sentinel 3 platforms will increase the product catalogue with new products more accurate and increasing the periodicity information.

  11. Nomographs for estimating surface fire behavior characteristics

    Treesearch

    Joe H. Scott

    2007-01-01

    A complete set of nomographs for estimating surface fire rate of spread and flame length for the original 13 and new 40 fire behavior fuel models is presented. The nomographs allow calculation of spread rate and flame length for wind in any direction with respect to slope and allow for nonheading spread directions. Basic instructions for use are included.

  12. Long-term boreal forest dynamics and disturbances: a multi-proxy approach

    NASA Astrophysics Data System (ADS)

    Stivrins, Normunds; Aakala, Tuomas; Kuuluvainen, Timo; Pasanen, Leena; Ilvonen, Liisa; Holmström, Lasse; Seppä, Heikki

    2017-04-01

    The boreal forest provides a variety of ecosystem services that are threatened under the ongoing climate warming. Along with the climate, there are several factors (fire, human-impact, pathogens), which influence boreal forest dynamics. Combination of short and long-term studies allowing complex assessment of forest response to natural abiotic and biotic stress factors is necessary for sustainable management of the boreal forest now and in the future. The ongoing EBOR (Ecological history and long-term dynamics of the boreal forest ecosystem) project integrates forest ecological and palaeoecological approaches to study boreal forest dynamics and disturbances. Using pollen, non-pollen palynomorphs, micro- and macrocharcoal, tree rings and fire scars, we analysed forest dynamics at stand-scale by sampling small forest hollows (small paludified depressions) and the surrounding forest stands in Finland and western Russia. Using charcoal data, we estimated a fire return interval of 320 years for the Russian sites, and, based on the fungi Neurospora that can grow on charred tree bark after a low-intensity fire, we were able to distinguish low- and high-intensity fire-events. In addition to the influence of fire events and/or fire regime changes, we further assessed potential relationships between tree species and herbivore presence and pathogens. As an example of such a relationship, our preliminary findings indicated a negative relationship between Picea and fungi Lasiosphaeria (caudata), which occurred during times of Picea decline.

  13. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests.

    PubMed

    Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.

  14. Impact of anthropogenic climate change on wildfire across western US forests.

    PubMed

    Abatzoglou, John T; Williams, A Park

    2016-10-18

    Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000-2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ∼55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984-2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.

  15. Impact of anthropogenic climate change on wildfire across western US forests

    NASA Astrophysics Data System (ADS)

    Abatzoglou, John T.; Park Williams, A.

    2016-10-01

    Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000-2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ˜55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984-2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.

  16. Long-term effects of fire and harvest on carbon stocks of boreal forests in northeastern China

    NASA Astrophysics Data System (ADS)

    Huang, C.; He, H. S.; Hawbaker, T. J.; Zhu, Z.; Liang, Y.; Gong, P.

    2017-12-01

    Fire, harvest and their interactions have strong effects on boreal forests carbon stocks. Repeated disturbances associated with relatively short fire return intervals and harvest rotations, and their interactions caused their effects to increase over simulation time.Boreal forests in the northeastern of China cover 8.46×105 km2, store about 350 Tg aboveground carbon, and play an important role in maintaining China's carbon balance. Boreal forests in this region are facing pressures from repeated fires and timber harvesting activities.The objectives of our study were to evaluate the effects of fire, harvest and their interactions on boreal forest carbon stocks of northeastern China.We used the LANDIS PRO-LINKAGES model-coupling framework to simulate the landscape-level effects of fire and harvest and their interactions over 150 years. Our simulation results suggested that aboveground and soil organic carbon are significantly reduced by fire and harvest over 150 years. The long-term effects of fire and harvest on carbon stocks were greater than the short-term effects in the Great Xing' an Mountains. The total effects of fire-harvest interactions on boreal forests are less than the sum of separate effects of fire and harvest. The response of carbon stocks among ecoregions diverged and was due to the spatial variability of fire and harvest regimes.These results emphasize that fire, harvest, and their interactions play an important role in regulating boreal forest carbon stocks, the extent of fire and harvest effects depended on the intensity of these disturbances.

  17. Modeling forest fire occurrences using count-data mixed models in Qiannan autonomous prefecture of Guizhou province in China.

    PubMed

    Xiao, Yundan; Zhang, Xiongqing; Ji, Ping

    2015-01-01

    Forest fires can cause catastrophic damage on natural resources. In the meantime, it can also bring serious economic and social impacts. Meteorological factors play a critical role in establishing conditions favorable for a forest fire. Effective prediction of forest fire occurrences could prevent or minimize losses. This paper uses count data models to analyze fire occurrence data which is likely to be dispersed and frequently contain an excess of zero counts (no fire occurrence). Such data have commonly been analyzed using count data models such as a Poisson model, negative binomial model (NB), zero-inflated models, and hurdle models. Data we used in this paper is collected from Qiannan autonomous prefecture of Guizhou province in China. Using the fire occurrence data from January to April (spring fire season) for the years 1996 through 2007, we introduced random effects to the count data models. In this study, the results indicated that the prediction achieved through NB model provided a more compelling and credible inferential basis for fitting actual forest fire occurrence, and mixed-effects model performed better than corresponding fixed-effects model in forest fire forecasting. Besides, among all meteorological factors, we found that relative humidity and wind speed is highly correlated with fire occurrence.

  18. Modeling Forest Fire Occurrences Using Count-Data Mixed Models in Qiannan Autonomous Prefecture of Guizhou Province in China

    PubMed Central

    Ji, Ping

    2015-01-01

    Forest fires can cause catastrophic damage on natural resources. In the meantime, it can also bring serious economic and social impacts. Meteorological factors play a critical role in establishing conditions favorable for a forest fire. Effective prediction of forest fire occurrences could prevent or minimize losses. This paper uses count data models to analyze fire occurrence data which is likely to be dispersed and frequently contain an excess of zero counts (no fire occurrence). Such data have commonly been analyzed using count data models such as a Poisson model, negative binomial model (NB), zero-inflated models, and hurdle models. Data we used in this paper is collected from Qiannan autonomous prefecture of Guizhou province in China. Using the fire occurrence data from January to April (spring fire season) for the years 1996 through 2007, we introduced random effects to the count data models. In this study, the results indicated that the prediction achieved through NB model provided a more compelling and credible inferential basis for fitting actual forest fire occurrence, and mixed-effects model performed better than corresponding fixed-effects model in forest fire forecasting. Besides, among all meteorological factors, we found that relative humidity and wind speed is highly correlated with fire occurrence. PMID:25790309

  19. Historical, observed, and modeled wildfire severity in montane forests of the Colorado Front Range.

    PubMed

    Sherriff, Rosemary L; Platt, Rutherford V; Veblen, Thomas T; Schoennagel, Tania L; Gartner, Meredith H

    2014-01-01

    Large recent fires in the western U.S. have contributed to a perception that fire exclusion has caused an unprecedented occurrence of uncharacteristically severe fires, particularly in lower elevation dry pine forests. In the absence of long-term fire severity records, it is unknown how short-term trends compare to fire severity prior to 20th century fire exclusion. This study compares historical (i.e. pre-1920) fire severity with observed modern fire severity and modeled potential fire behavior across 564,413 ha of montane forests of the Colorado Front Range. We used forest structure and tree-ring fire history to characterize fire severity at 232 sites and then modeled historical fire-severity across the entire study area using biophysical variables. Eighteen (7.8%) sites were characterized by low-severity fires and 214 (92.2%) by mixed-severity fires (i.e. including moderate- or high-severity fires). Difference in area of historical versus observed low-severity fire within nine recent (post-1999) large fire perimeters was greatest in lower montane forests. Only 16% of the study area recorded a shift from historical low severity to a higher potential for crown fire today. An historical fire regime of more frequent and low-severity fires at low elevations (<2260 m) supports a convergence of management goals of ecological restoration and fire hazard mitigation in those habitats. In contrast, at higher elevations mixed-severity fires were predominant historically and continue to be so today. Thinning treatments at higher elevations of the montane zone will not return the fire regime to an historic low-severity regime, and are of questionable effectiveness in preventing severe wildfires. Based on present-day fuels, predicted fire behavior under extreme fire weather continues to indicate a mixed-severity fire regime throughout most of the montane forest zone. Recent large wildfires in the Front Range are not fundamentally different from similar events that occurred historically under extreme weather conditions.

  20. Strategies for preventing invasive plant outbreaks after prescribed fire in ponderosa pine forest

    USGS Publications Warehouse

    Symstad, Amy J.; Newton, Wesley E.; Swanson, Daniel J.

