Sample records for forest gaps generated

  1. Identification of Lightning Gaps in Mangrove Forests Using Airborne LIDAR Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, K.

    2006-12-01

    Mangrove forests are highly dynamic ecosystems and change frequently due to tropical storms, frost, and lightning. These factors can cause gaps in mangrove forests by damaging trees. Compared to gaps generated by storms and frost, gaps caused by lightning strikes are small, ranging from 50 to 300 m2. However, these small gaps may play a critical role in mangrove forest dynamics because of the frequent occurrence of lightning in tropical areas. It has been hypothesized that the turnover of mangrove forests is mainly due to the death and regeneration of trees in lightning gaps. However, there is a lack of data for gap occurrence in mangrove forests to verify this hypothesis. It is impractical to measure gaps through a field survey on a large scale because of the logistic difficulties of muddy mangrove forests. Airborne light detection and ranging (LIDAR) technology is an effective alternative because it provides direct measurements of ground and canopy elevations remotely. This study developed a method to identify lightning gaps in mangrove forests in terms of LIDAR measurements. First, LIDAR points are classified into vegetation and ground measurements using the progressive morphological filter. Second, a digital canopy model (DCM) is generated by subtracting a digital terrain model (DTM) from a digital surface model (DSM). The DSM is generated by interpolating raw LIDAR measurements, and DTM is produced by interpolating ground measurements. Third, a black top-hat mathematical morphological transformation is used to identify canopy gaps. Comparison of identified gap polygons with raw LIDAR measurements and field surveys shows that the proposed method identifies lightning gaps in mangrove forests successfully. The area of lightning gaps in mangrove forests in Everglades National Park is about 3% of total forest area, which verifies that lightning gaps play a critical role in mangrove forest turnover.

  2. Survival of tree seedligns across space and time: estimates from long-term count data

    Treesearch

    Brian Beckage; Michael Lavina; James S. Clark

    2005-01-01

    Tree diversity in forests may be maintained by variability in seedling recruitment. Although forest ecologists have emphasized the importance of canopy gaps in generating spatial variability that might promote tree regeneration, the effects of canopy gaps on seedling recruitment may be offset by dense forest understories.Large annual...

  3. SAR backscatter from coniferous forest gaps

    NASA Technical Reports Server (NTRS)

    Day, John L.; Davis, Frank W.

    1992-01-01

    A study is in progress comparing Airborne Synthetic Aperture Radar (AIRSAR) backscatter from coniferous forest plots containing gaps to backscatter from adjacent gap-free plots. Issues discussed are how do gaps in the range of 400 to 1600 sq m (approximately 4-14 pixels at intermediate incidence angles) affect forest backscatter statistics and what incidence angles, wavelengths, and polarizations are most sensitive to forest gaps. In order to visualize the slant-range imaging of forest and gaps, a simple conceptual model is used. This strictly qualitative model has led us to hypothesize that forest radar returns at short wavelengths (eg., C-band) and large incidence angles (e.g., 50 deg) should be most affected by the presence of gaps, whereas returns at long wavelengths and small angles should be least affected. Preliminary analysis of 1989 AIRSAR data from forest near Mt. Shasta supports the hypothesis. Current forest backscatter models such as MIMICS and Santa Barbara Discontinuous Canopy Backscatter Model have in several cases correctly predicted backscatter from forest stands based on inputs of measured or estimated forest parameters. These models do not, however, predict within-stand SAR scene texture, or 'intrinsic scene variability' as Ulaby et al. has referred to it. For instance, the Santa Barbara model, which may be the most spatially coupled of the existing models, is not truly spatial. Tree locations within a simulated pixel are distributed according to a Poisson process, as they are in many natural forests, but tree size is unrelated to location, which is not the case in nature. Furthermore, since pixels of a simulated stand are generated independently in the Santa Barbara model, spatial processes larger than one pixel are not modeled. Using a different approach, Oliver modeled scene texture based on an hypothetical forest geometry. His simulated scenes do not agree well with SAR data, perhaps due to the simple geometric model used. Insofar as texture is the expression of biological forest processes, such as succession and disease, and physical ones, such as fire and wind-throw, it contains useful information about the forest, and has value in image interpretation and classification. Forest gaps are undoubtedly important contributors to scene variance. By studying the localized effects of gaps on forest backscatter, guided by our qualitative model, we hope to understand more clearly the manner in which spatial heterogeneities in forests produce variations in backscatter, which collectively give rise to scene texture.

  4. Evaluation of Landsat-7 SLC-off image products for forest change detection

    USGS Publications Warehouse

    Wulder, Michael A.; Ortlepp, Stephanie M.; White, Joanne C.; Maxwell, Susan

    2008-01-01

    Since July 2003, Landsat-7 ETM+ has been operating without the scan line corrector (SLC), which compensates for the forward motion of the satellite in the imagery acquired. Data collected in SLC-off mode have gaps in a systematic wedge-shaped pattern outside of the central 22 km swath of the imagery; however, the spatial and spectral quality of the remaining portions of the imagery are not diminished. To explore the continued use of Landsat-7 ETM+ SLC-off imagery to characterize change in forested environments, we compare the change detection results generated from a reference image pair (a 1999 Landsat-7 ETM+ image and a 2003 Landsat-5 TM image) with change detection results generated from the same 1999 Landsat-7 ETM+ image coupled with three different 2003 Landsat-7 SLC-off products: unremediated SLC-off (i.e., with gaps); histogram-based gap-filled; and segment-based gap-filled. The results are compared on both a pixel and polygon basis; on a pixel basis, the unremediated SLC-off product missed 35% of the change identified by the reference data, and the histogram- and segment-based gap-filled products missed 23% and 21% of the change, respectively. When using forest inventory polygons as a context for change (to reduce commission error), the amount of change missed was 31%, 14%, and 12% for the each of the unremediated, histogram-based gap-filled, and segment-based gap-filled products, respectively. Our results indicate that over the time period considered, and given the types and spatial distribution of change events within our study area, the gap-filled products can provide a useful data source for change detection in forested environments. The selection of which product to use is, however, very dependent on the nature of the application and the spatial configuration of change events. ?? 2008 Government of Canada.

  5. Land cover map for map zones 8 and 9 developed from SAGEMAP, GNN, and SWReGAP: a pilot for NWGAP

    Treesearch

    James S. Kagan; Janet L. Ohmann; Matthew Gregory; Claudine Tobalske

    2008-01-01

    As part of the Northwest Gap Analysis Project, land cover maps were generated for most of eastern Washington and eastern Oregon. The maps were derived from regional SAGEMAP and SWReGAP data sets using decision tree classifiers for nonforest areas, and Gradient Nearest Neighbor imputation modeling for forests and woodlands. The maps integrate data from regional...

  6. Detecting tree-fall gap disturbances in tropical rain forests with airborne lidar

    NASA Astrophysics Data System (ADS)

    Espirito-Santo, F. D. B.; Saatchi, S.; Keller, M.

    2017-12-01

    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of tree-fall gap disturbances in natural forests of tropical forests using a novel combination of forest inventory and airborne lidar data. We quantify gap size frequency distribution along vertical and horizontal dimensions in ten Neotropical forest canopies distributed across gradients of climate and landscapes using airborne lidar measurements. We assessed all canopy openings related to each class of tree height which yields a three dimensional structure of the distribution of canopy gaps. Gap frequency distributions from lidar CHM data vary markedly with minimum gap size thresholds, but we found that natural forest disturbances (tree-fall gaps) follow a power-law distribution with narrow range of power-law exponents (-1.2 to -1.3). These power-law exponents from gap frequency distributions provide insights into how natural forest disturbances are distributed over tropical forest landscape.

  7. Yellow-Poplar and Oak Seedling Density Responses to Wind-Generated Gaps

    Treesearch

    Erik C. Berg; David H. Van Lear

    2004-01-01

    The effects of wind on upland hardwood forest structure and composition have been studied mostly in the context of either small "gap-phase" openings or in retrospective studies of ancient disturbances. Larger (> 0.1 ha) wind-created openings are common across Southern Appalachian landscapes, and can be impor tant in shaping understory colonization, growth...

  8. Mapping forest canopy gaps using air-photo interpretation and ground surveys

    USGS Publications Warehouse

    Fox, T.J.; Knutson, M.G.; Hines, R.K.

    2000-01-01

    Canopy gaps are important structural components of forested habitats for many wildlife species. Recent improvements in the spatial accuracy of geographic information system tools facilitate accurate mapping of small canopy features such as gaps. We compared canopy-gap maps generated using ground survey methods with those derived from air-photo interpretation. We found that maps created from high-resolution air photos were more accurate than those created from ground surveys. Errors of omission were 25.6% for the ground-survey method and 4.7% for the air-photo method. One variable of inter est in songbird research is the distance from nests to gap edges. Distances from real and simulated nests to gap edges were longer using the ground-survey maps versus the air-photo maps, indicating that gap omission could potentially bias the assessment of spatial relationships. If research or management goals require location and size of canopy gaps and specific information about vegetation structure, we recommend a 2-fold approach. First, canopy gaps can be located and the perimeters defined using 1:15,000-scale or larger aerial photographs and the methods we describe. Mapped gaps can then be field-surveyed to obtain detailed vegetation data.

  9. Effects of Forest Gaps on Soil Properties in Castanopsis kawakamii Nature Forest.

    PubMed

    He, Zhongsheng; Liu, Jinfu; Su, Songjin; Zheng, Shiqun; Xu, Daowei; Wu, Zeyan; Hong, Wei; Wang, James Li-Ming

    2015-01-01

    The aim of this study is to analyze the effects of forest gaps on the variations of soil properties in Castanopsis kawakamii natural forest. Soil physical and chemical properties in various sizes and development stages were studied in C. kawakamii natural forest gaps. The results showed that forest gaps in various sizes and development stages could improve soil pore space structure and water characteristics, which may effectively promote the water absorbing capacity for plant root growth and play an important role in forest regeneration. Soil pore space structure and water characteristics in small gaps showed more obvious improvements, followed by the medium and large gaps. Soil pore space structure and water characteristics in the later development stage of forest gaps demonstrated more obvious improvements, followed by the early and medium development stages. The contents of hydrolysable N and available K in various sizes and development stages of forest gaps were higher than those of non-gaps, whereas the contents of total N, total P, available P, organic matter, and organic carbon were lower. The contents of total N, hydrolysable N, available K, organic matter, and organic carbon in medium gaps were higher than those of large and small gaps. The disturbance of forest gaps could improve the soils' physical and chemical properties and increase the population species' richness, which would provide an ecological basis for the species coexistence in C. kawakamii natural forest.

  10. [Effects of forest gap size and within-gap position on the microclimate in Pinus koraiensis-dominated broadleaved mixed forest].

    PubMed

    Feng, Jing; Duan, Wen-Biao; Chen, Li-Xin

    2012-07-01

    HOBO automatic weather stations were installed in the central parts and at the south, north, east, and west edges of large, medium, and small gaps in a Pinus koraiensis-dominated broadleaved mixed forest in Xiaoxing' anling Mountains to measure the air temperature, relative humidity, and photosynthetic photon flux density (PPFD) in these locations and the total radiation and precipitation in the gap centres from June to September 2010, taking the closed forest stand and open field as the controls. The differences in the microclimate between various size forest gaps and between the gap centers and their edges as well as the variations of the microclimatic factors over time were analyzed, and the effects of sunny and overcast days on the diurnal variations of the microclimatic factors within forest gaps were compared, aimed to offer basic data and practice reference for gap regeneration and sustainable management of Pinus koraiensis-dominated broadleaved mixed forest. The PPFD was decreased in the order of large gap, medium gap, and small gap. For the same gaps, the PPFD in gap centre was greater than that in gap edge. The mean monthly air temperature and total radiation in gap centres were declined in the sequence of July, June, August, and September, and the amplitudes of the two climatic factors were decreased in the order of open field, large gap, medium gap, small gap, and closed forest stand. The mean monthly relative humidity in gap centres dropped in the order of August, July, September, and June, and the amplitude of this climatic factor was decreased in the sequence of closed forest stand, small gap, medium gap, large gap, and open field. The total and monthly precipitations for the three different size gaps and open field during measurement period generally decreased in the order of open field, large gap, medium gap, small gap, and closed forest stand. In sunny days, the variations of PPFD, air temperature, and relative humidity were greater in large gap than in small gap, but in overcast days, it was in opposite.

  11. Herbivorous insect response to group selection cutting in a southeastern bottomland hardwood forest.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael D. Ulyshen; James L. Hanula; Scott Horn

    2005-04-01

    ABSTRACT Malaise and pitfall traps were used to sample herbivorous insects in canopy gaps created by group-selection cutting in a bottomland hardwood forest in South Carolina. The traps were placed at the centers, edges, and in the forest adjacent to gaps of different sizes (0.13, 0.26, and 0.50 ha) and ages (1 and 7 yr old) during four sampling periods in 2001. Overall, the abundance and species richness of insect herbivores were greater at the centers of young gaps than at the edge of young gaps or in the forest surrounding young gaps. There were no differences in abundance ormore » species richness among old gap locations (i.e., centers, edges, and forest), and we collected significantly more insects in young gaps than old gaps. The insect communities in old gaps were more similar to the forests surrounding them than young gap communities were to their respective forest locations, but the insect communities in the two forests locations (surrounding young and old gaps) had the highest percent similarity of all. Although both abundance and richness increased in the centers of young gaps with increasing gap size, these differences were not significant.Weattribute the increased numbers of herbivorous insects to the greater abundance of herbaceous plants available in young gaps.« less

  12. Gap analysis: Concepts, methods, and recent results

    USGS Publications Warehouse

    Jennings, M.D.

    2000-01-01

    Rapid progress is being made in the conceptual, technical, and organizational requirements for generating synoptic multi-scale views of the earth's surface and its biological content. Using the spatially comprehensive data that are now available, researchers, land managers, and land-use planners can, for the first time, quantitatively place landscape units - from general categories such as 'Forests' or 'Cold-Deciduous Shrubland Formation' to more categories such as 'Picea glauca-Abies balsamea-Populus spp. Forest Alliance' - in their large-area contexts. The National Gap Analysis Program (GAP) has developed the technical and organizational capabilities necessary for the regular production and analysis of such information. This paper provides a brief overview of concepts and methods as well as some recent results from the GAP projects. Clearly, new frameworks for biogeographic information and organizational cooperation are needed if we are to have any hope of documenting the full range of species occurrences and ecological processes in ways meaningful to their management. The GAP experience provides one model for achieving these new frameworks.

  13. Nitrogen dynamics across silvicultural canopy gaps in young forests of western Oregon

    USGS Publications Warehouse

    Thiel, A.L.; Perakis, S.S.

    2009-01-01

    Silvicultural canopy gaps are emerging as an alternative management tool to accelerate development of complex forest structure in young, even-aged forests of the Pacific Northwest. The effect of gap creation on available nitrogen (N) is of concern to managers because N is often a limiting nutrient in Pacific Northwest forests. We investigated patterns of N availability in the forest floor and upper mineral soil (0-10 cm) across 6-8-year-old silvicultural canopy gaps in three 50-70-year-old Douglas-fir forests spanning a wide range of soil N capital in the Coast Range and Cascade Mountains of western Oregon. We used extractable ammonium (NH4+) and nitrate (NO3-) pools, net N mineralization and nitrification rates, and NH4+ and NO3- ion exchange resin (IER) concentrations to quantify N availability along north-south transects run through the centers of 0.4 and 0.1 ha gaps. In addition, we measured several factors known to influence N availability, including litterfall, moisture, temperature, and decomposition rates. In general, gap-forest differences in N availability were more pronounced in the mineral soil than in the forest floor. Mineral soil extractable NH4+ and NO3- pools, net N mineralization and nitrification rates, and NH4+ and NO3- IER concentrations were all significantly elevated in gaps relative to adjacent forest, and in several cases exhibited significantly greater spatial variability in gaps than forest. Nitrogen availability along the edges of gaps more often resembled levels in the adjacent forest than in gap centers. For the majority of response variables, there were no significant differences between northern and southern transect positions, nor between 0.4 and 0.1 ha gaps. Forest floor and mineral soil gravimetric percent moisture and temperature showed few differences along transects, while litterfall carbon (C) inputs and litterfall C:N ratios in gaps were significantly lower than in the adjacent forest. Reciprocal transfer incubations of mineral soil samples between gap and forest positions revealed that soil originating from gaps had greater net nitrification rates than forest samples, regardless of incubation environment. Overall, our results suggest that increased N availability in 6-8-year-old silvicultural gaps in young western Oregon forests may be due more to the quality and quantity of litterfall inputs resulting from early-seral species colonizing gaps than by changes in temperature and moisture conditions caused by gap creation.

  14. Structural Dynamics of Tropical Moist Forest Gaps

    PubMed Central

    Hunter, Maria O.; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8 %) as compared to Ducke Reserve (2.0 %). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10 % of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6 % at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13 % and 10 %, respectively). At Tapajos, height loss had a much stronger signal (23 % versus 6 %) within gaps. Both sites demonstrate limited gap contagiousness defined by an increase in the likelihood of mortality in the immediate vicinity (~6 m) of existing gaps. PMID:26168242

  15. Structural Dynamics of Tropical Moist Forest Gaps.

    PubMed

    Hunter, Maria O; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8%) as compared to Ducke Reserve (2.0%). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10% of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6% at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13% and 10%, respectively). At Tapajos, height loss had a much stronger signal (23% versus 6%) within gaps. Both sites demonstrate limited gap contagiousness defined by an increase in the likelihood of mortality in the immediate vicinity (~6 m) of existing gaps.

  16. Terrestrial ecosystems: national inventory of vegetation and land use

    USGS Publications Warehouse

    Gergely, Kevin J.; McKerrow, Alexa

    2013-11-12

    The Gap Analysis Program (GAP)/Landscape Fire and Resource Management Planning Tools (LANDFIRE) National Terrestrial Ecosystems Data represents detailed data on the vegetation and land-use patterns of the United States, including Alaska, Hawaii, and Puerto Rico. This national dataset combines detailed land cover data generated by the GAP with LANDFIRE data (http://www.landfire.gov/). LANDFIRE is an interagency vegetation, fire, and fuel characteristics mapping program sponsored by the U.S. Department of the Interior (DOI) and the U.S. Department of Agriculture Forest Service.

  17. Canopy gaps and dead tree dynamics: poking holes in the forest.

    Treesearch

    Sally Duncan

    2002-01-01

    When large trees die, individually or in clumps, gaps are opened in the forest canopy. A shifting mosaic of patches, from small single-tree gaps to very large gaps caused by wildlife, is a natural part of the development of composition and structure in mature forests. Gaps increase the diversity of forests across the landscape and present local environments that...

  18. Structural dynamics of tropical moist forest gaps

    Treesearch

    Maria O. Hunter; Michael Keller; Douglas Morton; Bruce Cook; Michael Lefsky; Mark Ducey; Scott Saleska; Raimundo Cosme de Oliveira; Juliana Schietti

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest...

  19. Spatial contagiousness of canopy disturbance in tropical rain forest: an individual-tree-based test.

    PubMed

    Jansen, Patrick A; van der Meer, Peter J; Bongers, Frans

    2008-12-01

    Spatial contagiousness of canopy dynamics-the tendency of canopy disturbances to occur nearby existing canopy openings due to an elevated risk of tree fall around gaps-has been demonstrated in many temperate-zone forests, but only inferentially for tropical forests. Hypothesized mechanisms increasing the risk of tree fall around tropical forest gaps are (1) increased tree exposure to wind around gaps, (2) reduced stability of trees alongside gaps due to crown asymmetry, or (3) reduced tree health around gaps due to damage from prior disturbances. One hypothesized consequence of elevated disturbance levels around gaps would be that gap-edge zones offer relatively favorable prospects for seedling recruitment, growth, and survival. We tested whether disturbance levels are indeed elevated around natural canopy gaps in a neotropical rain forest in French Guiana, and more so as gaps are larger. We followed the fate of 5660 trees >10 cm stem diameter over five years across 12 ha of old-growth forest and analyzed the risk and magnitude of canopy disturbance events in relation to tree diameter and the proximity and size of natural canopy gaps. We found that the cumulative incidence of disturbance over the five-year survey was not significantly elevated around preexisting gaps, and only weakly related to gap size. Also, neither the risk nor the magnitude of canopy disturbances increased significantly with the proximity of gaps. Moreover, canopy disturbance risk around gaps was independent of gap size, while the magnitude of disturbance events around gaps was weakly related to gap size. Tree size was the major driver of disturbance risk as well as magnitude. We did find an elevated incidence of disturbance inside preexisting gaps, but this "repeat disturbance" was due to an elevated disturbance risk inside gaps, not around gaps. Overall, we found no strong evidence for canopy dynamics in this rain forest being spatially contagious. Our findings are consistent with the traditional view of tropical rain forests as mosaics of patches with predictable regeneration cycles.

  20. Guidelines and sample protocol for sampling forest gaps.

    Treesearch

    J.R. Runkle

    1992-01-01

    A protocol for sampling forest canopy gaps is presented. Methods used in published gap studies are reviewed. The sample protocol will be useful in developing a broader understanding of forest structure and dynamics through comparative studies across different forest ecosystems.

  1. A multi-scale segmentation approach to filling gaps in Landsat ETM+ SLC-off images

    USGS Publications Warehouse

    Maxwell, S.K.; Schmidt, Gail L.; Storey, James C.

    2007-01-01

    On 31 May 2003, the Landsat Enhanced Thematic Plus (ETM+) Scan Line Corrector (SLC) failed, causing the scanning pattern to exhibit wedge-shaped scan-to-scan gaps. We developed a method that uses coincident spectral data to fill the image gaps. This method uses a multi-scale segment model, derived from a previous Landsat SLC-on image (image acquired prior to the SLC failure), to guide the spectral interpolation across the gaps in SLC-off images (images acquired after the SLC failure). This paper describes the process used to generate the segment model, provides details of the gap-fill algorithm used in deriving the segment-based gap-fill product, and presents the results of the gap-fill process applied to grassland, cropland, and forest landscapes. Our results indicate this product will be useful for a wide variety of applications, including regional-scale studies, general land cover mapping (e.g. forest, urban, and grass), crop-specific mapping and monitoring, and visual assessments. Applications that need to be cautious when using pixels in the gap areas include any applications that require per-pixel accuracy, such as urban characterization or impervious surface mapping, applications that use texture to characterize landscape features, and applications that require accurate measurements of small or narrow landscape features such as roads, farmsteads, and riparian areas.

  2. Avian distribution in treefall gaps and understorey of terra firme forest in the lowland Amazon

    Treesearch

    JR WUNDERLE; MICHAEL R. WILLIG; LUIZA MAGALLI PINTO HENRIQUES

    2005-01-01

    We compared the bird distributions in the understorey of treefall gaps and sites with intact canopy in Amazonian terra firme forest in Brazil. We compiled 2216 mist-net captures (116 species) in 32 gap and 32 forest sites over 22.3 months. Gap habitats differed from forest habitats in having higher capture rates, total captures, species richness and diversity....

  3. Seasonal bird use of canopy gaps in a bottomland forest

    Treesearch

    Liessa T. Bowen; Christopher E. Moorman; John C. Kilgo

    2007-01-01

    Bird use of small canopy gaps within mature forests has not been well studied, particularly across multiple seasons. We investigated seasonal differences in bird use of gap and forest habitat within a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. Gaps were 0.13- to 0.5-ha, 7- to 8- year-old group-selection timber harvest openings. Our study...

  4. [Response of forest bird communities to forest gap in winter in southwestern China].

    PubMed

    Zhao, Dong-Dong; Wu, Ying-Huan; Lu, Zhou; Jiang, Guang-Wei; Zhou, Fang

    2013-06-01

    Although forest gap ecology is an important field of study, research remains limited. By plot setting and point counted observation, the response of birds to forest gaps in winter as well as bird distribution patterns in forest gaps and intact canopies were studied in a north tropical monsoon forest of southwestern China from November 2011 to February 2012 in the Fangcheng Golden Camellia National Nature Reserve, Guangxi. The regression equation of bird species diversity to habitat factor was Y1=0.611+0.002 X13+0.043 X2+0.002 X5-0.003 X8+0.006 X10+0.008 X1 and the regression equation of bird species dominance index to habitat factor was Y3=0.533+0.001 X13+0.019 X2+0.002 X3-0.017 X4+0.002 X1. There were 45 bird species (2 orders and 13 families) recorded in the forest gap, accounting for 84.9% of all birds (n=45), with an average of 9.6 species (range: 2-22). Thirty-nine bird species (5 orders and 14 families) were recorded in non-gap areas, accounting for 73.6% of all birds (n=39), with an average of 5.3 species (range: 1-12). These results suggested that gap size, arbor average height (10 m from gap margin), arbor quantity (10 m from gap margin), shrub quantity (10 m from gap margin), herbal average coverage (1 m from gap margin) and bare land ratio were the key forest gap factors that influenced bird diversities. On the whole, bird diversity in the forest gap was greater than in the intact canopy. Spatial distributions in the forest gaps were also observed in the bird community. Most birds foraged in the "middle" and "canopy" layers in the vertical stratification. In addition, "nearly from" and "close from" contained more birds in relation to horizontal stratification. Feeding niche differentiation was suggested as the main reason for these distribution patterns.

  5. The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest.

    PubMed

    Abd Latif, Zulkiflee; Blackburn, George Alan

    2010-03-01

    The creation of gaps can strongly influence forest regeneration and habitat diversity within forest ecosystems. However, the precise characteristics of such effects depend, to a large extent, upon the way in which gaps modify microclimate and soil water content. Hence, the aim of this study was to understand the effects of gap creation and variations in gap size on forest microclimate and soil water content. The study site, in North West England, was a mixed temperate broadleaved deciduous forest dominated by mature sessile oak (Quercus petraea), beech (Fagus sylvatica) and ash (Fraxinus excelsior) with some representatives of sycamore (Acer pseudoplatanus). Solar radiation (I), air temperature (T(A)), soil temperature (T(S)), relative humidity (h), wind speed (v) and soil water content (Psi) were measured at four natural treefall gaps created after a severe storm in 2006 and adjacent sub-canopy sites. I, T(A), T(S), and Psi increased significantly with gap size; h was consistently lower in gaps than the sub-canopy but did not vary with gap size, while the variability of v could not be explained by the presence or size of gaps. There were systematic diurnal patterns in all microclimate variables in response to gaps, but no such patterns existed for Psi. These results further our understanding of the abiotic and consequent biotic responses to gaps in broadleaved deciduous forests created by natural treefalls, and provide a useful basis for evaluating the implications of forest management practices.

  6. [Edge effects of forest gap in Pinus massoniana plantations on the decomposition of leaf litter recalcitrant components of Cinnamomum camphora and Toona ciliata.

    PubMed

    Zhang, Yan; Zhang, Dan Ju; Li, Xun; Liu, Hua; Zhang, Ming Jin; Yang, Wan Qin; Zhang, Jian

    2016-04-22

    The objective of the study was to evaluate the dynamics of recalcitrant components during foliar litter decomposition under edge effects of forest gap in Pinus massoniana plantations in the low hilly land, Sichuan basin. A field litterbag experiment was conducted in seven forest gaps with different sizes (100, 225, 400, 625, 900, 1225, 1600 m 2 ) which were generated by thinning P. massoniana plantations. The degradation rate of four recalcitrant components, i.e., condensed tannins, total phenol, lignin and cellulose in foliar litter of two native species (Cinnamomum camphora and Toona ciliata) at the gap edge and under the closed canopy were measured. The results showed that the degradation rate of recalcitrant components in T. ciliata litter except for cellulose at the gap edge were significantly higher than that under the closed canopy. For C. camphora litter, only the degradation of lignin at the gap edge was higher than that under the closed canopy. After one-year decomposition, four recalcitrant components in two types of foliar litter exhibited an increment of degradation rate, and the degradation rate of condensed tannin was the fastest, followed by total phenol and cellulose, but the lignin degradation rate was the slowest. With the increase of gap size, except for cellulose, the degradation rate ofthe other three recalcitrant components of the T. ciliata at the edge of medium sized gaps (400 and 625 m 2 ) were significantly higher than at the edge of other gaps. However, lignin in the C. camphora litter at the 625 m 2 gap edge showed the greatest degradation rate. Both temperature and litter initial content were significantly correlated with litter recalcitrant component degradation. Our results suggested that medium sized gaps (400-625 m 2 ) had a more significant edge effect on the degradation of litter recalcitrant components in the two native species in P. massoniana plantations, however, the effect also depended on species.

  7. Breeding bird assemblages of hurricane-created gaps and adjacent closed canopy forest in the Southern Appalachians

    Treesearch

    Cathryn H. Greenberg; J. Drew Lanham

    2001-01-01

    We studied breeding bird assemblages in forest gaps created in 1995 by Hurricane Opal at the Bent Creek Experimental Forest in Asheville, NC. We hypothesized that forest gaps and adjacent closed-canopy forest would differ in bird density, richness, diversity, and relative abundances of some species. To test this hypothesis we censused breeding bird assemblages for 2...

  8. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest.

    PubMed

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.

  9. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest

    PubMed Central

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate. PMID:26098916

  10. Spatial and temporal patterns of beetles associated with coarse woody debris in managed bottomland hardwood forests

    Treesearch

    Michael D. Ulyshen; James L. Hanula; Scott Horn; John C. Kilgo; Christopher E. Moorman

    2004-01-01

    Malaise traps were used to sample beetles in artificial canopy gaps of different size (0.13 ha, 0.26 ha, and 0.50 ha) and age in a South Carolina bottomland hardwood forest. Traps were placed at the center, edge, and in the surrounding forest of each gap. Young gaps (~1 year) had large amounts of coarse woody debris compared to the surrounding forest, while older gaps...

  11. Spatial scale and sampling resolution affect measures of gap disturbance in a lowland tropical forest: implications for understanding forest regeneration and carbon storage.

    PubMed

    Lobo, Elena; Dalling, James W

    2014-03-07

    Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition.

  12. Using classified Landsat Thematic Mapper data for stratification in a statewide forest inventory

    Treesearch

    Mark H. Hansen; Daniel G. Wendt

    2000-01-01

    The 1998 Indiana/Illinois forest inventory (USDA Forest Service, Forest Inventory and Analysis (FIA)) used Landsat Thematic Mapper (TM) data for stratification. Classified images made by the National Gap Analysis Program (GAP) stratified FIA plots into four classes (nonforest, nonforest/ forest, forest/nonforest, and forest) based on a two pixel forest edge buffer zone...

  13. Using Classified Landsat Thematic Mapper Data for Stratification in a Statewide Forest Inventory

    Treesearch

    Mark H. Hansen; Daniel G. Wendt

    2000-01-01

    The 1998 Indiana/Illinois forest inventory (USDA Forest Service, Forest Inventory and Analysis (FIA)) used Landsat Thematic Mapper (TM} data for stratification. Classified images made by the National Gap Analysis Program (GAP) stratified FIA plots into four classes (nonforest, nonforest/forest, forest/nonforest, and forest) based on a two pixel forest edge buffer zone...

  14. Spatial and temporal patterns of beetles associated with coarse woody debris in managed bottomland hardwood forests.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulyshen, M., D.; Hanula, J., L.; Horn, S.

    2004-05-13

    For. Ecol. and Mgt. 199:259-272. Malaise traps were used to sample beetles in artificial canopy gaps of different size (0.13 ha, 0.26 ha, and0.50 ha) and age in a South Carolina bottomland hardwood forest. Traps were placed at the center, edge, and in the surrounding forest of each gap. Young gaps (ý 1 year) had large amounts of coarse woody debris compared to the surrounding forest, while older gaps (ý 6 years) had virtually none. The total abundance and diversity of wood-dwelling beetles (Buprestidae, Cerambycidae, Brentidae, Bostrichidae, and Curculionidae (Scolytinae and Platypodinae)) was higher in the center of young gapsmore » than in the center of old gaps. The abundance was higher in the center of young gaps than in the surrounding forest, while the forest surrounding old gaps and the edge of old gaps had a higher abundance and diversity of wood-dwelling beetles than did the center of old gaps. There was no difference in wood-dwelling beetle abundance between gaps of different size, but diversity was lower in 0.13 ha old gaps than in 0.26 ha or 0.50 ha old gaps. We suspect that gap size has more of an effect on woodborer abundance than indicated here because malaise traps sample a limited area. The predaceous beetle family Cleridae showed a very similar trend to that of the woodborers. Coarse woody debris is an important resource for many organisms, and our results lend further support to forest management practices that preserve coarse woody debris created during timber removal.« less

  15. Forest Gaps Alter the Total Phenol Dynamics in Decomposing Litter in an Alpine Fir Forest

    PubMed Central

    Li, Han; Xu, Liya; Wu, Fuzhong; Yang, Wanqin; Ni, Xiangyin; He, Jie; Tan, Bo; Hu, Yi

    2016-01-01

    The total phenol content in decomposing litter not only acts as a crucial litter quality indicator, but is also closely related to litter humification due to its tight absorption to clay particles. However, limited attention has been focused on the total phenol dynamics in foliar litter in relation to forest gaps. Here, the foliar litter of six representative tree species was incubated on the forest floor from the gap center to the closed canopy of an alpine Minjiang fir (Abies faxoniana) forest in the upper reaches of the Yangtze River and eastern Tibetan Plateau. The dynamics of total phenol concentration in the incubated litter was measured from November 2012 to October 2014. Over two-year incubation, 78.22% to 94.06% of total phenols were lost from the foliar litter, but 52.08% to 86.41% of this occurred in the first year. Forest gaps accelerated the loss of total phenols in the foliar litter in the winter, although they inhibited the loss of total phenols during the growing season in the first year. In comparison with the effects of forest gaps, the variations of litter quality among different species were much stronger on the dynamics of total phenols in the second year. Overall, the loss of total phenols in the foliar litter was slightly higher in both the canopy gap and the expanded gap than in the gap center and under the closed canopy. The results suggest that the predicted decline in snow cover resulting from winter warming or vanishing gaps caused by forest regeneration will retard the loss of total phenol content in the foliar litter of alpine forest ecosystems, especially in the first decomposition year. PMID:26849120

  16. A study of the influence of forest gaps on fire–atmosphere interactions

    Treesearch

    Michael T. Kiefer; Warren E. Heilman; Shiyuan Zhong; Joseph J. (Jay) Charney; Xindi (Randy) Bian

    2016-01-01

    Much uncertainty exists regarding the possible role that gaps in forest canopies play in modulating fire–atmosphere interactions in otherwise horizontally homogeneous forests. This study examines the influence of gaps in forest canopies on atmospheric perturbations induced by a low-intensity fire using the ARPS-CANOPY model, a version of the Advanced Regional...

  17. Selection of forest canopy gaps by male Cerulean Warblers in West Virginia

    USGS Publications Warehouse

    Perkins, Kelly A.; Wood, Petra Bohall

    2014-01-01

    Forest openings, or canopy gaps, are an important resource for many forest songbirds, such as Cerulean Warblers (Setophaga cerulea). We examined canopy gap selection by this declining species to determine if male Cerulean Warblers selected particular sizes, vegetative heights, or types of gaps. We tested whether these parameters differed among territories, territory core areas, and randomly-placed sample plots. We used enhanced territory mapping techniques (burst sampling) to define habitat use within the territory. Canopy gap densities were higher within core areas of territories than within territories or random plots, indicating that Cerulean Warblers selected habitat within their territories with the highest gap densities. Selection of regenerating gaps with woody vegetation >12 m within the gap, and canopy heights >24 m surrounding the gap, occurred within territory core areas. These findings differed between two sites indicating that gap selection may vary based on forest structure. Differences were also found regarding the placement of territories with respect to gaps. Larger gaps, such as wildlife food plots, were located on the periphery of territories more often than other types and sizes of gaps, while smaller gaps, such as treefalls, were located within territory boundaries more often than expected. The creations of smaller canopy gaps, <100 m2, within dense stands are likely compatible with forest management for this species.

  18. Characterizing the canopy gap structure of a disturbed forest using Fourier transform

    Treesearch

    R. A. Sommerfeld; J. E. Lundquist; J. Smith

    2000-01-01

    Diseases and other small-scale disturbances alter spatial patterns of heterogeneity in forests by killing trees. Canopy gaps caused by tree death are a common feature of forests. Because gaps are caused by different disturbances acting at different times and places, operationally determining the locations of gap edges is often difficult. In this study, digital image...

  19. Spatial scale and sampling resolution affect measures of gap disturbance in a lowland tropical forest: implications for understanding forest regeneration and carbon storage

    PubMed Central

    Lobo, Elena; Dalling, James W.

    2014-01-01

    Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition. PMID:24452032

  20. Soil moisture in sessile oak forest gaps

    NASA Astrophysics Data System (ADS)

    Zagyvainé Kiss, Katalin Anita; Vastag, Viktor; Gribovszki, Zoltán; Kalicz, Péter

    2015-04-01

    By social demands are being promoted the aspects of the natural forest management. In forestry the concept of continuous forest has been an accepted principle also in Hungary since the last decades. The first step from even-aged stand to continuous forest can be the forest regeneration based on gap cutting, so small openings are formed in a forest due to forestry interventions. This new stand structure modifies the hydrological conditions for the regrowth. Without canopy and due to the decreasing amounts of forest litter the interception is less significant so higher amount of precipitation reaching the soil. This research focuses on soil moisture patterns caused by gaps. The spatio-temporal variability of soil water content is measured in gaps and in surrounding sessile oak (Quercus petraea) forest stand. Soil moisture was determined with manual soil moisture meter which use Time-Domain Reflectometry (TDR) technology. The three different sizes gaps (G1: 10m, G2: 20m, G3: 30m) was opened next to Sopron on the Dalos Hill in Hungary. First, it was determined that there is difference in soil moisture between forest stand and gaps. Second, it was defined that how the gap size influences the soil moisture content. To explore the short term variability of soil moisture, two 24-hour (in growing season) and a 48-hour (in dormant season) field campaign were also performed in case of the medium-sized G2 gap along two/four transects. Subdaily changes of soil moisture were performed. The measured soil moisture pattern was compared with the radiation pattern. It was found that the non-illuminated areas were wetter and in the dormant season the subdaily changes cease. According to our measurements, in the gap there is more available water than under the forest stand due to the less evaporation and interception loss. Acknowledgements: The research was supported by TÁMOP-4.2.2.A-11/1/KONV-2012-0004 and AGRARKLIMA.2 VKSZ_12-1-2013-0034.

  1. [Characteristics of soil seed banks in logging gaps of forests at different succession stages in Changbai Mountains].

    PubMed

    Zhang, Zhi-Ting; Song, Xin-Zhang; Xiao, Wen-Fa; Gao, Bao-Jia; Guo, Zhong-Ling

    2009-06-01

    An investigation was made on the soil seed banks in the logging gaps of Populus davidiana--Betula platyphylla secondary forest, secondary broad-leaved forest, and broad-leaved Korean pine mixed forest at their different succession stages in Changbai Mountains. Among the test forests, secondary broad-leaved forest had the highest individual density (652 ind x m(-2)) in its soil seed bank. With the succession of forest community, the diversity and uniformity of soil seed bank increased, but the dominance decreased. The seed density of climax species such as Pinus koraiensis, Abies nephrolepis, and Acer mono increased, whereas that of Maackia amurensis and Fraxinus mandshurica decreased. Moreover, the similarity in species composition between soil seed bank and the seedlings within logging gaps became higher. The individual density and similarity between soil seed bank and the seedlings in non-logging gaps were similar to those in logging gaps. All of these indicated that soil seed bank provided rich seed resources for forest recovery and succession, and the influence of soil seed bank on seedlings regeneration increased with the succession.