    2014-01-01

    Land managers use prescribed fire to return a vital process to fire-adapted ecosystems, restore forest structure from a state altered by long-term fire suppression, and reduce wildfire intensity. However, fire often produces favorable conditions for invasive plant species, particularly if it is intense enough to reveal bare mineral soil and open previously closed canopies. Understanding the environmental or fire characteristics that explain post-fire invasive plant abundance would aid managers in efficiently finding and quickly responding to fire-caused infestations. To that end, we used an information-theoretic model-selection approach to assess the relative importance of abiotic environmental characteristics (topoedaphic position, distance from roads), pre-and post-fire biotic environmental characteristics (forest structure, understory vegetation, fuel load), and prescribed fire severity (measured in four different ways) in explaining invasive plant cover in ponderosa pine forest in South Dakota’s Black Hills. Environmental characteristics (distance from roads and post-fire forest structure) alone provided the most explanation of variation (26%) in post-fire cover of Verbascum thapsus (common mullein), but a combination of surface fire severity and environmental characteristics (pre-fire forest structure and distance from roads) explained 36–39% of the variation in post-fire cover of Cirsium arvense (Canada thistle) and all invasives together. For four species and all invasives together, their pre-fire cover explained more variation (26–82%) in post-fire cover than environmental and fire characteristics did, suggesting one strategy for reducing post-fire invasive outbreaks may be to find and control invasives before the fire. Finding them may be difficult, however, since pre-fire environmental characteristics explained only 20% of variation in pre-fire total invasive cover, and less for individual species. Thus, moderating fire intensity or targeting areas of high severity for post-fire invasive control may be the most efficient means for reducing the chances of post-fire invasive plant outbreaks when conducting prescribed fires in this region.

  1. Historical, Observed, and Modeled Wildfire Severity in Montane Forests of the Colorado Front Range

    PubMed Central

    Sherriff, Rosemary L.; Platt, Rutherford V.; Veblen, Thomas T.; Schoennagel, Tania L.; Gartner, Meredith H.

    2014-01-01

    Large recent fires in the western U.S. have contributed to a perception that fire exclusion has caused an unprecedented occurrence of uncharacteristically severe fires, particularly in lower elevation dry pine forests. In the absence of long-term fire severity records, it is unknown how short-term trends compare to fire severity prior to 20th century fire exclusion. This study compares historical (i.e. pre-1920) fire severity with observed modern fire severity and modeled potential fire behavior across 564,413 ha of montane forests of the Colorado Front Range. We used forest structure and tree-ring fire history to characterize fire severity at 232 sites and then modeled historical fire-severity across the entire study area using biophysical variables. Eighteen (7.8%) sites were characterized by low-severity fires and 214 (92.2%) by mixed-severity fires (i.e. including moderate- or high-severity fires). Difference in area of historical versus observed low-severity fire within nine recent (post-1999) large fire perimeters was greatest in lower montane forests. Only 16% of the study area recorded a shift from historical low severity to a higher potential for crown fire today. An historical fire regime of more frequent and low-severity fires at low elevations (<2260 m) supports a convergence of management goals of ecological restoration and fire hazard mitigation in those habitats. In contrast, at higher elevations mixed-severity fires were predominant historically and continue to be so today. Thinning treatments at higher elevations of the montane zone will not return the fire regime to an historic low-severity regime, and are of questionable effectiveness in preventing severe wildfires. Based on present-day fuels, predicted fire behavior under extreme fire weather continues to indicate a mixed-severity fire regime throughout most of the montane forest zone. Recent large wildfires in the Front Range are not fundamentally different from similar events that occurred historically under extreme weather conditions. PMID:25251103

  2. Charts for interpreting wildland fire behavior characteristics

    Treesearch

    Patricia L. Andrews; Richard C. Rothermel

    1982-01-01

    The fire characteristics chart is proposed as a graphical method ofpresenting two primary characteristics of fire behavior – spread rate and intensity. Its primary use is communicating and interpreting either site-specific predictions of fire behavior or National Fire-Danger Rating System (NFDRS) indexes and components. Rate of spread, heat per unit area, flame length...

  3. Sanford Prescribed Fire Review

    Treesearch

    Scott Conroy; Jim Saveland; Mark Beighley; John Shive; Joni Ward; Marcus Trujillo; Paul Keller

    2003-01-01

    The Dixie National Forest has a long-standing history of successfully implementing prescribed fire and suppression programs. The Forest's safety record has been exemplary. The Forest is known Region-wide for its aggressive and innovative prescribed fire program. In particular, the Dixie National Forest is recognized for its leadership in introducing landscape-...

  4. Prescribed fire in upland harwood forests

    Treesearch

    T.L. Keyser; C.H. Greenberg; H. McNab

    2014-01-01

    In upland hardwood forests of the Southeastern U.S.,prescribed fire is increasingly used by land managers citing objectives that include hazardous fuels reduction, wildlife habitat improvement, promoting oak regeneration, or restoring forest composition or structure to an historic condition. Research suggests that prescribed fire effects on hardwood forests and...

  5. Early Forest Fire Detection Using Radio-Acoustic Sounding System

    PubMed Central

    Sahin, Yasar Guneri; Ince, Turker

    2009-01-01

    Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967

  6. Warm Dry Weather Conditions Cause of 2016 Fort McMurray Wild Forest Fire and Associated Air Quality

    NASA Astrophysics Data System (ADS)

    de Azevedo, S. C.; Singh, R. P.; da Silva, E. A., Sr.

    2016-12-01

    The climate change is evident from the increasing temperature around the world, day to day life and increasing frequency of natural hazards. The warm and dry conditions are the cause of frequent forest fires around the globe. Forest fires severely affect the air quality and human health. Multi sensor satellites and dense network of ground stations provide information about vegetation health, meteorological, air quality and atmospheric parameters. We have carried out detailed analysis of satellite and ground data of wild forest fire that occurred in May 2016 in Fort McMurray, Alberta, Canada. This wild forest fire destroyed 10 per cent of Fort McMurray's housing and forced more than 90,000 people to evacuate the surrounding areas. Our results show that the warm and dry conditions with low rainfall were the cause of Fort McMurray wild fire. The air quality parameters (particulate matter, CO, ozone, NO2, methane) and greenhouse gases measured from Atmospheric Infrared Sounder (AIRS) satellite show enhanced levels soon after the forest fire. The emissions from the forest fire affected health of population living in surrounding areas up to 300 km radius.

  7. Spatially explicit measurements of forest structure and fire behavior following restoration treatments in dry forests

    Treesearch

    Justin Paul Ziegler; Chad Hoffman; Michael Battaglia; William Mell

    2017-01-01

    Restoration treatments in dry forests of the western US often attempt silvicultural practices to restore the historical characteristics of forest structure and fire behavior. However, it is suggested that a reliance on non-spatial metrics of forest stand structure, along with the use of wildland fire behavior models that lack the ability to handle complex structures,...

  8. Long-term effects of prescribed fire on mixed conifer forest structure in the Sierra Nevada, California

    Treesearch

    Phillip J. Van Mantgem; Nathan L. Stephenson; Eric Knapp; John Barrles; Jon E. Keeley

    2011-01-01

    The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before...

  9. Using fire to increase the scale, benefits and future maintenance of fuels treatments

    Treesearch

    Malcolm P. North; Brandon M. Collins; Scott L Stephens

    2012-01-01

    The Forest Service is implementing a new planning rule and starting to revise forest plans for many of the 155 National Forests. In forests that historically had frequent fire regimes, the scale of current fuels reduction treatments has often been too limited to affect fire severity and the Forest Service has predominantly focused on suppression. In addition to...

  10. Fire-induced changes in boreal forest canopy volume and soil organic matter from multi-temporal airborne lidar

    NASA Astrophysics Data System (ADS)

    Alonzo, M.; Cook, B.; Andersen, H. E.; Babcock, C. R.; Morton, D. C.

    2016-12-01

    Fire in boreal forests initiates a cascade of biogeochemical and biophysical processes. Over typical fire return intervals, net radiative forcing from boreal forest fires depends on the offsetting impacts of greenhouse gas emissions and post-fire changes in land surface albedo. Whether boreal forest fires warm or cool the climate over these multi-decadal intervals depends on the magnitude of fire emissions and the time scales of decomposition, albedo changes, and forest regrowth. Our understanding of vegetation and surface organic matter (SOM) changes from boreal forest fires is shaped by field measurements and moderate resolution remote sensing data. Intensive field plot measurements offer detailed data on overstory, understory, and SOM changes from fire, but sparse plot data can be difficult to extend across the heterogeneous boreal forest landscape. Conversely, satellite measurements of burn severity are spatially extensive but only provide proxy measures of fire effects. In this research, we seek to bridge the scale gap between existing intensive and extensive methods using a combination of airborne lidar data and time series of Landsat data to evaluate pre- and post-fire conditions across Alaska's Kenai Peninsula. Lidar-based estimates of pre-fire stand structure and composition were essential to characterize the loss of canopy volume from fires between 2001 and 2014, quantify transitions from live to dead standing carbon pools, and isolate vegetation recovery following fire over 1 to 13 year time scales. Results from this study demonstrate the utility of lidar for estimating pre-fire structure and species composition at the scale of individual tree crowns. Multi-temporal airborne lidar data also provide essential insights regarding the heterogeneity of canopy and SOM losses at a sub-Landsat pixel scale. Fire effects are forest-structure and species dependent with variable temporal lags in carbon release due to delayed mortality (>5 years post fire) and standing dead trees. Establishing the spatial and temporal scales of canopy structural change will aid in constraining estimates of net radiative forcing from both carbon release and albedo in the years following fire.

  11. Forest construction infrastructures for the prevision, suppression, and protection before and after forest fires

    NASA Astrophysics Data System (ADS)

    Drosos, Vasileios C.; Giannoulas, Vasileios J.; Daoutis, Christodoulos

    2014-08-01

    Climatic changes cause temperature rise and thus increase the risk of forest fires. In Greece the forests with the greatest risk to fire are usually those located near residential and tourist areas where there are major pressures on land use changes, while there are no currently guaranteed cadastral maps and defined title deeds because of the lack of National and Forest Cadastre. In these areas the deliberate causes of forest fires are at a percentage more than 50%. This study focuses on the forest opening up model concerning both the prevention and suppression of forest fires. The most urgent interventions that can be done after the fire destructions is also studied in relation to soil protection constructions, in order to minimize the erosion and the torrential conditions. Digital orthophotos were used in order to produce and analyze spatial data using Geographical Information Systems (GIS). Initially, Digital Elevation Models were generated, based on photogrammetry and forest areas as well as the forest road network were mapped. Road density, road distance, skidding distance and the opening up percentage were accurately measured for a forest complex. Finally, conclusions and suggestions have been drawn about the environmental compatibility of forest protection and wood harvesting works. In particular the contribution of modern technologies such as digital photogrammetry, remote sensing and Geographical Information Systems is very important, allowing reliable, effective and fast process of spatial analysis contributing to a successful planning of opening up works and fire protection.

  12. [Estimation of carbonaceous gases emission from forest fires in Xiao Xing'an Mountains of Northeast China in 1953-2011].

    PubMed

    Hu, Hai-Qing; Luo, Bi-Zhen; Wei, Shu-Jing; Sun, Long; Wei, Shu-Wei; Wen, Zheng-Min

    2013-11-01

    Based on the forest resources investigation data and the forest fire inventory in 1953-2011, in combining with our field research in burned areas and our laboratory experiments, this paper estimated the carbonaceous gases carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and nonmethane hydrocarbons (NMHC) emission from the forest fires in Xiao Xing' an Mountains of Heilongjiang Province, Northeast China in 1953-2011. The total carbon emission from the forest fires in the Xiao Xing'an Mountains in 1953-2011 was 1.12 x 10(7) t, and the annual emission was averagely 1.90 x10(5) t, accounting for 1.7% of the annual average total carbon emission from the forest fires in China. The emission of CO2, CO, CH4, and NMHC was 3.39 x 10(7), 1.94 x 10(5), 1.09 x 10(5), and 7.46 x 10(4) t, respectively, and the corresponding annual average emission was 5.74 x 10(5), 3.29 x 10(4), 1.85 x 10(3), and 1.27 x 10(3) t, accounting for 1.4%, 1.2%, 1.7%, and 1.1% of the annual carbonaceous gases emitted from the forest fires in China, respectively. The combustion efficiency and the carbon emission per unit burned area of different forest types decreased in order of coniferous forest > broad-leaved forest > coniferous broadleaved mixed forest. Some rational forest fire management measures were put forward.

  13. Opposing effects of fire severity on climate feedbacks in Siberian larch forests

    NASA Astrophysics Data System (ADS)

    Loranty, M. M.; Alexander, H. D.; Natali, S.; Kropp, H.; Mack, M. C.; Bunn, A. G.; Davydov, S. P.; Erb, A.; Kholodov, A. L.; Schaaf, C.; Wang, Z.; Zimov, N.; Zimov, S. A.

    2017-12-01

    Boreal larch forests in northeastern Siberia comprise nearly 25% of the continuous permafrost zone. Structural and functional changes in these ecosystems will have important climate feedbacks at regional and global scales. Like boreal ecosystems in North America, fire is an important determinant of landscape scale forest distribution, and fire regimes are intensifying as climate warms. In Siberian larch forests are dominated by a single tree species, and there is evidence that fire severity influences post-fire forest density via impacts on seedling establishment. The extent to which these effects occur, or persist, and the associated climate feedbacks are not well quantified. In this study we use forest stand inventories, in situ observations, and satellite remote sensing to examine: 1) variation in forest density within and between fire scars, and 2) changes in land surface albedo and active layer dynamics associated with forest density variation. At the landscape scale we observed declines in Landsat derived albedo as forests recovered in the first several decades after fire, though canopy cover varied widely within and between individual fire scars. Within an individual mid-successional fire scar ( 75 years) we observed canopy cover ranging from 15-90% with correspondingly large ranges of albedo during periods of snow cover, and relatively small differences in albedo during the growing season. We found an inverse relationship between canopy density and soil temperature within this fire scar; high-density low-albedo stands had cooler soils and shallower active layers, while low-density stands had warmer soils and deeper active layers. Intensive energy balance measurements at a high- and low- density site show that canopy cover alters the magnitude and timing of ground heat fluxes that affect active layer properties. Our results show that fire impacts on stand structure in Siberian larch forests affect land surface albedo and active layer dynamics in ways that may lead to opposing climate feedbacks. At effectively large scales these changes constitute positive and negative climate feedbacks, respectively. Accurate predictive understanding of terrestrial Arctic climate feedbacks requires improved knowledge regarding the ecological consequences of changing fire regimes in Siberian boreal forests.

  14. Characterization of biomass burning aerosols from forest fire in Indonesia

    NASA Astrophysics Data System (ADS)

    Fujii, Y.; Iriana, W.; Okumura, M.; Lestari, P.; Tohno, S.; Akira, M.; Okuda, T.

    2012-12-01

    Biomass burning (forest fire, wild fire) is a major source of pollutants, generating an estimate of 104 Tg per year of aerosol particles worldwide. These particles have adverse human health effects and can affect the radiation budget and climate directly and indirectly. Eighty percent of biomass burning aerosols are generated in the tropics and about thirty percent of them originate in the tropical regions of Asia (Andreae, 1991). Several recent studies have reported on the organic compositions of biomass burning aerosols in the tropical regions of South America and Africa, however, there is little data about forest fire aerosols in the tropical regions of Asia. It is important to characterize biomass burning aerosols in the tropical regions of Asia because the aerosol properties vary between fires depending on type and moisture of wood, combustion phase, wind conditions, and several other variables (Reid et al., 2005). We have characterized PM2.5 fractions of biomass burning aerosols emitted from forest fire in Indonesia. During the dry season in 2012, PM2.5 aerosols from several forest fires occurring in Riau, Sumatra, Indonesia were collected on quartz and teflon filters with two mini-volume samplers. Background aerosols in forest were sampled during transition period of rainy season to dry season (baseline period). Samples were analyzed with several analytical instruments. The carbonaceous content (organic and elemental carbon, OC and EC) of the aerosols was analyzed by a thermal optical reflectance technique using IMPROVE protocol. The metal, inorganic ion and organic components of the aerosols were analyzed by X-ray Fluorescence (XRF), ion chromatography and gas chromatography-mass spectrometry, respectively. There was a great difference of chemical composition between forest fire and non-forest fire samples. Smoke aerosols for forest fires events were composed of ~ 45 % OC and ~ 2.5 % EC. On the other hand, background aerosols for baseline periods were composed of ~ 18 % OC and ~ 10 % EC. OC/EC ratio was consistently lower (~ 2) for baseline periods than that for forest fire events (~ 20). OC and EC concentrations for forest fire events were more than 150 times and 10 times higher than those for baseline periods.

  15. Land surveys show regional variability of historical fire regimes and dry forest structure of the western United States.

    PubMed

    Baker, William L; Williams, Mark A

    2018-03-01

    An understanding of how historical fire and structure in dry forests (ponderosa pine, dry mixed conifer) varied across the western United States remains incomplete. Yet, fire strongly affects ecosystem services, and forest restoration programs are underway. We used General Land Office survey reconstructions from the late 1800s across 11 landscapes covering ~1.9 million ha in four states to analyze spatial variation in fire regimes and forest structure. We first synthesized the state of validation of our methods using 20 modern validations, 53 historical cross-validations, and corroborating evidence. These show our method creates accurate reconstructions with low errors. One independent modern test reported high error, but did not replicate our method and made many calculation errors. Using reconstructed parameters of historical fire regimes and forest structure from our validated methods, forests were found to be non-uniform across the 11 landscapes, but grouped together in three geographical areas. Each had a mixture of fire severities, but dominated by low-severity fire and low median tree density in Arizona, mixed-severity fire and intermediate to high median tree density in Oregon-California, and high-severity fire and intermediate median tree density in Colorado. Programs to restore fire and forest structure could benefit from regional frameworks, rather than one size fits all. © 2018 by the Ecological Society of America.