  2. Understory plant development in artificial canopy gaps in an 81-year-old forest stand on Chichagof Island, southeast Alaska

    Treesearch

    Scott Harris; Jeffrey Barnard

    2017-01-01

    This study assesses the understory plant response and associated effects on forage resources available to Sitka black-tailed deer (Odocoileus hemionus sitkensis), to the creation of artificial canopy gaps in a young-growth forest stand in the coastal temperate rain forest of southeast Alaska. The forest stand was approximately 58 years old when gaps were created and...

  3. Landscape-scale forest disturbance regimes in southern Peruvian Amazonia.

    PubMed

    Boyd, Doreen S; Hill, Ross A; Hopkinson, Chris; Baker, Timothy R

    2013-10-01

    Landscape-scale gap-size frequency distributions in tropical forests are a poorly studied but key ecological variable. Currently, a scale gap currently exists between local-scale field-based studies and those employing regional-scale medium-resolution satellite data. Data at landscape scales but of fine resolution would, however, facilitate investigation into a range of ecological questions relating to gap dynamics. These include whether canopy disturbances captured in permanent sample plots (PSPs) are representative of those in their surrounding landscape, and whether disturbance regimes vary with forest type. Here, therefore, we employ airborne LiDAR data captured over 142.5 km2 of mature, swamp, and regenerating forests in southeast Peru to assess the landscape-scale disturbance at a sampling resolution of up to 2 m. We find that this landscape is characterized by large numbers of small gaps; large disturbance events are insignificant and infrequent. Of the total number of gaps that are 2 m2 or larger in area, just 0.45% were larger than 100 m2, with a power-law exponent (alpha) value of the gap-size frequency distribution of 2.22. However, differences in disturbance regimes are seen among different forest types, with a significant difference in the alpha value of the gap-size frequency distribution observed for the swamp/regenerating forests compared with the mature forests at higher elevations. Although a relatively small area of the total forest of this region was investigated here, this study presents an unprecedented assessment of this landscape with respect to its gap dynamics. This is particularly pertinent given the range of forest types present in the landscape and the differences observed. The coupling of detailed insights into forest properties and growth provided by PSPs with the broader statistics of disturbance events using remote sensing is recommended as a strong basis for scaling-up estimates of landscape and regional-scale carbon balance.

  4. [Object-oriented segmentation and classification of forest gap based on QuickBird remote sensing image.

    PubMed

    Mao, Xue Gang; Du, Zi Han; Liu, Jia Qian; Chen, Shu Xin; Hou, Ji Yu

    2018-01-01

    Traditional field investigation and artificial interpretation could not satisfy the need of forest gaps extraction at regional scale. High spatial resolution remote sensing image provides the possibility for regional forest gaps extraction. In this study, we used object-oriented classification method to segment and classify forest gaps based on QuickBird high resolution optical remote sensing image in Jiangle National Forestry Farm of Fujian Province. In the process of object-oriented classification, 10 scales (10-100, with a step length of 10) were adopted to segment QuickBird remote sensing image; and the intersection area of reference object (RA or ) and intersection area of segmented object (RA os ) were adopted to evaluate the segmentation result at each scale. For segmentation result at each scale, 16 spectral characteristics and support vector machine classifier (SVM) were further used to classify forest gaps, non-forest gaps and others. The results showed that the optimal segmentation scale was 40 when RA or was equal to RA os . The accuracy difference between the maximum and minimum at different segmentation scales was 22%. At optimal scale, the overall classification accuracy was 88% (Kappa=0.82) based on SVM classifier. Combining high resolution remote sensing image data with object-oriented classification method could replace the traditional field investigation and artificial interpretation method to identify and classify forest gaps at regional scale.

  5. Arthropod abundance and seasonal bird use of bottomland forest harvest gaps

    Treesearch

    Christopher E. Moorman; Liessa T. Woen; John C. Kilgo; James L. Hanula; Scott Horn; Michael D. Ulyshen

    2012-01-01

    We investigated the influence of arthropod abundance and vegetation structure on shifts in avian use of canopy gap, gap edge, and surrounding forest understory in a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. We compared captures of foliage-gleaning birds among locations during four periods (spring migration, breeding, post-breeding, and...

  6. Predicting ToxCast™ and Tox21 Bioactivity Using Toxprint Chemotypes (WC10)

    EPA Science Inventory

    The EPA ToxCast™ and Tox21 programs have generated bioactivity data for nearly 9076 chemicals across ~1192 assay endpoints; however, for over 70% of the chemical-assay endpoint pairs there is no data. To help fill the gaps, we constructed random forest models for each assay endpo...

  7. Bat activity in selection harvests and intact forest canopy gaps at Indiana state forests

    Treesearch

    Scott Haulton; Kathryn L. DeCosta

    2014-01-01

    Forest managers often prescribe silvicultural methods based on how effectively they mimic the natural disturbance agents that have historically shaped the forests they manage. On Indiana state forests, selection systems are used on most harvested acreage and appear to structurally mimic the effects of naturally occurring, gap-forming disturbances affecting individual...

  8. Gap-based silviculture in a sierran mixed-conifer forest: effects of gap size on early survival and 7-year seedling growth

    Treesearch

    Robert A. York; John J. Battles; Robert C. Heald

    2007-01-01

    Experimental canopy gaps ranging in size from 0.1 to 1.0 ha (0.25 to 2.5 acres) were created in a mature mixed conifer forest at Blodgett Forest Research Station, California. Following gap creation, six species were planted in a wagon-wheel design and assessed for survival after two growing seasons. Study trees were measured after seven years to describe the effect of...

  9. Seedfall and seed viability within artificial canopy gaps in a western Washington douglas-fir forest

    Treesearch

    Warren D. Devine; Timothy B. Harrington

    2015-01-01

    Seedfall of coast Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) has been studied at the forest edge-clearcut interface and in small canopy gaps, but it has not been evaluated in gap sizes that would be typical of a group-selection method of regeneration. In a mature Douglas-fir forest in the Puget Sound...

  10. Gap characteristics of southeastern Ohio second-growth forests

    Treesearch

    David M. Hix; Katherine K. Helfrich

    2003-01-01

    Transect sampling was used to assess the features of 30 gaps encountered in upland oak stands on the Wayne National Forest. Tip-ups caused the most canopy gaps (52 percent), two-thirds of which were small (

  11. Forest disturbance in hurricane-related downbursts in the Appalachian mountains of North Carolina

    Treesearch

    Cathryn H. Greenberg; W. Henry McNab

    1998-01-01

    The authors characterized five 0.2 to 1.1 ha gaps created by downbursts during Hurricane Opal in xeric oak forest at the Bent Creek Experimental Forest, Asheville, NC. Direction of windthrow was nonrandom in four of the five gaps, but differed among gaps, suggesting that each was caused by an independent downburst. Windthrows reduced tree density by 19 to 39 percent...

  12. Harvest-related edge effects on prey availability and foraging of hooded warblers in a bottomland hardwood forest.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Kilgo

    2005-04-20

    The effects of harvest-created canopy gaps in bottomland hardwood forests on arthropod abundance and, hence, the foraging ecology of birds are poorly understood. I predicted that arthropod abundance would be high near edges of group-selection harvest gaps and lower in the surrounding forest, and that male Hooded Warblers (Wilsonia citrina) foraging near gaps would find more prey per unit time than those foraging in the surrounding forest. In fact, arthropod abundance was greater >100 m from a gap edge than at 0-30 m or 30-100 m from an edge, due to their abundance on switchcane (Arundinaria gigantea); arthropods did notmore » differ in abundance among distances from gaps on oaks (Quercus spp.) or red maple (Acer rubrum). Similarly, Hooded Warbler foraging attack rates were not higher near gap edges: when foraging for fledglings, attack rate did not differ among distances from gaps, but when foraging for themselves, attack rates actually were lower 0-30 m from gap edges than 30-100 m or >100 m from a gap edge. Foraging attack rate was positively associated with arthropod abundance. Hooded Warblers apparently encountered fewer prey and presumably foraged less efficiently where arthropods were least abundant, i.e., near gaps. That attack rates among birds foraging for fledglings were not affected by distance from gap (and hence arthropod abundance) suggests that prey availability may not be limiting at any location across the forest, despite the depressing effects of gaps on arthropod abundance.« less

  13. Seed Regeneration Potential of Canopy Gaps at Early Formation Stage in Temperate Secondary Forests, Northeast China

    PubMed Central

    Yan, Qiao-Ling; Zhu, Jiao-Jun; Yu, Li-Zhong

    2012-01-01

    Promoting the seed regeneration potential of secondary forests undergoing gap disturbances is an important approach for achieving forest restoration and sustainable management. Seedling recruitment from seed banks strongly determines the seed regeneration potential, but the process is poorly understood in the gaps of secondary forests. The objectives of the present study were to evaluate the effects of gap size, seed availability, and environmental conditions on the seed regeneration potential in temperate secondary forests. It was found that gap formation could favor the invasion of more varieties of species in seed banks, but it also could speed up the turnover rate of seed banks leading to lower seed densities. Seeds of the dominant species, Fraxinus rhynchophylla, were transient in soil and there was a minor and discontinuous contribution of the seed bank to its seedling emergence. For Quercus mongolica, emerging seedling number was positively correlated with seed density in gaps (R = 0.32, P<0.01), especially in medium and small gaps (<500 m2). Furthermore, under canopies, there was a positive correlation between seedling number and seed density of Acer mono (R = 0.43, P<0.01). Gap formation could promote seedling emergence of two gap-dependent species (i.e., Q. mongolica and A. mono), but the contribution of seed banks to seedlings was below 10% after gap creation. Soil moisture and temperature were the restrictive factors controlling the seedling emergence from seeds in gaps and under canopies, respectively. Thus, the regeneration potential from seed banks is limited after gap formation. PMID:22745771

  14. Dynamics of composition and structure in an old Sequoia sempervirens forest

    USGS Publications Warehouse

    Busing, R.T.; Fujimori, T.

    2002-01-01

    Dynamics of a Sequoia sempervirens forest in northern California were studied with long-term plot data (1.44 ha) and recent transect data. The study was conducted in an old stand (> 1100 yr) on alluvial flats. Over three decades (1972-2001), changes in the composition and structure of the tree stratum were minor. Sequoia maintained a broad distribution of stem diameters throughout the period. Annual rates of Sequoia mortality (0.0029) and ingrowth (0.0029) were low, reflecting the great longevity of Sequoia and the slow canopy turnover of the study forest. Transect data also indicated a low frequency of canopy gap disturbance (??? 0.4% of total land area per yr), but gap size was potentially large (> 0.1 ha) and the fraction of area in gaps (ca. 20%) was similar to other temperate forests. Regeneration quadrats sampled along transects, in gap centers, and on logs revealed that Sequoia regeneration is elevated at gap edges. The longevity of Sequoia and its response to gap disturbances ensure that it will remain a dominant species in the study forest.

  15. Convergent structural responses of tropical forests to diverse disturbance regimes.

    PubMed

    Kellner, James R; Asner, Gregory P

    2009-09-01

    Size frequency distributions of canopy gaps are a hallmark of forest dynamics. But it remains unknown whether legacies of forest disturbance are influencing vertical size structure of landscapes, or space-filling in the canopy volume. We used data from LiDAR remote sensing to quantify distributions of canopy height and sizes of 434,501 canopy gaps in five tropical rain forest landscapes in Costa Rica and Hawaii. The sites represented a wide range of variation in structure and natural disturbance history, from canopy gap dynamics in lowland Costa Rica and Hawaii, to stages and types of stand-level dieback on upland Mauna Kea and Kohala volcanoes. Large differences in vertical canopy structure characterized these five tropical rain forest landscapes, some of which were related to known disturbance events. Although there were quantitative differences in the values of scaling exponents within and among sites, size frequency distributions of canopy gaps followed power laws at all sites and in all canopy height classes. Scaling relationships in gap size at different heights in the canopy were qualitatively similar at all sites, revealing a remarkable similarity despite clearly defined differences in species composition and modes of prevailing disturbance. These findings indicate that power-law gap-size frequency distributions are ubiquitous features of these five tropical rain forest landscapes, and suggest that mechanisms of forest disturbance may be secondary to other processes in determining vertical and horizontal size structure in canopies.

  16. Photosynthetic Potential Of Laurel Oak Seedlings Following Canopy Manipulation

    Treesearch

    K.W. McLeod

    2004-01-01

    Abstract The theory of forest gap dynamics predicts that replacement individuals are those that can most fully use the light environment of a gap. Along the Coosawhatchie River in South Carolina, 12 canopy gaps were identified in a bottomland hardwood forest dominated by laurel oak (Quercus laurifolia Michaux). Each gap was...

  17. Diversifying the composition and structure of managed late-successional forests with harvest gaps: What is the optimal gap size?

    Treesearch

    Christel C. Kern; Anthony W. D’Amato; Terry F. Strong

    2013-01-01

    Managing forests for resilience is crucial in the face of uncertain future environmental conditions. Because harvest gap size alters the species diversity and vertical and horizontal structural heterogeneity, there may be an optimum range of gap sizes for conferring resilience to environmental uncertainty. We examined the impacts of different harvest gap sizes on...

  18. A long-term study of tree seedling recruitment in Southern Appalachian forests: the effects of canopy gaps and shrub understories

    Treesearch

    Brian Beckage; James S. Clark; Barton D. Clinton; Bruce L. Haines

    2000-01-01

    We examined the importance of intermediate-sized gaps and a dense shrub layer on tree seedling recruitment in a Southern Appalachian deciduous forest. We created 12 canopy gaps under two contrasting understory conditions: 6 gaps were dominated by the dense, shade-producing shrub, Rhododendron maximum L., while the remaining gaps were relatively open...

  19. Regeneration Patterns in Canopy Gaps of Mixed-oak Forests of the Southern Appalachians: Influences of Topographic Position and Evergreen Understory

    Treesearch

    Barton D. Clinton; Lindsay R. Boring; Wayne T. Swank

    1994-01-01

    Canopy gaps in southern Appalachian mixed-oak forests were assessed for the effects of topographic, gap and stand variables on density of wood seedlings. Seedling density was significantly correlated with percent slope and positively with gap age (l-5 yr). Density varied substantially among topographic positions and increased with gap size. Species richness...

  20. Northward migrating trees establish in treefall gaps at the northern limit of the temperate-boreal ecotone, Ontario, Canada.

    PubMed

    Leithead, Mark D; Anand, Madhur; Silva, Lucas C R

    2010-12-01

    Climate change is expected to promote migration of species. In ecotones, areas of ecological tension, disturbances may provide opportunities for some migrating species to establish in otherwise competitive environments. The size of and time since disturbance may determine the establishment ability of these species. We investigated gap dynamics of an old-growth red pine (Pinus resinosa Sol. ex Aiton) forest in the Great Lakes-St. Lawrence forest in northern Ontario, Canada, a transition zone between temperate and boreal forest. We investigated the effects of gaps of different sizes and ages on tree species abundance and basal area. Our results show that tree species from the temperate forest further south, such as red maple (Acer rubrum L.), red oak (Quercus rubra L.), and white pine (Pinus strobus L.), establish more often in large, old gaps; however, tree species that have more northern distributions, such as black spruce (Picea mariana Mill.), paper birch (Betula papyrifera Marsh.), and red pine show no difference in establishment ability with gap size or age. These differences in composition could not be attributed to autogenic succession. We conclude that treefall gaps in this forest facilitate the establishment of northward migrating species, potentially providing a pathway for future forest migration in response to recent changes in climate.

  1. Long-term fragmentation effects on the distribution and dynamics of canopy gaps in a tropical montane forest

    Treesearch

    Nicholas R. Vaughn; Gregory P. Asner; Christian P. Giardina

    2015-01-01

    Fragmentation alters forest canopy structure through various mechanisms, which in turn drive subsequent changes to biogeochemical processes and biological diversity. Using repeated airborne LiDAR (Light Detection and Ranging) mappings, we investigated the size distribution and dynamics of forest canopy gaps across a topical montane forest landscape in Hawaii naturally...

  2. The role of gap phase processes in the biomass dynamics of tropical forests

    PubMed Central

    Feeley, Kenneth J; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Nur Supardi, M.N; Kassim, Abd Rahman; Tan, Sylvester; Chave, Jérôme

    2007-01-01

    The responses of tropical forests to global anthropogenic disturbances remain poorly understood. Above-ground woody biomass in some tropical forest plots has increased over the past several decades, potentially reflecting a widespread response to increased resource availability, for example, due to elevated atmospheric CO2 and/or nutrient deposition. However, previous studies of biomass dynamics have not accounted for natural patterns of disturbance and gap phase regeneration, making it difficult to quantify the importance of environmental changes. Using spatially explicit census data from large (50 ha) inventory plots, we investigated the influence of gap phase processes on the biomass dynamics of four ‘old-growth’ tropical forests (Barro Colorado Island (BCI), Panama; Pasoh and Lambir, Malaysia; and Huai Kha Khaeng (HKK), Thailand). We show that biomass increases were gradual and concentrated in earlier-phase forest patches, while biomass losses were generally of greater magnitude but concentrated in rarer later-phase patches. We then estimate the rate of biomass change at each site independent of gap phase dynamics using reduced major axis regressions and ANCOVA tests. Above-ground woody biomass increased significantly at Pasoh (+0.72% yr−1) and decreased at HKK (−0.56% yr−1) independent of changes in gap phase but remained stable at both BCI and Lambir. We conclude that gap phase processes play an important role in the biomass dynamics of tropical forests, and that quantifying the role of gap phase processes will help improve our understanding of the factors driving changes in forest biomass as well as their place in the global carbon budget. PMID:17785266

  3. The role of gap phase processes in the biomass dynamics of tropical forests.

    PubMed

    Feeley, Kenneth J; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Nur Supardi, M N; Kassim, Abd Rahman; Tan, Sylvester; Chave, Jérôme

    2007-11-22

    The responses of tropical forests to global anthropogenic disturbances remain poorly understood. Above-ground woody biomass in some tropical forest plots has increased over the past several decades, potentially reflecting a widespread response to increased resource availability, for example, due to elevated atmospheric CO2 and/or nutrient deposition. However, previous studies of biomass dynamics have not accounted for natural patterns of disturbance and gap phase regeneration, making it difficult to quantify the importance of environmental changes. Using spatially explicit census data from large (50 ha) inventory plots, we investigated the influence of gap phase processes on the biomass dynamics of four 'old-growth' tropical forests (Barro Colorado Island (BCI), Panama; Pasoh and Lambir, Malaysia; and Huai Kha Khaeng (HKK), Thailand). We show that biomass increases were gradual and concentrated in earlier-phase forest patches, while biomass losses were generally of greater magnitude but concentrated in rarer later-phase patches. We then estimate the rate of biomass change at each site independent of gap phase dynamics using reduced major axis regressions and ANCOVA tests. Above-ground woody biomass increased significantly at Pasoh (+0.72% yr(-1)) and decreased at HKK (-0.56% yr(-1)) independent of changes in gap phase but remained stable at both BCI and Lambir. We conclude that gap phase processes play an important role in the biomass dynamics of tropical forests, and that quantifying the role of gap phase processes will help improve our understanding of the factors driving changes in forest biomass as well as their place in the global carbon budget.

  4. [Effects of forest gap size on the architecture of Quercus variablis seedlings on the south slope of Qinling Mountains, west China].

    PubMed

    Yu, Bi-yun; Zhang, Wen-hui; He, Ting; You, Jian-jian; Li, Gang

    2014-12-01

    Typical sampling method was conducted to survey the effects of forest gap size on branch architecture, leaf characteristics and their vertical distribution of Quercus variablis seedlings from different size gaps in natural secondary Q. variablis thinning forest, on the south slope of Qinling Mountains. The results showed that gap size significantly affected the diameter, crown area of Q. variablis seedlings. The gap size positively correlated with diameter and negatively correlated with crown area, while it had no significant impact on seedling height, crown length and crown rates. The overall bifurcation ratio, stepwise bifurcation ratio, and ratio of branch diameter followed as large gap > middle gap > small gap > understory. The vertical distribution of first-order branches under different size gaps mainly concentrated at the middle and upper part of trunk, larger diameter first-order branches were mainly distributed at the lower part of trunk, and the angle of first-order branch increased at first and then declined with the increasing seedling height. With the increasing forest gap size, the leaf length, leaf width and average leaf area of seedlings all gradually declined, while the average leaf number per plant and relative total leaf number increased, the leaf length-width ratio kept stable, the relative leaf number was mainly distributed at the middle and upper parts of trunk, the changes of leaf area index was consistent with the change of the relative total number of leaves. There was no significant difference between the diameters of middle gap and large gap seedlings, but the diameter of middle gap seedlings was higher than that of large gap, suggesting the middle gap would benefit the seedlings regeneration and high-quality timber cultivation. To promote the regeneration of Q. variabilis seedlings, and to cultivate high-quality timber, appropriate thinning should be taken to increase the number of middle gaps in the management of Q. variabilis forest.

  5. Canopy gaps affect long-term patterns of tree growth and mortality in mature and old-growth forests in the Pacific Northwest

    Treesearch

    Andrew N. Gray; Thomas A. Spies; Robert J. Pabst

    2012-01-01

    Canopy gaps created by tree mortality can affect the speed and trajectory of vegetation growth. Species’ population dynamics, and spatial heterogeneity in mature forests. Most studies focus on plant development within gaps, yet gaps also affect the mortality and growth of surrounding trees, which influence shading and root encroachment into gaps and determine whether,...

  6. [Effects of forest gap size on the growth and form quality of Taxus wallichina var. mairei in Cunninghamia lanceolata forests].

    PubMed

    Ou, Jian de; Wu, Zhi Zhuang; Luo, Ning

    2016-10-01

    In order to clarify the effects of forest gap size on the growth and stem form quality of Taxus wallichina var. mairei and effectiveness of the precious timbers cultivation, 25 sample plots in Cunninghamia lanceolata forest gaps were established in Mingxi County, Fujian Province, China to determine the indices of the growth, stem form and branching indices of T. wallichina var. mairei seedlings. The relationships between the gap size and growth, stem form and branching were investigated. The 25 sample plots were located at five microhabitats which were classified based on gap size as follows: Class1, 2, 3, 4 and 5, which had a gap size of 25-50 m 2 , 50-75 m 2 , 75-100 m 2 , 100-125 m 2 and 125-150 m 2 , respectively. The evaluation index system of precious timbers was built by using hierarchical analysis. The 5 classes of forest gaps were evaluated comprehensively by using the multiobjective decision making method. The results showed that gap size significantly affected 11 indices, i.e., height, DBH, crown width, forking rate, stem straightness, stem fullness, taperingness, diameter height ratio, height under living branch, interval between branches, and max-branch base diameter. Class1and 2 both significantly promoted the growth of height, DBH and crown width, and both significantly inhibited forking rate and taperingness, and improved stem straightness. Class2 significantly improved stem fullness and diameter height ratio. Class1and 2 significantly improved height under living branch and reduced max-branch base diameter. Class 1 significantly increased interval between branches. Class1and2 significantly improved the comprehensive evaluation score of precious timbers. This study suggested that controlled cutting intensity could be used to create forest gaps of 25-75 m 2 , which improved the precious timber cultivating process of T. wallichina var. mairei in C. lanceolata forests.

  7. Gap Shape Classification using Landscape Indices and Multivariate Statistics

    PubMed Central

    Wu, Chih-Da; Cheng, Chi-Chuan; Chang, Che-Chang; Lin, Chinsu; Chang, Kun-Cheng; Chuang, Yung-Chung

    2016-01-01

    This study proposed a novel methodology to classify the shape of gaps using landscape indices and multivariate statistics. Patch-level indices were used to collect the qualified shape and spatial configuration characteristics for canopy gaps in the Lienhuachih Experimental Forest in Taiwan in 1998 and 2002. Non-hierarchical cluster analysis was used to assess the optimal number of gap clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy gap classification. The gaps for the two periods were optimally classified into three categories. In general, gap type 1 had a more complex shape, gap type 2 was more elongated and gap type 3 had the largest gaps that were more regular in shape. The results were evaluated using Wilks’ lambda as satisfactory (p < 0.001). The agreement rate of confusion matrices exceeded 96%. Differences in gap characteristics between the classified gap types that were determined using a one-way ANOVA showed a statistical significance in all patch indices (p = 0.00), except for the Euclidean nearest neighbor distance (ENN) in 2002. Taken together, these results demonstrated the feasibility and applicability of the proposed methodology to classify the shape of a gap. PMID:27901127

  8. Gap Shape Classification using Landscape Indices and Multivariate Statistics.

    PubMed

    Wu, Chih-Da; Cheng, Chi-Chuan; Chang, Che-Chang; Lin, Chinsu; Chang, Kun-Cheng; Chuang, Yung-Chung

    2016-11-30

    This study proposed a novel methodology to classify the shape of gaps using landscape indices and multivariate statistics. Patch-level indices were used to collect the qualified shape and spatial configuration characteristics for canopy gaps in the Lienhuachih Experimental Forest in Taiwan in 1998 and 2002. Non-hierarchical cluster analysis was used to assess the optimal number of gap clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy gap classification. The gaps for the two periods were optimally classified into three categories. In general, gap type 1 had a more complex shape, gap type 2 was more elongated and gap type 3 had the largest gaps that were more regular in shape. The results were evaluated using Wilks' lambda as satisfactory (p < 0.001). The agreement rate of confusion matrices exceeded 96%. Differences in gap characteristics between the classified gap types that were determined using a one-way ANOVA showed a statistical significance in all patch indices (p = 0.00), except for the Euclidean nearest neighbor distance (ENN) in 2002. Taken together, these results demonstrated the feasibility and applicability of the proposed methodology to classify the shape of a gap.

  9. Gap formation and carbon cycling in the Brazilian Amazon: measurement using high-resolution optical remote sensing and studies in large forest plots

    Treesearch

    F. D. B. Espirito-Santo; M. M. Keller; E. Linder; R. C. Oliveira Junior; C. Pereira; C. G. Oliveira

    2013-01-01

    Background: The dynamics of gaps plays a role in the regimes of tree mortality, production of coarse woody debris (CWD) and the variability of light in the forest understory. Aims: To quantify the area affected by, and the carbon fluxes associated with, natural gap-phase disturbances in a tropical lowland evergreen rain forest by use of ground measurements and high-...

  10. Opportunities and challenges to conserve water on the landscape in snow-dominated forests: The quest for the radiative minima and more...

    NASA Astrophysics Data System (ADS)

    Link, T. E.; Kumar, M.; Pomeroy, J. W.; Seyednasrollah, B.; Ellis, C. R.; Lawler, R.; Essery, R.

    2012-12-01

    In mountainous, forested environments, vegetation exerts a strong control on snowcover dynamics that affect ecohydrological processes, streamflow regimes, and riparian health. Snowcover deposition and ablation patterns in forests are controlled by a complex combination of canopy interception processes coupled with radiative and turbulent heat flux patterns related to topographic and canopy cover variations. In seasonal snow environments, snowcover ablation dynamics in forests are dominated by net radiation. Recent research indicates that in small canopy gaps a net radiation minima relative to both open and forested environments can occur, but depends strongly on solar angle, gap size, slope, canopy height and stem density. The optimal gap size to minimize radiation to snow was estimated to have a diameter between 1 and 2 times the surrounding vegetation height. Physically-based snowmelt simulations indicate that gaps may increase SWE and desynchronize snowmelt by approximately 3 weeks between north and south facing slopes, relative to undisturbed forests. On east and west facing slopes, small gaps cause melt to be slightly delayed relative to intact forests, and have a minimal effect on melt synchronicity between slopes. Recent research focused on canopy thinning also indicates that a net radiation minima occurs in canopies of intermediate densities. Physically-based radiative transfer simulations using a discrete tree-based model indicate that in mid-latitude level forests, the annually-integrated radiative minima occurs at a tree spacing of 2.65 relative to the canopy height. The radiative minima was found to occur in denser forests on south-facing slopes and sparser forests on north-facing slopes. The radiative minimums in thinned forests are controlled by solar angle, crown geometry and density, tree spacing, slope, and aspect. These results indicate that both gap and homogeneous forest thinning may be used to reduce snowmelt rates or alter melt synchronicity, but the exact configuration will be highly spatially variable. Development of management strategies to conserve water on the landscape to enhance forest and riparian health in a changing climate must also rigorously evaluate the effects of canopy thinning and specific hydrometeorological conditions on net radiation, turbulent fluxes, and snow interception processes.

  11. Canopy gap replacement failure in a Pennsylvania forest preserve subject to extreme deer herbivory

    Treesearch

    Brian S. Pedersen; Angela M. Wallis

    2003-01-01

    While research has demonstrated the adverse effects of deer herbivory on forest regeneration in forests managed for timber production, less study has been devoted to the long term effects of deer on the dynamics of forests set aside as natural areas. At sufficiently high population densities, deer could interrupt the typical cycle of canopy gap formation and...

  12. The effects of seed dispersal on the simulation of long-term forest landscape change

    Treesearch

    Hong S. He; David J. Mladenoff

    1999-01-01

    The study of forest landscape change requires an understanding of the complex interactions of both spatial and temporal factors. Traditionally, forest gap models have been used to simulate change on small and independent plots. While gap models are useful in examining forest ecological dynamics across temporal scales, large, spatial processes, such as seed dispersal,...

  13. Challenges facing gap-based silviculture and possible solutions for mesic northern forests in North America

    Treesearch

    Christel C. Kern; Julia I. Burton; Patricia Raymond; Anthony W. D' Amato; William S. Keeton; Alex Royo; Michael B. Walters; Christopher R. Webster; John L. Willis

    2017-01-01

    Gap-based silvicultural systems were developed under the assumption that richness, and diversity of tree species and other biota positively respond to variation in size of harvest-created canopy gaps. However, varying gap size alone often does not meet diversity objectives and broader goals to address contemporary forest conditions. Recent research highlights the need...

  14. Microsite controls on tree seedling establishment in conifer forest canopy gaps

    Treesearch

    Andrew N. Gray; Thomas A. Spies

    1997-01-01

    Tree seedling establishment and growth were studied in experimental canopy gaps to assess the effect of heterogeneity of regeneration microsites within and among gaps in mature conifer forests. Seedlings were studied for two years in closed-canopy areas and in recently created gaps ranging in size from 40 to 2000 m2 in four stands of mature (90-...

  15. Canopy gap size influences niche partitioning of the ground-layer plant community in a northern temperate forest

    Treesearch

    Christel C. Kern; Rebecca A. Montgomery; Peter B. Reich; Terry F. Strong

    2013-01-01

    The Gap Partitioning Hypothesis (GPH) posits that gaps create heterogeneity in resources crucial for tree regeneration in closed-canopy forests, allowing trees with contrasting strategies to coexist along resource gradients. Few studies have examined gap partitioning of temperate, ground-layer vascular plants. We used a ground-layer plant community of a temperate...

  16. Landscape Scale Assessment of Predominant Pine Canopy Height for Red-cockaded Woodpecker Habitat Assessment Using Light Detection and Ranging (LIDAR) Data

    DTIC Science & Technology

    2011-03-26

    forest patches extracted from GAP landcover for Fort Bragg study area...7 7 Individual pine forest patches extracted from GAP landcover for Fort Bragg...University for their assis- tance in acquiring Gap Analysis Program (GAP) landcover maps for the study regions. Natalie Myers and James Westervelt of U.S

  17. Canopy Gap Characteristics and Drought Influences in Oak Forests of the Coweeta Basin

    Treesearch

    B.D. Clinton; L.R. Boring

    1993-01-01

    Canopy gaps in southern Appalachian mixed-Quercus forests were characterized to assess the impact of the 1985-l988 record drought on patterns of tree mortality in relation to topographic variables and changes in overstory composition. Using permanent transects, we sampled 68 canopy gaps within the Coweeta Basin. Among l-5 yr old gaps, the most...

  18. The influece of forest gaps on some properties of humus in a managed beech forest, northern Iran

    NASA Astrophysics Data System (ADS)

    Vajari, K. A.

    2015-10-01

    The present research focuses on the effect of eight-year-old artificially created gaps on some properties of humus in managed beech-dominated stand in Hyrcanian forest of northern Iran. In this study, six-teen gaps were sampled in site and were classified into four classes (small, medium, large, and very large) with four replications for each. Humus sampling was carried out at the centre and at the cardinal points within each gap as well as in the adjacent closed stand, separately, as composite samples. The variables of organic carbon, P, K, pH, and total N were measured for each sample. It was found that the gap size had significant effect only on total N (%) and organic carbon (%) in beech stand. The amount of potassium clearly differed among three positions in beech forest. The adjacent stand had higher significantly potassium than center and edge of gaps. Different amount of potassium was detected in gap center and gap edge. Comparison of humus properties between gaps and its adjacent stand pointed to the higher amount of potassium in adjacent stand than that in gaps but there was no difference between them regarding other humus properties. According to the results, it can be concluded that there is relatively similar condition among gaps and closed adjacent stands in terms of humus properties eight years after logging in the beech stand.

  19. Gap locations influence the release of carbon, nitrogen and phosphorus in two shrub foliar litter in an alpine fir forest

    PubMed Central

    He, Wei; Wu, Fuzhong; Yang, Wanqin; Zhang, Danju; Xu, Zhenfeng; Tan, Bo; Zhao, Yeyi; Justine, Meta Francis

    2016-01-01

    Gap formation favors the growth of understory plants and affects the decomposition process of plant debris inside and outside of gaps. Little information is available regarding how bioelement release from shrub litter is affected by gap formation during critical periods. The release of carbon (C), nitrogen (N), and phosphorus (P) in the foliar litter of Fargesia nitida and Salix paraplesia in response to gap locations was determined in an alpine forest of the eastern Qinghai-Tibet Plateau via a 2-year litter decomposition experiment. The daily release rates of C, N, and P increased from the closed canopy to the gap centers during the two winters, the two later growing seasons and the entire 2 years, whereas this trend was reversed during the two early growing seasons. The pairwise ratios among C, N, and P converged as the litter decomposition proceeded. Compared with the closed canopy, the gap centers displayed higher C:P and N:P ratio but a lower C:N ratio as the decomposition proceeded. Alpine forest gaps accelerate the release of C, N, and P in decomposing shrub litter, implying that reduced snow cover resulting from vanishing gaps may inhibit the release of these elements in alpine forests. PMID:26906762

  20. Calibrating and testing a gap model for simulating forest management in the Oregon Coast Range

    Treesearch

    Robert J. Pabst; Matthew N. Goslin; Steven L. Garman; Thomas A. Spies

    2008-01-01

    The complex mix of economic and ecological objectives facing today's forest managers necessitates the development of growth models with a capacity for simulating a wide range of forest conditions while producing outputs useful for economic analyses. We calibrated the gap model ZELIG to simulate stand level forest development in the Oregon Coast Range as part of a...

  1. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest

    Treesearch

    Scott Horn; James L. Hanula; Michael D. Ulyshen; John C. Kilgo

    2005-01-01

    We found more green tree frogs (Hyla cinera) in canopy gaps than in closed canopy forest. Of the 331 gree ntree frogs observed, 88% were in canopy gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat. Flies were the most commonly collected insect group accounting for 54% of the total capture. These data...

  2. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, Scott; Hanula, James L.; Ulyshen, Michael D.

    2005-01-01

    Horn, Scott, James L. Hanula, Michael D. Ulyshen, and John C. Kilgo. 2005. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest. Am. Midl. Nat. 153:321-326. Abstract: We found more green tree frogs (Hyla cinerea) in canopy gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopy gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat. Flies were the most commonly collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogsmore » were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.« less

  3. [Effects of forest gap size and uprooted microsite on the microclimate in Pinus koraiensis-dominated broad-leaved mixed forest].

    PubMed

    Duan, Wen-biao; Du, Shan; Chen, Li-xin; Wang, Li-xia; Wei, Quan-shuai; Zhao, Jian-hui

    2013-08-01

    Three representative forest gaps with pit-mound microsites formed by uprooted trees were selected within the 2.55 hm2 plot in a Pinus koraiensis-dominated broad-leaved mixed forest in Xiao Xing'an Mountains of Northeast China. The cleared land and closed stand were set up as the controls, and the PAR, air temperature and relative humidity in the centers of different size gaps and in mound top as well as the total radiation and precipitation in the gap centers were measured between July and September, 2011 by using multichannel automatic meteorological stations. The differences of the microclimate between the gap centers and mound top in different months were compared, and the monthly and diurnal variations of the microclimatic factors in the gap centers and in the mound top under typical weather conditions were analyzed. The results showed that the mean monthly PAR and air temperature in the three gaps of different sizes were in the order of large gap > medium gap > small gap, and the mean monthly relative humidity was in the order of small gap > medium gap > large gap. For the same size gap, the mean monthly PAR and air temperature were higher in the mound top than in the gap center, whereas the mean monthly relative humidity was higher in the gap center than in the mound top. Both the mean monthly total radiation and the mean monthly air temperature in the forest gaps and in the controls were in the order of July > August > September and of cleared land > large gap > medium gap > small gap > closed stand, while the mean monthly relative humidity was in the order of closed stand > small gap > medium gap > large gap > cleared land. The differences in the mean monthly relative humidity between closed stand and various gaps and between closed stand and cleared land reached significant level. The monthly precipitation from July to September decreased in the order of cleared land > large gap > medium gap > small gap > closed stand. Whether in sunny days or in overcast days, the mean daily PAR and air temperature were higher in mound top than in gap center, and the mean daily relative humidity was in opposite. Whether in mound top or in gap center, the mean daily PAR and air temperature were higher in sunny days than in overcast days, while the mean daily relative humidity was higher in overcast days than in sunny days.

  4. Regeneration in bottomland forest canopy gaps six years after variable retention harvests to enhance wildlife habitat

    USGS Publications Warehouse

    Twedt, Daniel J.; Somershoe, Scott G.; Guldin, James M.

    2013-01-01

    To promote desired forest conditions that enhance wildlife habitat in bottomland forests, managers prescribed and implemented variable-retention harvest, a.k.a. wildlife forestry, in four stands on Tensas River National Wildlife Refuge, LA. These treatments created canopy openings (gaps) within which managers sought to regenerate shade-intolerant trees. Six years after prescribed harvests, we assessed regeneration in 41 canopy gaps and 4 large (>0.5-ha) patch cut openings that resulted from treatments and in 21 natural canopy gaps on 2 unharvested control stands. Mean gap area of anthropogenic gaps (582 m²) was greater than that of natural gaps (262 m²). Sweetgum (Liquidambar styraciflua) and red oaks (Quercus nigra, Q. nuttallii, and Q. phellos) were common in anthropogenic gaps, whereas elms (Ulmus spp.) and sugarberry (Celtis laevigata) were numerous in natural gaps. We recommend harvest prescriptions include gaps with diameter >25 m, because the proportion of shade-intolerant regeneration increased with gap area up to 500 m². The proportion of shade-intolerant definitive gap fillers (individuals likely to occupy the canopy) increased with gap area: 35 percent in natural gaps, 54 percent in anthropogenic gaps, and 84 percent in patch cuts. Sweetgum, green ash (Fraxinus pennsylvanica), and red oaks were common definitive gap fillers.