  16. The experience of community residents in a fire-prone ecosystem: A case study on the San Bernardino National Forest

    Treesearch

    George T. Cvetkovich; Patricia L. Winter

    2008-01-01

    This report presents results from a study of San Bernardino National Forest community residents’ experiences with and perceptions of fire, fire management, and the Forest Service. Using self-administered surveys and focus group discussions, we found that participants had personal experiences with fire, were concerned about fire, and felt knowledgeable about effective...

  17. Fire exclusion as a disturbance in the temperate forests of the USA: examples from longleaf pine forests

    Treesearch

    W. Keith Moser; Dale D. Wade

    2005-01-01

    Forest fires are a disturbance where the effects can range from benign to extreme devastation within a given ecosystem. The stage of stand development coupled with prior management dictates the amount and composition of potential fuels. Thus, fire policy exerts a strong influence on fire effects. Changes in cultural acceptance and use of tire typically drive fire...

  18. Proposed wildland fire amendment to the Coronado National Forest Land and Resource Management Plan

    Treesearch

    Sherry A. Tune; Erin M. Boyle

    2005-01-01

    The Coronado National Forest proposed amending its 1986 Land and Resource Management Plan to conform to the 2001 Federal Wildland Fire Management Policy. This Policy emphasizes fire’s essential role in maintaining natural ecosystems and allows a broader range of management options for wildland fires. Under the current Forest Plan, fires must be suppressed in areas...

  19. Fire and fire surrogate study in the Sierra Nevada: evaluating restoration treatments at Blodgett Forest and Sequoia National Park

    Treesearch

    Eric E. Knapp; Scott L. Stephens; James D. McIver; Jason J. Moghaddas; Jon E. Keeley

    2004-01-01

    Management practices have altered both the structure and function of forests throughout the United States. Some of the most dramatic changes have resulted from fire exclusion, especially in forests that historically experienced relatively frequent, low- to moderate-intensity fire regimes. In the Sierra Nevada, fire exclusion is believed to have resulted in widespread...

  20. Assessment of fire effects based on Forest Inventory and Analysis data and a long-term fire mapping data set

    Treesearch

    John D. Shaw; Sara A. Goeking; James Menlove; Charles E. Werstak

    2017-01-01

    Integration of Forest Inventory and Analysis (FIA) plot data with Monitoring Trends in Burn Severity (MTBS) data can provide new information about fire effects on forests. This integration allowed broad-scale assessment of the cover types burned in large fires, the relationship between prefire stand conditions and fire severity, and postfire stand conditions. Of the 42...

  1. A Drought Index for Forest Fire Control

    Treesearch

    John J. Keetch; George M. Byram

    1968-01-01

    The moisture content of the upper soil, as well as that of the covering layer of duff, has an important effect on the fire suppression effort in forest and wildland areas. In certain forested areas of the United States, fires in deep duff fuels are of particular concern to the fire control manager. When these fuels are dry, fires burn deeply, dam-age is excessive, and...

  2. Fire effects in southwestern forests: Proceedings of the second La Mesa Fire Symposium

    Treesearch

    Craig D. Allen

    1996-01-01

    In 1977, the La Mesa Fire burned across 15,444 acres of ponderosa pine forests on the adjoining lands of Bandelier National Monument, the Santa Fe National Forest, and Los Alamos National Laboratory. Following this event, several fire effects studies were initiated. The 16 papers herein document longer-term knowledge gained about the ecological effects of the fire and...

  3. Ecological consequences of alternative fuel reduction treatments in seasonally dry forests: the national fire and fire surrogate study

    Treesearch

    J.D. McIver; C.J. Fettig

    2010-01-01

    This special issue of Forest Science features the national Fire and Fire Surrogate study (FFS), a niultisite, multivariate research project that evaluates the ecological consequences of prescribed fire and its mechanical surrogates in seasonally dry forests of the United States. The need for a comprehensive national FFS study stemmed from concern that information on...

  4. Tree mortality based fire severity classification for forest inventories: A Pacific Northwest national forests example

    Treesearch

    Thomas R. Whittier; Andrew N. Gray

    2016-01-01

    Determining how the frequency, severity, and extent of forest fires are changing in response to changes in management and climate is a key concern in many regions where fire is an important natural disturbance. In the USA the only national-scale fire severity classification uses satellite image changedetection to produce maps for large (>400 ha) fires, and is...

  5. Prioritizing forest fuels treatments based on the probability of high-severity fire restores adaptive capacity in Sierran forests

    Treesearch

    Daniel J. Krofcheck; Matthew D. Hurteau; Robert M. Scheller; E. Louise Loudermilk

    2017-01-01

    In frequent fire forests of the western United States, a legacy of fire suppression coupled with increases in fire weather severity have altered fire regimes and vegetation dynamics. When coupled with projected climate change, these conditions have the potential to lead to vegetation type change and altered carbon (C) dynamics. In the Sierra Nevada, fuels...

  6. Assessing fire impacts on the carbon stability of fire-tolerant forests.

    PubMed

    Bennett, Lauren T; Bruce, Matthew J; Machunter, Josephine; Kohout, Michele; Krishnaraj, Saravanan Jangammanaidu; Aponte, Cristina

    2017-12-01

    The carbon stability of fire-tolerant forests is often assumed but less frequently assessed, limiting the potential to anticipate threats to forest carbon posed by predicted increases in forest fire activity. Assessing the carbon stability of fire-tolerant forests requires multi-indicator approaches that recognize the myriad ways that fires influence the carbon balance, including combustion, deposition of pyrogenic material, and tree death, post-fire decomposition, recruitment, and growth. Five years after a large-scale wildfire in southeastern Australia, we assessed the impacts of low- and high-severity wildfire, with and without prescribed fire (≤10 yr before), on carbon stocks in multiple pools, and on carbon stability indicators (carbon stock percentages in live trees and in small trees, and carbon stocks in char and fuels) in fire-tolerant eucalypt forests. Relative to unburned forest, high-severity wildfire decreased short-term (five-year) carbon stability by significantly decreasing live tree carbon stocks and percentage stocks in live standing trees (reflecting elevated tree mortality), by increasing the percentage of live tree carbon in small trees (those vulnerable to the next fire), and by potentially increasing the probability of another fire through increased elevated fine fuel loads. In contrast, low-severity wildfire enhanced carbon stability by having negligible effects on aboveground stocks and indicators, and by significantly increasing carbon stocks in char and, in particular, soils, indicating pyrogenic carbon accumulation. Overall, recent preceding prescribed fire did not markedly influence wildfire effects on short-term carbon stability at stand scales. Despite wide confidence intervals around mean stock differences, indicating uncertainty about the magnitude of fire effects in these natural forests, our assessment highlights the need for active management of carbon assets in fire-tolerant eucalypt forests under contemporary fire regimes. Decreased live tree carbon and increased reliance on younger cohorts for carbon recovery after high-severity wildfire could increase vulnerabilities to imminent fires, leading to decisions about interventions to maintain the productivity of some stands. Our multi-indicator assessment also highlights the importance of considering all carbon pools, particularly pyrogenic reservoirs like soils, when evaluating the potential for prescribed fire regimes to mitigate the carbon costs of wildfires in fire-prone landscapes. © 2017 by the Ecological Society of America.

  7. Fire-induced Carbon Emissions and Regrowth Uptake in Western U.S. Forests: Documenting Variation Across Forest Types, Fire Severity, and Climate Regions

    NASA Technical Reports Server (NTRS)

    Ghimire, Bardan; Williams, Christopher A.; Collatz, George James; Vanderhoof, Melanie

    2012-01-01

    The forest area in the western United States that burns annually is increasing with warmer temperatures, more frequent droughts, and higher fuel densities. Studies that examine fire effects for regional carbon balances have tended to either focus on individual fires as examples or adopt generalizations without considering how forest type, fire severity, and regional climate influence carbon legacies. This study provides a more detailed characterization of fire effects and quantifies the full carbon impacts in relation to direct emissions, slow release of fire-killed biomass, and net carbon uptake from forest regrowth. We find important variations in fire-induced mortality and combustion across carbon pools (leaf, live wood, dead wood, litter, and duff) and across low- to high-severity classes. This corresponds to fire-induced direct emissions from 1984 to 2008 averaging 4 TgC/yr and biomass killed averaging 10.5 TgC/yr, with average burn area of 2723 sq km/yr across the western United States. These direct emission and biomass killed rates were 1.4 and 3.7 times higher, respectively, for high-severity fires than those for low-severity fires. The results show that forest regrowth varies greatly by forest type and with severity and that these factors impose a sustained carbon uptake legacy. The western U.S. fires between 1984 and 2008 imposed a net source of 12.3 TgC/yr in 2008, accounting for both direct fire emissions (9.5 TgC/yr) and heterotrophic decomposition of fire-killed biomass (6.1 TgC yr1) as well as contemporary regrowth sinks (3.3 TgC/yr). A sizeable trend exists toward increasing emissions as a larger area burns annually.