  5. Dynamic conservation of forest genetic resources in 33 European countries.

    PubMed

    Lefèvre, François; Koskela, Jarkko; Hubert, Jason; Kraigher, Hojka; Longauer, Roman; Olrik, Ditte C; Schüler, Silvio; Bozzano, Michele; Alizoti, Paraskevi; Bakys, Remigijus; Baldwin, Cathleen; Ballian, Dalibor; Black-Samuelsson, Sanna; Bednarova, Dagmar; Bordács, Sándor; Collin, Eric; de Cuyper, Bart; de Vries, Sven M G; Eysteinsson, Thröstur; Frýdl, Josef; Haverkamp, Michaela; Ivankovic, Mladen; Konrad, Heino; Koziol, Czesław; Maaten, Tiit; Notivol Paino, Eduardo; Oztürk, Hikmet; Pandeva, Ivanova Denitsa; Parnuta, Gheorghe; Pilipovič, Andrej; Postolache, Dragos; Ryan, Cathal; Steffenrem, Arne; Varela, Maria Carolina; Vessella, Federico; Volosyanchuk, Roman T; Westergren, Marjana; Wolter, Frank; Yrjänä, Leena; Zariŋa, Inga

    2013-04-01

    Dynamic conservation of forest genetic resources (FGR) means maintaining the genetic diversity of trees within an evolutionary process and allowing generation turnover in the forest. We assessed the network of forests areas managed for the dynamic conservation of FGR (conservation units) across Europe (33 countries). On the basis of information available in the European Information System on FGR (EUFGIS Portal), species distribution maps, and environmental stratification of the continent, we developed ecogeographic indicators, a marginality index, and demographic indicators to assess and monitor forest conservation efforts. The pan-European network has 1967 conservation units, 2737 populations of target trees, and 86 species of target trees. We detected a poor coincidence between FGR conservation and other biodiversity conservation objectives within this network. We identified 2 complementary strategies: a species-oriented strategy in which national conservation networks are specifically designed for key target species and a site-oriented strategy in which multiple-target units include so-called secondary species conserved within a few sites. The network is highly unbalanced in terms of species representation, and 7 key target species are conserved in 60% of the conservation units. We performed specific gap analyses for 11 tree species, including assessment of ecogeographic, demographic, and genetic criteria. For each species, we identified gaps, particularly in the marginal parts of their distribution range, and found multiple redundant conservation units in other areas. The Mediterranean forests and to a lesser extent the boreal forests are underrepresented. Monitoring the conservation efficiency of each unit remains challenging; however, <2% of the conserved populations seem to be at risk of extinction. On the basis of our results, we recommend combining species-oriented and site-oriented strategies. © 2012 Society for Conservation Biology.

  6. Gap models and their individual-based relatives in the assessment of the consequences of global change

    NASA Astrophysics Data System (ADS)

    Shugart, Herman H.; Wang, Bin; Fischer, Rico; Ma, Jianyong; Fang, Jing; Yan, Xiaodong; Huth, Andreas; Armstrong, Amanda H.

    2018-03-01

    Individual-based models (IBMs) of complex systems emerged in the 1960s and early 1970s, across diverse disciplines from astronomy to zoology. Ecological IBMs arose with seemingly independent origins out of the tradition of understanding the ecosystems dynamics of ecosystems from a ‘bottom-up’ accounting of the interactions of the parts. Individual trees are principal among the parts of forests. Because these models are computationally demanding, they have prospered as the power of digital computers has increased exponentially over the decades following the 1970s. This review will focus on a class of forest IBMs called gap models. Gap models simulate the changes in forests by simulating the birth, growth and death of each individual tree on a small plot of land. The summation of these plots comprise a forest (or set of sample plots on a forested landscape or region). Other, more aggregated forest IBMs have been used in global applications including cohort-based models, ecosystem demography models, etc. Gap models have been used to provide the parameters for these bulk models. Currently, gap models have grown from local-scale to continental-scale and even global-scale applications to assess the potential consequences of climate change on natural forests. Modifications to the models have enabled simulation of disturbances including fire, insect outbreak and harvest. Our objective in this review is to provide the reader with an overview of the history, motivation and applications, including theoretical applications, of these models. In a time of concern over global changes, gap models are essential tools to understand forest responses to climate change, modified disturbance regimes and other change agents. Development of forest surveys to provide the starting points for simulations and better estimates of the behavior of the diversity of tree species in response to the environment are continuing needs for improvement for these and other IBMs.

  7. Response of a boreal forest to canopy opening: assessing vertical and lateral tree growth with multi-temporal lidar data.

    PubMed

    Vepakomma, Udayalakshmi; St-Onge, Benoit; Kneeshaw, Daniel

    2011-01-01

    Fine-scale height-growth response of boreal trees to canopy openings is difficult to measure from the ground, and there are important limitations in using stereophotogrammetry in defining gaps and determining individual crowns and height. However, precise knowledge on height growth response to different openings is critical for refining partial harvesting techniques. In this study, we question whether conifers and hardwoods respond equally in terms of sapling growth or lateral growth to openings. We also ask to what distance gaps affect tree growth into the forest. We use multi-temporal lidar to characterize tree/sapling height and lateral growth responses over five years to canopy openings and high resolution images to identify conifers and hardwoods. Species-class-wise height-growth patterns of trees/saplings in various neighborhood contexts were determined across a 6-km matrix of Canadian boreal mixed deciduous coniferous forests. We then use statistical techniques to probe how these growth responses vary by spatial location with respect to the gap edge. Results confirm that both mechanisms of gap closure contribute to the closing of canopies at a rate of 1.2% per annum. Evidence also shows that both hardwood and conifer gap edge trees have a similar lateral growth (average of 22 cm/yr) and similar rates of height growth irrespective of their location and initial height. Height growth of all saplings, however, was strongly dependent on their position within the gap and the size of the gap. Results suggest that hardwood and softwood saplings in gaps have greatest growth rates at distances of 0.5-2 m and 1.5-4 m from the gap edge and in openings smaller than 800 m2 and 250 m2, respectively. Gap effects on the height growth of trees in the intact forest were evident up to 30 m and 20 m from gap edges for hardwood and softwood overstory trees, respectively. Our results thus suggest that foresters should consider silvicultural techniques that create many small openings in mixed coniferous deciduous boreal forests to maximize the growth response of both residual and regenerating trees.

  8. Soil respiration patterns in root gaps 27 years after small scale experimental disturbance in Pinus contorta forests

    NASA Astrophysics Data System (ADS)

    Baker, S.; Berryman, E.; Hawbaker, T. J.; Ewers, B. E.

    2015-12-01

    While much attention has been focused on large scale forest disturbances such as fire, harvesting, drought and insect attacks, small scale forest disturbances that create gaps in forest canopies and below ground root and mycorrhizal networks may accumulate to impact regional scale carbon budgets. In a lodgepole pine (Pinus contorta) forest near Fox Park, WY, clusters of 15 and 30 trees were removed in 1988 to assess the effect of tree gap disturbance on fine root density and nitrogen transformation. Twenty seven years later the gaps remain with limited regeneration present only in the center of the 30 tree plots, beyond the influence of roots from adjacent intact trees. Soil respiration was measured in the summer of 2015 to assess the influence of these disturbances on carbon cycling in Pinus contorta forests. Positions at the centers of experimental disturbances were found to have the lowest respiration rates (mean 2.45 μmol C/m2/s, standard error 0.17 C/m2/s), control plots in the undisturbed forest were highest (mean 4.15 μmol C/m2/s, standard error 0.63 C/m2/s), and positions near the margin of the disturbance were intermediate (mean 3.7 μmol C/m2/s, standard error 0.34 C/m2/s). Fine root densities, soil nitrogen, and microclimate changes were also measured and played an important role in respiration rates of disturbed plots. This demonstrates that a long-term effect on carbon cycling occurs when gaps are created in the canopy and root network of lodgepole forests.

  9. Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park

    USGS Publications Warehouse

    Kane, Van R.; Lutz, James A.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Povak, Nicholas A.; Brooks, Matthew L.

    2013-01-01

    While fire shapes the structure of forests and acts as a keystone process, the details of how fire modifies forest structure have been difficult to evaluate because of the complexity of interactions between fires and forests. We studied this relationship across 69.2 km2 of Yosemite National Park, USA, that was subject to 32 fires ⩾40 ha between 1984 and 2010. Forests types included ponderosa pine (Pinus ponderosa), white fir-sugar pine (Abies concolor/Pinus lambertiana), and red fir (Abies magnifica). We estimated and stratified burned area by fire severity using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR). Airborne LiDAR data, acquired in July 2010, measured the vertical and horizontal structure of canopy material and landscape patterning of canopy patches and gaps. Increasing fire severity changed structure at the scale of fire severity patches, the arrangement of canopy patches and gaps within fire severity patches, and vertically within tree clumps. Each forest type showed an individual trajectory of structural change with increasing fire severity. As a result, the relationship between estimates of fire severity such as RdNBR and actual changes appears to vary among forest types. We found three arrangements of canopy patches and gaps associated with different fire severities: canopy-gap arrangements in which gaps were enclosed in otherwise continuous canopy (typically unburned and low fire severities); patch-gap arrangements in which tree clumps and gaps alternated and neither dominated (typically moderate fire severity); and open-patch arrangements in which trees were scattered across open areas (typically high fire severity). Compared to stands outside fire perimeters, increasing fire severity generally resulted first in loss of canopy cover in lower height strata and increased number and size of gaps, then in loss of canopy cover in higher height strata, and eventually the transition to open areas with few or no trees. However, the estimated fire severities at which these transitions occurred differed for each forest type. Our work suggests that low severity fire in red fir forests and moderate severity fire in ponderosa pine and white fir-sugar pine forests would restore vertical and horizontal canopy structures believed to have been common prior to the start of widespread fire suppression in the early 1900s. The fusion of LiDAR and Landsat data identified post-fire structural conditions that would not be identified by Landsat alone, suggesting a broad applicability of combining Landsat and LiDAR data for landscape-scale structural analysis for fire management.

  10. Seasonal Abundance of Groud-Occurring Macroarthropods in Forest and Canopy Gaps in the Southern Appalachians

    Treesearch

    Cathryn H. Greenberg; T.G. Forrest

    2003-01-01

    Arthropods compose a large proportion of biological diversity and play important ecological roles as decomposers, pollinators, predators, prey, and nutrient cyclers. We sampled ground-occurring macroarthropods in intact gaps created by wind disturbance, in salvage-logged gaps, and in closed canopy mature forest (controls) during June 1998-May 1999 using drift fences...

  11. Tropical forest carbon balance: effects of field- and satellite-based mortality regimes on the dynamics and the spatial structure of Central Amazon forest biomass

    NASA Astrophysics Data System (ADS)

    Di Vittorio, Alan V.; Negrón-Juárez, Robinson I.; Higuchi, Niro; Chambers, Jeffrey Q.

    2014-03-01

    Debate continues over the adequacy of existing field plots to sufficiently capture Amazon forest dynamics to estimate regional forest carbon balance. Tree mortality dynamics are particularly uncertain due to the difficulty of observing large, infrequent disturbances. A recent paper (Chambers et al 2013 Proc. Natl Acad. Sci. 110 3949-54) reported that Central Amazon plots missed 9-17% of tree mortality, and here we address ‘why’ by elucidating two distinct mortality components: (1) variation in annual landscape-scale average mortality and (2) the frequency distribution of the size of clustered mortality events. Using a stochastic-empirical tree growth model we show that a power law distribution of event size (based on merged plot and satellite data) is required to generate spatial clustering of mortality that is consistent with forest gap observations. We conclude that existing plots do not sufficiently capture losses because their placement, size, and longevity assume spatially random mortality, while mortality is actually distributed among differently sized events (clusters of dead trees) that determine the spatial structure of forest canopies.

  12. Investigating the relationship between tree heights derived from SIBBORK forest model and remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Osmanoglu, B.; Feliciano, E. A.; Armstrong, A. H.; Sun, G.; Montesano, P.; Ranson, K.

    2017-12-01

    Tree heights are one of the most commonly used remote sensing parameters to measure biomass of a forest. In this project, we investigate the relationship between remotely sensed tree heights (e.g. G-LiHT lidar and commercially available high resolution satellite imagery, HRSI) and the SIBBORK modeled tree heights. G-LiHT is a portable, airborne imaging system that simultaneously maps the composition, structure, and function of terrestrial ecosystems using lidar, imaging spectroscopy and thermal mapping. Ground elevation and canopy height models were generated using the lidar data acquired in 2012. A digital surface model was also generated using the HRSI technique from the commercially available WorldView data in 2016. The HRSI derived height and biomass products are available at the plot (10x10m) level. For this study, we parameterized the SIBBORK individual-based gap model for Howland forest, Maine. The parameterization was calibrated using field data for the study site and results show that the simulated forest reproduces the structural complexity of Howland old growth forest, based on comparisons of key variables including, aboveground biomass, forest height and basal area. Furthermore carbon cycle and ecosystem observational capabilities will be enhanced over the next 6 years via the launch of two LiDAR (NASA's GEDI and ICESAT 2) and two SAR (NASA's ISRO NiSAR and ESA's Biomass) systems. Our aim is to present the comparison of canopy height models obtained with SIBBORK forest model and remote sensing techniques, highlighting the synergy between individual-based forest modeling and high-resolution remote sensing.

  13. Do canopy disturbances drive forest plantations into more natural conditions? — A case study from Can Gio Biosphere Reserve, Viet Nam

    NASA Astrophysics Data System (ADS)

    Vogt, Juliane; Kautz, Markus; Fontalvo Herazo, Martha Liliana; Triet, Tran; Walther, Denny; Saint-Paul, Ulrich; Diele, Karen; Berger, Uta

    2013-11-01

    Large areas of mangrove forests were devastated in South Viet Nam during the second Indochina war. After its end in 1975, extensive reforestation with monocultures took place. Can Gio, one of the biggest replanted sites with about 20,000 ha of mangroves mainly Rhizophora apiculata, was declared a biosphere reserve by the UNESCO in 2000. Although this status now enables progressive forest dynamics, there are still drawbacks resulting from the unnatural character of the plantations. For example, the homogeneous size and age structure as well as the regular arrangement of the planted trees make larger forest stands more vulnerable to synchronized collapsing which can be triggered by stronger winds and storms. A transformation into a more natural forest characterized by a heterogeneous age and size structure and a mixed species composition is of urgent need to avoid a synchronized dieback. In this study we test the capability of natural canopy disturbances (e.g. lightning strikes) to facilitate this transformation.Canopy gaps created by lightning strikes were detected and quantified by remote sensing techniques. SPOT satellite images from the years 2003, 2005 and 2007 provided information about the spatial distribution, size, shape, and formation frequency of the gaps. Lightning strike gaps were identified based on their shape and size. They form small openings (mean: 0.025 ha) and their yearly probability of occurrence was determined to be approximately 0.012 per hectare. Selected gaps were surveyed in the field in 2008 to complement the remote sensing data and to provide information upon forest structure and regeneration.Simulation experiments were carried out with the individual-based KiWi mangrove model for quantifying the influence of different lightning regimes on the vertical and horizontal structure of the R. apiculata plantation. In addition, we conducted simulations with a natural and thus randomly generated forest to compare the structure of the two different cultivation types (i.e. plantation and natural forest). The simulation shows that even small disturbances can already partly buffer the risk of cohort senescence of monospecific even-aged plantations. However, after the decline of the plantation, the disturbance regime does not play an important role for further stand development. After the break-up of the initial strongly regular structure of the simulated plantation, a vertical pattern, i.e. height distribution of the trees, similar to the one of the natural forest, emerged quickly. However, the convergence for the horizontal structure i.e. the distance of trees to their nearest neighbor, took twice as long as for the vertical structure. Our results highlight the importance of small disturbances such as lightning strikes to mitigate vulnerability against synchronous windfall in homogenous forest structures. Hence, creating small openings artificially may be an appropriate management measure in areas where the frequency of natural small-scale disturbances is low.

  14. Short-Term Responses of Birds to Forest Gaps and Understory: An Assessment of Reduced-Impact Logging in a Lowland Amazon Forest.

    Treesearch

    Joseph M. Wunderle Jr.; Luiza Magalli Pinto Henriques; Michael R. Willig

    2006-01-01

    We studied physiognomy-specific (i.e., gaps vs. understory) responses of birds to low harvest (18.7 m3/ha), reduced-impact logging by comparing 3500 mist net captures in control and cut blocks of an Amazonian terra firme forest in Brazil at 20–42 mo postharvest. Species richness did not differ significantly between control (92 species) and cut (85) forest based on...

  15. Regeneration in bottomland forest canopy gaps 6 years after variable retention harvests to enhance wildlife habitat

    Treesearch

    Daniel J. Twedt; Scott G. Somershoe

    2013-01-01

    To promote desired forest conditions that enhance wildlife habitat in bottomland forests, managers prescribed and implemented variable-retention harvest, a.k.a. wildlife forestry, in four stands on Tensas River National Wildlife Refuge, LA. These treatments created canopy openings (gaps) within which managers sought to regenerate shade-intolerant trees. Six years after...

  16. Harvest-related edge effects on prey availability and foraging of hooded warblers in a bottomland hardwood forest

    Treesearch

    John C. Kilgo

    2005-01-01

    The effects of harvest-created canopy gaps in bottomland hardwood forests on arthropod abundance and, hence, the foraging ecology of birds are poorly understood. I predicted that arthropod abundance would be high near edges of group-selection harvest gaps and lower in the surrounding forest, and that male Hooded Warblers (Wilsonia citrina) foraging...

  17. Demographic disequilibrium caused by canopy gap expansion and recruitment failure triggers forest cover loss

    Treesearch

    Martin Barrette; Louis Bélanger; Louis De Grandpré; Alejandro A. Royo

    2017-01-01

    In the absence of large-scale stand replacing disturbances, boreal forests can remain in the old-growth stage over time because of a dynamic equilibrium between small-scale mortality and regeneration processes. Although this gap paradigm has been a cornerstone of forest dynamics theory and practice for decades, evidence suggests that it could be disrupted, threatening...

  18. Seasonal diets of insectivorous birds using canopy gaps in a bottomland forest

    Treesearch

    Christopher E. Moorman; Liessa T. Bowen; John C. Kilgo; Clyde E. Sorenson; James L. Hanula; Scott Horn; Mike D. Ulyshen

    2007-01-01

    Little is known about how insectivorous bird diets are influenced by arthropod availability and about how these relationships vary seasonally. We captured birds in forest-canopy gaps and adjacent mature forest during 2001 and 2002 at the Savannah River Site in Barnwell County, South Carolina, and flushed their crops to gather information about arthropods eaten during...

  19. Effects of microhabitat on palm seed predation in two forest fragments in southeast Brazil

    NASA Astrophysics Data System (ADS)

    Fleury, Marina; Galetti, Mauro

    2004-12-01

    The establishment of plants depends crucially on where seeds are deposited in the environment. Some authors suggest that in forest understory seed predation is lower than in gaps, and higher than at the forest edge. However, most studies have been carried out in large forest patches and very little is known about the effects of microhabitat conditions on seed predation in forest fragments. We evaluated the effects of three microhabitats (gaps, forest edge, and understory) on seed predation of two palm species ( Euterpe edulis and Syagrus romanzoffiana) in two semi-deciduous forest fragments (230 and 2100 ha) in southeast Brazil. Our objective was to test two hypotheses: (1) Low rodent abundance in small fragments as a result of meso-predator action levels leads to lower seed predation in small fragments. (2) Most mammal species in small fragments are generalists with respect to diet and habitat, so that seed predation is similar in different microhabitats (gaps, forest edge and understory) in the small fragment, but not in the larger one. The study community of small fragments is usually composed of generalist species (in diet and habitat aspects), so we expected the same rate of seed predation among microhabitats (gaps, forest edge and understory) in the tested smaller fragment. The experiment was carried out in the dry season (for E. edulis) and in the wet season (for S. romanzoffiana) in 1999. We conclude that post-dispersal seed predation in forest fragments can be directly connected with mammal communities, reflecting their historical and ecological aspects.

  20. [Dynamics of Quercus variabilis seed rain and soil seed bank in different habitats on the north slope of Qinling Mountains].

    PubMed

    Wu, Min; Zhang, Wen-Hui; Zhou, Jian-Yun; Ma, Chuang; Ma, Li-Wei

    2011-11-01

    In order to explore the dynamics of Quercus variabilis seed rain and soil seed bank in different habitats on the north slope of Qinling Mountains, three kinds of micro-habitats (understory, forest gap, and forest edge) were selected, with the seed rain quantity and quality of Q. variabilis, seed amount and viability in soil seed bank, as well as the seedling development of Q. variabilis studied. The seed rain of Q. variabilis started from mid August, reached the peak in mid September-early October, and ended at the beginning of November, and there existed differences in the dissemination process, occurrence time, and composition of the seed rain among the three micro-habitats. The seed rain had the maximum intensity (39.55 +/- 5.56 seeds x m(-2)) in understory, the seeds had the earliest landing time, the longest lasting duration, and the highest viability in forest gap, and the mature seeds had the largest proportion in forest edge, accounting for 58.7% of the total. From the ending time of seed rain to next August, the total reserve of soil seed bank was the largest in understory and the smallest in forest edge. In the three habitats, the amount of mature and immature seeds, that of seeds eaten by animals, and the seed viability in soil seed bank all decreased with time. In contrast, the number of moldy seeds increased. The seeds were mainly concentrated in litter layer, a few of them were in 0-2 cm soil layer, and few were in 2-5 cm soil layer. The density of the seedlings varied with habitats, being the largest in forest gap, followed by in forest edge, and the least in understory, which suggested that forest gap was more suitable for the seed germination and seedling growth of Q. variabilis, and thus, appropriate thinning should be taken to increase forest gap to provide favorable conditions for the natural regeneration of Q. variabilis forest.

  1. Soricid response to canopy gaps created by wind disturbance in the Southern Appalachians

    Treesearch

    Cathryn H. Greenberg; Stanlee Miller

    2004-01-01

    We used drift fences with pitfall traps to compare soricid abundance, richness, and demographic parameters among intact multiple-tree windthrow gaps, salvaged gaps, and mature forest in a xeric southern Appalachian forest type during 1997-1999. We also tested whether capture rates were correlated with rainfall, and whether similar-sized species did not co-occur as...

  2. Herbaceous species composition and richness of mesophytic cove forests in the southern Appalachians: synthesis and knowledge gaps

    Treesearch

    Katherine J. Elliott; James M. Vose; Duke Rankin

    2014-01-01

    We synthesized the current information on mesophytic cove forests in the southern Appalachians, assessed the range of variation in herb species composition and diversity in stands with different disturbance histories and environmental conditions, identified key knowledge gaps, and suggested approaches to fill these knowledge gaps. The purpose of this synthesis was to...

  3. [Effects of forest gap size and light intensity on herbaceous plants in Pinus koraiensis-dominated broadleaved mixed forest].

    PubMed

    Duan, Wen-Biao; Wang, Li-Xia; Chen, Li-Xin; Du, Shan; Wei, Quan-Shuai; Zhao, Jian-Hui

    2013-03-01

    1 m x 1 m fixed quadrats were parallelly arranged with a space of 2 m in each of six forest gaps in Pinus koraiensis-dominated broadleaved mixed forest, taking the gap center as the starting point and along east-west and south-north directions. In each quadrat, the coverage and abundance of herbaceous plants at different height levels were investigated by estimation method in June and September 2011, and the matrix characteristics within the quadrats were recorded. Canopy analyzer was used to take fish-eye photos in the selected overcast days in each month from June to September, 2011, and the relative light intensity was calculated by using Gap Light Analyzer 2.0 software. The differences in the relative light intensity and herbaceous plants coverage and richness between different gaps as well as the correlations between the coverage of each species and the direct light, diffuse light, and matrix were analyzed. The results showed that in opening areas and under canopy, the relative light intensity in large gaps was higher than that in small gaps, and the variation ranges of diffuse light and direct light from gap center to gap edge were bigger in large gaps than in small gaps. The direct light reaching at the ground both in large gaps and in small gaps was higher in the north than in the south direction. In the Z1, Z2, Z3, and Z4 zones, both the coverage and the richness of herbaceous plants were larger in large gaps than in small gaps, and the differences of species richness between large and small gaps reached significant level. The coverage of the majority of the herbaceous plants had significant correlations with diffuse light and matrix, and only the coverage of a few herbaceous plants was correlated with direct light.

  4. Forest Management Devolution: Gap Between Technicians' Design and Villagers' Practices in Madagascar

    NASA Astrophysics Data System (ADS)

    Rives, Fanny; Carrière, Stéphanie M.; Montagne, Pierre; Aubert, Sigrid; Sibelet, Nicole

    2013-10-01

    In the 1980s, tropical forest-management principles underwent a shift toward approaches giving greater responsibilities to rural people. One argument for such a shift were the long-term relations established between rural people and their natural resources. In Madagascar, a new law was drawn up in 1996 (Gelose law), which sought to integrate rural people into forest management. A gap was observed between the changes foreseen by the projects implementing the Gelose law and the actual changes. In this article, we use the concept of the social-ecological system (SES) to analyze that gap. The differences existing between the planned changes set by the Gelose contract in the village of Ambatoloaka (northwest of Madagascar) and the practices observed in 2010 were conceptualized as a gap between two SESs. The first SES is the targeted one (i.e., a virtual one); it corresponds to the designed Gelose contract. The second SES is the observed one. It is characterized by the heterogeneity of forest users and uses, which have several impacts on forest management, and by very dynamic social and ecological systems. The observed SES has been reshaped contingent on the constraints and opportunities offered by the Gelose contract as well as on other ecological and social components. The consequences and opportunities that such an SES reshaping would offer to improve the implementation of the Gelose law are discussed. The main reasons explaining the gap between the two SESs are as follows: (1) the clash between static and homogeneous perceptions in the targeted SES and the dynamics and heterogeneity that characterize the observed SES; and (2) the focus on one specific use of forest ecosystems (i.e., charcoal-making) in the targeted SES. Forest management in the observed SES depends on several uses of forest ecosystems.

  5. Forest Gaps Inhibit Foliar Litter Pb and Cd Release in Winter and Inhibit Pb and Cd Accumulation in Growing Season in an Alpine Forest

    PubMed Central

    He, Jie; Yang, Wanqin; Li, Han; Xu, Liya; Ni, Xiangyin; Tan, Bo; Zhao, Yeyi; Wu, Fuzhong

    2015-01-01

    Aims The release of heavy metals (such as Pb and Cd) from foliar litter play an important role in element cycling in alpine forest ecosystems. Although natural forest gaps could play important roles in the release of heavy metals from foliar litter by affecting the snow cover during the winter and solar irradiation during the growing season, few studies have examined these potential roles. The objectives of this study were to document changes in Pb and Cd dynamics during litter decomposition in the center of gaps and under closed canopies and to investigate the factors that controlled these changes during the winter and growing seasons. Methods Senesced foliar litter from six dominant species, including Kangding willow (Salix paraplesia), Masters larch (Larix mastersiana), Mingjiang fir (Abies faxoniana), Alpine azalea (Rhododendron lapponicum), Red birch (Betula albosinensis) and Mourning cypress (Sabina saltuaria), was placed in litterbags and incubated between the gap center and closed canopy conditions in an alpine forest in the eastern region of the Tibetan Plateau. The litterbags were sampled at the snow formation stage, snow coverage stage, snow melt stage and during the growing season. The Pb and Cd concentrations in the sampled foliar litter were determined by acid digestion (HNO3/HClO4). Important findings Over one year of decomposition, Pb accumulation and Cd release from the foliar litter occurred, regardless of the foliar litter species. However, Pb and Cd were both released from the foliar litter during the winter and accumulated during the growing season. Compared with the gap center and the canopy gap edge, the extended gap edge and the closed canopy showed higher Pb and Cd release rates in winter and higher Pb and Cd accumulation rates during the growing season, respectively. Statistical analyses indicate that the dynamics of Pb were significantly influenced by frequent freeze–thaw cycles in winter and appropriate hydrothermal conditions during the growing season, the dynamics of Cd were strongly influenced by species and the presence of a forest gap at different decomposition stages. These results show that forest gaps could inhibit Pb and Cd release from foliar litter in the alpine forest of western Sichuan. In addition, a decrease in the snow depth in the winter warming scenario would promote the release of Pb during foliar litter decomposition. There exist some difference that may be influenced by litter quality, microenvironment and microtopography during litter decomposition. PMID:26115012

  6. Forest Gaps Inhibit Foliar Litter Pb and Cd Release in Winter and Inhibit Pb and Cd Accumulation in Growing Season in an Alpine Forest.

    PubMed

    He, Jie; Yang, Wanqin; Li, Han; Xu, Liya; Ni, Xiangyin; Tan, Bo; Zhao, Yeyi; Wu, Fuzhong

    2015-01-01

    The release of heavy metals (such as Pb and Cd) from foliar litter play an important role in element cycling in alpine forest ecosystems. Although natural forest gaps could play important roles in the release of heavy metals from foliar litter by affecting the snow cover during the winter and solar irradiation during the growing season, few studies have examined these potential roles. The objectives of this study were to document changes in Pb and Cd dynamics during litter decomposition in the center of gaps and under closed canopies and to investigate the factors that controlled these changes during the winter and growing seasons. Senesced foliar litter from six dominant species, including Kangding willow (Salix paraplesia), Masters larch (Larix mastersiana), Mingjiang fir (Abies faxoniana), Alpine azalea (Rhododendron lapponicum), Red birch (Betula albosinensis) and Mourning cypress (Sabina saltuaria), was placed in litterbags and incubated between the gap center and closed canopy conditions in an alpine forest in the eastern region of the Tibetan Plateau. The litterbags were sampled at the snow formation stage, snow coverage stage, snow melt stage and during the growing season. The Pb and Cd concentrations in the sampled foliar litter were determined by acid digestion (HNO3/HClO4). Over one year of decomposition, Pb accumulation and Cd release from the foliar litter occurred, regardless of the foliar litter species. However, Pb and Cd were both released from the foliar litter during the winter and accumulated during the growing season. Compared with the gap center and the canopy gap edge, the extended gap edge and the closed canopy showed higher Pb and Cd release rates in winter and higher Pb and Cd accumulation rates during the growing season, respectively. Statistical analyses indicate that the dynamics of Pb were significantly influenced by frequent freeze-thaw cycles in winter and appropriate hydrothermal conditions during the growing season, the dynamics of Cd were strongly influenced by species and the presence of a forest gap at different decomposition stages. These results show that forest gaps could inhibit Pb and Cd release from foliar litter in the alpine forest of western Sichuan. In addition, a decrease in the snow depth in the winter warming scenario would promote the release of Pb during foliar litter decomposition. There exist some difference that may be influenced by litter quality, microenvironment and microtopography during litter decomposition.

  7. Improvement of effectiveness of existing Casuarina equisetifolia forests in mitigating tsunami damage.

    PubMed

    Samarakoon, M B; Tanaka, Norio; Iimura, Kosuke

    2013-01-15

    Coastal vegetation can play a significant role in reducing the severity of a tsunami because the energy associated with the tsunami is dissipated when it passes through coastal vegetation. Field surveys were conducted on the eastern coastline of Sri Lanka to investigate which vegetation species are effective against a tsunami and to evaluate the effectiveness of existing Casuarina equisetifolia forests in tsunami mitigation. Open gaps in C. equisetifolia forests were identified as a disadvantage, and introduction of a new vegetation belt in front or back of the existing C. equisetifolia forest is proposed to reduce the disadvantages of the open gap. Among the many plant species encountered during the field survey, ten species were selected as effective for tsunami disaster mitigation. The selection of appropriate vegetation for the front or back vegetation layer was based on the vegetation thickness per unit area (dN(u)) and breaking moment of each species. A numerical model based on two-dimensional nonlinear long-wave equations was applied to explain the present situation of open gaps in C. equisetifolia forests, and to evaluate the effectiveness of combined vegetation systems. The results of the numerical simulation for existing conditions of C. equisetifolia forests revealed that the tsunami force ratio (R = tsunami force with vegetation/tsunami force without vegetation) was 1.4 at the gap exit. The species selected for the front and back vegetation layers were Pandanus odoratissimus and Manilkara hexandra, respectively. A numerical simulation of the modified system revealed that R was reduced to 0.7 in the combined P. odoratissimus and C. equisetifolia system. However, the combination of C. equisetifolia and M. hexandra did not effectively reduce R at the gap exit. Therefore, P. odoratissimus as the front vegetation layer is proposed to reduce the disadvantages of the open gaps in existing C. equisetifolia forests. The optimal width of P. odoratissimus (W(1)) calculated from the numerical simulation was W(1) = 10 m. R at the exit of a 15-m-wide open gap was 0.8, and therefore the proposed system was appropriate for cases with the highest velocity at the gap exit as well. Establishment of a new front vegetation layer except for open gaps that are essential, such as access roads to the beach, is proposed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Abundance of Green Tree Frogs and Insects in Artificial Canopy Gaps in a Bottomland Hardwood Forest.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, Scott; Hanula, James, L.; Ulyshen, Michael D.

    2005-04-01

    ABSTRACT - We found more green tree frogs ( Hyla cinerea) n canopv gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopv gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat Flies were the most commonlv collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.

  9. The effect of interspecific variation in photosynthetic plasticity on 4-year growth rate and 8-year survival of understorey tree seedlings in response to gap formations in a cool-temperate deciduous forest.

    PubMed

    Oguchi, Riichi; Hiura, Tsutom; Hikosaka, Kouki

    2017-08-01

    Gap formation increases the light intensity in the forest understorey. The growth responses of seedlings to the increase in light availability show interspecific variation, which is considered to promote biodiversity in forests. At the leaf level, some species increase their photosynthetic capacity in response to gap formation, whereas others do not. Here we address the question of whether the interspecific difference in the photosynthetic response results in the interspecific variation in the growth response. If so, the interspecific difference in photosynthetic response would also contribute to species coexistence in forests. We also address the further relevant question of why some species do not increase their photosynthetic capacity. We assumed that some cost of photosynthetic plasticity may constrain acquisition of the plasticity in some species, and hypothesized that species with larger photosynthetic plasticity exhibit better growth after gap formation and lower survivorship in the shade understorey of a cool-temperate deciduous forest. We created gaps by felling canopy trees and studied the relationship between the photosynthetic response and the subsequent growth rate of seedlings. Naturally growing seedlings of six deciduous woody species were used and their mortality was examined for 8 years. The light-saturated rate of photosynthesis (Pmax) and the relative growth rate (RGR) of the seedlings of all study species increased at gap plots. The extent of these increases varied among the species. The stimulation of RGR over 4 years after gap formation was strongly correlated with change in photosynthetic capacity of newly expanded leaves. The increase in RGR and Pmax correlated with the 8-year mortality at control plots. These results suggest a trade-off between photosynthetic plasticity and the understorey shade tolerance. Gap-demanding species may acquire photosynthetic plasticity, sacrificing shade tolerances, whereas gap-independent species may acquire shade tolerances, sacrificing photosynthetic plasticity. This strategic difference among species would contribute to species coexistence in cool-temperate deciduous forests. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Seasonal relationships between birds and arthropods in bottomland forest canopy gaps.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, Liessa, Thomas

    2004-12-31

    Bowen, Liessa, Thomas. 2004. Seasonal relationships between birds and arthropods in bottomland forest canopy gaps. PhD Dissertation. North Carolina State University. Raleigh, North Carolina. 98pp. I investigated the influence of arthropod availability and vegetation structure on avian habitat use at the center, edge, and adjacent to forest canopy gaps in 2001 and 2002. I used mist-netting and plot counts to estimate abundance of birds using three sizes (0.13, 0.26, and 0.5 ha) of 7-8 year old group-selection timber harvest openings during four seasons (spring migration, breeding, post-breeding, and fall migration) in a bottomland hardwood forest in the Upper Coastal Plainmore » of South Carolina. I used foliage clipping, Malaise trapping, and pitfall trapping to determine arthropod abundance within each habitat, and I used a warm water crop-flush on captured birds to gather information about arthropods eaten. I observed more birds, including forest interior species, forest-edge spedge species, and several individual species, in early-successional canopy gap and gap-edge habitats than in surrounding mature forest during all seasons. I found a significant interaction between season and habitat type for several groups and individual species, suggesting a seasonal shift in habitat use. Captures of all birds, insectivorous birds, foliage- gleaners, ground-gleaners, aerial salliers, Hooded Warbler (Wilsonia citrina), Northern Cardinal (Cardinalis cardinalis), White-eyed Vireo (Vireo griseus), and Black-throated Blue Warbler (Dendroica caerulescens) were positively correlated with understory vegetation density during two or more seasons. I found relationships between insectivorous birds and leaf-dwelling Lepidoptera, insectivorous birds and ground-dwelling arthropods, foliage-gleaning birds and foliage-dwelling arthropods, and aerial salliers and flying arthropods, as well as between individual bird species and arthropods. Relationships were inconsistent, however, with many species being negatively correlated with arthropod abundance. Coleopteran, Lepidopteran, and Aranid prey items represented the greatest proportions of crop-flush samples during all seasons. Proportional consumption of Coleopteran and Hemipteran prey items was higher than their proportional availability, and consumption of Aranid and Hymenopteran prey items was lower than their proportional availability during all seasons. Individual bird species and guilds consistently consumed similar proportions of certain groups of arthropods from spring through fall migration, with no apparent seasonal shift in diet composition. My research suggests that many species of birds selectively choose mid-successional gap and gap-edge habitat over surrounding mature forest during the non-breeding season, and the creation of small canopy gaps within a mature forest may increase local bird species richness. It is less obvious how arthropod availability affects bird habitat use across seasons. A structurally diverse mosaic of habitat types, including regenerating canopy gaps within a mature forest, may provide valuable habitat for birds and a variety of arthropod prey items across multiple seasons.« less

  11. Mapping forest height, foliage height profiles and disturbance characteristics with time series of gap-filled Landsat and ALI imagery

    NASA Astrophysics Data System (ADS)

    Helmer, E.; Ruzycki, T. S.; Wunderle, J. M.; Kwit, C.; Ewert, D. N.; Voggesser, S. M.; Brandeis, T. J.