  8. Influences of coupled fire-atmosphere interaction on wildfire behavior

    NASA Astrophysics Data System (ADS)

    Linn, R.; Winterkamp, J.; Jonko, A. K.; Runde, I.; Canfield, J.; Parsons, R.; Sieg, C.

    2017-12-01

    Two-way interactions between fire and the environment affect fire behavior at scales ranging from buoyancy-induced mixing and turbulence to fire-scale circulations that retard or increase fire spread. Advances in computing have created new opportunities for the exploration of coupled fire-atmosphere behavior using numerical models that represent interactions between the dominant processes driving wildfire behavior, including convective and radiative heat transfer, aerodynamic drag and buoyant response of the atmosphere to heat released by the fire. Such models are not practical for operational, faster-than-real-time fire prediction due to their computational and data requirements. However, they are valuable tools for exploring influences of fire-atmosphere feedbacks on fire behavior as they explicitly simulate atmospheric motions surrounding fires from meter to kilometer scales. We use the coupled fire-atmosphere model FIRETEC to gain new insights into aspects of fire behavior that have been observed in the field and laboratory, to carry out sensitivity analysis that is impractical through observations and to pose new hypotheses that can be tested experimentally. Specifically, we use FIRETEC to study the following multi-scale coupled fire-atmosphere interactions: 1) 3D fire-atmosphere interaction that dictates multi-scale fire line dynamics; 2) influence of vegetation heterogeneity and variability in wind fields on predictability of fire spread; 3) fundamental impacts of topography on fire spread. These numerical studies support new conceptual models for the dominant roles of multi-scale fluid dynamics in determining fire spread, including the roles of crosswind fire line-intensity variations on heat transfer to unburned fuels and the role of fire line depth expansion in upslope acceleration of fires.

  9. Allocation strategies of savanna and forest tree seedlings in response to fire and shading: outcomes of a field experiment

    NASA Astrophysics Data System (ADS)

    Gignoux, Jacques; Konaté, Souleymane; Lahoreau, Gaëlle; Le Roux, Xavier; Simioni, Guillaume

    2016-12-01

    The forest-savanna ecotone may be very sharp in fire-prone areas. Fire and competition for light play key roles in its maintenance, as forest and savanna tree seedlings are quickly excluded from the other ecosystem. We hypothesized a tradeoff between seedling traits linked to fire resistance and to competition for light to explain these exclusions. We compared growth- and survival-related traits of two savanna and two forest species in response to shading and fire in a field experiment. To interpret the results, we decomposed our broad hypothesis into elementary tradeoffs linked to three constraints, biomass allocation, plant architecture, and shade tolerance, that characterize both savanna and adjacent forest ecosystems. All seedlings reached similar biomasses, but forest seedlings grew taller. Savanna seedlings better survived fire after topkill and required ten times less biomass than forest seedlings to survive. Finally, only savanna seedlings responded to shading. Although results were consistent with the classification of our species as mostly adapted to shade tolerance, competition for light in the open, and fire tolerance, they raised new questions: how could savanna seedlings survive better with a 10-times lower biomass than forest seedlings? Is their shade intolerance sufficient to exclude them from forest understory?

  10. Laboratory Experiments Lead to a New Understanding of Wildland Fire Spread

    NASA Astrophysics Data System (ADS)

    Cohen, J. D.; Finney, M.; McAllister, S.

    2015-12-01

    Wildfire flame spread results from a sequence of ignitions where adjacent fuel particles heat from radiation and convection leading to their ignition. Surprisingly, after decades of fire behavior research an experimentally based, fundamental understanding of wildland fire spread processes has not been established. Modelers have commonly assumed radiation to be the dominant heating mechanism; that is, radiation heat transfer primarily determines wildland fire spread. We tested this assumption by focusing on how fuel ignition occurs with a renewed emphasis on experimental research. Our experiments show that fuel particle size can non-linearly influence a fuel particle's convective heat transfer. Fine fuels (less than 1 mm) can convectively cool in ambient air such that radiation heating is insufficient for ignition and thus fire spread. Given fire spread with insufficient radiant heating, fuel particle ignition must occur convectively from flame contact. Further experimentation reveals that convective heating and particle ignition occur when buoyancy-induced instabilities and vorticity force flames down and forward to produce intermittent contact with the adjacent fuel bed. Experimental results suggest these intermittent forward flame extensions are buoyancy driven with predictable average frequencies for flame zones ranging from laboratory (10-2 m) to field scales (101m). Measured fuel particle temperatures and boundary conditions during spreading laboratory fires reveal that convection heat transfer from intermittent flame contact is the principal mechanism responsible for heating fine fuel particles to ignition. Our experimental results describe how fine fuel particles convectively heat to ignition from flame contact related to the buoyant dynamics of spreading flame fronts. This research has caused a rethinking of some of the most basic concepts in wildland fuel particle ignition and flame spread.

  11. A Global Classification of Contemporary Fire Regimes

    NASA Astrophysics Data System (ADS)

    Norman, S. P.; Kumar, J.; Hargrove, W. W.; Hoffman, F. M.

    2014-12-01

    Fire regimes provide a sensitive indicator of changes in climate and human use as the concept includes fire extent, season, frequency, and intensity. Fires that occur outside the distribution of one or more aspects of a fire regime may affect ecosystem resilience. However, global scale data related to these varied aspects of fire regimes are highly inconsistent due to incomplete or inconsistent reporting. In this study, we derive a globally applicable approach to characterizing similar fire regimes using long geophysical time series, namely MODIS hotspots since 2000. K-means non-hierarchical clustering was used to generate empirically based groups that minimized within-cluster variability. Satellite-based fire detections are known to have shortcomings, including under-detection from obscuring smoke, clouds or dense canopy cover and rapid spread rates, as often occurs with flashy fuels or during extreme weather. Such regions are free from preconceptions, and the empirical, data-mining approach used on this relatively uniform data source allows the region structures to emerge from the data themselves. Comparing such an empirical classification to expectations from climate, phenology, land use or development-based models can help us interpret the similarities and differences among places and how they provide different indicators of changes of concern. Classifications can help identify where large infrequent mega-fires are likely to occur ahead of time such as in the boreal forest and portions of the Interior US West, and where fire reports are incomplete such as in less industrial countries.

  12. Differences in Leaf Flammability, Leaf Traits and Flammability-Trait Relationships between Native and Exotic Plant Species of Dry Sclerophyll Forest

    PubMed Central

    Murray, Brad R.; Hardstaff, Lyndle K.; Phillips, Megan L.

    2013-01-01

    The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest. PMID:24260169

  13. 75 FR 52713 - Nationwide Aerial Application of Fire Retardant on National Forest System Lands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... DEPARTMENT OF AGRICULTURE Forest Service Nationwide Aerial Application of Fire Retardant on... statement for the continued nationwide aerial application of fire retardant on National Forest System lands... 26667, Salt Lake City, UT 84126-0667. Comments may also be sent via e- mail to Fire[email protected

  14. A guide for salvaging white pine injured by forest fires

    Treesearch

    Thomas W. McConkey; Donald R. Gedney

    1951-01-01

    White pine forests are severely damaged by forest fires. Generally a fire kills all trees less than 20 feet high immediately. Larger trees may die later, depending on the degree of injury. Salvage operations must be started soon after a fire, because insects and fungi quickly attack trees that are killed.

  15. A review of the relationships between drought and forest fire in the United States

    Treesearch

    Jeremy S. Littell; David L. Peterson; Karin L. Riley; Yongqiang Liu; Charlie H. Luce

    2016-01-01

    The historical and presettlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity,...

  16. Refining the oak-fire hypothesis for management of oak-dominated forests of the eastern United States

    Treesearch

    Mary A. Arthur; Heather D. Alexander; Daniel C. Dey; Callie J. Schweitzer; David L. Loftis

    2012-01-01

    Prescribed fires are increasingly implemented throughout eastern deciduous forests to accomplish various management objectives, including maintenance of oak-dominated (Quercus spp.) forests. Despite a regional research-based understanding of prehistoric and historic fire regimes, a parallel understanding of contemporary fire use to preserve oak...

  17. Areas of Agreement and Disagreement Regarding Ponderosa Pine and Mixed Conifer Forest Fire Regimes: A Dialogue with Stevens et al.

    PubMed Central

    Odion, Dennis C.; Hanson, Chad T.; Baker, William L.; DellaSala, Dominick A.; Williams, Mark A.