    2011-12-01

    We mapped tropical dry forest height (RMSE = 0.9 m, R2 = 0.84, range 0.6-7 m) and foliage height profiles with a time series of gap-filled Landsat and Advanced Land Imager (ALI) imagery for the island of Eleuthera, The Bahamas. We also mapped disturbance type and age with decision tree classification of the image time series. Having mapped these variables in the context of studies of wintering habitat of an endangered Nearctic-Neotropical migrant bird, the Kirtland's Warbler (Dendroica kirtlandii), we then illustrated relationships between forest vertical structure, disturbance type and counts of forage species important to the Kirtland's Warbler. The ALI imagery and the Landsat time series were both critical to the result for forest height, which the strong relationship of forest height with disturbance type and age facilitated. Also unique to this study was that seven of the eight image time steps were cloud-gap-filled images: mosaics of the clear parts of several cloudy scenes, in which cloud gaps in a reference scene for each time step are filled with image data from alternate scenes. We created each cloud-cleared image, including a virtually seamless ALI image mosaic, with regression tree normalization of the image data that filled cloud gaps. We also illustrated how viewing time series imagery as red-green-blue composites of tasseled cap wetness (RGB wetness composites) aids reference data collection for classifying tropical forest disturbance type and age.

  12. Seasonal diets of insectivorous birds using canopy gaps in a bottomland forest.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorman, Christopher, E.; Bowen, Liessa, T.; Kilgo, John, C.

    2007-07-01

    ABSTRACT. Little is known about how insectivorous bird diets are influenced by arthropod availability and about how these relationships vary seasonally. We captured birds in forest-canopy gaps and adjacent mature forest during 2001 and 2002 at the Savannah River Site in Barnwell County, South Carolina, and flushed their crops to gather information about arthropods eaten during four periods: spring migration, breeding, postbreeding, and fall migration. Arthropod availability for foliage- and ground-gleaning birds was examined by leaf clipping and pitfall trapping. Coleopterans and Hemipterans were used by foliage- and ground-gleaners more than expected during all periods, whereas arthropods in the ordersmore » Araneae and Hymenoptera were used as, or less than, expected based on availability during all periods. Ground-gleaning birds used Homopterans and Lepidopterans in proportions higher than availability during all periods. Arthropod use by birds was consistent from spring through all migration, with no apparent seasonal shift in diet. Based on concurrent studies, heavily used orders of arthropods were equally abundant or slightly less abundant in canopy gaps than in the surrounding mature forest, but bird species were most frequently detected in gaps. Such results suggest that preferential feeding on arthropods by foliage-gleaning birds in p p habitats reduced arthropod densities or, alternatively, that bird use of gap and forest habitat was not determined y food resources. The abundance of arthropods across the stand may have allowed birds to remain in the densely vegetated gaps where thick cover provides protection from predators.« less

  13. Herpetofaunal Response to Gap and Skidder-Rut Wetland Creation in a Southern Bottomland Hardwood Forest.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cromer R.B.; Lanham J.D.; Hanlin H.H.

    2002-05-01

    Herpetofaunal Response to Gap and Skidder-Rut Wetland Creation in a Southern Bottomland Hardwood Forest. Cromer R.B., J.D.Lanham, and H.H. Hanlin.Forest Science, 1 May 2002, vol. 48, iss. 2, pp. 407-413(7) We compared herpetofaunal communities in recently harvested gaps, skidder trails, and unharvested depressional wetlands to assess the effects of group-selection harvesting and skidder traffic on reptiles and amphibians in a southern bottomland hardwood forest. From January 1, 1997 to December 31, 1998 we captured 24,292 individuals representing 55 species of reptiles and amphibians at the Savannah River Site in Barnwell County, South Carolina. Forty-two species (n = 6,702 individuals) weremore » captured in gaps, 43 species (n = 8,863 individuals) were captured along skid trails between gaps and 43 species (n = 8,727 individuals) were captured in bottomland depressions over the 2 yr period. Three vegetation variables and six environmental variables were correlated with herpetofaunal abundance. Salamander abundance, especially for species in the genus Ambystoma, was negatively associated with areas with less canopy cover and pronounced rutting (i.e., gaps and skidder trails). Alternatively, treefrog (Hylidae) abundance was positively associated with gap creation. Results from this study suggest that group selection harvests and skidder rutting may alter the herpetofaunal species composition in southern bottomland hardwoods by increasing habitat suitability for some species while diminishing it for others.« less

  14. Spatial and temporal dynamics of forest canopy gaps following selective logging in the eastern Amazon.

    Treesearch

    GREGORY P. ASNER; MICHAEL KELLER; JOSEN M. SILVA

    2004-01-01

    Selective logging is a dominant form of land use in the Amazon basin and throughout the humid tropics, yet little is known about the spatial variability of forest canopy gap formation and closure following timber harvests. We established chronosequences of large-area (14–158 ha) selective logging sites spanning a 3.5-year period of forest regeneration and two distinct...

  15. Carbon fluxes in tropical forest ecosystems: the value of Eddy-covariance data for individual-based dynamic forest gap models

    NASA Astrophysics Data System (ADS)

    Roedig, Edna; Cuntz, Matthias; Huth, Andreas

    2015-04-01

    The effects of climatic inter-annual fluctuations and human activities on the global carbon cycle are uncertain and currently a major issue in global vegetation models. Individual-based forest gap models, on the other hand, model vegetation structure and dynamics on a small spatial (<100 ha) and large temporal scale (>1000 years). They are well-established tools to reproduce successions of highly-diverse forest ecosystems and investigate disturbances as logging or fire events. However, the parameterizations of the relationships between short-term climate variability and forest model processes are often uncertain in these models (e.g. daily variable temperature and gross primary production (GPP)) and cannot be constrained from forest inventories. We addressed this uncertainty and linked high-resolution Eddy-covariance (EC) data with an individual-based forest gap model. The forest model FORMIND was applied to three diverse tropical forest sites in the Amazonian rainforest. Species diversity was categorized into three plant functional types. The parametrizations for the steady-state of biomass and forest structure were calibrated and validated with different forest inventories. The parameterizations of relationships between short-term climate variability and forest model processes were evaluated with EC-data on a daily time step. The validations of the steady-state showed that the forest model could reproduce biomass and forest structures from forest inventories. The daily estimations of carbon fluxes showed that the forest model reproduces GPP as observed by the EC-method. Daily fluctuations of GPP were clearly reflected as a response to daily climate variability. Ecosystem respiration remains a challenge on a daily time step due to a simplified soil respiration approach. In the long-term, however, the dynamic forest model is expected to estimate carbon budgets for highly-diverse tropical forests where EC-measurements are rare.

  16. Tropical forests and global change: filling knowledge gaps.

    PubMed

    Zuidema, Pieter A; Baker, Patrick J; Groenendijk, Peter; Schippers, Peter; van der Sleen, Peter; Vlam, Mart; Sterck, Frank

    2013-08-01

    Tropical forests will experience major changes in environmental conditions this century. Understanding their responses to such changes is crucial to predicting global carbon cycling. Important knowledge gaps exist: the causes of recent changes in tropical forest dynamics remain unclear and the responses of entire tropical trees to environmental changes are poorly understood. In this Opinion article, we argue that filling these knowledge gaps requires a new research strategy, one that focuses on trees instead of leaves or communities, on long-term instead of short-term changes, and on understanding mechanisms instead of documenting changes. We propose the use of tree-ring analyses, stable-isotope analyses, manipulative field experiments, and well-validated simulation models to improve predictions of forest responses to global change. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Comparing terrestrial laser scanning and unmanned aerial vehicle structure from motion to assess top of canopy structure in tropical forests

    PubMed Central

    Bartholomeus, Harm

    2018-01-01

    Terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAVs) equipped with digital cameras have attracted much attention from the forestry community as potential tools for forest inventories and forest monitoring. This research fills a knowledge gap about the viability and dissimilarities of using these technologies for measuring the top of canopy structure in tropical forests. In an empirical study with data acquired in a Guyanese tropical forest, we assessed the differences between top of canopy models (TCMs) derived from TLS measurements and from UAV imagery, processed using structure from motion. Firstly, canopy gaps lead to differences in TCMs derived from TLS and UAVs. UAV TCMs overestimate canopy height in gap areas and often fail to represent smaller gaps altogether. Secondly, it was demonstrated that forest change caused by logging can be detected by both TLS and UAV TCMs, although it is better depicted by the TLS. Thirdly, this research shows that both TLS and UAV TCMs are sensitive to the small variations in sensor positions during data collection. TCMs rendered from UAV data acquired over the same area at different moments are more similar (RMSE 0.11–0.63 m for tree height, and 0.14–3.05 m for gap areas) than those rendered from TLS data (RMSE 0.21–1.21 m for trees, and 1.02–2.48 m for gaps). This study provides support for a more informed decision for choosing between TLS and UAV TCMs to assess top of canopy in a tropical forest by advancing our understanding on: (i) how these technologies capture the top of the canopy, (ii) why their ability to reproduce the same model varies over repeated surveying sessions and (iii) general considerations such as the area coverage, costs, fieldwork time and processing requirements needed. PMID:29503719

  18. Comparing terrestrial laser scanning and unmanned aerial vehicle structure from motion to assess top of canopy structure in tropical forests.

    PubMed

    Roşca, Sabina; Suomalainen, Juha; Bartholomeus, Harm; Herold, Martin

    2018-04-06

    Terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAVs) equipped with digital cameras have attracted much attention from the forestry community as potential tools for forest inventories and forest monitoring. This research fills a knowledge gap about the viability and dissimilarities of using these technologies for measuring the top of canopy structure in tropical forests. In an empirical study with data acquired in a Guyanese tropical forest, we assessed the differences between top of canopy models (TCMs) derived from TLS measurements and from UAV imagery, processed using structure from motion. Firstly, canopy gaps lead to differences in TCMs derived from TLS and UAVs. UAV TCMs overestimate canopy height in gap areas and often fail to represent smaller gaps altogether. Secondly, it was demonstrated that forest change caused by logging can be detected by both TLS and UAV TCMs, although it is better depicted by the TLS. Thirdly, this research shows that both TLS and UAV TCMs are sensitive to the small variations in sensor positions during data collection. TCMs rendered from UAV data acquired over the same area at different moments are more similar (RMSE 0.11-0.63 m for tree height, and 0.14-3.05 m for gap areas) than those rendered from TLS data (RMSE 0.21-1.21 m for trees, and 1.02-2.48 m for gaps). This study provides support for a more informed decision for choosing between TLS and UAV TCMs to assess top of canopy in a tropical forest by advancing our understanding on: (i) how these technologies capture the top of the canopy, (ii) why their ability to reproduce the same model varies over repeated surveying sessions and (iii) general considerations such as the area coverage, costs, fieldwork time and processing requirements needed.

  19. Microclimatic and soil moisture responses to gap formation in coastal Douglas-fir forests

    Treesearch

    Andrew N Gray; Thomas A Spies; Mark J Easter

    2002-01-01

    The effects of gap formation on solar radiation, soil and air temperature, and soil moisture were studied in mature coniferous forests of the Pacific Northwest, U.S.A. Measurements were taken over a 6-year period in closed-canopy areas and recently created gaps in four stands of mature (90–140 years) and old-growth (>400 years) Douglas-fir (Pseudotsuga...

  20. Modeling and Assessing Insect Disturbance on Boreal Forests in the Krasnoyarsk region of Russia by Employing the FAREAST Gap Model and Local Forest Inventory and Disturbance Data.

    NASA Astrophysics Data System (ADS)

    Erler, A. E.; Shuman, J. K.; Soukhavolosky, V.; Kovalev, A.; Stevens, T.; Shugart, H. H.

    2008-12-01

    FAREAST: an individual-based forest dynamics model was initially developed to simulate the forested region around Changbai Mountain in northern China. In recent years the model has been expanded across Siberia. The model output for biomass (tCha-1) has been verified against forest inventory data for a number of sites across Russia. With this success, an additional module for the model was written by Anton Kovalev to predict the impact of insect disturbance on the Boreal forests. This model predicts the probability of an insect outbreak occurring, and then, by assessing each individual tree in a modeled stand, predicts whether a tree will be killed as a result of insect predation. From this, a disturbance index is calculated that includes lost biomass as a result of insect disturbance and subsequent species composition. This disturbance "fingerprint" is being compared to forest inventory and insect disturbance data from the Usolsky forests in the Krasnoyarsk region of central Siberia. Silkworm disturbance is expressed in this geo- database as a percentage of trees damaged or killed in a stand. The forest inventory data allows us to calculate a biomass estimate that will be compared to the biomass outputs generated by the model post insect disturbance. The validation of simulated biomass with independent inventory data confirms that FAREAST is a robust model of Russian forest dynamics. Effective validation of the insect disturbance model will allow us to generate a more complete picture of the changing ecology of the Siberian Boreal landscape. The economic cost of lumber lost as a result of Silkworm damage has been enormous, if verified, FAREAST will afford us the opportunity to estimate the extent of that loss and predict the changing ecological dynamics of the Boreal forest system under the worlds evolving climate.

  1. Herbivorous insect response to group selection cutting in a southeastern bottomland hardwood forest

    Treesearch

    Michael D. Ulyshen; James L. Hanula; Scott Horn; John C. Kilgo; Christopher E. Moorman

    2005-01-01

    Malaise and pitfall traps were used to sample herbivorous insects in canopy gaps created by group-selection cutting in a bottomland hardwood forest in South Carolina. The traps were placed at the centers, edges, and in the forest adjacent to gaps of different sizes (0.13, 0.26, and 0.50 ha) and ages (1 and 7 yr old) during four sampling periods in 2001. Overall, the...

  2. Value of eddy-covariance data for individual-based, forest gap models

    NASA Astrophysics Data System (ADS)

    Roedig, Edna; Cuntz, Matthias; Huth, Andreas

    2014-05-01

    Individual-based forest gap models simulate tree growth and carbon fluxes on large time scales. They are a well established tool to predict forest dynamics and successions. However, the effect of climatic variables on processes of such individual-based models is uncertain (e.g. the effect of temperature or soil moisture on the gross primary production (GPP)). Commonly, functional relationships and parameter values that describe the effect of climate variables on the model processes are gathered from various vegetation models of different spatial scales. Though, their accuracies and parameter values have not been validated for the specific model scales of individual-based forest gap models. In this study, we address this uncertainty by linking Eddy-covariance (EC) data and a forest gap model. The forest gap model FORMIND is applied on the Norwegian spruce monoculture forest at Wetzstein in Thuringia, Germany for the years 2003-2008. The original parameterizations of climatic functions are adapted according to the EC-data. The time step of the model is reduced to one day in order to adapt to the high resolution EC-data. The FORMIND model uses functional relationships on an individual level, whereas the EC-method measures eco-physiological responses at the ecosystem level. However, we assume that in homogeneous stands as in our study, functional relationships for both methods are comparable. The model is then validated at the spruce forest Waldstein, Germany. Results show that the functional relationships used in the model, are similar to those observed with the EC-method. The temperature reduction curve is well reflected in the EC-data, though parameter values differ from the originally expected values. For example at the freezing point, the observed GPP is 30% higher than predicted by the forest gap model. The response of observed GPP to soil moisture shows that the permanent wilting point is 7 vol-% lower than the value derived from the literature. The light response curve, integrated over the canopy and the forest stand, is underestimated compared to the measured data. The EC-method measures a yearly carbon balance of 13 mol(CO2)m-2 for the Wetzstein site. The model with the original parameterization overestimates the yearly carbon balance by nearly 5 mol(CO2)m-2 while the model with an EC-based parameterization fits the measured data very well. The parameter values derived from EC-data are applied on the spruce forest Waldstein and clearly improve estimates of the carbon balance.

  3. A Multi-temporal Analysis of Logging Impacts on Tropical Forest Structure Using Airborne Lidar Data

    NASA Astrophysics Data System (ADS)

    Keller, M. M.; Pinagé, E. R.; Duffy, P.; Longo, M.; dos-Santos, M. N.; Leitold, V.; Morton, D. C.

    2017-12-01

    The long-term impacts of selective logging on carbon cycling and ecosystem function in tropical-forests are still uncertain. Despite improvements in selective logging detection using satellite data, quantifying changes in forest structure from logging and recovery following logging is difficult using orbital data. We analyzed the dynamics of forest structure comparing logged and unlogged forests in the Eastern Brazilian Amazon (Paragominas Municipality, Pará State) using small footprint discrete return airborne lidar data acquired in 2012 and 2014. Logging operations were conducted at the 1200 ha study site from 2006 through 2013 using reduced impact logging techniques—management practices that minimize canopy and ground damage compared to more common conventional logging. Nevertheless, logging still reduced aboveground biomass by 10% to 20% in logged areas compared to intact forests. We aggregated lidar point-cloud data at spatial scales ranging from 50 m to 250 m and developed a binomial classification model based on the height distribution of lidar returns in 2012 and validated the model against the 2014 lidar acquisition. We accurately classified intact and logged forest classes compared with field data. Classification performance improved as spatial resolution increased (AUC = 0.974 at 250 m). We analyzed the differences in canopy gaps, understory damage (based on a relative density model), and biomass (estimated from total canopy height) of intact and logged classes. As expected, logging greatly increased both canopy gap formation and understory damage. However, while the area identified as canopy gap persisted for at least 8 years (from the oldest logging treatments in 2006 to the most recent lidar acquisition in 2014), the effects of ground damage were mostly erased by vigorous understory regrowth after about 5 years. The rate of new gap formation was 6 to 7 times greater in recently logged forests compared to undisturbed forests. New gaps opened at a rate of 1.8 times greater than background even 8 years following logging demonstrating the occurrence of delayed tree mortality. Our study showed that even low-intensity anthropogenic disturbances can cause persistent changes in tropical forest structure and dynamics.

  4. Arthropod abundance and seasonal bird use of bottomland forest harvest gaps.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorman, Christopher, E.; Bowen, Liessa T.; Kilgo, John, C.

    2012-03-01

    We investigated the influence of arthropod abundance and vegetation structure on shifts in avian use of canopy gap, gap edge, and surrounding forest understory in a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. We compared captures of foliage-gleaning birds among locations during four periods (spring migration, breeding, post-breeding, and fall migration). Foliage arthropod densities were greatest in the forest understory in all four seasons, but understory vegetation density was greatest in gaps. Foliage-gleaning bird abundance was positively associated with foliage-dwelling arthropods during the breeding (F = 18.5, P < 0.001) and post-breeding periods (F = 9.4,more » P = 0.004), and negatively associated with foliage-dwelling arthropods during fall migration (F = 5.4, P = 0.03). Relationships between birds and arthropods were inconsistent, but the arthropod prey base seemed to be least important during migratory periods. Conversely, bird captures were positively correlated with understory vegetation density during all four periods (P < 0.001). Our study suggests high bird abundance associated with canopy gaps during the non-breeding period resulted less from high arthropod food resource availability than from complex understory and midstory vegetation structure.« less

  5. Tracking the Creation of Tropical Forest Canopy Gaps with UAV Computer Vision Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dandois, J. P.

    2015-12-01

    The formation of canopy gaps is fundamental for shaping forest structure and is an important component of ecosystem function. Recent time-series of airborne LIDAR have shown great promise for improving understanding of the spatial distribution and size of forest gaps. However, such work typically looks at gap formation across multiple years and important intra-annual variation in gap dynamics remains unknown. Here we present findings on the intra-annual dynamics of canopy gap formation within the 50 ha forest dynamics plot of Barro Colorado Island (BCI), Panama based on unmanned aerial vehicle (UAV) remote sensing. High-resolution imagery (7 cm GSD) over the 50 ha plot was obtained regularly (≈ every 10 days) beginning October 2014 using a UAV equipped with a point and shoot camera. Imagery was processed into three-dimensional (3D) digital surface models (DSMs) using automated computer vision structure from motion / photogrammetric methods. New gaps that formed between each UAV flight were identified by subtracting DSMs between each interval and identifying areas of large deviation. A total of 48 new gaps were detected from 2014-10-02 to 2015-07-23, with sizes ranging from less than 20 m2 to greater than 350 m2. The creation of new gaps was also evaluated across wet and dry seasons with 4.5 new gaps detected per month in the dry season (Jan. - May) and 5.2 per month outside the dry season (Oct. - Jan. & May - July). The incidence of gap formation was positively correlated with ground-surveyed liana stem density (R2 = 0.77, p < 0.001) at the 1 hectare scale. Further research will consider the role of climate in predicting gap formation frequency as well as site history and other edaphic factors. Future satellite missions capable of observing vegetation structure at greater extents and frequencies than airborne observations will be greatly enhanced by the high spatial and temporal resolution bridging scale made possible by UAV remote sensing.

  6. Regenerating oak-dominated forests using irregular, gap-based silvicultural systems

    Treesearch

    John M. Lhotka; Michael R. Saunders; John M. Kabrick; Daniel C. Dey

    2013-01-01

    Throughout the Eastern United States, practitioners have primarily focused on using uniformly applied even-aged approaches to regenerate oak species. Irregular, gap-based silvicultural systems offer an alternative that retains continuous canopy cover, creates heterogeneous forest structure, and provides multiple income flows over a rotation. Although commonly used in...

  7. A stand-alone tree demography and landscape structure module for Earth system models: integration with global forest data

    NASA Astrophysics Data System (ADS)

    Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.

    2014-02-01

    Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESM). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first generation Dynamic Vegetation Models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second generation DVMs, that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to a range of forest types around the globe, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 yr. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents a preferable alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.

  8. In search of radiation minima for balancing the needs of forest and water management in snow dominated watersheds (Invited)

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Seyednasrollah, B.; Link, T. E.

    2013-12-01

    In upland snowfed forested watersheds, where the majority of melt recharge occurs, there is growing interest among water and forest managers to strike a balance between maximizing forest productivity and minimizing impacts on water resources. Implementation of forest management strategies that involve reduction of forest cover generally result in increased water yield and peak flows from forests, which has potentially detrimental consequences including increased erosion, stream destabilization, water shortages in late melt season, and degradation of water quality and ecosystem health. These ill effects can be partially negated by implementing optimal gap patterns and vegetation densities through forest management, that may minimize net radiation on snow-covered forest floor (NRSF). A small NRSF can moderate peak flows and increase water availability late in the melt season. Since forest canopies reduce direct solar (0.28 - 3.5 μm) radiation but increase longwave (3.5-100 μm) radiation at the snow surface, by performing detailed quantification of individual radiation components for a range of vegetation density and and gap configurations, we identify the optimal vegetation configurations. We also evaluate the role of site location, its topographic setting, local meteorological conditions and vegetation morphological characteristics, on the optimal configurations. The results can be used to assist forest managers to quantify the radiative regime alteration for various thinning and gap-creation scenarios, as a function of latitudinal, topographic, climatic and vegetation characteristics.

  9. Forests under climate change and air pollution: gaps in understanding and future directions for research.

    PubMed

    Matyssek, R; Wieser, G; Calfapietra, C; de Vries, W; Dizengremel, P; Ernst, D; Jolivet, Y; Mikkelsen, T N; Mohren, G M J; Le Thiec, D; Tuovinen, J-P; Weatherall, A; Paoletti, E

    2012-01-01

    Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between changes in air quality (trace gas concentrations), climate and other site factors on forest ecosystem response, (ii) significance of biotic processes in system response, (iii) tools for mechanistic and diagnostic understanding and upscaling, and (iv) the need for unifying modelling and empirical research for synthesis. This position paper highlights the above focuses, including the global dimension of air pollution as part of climate change and the need for knowledge transfer to enable reliable risk assessment. A new type of research site in forest ecosystems ("supersites") will be conducive to addressing these gaps by enabling integration of experimentation and modelling within the soil-plant-atmosphere interface, as well as further model development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The response of ground beetles (Coleoptera: Carabidae) to selection cutting in a South Carolina bottomland hardwood forest

    Treesearch

    Michael D. Ulyshen; James L. Hanula; Scott Horn; John C. Kilgo; Christopher E. Moorman

    2005-01-01

    We compared the response of ground beetles (Coleoptera: Carabidae) to the creation of canopy gaps of different size (0.13, 0.26, and 0.50 ha) and age (1 and 7 years) in a bottomland hardwood forest (South Carolina, USA). Samples were collected four times in 2001 by malaise and pitfall traps placed at the center and edge of each gap, and 50 m into the surrounding forest...

  11. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ya'akobovitz, A.; Department of Mechanical Engineering, Faculty of Engineering Sciences, Ben-Gurion University, Beer-Sheva; Bedewy, M.

    2015-02-02

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we findmore » that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.« less

  12. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    NASA Astrophysics Data System (ADS)

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-02-01

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  13. Influence of Gap-Filling to Generate Continuous Datasets on Process Network Analysis

    NASA Astrophysics Data System (ADS)

    Yun, J.; Kim, J.; Kim, S.; Chun, J.

    2013-12-01

    The interplay of environmental conditions, energy, matter, and information defines the context and constraints for the set of processes and structures that may emerge during self-organization in complex ecosystems. Following Ruddell and Kumar (2009), we have evaluated statistical measures of characterizing the organization of the information flow in ecohydrological process networks in a deciduous forest ecosystem. We used the time series data obtained in 2008 (normal year) from the KoFlux forest tower site in central Korea. The 30-minute averages of eddy fluxes of energy, water and CO2 were measured at 40m above an oak-dominated old deciduous forest along with other micrometeorological variables. In this analysis, we selected 13 variables: atmospheric pressure (Pa), net ecosystem CO2 exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), latent heat flux (LE), precipitation (Precip), solar radiation (Rg), air temperature (T), vapor pressure deficit (VPD), sensible heat flux (H), canopy temperature (Tc), wind direction (WD), and wind speed (WS). Our results support that a process network approach can be used to formally resolve feedback, time scales, and subsystems that define the complex ecosystem's organization by considering mutual information and transfer entropy simultaneously. We also observed that the turbulent and atmospheric boundary layer subsystems are coupled through feedback loops, and form a regional self-organizing subsystem in August when the forest is in healthy environment. In particular, we noted that the observed feedback loops in the process network disappeared when the time series data were artificially gap-filled for missing data, which is a common practice in post-data processing. In this presentation, we report the influence of gap-filling on the process network analysis by artificially assigning different sizes and periods of missing data and discuss the implication of our results on validation and calibration of ecosystem models. Acknowledgment. This research was supported by the Korea Meteorological Administration Research and Development Program under Grant CATER 2013-3030.

  14. Detection and Distribution of Natural Gaps in Tropical Rainforest

    NASA Astrophysics Data System (ADS)

    Goulamoussène, Y.; Linguet, L.; Hérault, B.

    2014-12-01

    Forest management is important to assess biodiversity and ecological processes. Requirements for disturbance information have also been motivated by the scientific community. Therefore, understanding and monitoring the distribution frequencies of treefall gaps is relevant to better understanding and predicting the carbon budget in response to global change and land use change. In this work we characterize and quantify the frequency distribution of natural canopy gaps. We observe then interaction between environment variables and gap formation across tropical rainforest of the French Guiana region by using high resolution airborne Light Detection and Ranging (LiDAR). We mapped gaps with canopy model distribution on 40000 ha of forest. We used a Bayesian modelling framework to estimate and select useful covariate model parameters. Topographic variables are included in a model to predict gap size distribution. We discuss results from the interaction between environment and gap size distribution, mainly topographic indexes. The use of both airborne and space-based techniques has improved our ability to supply needed disturbance information. This work is an approach at plot scale. The use of satellite data will allow us to work at forest scale. The inclusion of climate variables in our model will let us assess the impact of global change on tropical rainforest.

  15. Developing a Long-Term Forest Gap Model to Predict the Behavior of California Pines, Oaks, and Cedars Under Climate Change and Other Disturbance Scenarios

    NASA Astrophysics Data System (ADS)

    Davis, S. L.; Moran, E.

    2015-12-01

    Many predictions about how trees will respond to climate change have been made, but these often rely on extrapolating into the future one of two extremes: purely correlative factors like climate, or purely physiological factors unique to a particular species or plant functional group. We are working towards a model that combines both phenotypic and genotypic traits to better predict responses of trees to climate change. We have worked to parameterize a neighborhood dynamics, individual tree forest-gap model called SORTIE-ND, using open data from both the USDA Forest Service Forest Inventory & Analysis (FIA) datasets in California and 30-yr old permanent plots established by the USGS. We generated individual species factors including stage-specific mortality and growth rates, and species-specific allometric equations for ten species, including Abies concolor, A. magnifica, Calocedrus decurrens, Pinus contorta, P. jeffreyi, P. lambertiana, P. monticola, P. ponderosa, and the two hardwoods Quercus chrysolepis and Q. kelloggii. During this process, we also developed two R packages to aid in parameter development for SORTIE-ND in other ecological systems. MakeMyForests is an R package that parses FIA datasets and calculates parameters based on the state averages of growth, light, and allometric parameters. disperseR is an R package that uses extensive plot data, with individual tree, sapling, and seedling measurements, to calculate finely tuned mortality and growth parameters for SORTIE-ND. Both are freely available on GitHub, and future updates will be available on CRAN. To validate the model, we withheld several plots from the 30-yr USGS data while calculating parameters. We tested for differences between the actual withheld data and the simulated forest data, in basal area, seedling density, seed dispersal, and species composition. The similarity of our model to the real system suggests that the model parameters we generated with our R packages accurately represent the system, and that our model can be extended to include changes in precipitation, temperature, and disturbance with very little manipulaton. We hope that our examples, R package development, and SORTIE-ND module development will enable other ecologists to utilize SORTIE-ND to predict changes in local and important ecoystems around the world.

  16. Impact of typhoon disturbance on the diversity of key ecosystem engineers in a monoculture mangrove forest plantation, Can Gio Biosphere Reserve, Vietnam

    NASA Astrophysics Data System (ADS)

    Diele, K.; Tran Ngoc, D. M.; Geist, S. J.; Meyer, F. W.; Pham, Q. H.; Saint-Paul, U.; Tran, T.; Berger, U.

    2013-11-01

    Mangrove crabs as key ecosystem engineers may play an important role in the recovery process of storm-damaged forests. Yet, their response to storm disturbance is largely unknown. Here we compare the ground-dwelling brachyuran crab community of intact mangrove stands with that of typhoon gaps having experienced 100% tree mortality. Field work was conducted in two adjacent areas in Can Gio Biosphere Reserve, southern Vietnam. In each area, an 18-20 yr old monoculture Rhizophora apiculata stand served as control and was compared with typhoon gaps where downed stems had been removed or left on-site. The gaps were 14 and 20 months old when studied in the dry and rainy season 2008, respectively. Time-based sampling of ground-dwelling crabs with hand or shovel was conducted by 4 persons inside 100 m2 plots for 30 min (7 replicate plots per area, treatment and month). Abiotic (sediment pH, salinity, temperature, grain size, water content, carbon and nitrogen content), and biotic measures (e.g. canopy coverage, woody debris, number of trees, leaf litter) were also taken. Despite complete canopy loss, total crab abundance has not changed significantly (in contrast to biomass) and all 12 species found in the forest were also found in the gaps, demonstrating their robustness. Another 9 gap-exclusive species were recorded and average species number and Shannon diversity were thus higher in the gaps. Perisesarma eumolpe was the most abundant species, both in the forest and in the gaps, and a shift from sesarmids (typical forest species) to ocypodids (generally more prominent in open areas) has not occurred. The persistence of litter-feeding sesarmid crabs prior to the re-establishment of a mangrove canopy is likely to depend on the availability of woody debris on the ground of the gaps, fuelling a mangrove detritus based food web, rather than one based on microphytobenthos and deposit-feeding ocypodids. The presence of burrowing crabs in the gaps suggests that important ecosystem engineering activities are still performed. However, bioturbation may be reduced as crab biomass and body size were smaller in the gaps. Follow-up assessments and field experiments are needed to understand the crabs' role in processing the woody debris, their long-term community dynamics and possible feed-backs between species shifts and gap regeneration.

  17. Recovery of forest structure and spectral properties after selective logging in lowland Bolivia.

    PubMed

    Broadbent, Eben N; Zarin, Daniel J; Asner, Gregory P; Peña-Claros, Marielos; Cooper, Amanda; Littell, Ramon

    2006-06-01

    Effective monitoring of selective logging from remotely sensed data requires an understanding of the spatial and temporal thresholds that constrain the utility of those data, as well as the structural and ecological characteristics of forest disturbances that are responsible for those constraints. Here we assess those thresholds and characteristics within the context of selective logging in the Bolivian Amazon. Our study combined field measurements of the spatial and temporal dynamics of felling gaps and skid trails ranging from <1 to 19 months following reduced-impact logging in a forest in lowland Bolivia with remote-sensing measurements from simultaneous monthly ASTER satellite overpasses. A probabilistic spectral mixture model (AutoMCU) was used to derive per-pixel fractional cover estimates of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), and soil. Results were compared with the normalized difference in vegetation index (NDVI). The forest studied had considerably lower basal area and harvest volumes than logged sites in the Brazilian Amazon where similar remote-sensing analyses have been performed. Nonetheless, individual felling-gap area was positively correlated with canopy openness, percentage liana coverage, rates of vegetation regrowth, and height of remnant NPV. Both liana growth and NPV occurred primarily in the crown zone of the felling gap, whereas exposed soil was limited to the trunk zone of the gap. In felling gaps >400 m2, NDVI, and the PV and NPV fractions, were distinguishable from unlogged forest values for up to six months after logging; felling gaps <400 m2 were distinguishable for up to three months after harvest, but we were entirely unable to distinguish skid trails from our analysis of the spectral data.

  18. Forest Management in Earth System Modelling: a Vertically Discretised Canopy Description for ORCHIDEE and Effects on European Climate Since 1750

    NASA Astrophysics Data System (ADS)

    McGrath, M.; Luyssaert, S.; Naudts, K.; Chen, Y.; Ryder, J.; Otto, J.; Valade, A.

    2015-12-01

    Forest management has the potential to impact surface physical characteristics to the same degree that changes in land cover do. The impacts of land cover changes on the global climate are well-known. Despite an increasingly detailed understanding of the potential for forest management to affect climate, none of the current generation of Earth system models account for forest management through their land surface modules. We addressed this gap by developing and reparameterizing the ORCHIDEE land surface model to simulate the biogeochemical and biophysical effects of forest management. Through vertical discretization of the forest canopy and corresponding modifications to the energy budget, radiation transfer, and carbon allocation, forest management can now be simulated much more realistically on the global scale. This model was used to explore the effect of forest management on European climate since 1750. Reparameterization was carried out to replace generic forest plant functional types with real tree species, covering the most dominant species across the continent. Historical forest management and land cover maps were created to run the simulations from 1600 until the present day. The model was coupled to the atmospheric model LMDz to explore differences in climate between 1750 and 2010 and attribute those differences to changes in atmospheric carbon dioxide concentrations and concurrent warming, land cover, species composition, and wood extraction. Although Europe's forest are considered a carbon sink in this century, our simulations show the modern forests are still experiencing carbon debt compared to their historical values.

  19. Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp

    NASA Astrophysics Data System (ADS)

    Wedeux, B. M. M.; Coomes, D. A.

    2015-11-01

    Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplay between environmental factors and disturbance legacies on forest canopy structure across landscapes is practically unexplored. We used airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistent with previous work linking deep peat to stunted tree growth. Gap size frequency distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of Pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and illegal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced. With logging, the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and peat depth gradient within the old-growth tropical peat swamp forest. This relationship breaks down after selective logging, with canopy structural recovery, as observed by ALS, modulated by environmental conditions. These findings improve our understanding of tropical peat swamp ecology and provide important insights for managers aiming to restore degraded forests.

  20. EXPLAINING FOREST COMPOSITION AND BIOMASS ACROSS MULTIPLE BIOGEOGRAPHIC REGIONS

    EPA Science Inventory

    Current scientific concerns regarding the impacts of global change include the responses of forest composition and biomass to rapid changes in climate, and forest gap models, have often been used to address this issue. These models reflect the concept that forest composition and...

  1. Complex Spatial Structure in a Population of Didymopanax pittieri, A Tree of Wind-Exposed Lower Montane Rain Forest

    NASA Technical Reports Server (NTRS)

    Lawton, Robert M.; Lawton, Robert O.

    2010-01-01

    Didymopanax pittieri is a common shade-intolerant tree colonizing treefall gaps in the elfin forests on windswept ridgecrests in the lower montane rain forests of the Cordillera de Tilarain, Costa Rica. All D. pittieri taller than > 0.5 m in a 5.2-ha elfin forested portion of a gridded study watershed in the Monteverde Cloud Forest Preserve were located, mapped, and measured. This local population of D. pittieri is spatially inhomogeneous, in that density increases with increasing wind exposure; D. pittieri are more abundant near ridge crests than lower on windward slopes. The important and ubiquitous phenomenon of spatial inhomogeneity in population density is addressed and corrected for in spatial analyses by the application of the inhomogeneous version of Ripley's K. The spatial patterns of four size classes of D. pittieri (<5 cm dbh, 5-10 cm dbh, 10-20 cm dbh, and> 20 cm dbh) were investigated. Within the large-scale trend in density driven by wind exposure, D. pittieri saplings are clumped at the scale of treefall gaps and at the scale of patches of aggregated gaps. D. pittieri 5-10 cm dbh are randomly distributed, apparently due to competitive thinning of sapling clumps during the early stages of gap-phase regeneration. D. pittieri larger than 10 cm dbh are overdispersed at a scale larger than that of patches of gaps. Natural disturbance can influence the distribution of shade intolerant tree populations at several different spatial scales, and can have discordant effects at different life history stages.

  2. Effects of Late Stages of Emerald Ash Borer (Coleoptera: Buprestidae)-Induced Ash Mortality on Forest Floor Invertebrate Communities

    PubMed Central

    Herms, Daniel A

    2017-01-01

    Abstract Emerald ash borer (EAB; Agrilus planipennis Fairmaire) is an invasive wood-borer causing rapid, widespread ash tree mortality, formation of canopy gaps, and accumulation of coarse woody debris (CWD) in forest ecosystems. The objective of this study was to quantify the effects of canopy gaps and ash CWD on forest floor invertebrate communities during late stages of EAB-induced ash mortality, when the effects of gaps are predicted to be smallest and effects of CWD are predicted to be greatest, according to the model proposed by Perry and Herms 2016a. A 2-year study was conducted in forest stands that had experienced nearly 100% ash mortality in southeastern Michigan, USA, near where EAB first established in North America. In contrast to patterns documented during early stages of the EAB invasion, effects of gaps were minimal during late stages of ash mortality, but invertebrate communities were affected by accumulation and decomposition of CWD. Invertebrate activity-abundance, evenness, and diversity were highest near minimally decayed logs (decay class 1), but diverse taxon-specific responses to CWD affected community composition. Soil moisture class emerged as an important factor structuring invertebrate communities, often mediating the strength and direction of their responses to CWD and stages of decomposition. The results of this study were consistent with the predictions that the effects of CWD on invertebrate communities would be greater than those of canopy gaps during late stages of EAB-induced ash mortality. This research contributes to understanding of the cascading and long-term ecological impacts of invasive species on native forest ecosystems.

  3. Harvest-created canopy gaps increase species and functional trait diversity of the forest ground-layer community

    Treesearch

    Christel C. Kern; Rebecca A. Montgomery; Peter B. Reich; Terry F. Strong

    2014-01-01

    Biodiversity conservation within managed forests depends, in part, on management practices that restore or maintain plant community diversity and function. Because many plant communities are adapted to natural disturbances, gap-based management has potential to meet this need by using the historical range of variation in canopy disturbances to guide elements of harvest...