    2016-01-01

    In a recent PLOS ONE paper, we conducted an evidence-based analysis of current versus historical fire regimes and concluded that traditionally defined reference conditions of low-severity fire regimes for ponderosa pine (Pinus ponderosa) and mixed-conifer forests were incomplete, missing considerable variability in forest structure and fire regimes. Stevens et al. (this issue) agree that high-severity fire was a component of these forests, but disagree that one of the several sources of evidence, stand age from a large number of forest inventory and analysis (FIA) plots across the western USA, support our findings that severe fire played more than a minor role ecologically in these forests. Here we highlight areas of agreement and disagreement about past fire, and analyze the methods Stevens et al. used to assess the FIA stand-age data. We found a major problem with a calculation they used to conclude that the FIA data were not useful for evaluating fire regimes. Their calculation, as well as a narrowing of the definition of high-severity fire from the one we used, leads to a large underestimate of conditions consistent with historical high-severity fire. The FIA stand age data do have limitations but they are consistent with other landscape-inference data sources in supporting a broader paradigm about historical variability of fire in ponderosa and mixed-conifer forests than had been traditionally recognized, as described in our previous PLOS paper. PMID:27195808

  18. Areas of Agreement and Disagreement Regarding Ponderosa Pine and Mixed Conifer Forest Fire Regimes: A Dialogue with Stevens et al.

    PubMed

    Odion, Dennis C; Hanson, Chad T; Baker, William L; DellaSala, Dominick A; Williams, Mark A

    2016-01-01

    In a recent PLOS ONE paper, we conducted an evidence-based analysis of current versus historical fire regimes and concluded that traditionally defined reference conditions of low-severity fire regimes for ponderosa pine (Pinus ponderosa) and mixed-conifer forests were incomplete, missing considerable variability in forest structure and fire regimes. Stevens et al. (this issue) agree that high-severity fire was a component of these forests, but disagree that one of the several sources of evidence, stand age from a large number of forest inventory and analysis (FIA) plots across the western USA, support our findings that severe fire played more than a minor role ecologically in these forests. Here we highlight areas of agreement and disagreement about past fire, and analyze the methods Stevens et al. used to assess the FIA stand-age data. We found a major problem with a calculation they used to conclude that the FIA data were not useful for evaluating fire regimes. Their calculation, as well as a narrowing of the definition of high-severity fire from the one we used, leads to a large underestimate of conditions consistent with historical high-severity fire. The FIA stand age data do have limitations but they are consistent with other landscape-inference data sources in supporting a broader paradigm about historical variability of fire in ponderosa and mixed-conifer forests than had been traditionally recognized, as described in our previous PLOS paper.

  19. Respiratory tract deposition efficiencies: evaluation of effects from smoke released in the Cerro Grande forest fire.

    PubMed

    Schöllnberger, H; Aden, J; Scott, B R

    2002-01-01

    Forest-fire smoke inhaled by humans can cause various health effects. This smoke contains toxic chemicals and naturally occurring radionuclides. In northern New Mexico, a large wildfire occurred in May 2000. Known as the Cerro Grande Fire, it devastated the town of Los Alamos and damaged Los Alamos National Laboratory (LANL). Residents were concerned about the possible dissemination of radionuclides from LANL via smoke from the fire. To evaluate potential health effects of inhaling radionuclides contained in the smoke from the Cerro Grande Fire, it was first necessary to evaluate how much smoke would deposit in the human respiratory tract. The purpose of this study was to evaluate respiratory-tract deposition efficiencies of airborne forest-fire smoke for persons of different ages exposed while inside their homes. Potential non-radiological health effects of a forest fire are reviewed. The deposition efficiencies presented can be used to evaluate in-home smoke deposition in the respiratory tract and expected radionuclide intake related to forest fires. The impact of smoke exposure on firemen fighting a forest fire is quantitatively discussed and compared. They primarily inhaled forest-fire smoke while outdoors where the smoke concentration was much higher than inside. Radionuclides released at the LANL site via the Cerro Grande Fire were restricted to naturally occurring radionuclides from burning trees and vegetation. Radiation doses from inhaled airborne radionuclides to individuals inside and outside the Los Alamos area were likely very small.

  20. Identification of two distinct fire regimes in Southern California: implications for economic impact and future change

    NASA Astrophysics Data System (ADS)

    Jin, Yufang; Goulden, Michael L.; Faivre, Nicolas; Veraverbeke, Sander; Sun, Fengpeng; Hall, Alex; Hand, Michael S.; Hook, Simon; Randerson, James T.

    2015-09-01

    The area burned by Southern California wildfires has increased in recent decades, with implications for human health, infrastructure, and ecosystem management. Meteorology and fuel structure are universally recognized controllers of wildfire, but their relative importance, and hence the efficacy of abatement and suppression efforts, remains controversial. Southern California’s wildfires can be partitioned by meteorology: fires typically occur either during Santa Ana winds (SA fires) in October through April, or warm and dry periods in June through September (non-SA fires). Previous work has not quantitatively distinguished between these fire regimes when assessing economic impacts or climate change influence. Here we separate five decades of fire perimeters into those coinciding with and without SA winds. The two fire types contributed almost equally to burned area, yet SA fires were responsible for 80% of cumulative 1990-2009 economic losses (3.1 Billion). The damage disparity was driven by fire characteristics: SA fires spread three times faster, occurred closer to urban areas, and burned into areas with greater housing values. Non-SA fires were comparatively more sensitive to age-dependent fuels, often occurred in higher elevation forests, lasted for extended periods, and accounted for 70% of total suppression costs. An improved distinction of fire type has implications for future projections and management. The area burned in non-SA fires is projected to increase 77% (±43%) by the mid-21st century with warmer and drier summers, and the SA area burned is projected to increase 64% (±76%), underscoring the need to evaluate the allocation and effectiveness of suppression investments.

  1. Post-fire reconstructions of fire intensity from fire severity data: quantifying the role of spatial variability of fire intensity on forest dynamics

    NASA Astrophysics Data System (ADS)

    Baker, Patrick; Oborne, Lisa

    2015-04-01

    Large, high-intensity fires have direct and long-lasting effects on forest ecosystems and present a serious threat to human life and property. However, even within the most catastrophic fires there is important variability in local-scale intensity that has important ramifications for forest mortality and regeneration. Quantifying this variability is difficult due to the rarity of catastrophic fire events, the extreme conditions at the time of the fires, and their large spatial extent. Instead fire severity is typically measured or estimated from observed patterns of vegetation mortality; however, differences in species- and size-specific responses to fires often makes fire severity a poor proxy for fire intensity. We developed a statistical method using simple, plot-based measurements of individual tree mortality to simultaneously estimate plot-level fire intensity and species-specific mortality patterns as a function of tree size. We applied our approach to an area of forest burned in the catastrophic Black Saturday fires that occurred near Melbourne, Australia, in February 2009. Despite being the most devastating fire in the past 70 years and our plots being located in the area that experienced some of the most intense fires in the 350,000 ha fire complex, we found that the estimated fire intensity was highly variable at multiple spatial scales. All eight tree species in our study differed in their susceptibility to fire-induced mortality, particularly among the largest size classes. We also found that seedling height and species richness of the post-fire seedling communities were both positively correlated with fire intensity. Spatial variability in disturbance intensity has important, but poorly understood, consequences for the short- and long-term dynamics of forests in the wake of catastrophic wildfires. Our study provides a tool to estimate fire intensity after a fire has passed, allowing new opportunities for linking spatial variability in fire intensity to forest ecosystem dynamics.

  2. Visibility analysis of fire lookout towers in the Boyabat State Forest Enterprise in Turkey.

    PubMed

    Kucuk, Omer; Topaloglu, Ozer; Altunel, Arif Oguz; Cetin, Mehmet

    2017-07-01

    For a successful fire suppression, it is essential to detect and intervene forest fires as early as possible. Fire lookout towers are crucial assets in detecting forest fires, in addition to other technological advancements. In this study, we performed a visibility analysis on a network of fire lookout towers currently operating in a relatively fire-prone region in Turkey's Western Black Sea region. Some of these towers had not been functioning properly; it was proposed that these be taken out of the grid and replaced with new ones. The percentage of visible areas under the current network of fire lookout towers was 73%; it could rise to 81% with the addition of newly proposed towers. This study was the first research to conduct a visibility analysis of current and newly proposed fire lookout towers in the Western Black Sea region and focus on its forest fire problem.

  3. Prescribed fire as the minimum tool for wilderness forest and fire regime restoration: a case study from the Sierra Nevada, California

    Treesearch

    MaryBeth Keifer; Nathan L. Stephenson; Jeff Manley

    2000-01-01

    Changes in forest structure were monitored in areas treated with prescribed fire in Sequoia and Kings Canyon National Parks. Five years after the initial prescribed fires, tree density was reduced by 61% in the giant sequoia-mixed conifer forest, with the greatest reduction in the smaller trees. This post-burn forest structure falls within the range that may have been...

  4. The carbon debt from Amazon forest degradation: integrating airborne lidar, field measurements, and an ecosystem demography model.

    NASA Astrophysics Data System (ADS)

    Longo, M.; Keller, M. M.; dos-Santos, M. N.; Scaranello, M. A., Sr.; Pinagé, E. R.; Leitold, V.; Morton, D. C.

    2016-12-01

    Amazon deforestation has declined over the last decade, yet forest degradation from logging, fire, and fragmentation continue to impact forest carbon stocks and fluxes. The magnitude of this impact remains uncertain, and observation-based studies are often limited by short time intervals or small study areas. To better understand the long-term impact of forest degradation and recovery, we have been developing a framework that integrates field plot measurements and airborne lidar surveys into an individual- and process-based model (Ecosystem Demography model, ED). We modeled forest dynamics for three forest landscapes in the Amazon with diverse degradation histories: conventional and reduced-impact logging, logging and burning, and multiple burns. Based on the initialization with contemporary forest structure and composition, model results suggest that degraded forests rapidly recover (30 years) water and energy fluxes compared with old-growth, even at sites that were affected by multiple fires. However, degraded forests maintained different carbon stocks and fluxes even after 100 years without further disturbances, because of persistent differences in forest structure and composition. Recurrent disturbances may hinder the recovery of degraded forests. Simulations using a simple fire model entirely dependent on environmental controls indicate that the most degraded forests would take much longer to reach biomass typical of old-growth forests, because drier conditions near the ground make subsequent fires more intense and more recurrent. Fires in tropical forests are also closely related to nearby human activities; while results suggest an important feedback between fires and the microenvironment, additional work is needed to improve how the model represents the human impact on current and future fire regimes. Our study highlights that recovery of degraded forests may act as an important carbon sink, but efficient recovery depends on controlling future disturbances.

  5. The changing role of fire in mediating the relationships among oaks, grasslands, mesic temperate forests, and boreal forests in the Lake States

    Treesearch

    Lee E. Frelich; Peter B. Reich; David W. Peterson

    2017-01-01

    Historically, oak forests and woodlands intergraded with southern boreal forest, temperate mesic forest, and grassland biomes, forming complex fire-mediated relationships in the Great Lakes region of Minnesota, Wisconsin, and Michigan, USA. Variability in fire recurrence intervals allowed oaks to mix with grasses or with mesic forest species in areas with high (2–10 yr...

  6. Soils of Mountainous Forests and Their Transformation under the Impact of Fires in Baikal Region

    NASA Astrophysics Data System (ADS)

    Krasnoshchekov, Yu. N.

    2018-04-01

    Data on postpyrogenic dynamics of soils under mountainous taiga cedar ( Pinus sibirica) and pine ( Pinus sylvestris) forests and subtaiga-forest-steppe pine ( Pinus sylvestris) forests in the Baikal region are analyzed. Ground litter-humus fires predominating in this region transform the upper diagnostic organic soil horizons and lead to the formation of new pyrogenic organic horizons (Opir). Adverse effects of ground fires on the stock, fractional composition, and water-physical properties of forest litters are shown. Some quantitative parameters of the liquid and solid surface runoff in burnt areas related to the slope gradient, fire intensity, and the time passed after the fire are presented. Pyrogenic destruction of forest ecosystems inevitably induces the degradation of mountainous soils, whose restoration after fires takes tens of years. The products of soil erosion from the burnt out areas complicate the current situation with the pollution of coastal waters of Lake Baikal.

  7. An examination of flame shape related to convection heat transfer in deep-fuel beds

    Treesearch

    Kara M. Yedinak; Jack D. Cohen; Jason M. Forthofer; Mark A. Finney

    2010-01-01

    Fire spread through a fuel bed produces an observable curved combustion interface. This shape has been schematically represented largely without consideration for fire spread processes. The shape and dynamics of the flame profile within the fuel bed likely reflect the mechanisms of heat transfer necessary for the pre-heating and ignition of the fuel during fire spread....

  8. Quantifying Fire's Impacts on Total and Pyrogenic Carbon Stocks in Mixed-Conifer Forests: Results from Pre- and Post-Fire Measurements in Active Wildfire Incidents

    NASA Astrophysics Data System (ADS)

    Miesel, J. R.; Reiner, A. L.; Ewell, C. M.; Sanderman, J.; Maestrini, B.; Adkins, J.

    2016-12-01

    Widespread US fire suppression policy has contributed to an accumulation of vegetation in many western forests relative to historic conditions, and these changes can exacerbate wildfire severity and carbon (C) emissions. Serious concern exists about positive feedbacks between wildfire emissions and global climate; however, fires not only release C from terrestrial to atmospheric pools, they also create "black" or pyrogenic C (PyC) which contributes to longer-term C stability. Our objective was to quantify wildfire impacts on aboveground and belowground total C and PyC stocks in California mixed-conifer forests. We worked with incident management teams to access five active wildfires to establish and measure plots within days before and after fire. We measured pre- and post-fire aboveground forest structure and woody fuels to calculate aboveground biomass, biomass C, and PyC, and we collected pre- and post-fire forest floor and 0-5 cm mineral soil samples to measure belowground C and PyC stocks. Our preliminary results show that fire had minimal impact on the number of trees per hectare, whereas C losses from the tree layer occurred via consumption of foliage, and PyC gain occurred in tree bark. Fire released 54% to 100% of surface fuel C. In the forest floor layer, we observed 33 to 100% C loss, whereas changes in PyC stocks ranged from 100% loss to 186% gain relative to pre-fire samples. In general, fire had minimal to no impact on 0-5 cm mineral soil C. We will present relationships between total C, PyC and post-fire C and N dynamics in one of the five wildfire sites. Our data are unique because they represent nearly immediate pre- and post-fire measurements in major wildfires in a widespread western U.S. forest type. This research advances understanding of the role of fire on forest C fluxes and C sequestration potential as PyC.

  9. Predicting Fire Susceptibility in the Forests of Amazonia

    NASA Technical Reports Server (NTRS)

    Nepstad, Daniel C.; Brown, I. Foster; Setzer, Alberto

    2000-01-01

    Although fire is the single greatest threat to the ecological integrity of Amazon forests, our ability to predict the occurrence of Amazon forest fires is rudimentary. Part of the difficulty encountered in making such predictions is the remarkable capacity of Amazon forests to tolerate drought by tapping moisture stored in deep soil. These forests can avoid drought-induced leaf shedding by withdrawing moisture to depths of 8 meters and more. Hence, the absorption of deep soil moisture allows these forests to maintain their leaf canopies following droughts of several months duration, thereby maintaining the deep shade and high relative humidity of the forest interior that prevents these ecosystems from burning. But the drought- and fire-avoidance that is conferred by this deep-rooting phenomenon is not unlimited. During successive years of drought, such as those provoked by El Nino episodes, deep soil moisture can be depleted, and drought-induced leaf shedding begins. The goal of this project was to incorporate this knowledge of Amazon forest fire ecology into a predictive model of forest flammability.

  10. Wildfire, Fuels Reduction, and Herpetofaunas across Diverse Landscape Mosaics in Northwestern Forests

    USGS Publications Warehouse

    Bury, R. Bruce

    2004-01-01

    The herpetofauna (amphibians and reptiles) of northwestern forests (U.S.A.) is diverse, and many species are locally abundant. Most forest amphibians west of the Cascade Mountain crest are associated with cool, cascading streams or coarse woody material on the forest floor, which are characteristics of mature forests. Extensive loss and fragmentation of habitat resulted from logging across approximately 50% of old-growth forests in northern California and approximately 80% of stands in Oregon and Washington. There is a complex landscape mosaic and overlap of northern and southern biotic elements in the Klamath-Siskiyou Region along the Oregon and California border, creating a biodiversity hotspot. The region experiences many low-severity fires annually, punctuated by periodic major fires, including the Biscuit fire, the largest in North America in 2002. In the fire's northern portion, severe fire occurred on >50% of stands of young, managed trees but on only about 25a??33% of old-growth stands. This suggests that the legacy of timber harvest may produce fire-prone stands. Calls for prescribed fire and thinning to reduce fuel loads will remove large amounts of coarse woody material from forests, which reduces cover for amphibians and alters nutrient inputs to streams. Our preliminary evidence suggests no negative effects of wildfire on terrestrial amphibians, but stream amphibians decrease following wildfire. Most reptiles are adapted to open terrain, so fire usually improves their habitat. Today, the challenge is to maintain biodiversity in western forests in the face of intense political pressures designed to 'prevent' catastrophic fires. We need a dedicated research effort to understanding how fire affects biota and to proactively investigate outcomes of fuel-reduction management on wildlife in western forests.

  11. Decreases in Soil Moisture and Organic Matter Quality Suppress Microbial Decomposition Following a Boreal Forest Fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, Sandra R.; Berhe, Asmeret A.; Treseder, Kathleen K.

    Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burnedmore » boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.« less

  12. Reintroducing fire into a ponderosa pine forest with and without cattle grazing: understory vegetation response

    Treesearch

    Becky K. Kerns; Michelle Buonopane; Walter G. Thies; Christine. Niwa

    2011-01-01

    Reestablishing historical fire regimes is a high priority for North American coniferous forests, particularly ponderosa pine (Pinus ponderosa) ecosystems. These forests are also used extensively for cattle (Bos spp.) grazing. Prescribed fires are being applied on or planned for millions of hectares of these forests to reduce...