  4. Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp

    NASA Astrophysics Data System (ADS)

    Wedeux, B. M. M.; Coomes, D. A.

    2015-07-01

    Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplaying effects of environmental factors and disturbance legacies on forest canopy structure across landscapes are practically unexplored. We used high-fidelity airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistently with previous work linking deep peat to stunted tree growth. Gap Size Frequency Distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and informal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced; the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and the peat deph gradient within the old-growth tropical peat swamp. This relationship breaks down after selective logging, with canopy structural recovery being modulated by environmental conditions.

  5. Data gaps in anthropogenically driven local-scale species richness change studies across the Earth's terrestrial biomes.

    PubMed

    Murphy, Grace E P; Romanuk, Tamara N

    2016-05-01

    There have been numerous attempts to synthesize the results of local-scale biodiversity change studies, yet several geographic data gaps exist. These data gaps have hindered ecologist's ability to make strong conclusions about how local-scale species richness is changing around the globe. Research on four of the major drivers of global change is unevenly distributed across the Earth's biomes. Here, we use a dataset of 638 anthropogenically driven species richness change studies to identify where data gaps exist across the Earth's terrestrial biomes based on land area, future change in drivers, and the impact of drivers on biodiversity, and make recommendations for where future studies should focus their efforts. Across all drivers of change, the temperate broadleaf and mixed forests and the tropical moist broadleaf forests are the best studied. The biome-driver combinations we have identified as most critical in terms of where local-scale species richness change studies are lacking include the following: land-use change studies in tropical and temperate coniferous forests, species invasion and nutrient addition studies in the boreal forest, and warming studies in the boreal forest and tropics. Gaining more information on the local-scale effects of the specific human drivers of change in these biomes will allow for better predictions of how human activity impacts species richness around the globe.

  6. Enhancing Multimedia Imbalanced Concept Detection Using VIMP in Random Forests.

    PubMed

    Sadiq, Saad; Yan, Yilin; Shyu, Mei-Ling; Chen, Shu-Ching; Ishwaran, Hemant

    2016-07-01

    Recent developments in social media and cloud storage lead to an exponential growth in the amount of multimedia data, which increases the complexity of managing, storing, indexing, and retrieving information from such big data. Many current content-based concept detection approaches lag from successfully bridging the semantic gap. To solve this problem, a multi-stage random forest framework is proposed to generate predictor variables based on multivariate regressions using variable importance (VIMP). By fine tuning the forests and significantly reducing the predictor variables, the concept detection scores are evaluated when the concept of interest is rare and imbalanced, i.e., having little collaboration with other high level concepts. Using classical multivariate statistics, estimating the value of one coordinate using other coordinates standardizes the covariates and it depends upon the variance of the correlations instead of the mean. Thus, conditional dependence on the data being normally distributed is eliminated. Experimental results demonstrate that the proposed framework outperforms those approaches in the comparison in terms of the Mean Average Precision (MAP) values.

  7. Forest influences on snow accumulation and snowmelt at the Hubbard Brook Experimental Forest, New Hampshire, USA

    Treesearch

    Colin A. Penn; Beverley C. Wemple; John L. Campbell

    2012-01-01

    Many factors influence snow depth, water content and duration in forest ecosystems. The effects of forest cover and canopy gap geometry on snow accumulation has been well documented in coniferous forests of western North America and other regions; however, few studies have evaluated these effects on snowpack dynamics in mixed deciduous forests of the northeastern USA....

  8. [Effects of forest canopy gap on Abies faxoniana seedling's biomass and its allocation in sub-alpine coniferous forest of West Sichuan].

    PubMed

    Xian, Jun-Ren; Hu, Ting-Xing; Zhang, Yuan-Bin; Wang, Kai-Yun

    2007-04-01

    By the method of strip transect sampling, the density, height, basal diameter, and components biomass of Abies faxoniana seedlings (H < or = 100 cm) lived in the forest gap (FG) and under the forest canopy (FC) of subalpine natural coniferous forest in West Sichuan were investigated, and the relationships among different components biomass were analyzed. The results indicated that the density and average height (H) of A. faxoniana seedlings were significantly different in FG and under FC, with the values being 12 903 and 2 017 per hectare, and 26.6 cm and 24.3 cm, respectively, while no significant differences were found in average basal diameter (D) and biomass. The biomass allocation in seedling's components was markedly affected by forest gap. In FG, the biomass ratio of branch to trunk (BRBT) reached the maximum (1.54) at 12th year, and then, declined and fluctuated at 0. 69. Under FC, the BRBT was increased with seedlings growth, and exceeded 1.0 at about 15th year. The total biomass and the biomass of leaf, stem, shoot and root grown in FG and under FC were significantly linearly correlated with D2H. There were significant positive correlations among the biomass of different seedling's components.

  9. Research gaps related to forest management and stream sediment in the United States.

    PubMed

    Anderson, Christopher J; Lockaby, B Graeme

    2011-02-01

    Water quality from forested landscapes tends to be very high but can deteriorate during and after silvicultural activities. Practices such as forest harvesting, site preparation, road construction/use, and stream crossings have been shown to contribute sediment, nutrients, and other pollutants to adjacent streams. Although advances in forest management accompanied with Best Management Practices (BMPs) have been very effective at reducing water quality impacts from forest operations, projected increases in demand for forest products may result in unintended environmental degradation. Through a review of the pertinent literature, we identified several research gaps related to water yield, aquatic habitat, sediment source and delivery, and BMP effectiveness that should be addressed for streams in the United States to better understand and address the environmental ramifications of current and future levels of timber production. We explored the current understanding of these topics based on relevant literature and the possible implications of increased demand for forest products in the United States.

  10. Spatial Variation In Growing Season Heat Sums Within Northern Hardwood Forest Canopy Gaps

    Treesearch

    Brian E. Potter; Paul J. Croft

    2000-01-01

    When a gap forms in a forest canopy, the first and most immediate effect on the exposed area is an increase in radiative exchange near the ground. More sunlight reaches the ground during the daytime, and at nighttime the ground is more exposed to longwave radiation influences from the sky. These changes in radiation lead directly to a different near-ground temperature...

  11. Assessing fire effects on forest spatial structure using a fusion of Landsat and airborne LiDAR data in Yosemite National Park

    USGS Publications Warehouse

    Kane, Van R.; North, Malcolm P.; Lutz, James A.; Churchill, Derek J.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Kane, Jonathan T.; Brooks, Matthew L.

    2014-01-01

    Mosaics of tree clumps and openings are characteristic of forests dominated by frequent, low- and moderate-severity fires. When restoring these fire-suppressed forests, managers often try to reproduce these structures to increase ecosystem resilience. We examined unburned and burned forest structures for 1937 0.81 ha sample areas in Yosemite National Park, USA. We estimated severity for fires from 1984 to 2010 using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR) and measured openings and canopy clumps in five height strata using airborne LiDAR data. Because our study area lacked concurrent field data, we identified methods to allow structural analysis using LiDAR data alone. We found three spatial structures, canopy-gap, clump-open, and open, that differed in spatial arrangement and proportion of canopy and openings. As fire severity increased, the total area in canopy decreased while the number of clumps increased, creating a patchwork of openings and multistory tree clumps. The presence of openings > 0.3 ha, an approximate minimum gap size needed to favor shade-intolerant pine regeneration, increased rapidly with loss of canopy area. The range and variation of structures for a given fire severity were specific to each forest type. Low- to moderate-severity fires best replicated the historic clump-opening patterns that were common in forests with frequent fire regimes. Our results suggest that managers consider the following goals for their forest restoration: 1) reduce total canopy cover by breaking up large contiguous areas into variable-sized tree clumps and scattered large individual trees; 2) create a range of opening sizes and shapes, including ~ 50% of the open area in gaps > 0.3 ha; 3) create multistory clumps in addition to single story clumps; 4) retain historic densities of large trees; and 5) vary treatments to include canopy-gap, clump-open, and open mosaics across project areas to mimic the range of patterns found for each forest type in our study.

  12. Comparison of an empirical forest growth and yield simulator and a forest gap simulator using actual 30-year growth from two even-aged forests in Kentucky

    Treesearch

    Daniel A. Yaussy

    2000-01-01

    Two individual-tree growth simulators are used to predict the growth and mortality on a 30-year-old forest site and an 80-year-old forest site in eastern Kentucky. The empirical growth and yield model (NE-TWIGS) was developed to simulate short-term (

  13. Integrating LIDAR and forest inventories to fill the trees outside forests data gap

    Treesearch

    Kristofer D. Johnson; Richard Birdsey; Jason Cole; Anu Swatantran; Jarlath O' Neil-Dunne; Ralph Dubayah; Andrew Lister

    2015-01-01

    Forest inventories are commonly used to estimate total tree biomass of forest land even though they are not traditionally designed to measure biomass of trees outside forests (TOF). The consequence may be an inaccurate representation of all of the aboveground biomass, which propagates error to the outputs of spatial and process models that rely on the inventory data....

  14. Simulating the dynamics of linear forests in great plains agroecosystems under changing climates

    Treesearch

    Qinfeng Guo; J. Brandle; Michele Schoeneberger; D. Buettner

    2004-01-01

    Most forest growth models are not suitable for the highly fragmented, linear (or linearly shaped) forests in the Great Plains agroecosystems (e.g., windbreaks, riparian forest buffers), where such forests are a minor but ecologically important component of the land mosaics. This study used SEEI)SCAPE, a recently modified gap model designed for cultivated land mosaics...

  15. Functional traits enhance invasiveness of bamboos over co-occurring tree saplings in the semideciduous Atlantic Forest

    NASA Astrophysics Data System (ADS)

    Montti, Lía; Villagra, Mariana; Campanello, Paula I.; Gatti, M. Genoveva; Goldstein, Guillermo

    2014-01-01

    Many woody bamboo species are forest understory plants that become invasive after disturbance. They can grow rapidly forming a dense, nearly monospecific understory that inhibits tree regeneration. The principal aim of this study was to understand what functional traits of bamboos allow them to outcompete tree seedlings and saplings and become successful species in the semideciduous Atlantic Forests of northeastern Argentina. We studied leaf and whole-plant functional traits of two bamboo species of the genus Chusquea and five co-occurring saplings of common tree species growing under similar solar radiation and soil nutrient availabilities. Nutrient addition had no effect on bamboo or tree sapling survival and growth after two years. Tree species with high-light requirements had higher growth rates and developed relatively thin leaves with high photosynthetic capacity per unit leaf area and short leaf life-span when growing in gaps, but had lower survival rates in the understory. The opposite pattern was observed in shade-tolerant species that were able to survive in the understory but had lower photosynthetic capacity and growth than light-requiring species in gaps. Bamboos exhibited a high plasticity in functional traits and leaf characteristics that enabled them to grow rapidly in gaps (e.g., higher photosynthetic capacity per unit dry mass and clonal reproduction in gaps than in the understory) but at the same time to tolerate closed-canopy conditions (they had thinner leaves and a relatively longer leaf life-span in the understory compared to gaps). Photosynthetic capacity per unit dry mass was higher in bamboos than in trees. Bamboo plasticity in key functional traits, such as clonal reproduction at the plant level and leaves with a relatively low C cost and high photosynthesis rates, allows them to colonize disturbed forests with consequences at the community and ecosystem levels. Increasing disturbance in some forests worldwide will likely enhance bamboo invasion resulting in profound negative impacts on forest diversity, structure and function in the long term.

  16. Pervasive interactions between ungulate browsers and disturbance regimes promote temperate forest herbaceous diversity.

    PubMed

    Royo, Alejandro A; Collins, Rachel; Adams, Mary Beth; Kirschbaum, Chad; Carson, Walter P

    2010-01-01

    Disruptions to historic disturbance and herbivory regimes have altered plant assemblages in forests worldwide. An emerging consensus suggests that these disruptions often result in impoverished forest biotas. This is particularly true for eastern U.S. deciduous forests where large gaps and understory fires were once relatively common and browsers were far less abundant. Although much research has focused on how disturbance and browsers affect tree diversity, far less attention has been devoted to forest understories where the vast majority (>75%) of the vascular species reside. Here we test the hypothesis that the reintroduction of disturbances resembling historic disturbance regimes and moderate levels of ungulate browsing enhance plant diversity. We explore whether once-common disturbances and their interaction with the top-down influence of browsers can create conditions favorable for the maintenance of a rich herbaceous layer in a region recognized as a temperate biodiversity hotspot in West Virginia, U.S.A. We tested this hypothesis via a factorial experiment whereby we manipulated canopy gaps (presence/absence) of a size typically found in old-growth stands, low-intensity understory fire (burned/unburned), and deer browsing (fenced/unfenced). We tracked the abundance and diversity of more than 140 herb species for six years. Interactions among our treatments were pervasive. The combination of canopy gaps and understory fire increased herbaceous layer richness, cover, and diversity well beyond either disturbance alone. Furthermore, we documented evidence that deer at moderate levels of abundance promote herbaceous richness and abundance by preferentially browsing fast-growing pioneer species that thrive following co-occurring disturbances (i.e., fire and gaps). This finding sharply contrasts with the negative impact browsers have when their populations reach levels well beyond those that occurred for centuries. Although speculative, our results suggest that interactions among fire, canopy gaps, and browsing provided a variable set of habitats and conditions across the landscape that was potentially capable of maintaining much of the plant diversity found in temperate forests.

  17. [Microclimate dynamics of pit and mound complex within different sizes of forest gaps in Pinus koraiensis-dominated broadleaved mixed forest].

    PubMed

    Wei, Quan-Shuai; Wang, Jing-Hua; Duan, Wen-Biao; Chen, Li-Xin; Wang, Ting; Han, Dong-Hui; Gu, Wei

    2014-03-01

    An investigation was conducted in a 2.25 hm2 plot of Pinus koraiensis-dominated broad-leaved mixed forest to study basic characteristics of 7 small gaps, 5 middle gaps, 3 large gaps and 7 closed stands within 38 pit and mound complexes caused by treefall in May 2012. From June to September 2012, the soil temperature, soil water content and relative humidity at five microsites (pit bottom, pit wall, mound top, mound face and undisturbed closed stands) were measured in six sunny days each month. The results showed that among the five microsites in every month, the mound top had the highest soil temperature and the lowest water content and relative humidity, and vice versa for the pit bottom. Mostly, the differences in the above indicators among the five microsites were significant. From June to September, the mean soil temperatures for all microsites at pit and mound complex in the various gaps and closed stands were in the order of large gap>middle gap >small gap>closed stand; but the soil water content ranked differently every month. In June, August and September, the mean relative humidities for all microsites in the various gaps and closed stands were in the order of closed stand>small gap>middle gap>large gap. Mostly, the differences in the above indicators between all microsites in the various gaps and closed stand were significant. The mean monthly soil temperature and relative humidity were highest in July, but lowest in September. The maximal mean monthly soil water content occurred in July and the minimal one in September for each microsite except the undisturbed closed stands, where the maximal mean monthly soil water content occurred in July. The variation of the microclimate at the pit and mound complex was mainly influenced by gap size, microsite, and time.

  18. Changes in understory species occurrence of a secondary broadleaved forest after mass mortality of oak trees under deer foraging pressure

    PubMed Central

    2016-01-01

    The epidemic of mass mortality of oak trees by Japanese oak wilt has affected secondary deciduous broadleaved forests that have been used as coppices in Japan. The dieback of oak trees formed gaps in the crown that would be expected to enhance the regeneration of shade-intolerant pioneer species. However, foraging by sika deer Cervus nippon has also affected forest vegetation, and the compound effects of both on forest regeneration should be considered when they simultaneously occur. A field study was conducted in Kyôto City, Japan to investigate how these compound effects affected the vegetation of the understory layer of these forests. The presence/absence of seedlings and saplings was observed for 200 quadrats sized 5 m ×5 m for each species in 1992, before the mass mortality and deer encroachment, and in 2014 after these effects. A hierarchical Bayesian model was constructed to explain the occurrence, survival, and colonization of each species with their responses to the gaps that were created, expanded, or affected by the mass mortality of Quercus serrata trees. The species that occurred most frequently in 1992, Eurya japonica, Quercus glauca, and Cleyera japonica, also had the highest survival probabilities. Deer-unpalatable species such as Symplocos prunifolia and Triadica sebifera had higher colonization rates in the gaps, while the deer-palatable species Aucuba japonica had the smallest survival probability. The gaps thus promoted the colonization of deer-unpalatable plant species such as Symplocos prunifolia and Triadica sebifera. In the future, such deer-unpalatable species may dominate gaps that were created, expanded, or affected by the mass mortality of oak trees. PMID:28028480

  19. Changes in understory species occurrence of a secondary broadleaved forest after mass mortality of oak trees under deer foraging pressure.

    PubMed

    Itô, Hiroki

    2016-01-01

    The epidemic of mass mortality of oak trees by Japanese oak wilt has affected secondary deciduous broadleaved forests that have been used as coppices in Japan. The dieback of oak trees formed gaps in the crown that would be expected to enhance the regeneration of shade-intolerant pioneer species. However, foraging by sika deer Cervus nippon has also affected forest vegetation, and the compound effects of both on forest regeneration should be considered when they simultaneously occur. A field study was conducted in Kyôto City, Japan to investigate how these compound effects affected the vegetation of the understory layer of these forests. The presence/absence of seedlings and saplings was observed for 200 quadrats sized 5 m ×5 m for each species in 1992, before the mass mortality and deer encroachment, and in 2014 after these effects. A hierarchical Bayesian model was constructed to explain the occurrence, survival, and colonization of each species with their responses to the gaps that were created, expanded, or affected by the mass mortality of Quercus serrata trees. The species that occurred most frequently in 1992, Eurya japonica , Quercus glauca , and Cleyera japonica , also had the highest survival probabilities. Deer-unpalatable species such as Symplocos prunifolia and Triadica sebifera had higher colonization rates in the gaps, while the deer-palatable species Aucuba japonica had the smallest survival probability. The gaps thus promoted the colonization of deer-unpalatable plant species such as Symplocos prunifolia and Triadica sebifera . In the future, such deer-unpalatable species may dominate gaps that were created, expanded, or affected by the mass mortality of oak trees.

  20. Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research

    NASA Astrophysics Data System (ADS)

    Rogger, M.; Agnoletti, M.; Alaoui, A.; Bathurst, J. C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; Holden, J.; Holko, L.; Horn, R.; Kiss, A.; Kohnová, S.; Leitinger, G.; Lennartz, B.; Parajka, J.; Perdigão, R.; Peth, S.; Plavcová, L.; Quinton, J. N.; Robinson, M.; Salinas, J. L.; Santoro, A.; Szolgay, J.; Tron, S.; van den Akker, J. J. H.; Viglione, A.; Blöschl, G.

    2017-07-01

    Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long-term experiments on physical-chemical-biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology, and geomorphology.

  1. Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research

    PubMed Central

    Agnoletti, M.; Alaoui, A.; Bathurst, J. C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; Holden, J.; Holko, L.; Horn, R.; Kiss, A.; Kohnová, S.; Leitinger, G.; Lennartz, B.; Parajka, J.; Perdigão, R.; Peth, S.; Plavcová, L.; Quinton, J. N.; Robinson, M.; Salinas, J. L.; Santoro, A.; Szolgay, J.; Tron, S.; van den Akker, J. J. H.; Viglione, A.; Blöschl, G.

    2017-01-01

    Abstract Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long‐term experiments on physical‐chemical‐biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology, and geomorphology. PMID:28919651

  2. Forest ecology

    Treesearch

    Malcolm North

    2014-01-01

    Building on information summaries in two previous general technical reports (PSW-GTR-220 and PSW-GTR-237), this chapter focuses on four topics raised by forest managers and stakeholders as relevant to current forest management issues. Recent studies suggest that the gap size in lower and mid-elevation historical forests with active fire regimes was often about 0.12 to...

  3. United States forest disturbance trends observed with landsat time series

    Treesearch

    Jeffrey G. Masek; Samuel N. Goward; Robert E. Kennedy; Warren B. Cohen; Gretchen G. Moisen; Karen Schleweiss; Chengquan Huang

    2013-01-01

    Disturbance events strongly affect the composition, structure, and function of forest ecosystems; however, existing US land management inventories were not designed to monitor disturbance. To begin addressing this gap, the North American Forest Dynamics (NAFD) project has examined a geographic sample of 50 Landsat satellite image time series to assess trends in forest...

  4. Vegetation and Ecological Characteristics of Mixed-Conifer and Red Fir Forests at the Teakettle Experimental Forest

    Treesearch

    Malcolm North; Brian Oakley; Jiquan Chen; Heather Erickson; Andrew Gray; Antonio Izzo; Dale Johnson; Siyan Ma; Jim Marra; Marc Meyer; Kathryn Purcell; Tom Rambo; Dave Rizzo; Brent Roath; Tim Schowalter

    2002-01-01

    Detailed analysis of mixed-conifer and red fir forests were made from extensive, large vegetation sampling, systematically conducted throughout the Teakettle Experimental Forest. Mixed conifer is characterized by distinct patch conditions of closed-canopy tree clusters, persistent gaps and shrub thickets. This heterogeneous spatial structure provides contrasting...

  5. Extinction threshold for spatial forest dynamics with height structure.

    PubMed

    Garcia-Domingo, Josep L; Saldaña, Joan

    2011-05-07

    We present a pair-approximation model for spatial forest dynamics defined on a regular lattice. The model assumes three possible states for a lattice site: empty (gap site), occupied by an immature tree, and occupied by a mature tree, and considers three nonlinearities in the dynamics associated to the processes of light interference, gap expansion, and recruitment. We obtain an expression of the basic reproduction number R(0) which, in contrast to the one obtained under the mean-field approach, uses information about the spatial arrangement of individuals close to extinction. Moreover, we analyze the corresponding survival-extinction transition of the forest and the spatial correlations among gaps, immature and mature trees close to this critical point. Predictions of the pair-approximation model are compared with those of a cellular automaton. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. A stand-alone tree demography and landscape structure module for Earth system models: integration with inventory data from temperate and boreal forests

    NASA Astrophysics Data System (ADS)

    Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.

    2014-08-01

    Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESMs). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first-generation dynamic vegetation models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second-generation DVMs that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE (Community Atmosphere Biosphere Land Exchange) or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub-grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to wide-ranging temporal and boreal forests, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model, and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 year. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents an ecologically plausible and efficient alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.

  7. Soil properties in old-growth Douglas-fir gaps in the western Cascade Mountains of Oregon

    Treesearch

    Robert P. Griffiths; Andrew N. Gray; Thomas A. Spies

    2010-01-01

    This study had three objectives: (1) to determine if there are correlations between aboveground vegetation and belowground soil properties within large 50-m-diameter gaps, (2) to determine how large gaps influence forest soils compared with nongap soils, and (3) to measure the effects of differently sized gaps on gap soils. Circular canopy gaps were created in old-...

  8. United States Forest Disturbance Trends Observed Using Landsat Time Series

    NASA Technical Reports Server (NTRS)

    Masek, Jeffrey G.; Goward, Samuel N.; Kennedy, Robert E.; Cohen, Warren B.; Moisen, Gretchen G.; Schleeweis, Karen; Huang, Chengquan

    2013-01-01

    Disturbance events strongly affect the composition, structure, and function of forest ecosystems; however, existing U.S. land management inventories were not designed to monitor disturbance. To begin addressing this gap, the North American Forest Dynamics (NAFD) project has examined a geographic sample of 50 Landsat satellite image time series to assess trends in forest disturbance across the conterminous United States for 1985-2005. The geographic sample design used a probability-based scheme to encompass major forest types and maximize geographic dispersion. For each sample location disturbance was identified in the Landsat series using the Vegetation Change Tracker (VCT) algorithm. The NAFD analysis indicates that, on average, 2.77 Mha/yr of forests were disturbed annually, representing 1.09%/yr of US forestland. These satellite-based national disturbance rates estimates tend to be lower than those derived from land management inventories, reflecting both methodological and definitional differences. In particular the VCT approach used with a biennial time step has limited sensitivity to low-intensity disturbances. Unlike prior satellite studies, our biennial forest disturbance rates vary by nearly a factor of two between high and low years. High western US disturbance rates were associated with active fire years and insect activity, while variability in the east is more strongly related to harvest rates in managed forests. We note that generating a geographic sample based on representing forest type and variability may be problematic since the spatial pattern of disturbance does not necessarily correlate with forest type. We also find that the prevalence of diffuse, non-stand clearing disturbance in US forests makes the application of a biennial geographic sample problematic. Future satellite-based studies of disturbance at regional and national scales should focus on wall-to-wall analyses with annual time step for improved accuracy.

  9. Transforming Pinus pinaster forest to recreation site: preliminary effects on LAI, some forest floor, and soil properties.

    PubMed

    Öztürk, Melih; Bolat, İlyas

    2014-04-01

    This study investigates the effects of forest transformation into recreation site. A fragment of a Pinus pinaster plantation forest was transferred to a recreation site in the city of Bartın located close to the Black Sea coast of northwestern Turkey. During the transformation, some of the trees were selectively removed from the forest to generate more open spaces for the recreationists. As a result, Leaf Area Index (LAI) decreased by 0.20 (about 11%). Additionally, roads and pathways were introduced into the site together with some recreational equipment sealing parts of the soil surface. Consequently, forest environment was altered with a semi-natural landscape within the recreation site. The purpose of this study is to assess the effects of forest transformation into recreation site particularly in terms of the LAI parameter, forest floor, and soil properties. Preliminary monitoring results indicate that forest floor biomass is reduced by 26% in the recreation site compared to the control site. Soil temperature is increased by 15% in the recreation site where selective removal of trees expanded the gaps allowing more light transmission. On the other hand, the soil bulk density which is an indicator of soil compaction is unexpectedly slightly lower in the recreation site. Organic carbon (C(org)) and total nitrogen (N(total)) together with the other physical and chemical parameter values indicate that forest floor and soil have not been exposed to much disturbance. However, subsequent removal of trees that would threaten the vegetation, forest floor, and soil should not be allowed. The activities of the recreationists are to be concentrated on the paved spaces rather than soil surfaces. Furthermore, long-term monitoring and management is necessary for both the observation and conservation of the site.

  10. Canopy gaps decrease microbial densities and disease risk for a shade-intolerant tree species

    NASA Astrophysics Data System (ADS)

    Reinhart, Kurt O.; Royo, Alejandro A.; Kageyama, Stacie A.; Clay, Keith

    2010-11-01

    Canopy disturbances such as windthrow events have obvious impacts on forest structure and composition aboveground, but changes in soil microbial communities and the consequences of these changes are less understood. We characterized the densities of a soil-borne pathogenic oomycete ( Pythium) and a common saprotrophic zygomycete ( Mortierella) in nine pairs of forest gaps created by windthrows and adjacent forest understories. We determined the levels of Pythium necessary to cause disease by performing pathogenicity experiments using two Pythium species, a range of Pythium densities, and two common tree species ( Acer rubrum and Prunus serotina) from the study sites. Three years post-disturbance, densities of Mortierella remained suppressed in soil from forest gaps compared to levels in intact forest understories while varying across sites and sampling dates. Pythium were infrequently detected likely because of soil handling effects. Expression of disease symptoms increased with increasing inoculum density for seedlings of P. serotina with each Pythium spp. having a similar effect on this species. Conversely, A. rubrum appeared resistant to the two species of Pythium. These results suggest that Pythium densities at sites where they were detected are sufficient to cause disease and possibly affect establishment of susceptible species like P. serotina. Because early seral environments have lower loads of the saprotrophic Mortierella, pathogen loads may follow a similar pattern, causing susceptible species to establish more frequently in those habitats than in late-seral forests. Forest disturbances that alter the disease landscape may provide an additional mechanism for explaining succession of temperate forests in addition to the shade-tolerance paradigm.

  11. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective

    PubMed Central

    Smale, Dan A; Burrows, Michael T; Moore, Pippa; O'Connor, Nessa; Hawkins, Stephen J

    2013-01-01

    Kelp forests along temperate and polar coastlines represent some of most diverse and productive habitats on the Earth. Here, we synthesize information from >60 years of research on the structure and functioning of kelp forest habitats in European waters, with particular emphasis on the coasts of UK and Ireland, which represents an important biogeographic transition zone that is subjected to multiple threats and stressors. We collated existing data on kelp distribution and abundance and reanalyzed these data to describe the structure of kelp forests along a spatial gradient spanning more than 10° of latitude. We then examined ecological goods and services provided by kelp forests, including elevated secondary production, nutrient cycling, energy capture and flow, coastal defense, direct applications, and biodiversity repositories, before discussing current and future threats posed to kelp forests and identifying key knowledge gaps. Recent evidence unequivocally demonstrates that the structure of kelp forests in the NE Atlantic is changing in response to climate- and non-climate-related stressors, which will have major implications for the structure and functioning of coastal ecosystems. However, kelp-dominated habitats along much of the NE Atlantic coastline have been chronically understudied over recent decades in comparison with other regions such as Australasia and North America. The paucity of field-based research currently impedes our ability to conserve and manage these important ecosystems. Targeted observational and experimental research conducted over large spatial and temporal scales is urgently needed to address these knowledge gaps. PMID:24198956

  12. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective.

    PubMed

    Smale, Dan A; Burrows, Michael T; Moore, Pippa; O'Connor, Nessa; Hawkins, Stephen J

    2013-10-01

    Kelp forests along temperate and polar coastlines represent some of most diverse and productive habitats on the Earth. Here, we synthesize information from >60 years of research on the structure and functioning of kelp forest habitats in European waters, with particular emphasis on the coasts of UK and Ireland, which represents an important biogeographic transition zone that is subjected to multiple threats and stressors. We collated existing data on kelp distribution and abundance and reanalyzed these data to describe the structure of kelp forests along a spatial gradient spanning more than 10° of latitude. We then examined ecological goods and services provided by kelp forests, including elevated secondary production, nutrient cycling, energy capture and flow, coastal defense, direct applications, and biodiversity repositories, before discussing current and future threats posed to kelp forests and identifying key knowledge gaps. Recent evidence unequivocally demonstrates that the structure of kelp forests in the NE Atlantic is changing in response to climate- and non-climate-related stressors, which will have major implications for the structure and functioning of coastal ecosystems. However, kelp-dominated habitats along much of the NE Atlantic coastline have been chronically understudied over recent decades in comparison with other regions such as Australasia and North America. The paucity of field-based research currently impedes our ability to conserve and manage these important ecosystems. Targeted observational and experimental research conducted over large spatial and temporal scales is urgently needed to address these knowledge gaps.

  13. Tree root dynamics in montane and sub-alpine mixed forest patches.

    PubMed

    Wang, Y; Kim, J H; Mao, Z; Ramel, M; Pailler, F; Perez, J; Rey, H; Tron, S; Jourdan, C; Stokes, A

    2018-02-28

    The structure of heterogeneous forests has consequences for their biophysical environment. Variations in the local climate significantly affect tree physiological processes. We hypothesize that forest structure also alters tree root elongation and longevity through temporal and spatial variations in soil temperature and water potential. We installed rhizotrons in paired vegetation communities of closed forest (tree islands) and open patches (canopy gaps), along a soil temperature gradient (elevations of 1400, 1700 and 2000 m) in a heterogeneous mixed forest. We measured the number of growing tree roots, elongation and mortality every month over 4 years. The results showed that the mean daily root elongation rate (RER) was not correlated with soil water potential but was significantly and positively correlated with soil temperature between 0 and 8 °C only. The RER peaked in spring, and a smaller peak was usually observed in the autumn. Root longevity was dependent on altitude and the season in which roots were initiated, and root diameter was a significant factor explaining much of the variability observed. The finest roots usually grew faster and had a higher risk of mortality in gaps than in closed forest. At 2000 m, the finest roots had a higher risk of mortality compared with the lower altitudes. The RER was largely driven by soil temperature and was lower in cold soils. At the treeline, ephemeral fine roots were more numerous, probably in order to compensate for the shorter growing season. Differences in soil climate and root dynamics between gaps and closed forest were marked at 1400 and 1700 m, but not at 2000 m, where canopy cover was more sparse. Therefore, heterogeneous forest structure and situation play a significant role in determining root demography in temperate, montane forests, mostly through impacts on soil temperature.

  14. Thirty-two years of change in an old-growth Ohio beech-maple forest.

    PubMed

    Runkle, James R

    2013-05-01

    Old-growth forests dominated by understory-tolerant tree species are among forest types most likely to be in equilibrium. However, documentation of the degree to which they are in equilibrium over decades-long time periods is lacking. Changes in climate, pathogens, and land use all are likely to impact stand characteristics and species composition, even in these forests. Here, 32 years of vegetation changes in an old-growth beech (Fagus grandifolia)-sugar maple (Acer saccharum) forest in Hueston Woods, southwest Ohio, USA, are summarized. These changes involve canopy composition and structure, turnover in snags, and development of vegetation in treefall gaps. Stand basal area and canopy density have changed little in 32 years. However, beech has decreased in canopy importance (49% to 32%) while sugar maple has increased (32% to 47%). Annual mortality was about 1.3% throughout the study period. Mortality rates increased with stem size, but the fraction of larger stems increased due to ingrowth from smaller size classes. Beech was represented by more very large stems than small canopy stems: over time, death of those larger stems with inadequate replacement has caused the decrease in beech importance. Sugar maple was represented by more small canopy stems whose growth has increased its importance. The changes in beech and sugar maple relative importance are hypothesized to be due to forest fragmentation mostly from the early 1800s with some possible additional effects associated with the formation of the state park. Snag densities (12-16 snags/ha) and formation rates (1-3 snags.ha(-1).yr(-1)) remained consistent. The treefall gaps previously studied are closing, with a few, large stems remaining. Death of gap border trees occurs consistently enough to favor species able to combine growth in gaps and survival in the understory.

  15. Detailed maps of tropical forest types are within reach: forest tree communities for Trinidad and Tobago mapped with multiseason Landsat and multiseason fine-resolution imagery

    Treesearch

    Eileen H. Helmer; Thomas S. Ruzycki; Jay Benner; Shannon M. Voggesser; Barbara P. Scobie; Courtenay Park; David W. Fanning; Seepersad Ramnarine

    2012-01-01

    Tropical forest managers need detailed maps of forest types for REDD+, but spectral similarity among forest types; cloud and scan-line gaps; and scarce vegetation ground plots make producing such maps with satellite imagery difficult. How can managers map tropical forest tree communities with satellite imagery given these challenges? Here we describe a case study of...

  16. Advancing individual tree biomass prediction: assessment and alternatives to the component ratio method

    Treesearch

    Aaron Weiskittel; Jereme Frank; David Walker; Phil Radtke; David Macfarlane; James Westfall

    2015-01-01

    Prediction of forest biomass and carbon is becoming important issues in the United States. However, estimating forest biomass and carbon is difficult and relies on empirically-derived regression equations. Based on recent findings from a national gap analysis and comprehensive assessment of the USDA Forest Service Forest Inventory and Analysis (USFS-FIA) component...

  17. Bridging the gap between ecosystem theory and forest watershed management

    Treesearch

    Jackson Webster; Wayne Swank; James Vose; Jennifer Knoepp; Katherine Elliott

    2014-01-01

    The history of forests and logging in North America provides a back drop for our study of Watershed (WS) 7. Prior to European settlement, potentially commercial forests covered approximately 45% of North America, but not all of it was the pristine, ancient forest that some have imagined. Prior to 1492, Native Americans had extensive settlements throughout eastern...

  18. New gap-filling and partitioning technique for H2O eddy fluxes measured over forests

    NASA Astrophysics Data System (ADS)

    Kang, Minseok; Kim, Joon; Malla Thakuri, Bindu; Chun, Junghwa; Cho, Chunho

    2018-01-01

    The continuous measurement of H2O fluxes using the eddy covariance (EC) technique is still challenging for forests because of large amounts of wet canopy evaporation (EWC), which occur during and following rain events when the EC systems rarely work correctly. We propose a new gap-filling and partitioning technique for the H2O fluxes: a model-statistics hybrid (MSH) method. It enables the recovery of the missing EWC in the traditional gap-filling method and the partitioning of the evapotranspiration (ET) into transpiration and (wet canopy) evaporation. We tested and validated the new method using the data sets from two flux towers, which are located at forests in hilly and complex terrains. The MSH reasonably recovered the missing EWC of 16-41 mm yr-1 and separated it from the ET (14-23 % of the annual ET). Additionally, we illustrated certain advantages of the proposed technique which enable us to understand better how ET responds to environmental changes and how the water cycle is connected to the carbon cycle in a forest ecosystem.

  19. Short-Term Responses of Ground Beetles to Forest Changes Caused by Early Stages of Emerald Ash Borer (Coleoptera: Buprestidae)-Induced Ash Mortality.

    PubMed

    Perry, Kayla I; Herms, Daniel A

    2016-04-22

    Emerald ash borer (Agrilus planipennis Fairmaire), an invasive wood-boring beetle native to Asia, has killed hundreds of millions of ash trees since its accidental introduction into North America, resulting in widespread formation of canopy gaps and accumulations of coarse woody debris (CWD) in forests. The objective was to quantify effects of canopy gaps and CWD caused by early stages of emerald ash borer-induced ash mortality, and their interaction on ground beetle assemblages. The impact of canopy gaps and CWD varied, as gaps affected beetle assemblages in 2011, while effects of CWD were only observed in 2012. Gaps decreased beetle activity-abundance, and marginally decreased richness, driving changes in species composition, but evenness and diversity were unaffected. Effects of the CWD treatment alone were minimal, but CWD interacted with the canopy treatment, resulting in an increase in activity-abundance of ground beetles in canopy gaps without CWD, and a marginal increase in species richness in canopy gaps with CWD. Although there were some initial changes in species composition, these were ephemeral, suggesting that ground beetle assemblages may be resilient to disturbance caused by emerald ash borer. This study contributes to our understanding of the cascading ecological impacts of biological invasions on forest ecosystems. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Mechanisms of nitrogen deposition effects on temperate forest lichens and trees

    USGS Publications Warehouse

    Carter, Therese S.; Clark, Christopher M.; Fenn, Mark E.; Jovan, Sarah E.; Perakis, Steven; Riddell, Jennifer; Schaberg, Paul G.; Greaver, Tara; Hastings, Meredith

    2017-01-01

    We review the mechanisms of deleterious nitrogen (N) deposition impacts on temperate forests, with a particular focus on trees and lichens. Elevated anthropogenic N deposition to forests has varied effects on individual organisms depending on characteristics both of the N inputs (form, timing, amount) and of the organisms (ecology, physiology) involved. Improved mechanistic knowledge of these effects can aid in developing robust predictions of how organisms respond to either increases or decreases in N deposition. Rising N levels affect forests in micro- and macroscopic ways from physiological responses at the cellular, tissue, and organism levels to influencing individual species and entire communities and ecosystems. A synthesis of these processes forms the basis for the overarching themes of this paper, which focuses on N effects at different levels of biological organization in temperate forests. For lichens, the mechanisms of direct effects of N are relatively well known at cellular, organismal, and community levels, though interactions of N with other stressors merit further research. For trees, effects of N deposition are better understood for N as an acidifying agent than as a nutrient; in both cases, the impacts can reflect direct effects on short time scales and indirect effects mediated through long-term soil and belowground changes. There are many gaps on fundamental N use and cycling in ecosystems, and we highlight the most critical gaps for understanding potential deleterious effects of N deposition. For lichens, these gaps include both how N affects specific metabolic pathways and how N is metabolized. For trees, these gaps include understanding the direct effects of N deposition onto forest canopies, the sensitivity of different tree species and mycorrhizal symbionts to N, the influence of soil properties, and the reversibility of N and acidification effects on plants and soils. Continued study of how these N response mechanisms interact with one another, and with other dimensions of global change, remains essential for predicting ongoing changes in lichen and tree populations across North American temperate forests.

  1. The shifting nature of vegetation controls on peak snowpack with varying slope and aspect

    NASA Astrophysics Data System (ADS)

    Biederman, J. A.; Harpold, A. A.; Broxton, P. D.; Brooks, P. D.

    2012-12-01

    The controls on peak seasonal snowpack are known to shift between forested and open environments as well as with slope and aspect. Peak snowpack is predicted well by interception models under uniformly dense canopy, while topography, wind and radiation are strong predictors in open areas. However, many basins have complex mosaics of forest canopy and small gaps, where snowpack controls involve complex interactions among climate, topography and forest structure. In this presentation we use a new fully distributed tree-scale model to investigate vegetation controls on snowpack for a range of slope and aspect, and we evaluate the energy balance in forest canopy and gap environments. The model is informed by airborne LiDAR and ground-based observations of climate, vegetation and snowpack. It represents interception, snow distribution by wind, latent and sensible heat fluxes, and radiative fluxes above and below the canopy at a grid scale of 1 m square on an hourly time step. First, the model is minimally calibrated using continuous records of snow depth and snow water equivalent (SWE). Next, the model is evaluated using distributed observations at peak accumulation. Finally, the domain is synthetically altered to introduce ranges of slope and aspect. Northerly aspects accumulate greater peak SWE than southerly aspects (e.g. 275 mm vs. 250 mm at a slope of 28 %) but show lower spatial variability (e. g. CV = 0.14 vs. CV = 0.17 at slope of 28 %). On northerly aspects, most of the snowpack remains shaded by vegetation, whereas on southerly aspects the northern portions of gaps and southern forest edges receive direct insolation during late winter. This difference in net radiation makes peak SWE in forest gaps and adjacent forest edges more sensitive to topography than SWE in areas under dense canopy. Tree-scale modeling of snow dynamics over synthetic terrain offers extensive possibilities to test interactions among vegetation and topographic controls.

  2. History of Forest Service Research in the Central and Southern Rocky Mountain Regions, 1908-1975

    Treesearch

    Raymond Price

    1976-01-01

    The first forest research area established by the Forest Service was in 1908­the Fort Valley Experimental Forest near Flagstaff, Arizona. In 1909, the Fremont Experiment Station near Colorado Springs was begun, as well as the Wagon Wheel Gap watershed experiment in the central Rockies. The Santa Rita Range Reserve, begun in 1903, was transferred to the Forest Service...

  3. 75 FR 21625 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ...: Christopher Worthington 775-635-4000. EIS No. 20100136, Final EIS, USFS, 00, Nebraska National Forests and..., Buffalo Gap National Grassland, Oglala National Grassland, Samuel R. McKelvie National Forest, and the Pine Ridge and Bessey Units of the Nebraska National Forest, Fall River, Custer, Pennington, Jackson...

  4. Gap analysis for forest productivity research investments

    Treesearch

    E.D. Vance

    2010-01-01

    The US forest sector is in the midst of an era of transition and opportunity. Expectations that forests are managed to sustain wildlife, water, soil, and other environmental values are increasing as are certification systems and state and national initiatives designed to insure those expectations are met.

  5. Contrasting Patterns of Damage and Recovery in Logged Amazon Forests From Small Footprint LiDAR Data

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Keller, M.; Cook, B. D.; Hunter, Maria; Sales, Marcio; Spinelli, L.; Victoria, D.; Andersen, H.-E.; Saleska, S.

    2012-01-01

    Tropical forests ecosystems respond dynamically to climate variability and disturbances on time scales of minutes to millennia. To date, our knowledge of disturbance and recovery processes in tropical forests is derived almost exclusively from networks of forest inventory plots. These plots typically sample small areas (less than or equal to 1 ha) in conservation units that are protected from logging and fire. Amazon forests with frequent disturbances from human activity remain under-studied. Ongoing negotiations on REDD+ (Reducing Emissions from Deforestation and Forest Degradation plus enhancing forest carbon stocks) have placed additional emphasis on identifying degraded forests and quantifying changing carbon stocks in both degraded and intact tropical forests. We evaluated patterns of forest disturbance and recovery at four -1000 ha sites in the Brazilian Amazon using small footprint LiDAR data and coincident field measurements. Large area coverage with airborne LiDAR data in 2011-2012 included logged and unmanaged areas in Cotriguacu (Mato Grosso), Fiona do Jamari (Rondonia), and Floresta Estadual do Antimary (Acre), and unmanaged forest within Reserva Ducke (Amazonas). Logging infrastructure (skid trails, log decks, and roads) was identified using LiDAR returns from understory vegetation and validated based on field data. At each logged site, canopy gaps from logging activity and LiDAR metrics of canopy heights were used to quantify differences in forest structure between logged and unlogged areas. Contrasting patterns of harvesting operations and canopy damages at the three logged sites reflect different levels of pre-harvest planning (i.e., informal logging compared to state or national logging concessions), harvest intensity, and site conditions. Finally, we used multi-temporal LiDAR data from two sites, Reserva Ducke (2009, 2012) and Antimary (2010, 2011), to evaluate gap phase dynamics in unmanaged forest areas. The rates and patterns of canopy gap formation at these sites illustrate potential issues for separating logging damages from natural forest disturbances over longer time scales. Multi-temporal airborne LiDAR data and coincident field measurements provide complementary perspectives on disturbance and recovery processes in intact and degraded Amazon forests. Compared to forest inventory plots, the large size of each individual site permitted analyses of landscape-scale processes that would require extremely high investments to study using traditional forest inventory methods.

  6. THE QUANTITY AND TURNOVER OF DEAD WOOD IN PERMANENT FOREST PLOTS IN SIX LIFE ZONES OF VENEZUELA

    EPA Science Inventory

    Dead wood can be an important component of the carbon pool in many forests, but few measurements have been made of this pool in tropical forests. To fill this gap, we determined the quantity of dead wood (downed and standing dead) in 25 long-term (up to 30 yr) permanent forest pl...

  7. Influence of forest road buffer zones on sediment transport in the Southern Appalachian Region

    Treesearch

    Johnny M. Grace; Stanley J. Zarnoch

    2013-01-01

    A gap exists in the understanding of the effectiveness of forest road best management practices (BMP) in controlling sediment movement and minimizing risks of sediment delivery to forest streams. The objective of this paper is to report the findings of investigations to assess sediment travel distances downslope of forest roads in the Appalachian region, relate...

  8. Influences of Herbivory and Canopy Opening Size on Forest Regeneration in a Southern Bottomland Hardwood Forest

    Treesearch

    Steven B. Castleberry; W. Mark Ford; Carl V. Miller; Winston P. Smith

    2000-01-01

    We examined the effects of white-tailed deer (Odocoileus virginianus) browsing and canopy opening size on relative abundance and diversity of woody and herbaceous regeneration in various sized forest openings in a southern, bottomland hardwood forest over three growing seasons (1995-1997). We created 36 canopy openings (gaps), ranging from 7 to 40m...

  9. Relating bat species presence to simple habitat measures in a central Appalachian forest

    Treesearch

    W. Mark Ford; Michael A. Menzel; Jane L. Rodrigue; Jennifer M. Menzel; Joshua B. Johnson; Joshua B. Johnson

    2005-01-01

    We actively sampled the bat community at 63 sites using detection and non- detection metrics on the Fernow Experimental Forest (FEF) in the central Appalachians of West Virginia using Anabat acoustical equipment May-June 2001-2003 to relate species presence to simple habitat measures such as proximity to riparian areas, forest canopy cover, forest canopy gap width, and...

  10. Research gap analysis for application of biotechnology to sustaining US forests

    Treesearch

    R.W. Whetten; R. Kellison

    2010-01-01

    The expanding human population of the world is placing greater demand on forest resources, both natural forests and plantations. Both types of forests are being adversely affected in North America as well as in other parts of the world, due to the globalization of trade and to climate change and associated changes in pest and disease incidence. Biotechnology may help...

  11. Forest stand structure and pattern of old-growth western hemlock/Douglas-fir and mixed-conifer forests

    Treesearch

    Malcolm North; Jiquan Chen; Brian Oakley; Bo Song; Mark Rudnicki; Andrew Gray; Jim Innes

    2004-01-01

    With fire suppression, many western forests are expected to have fewer gaps and higher stem density of shade-tolerant species as light competition becomes a more significant influence on stand pattern and composition. We compared species composition, structure, spatial pattern, and environmental factors such as light and soil moisture between two old-growth forests:...

  12. 78 FR 49723 - Humboldt-Toiyabe National Forests; Ely Ranger District; Ely Westside Rangeland Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... Month (AUM) production for the Humboldt National Forest while improving the gap between existing and...: 1. Current Management Alternative: Continue current grazing management. 2. No Grazing Alternative... documents. (Authority: 40 CFR 1501.7 and 1508.22; Forest Service Handbook 1909.15, Section 21) Dated: August...

  13. Reversing legacy effects in the understory of an oak-dominated forest

    Treesearch

    Melissa Thomas-Van Gundy; James Rentch; Mary Beth Adams; Walter Carson

    2014-01-01

    Current forests developed under conditions different from original forests, with higher deer densities, reduced fire frequency, denser canopies, and smaller canopy gaps. These alterations have led to understories dominated by species simultaneously browse tolerant, shade tolerant, and fire sensitive leading to difficulties in the regeneration of oak species (...

  14. Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests

    NASA Astrophysics Data System (ADS)

    Bohn, Friedrich J.; May, Felix; Huth, Andreas

    2018-03-01

    Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP). It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q) and a species distribution index (ΩAWP). ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length). The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a development, one could plant below the closed canopy of even-aged, pioneer trees a climax-species-rich understorey that will build the canopy of the mature forest. This study highlights that forest structure and species composition are both relevant for understanding the temperature sensitivity of wood production.

  15. Traditional use of medicinal plants in the boreal forest of Canada: review and perspectives

    PubMed Central

    2012-01-01

    Background The boreal forest of Canada is home to several hundred thousands Aboriginal people who have been using medicinal plants in traditional health care systems for thousands of years. This knowledge, transmitted by oral tradition from generation to generation, has been eroding in recent decades due to rapid cultural change. Until now, published reviews about traditional uses of medicinal plants in boreal Canada have focused either on particular Aboriginal groups or on restricted regions. Here, we present a review of traditional uses of medicinal plants by the Aboriginal people of the entire Canadian boreal forest in order to provide comprehensive documentation, identify research gaps, and suggest perspectives for future research. Methods A review of the literature published in scientific journals, books, theses and reports. Results A total of 546 medicinal plant taxa used by the Aboriginal people of the Canadian boreal forest were reported in the reviewed literature. These plants were used to treat 28 disease and disorder categories, with the highest number of species being used for gastro-intestinal disorders, followed by musculoskeletal disorders. Herbs were the primary source of medicinal plants, followed by shrubs. The medicinal knowledge of Aboriginal peoples of the western Canadian boreal forest has been given considerably less attention by researchers. Canada is lacking comprehensive policy on harvesting, conservation and use of medicinal plants. This could be explained by the illusion of an infinite boreal forest, or by the fact that many boreal medicinal plant species are widely distributed. Conclusion To our knowledge, this review is the most comprehensive to date to reveal the rich traditional medicinal knowledge of Aboriginal peoples of the Canadian boreal forest. Future ethnobotanical research endeavours should focus on documenting the knowledge held by Aboriginal groups that have so far received less attention, particularly those of the western boreal forest. In addition, several critical issues need to be addressed regarding the legal, ethical and cultural aspects of the conservation of medicinal plant species and the protection of the associated traditional knowledge. PMID:22289509

  16. Evaluating UAV and LiDAR Retrieval of Snow Depth in a Coniferous Forest in Arizona

    NASA Astrophysics Data System (ADS)

    Van Leeuwen, W. J. D.; Broxton, P.; Biederman, J. A.

    2017-12-01

    Remote sensing of snow depth and cover in forested environments is challenging. Trees interfere with the remote sensing of snowpack below the canopy and cause large variations in the spatial distribution of the snowpack itself (e.g. between below canopy environments to shaded gaps to open clearings). The distribution of trees and topographic variation make it challenging to monitor the snowpack with in-situ observations. Airborne LiDAR has improved our ability to monitor snowpack over large areas in montane and forested environments because of its high sampling rate and ability to penetrate the canopy. However, these LiDAR flights can be too expensive and time-consuming to process, making it hard to use them for real-time snow monitoring. In this research, we evaluate Structure from Motion (SfM) as an alternative to Airborne LiDAR to generate high-resolution snow depth data in forested environments. This past winter, we conducted a snow field campaign over Arizona's Mogollon Rim where we acquired aerial LiDAR, multi-angle aerial photography from a UAV, and extensive field observations of snow depth at two sites. LiDAR and SFM derived snow depth maps were generated by comparing "snow-on" and "snow-off" LiDAR and SfM data. The SfM- and LiDAR-generated snow depth maps were similar at a site with fewer trees, though there were more discrepancies at a site with more trees. Both compared reasonably well with the field observations at the sparser forested site, with poorer agreement at the denser forested site. Finally, although the SfM produced point clouds with much higher point densities than the aerial LiDAR, the SfM was not able to produce meaningful snow depth estimates directly underneath trees and had trouble in areas with deep shadows. Based on these findings, we are optimizing our UAV data acquisition strategies for this upcoming field season. We are using these data, along with high-resolution hydrological modeling, to gain a better understanding of how different forest structural, climatic and topographic conditions affect the snowpack and consequently the water resources available to the Salt River Project, a water utility providing power and water to millions of customers in the Phoenix area

  17. Forest biomass mapping from fusion of GEDI Lidar data and TanDEM-X InSAR data

    NASA Astrophysics Data System (ADS)

    Qi, W.; Hancock, S.; Armston, J.; Marselis, S.; Dubayah, R.

    2017-12-01

    Mapping forest above-ground biomass (hereafter biomass) can significantly improve our ability to assess the role of forest in terrestrial carbon budget and to analyze the ecosystem productivity. Global Ecosystem Dynamic Investigation (GEDI) mission will provide the most complete lidar observations of forest vertical structure and has the potential to provide global-scale forest biomass data at 1-km resolution. However, GEDI is intrinsically a sampling mission and will have a between-track spacing of 600 m. An increase in adjacent-swath distance and the presence of cloud cover may also lead to larger gaps between GEDI tracks. In order to provide wall-to-wall forest biomass maps, fusion algorithms of GEDI lidar data and TanDEM-X InSAR data were explored in this study. Relationship between biomass and lidar RH metrics was firstly developed and used to derive biomass values over GEDI tracks which were simulated using airborne lidar data. These GEDI biomass values were then averaged in each 1-km cell to represent the biomass density within that cell. Whereas for cells without any GEDI observations, regression models developed between GEDI-derived biomass and TDX InSAR variables were applied to predict biomass over those places. Based on these procedures, contiguous biomass maps were finally generated at 1-km resolution over three representative forest types. Uncertainties for these biomass maps were also estimated at 1 km following methods developed in Saarela et al. (2016). Our results indicated great potential of GEDI/TDX fusion for large-scale biomass mapping. Saarela, S., Holm, S., Grafstrom, A., Schnell, S., Naesset, E., Gregoire, T.G., Nelson, R.F., & Stahl, G. (2016). Hierarchical model-based inference for forest inventory utilizing three sources of information. Annals of Forest Science, 73, 895-910

  18. Towards an improved LAI collection protocol via simulated field-based PAR sensing

    DOE PAGES

    Yao, Wei; Van Leeuwen, Martin; Romanczyk, Paul; ...

    2016-07-14

    In support of NASA’s next-generation spectrometer—the Hyperspectral Infrared Imager (HyspIRI)—we are working towards assessing sub-pixel vegetation structure from imaging spectroscopy data. Of particular interest is Leaf Area Index (LAI), which is an informative, yet notoriously challenging parameter to efficiently measure in situ. While photosynthetically-active radiation (PAR) sensors have been validated for measuring crop LAI, there is limited literature on the efficacy of PAR-based LAI measurement in the forest environment. This study (i) validates PAR-based LAI measurement in forest environments, and (ii) proposes a suitable collection protocol, which balances efficiency with measurement variation, e.g., due to sun flecks and various-sized canopymore » gaps. A synthetic PAR sensor model was developed in the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model and used to validate LAI measurement based on first-principles and explicitly-known leaf geometry. Simulated collection parameters were adjusted to empirically identify optimal collection protocols. Furthermore, these collection protocols were then validated in the field by correlating PAR-based LAI measurement to the normalized difference vegetation index (NDVI) extracted from the “classic” Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) data (R 2 was 0.61). The results indicate that our proposed collecting protocol is suitable for measuring the LAI of sparse forest (LAI < 3–5 ( m 2/m 2)).« less

  19. Variability in snowpack accumulation and ablation associated with mountain pine beetle infestation in western forests

    NASA Astrophysics Data System (ADS)

    Biederman, J. A.; Harpold, A. A.; Gochis, D. J.; Reed, D.; Brooks, P. D.

    2010-12-01

    Seasonal snowcover is a primary source of water to urban and agricultural regions in the western United States, where Mountain Pine Beetle (MPB) has caused rapid and extensive changes to vegetation in montane forests. Levels of MPB infestation in these seasonally snow-covered systems are unprecedented, and it is unknown how this will affect water yield, especially in changing climate conditions. To address this unknown we ask: How does snow accumulation and ablation vary across forest with differing levels of impact? Our study areas in the Rocky Mountains of CO and WY are similar in latitude, elevation and forest structure before infestation, but they vary in the intensity and timing of beetle infestation and tree mortality. We present a record for winter 2010 that includes continuous snow depth as well as stand-scale snow surveys at maximum accumulation. Additional measurements include snowfall, net radiation, temperature and wind speed as well as characterization of forest structure by leaf area index. In a stand uninfested by MPB, maximum snow depth was fairly uniform under canopy (mean = 86 cm, coefficient of variation = 0.021), while canopy gaps showed greater and more variable depth (mean = 117 cm, CV = 0.111). This is consistent with several studies demonstrating that snowfall into canopy gaps depends upon gap size, orientation, wind speed and storm size. In a stand impacted in 2007, snow depth under canopy was less uniform, and there were smaller differences in both mean depth and variability between canopy (mean = 93 cm, CV = 0.072) and gaps (mean = 97 cm, CV = 0.070), consistent with decreased canopy density. In a more recently infested (2009) stand with an intermediate level of MPB impact, mean snow depths were similar between canopy (96 cm, CV = 0.016) and gaps (95 cm, CV = 0.185) but gaps showed much greater variability, suggesting controls similar to those in effect in the uninfested stand. We further use these data to model snow accumulation and ablation as a function of vegetation, topography and fine-scale climate variability, with preliminary results presented at the meeting.

  20. Influence of Canopy Density on Ground Vegetation in a Bottomland Hardwood Forest

    Treesearch

    Sarah E. Billups

    1999-01-01

    We investigated the influence of canopy density on ground vegetation in naturally formed gap and non-gap habitats (environments) in a blackwater river floodplain. Tree seedlings were more important (relatively more abundant) in the non-gap habitat, and grass was more important in the gap habitat, but there were elevation x habitat interactions. Also, there was an...

  1. [Seasonality and landscape use by Tabanidae species (Diptera) in the Central Amazon, Brazil].

    PubMed

    Ferreira-Keppler, Ruth L; Rafael, José A; Guerrero, José C H

    2010-01-01

    Adults of Tabanidae may become serious pests wherever they occur due to their attack to humans and others animals. Tabanids were captured near ground, water surface and at 25 m high on primary forests and forest gaps of anthropogenic origin, to understand their abundance, seasonality, diversity and similarity on such environments. Collections were carried out in the Base II of the War Instruction Center in the Jungle (CIGS) located at 54 km from Manaus municipality, Amazonas state. Two Malaise flight interception traps and four attraction traps (two suspended at 25 m high and two above the water surface of igarapé) were installed in forest gap and primary forest, areas for 10 consecutive days, during 15 months. A total of 2,643 specimens of 66 species were captured. Diachlorini (35 species /11 genera) was the most abundant tribe, followed by Tabanini (19 species /three genera), Chrysopsini (seven species /one genus) and Scionini (five species /two genera). Seventeen species were captured only in the primary forest, 11 in the anthropic clearing, and 38 species were common to both environments. The most abundant species were Phorcotabanus cinereus (Wiedemann), Tabanus occidentalis L, Chrysops laetus Fabricius and Tabanus angustifrons Macquart. The greatest richness was found in drier months (September/October) in both areas. Theforest gap showed higher abundance of specimens (1,827) than the primary forest (816). Traps suspended above the water surface were the most efficient (1,723 specimens) probably due to the dispersion of horseflies over small streams.

  2. Large-scale wind disturbances promote tree diversity in a Central Amazon forest.

    PubMed

    Marra, Daniel Magnabosco; Chambers, Jeffrey Q; Higuchi, Niro; Trumbore, Susan E; Ribeiro, Gabriel H P M; Dos Santos, Joaquim; Negrón-Juárez, Robinson I; Reu, Björn; Wirth, Christian

    2014-01-01

    Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m(2)) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 to 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583 ± 46 trees ha(-1)) (mean ± 99% Confidence Interval) and basal area (26.7 ± 2.4 m(2) ha(-1)). Highly impacted areas had tree density and basal area as low as 120 trees ha(-1) and 14.9 m(2) ha(-1), respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m(2)) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances at the community level.

  3. Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest

    PubMed Central

    Marra, Daniel Magnabosco; Chambers, Jeffrey Q.; Higuchi, Niro; Trumbore, Susan E.; Ribeiro, Gabriel H. P. M.; dos Santos, Joaquim; Negrón-Juárez, Robinson I.; Reu, Björn; Wirth, Christian

    2014-01-01

    Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m2) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 to 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583±46 trees ha−1) (mean±99% Confidence Interval) and basal area (26.7±2.4 m2 ha−1). Highly impacted areas had tree density and basal area as low as 120 trees ha−1 and 14.9 m2 ha−1, respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m2) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances at the community level. PMID:25099118

  4. Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, Daniel Magnabosco; Chambers, Jeffrey Q.; Higuchi, Niro

    Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m 2) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 tomore » 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583±46 trees ha -1) (mean±99% Confidence Interval) and basal area (26.7±2.4 m 2 ha -1). Highly impacted areas had tree density and basal area as low as 120 trees ha -1 and 14.9 m 2 ha -1, respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m 2) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances at the community level.« less

  5. Large-Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest

    DOE PAGES

    Marra, Daniel Magnabosco; Chambers, Jeffrey Q.; Higuchi, Niro; ...

    2014-08-06

    Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m 2) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 tomore » 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583±46 trees ha -1) (mean±99% Confidence Interval) and basal area (26.7±2.4 m 2 ha -1). Highly impacted areas had tree density and basal area as low as 120 trees ha -1 and 14.9 m 2 ha -1, respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m 2) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind disturbances at the community level.« less

  6. Selection and quality assessment of Landsat data for the North American forest dynamics forest history maps of the US

    Treesearch

    Karen Schleeweis; Samuel N. Goward; Chengquan Huang; John L. Dwyer; Jennifer L. Dungan; Mary A. Lindsey; Andrew Michaelis; Khaldoun Rishmawi; Jeffery G. Masek

    2016-01-01

    Using the NASA Earth Exchange platform, the North American Forest Dynamics (NAFD) project mapped forest history wall-to-wall, annually for the contiguous US (1986-2010) using the Vegetation Change Tracker algorithm. As with any effort to identify real changes in remotely sensed time-series, data gaps, shifts in seasonality, misregistration, inconsistent radiometry and...

  7. Canopy gap characteristics of an old-growth and an adjacent second-growth beech-maple stand in north-central Ohio

    Treesearch

    David M. Hix; P. Charles Goebel; Heather L. Whitman

    2011-01-01

    The increased importance of integrating concepts of natural disturbance regimes into forest management, as well as the need to manage for complex forest structures, requires an understanding of how forest stands develop following natural disturbances. One of the primary natural disturbance types occurring in beech-maple ecosystems of the Central Hardwood Forest is...

  8. US Forest Service Experimental Forests and Ranges Network: a continental research platform for catchment-scale research

    Treesearch

    Daniel Neary; Deborah Hayes; Lindsey Rustad; James Vose; Gerald Gottfried; Stephen Sebesteyn; Sherri Johnson; Fred Swanson; Mary Adams

    2012-01-01

    The US Forest Service initiated its catchment research program in 1909 with the first paired catchment study at Wagon Wheel Gap, Colorado, USA. It has since developed the Experimental Forests and Ranges Network, with over 80 long-term research study sites located across the contiguous USA, Alaska, Hawaii, and the Caribbean. This network provides a unique, powerful...

  9. Exploring the relationship between parcelization metrics and natural resource managers' perceptions of forest land parcelization intensity

    Treesearch

    Michael A. Kilgore; Stephanie A. Snyder

    2016-01-01

    A major challenge associated with forest land parcelization, defined as the subdivision of forest land holdings into smaller ownership parcels, is that little information exists on how to measure its severity and judge its impacts across forest landscapes. To address this information gap, an on-line survey presented field-based public natural resource managers in the...

  10. Estimating gross primary productivity of a tropical forest ecosystem over north-east India using LAI and meteorological variables

    NASA Astrophysics Data System (ADS)

    Deb Burman, Pramit Kumar; Sarma, Dipankar; Williams, Mathew; Karipot, Anandakumar; Chakraborty, Supriyo

    2017-10-01

    Tropical forests act as a major sink of atmospheric carbon dioxide, and store large amounts of carbon in biomass. India is a tropical country with regions of dense vegetation and high biodiversity. However due to the paucity of observations, the carbon sequestration potential of these forests could not be assessed in detail so far. To address this gap, several flux towers were erected over different ecosystems in India by Indian Institute of Tropical Meteorology as part of the MetFlux India project funded by MoES (Ministry of Earth Sciences, Government of India). A 50 m tall tower was set up over a semi-evergreen moist deciduous forest named Kaziranga National Park in north-eastern part of India which houses a significant stretch of local forest cover. Climatically this region is identified to be humid sub-tropical. Here we report first generation of the in situ meteorological observations and leaf area index (LAI) measurements from this site. LAI obtained from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) is compared with the in situ measured LAI. We use these in situ measurements to calculate the total gross photosynthesis (or gross primary productivity, GPP) of the forest using a calibrated model. LAI and GPP show prominent seasonal variation. LAI ranges between 0.75 in winter to 3.25 in summer. Annual GPP is estimated to be 2.11 kg C m^{-2} year^{-1}.

  11. Use of NASA Satellite Data to Improve Coastal Cypress Forest Management

    NASA Technical Reports Server (NTRS)

    Spurce, Joseph; Graham, William; Barras, John

    2010-01-01

    Problem: Information gaps exist regarding health status and location of cypress forests in coastal Louisiana (LA). Such information is needed to aid coastal forest conservation and restoration programs. Approach to Issue Mitigation: Use NASA data to revise cypress forest cover type maps. Landsat and ASTER data. Use NASA data to identify and track cypress forest change. Landsat, ASTER, and MODIS data. Work with partners and end-users to transfer useful products and technology.

  12. Ecology and management of morels harvested from the forests of western North America.

    Treesearch

    David Pilz; Rebecca McLain; Susan Alexander; Luis Villarreal-Ruiz; Shannon Berch; Tricia L. Wurtz; Catherine G. Parks; Erika McFarlane; Blaze Baker; Randy Molina; Jane E. Smith

    2007-01-01

    Morels are prized edible mushrooms that fruit, sometimes prolifically, in many forest types throughout western North America. They are collected for personal consumption and commercially harvested as valuable special (nontimber) forest products. Large gaps remain, however, in our knowledge about their taxonomy, biology, ecology, cultivation, safety, and how to manage...

  13. Information Service System For Small Forestowners

    NASA Astrophysics Data System (ADS)

    Zhang, Shaochen; Li, Yun

    Individual owned forests have boomed in the last decade in China. Hundreds of millions of private forest owners have emerged since years of afforestation practice and collective forest ownership reform. Most of those private forest owners are former peasants living in afforestation areas. They thirst for forestry information, such as technique knowledge, forestry policies, finance, marketing, etc. Unfortunately the ways they could get certain information are very limit. Before internet time, Local governments are the main channel they search helps for useful information and technique supports. State and local governments have paid much attention to provide necessary forestry technique supports to those small forest owners and provided varies training projects, issued official forestry information through their websites. While, as state government expands household contract system in the management of collective forestry land, the number of individual forest owners is bumping up in future 5 years. There is still a gap between supplying ability and requirement of forestry information. To construct an effective forestry information service system in next 3-5 year can bridge the gap. This paper discusses the framework of such an information service system.

  14. Bridging scale gaps between regional maps of forest aboveground biomass and field sampling plots using TanDEM-X data

    NASA Astrophysics Data System (ADS)

    Ni, W.; Zhang, Z.; Sun, G.

    2017-12-01

    Several large-scale maps of forest AGB have been released [1] [2] [3]. However, these existing global or regional datasets were only approximations based on combining land cover type and representative values instead of measurements of actual forest aboveground biomass or forest heights [4]. Rodríguez-Veiga et al[5] reported obvious discrepancies of existing forest biomass stock maps with in-situ observations in Mexico. One of the biggest challenges to the credibility of these maps comes from the scale gaps between the size of field sampling plots used to develop(or validate) estimation models and the pixel size of these maps and the availability of field sampling plots with sufficient size for the verification of these products [6]. It is time-consuming and labor-intensive to collect sufficient number of field sampling data over the plot size of the same as resolutions of regional maps. The smaller field sampling plots cannot fully represent the spatial heterogeneity of forest stands as shown in Figure 1. Forest AGB is directly determined by forest heights, diameter at breast height (DBH) of each tree, forest density and tree species. What measured in the field sampling are the geometrical characteristics of forest stands including the DBH, tree heights and forest densities. The LiDAR data is considered as the best dataset for the estimation of forest AGB. The main reason is that LiDAR can directly capture geometrical features of forest stands by its range detection capabilities.The remotely sensed dataset, which is capable of direct measurements of forest spatial structures, may serve as a ladder to bridge the scale gaps between the pixel size of regional maps of forest AGB and field sampling plots. Several researches report that TanDEM-X data can be used to characterize the forest spatial structures [7, 8]. In this study, the forest AGB map of northeast China were produced using ALOS/PALSAR data taking TanDEM-X data as a bridges. The TanDEM-X InSAR data used in this study and forest AGB map was shown in Figure 2. The technique details and further analysis will be given in the final report. AcknowledgmentThis work was supported in part by the National Basic Research Program of China (Grant No. 2013CB733401, 2013CB733404), and in part by the National Natural Science Foundation of China (Grant Nos. 41471311, 41371357, 41301395).

  15. Spatial Configuration of Drought Disturbance and Forest Gap Creation across Environmental Gradients

    PubMed Central

    Andrew, Margaret E.; Ruthrof, Katinka X.; Matusick, George; Hardy, Giles E. St. J.

    2016-01-01

    Climate change is increasing the risk of drought to forested ecosystems. Although drought impacts are often anecdotally noted to occur in discrete patches of high canopy mortality, the landscape effects of drought disturbances have received virtually no study. This study characterized the landscape configuration of drought impact patches and investigated the relationships between patch characteristics, as indicators of drought impact intensity, and environmental gradients related to water availability to determine factors influencing drought vulnerability. Drought impact patches were delineated from aerial surveys following an extreme drought in 2011 in southwestern Australia, which led to patchy canopy dieback of the Northern Jarrah Forest, a Mediterranean forest ecosystem. On average, forest gaps produced by drought-induced dieback were moderate in size (6.6 ± 9.7 ha, max = 85.7 ha), compact in shape, and relatively isolated from each other at the scale of several kilometers. However, there was considerable spatial variation in the size, shape, and clustering of forest gaps. Drought impact patches were larger and more densely clustered in xeric areas, with significant relationships observed with topographic wetness index, meteorological variables, and stand height. Drought impact patch clustering was more strongly associated with the environmental factors assessed (R2 = 0.32) than was patch size (R2 = 0.21); variation in patch shape remained largely unexplained (R2 = 0.02). There is evidence that the xeric areas with more intense drought impacts are ‘chronic disturbance patches’ susceptible to recurrent drought disturbance. The spatial configuration of drought disturbances is likely to influence ecological processes including forest recovery and interacting disturbances such as fire. Regime shifts to an alternate, non-forested ecosystem may occur preferentially in areas with large or clustered drought impact patches. Improved understanding of drought impacts and their patterning in space and time will expand our knowledge of forest ecosystems and landscape processes, informing management of these dynamic systems in an uncertain future. PMID:27275744

  16. Gap Models as Tools for Sustainable Development under Environmental Changes in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Shugart, H. H., Jr.; Wang, B.; Brazhnik, K.; Armstrong, A. H.; Foster, A.

    2017-12-01

    Agent-based models of complex systems or as used in this review, Individual-based Models (IBMs), emerged in the 1960s and early 1970s, across diverse disciplines from astronomy to zoology. IBMs arose from a deeply embedded ecological tradition of understanding the dynamics of ecosystems from a "bottom-up" accounting of the interactions of the parts. In this case, individual trees are principal among the parts. Because they are computationally demanding, these models have prospered as the power of digital computers has increased exponentially over the decades following the 1970s. Forest IBMs are no longer computationally bound from developing continental- or global-scale simulations of responses of forests to climate and other changes. Gap models simulate the changes in forests by simulating the birth, growth and death of each individual tree on small plots of land that in summation comprise a forest (or set of sample plots on a forested landscape or region). Currently, gap models have grown from continental-scale and even global-scale applications to assess the potential consequences of climate change on natural forests. These predictions are valuable in the planning and anticipatory decision-making needed to sustainably manage a vast region such as Northern Eurasia. Modifications to the models have enabled simulation of disturbances including fire, insect outbreak and harvest. These disturbances have significant exogenous drivers, notably weather variables, but their effects are also a function of the endogenous conditions involving the structure of forest itself. This feedback between the forest and its environment can in some cases produce hysteresis and multiple-stable operating-regimes for forests. Such responses, often characterized as "tipping points" could play a significant role in increasing risk under environmental change, notably global warming. Such dynamics in a management context imply regional systems that could be "unforgiving" of management mistakes.

  17. A gap-filling model for eddy covariance CO2 flux: Estimating carbon assimilated by a subtropical evergreen broad-leaved forest at the Lien-Hua-Chih flux observation site

    NASA Astrophysics Data System (ADS)

    Lan, C. Y.; Li, M. H.; Chen, Y. Y.

    2016-12-01

    Appropriate estimations of gaps appeared in eddy covariance (EC) flux observations are critical to the reliability of long-term EC applications. In this study we present a semi-parametric multivariate gap-filling model for tower-based measurement of CO2 flux. The raw EC data passing QC/QA was separated into two groups, clear sky, having net radiation greater than 50 W/m2, and nighttime/cloudy. For the clear sky conditions, the principle component analysis (PCA) was used to resolve the multicollinearity relationships among various environmental variables, including net radiation, wind speed, vapor pressure deficit, soil moisture deficit, leaf area index, and soil temperature, in association with CO2 assimilated by forest. After the principal domains were determined by the PCA, the relationships between CO2 fluxes and selected PCs (key factors) were built up by nonlinear interpolations to estimate the gap-filled CO2 flux. In view of limited photosynthesis at nighttime/cloudy conditions, respiration rate of the forest ecosystem was estimated by the Lloyd-Tylor equation. Artificial gaps were randomly selected to exam the applicability of our PCA approach. Based on tower-based measurement of CO2 flux at the Lien-Hua-Chih site, a total of 5.8 ton-C/ha/yr was assimilated in 2012.

  18. Validation and application of a forest gap model to the southern Rocky Mountains

    Treesearch

    Adrianna C. Foster; Jacquelyn K. Shuman; Herman H. Shugart; Kathleen A. Dwire; Paula J. Fornwalt; Jason Sibold; Jose Negron

    2017-01-01

    Rocky Mountain forests are highly important for their part in carbon cycling and carbon storage as well as ecosystem services such as water retention and storage and recreational values. These forests are shaped by complex interactions among vegetation, climate, and disturbances. Thus, climate change and shifting disturbances may lead to significant changes in species...

  19. Distribution of the Red Imported Ant, Solenopsis invicta, in Road and Powerline Habitats

    Treesearch

    Judith H. Stiles; Robert H. Jones

    1998-01-01

    For early-successional species, road and powerline cuts through forests provide refugia and source populations for invading adjacent forest gaps. Within an 800 km2 forest matrix in South Carolina, we determined if width disturbance frequency or linear features of road and powerline cuts influenced the mound distribution of the red imported fire...

  20. Designing a mangrove research and demonstration forest in the Rufiji Delta, Tanzania

    Treesearch

    Mwita M. Mangora; Mwanahija S. Shalli; Immaculate S. Semesi; Marco A. Njana; Emmanuel J. Mwainunu; Jared E. Otieno; Elias Ntibasubile; Henry C. Mallya; Kusaga Mukama; Matiko Wambura; Nurdin A. Chamuya; Carl C. Trettin; Christina E. Stringer

    2016-01-01

    Despite the growing body of literature on science and management of mangroves, there is a considerable knowledge gap and uncertainty at local levels regarding the carbon pool size, variability of carbon sequestration and carbon stocks within mangrove forests, mechanisms that control carbon emissions from degradation of mangrove forests, impacts of conversion to other...

  1. Comparative physiology of a central hardwood old-growth forest canopy and forest gap

    Treesearch

    A. R. Gillespie; J. Waterman; K. Saylors

    1993-01-01

    Concerns of poor oak regeneration, changing climate, biodiversity patterns, and carbon cycling in the Central Hardwoods have prompted ecological and physiological studies of old-growth forests and their role in maintaining the landscape. To examine the effects of old-growth canopy structure on the physiological productivity of overstory and understory species, we...

  2. Vegetative composition in forested areas following application of desired forest condition treatments

    Treesearch

    Trent A. Danley; Andrew W. Ezell; Emily B. Schultz; John D. Hodges

    2015-01-01

    Desired forest conditions, or DFCs, are recently created parameters which strive to create diverse stands of hardwoods of various species and age classes, along with varying densities and canopy gaps, through the use of uneven-aged silvicultural methods and repeated stand entries. Little research has been conducted to examine residual stand composition and hardwood...

  3. On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession

    Treesearch

    Alejandro A. Royo; Walter P. Carson

    2006-01-01

    The mechanistic basis underpinning forest succession is the gap-phase paradigm in which overstory disturbance interacts with seedling and sapling shade tolerance to determine successional trajectories. The theory, and ensuing simulation models, typically assume that understory plants have little impact on the advance regeneration layer's composition. We challenge...