  13. Measuring forest-fire danger in northern Idaho

    Treesearch

    H. T. Gisborne

    1928-01-01

    In most of the forest regions of the United States the fire problem is the greatest forest problem. Wasteful methods of logging and lumbering may result in the loss of a large proportion of the remaining forest growth, but the land will usually produce a new crop of timber without undue delay, unless fire occurs.

  14. Meta-analysis of avian and small-mammal response to fire severity and fire surrogate treatments in U.S. fire-prone forests.

    PubMed

    Fontaine, Joseph B; Kennedy, Patricia L

    2012-07-01

    Management in fire-prone ecosystems relies widely upon application of prescribed fire and/or fire surrogate (e.g., forest thinning) treatments to maintain biodiversity and ecosystem function. Recently, published literature examining wildlife response to fire and fire management has increased rapidly. However, none of this literature has been synthesized quantitatively, precluding assessment of consistent patterns of wildlife response among treatment types. Using meta-analysis, we examined the scientific literature on vertebrate demographic responses to burn severity (low/moderate, high), fire surrogates (forest thinning), and fire and fire surrogate combined treatments in the most extensively studied fire-prone, forested biome (forests of the United States). Effect sizes (magnitude of response) and their 95% confidence limits (response consistency) were estimated for each species-by-treatment combination with two or more observations. We found 41 studies of 119 bird and 17 small-mammal species that examined short-term responses (< or =4 years) to thinning, low/moderate- and high-severity fire, and thinning plus prescribed fire; data on other taxa and at longer time scales were too sparse to permit quantitative assessment. At the stand scale (<50 ha), thinning and low/moderate-severity fire demonstrated similar response patterns in these forests. Combined thinning plus prescribed fire produced a higher percentage of positive responses. High-severity fire provoked stronger responses, with a majority of species possessing higher or lower effect sizes relative to fires of lower severity. In the short term and at fine spatial scales, fire surrogate forest-thinning treatments appear to effectively mimic low/moderate-severity fire, whereas low/moderate-severity fire is not a substitute for high-severity fire. The varied response of taxa to each of the four conditions considered makes it clear that the full range of fire-based disturbances (or their surrogates) is necessary to maintain a full complement of vertebrate species, including fire-sensitive taxa. This is especially true for high-severity fire, where positive responses from many avian taxa suggest that this disturbance (either as wildfire or prescribed fire) should be included in management plans where it is consistent with historic fire regimes and where maintenance of regional vertebrate biodiversity is a goal.

  15. Influence of weather factors on moisture content of light fuels in forests of the northern Rocky Mountains

    Treesearch

    George M. Jemison

    1935-01-01

    The necessity of forest-fire protection is generally recognized in the United Slates. The tremendous damage done by forest fires each year to valuable timber, watershed cover, forest range, wildlife, recreational facilities, and personal property has impressed upon the people the need for preventing and controlling forest fires so far as this is humanly possible.

  16. Fire effects in southwestern forests: Proceedings of the Second La Mesa Fire symposium

    USGS Publications Warehouse

    Allen, Craig D.

    1996-01-01

    In 1977, the La Mesa Fire burned across 15,444 acres of ponderosa pine forests on the adjoining lands of Bandelier National Monument, the Santa Fe National Forest, and Los Alamos National Laboratory. Following this event, several fire effects studies were initiated. The 16 papers herein document longer-term knowledge gained about the ecological effects of the fire and about Southwestern fire ecology in general. The presentations are also designed to give resource managers practical information for managing fire in local landscapes. Studies presented range from fire histories and avifauna to geomorphology and arthropods.

  17. Effects of Degree of Curing on Fire Spread

    NASA Astrophysics Data System (ADS)

    Chaivaranont, W.; Evans, J. P.; Liu, Y.

    2016-12-01

    During extreme summer conditions in Australia, bushfire can become an uncontrollable natural hazard. Various factors, such as geographical and meteorological parameters greatly influence the magnitude of bushfire. In a grassland fire, there is an important factor that affects the severity of fire called the degree of curing. Degree of curing is a percentage measurement of the proportion of dead material in grassland where a 100% curing indicates a totally dead grass field. It is usually assumed constant due to the cost and difficulty in obtaining accurate field observations.To examine the importance of curing, the Phoenix RapidFire fire spread model was used to observe the magnitude and direction of grassland fire spread due to variations in the degree of curing. Idealised experiments and experiments based on 3 past fire events in Australia were conducted, where the 100 by 200 km study area is considered to be all grassland. In the idealised experiments, homogeneous curing data in various patterns were used along with extreme climate data and prescribed topography. In the past fire event experiments, satellite-derived estimated curing data, observed climate data from the nearest weather stations, and real elevation maps were used. A remotely sensed burned area map (MODIS MCD64A1 product) is also used to compare the simulated burned area of past fire events with the satellite observation.The results from both experiments showed that: 1) the rate of spread of grassland fire is significantly impeded when curing is below 75%, 2) topography has insignificant effect on fire spread direction and speed, 3) wind and curing both influence the direction and speed of spread, and 4) the model can only recreate the burned area in one out of three of the past fire events due to various causes including the fact that all past events used here were not exclusively grassland fire.

  18. A hierarchical fire frequency model to simulate temporal patterns of fire regimes in LANDIS

    Treesearch

    Jian Yang; Hong S. He; Eric J. Gustafson

    2004-01-01

    Fire disturbance has important ecological effects in many forest landscapes. Existing statistically based approaches can be used to examine the effects of a fire regime on forest landscape dynamics. Most examples of statistically based fire models divide a fire occurrence into two stages--fire ignition and fire initiation. However, the exponential and Weibull fire-...

  19. Predicting Peak Flows following Forest Fires

    NASA Astrophysics Data System (ADS)

    Elliot, William J.; Miller, Mary Ellen; Dobre, Mariana

    2016-04-01

    Following forest fires, peak flows in perennial and ephemeral streams often increase by a factor of 10 or more. This increase in peak flow rate may overwhelm existing downstream structures, such as road culverts, causing serious damage to road fills at stream crossings. In order to predict peak flow rates following wildfires, we have applied two different tools. One is based on the U.S.D.A Natural Resource Conservation Service Curve Number Method (CN), and the other is by applying the Water Erosion Prediction Project (WEPP) to the watershed. In our presentation, we will describe the science behind the two methods, and present the main variables for each model. We will then provide an example of a comparison of the two methods to a fire-prone watershed upstream of the City of Flagstaff, Arizona, USA, where a fire spread model was applied for current fuel loads, and for likely fuel loads following a fuel reduction treatment. When applying the curve number method, determining the time to peak flow can be problematic for low severity fires because the runoff flow paths are both surface and through shallow lateral flow. The WEPP watershed version incorporates shallow lateral flow into stream channels. However, the version of the WEPP model that was used for this study did not have channel routing capabilities, but rather relied on regression relationships to estimate peak flows from individual hillslope polygon peak runoff rates. We found that the two methods gave similar results if applied correctly, with the WEPP predictions somewhat greater than the CN predictions. Later releases of the WEPP model have incorporated alternative methods for routing peak flows that need to be evaluated.

  20. A model for assessing water quality risk in catchments prone to wildfire

    NASA Astrophysics Data System (ADS)

    Langhans, Christoph; Smith, Hugh; Chong, Derek; Nyman, Petter; Lane, Patrick; Sheridan, Gary

    2017-04-01

    Post-fire debris flows can have erosion rates up to three orders of magnitude higher than background rates. They are major sources of fine suspended sediment, which is critical to the safety of water supply from forested catchments. Fire can cover parts or all of these large catchments and burn severity is often heterogeneous. The probability of spatial and temporal overlap of fire disturbance and rainfall events, and the susceptibility of hillslopes to severe erosion determine the risk to water quality. Here we present a model to calculate recurrence intervals of high magnitude sediment delivery from runoff-generated debris flows to a reservoir in a large catchment (>100 km2) accounting for heterogeneous burn conditions. Debris flow initiation was modelled with indicators of surface runoff and soil surface erodibility. Debris flow volume was calculated with an empirical model, and fine sediment delivery was calculated using simple, expert-based assumptions. In a Monte-Carlo simulation, wildfire was modelled with a fire spread model using historic data on weather and ignition probabilities for a forested catchment in central Victoria, Australia. Multiple high intensity storms covering the study catchment were simulated using Intensity-Frequency-Duration relationships, and the runoff indicator calculated with a runoff model for hillslopes. A sensitivity analysis showed that fine sediment is most sensitive to variables related to the texture of the source material, debris flow volume estimation, and the proportion of fine sediment transported to the reservoir. As a measure of indirect validation, denudation rates of 4.6 - 28.5 mm ka-1 were estimated and compared well to other studies in the region. From the results it was extrapolated that in the absence of fire management intervention the critical sediment concentrations in the studied reservoir could be exceeded in intervals of 18 - 124 years.

Top