  4. Bridging the gap between strategic and management forest inventories

    Treesearch

    Ronald E. McRoberts

    2009-01-01

    Strategic forest inventory programs collect information for a large number of variables on a relatively sparse array of field plots. Data from these inventories are used to produce estimates for large areas such as states and provinces, regions, or countries. The purpose of management forest inventories is to guide management decisions for small areas such as stands....

  5. Study of landscape change under forest harvesting and climate warming-induced fire disturbance

    Treesearch

    S. He Hong; David J. Mladenoff; Eric J. Gustafson

    2002-01-01

    We examined tree species responses under forest harvesting and an increased fire disturbance scenario due to climate warming in northern Wisconsin where northern hardwood and boreal forests are currently predominant. Individual species response at the ecosystem scale was simulated with a gap model, which integrates soil, climate and species data, stratified by...

  6. Strong carbon sink of monsoon tropical seasonal forest in Southern Vietnam

    NASA Astrophysics Data System (ADS)

    Deshcherevskaya, Olga; Anichkin, Alexandr; Avilov, Vitaly; Duy Dinh, Ba; Luu Do, Phong; Huan Tran, Cong; Kurbatova, Julia

    2014-05-01

    Comparison between anthropogenic emission of carbon dioxide and atmospheric carbon pool change displays that only half of emitted CO2 remains in air, leaving so-called 'missing sink' of carbon. Terrestrial biosphere and ocean accumulate each about a half of this value (Gifford, 1994). Forest biomes play the decisive role in 'missing sink' because of high primary production flux and large carbon pool. Almost all the sink belongs to boreal forests, because warming and wetting coupled with increasing CO2 concentration and N deposition gives more favorable conditions for boreal ecosystems. On the contrary, tropical climate changes effect on forests is not obvious, probably cause more drought conditions; tropical forests suffer from 1.2 % per year area reduction and disturbance. Whether primary tropical forests act as carbon sink is still unclear. Biomass inventories at 146 forest plots across all the tropics in 1987-1997 revealed low carbon sink in humid forests biomass of 49 (29-66; 95% C.I.) g C m-2 year-1 on average (Malhi, 2010). Estimates for undisturbed African forests are close to global (Ciais et al., 2008). Eddy covariance (EC) observations with weak-turbulence correction in Amazonia reveal near-zero or small negative (i.e. sink) balance (Clark, 2004). Three EC sites in SE Asia primary forests give near-zero balance again (Saigusa et al., 2008; Kosugi et al., 2012). There are two main groups of explanations of moderate tropical carbon sink: (a) recovering of large-disturbance in the past or (b) response to current atmospheric changes: increase of CO2 concentration and/or climate change. So, strong carbon accumulation is not common for primary tropical forests. In this context sink of 402 g C m-2 in 2012 at EC station of Nam Cat Tien (NCT), Southern Vietnam (N 11°27', E 107°24', 134 m a.s.l.) in primary monsoon tropical forest looks questionably. EC instrument set at NCT consists of CSAT3 sonic anemometer and LI-7500A open-path gas analyzer. All the standard EC procedures were applied to the raw 10-Hz data, including time-lag compensation, block average, WPL-correction, planar fit, low- and high-frequency corrections etc. in EddyPro software (LI-COR Inc., USA). Calculated fluxes with bad quality flags (more than 6 of 9) were excluded. Spikes due to rains, instrument malfunction were removed too. Storage of CO2 from the surface to the measurement level which is very significant in tall tropical forest was added to the flux. Then low-turbulence correction was applied with u*-threshold of 0.178 m s-1. After these steps only 43 % of 30-min data of 2012 still presented, so the rate of gaps was 57 % (mainly at night and in rains). Data were gapfilled using on-line tool at the web-site of Max-Plank Institute, Germany and Flux-Analysis Tool, Japan. Different gap-filling procedures (non-linear regressions, look-up tables, model evaluation, artificial gaps-method) as well as u*-threshold shifting from 0 to 0.25 resulted in drift of 2012 net carbon exchange total from -296 to -612 g C m-2 (strong carbon sink still remain). Unfortunately, the situation of more then 50 % of gaps in CO2 flux is usual for tropical EC stations because of frequent calm nights. So, a gap-filling algorithm is extremely important for evaluation of long-term totals. We found for Vietnamese data that even few spikes which were not removed before gap-filling can change all-year total by up to 20-50 g m-2 year-1. Especially 'powerful' are big positive values at night in rare-occurred good turbulence. Possibly these values are physical. But they influence regressions in look-up table method dramatically because amount of data in peak of rainy season in night-time is too small. So, the gap-filling algorithm happened to be very sensitive to spikes. Additionally, striking was the fact that storage of CO2 appeared to be the main factor influencing 1-year totals after gap-filling procedure. Taking storage into account shifted the 2012 sum from +182 to -402 g m-2 year-1, from carbon source to the strong sink. Storage total for all the year was near-zero, but in our case including of storage resulted in gap-filling regression changes with corresponding change in total carbon balance. Probably the only way for proper net carbon balance evaluation for NCT site is chamber-measurements of night respiration of different ecosystem components, as used at Pasoh EC station, Malaysia. Ciais P., Piao S.L., Cadule P., Friedlingstein P., & Chedin A. Variability and recent trends in the African carbon balance. Biogeosciences Discussions, 5(4), 2008. Pp. 3497-3532. Clark D.A. Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1443), 2004. Pp. 477-491. Gifford, R. M. (1994). The global carbon cycle: a viewpoint on the missing sink. Functional Plant Biology, 21(1), 1-15. Kosugi Y., Takanashi S., Tani M., Ohkubo S., Matsuo N., Itoh M., Noguchi S. & Nik A.R. Effect of inter-annual climate variability on evapotranspiration and canopy CO2 exchange of a tropical rainforest in Peninsular Malaysia. Journal of forest research, 17(3), 2012. Pp. 227-240. Malhi, Y. (2010). The carbon balance of tropical forest regions, 1990-2005. Current Opinion in Environmental Sustainability, 2(4), 237-244. Saigusa, N., Yamamoto, S., Hirata, R., Ohtani, Y., Ide, R., Asanuma, J., ... & Wang, H. (2008). Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, and tropical forests in East Asia. Agricultural and forest meteorology, 148(5), 700-713.

  7. The Tropical Ecology, Assessment and Monitoring (TEAM) Network: An early warning system for tropical rain forests.

    PubMed

    Rovero, Francesco; Ahumada, Jorge

    2017-01-01

    While there are well established early warning systems for a number of natural phenomena (e.g. earthquakes, catastrophic fires, tsunamis), we do not have an early warning system for biodiversity. Yet, we are losing species at an unprecedented rate, and this especially occurs in tropical rainforests, the biologically richest but most eroded biome on earth. Unfortunately, there is a chronic gap in standardized and pan-tropical data in tropical forests, affecting our capacity to monitor changes and anticipate future scenarios. The Tropical Ecology, Assessment and Monitoring (TEAM) Network was established to contribute addressing this issue, as it generates real time data to monitor long-term trends in tropical biodiversity and guide conservation practice. We present the Network and focus primarily on the Terrestrial Vertebrates protocol, that uses systematic camera trapping to detect forest mammals and birds, and secondarily on the Zone of Interaction protocol, that measures changes in the anthroposphere around the core monitoring area. With over 3 million images so far recorded, and managed using advanced information technology, TEAM has created the most important data set on tropical forest mammals globally. We provide examples of site-specific and global analyses that, combined with data on anthropogenic disturbance collected in the larger ecosystem where monitoring sites are, allowed us to understand the drivers of changes of target species and communities in space and time. We discuss the potential of this system as a candidate model towards setting up an early warning system that can effectively anticipate changes in coupled human-natural system, trigger management actions, and hence decrease the gap between research and management responses. In turn, TEAM produces robust biodiversity indicators that meet the requirements set by global policies such as the Aichi Biodiversity Targets. Standardization in data collection and public sharing of data in near real time are essential features of such system. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A report on the potential use of USDA Forest Service forest inventory and analysis data by the Bureau of Land Management

    Treesearch

    Bill Williams; Tracey S. Frescino; Larry T. DeBlander; Sharon W. Woudenberg; Michael Wilson

    2006-01-01

    The Bureau of Land Management (BLM) does not have a consistent internal program or source of vegetation data to use for strategic level planning, such as in resource management plans. This technical note discusses and evaluates the potential of the USDA Forest Service Forest Inventory and Analysis (FIA) Program to assist the BLM in filling this data gap. The FIA...

  9. Gap-phase regeneration inlongleaf pine wiregrass ecosystems

    Treesearch

    D.G. Brockway; K.W. Outcalt

    1998-01-01

    Naturally regenerated seedlings of longleaf pine are typically observed to cluster in the center of tree fall canopy gaps and be encircled by a wide zone from which they are generally excluded. Twelve representative canopy gaps distributed across 600 ha of a naturally regenerated uneven-agedlongleaf pine forest in the sandhills of north central Florida were examined to...

  10. Soil erosion following forest operations in the Southern Piedmont of central Alabama

    Treesearch

    Johnny M. Grace

    2004-01-01

    In recent years, nonpoint source pollution (NPS) has been recognized as one of the major threats to the nation's water quality. Clearly, forest operations such as harvesting and site preparation have the potential to have degrading impacts on forest water quality. However, there exists a gap in the understanding of the nature and extent of NPS pollution problems...

  11. National Report on Sustainable Forests - 2003

    Treesearch

    USDA Forest Service

    2004-01-01

    This report presents a fresh analysis of the available data on the condition of forests in the United States. It uses the criteria and indicators of sustainable forest management endorsed by the Montreal Process, of which the United States is a member country. The report also identifies data gaps and makes recommendations for next steps to move forward the state of the...

  12. Current status of experimental paired-watershed research in the USDA Forest Service

    Treesearch

    Robert R. Ziemer; Douglas F. Ryan

    2000-01-01

    The first paired-watershed experiment on forested lands in the United States was conducted by the USDA Forest Service from 1909-1928 near Wagon Wheel Gap in Colorado. By the 1930's, experimental watershed studies had been initiated in southern California (San Dimas), Arizona (Sierra Ancha), and North Carolina (Coweeta). By the 1960's, there were 150...

  13. The forest-streamflow relationship in China: a 40-year retrospect

    Treesearch

    Xiaohua Wei; Ge Sun; Shirong Liu; Hong Jiang; Guoyi Zhou; Limin Dai

    2008-01-01

    The relationship between forests and streamflows has long been an important research interest in China. The purpose of this paper is to summarize progress and lessons learned from the forest-streamflow studies over the past four decades in China. To better measure the research gaps between China and other parts of the world, a brief global review on the findings from...

  14. Gap model development, validation, and application to succession of secondary subtropical dry forests of Puerto Rico

    Treesearch

    Jennifer A. Holm; H.H. Shugart; Skip J. Van Bloem; G.R. Larocque

    2012-01-01

    Because of human pressures, the need to understand and predict the long-term dynamics and development of subtropical dry forests is urgent. Through modifications to the ZELIG simulation model, including the development of species- and site-specific parameters and internal modifications, the capability to model and predict forest change within the 4500-ha Guanica State...

  15. Selection and quality assessment of Landsat data for the North American forest dynamics forest history maps of the US

    USGS Publications Warehouse

    Schleeweis, Karen; Goward, Samuel N.; Huang, Chengquan; Dwyer, John L.; Dungan, Jennifer L.; Lindsey, Mary A.; Michaelis, Andrew; Rishmawi, Khaldoun; Masek, Jeffery G.

    2016-01-01

    Using the NASA Earth Exchange platform, the North American Forest Dynamics (NAFD) project mapped forest history wall-to-wall, annually for the contiguous US (1986–2010) using the Vegetation Change Tracker algorithm. As with any effort to identify real changes in remotely sensed time-series, data gaps, shifts in seasonality, misregistration, inconsistent radiometry and cloud contamination can be sources of error. We discuss the NAFD image selection and processing stream (NISPS) that was designed to minimize these sources of error. The NISPS image quality assessments highlighted issues with the Landsat archive and metadata including inadequate georegistration, unreliability of the pre-2009 L5 cloud cover assessments algorithm, missing growing-season imagery and paucity of clear views. Assessment maps of Landsat 5–7 image quantities and qualities are presented that offer novel perspectives on the growing-season archive considered for this study. Over 150,000+ Landsat images were considered for the NAFD project. Optimally, one high quality cloud-free image in each year or a total of 12,152 images would be used. However, to accommodate data gaps and cloud/shadow contamination 23,338 images were needed. In 220 specific path-row image years no acceptable images were found resulting in data gaps in the annual national map products.

  16. Bridging the gap between data analysis and data collection in FIA and forest monitoring globally: successes, research findings, and lessons learned from the Western US and Southeast Asia

    Treesearch

    Leif Mortenson

    2015-01-01

    Globally, national forest inventories (NFI) require a large work force typically consisting of multiple teams spread across multiple locations in order to successfully capture a given nation’s forest resources. This is true of the Forest Inventory and Analysis (FIA) program in the US and in many inventories in developing countries that are supported by USFS...

  17. Spatial variation in post-dispersal seed removal in an Atlantic forest: Effects of habitat, location and guilds of seed predators

    NASA Astrophysics Data System (ADS)

    Christianini, Alexander V.; Galetti, Mauro

    2007-11-01

    Studies of post-dispersal seed removal in the Neotropics have rarely examined the magnitude of seed removal by different types of granivores. The relative impact of invertebrates, small rodents, and birds on seed removal was investigated in a 2,178 ha Atlantic forest fragment in southeastern Brazil. We used popcorn kernels ( Zea mays—Poaceae) to investigate seed removal in a series of selective exclosure treatments in a replicated, paired design experiment that included forest understory, gaps, and forest edge sites. We recorded the vegetation around the experimental seed stations in detail in order to evaluate the influence of microhabitat traits on seed removal. Vertebrate granivores (rodents and birds) were surveyed to determine whether granivore abundance was correlated with seed removal levels. Seed removal varied spatially and in unpredictable ways at the study site. Seed encounter and seed use varied with treatments, but not with habitat type. However, seed removal by invertebrates was negatively correlated with gap-related traits, which suggested an avoidance of large gaps by granivorous ants. The abundance of small mammals was remarkably low, but granivorous birds (tinamous and doves) were abundant at the study site. Birds were the main seed consumers in open treatments, but there was no correlation between local granivorous bird abundance and seed removal. These results emphasize the stochastic spatial pattern of seed removal, and, contrary to previous studies, highlight the importance of birds as seed predators in forest habitats.

  18. Low temperature resistance in saplings and ramets of Polylepis sericea in the Venezuelan Andes

    NASA Astrophysics Data System (ADS)

    Rada, Fermín; García-Núñez, Carlos; Rangel, Sairo

    2009-09-01

    The frequent occurrence of all year-round below zero temperatures in tropical high mountains constitutes a most stressful climatic factor that plants have to confront. Polylepis forests are found well above the continuous forest line and are distributed throughout the Andean range. These trees require particular traits to overcome functional limitations imposed on them at such altitudes. Considering seedling and sapling stages as filter phases in stressful environments, some functional aspects of the regeneration of Polylepis sericea, a species associated to rock outcrops in the Venezuelan Andes, were studied. We characterized microclimatic conditions within a forest, in a forest gap and surrounding open páramo and determined low temperature resistance mechanisms in seedlings, saplings and ramets. Conditions in the forest understory were more stable compared to the forest gaps and open surrounding páramo. Minimum temperatures close to the ground were 3.6 °C lower in the open páramo compared to the forest understory. Maximum temperatures were 9.0 °C higher in the open páramo. Ice nucleation and injury temperatures occurred between -6 and -8 °C for both ramets and saplings, an evidence of frost avoidance to low nighttime temperatures. In this particular forest, this resistance ability is determinant in their island-like distribution in very specific less severe temperature habitats.

  19. Regional-scale drivers of forest structure and function in northwestern Amazonia.

    PubMed

    Higgins, Mark A; Asner, Gregory P; Anderson, Christopher B; Martin, Roberta E; Knapp, David E; Tupayachi, Raul; Perez, Eneas; Elespuru, Nydia; Alonso, Alfonso

    2015-01-01

    Field studies in Amazonia have found a relationship at continental scales between soil fertility and broad trends in forest structure and function. Little is known at regional scales, however, about how discrete patterns in forest structure or functional attributes map onto underlying edaphic or geological patterns. We collected airborne LiDAR (Light Detection and Ranging) data and VSWIR (Visible to Shortwave Infrared) imaging spectroscopy measurements over 600 km2 of northwestern Amazonian lowland forests. We also established 83 inventories of plant species composition and soil properties, distributed between two widespread geological formations. Using these data, we mapped forest structure and canopy reflectance, and compared them to patterns in plant species composition, soils, and underlying geology. We found that variations in soils and species composition explained up to 70% of variation in canopy height, and corresponded to profound changes in forest vertical profiles. We further found that soils and plant species composition explained more than 90% of the variation in canopy reflectance as measured by imaging spectroscopy, indicating edaphic and compositional control of canopy chemical properties. We last found that soils explained between 30% and 70% of the variation in gap frequency in these forests, depending on the height threshold used to define gaps. Our findings indicate that a relatively small number of edaphic and compositional variables, corresponding to underlying geology, may be responsible for variations in canopy structure and chemistry over large expanses of Amazonian forest.

  20. [The research on bidirectional reflectance computer simulation of forest canopy at pixel scale].

    PubMed

    Song, Jin-Ling; Wang, Jin-Di; Shuai, Yan-Min; Xiao, Zhi-Qiang

    2009-08-01

    Computer simulation is based on computer graphics to generate the realistic 3D structure scene of vegetation, and to simulate the canopy regime using radiosity method. In the present paper, the authors expand the computer simulation model to simulate forest canopy bidirectional reflectance at pixel scale. But usually, the trees are complex structures, which are tall and have many branches. So there is almost a need for hundreds of thousands or even millions of facets to built up the realistic structure scene for the forest It is difficult for the radiosity method to compute so many facets. In order to make the radiosity method to simulate the forest scene at pixel scale, in the authors' research, the authors proposed one idea to simplify the structure of forest crowns, and abstract the crowns to ellipsoids. And based on the optical characteristics of the tree component and the characteristics of the internal energy transmission of photon in real crown, the authors valued the optical characteristics of ellipsoid surface facets. In the computer simulation of the forest, with the idea of geometrical optics model, the gap model is considered to get the forest canopy bidirectional reflectance at pixel scale. Comparing the computer simulation results with the GOMS model, and Multi-angle Imaging SpectroRadiometer (MISR) multi-angle remote sensing data, the simulation results are in agreement with the GOMS simulation result and MISR BRF. But there are also some problems to be solved. So the authors can conclude that the study has important value for the application of multi-angle remote sensing and the inversion of vegetation canopy structure parameters.

  1. Effects of continuous cover forestry on soil moisture pattern - Beginning steps of a Hungarian study

    NASA Astrophysics Data System (ADS)

    Kalicz, Péter; Bartha, Dénes; Brolly, Gábor; Csáfordi, Péter; Csiszár, Ágnes; Eredics, Attila; Gribovszki, Zoltán; Király, Géza; Kollár, Tamás; Korda, Márton; Kucsara, Mihály; Nótári, Krisztina; Kornél Szegedi, Balázs; Tiborcz, Viktor; Zagyvai, Gergely; Zagyvai-Kiss, Katalin Anita

    2014-05-01

    Nowadays Hungarian foresters encounter a new challenge. The traditional management practices do not meet anymore with the demand of the civil society. The good old clearcut is no more a supported technology in forest regeneration. The transition to the continuous cover forestry induces much higher spatial variability compared to the even aged, more or less homogeneous, monoculture stands. The gap cutting is one of the proposed key methods in the Hungarian forestry. There is an active discussion among forest professionals how to determine the optimal gap size to maintain ideal conditions for the seedlings. Among other open questions for example how the surrounding trees modify the moisture pattern of the forest floor in the gap? In the early steps of a multidisciplinary project we established four research plots to study the spatial and temporal variability of soil moisture in the forest gap and the surrounding undisturbed stand. Each plot is located in oak (Quercus spp.) stands. Natural regeneration of oak stands is more problematic in our climate compared to the beech (Fagus sylvatica) which is located in the more humid or semi-humid areas of our country. All plots are located in the western part of Hungary: close to Sopron, Bejcgyertyános, Vép and Vajszló settlements. The last plot is an extensive research area, which is located in the riparian zone of a tributary of Feketevíz River. We monitor here the close-to-surface groundwater level fluctuation with pressure transducers. With a diurnal fluctuation based method it is possible to quantify the evapotranspiration differences between the gap and the stand. In two of the remaining stands (Bejcgyertyános and Vép) the gaps were opened in 2010. The monitoring of soil moisture began in 2013. A mobile sensor is used to monitor soil-moisture in a regular grid. The spatial variability of soil-moisture time-series shows a characteristic pattern during the growing-season. The plot in Sopron was established in 2013. Gaps with three different sizes were opened and fenced round to close out wild game. The initial status of the gap was recorded by a terrestrial laser scanner (LIDAR). From the resulting 3D point cloud high-resolution digital terrain and canopy surface model are derived which will help the planned numerical modelling. To prevent the unnecessary disturbance in this plot, two perpendicular transects were selected in each gap. The soil-moisture is monitored along these lines together with additional investigations, for example throughfall, and litter interception, tension disc infiltrometry, plant composition and cover. The microclimatic parameters such as near surface air temperature, relative humidity, radiation, wind speed and soil temperature is continuously recorded along the transects and compared to a nearby reference meteorological station located at an open area. Acknowledgment: The research was financially supported by the TÁMOP-4.2.2.A-11/1/KONV-2012-0004 joint EU-national research project

  2. Response of white-footed mice (Peromyscus leucopus) to coarse woody debris and microsite use in southern Appalachian treefall gaps

    Treesearch

    Cathryn H. Greenberg

    2002-01-01

    The influence of treefall gaps and coarse woody debris (CWD) on white-footed mouse (Peromyxus leucopus) abundance was tested experimentally during 1996-1999 in a southern Appalachian hardwood forest. I compared the relative abundance and body size of P. leucopus among unsalvaged gaps that were created by wind disturbance and...

  3. Effects of high- and low-intensity fires on soil properties and plant growth in a Bolivian dry forest

    Treesearch

    Deborah K. Kennard; H.L. Gholz

    2001-01-01

    We compared soil nutrient availabiiity and soil physical properties among four treatments (high-intensity fire, low- intensity fire, plant removal, and harvesting gap) and a control (intact forest understory) over a period of 18 months in a tropical dry forest in Bolivia. The effect of treatments on plant growth was tested using a shade intolerant tree species (

  4. Carbon stocks and accumulation rates in Pacific Northwest forests: role of stand age, plant community, and productivity

    Treesearch

    Andrew N. Gray; Thomas R. Whittier; Mark E. Harmon

    2016-01-01

    Forest ecosystems are removing significant amounts of carbon from the atmosphere. Both abiotic resource availability and biotic interactions during forest succession affect C accumulation rates and maximum C stocks. However, the timing and controls on the peak and decline in C accumulation rates as stands age, trees increase in size, and canopy gaps become prevalent...

  5. CLIMACS: a computer model of forest stand development for western Oregon and Washington.

    Treesearch

    Virginia H. Dale; Miles Hemstrom

    1984-01-01

    A simulation model for the development of timber stands in the Pacific Northwest is described. The model grows individual trees of 21 species in a 0.20-hectare (0.08-acre) forest gap. The model provides a means of assimilating existing information, indicates where knowledge is deficient, suggests where the forest system is most sensitive, and provides a first testing...

  6. Does the precipitation redistribution of the canopy sense in the moisture pattern of the forest litter?

    NASA Astrophysics Data System (ADS)

    Zagyvai-Kiss, Katalin Anita; Kalicz, Péter; Csáfordi, Péter; Kucsara, Mihály; Gribovszki, Zoltán

    2013-04-01

    Precipitation is trapped and temporarily stored by the surfaces of forest crown (canopy interception) and forest litter (litter interception). The stemflow and throughfall reach the litter, thus theoretically the litter moisture content depends on these parts of precipitation. Nowadays the moisture pattern of the forest floor, both spatial and temporal scale, have growing respect for the forestry. The transition to the continuous cover forestry induce much higher variability compared to the even aged, more-less homogeneous, monocultural stands. The gap cutting is one of the key methods in the Hungarian forestry. There is an active discussion among the forest professionals how to determine the optimal gap size to maintain the optimal conditions for the seedlings. Among the open questions is how to modify surrounding trees the moisture pattern of the forest floor in the gap? In the early steps of a multidisciplinary project we processed some available data, to estimate the spatial dependency between the water content of forest litter and the spatial pattern of the canopy represented by the tree trunk. The maximum water content depends on dry weight of litter, thus we also analysed that parameter. Data were measured in three different forest ecosystems: a middle age beech (Fagus sylvatica), a sessile oak (Quercus petraea) and a spruce (Picea abies) stand. The study site (Hidegvíz Valley Research Cathcment) is located in Sopron Hills at the eastern border of the Alps. Litter samples were collected under each stand (occasionally 10-10 pieces from 40?40 cm area) and locations of the samples and neighbouring trees were mapped. We determined dry weight and the water content of litter in laboratory. The relationship between water content and the distance of tree trunks in case of spruce and oak stands were not significant and in case of the beech stand was weakly significant. Climate change effects can influence significantly forest floor moisture content, therefore this factor has also taken into account. Acknowledgement: The research was financially supported by the TÁMOP-4.2.2.A-11/1/KONV-2012-0004 and TÁMOP-4.2.2.A-11/1/KONV-2012-0013 joint EU-national research projects.

  7. Indirect effects of emerald ash borer-induced ash mortality and canopy gap formation on epigaeic beetles.

    PubMed

    Gandhi, Kamal J K; Smith, Annemarie; Hartzler, Diane M; Herms, Daniel A

    2014-06-01

    Exotic herbivorous insects have drastically and irreversibly altered forest structure and composition of North American forests. For example, emerald ash borer (Agrilus planipennis Fairmaire) from Asia has caused wide-scale mortality of ash trees (Fraxinus spp.) in eastern United States and Canada. We studied the effects of forest changes resulting from emerald ash borer invasion on epigaeic or ground beetles (Coleoptera: Carabidae) along a gradient of ash dieback and gap sizes in southeastern Michigan. Ground beetles were sampled in hydric, mesic, and xeric habitats in which black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white (Fraxinus americana L.) ash were the most common species, respectively. During 2006-2007, we trapped 2,545 adult ground beetles comprising 52 species. There was a negative correlation between percent ash tree mortality in 2006 and catches of all beetles. Catches of Agonum melanarium Dejean (in 2006) and Pterostichus mutus (Say) (in 2006-2007) were negatively correlated with tree mortality and gap size, respectively. However, catches of Pterostichus corvinus Dejean were positively correlated with gap size in 2006. As ash mortality and average gap size increased from 2006 to 2007, catches of all beetles as well as P. mutus and Pterostichus stygicus (Say) increased (1.3-3.9 times), while species diversity decreased, especially in mesic and xeric stands. Cluster analysis revealed that beetle assemblages in hydric and mesic stand diverged (25 and 40%, respectively) in their composition from 2006 to 2007, and that hydric stands had the most unique beetle assemblages. Overall, epigaeic beetle assemblages were altered in ash stands impacted by emerald ash borer; however, these impacts may dissipate as canopy gaps close.

  8. The transient behavior of whole-canopy fluxes during dynamic light conditions for midlatitude and tropical forests

    NASA Astrophysics Data System (ADS)

    Fitzjarrald, D. R.; Kivalov, S. N.

    2017-12-01

    Cloud shadows lead to alternating light and dark periods at the surface. Understanding how clouds affect whole-canopy fluxes suffer from two knowledge gaps that limit scaling from leaf to canopy scales, an effort currently done by assertion alone. First, there is a lack a clear quantitative definition of the incident light time series that occur on specific types of cloudy days. Second, the characteristic time scales for leaves to respond to for stomatal opening and closing is 1-10 minutes, a period too short to allow accurate eddy fluxes. We help to close the first gap by linking the durations of alternating light and dark periods statistically to conventional meteorological sky types at a midlatitude mixed deciduous forest (Harvard Forest, MA, USA: 42.53N, 72.17W) and in a tropical rain forest (Tapajós National Forest, Brazil; 2.86S, 54.96W). The second gap is narrowed by measuring the dynamic response whole canopy exchanges in the flux footprint at intervals of only a few seconds using the classical ensemble average method, keying on step changes in light intensity. Combining light and shadow periods of different lengths we estimate ensemble fluxes sensible heat (H), net ecosystem exchange (NEE), and latent heat (LE) fluxes initiated by abrupt radiation changes at intervals of 30 s over 20 minutes. We present composite results of the transient behavior of whole-canopy fluxes at each forest, showing distinct features of each forest type. Observed time constants and transient flux parameterizations are then used to force a simple model to yield NEE, LE, WUE, and Bowen ratio extrema under periodic shadow-light conditions and given cloud amount. We offer the hypothesis that, at least on certain types of cloudy days, the well-known correlation between diffuse light and WUE does not represent a causal connection at the canopy scale.

  9. GAP SIZE AND SUCCESSIONAL PROCESSES IN SOUTHERN APPALACHIAN FORESTS

    EPA Science Inventory

    We used clearcut logging in establishing four replicated sizes of canopy openings (0.016, 0.08, 0.4, and 2.0 ha) in a southern Appalachian hardwood forest in 1981 to examine the long-term effects of disturbance size on plant community structure, biomass accumulation, aboveground ...

  10. Interoperability of Landsat and DMC imagery for continuous detection and quantification of nonindustrial forest harvests in the Western Upper Peninsula of Michigan, USA

    NASA Astrophysics Data System (ADS)

    Mayer, A. L.; Tortini, R.; Maianti, P.

    2013-12-01

    The relationship between human land use and land cover change is critical to sustainable forest management. Land use decisions by small land managers aggregate into substantial land cover changes at landscape and regional scales. Land ownership across large portions of the Upper Great Lakes region is in considerable flux, as large timber industry tracts are split into many smaller non-industrial ownerships, and new owners prioritize amenity and non-timber forest values. Nonindustrial Private Forest (NIPF) owners also transfer their properties to younger generations or other NIPF owners with different management approaches and goals. Survey data on intended harvests and sales are available through the National Woodland Owner Survey (NWOS), run by the USDA Forest Service. However, the disparity between NIPF owner-stated plans to harvest, and what actually occurs, can be substantially different, especially if annual fluctuations in timber prices or general economic fluctuations cause NIPF owners to deviate from their stated management and ownership intentions. This reduces the NWOS' utility. Remote sensing data have considerable value for identifying small scale harvests and, paired with ownership data at the parcel scale, can measure NIPF harvest rates as related to ownership change at a regional scale. Here we focus on the Western Upper Peninsula of Michigan (WUP) and the most recent decade to develop our methodology, using primarily Landsat images from 2003-2013. However, Landsat data series are characterized by gaps in coverage over long temporal and large spatial scales, and so a methodology to combine multiple remote sensing data sources is necessary for regional-scale land use/land cover change research. We filled these gaps by integrating the available Landsat time series with DMC imagery. We then combined these data with GIS overlays of the parcels and stand-level data on removed basal area (BA) during known harvesting events to develop a classification of harvest intensity for the WUP. Images taken during peak growing season were preferred to calculate NDVI and ΔNDVI, and in general for enhancing possible spectral changes. We classified the harvests as clear cut, selective harvesting or thinning using an object-based image analysis. In particular, we defined a clear cut a harvesting event in which ~90-100% BA is removed, commercial harvesting if ~50-80% BA is removed and thinning if ~20-40% BA removal. This work demonstrates that DMC images can effectively fill the Landsat data gap for the detection and quantification of harvesting events. Preliminary results show that the method is capable of identifying harvests down to ~20% BA removal. These results can then be used to monitor the accuracy of the NWOS, and to develop a probability estimate of harvest given either ownership change or changes in market conditions.

  11. Quantifying spatial patterns of tree groups and gaps in mixed-conifer forests: reference conditions and long-term changes following fire suppression and logging

    Treesearch

    Jamie M. Lydersen; Malcolm P. North; Eric E. Knapp; Brandon M. Collins

    2013-01-01

    Fire suppression and past logging have dramatically altered forest conditions in many areas, but changes to within-stand tree spatial patterns over time are not as well understood. The few studies available suggest that variability in tree spatial patterns is an important structural feature of forests with intact frequent fire regimes that should be incorporated in...

  12. Tracking downed dead wood in forests over time: Development of a piece matching algorithm for line intercept sampling

    Treesearch

    C.W. Woodall; B.F. Walters; J.A. Westfall

    2012-01-01

    Emerging questions from bioenergy policy debates have highlighted knowledge gaps regarding the carbon and biomass dynamics of individual pieces of coarse woody debris (CWD) across the diverse forest ecosystems of the US. Although there is a lack of long-term measurements of CWD across the diverse forest ecosystems of the US, there is an abundance of line intersect...

  13. Genetic conservation planning for forest tree species in Western North America under future climate change: Employing a novel approach to identify conservation gaps

    Treesearch

    L.K. Gray; E.J. Russell; Q.E. Barber; A. Hamann

    2017-01-01

    Among the 17 provinces, territories, and states that comprise western North America, approximately 18 percent of the 8.4 million km2 of forested land base is designated as protected areas to ensure the in situ conservation of forest biodiversity. Jurisdictions vary substantially however, in their responsibilities, protected area coverage, and conservation policies....

  14. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests.

    PubMed

    Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.

  15. Regional-Scale Drivers of Forest Structure and Function in Northwestern Amazonia

    PubMed Central

    Higgins, Mark A.; Asner, Gregory P.; Anderson, Christopher B.; Martin, Roberta E.; Knapp, David E.; Tupayachi, Raul; Perez, Eneas; Elespuru, Nydia; Alonso, Alfonso

    2015-01-01

    Field studies in Amazonia have found a relationship at continental scales between soil fertility and broad trends in forest structure and function. Little is known at regional scales, however, about how discrete patterns in forest structure or functional attributes map onto underlying edaphic or geological patterns. We collected airborne LiDAR (Light Detection and Ranging) data and VSWIR (Visible to Shortwave Infrared) imaging spectroscopy measurements over 600 km2 of northwestern Amazonian lowland forests. We also established 83 inventories of plant species composition and soil properties, distributed between two widespread geological formations. Using these data, we mapped forest structure and canopy reflectance, and compared them to patterns in plant species composition, soils, and underlying geology. We found that variations in soils and species composition explained up to 70% of variation in canopy height, and corresponded to profound changes in forest vertical profiles. We further found that soils and plant species composition explained more than 90% of the variation in canopy reflectance as measured by imaging spectroscopy, indicating edaphic and compositional control of canopy chemical properties. We last found that soils explained between 30% and 70% of the variation in gap frequency in these forests, depending on the height threshold used to define gaps. Our findings indicate that a relatively small number of edaphic and compositional variables, corresponding to underlying geology, may be responsible for variations in canopy structure and chemistry over large expanses of Amazonian forest. PMID:25793602

  16. Reconciling Biodiversity Conservation and Timber Production in Mixed Uneven-Aged Mountain Forests: Identification of Ecological Intensification Pathways.

    PubMed

    Lafond, Valentine; Cordonnier, Thomas; Courbaud, Benoît

    2015-11-01

    Mixed uneven-aged forests are considered favorable to the provision of multiple ecosystem services and to the conciliation of timber production and biodiversity conservation. However, some forest managers now plan to increase the intensity of thinning and harvesting operations in these forests. Retention measures or gap creation are considered to compensate potential negative impacts on biodiversity. Our objectives were to assess the effect of these management practices on timber production and biodiversity conservation and identify potential compensating effects between these practices, using the concept of ecological intensification as a framework. We performed a simulation study coupling Samsara2, a simulation model designed for spruce-fir uneven-aged mountain forests, an uneven-aged silviculture algorithm, and biodiversity models. We analyzed the effect of parameters related to uneven-aged management practices on timber production, biodiversity, and sustainability indicators. Our study confirmed that the indicators responded differently to management practices, leading to trade-offs situations. Increasing management intensity had negative impacts on several biodiversity indicators, which could be partly compensated by the positive effect of retention measures targeting large trees, non-dominant species, and deadwood. The impact of gap creation was more mitigated, with a positive effect on the diversity of tree sizes and deadwood but a negative impact on the spruce-fir mixing balance and on the diversity of the understory layer. Through the analysis of compensating effects, we finally revealed the existence of possible ecological intensification pathways, i.e., the possibility to increase management intensity while maintaining biodiversity through the promotion of nature-based management principles (gap creation and retention measures).

  17. Measuring spatiotemporal variation in snow optical grain size under a subalpine forest canopy using contact spectroscopy

    NASA Astrophysics Data System (ADS)

    Molotch, Noah P.; Barnard, David M.; Burns, Sean P.; Painter, Thomas H.

    2016-09-01

    The distribution of forest cover exerts strong controls on the spatiotemporal distribution of snow accumulation and snowmelt. The physical processes that govern these controls are poorly understood given a lack of detailed measurements of snow states. In this study, we address one of many measurement gaps by using contact spectroscopy to measure snow optical grain size at high spatial resolution in trenches dug between tree boles in a subalpine forest. Trenches were collocated with continuous measurements of snow depth and vertical profiles of snow temperature and supplemented with manual measurements of snow temperature, geometric grain size, grain type, and density from trench walls. There was a distinct difference in snow optical grain size between winter and spring periods. In winter and early spring, when facetted snow crystal types were dominant, snow optical grain size was 6% larger in canopy gaps versus under canopy positions; a difference that was smaller than the measurement uncertainty. By midspring, the magnitude of snow optical grain size differences increased dramatically and patterns of snow optical grain size became highly directional with 34% larger snow grains in areas south versus north of trees. In winter, snow temperature gradients were up to 5-15°C m-1 greater under the canopy due to shallower snow accumulation. However, in canopy gaps, snow depths were greater in fall and early winter and therefore more significant kinetic growth metamorphism occurred relative to under canopy positions, resulting in larger snow grains in canopy gaps. Our findings illustrate the novelty of our method of measuring snow optical grain size, allowing for future studies to advance the understanding of how forest and meteorological conditions interact to impact snowpack evolution.

  18. Calibrating and testing a gap model for simulating forest management in the Oregon Coast Range

    USGS Publications Warehouse

    Pabst, R.J.; Goslin, M.N.; Garman, S.L.; Spies, T.A.

    2008-01-01

    The complex mix of economic and ecological objectives facing today's forest managers necessitates the development of growth models with a capacity for simulating a wide range of forest conditions while producing outputs useful for economic analyses. We calibrated the gap model ZELIG to simulate stand-level forest development in the Oregon Coast Range as part of a landscape-scale assessment of different forest management strategies. Our goal was to incorporate the predictive ability of an empirical model with the flexibility of a forest succession model. We emphasized the development of commercial-aged stands of Douglas-fir, the dominant tree species in the study area and primary source of timber. In addition, we judged that the ecological approach of ZELIG would be robust to the variety of other forest conditions and practices encountered in the Coast Range, including mixed-species stands, small-scale gap formation, innovative silvicultural methods, and reserve areas where forests grow unmanaged for long periods of time. We parameterized the model to distinguish forest development among two ecoregions, three forest types and two site productivity classes using three data sources: chronosequences of forest inventory data, long-term research data, and simulations from an empirical growth-and-yield model. The calibrated model was tested with independent, long-term measurements from 11 Douglas-fir plots (6 unthinned, 5 thinned), 3 spruce-hemlock plots, and 1 red alder plot. ZELIG closely approximated developmental trajectories of basal area and large trees in the Douglas-fir plots. Differences between simulated and observed conifer basal area for these plots ranged from -2.6 to 2.4 m2/ha; differences in the number of trees/ha ???50 cm dbh ranged from -8.8 to 7.3 tph. Achieving these results required the use of a diameter-growth multiplier, suggesting some underlying constraints on tree growth such as the temperature response function. ZELIG also tended to overestimate regeneration of shade-tolerant trees and underestimate total tree density (i.e., higher rates of tree mortality). However, comparisons with the chronosequences of forest inventory data indicated that the simulated data are within the range of variability observed in the Coast Range. Further exploration and improvement of ZELIG is warranted in three key areas: (1) modeling rapid rates of conifer tree growth without the need for a diameter-growth multiplier; (2) understanding and remedying rates of tree mortality that were higher than those observed in the independent data; and (3) improving the tree regeneration module to account for competition with understory vegetation. ?? 2008 Elsevier B.V.

  19. Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Accellular Nerve Allografts Plus Amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2015-09-01

    Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Li, Zhongyu CONTRACTING ORGANIZATION: Wake Forest ...NUMBER: Wake Forest University Health Sciences Medical Center Boulevard Winston-Salem, NC 27157 9. SPONSORING / MONITORING AGENCY NAME(S) AND

  20. Demonstrating the Uneven Importance of Fine-Scale Forest Structure on Snow Distributions using High Resolution Modeling

    NASA Astrophysics Data System (ADS)

    Broxton, P. D.; Harpold, A. A.; van Leeuwen, W.; Biederman, J. A.

    2016-12-01

    Quantifying the amount of snow in forested mountainous environments, as well as how it may change due to warming and forest disturbance, is critical given its importance for water supply and ecosystem health. Forest canopies affect snow accumulation and ablation in ways that are difficult to observe and model. Furthermore, fine-scale forest structure can accentuate or diminish the effects of forest-snow interactions. Despite decades of research demonstrating the importance of fine-scale forest structure (e.g. canopy edges and gaps) on snow, we still lack a comprehensive understanding of where and when forest structure has the largest impact on snowpack mass and energy budgets. Here, we use a hyper-resolution (1 meter spatial resolution) mass and energy balance snow model called the Snow Physics and Laser Mapping (SnowPALM) model along with LIDAR-derived forest structure to determine where spatial variability of fine-scale forest structure has the largest influence on large scale mass and energy budgets. SnowPALM was set up and calibrated at sites representing diverse climates in New Mexico, Arizona, and California. Then, we compared simulations at different model resolutions (i.e. 1, 10, and 100 m) to elucidate the effects of including versus not including information about fine scale canopy structure. These experiments were repeated for different prescribed topographies (i.e. flat, 30% slope north, and south-facing) at each site. Higher resolution simulations had more snow at lower canopy cover, with the opposite being true at high canopy cover. Furthermore, there is considerable scatter, indicating that different canopy arrangements can lead to different amounts of snow, even when the overall canopy coverage is the same. This modeling is contributing to the development of a high resolution machine learning algorithm called the Snow Water Artificial Network (SWANN) model to generate predictions of snow distributions over much larger domains, which has implications for improving land surface models that do not currently resolve or parameterize fine-scale canopy structure. In addition, these findings have implications for understanding the potential of different forest management strategies (i.e. thinning) based on local topography and climate to maximize the amount and retention of snow.

  1. Very High Resolution Tree Cover Mapping for Continental United States using Deep Convolutional Neural Networks

    NASA Technical Reports Server (NTRS)

    Ganguly, Sangram; Kalia, Subodh; Li, Shuang; Michaelis, Andrew; Nemani, Ramakrishna R.; Saatchi, Sassan A

    2017-01-01

    Uncertainties in input land cover estimates contribute to a significant bias in modeled above ground biomass (AGB) and carbon estimates from satellite-derived data. The resolution of most currently used passive remote sensing products is not sufficient to capture tree canopy cover of less than ca. 10-20 percent, limiting their utility to estimate canopy cover and AGB for trees outside of forest land. In our study, we created a first of its kind Continental United States (CONUS) tree cover map at a spatial resolution of 1-m for the 2010-2012 epoch using the USDA NAIP imagery to address the present uncertainties in AGB estimates. The process involves different tasks including data acquisition ingestion to pre-processing and running a state-of-art encoder-decoder based deep convolutional neural network (CNN) algorithm for automatically generating a tree non-tree map for almost a quarter million scenes. The entire processing chain including generation of the largest open source existing aerial satellite image training database was performed at the NEX supercomputing and storage facility. We believe the resulting forest cover product will substantially contribute to filling the gaps in ongoing carbon and ecological monitoring research and help quantifying the errors and uncertainties in derived products.

  2. Very High Resolution Tree Cover Mapping for Continental United States using Deep Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Kalia, S.; Li, S.; Michaelis, A.; Nemani, R. R.; Saatchi, S.

    2017-12-01

    Uncertainties in input land cover estimates contribute to a significant bias in modeled above gound biomass (AGB) and carbon estimates from satellite-derived data. The resolution of most currently used passive remote sensing products is not sufficient to capture tree canopy cover of less than ca. 10-20 percent, limiting their utility to estimate canopy cover and AGB for trees outside of forest land. In our study, we created a first of its kind Continental United States (CONUS) tree cover map at a spatial resolution of 1-m for the 2010-2012 epoch using the USDA NAIP imagery to address the present uncertainties in AGB estimates. The process involves different tasks including data acquisition/ingestion to pre-processing and running a state-of-art encoder-decoder based deep convolutional neural network (CNN) algorithm for automatically generating a tree/non-tree map for almost a quarter million scenes. The entire processing chain including generation of the largest open source existing aerial/satellite image training database was performed at the NEX supercomputing and storage facility. We believe the resulting forest cover product will substantially contribute to filling the gaps in ongoing carbon and ecological monitoring research and help quantifying the errors and uncertainties in derived products.

  3. First Results of the Performance of the Global Forest/Non-Forest Map derived from TanDEM-X Interferometric Data

    NASA Astrophysics Data System (ADS)

    Gonzalez, Carolina; Rizzoli, Paola; Martone, Michele; Wecklich, Christopher; Bueso Bello, Jose Luis; Krieger, Gerhard; Zink, Manfred

    2017-04-01

    The globally acquired interferometric synthetic aperture radar (SAR) data set, used for the recently completed primary goal of the TanDEM-X mission, enables a big opportunity for scientific geo-applications. Of great importance for land characterization, classification, and monitoring is that the data set is globally acquired without gaps and includes multiple acquisitions of every region, with comparable parameters. One of the most valuable maps that can be derived from interferometric SAR data for land classification describes the presence/absence of vegetation. In particular, here we report about the deployment of the Global Forest/Non-Forest Map, derived from TanDEM-X interferometric SAR quick-look data, at a ground resolution of 50 m by 50 m. Presence of structures and in particular vegetation produces multiple scattering known as volume decorrelation. Its contribution can be directly estimated from the assessment of coherence loss in the interferometric bistatic pair, by compensating for all other decorrelation sources, such as poor signal-to-noise ratio or quantization noise. Three different forest types have been characterized based on the estimated volume decorrelation: tropical, temperate, and boreal forest. This characterization was then used in a fuzzy clustering approach for the discrimination of vegetated areas on a global scale. Water and cities are filtered out from the generated maps in order to distinguish volume decorrelation from other decorrelation sources. The validation and performance comparison of the delivered product is also presented, and represents a fundamental tool for optimizing the whole algorithm at all different stages. Furtheremore, as the time interval of the acquisitions is almost 4 years, change detection can be performed as well and examples of deforestation are also going to be included in the final paper.

  4. Insects, Fires, and Climate Change: Implications for Snow Cover, Water Resources and Ecosystem Recovery in Western North America

    NASA Astrophysics Data System (ADS)

    Brooks, P. D.; Harpold, A. A.; Biederman, J. A.; Litvak, M. E.; Broxton, P. D.; Gochis, D.; Molotch, N. P.; Troch, P. A.; Ewers, B. E.

    2012-12-01

    Unprecedented levels of insect induced tree mortality and massive wildfires both have spread through the forests of Western North America over the last decade. Warming temperatures and increased drought stress have been implicated as major factors in the increasing spatial extent and frequency of these forest disturbances, but it is unclear how simultaneous changes in forest structure and climate will interact to affect either downstream water resources or the regeneration and recovery of forested ecosystems. Because both streamflow and ecosystem productivity depend on seasonal snowmelt, a critical knowledge gap exists in how these disturbances will interact with a changing climate to control to the amount, timing, and the partitioning of seasonal snow cover This presentation will address this knowledge gap by synthesizing recent work on snowpack dynamics and ecosystem productivity from seasonally snow-covered forests along a gradient of snow depth and duration from Arizona to Montana. These include undisturbed sites, recently burned forests, and areas of extensive insect-induced forest mortality. Both before-after and control-impacted studies of forest disturbance on snow accumulation and ablation suggest that the spatial scale of snow distribution increases following disturbance, but net snow water input likely will not increase under a warming climate. While forest disturbance changes spatial scale of snowpack partitioning, the amount and especially the timing of snow cover accumulation and ablation are strongly related to interannual variability in ecosystem productivity with both earlier snowmelt and later snow accumulation associated with decreased carbon uptake. These observations suggest that the ecosystem services of water provision and carbon storage may be very different in the forests that regenerate after disturbance.

  5. Response of reptile and amphibian communities to canopy gaps created by wind disturbance in the Southern Appalachians

    Treesearch

    Cathryn H. Greenberg

    2001-01-01

    Reptile and amphibian communities were sampled in intact gaps created by wind disturbance, salvage-logged gaps, and closed canopy mature forest (controls). Sampling was conducted during June–October in 1997 and 1998 using drift fences with pitfall and funnel traps. Basal area of live trees, shade, leaf litter coverage, and litter depth was highest in controls and...

  6. Measuring Gap Fraction, Element Clumping Index and LAI in Sierra Forest Stands Using a Full-Waveform Ground-Based Lidar

    NASA Technical Reports Server (NTRS)

    Zhao, Feng; Strahler, Alan H.; Crystal L. Schaaf; Yao, Tian; Yang, Xiaoyuan; Wang, Zhuosen; Schull, Mitchell A.; Roman, Miguel O.; Woodcock, Curtis E.; Olofsson, Pontus; hide

    2012-01-01

    The Echidna Validation Instrument (EVI), a ground-based, near-infrared (1064 nm) scanning lidar, provides gap fraction measurements, element clumping index measurements, effective leaf area index (LAIe) and leaf area index (LAI) measurements that are statistically similar to those from hemispherical photos. In this research, a new method integrating the range dimension is presented for retrieving element clumping index using a unique series of images of gap probability (Pgap) with range from EVI. From these images, we identified connected gap components and found the approximate physical, rather than angular, size of connected gap component. We conducted trials at 30 plots within six conifer stands of varying height and stocking densities in the Sierra National Forest, CA, in August 2008. The element clumping index measurements retrieved from EVI Pgap image series for the hinge angle region are highly consistent (R2=0.866) with those of hemispherical photos. Furthermore, the information contained in connected gap component size profiles does account for the difference between our method and gap-size distribution theory based method, suggesting a new perspective to measure element clumping index with EVI Pgap image series and also a potential advantage of three dimensional Lidar data for element clumping index retrieval. Therefore further exploration is required for better characterization of clumped condition from EVI Pgap image series.

  7. Forest-Observation-System.net - towards a global in-situ data repository for biomass datasets validation

    NASA Astrophysics Data System (ADS)

    Shchepashchenko, D.; Chave, J.; Phillips, O. L.; Davies, S. J.; Lewis, S. L.; Perger, C.; Dresel, C.; Fritz, S.; Scipal, K.

    2017-12-01

    Forest monitoring is high on the scientific and political agenda. Global measurements of forest height, biomass and how they change with time are urgently needed as essential climate and ecosystem variables. The Forest Observation System - FOS (http://forest-observation-system.net/) is an international cooperation to establish a global in-situ forest biomass database to support earth observation and to encourage investment in relevant field-based observations and science. FOS aims to link the Remote Sensing (RS) community with ecologists who measure forest biomass and estimating biodiversity in the field for a common benefit. The benefit of FOS for the RS community is the partnering of the most established teams and networks that manage permanent forest plots globally; to overcome data sharing issues and introduce a standard biomass data flow from tree level measurement to the plot level aggregation served in the most suitable form for the RS community. Ecologists benefit from the FOS with improved access to global biomass information, data standards, gap identification and potential improved funding opportunities to address the known gaps and deficiencies in the data. FOS closely collaborate with the Center for Tropical Forest Science -CTFS-ForestGEO, the ForestPlots.net (incl. RAINFOR, AfriTRON and T-FORCES), AusCover, Tropical managed Forests Observatory and the IIASA network. FOS is an open initiative with other networks and teams most welcome to join. The online database provides open access for both metadata (e.g. who conducted the measurements, where and which parameters) and actual data for a subset of plots where the authors have granted access. A minimum set of database values include: principal investigator and institution, plot coordinates, number of trees, forest type and tree species composition, wood density, canopy height and above ground biomass of trees. Plot size is 0.25 ha or large. The database will be essential for validating and calibrating satellite observations and various models.

  8. Ten Years of Forest Cover Change in the Sierra Nevada Detected Using Landsat Satellite Image Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher S.

    2014-01-01

    A detailed geographic record of recent vegetation regrowth and disturbance patterns in forests of the Sierra Nevada remains a gap that can be filled with remote sensing data. Landsat (TM) imagery was analyzed to detect 10 years of recent changes (between 2000 and 2009) in forest vegetation cover for areas burned by wildfires between years of 1995 to 1999 in the region. Results confirmed the prevalence of regrowing forest vegetation during the period 2000 and 2009 over 17% of the combined burned areas.

  9. The influence of tree morphology on stemflow generation in a tropical lowland rainforest

    NASA Astrophysics Data System (ADS)

    Uber, Magdalena; Levia, Delphis F.; Zimmermann, Beate; Zimmermann, Alexander

    2014-05-01

    Even though stemflow usually accounts for only a small proportion of rainfall, it is an important point source of water and ion input to forest floors and may, for instance, influence soil moisture patterns and groundwater recharge. Previous studies showed that the generation of stemflow depends on a multitude of meteorological and biological factors. Interestingly, despite the tremendous progress in stemflow research during the last decades it is still largely unknown which combination of tree characteristics determines stemflow volumes in species-rich tropical forests. This knowledge gap motivated us to analyse the influence of tree characteristics on stemflow volumes in a 1 hectare plot located in a Panamanian lowland rainforest. Our study comprised stemflow measurements in six randomly selected 10 m by 10 m subplots. In each subplot we measured stemflow of all trees with a diameter at breast height (DBH) > 5 cm on an event-basis for a period of six weeks. Additionally, we identified all tree species and determined a set of tree characteristics including DBH, crown diameter, bark roughness, bark furrowing, epiphyte coverage, tree architecture, stem inclination, and crown position. During the sampling period, we collected 985 L of stemflow (0.98 % of total rainfall). Based on regression analyses and comparisons among plant functional groups we show that palms were most efficient in yielding stemflow due to their large inclined fronds. Trees with large emergent crowns also produced relatively large amounts of stemflow. Due to their abundance, understory trees contribute much to stemflow yield not on individual but on the plot scale. Even though parameters such as crown diameter, branch inclination and position of the crown influence stemflow generation to some extent, these parameters explain less than 30 % of the variation in stemflow volumes. In contrast to published results from temperate forests, we did not detect a negative correlation between bark roughness and stemflow volume. This is because other parameters such as crown diameter obscured this relationship. Due to multicollinearity and poor correlations between single tree characteristics with stemflow volume, an assessment of stemflow volumes based on forest characteristics remains cumbersome in highly diverse ecosystems. Instead of relying on regression relationships, we therefore advocate a total sampling of trees in several plots to determine stand-scale stemflow yield in tropical forests.

  10. Reproducing Southern Hardwoods is Easier Than You Think

    Treesearch

    R. L. Johnson; R. C. Biesterfeldt

    1971-01-01

    Throughout the South poor upland hardwood stands are being converted to pine, while bottom-land hardwood stands are largely ignored. Why are Southern foresters preoccupied with pines? Uncertainties about hardwood markets and gaps in available information about hardwood management are contributing causes, but fear is probably a key factor. Foresters much prefer the well...

  11. Acceleration of Regeneration of Large Gap-Peripheral Nerve Injuries Using Acellular Nerve Allografts Plus Amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2015-10-01

    amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Thomas L. Smith, PhD CONTRACTING ORGANIZATION: Wake Forest University Health Sciences...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Wake Forest University Health Sciences Medical Center Boulevard Winston-Salem, NC 27157

  12. Vulnerability and impacts of climate change on forest and freshwater wetland ecosystems in Nepal: A review.

    PubMed

    Lamsal, Pramod; Kumar, Lalit; Atreya, Kishor; Pant, Krishna Prasad

    2017-12-01

    Climate change (CC) threatens ecosystems in both developed and developing countries. As the impacts of CC are pervasive, global, and mostly irreversible, it is gaining worldwide attention. Here we review vulnerability and impacts of CC on forest and freshwater wetland ecosystems. We particularly look at investigations undertaken at different geographic regions in order to identify existing knowledge gaps and possible implications from such vulnerability in the context of Nepal along with available adaptation programs and national-level policy supports. Different categories of impacts which are attributed to disrupting structure, function, and habitat of both forest and wetland ecosystems are identified and discussed. We show that though still unaccounted, many facets of forest and freshwater wetland ecosystems of Nepal are vulnerable and likely to be impacted by CC in the near future. Provisioning ecosystem services and landscape-level ecosystem conservation are anticipated to be highly threatened with future CC. Finally, the need for prioritizing CC research in Nepal is highlighted to close the existing knowledge gap along with the implementation of adaptation measures based on existing location specific traditional socio-ecological system.

  13. Seed dispersal increases local species richness and reduces spatial turnover of tropical tree seedlings

    PubMed Central

    Dunham, Amy E.; Duncan, Richard P.; Rogers, Haldre S.

    2017-01-01

    Dispersal is thought to be a key process underlying the high spatial diversity of tropical forests. Just how important dispersal is in structuring plant communities is nevertheless an open question because it is very difficult to isolate dispersal from other processes, and thereby measure its effect. Using a unique situation, the loss of vertebrate seed dispersers on the island of Guam and their presence on the neighboring islands of Saipan and Rota, we quantify the contribution of vertebrate seed dispersal to spatial patterns of diversity of tree seedlings in treefall gaps. The presence of vertebrate seed dispersers approximately doubled seedling species richness within canopy gaps and halved species turnover among gaps. Our study demonstrates that dispersal plays a key role in maintaining local and regional patterns of diversity, and highlights the potential for ongoing declines in vertebrate seed dispersers to profoundly alter tropical forest composition. PMID:28847937

  14. Seed dispersal increases local species richness and reduces spatial turnover of tropical tree seedlings.

    PubMed

    Wandrag, Elizabeth M; Dunham, Amy E; Duncan, Richard P; Rogers, Haldre S

    2017-10-03

    Dispersal is thought to be a key process underlying the high spatial diversity of tropical forests. Just how important dispersal is in structuring plant communities is nevertheless an open question because it is very difficult to isolate dispersal from other processes, and thereby measure its effect. Using a unique situation, the loss of vertebrate seed dispersers on the island of Guam and their presence on the neighboring islands of Saipan and Rota, we quantify the contribution of vertebrate seed dispersal to spatial patterns of diversity of tree seedlings in treefall gaps. The presence of vertebrate seed dispersers approximately doubled seedling species richness within canopy gaps and halved species turnover among gaps. Our study demonstrates that dispersal plays a key role in maintaining local and regional patterns of diversity, and highlights the potential for ongoing declines in vertebrate seed dispersers to profoundly alter tropical forest composition.

  15. Tropical Forest Fragmentation Limits Movements, but Not Occurrence of a Generalist Pollinator Species

    PubMed Central

    Volpe, Noelia L.; Robinson, W. Douglas; Frey, Sarah J. K.; Hadley, Adam S.; Betts, Matthew G.

    2016-01-01

    Habitat loss and fragmentation influence species distributions and therefore ecological processes that depend upon them. Pollination may be particularly susceptible to fragmentation, as it depends on frequent pollinator movement. Unfortunately, most pollinators are too small to track efficiently which has precluded testing the hypothesis that habitat fragmentation reduces or eliminates pollen flow by disrupting pollinator movement. We used radio-telemetry to examine space use of the green hermit hummingbird (Phaethornis guy), an important ‘hub’ pollinator of understory flowering plants across substantial portions of the neotropics and the primary pollinator of a keystone plant which shows reduced pollination success in fragmented landscapes. We found that green hermits strongly avoided crossing large stretches of non-forested matrix and preferred to move along stream corridors. Forest gaps as small as 50 m diminished the odds of movement by 50%. Green hermits occurred almost exclusively inside the forest, with the odds of occurrence being 8 times higher at points with >95% canopy cover compared with points having <5% canopy cover. Nevertheless, surprisingly. the species occurred in fragmented landscapes with low amounts of forest (~30% within a 2 km radius). Our results indicate that although green hermits are present even in landscapes with low amounts of tropical forest, movement within these landscapes ends up strongly constrained by forest gaps. Restricted movement of pollinators may be an underappreciated mechanism for widespread declines in pollination and plant fitness in fragmented landscapes, even when in the presence of appropriate pollinators. PMID:27941984

  16. Contrasting Spatial Patterns in Active-Fire and Fire-Suppressed Mediterranean Climate Old-Growth Mixed Conifer Forests

    PubMed Central

    Fry, Danny L.; Stephens, Scott L.; Collins, Brandon M.; North, Malcolm P.; Franco-Vizcaíno, Ernesto; Gill, Samantha J.

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha−1, and occupied 27–46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11–20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥56%) in large patches (≥10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types. PMID:24586472

  17. Gas valves, forests and global change: a commentary on Jarvis (1976) ‘The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field’

    PubMed Central

    Beerling, David J.

    2015-01-01

    Microscopic turgor-operated gas valves on leaf surfaces—stomata—facilitate gas exchange between the plant and the atmosphere, and respond to multiple environmental and endogenous cues. Collectively, stomatal activities affect everything from the productivity of forests, grasslands and crops to biophysical feedbacks between land surface vegetation and climate. In 1976, plant physiologist Paul Jarvis reported an empirical model describing stomatal responses to key environmental and plant conditions that predicted the flux of water vapour from leaves into the surrounding atmosphere. Subsequent theoretical advances, building on this earlier approach, established the current paradigm for capturing the physiological behaviour of stomata that became incorporated into sophisticated models of land carbon cycling. However, these models struggle to accurately predict observed trends in the physiological responses of Northern Hemisphere forests to recent atmospheric CO2 increases, highlighting the need for improved representation of the role of stomata in regulating forest–climate interactions. Bridging this gap between observations and theory as atmospheric CO2 rises and climate change accelerates creates challenging opportunities for the next generation of physiologists to advance planetary ecology and climate science. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750234

  18. Integrating LIDAR and forest inventories to fill the trees outside forests data gap.

    PubMed

    Johnson, Kristofer D; Birdsey, Richard; Cole, Jason; Swatantran, Anu; O'Neil-Dunne, Jarlath; Dubayah, Ralph; Lister, Andrew

    2015-10-01

    Forest inventories are commonly used to estimate total tree biomass of forest land even though they are not traditionally designed to measure biomass of trees outside forests (TOF). The consequence may be an inaccurate representation of all of the aboveground biomass, which propagates error to the outputs of spatial and process models that rely on the inventory data. An ideal approach to fill this data gap would be to integrate TOF measurements within a traditional forest inventory for a parsimonious estimate of total tree biomass. In this study, Light Detection and Ranging (LIDAR) data were used to predict biomass of TOF in all "nonforest" Forest Inventory and Analysis (FIA) plots in the state of Maryland. To validate the LIDAR-based biomass predictions, a field crew was sent to measure TOF on nonforest plots in three Maryland counties, revealing close agreement at both the plot and county scales between the two estimates. Total tree biomass in Maryland increased by 25.5 Tg, or 15.6%, when biomass of TOF were included. In two counties (Carroll and Howard), there was a 47% increase. In contrast, counties located further away from the interstate highway corridor showed only a modest increase in biomass when TOF were added because nonforest conditions were less common in those areas. The advantage of this approach for estimating biomass of TOF is that it is compatible with, and explicitly separates TOF biomass from, forest biomass already measured by FIA crews. By predicting biomass of TOF at actual FIA plots, this approach is directly compatible with traditionally reported FIA forest biomass, providing a framework for other states to follow, and should improve carbon reporting and modeling activities in Maryland.

  19. Arbuscular mycorrhizal colonization of giant sequoia (Sequoiadendron giganteum) in response to restoration practices.

    PubMed

    Fahey, Catherine; York, Robert A; Pawlowska, Teresa E

    2012-01-01

    Interactions with soil microbiota determine the success of restoring plants to their native habitats. The goal of our study was to understand the effects of restoration practices on interactions of giant sequoia Sequoiadendron giganteum with arbuscular mycorrhizal (AM) fungi (Glomeromycota). Natural regeneration of Sequoiadendron is threatened by the absence of severe fires that create forest canopy gaps. Generating artificial canopy gaps offers an alternative tool for giant sequoia restoration. We investigated the effect of regeneration practices, including (i) sapling location within gaps, (ii) gap size and (iii) soil substrate, on AM fungal colonization of giant sequoia sapling roots in a native giant sequoia grove of the Sierra Nevada, California. We found that the extent of AM fungal root colonization was positively correlated with sapling height and light availability, which were related to the location of the sapling within the gap and the gap size. While colonization frequency by arbuscules in saplings on ash substrate was higher relative to saplings in mineral soil, the total AM fungal root colonization was similar between the substrates. A negative correlation between root colonization by Glomeromycota and non-AM fungal species indicated antagonistic interactions between different classes of root-associated fungi. Using DNA genotyping, we identified six AM fungal taxa representing genera Glomus and Ambispora present in Sequoiadendron roots. Overall, we found that AM fungal colonization of giant sequoia roots was associated with availability of plant-assimilated carbon to the fungus rather than with the AM fungal supply of mineral nutrients to the roots. We conclude that restoration practices affecting light availability and carbon assimilation alter feedbacks between sapling growth and activity of AM fungi in the roots.

  20. Community Composition in Canopy Gaps as Influenced by Presence or Absence of Rhododendron maximum

    Treesearch

    Christopher T. Rivers; David H. van Lear; Barton D. Clinton; Thomas A. Waldrop

    1999-01-01

    The process of gap formation and recolonization plays an important role in the structure and composition in southern Appalachian forests. The understory composition existing before a disturbance will shape successional patterns of the future stand. Rhododendron maximum is native to the southern Appalachians and exists as a major understory...

  1. Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-13-1-0309 TITLE: Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts...plus amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Thomas L. Smith, PhD RECIPIENT: Wake Forest University Health Sciences

  2. Characteristics of gaps and natural regeneration in mature longleaf pine flatwoods ecosystems

    Treesearch

    Jennifer L. Gagnon; Eric J. Jokela; W.K. Moser; Dudley A. Huber

    2004-01-01

    Developing uneven-aged structure in mature stands of longleaf pine requires scientifically based silvicultural systems that are reliable, productive and sustainable. Understanding seedling responses to varying levels of site resource availability within forest gaps is essential for effectively converting even-aged stands to uneven-aged stands. A project was initiated...

  3. A Forest Tent Caterpillar Outbreak Increased Resource Levels and Seedling Growth in a Northern Hardwood Forest.

    PubMed

    Rozendaal, Danaë M A; Kobe, Richard K

    2016-01-01

    In closed-canopy forests, gap formation and closure are thought to be major drivers of forest dynamics. Crown defoliation by insects, however, may also influence understory resource levels and thus forest dynamics. We evaluate the effect of a forest tent caterpillar outbreak on understory light availability, soil nutrient levels and tree seedling height growth in six sites with contrasting levels of canopy defoliation in a hardwood forest in northern lower Michigan. We compared resource levels and seedling growth of six hardwood species before, during and in the three years after the outbreak (2008-2012). Canopy openness increased strongly during the forest tent caterpillar outbreak in the four moderately and severely defoliated sites, but not in lightly defoliated sites. Total inorganic soil nitrogen concentrations increased in response to the outbreak in moderately and severely defoliated sites. The increase in total inorganic soil nitrogen was driven by a strong increase in soil nitrate, and tended to become stronger with increasing site defoliation. Seedling height growth increased for all species in the moderately and severely defoliated sites, but not in lightly defoliated sites, either during the outbreak year or in the year after the outbreak. Growth increases did not become stronger with increasing site defoliation, but were strongest in a moderately defoliated site with high soil nutrient levels. Growth increases tended to be strongest for the shade intolerant species Fraxinus americana and Prunus serotina, and the shade tolerant species Ostrya virginiana. The strong growth response of F. americana and P. serotina suggests that recurring forest tent caterpillar outbreaks may facilitate the persistence of shade intolerant species in the understory in the absence of canopy gaps. Overall, our results suggest that recurrent canopy defoliation resulting from cyclical forest insect outbreaks may be an additional driver of dynamics in temperate closed-canopy forests.

  4. A Forest Tent Caterpillar Outbreak Increased Resource Levels and Seedling Growth in a Northern Hardwood Forest

    PubMed Central

    Rozendaal, Danaë M. A.; Kobe, Richard K.

    2016-01-01

    In closed-canopy forests, gap formation and closure are thought to be major drivers of forest dynamics. Crown defoliation by insects, however, may also influence understory resource levels and thus forest dynamics. We evaluate the effect of a forest tent caterpillar outbreak on understory light availability, soil nutrient levels and tree seedling height growth in six sites with contrasting levels of canopy defoliation in a hardwood forest in northern lower Michigan. We compared resource levels and seedling growth of six hardwood species before, during and in the three years after the outbreak (2008–2012). Canopy openness increased strongly during the forest tent caterpillar outbreak in the four moderately and severely defoliated sites, but not in lightly defoliated sites. Total inorganic soil nitrogen concentrations increased in response to the outbreak in moderately and severely defoliated sites. The increase in total inorganic soil nitrogen was driven by a strong increase in soil nitrate, and tended to become stronger with increasing site defoliation. Seedling height growth increased for all species in the moderately and severely defoliated sites, but not in lightly defoliated sites, either during the outbreak year or in the year after the outbreak. Growth increases did not become stronger with increasing site defoliation, but were strongest in a moderately defoliated site with high soil nutrient levels. Growth increases tended to be strongest for the shade intolerant species Fraxinus americana and Prunus serotina, and the shade tolerant species Ostrya virginiana. The strong growth response of F. americana and P. serotina suggests that recurring forest tent caterpillar outbreaks may facilitate the persistence of shade intolerant species in the understory in the absence of canopy gaps. Overall, our results suggest that recurrent canopy defoliation resulting from cyclical forest insect outbreaks may be an additional driver of dynamics in temperate closed-canopy forests. PMID:27870897

  5. Non-linear Feedbacks Between Forest Mortality and Climate Change: Implications for Snow Cover, Water Resources, and Ecosystem Recovery in Western North America (Invited)

    NASA Astrophysics Data System (ADS)

    Brooks, P. D.; Harpold, A. A.; Biederman, J. A.; Gochis, D. J.; Litvak, M. E.; Ewers, B. E.; Broxton, P. D.; Reed, D. E.

    2013-12-01

    Unprecedented levels of tree mortality from insect infestation and wildfire are dramatically altering forest structure and composition in Western North America. Warming temperatures and increased drought stress have been implicated as major factors in the increasing spatial extent and frequency of these forest disturbances, but it is unclear how these changes in forest structure will interact with ongoing climate change to affect snowmelt water resources either for society or for ecosystem recovery following mortality. Because surface discharge, groundwater recharge, and ecosystem productivity all depend on seasonal snowmelt, a critical knowledge gap exists not only in predicting discharge, but in quantifying spatial and temporal variability in the partitioning of snowfall into abiotic vapor loss, plant available water, recharge, and streamflow within the complex mosaic of forest disturbance and topography that characterizes western mountain catchments. This presentation will address this knowledge gap by synthesizing recent work on snowpack dynamics and ecosystem productivity from seasonally snow-covered forests along a climate gradient from Arizona to Wyoming; including undisturbed sites, recently burned forests, and areas of extensive insect-induced forest mortality. Both before-after and control-impacted studies of forest disturbance on snow accumulation and ablation suggest that the spatial scale of snow distribution increases following disturbance, but net snow water input in a warming climate will increase only in topographically sheltered areas. While forest disturbance changes spatial scale of snowpack partitioning, the amount and especially the timing of snow cover accumulation and ablation are strongly related to interannual variability in ecosystem productivity with both earlier snowmelt and later snow accumulation associated with decreased carbon uptake. Empirical analyses and modeling are being developed to identify landscapes most sensitive to climate change as well as to develop management alternatives that minimize the effects of disturbance on high elevation forests and the services of water provision and carbon storage they provide.

  6. Towards Linking 3D SAR and Lidar Models with a Spatially Explicit Individual Based Forest Model

    NASA Astrophysics Data System (ADS)

    Osmanoglu, B.; Ranson, J.; Sun, G.; Armstrong, A. H.; Fischer, R.; Huth, A.

    2017-12-01

    In this study, we present a parameterization of the FORMIND individual-based gap model (IBGM)for old growth Atlantic lowland rainforest in La Selva, Costa Rica for the purpose of informing multisensor remote sensing techniques for above ground biomass techniques. The model was successfully parameterized and calibrated for the study site; results show that the simulated forest reproduces the structural complexity of Costa Rican rainforest based on comparisons with CARBONO inventory plot data. Though the simulated stem numbers (378) slightly underestimated the plot data (418), particularly for canopy dominant intermediate shade tolerant trees and shade tolerant understory trees, overall there was a 9.7% difference. Aboveground biomass (kg/ha) showed a 0.1% difference between the simulated forest and inventory plot dataset. The Costa Rica FORMIND simulation was then used to parameterize a spatially explicit (3D) SAR and lidar backscatter models. The simulated forest stands were used to generate a Look Up Table as a tractable means to estimate aboveground forest biomass for these complex forests. Various combinations of lidar and radar variables were evaluated in the LUT inversion. To test the capability of future data for estimation of forest height and biomass, we considered data of 1) L- (or P-) band polarimetric data (backscattering coefficients of HH, HV and VV); 2) L-band dual-pol repeat-pass InSAR data (HH/HV backscattering coefficients and coherences, height of scattering phase center at HH and HV using DEM or surface height from lidar data as reference); 3) P-band polarimetric InSAR data (canopy height from inversion of PolInSAR data or use the coherences and height of scattering phase center at HH, HV and VV); 4) various height indices from waveform lidar data); and 5) surface and canopy top height from photon-counting lidar data. The methods for parameterizing the remote sensing models with the IBGM and developing Look Up Tables will be discussed. Results from various remote sensing scenarios will also be presented.

  7. Legacy of Pre-Disturbance Spatial Pattern Determines Early Structural Diversity following Severe Disturbance in Montane Spruce Forests

    PubMed Central

    Bače, Radek; Svoboda, Miroslav; Janda, Pavel; Morrissey, Robert C.; Wild, Jan; Clear, Jennifer L.; Čada, Vojtěch; Donato, Daniel C.

    2015-01-01

    Background Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand. Methods Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover. Results Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, pre-disturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights. Conclusion These findings suggest that pre-disturbance spatial patterns of forests can persist through severe canopy-removing disturbance, and determine the spatial structure of the succeeding stand. Such patterns constitute a subtle but key legacy effect, promoting structural complexity in early-seral forests as well as variable successional pathways and rates. This influence suggests a continuity in spatial ecosystem structure that may well persist through multiple forest generations. PMID:26421726

  8. Seeing through the Canopy: Relationship between Coarse Woody Debris and Forest Structure measured by Airborne Lidar in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Scaranello, M. A., Sr.; Keller, M. M.; dos-Santos, M. N.; Longo, M.; Pinagé, E. R.; Leitold, V.

    2016-12-01

    Coarse woody debris is an important but infrequently quantified carbon pool in tropical forests. Based on studies at 12 sites spread across the Brazilian Amazon, we quantified coarse woody debris stocks in intact forests and forests affected by different intensities of degradation by logging and/or fire. Measurement were made in-situ and for the first time field measurements of coarse woody debris were related to structural metrics derived from airborne lidar. Using the line-intercept method we established 84 transects for sampling fallen coarse woody debris and associated inventory plots for sampling standing dead wood in intact, conventional logging, reduced impact logging, burned and burned after logging forests. Overall mean and standard deviation of total coarse woody debris were 50.0 Mg ha-1 and 26.4 Mg ha-1 respectively. Forest degradation increased coarse woody debris stocks compared to intact forests by a factor of 1.7 in reduced impact logging forests and up to 3-fold in burned forests, in a side-by-side comparison of nearby areas. The ratio between coarse woody debris and biomass increased linearly with number of degradation events (R²: 0.67, p<0.01). Individual lidar-derived structural variables strongly correlated with coarse woody debris in intact and reduced impact logging forests: the 5th percentile of last returns for in intact forests (R²: 0.78, p<0.01) and forest gap area, mapped using lidar-derived canopy height model, for reduced impact logging forests (R²: 0.63, p<0.01). Individual gap area also played a weak but significant role in determining coarse woody debris in burned forests (R2: 0.21, p<0.05), but with contrasting trend. Both degradation-specific and general multiple models using lidar-derived variables were good predictor of coarse woody debris stocks in different degradation levels in the Brazilian Amazon. The strong relation of coarse woody debris with lidar derived structural variables suggests an approach for quantifying infrequently measured coarse woody debris over large areas.

  9. Do deer and shrubs override canopy gap size effects on growth and survival of yellow birch, northern red oak, eastern white pine, and eastern hemlock seedlings?

    Treesearch

    Cristel C. Kern; Peter B. Reich; Rebecca A. Montgomery; Terry F. Strong

    2012-01-01

    Innovative forestry practices that use natural disturbance and stand developmental processes as models to increase forest complexity are now being considered as a way to conserve biodiversity while managing for a range of objectives.We evaluated the influence of harvest-created gap size (6, 10, 20, 30, and 46 m diameter gaps and uncut references) over 12 growing...

  10. A Project to Map and Monitor Baldcypress Forests in Coastal Louisiana, Using Landsat, MODIS, and ASTER Satellite Data

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Sader, Steven; Smoot, James

    2012-01-01

    Cypress swamp forests of Louisiana offer many important ecological and economic benefits: wildlife habitat, forest products, storm buffers, water quality, and recreation. Such forests are also threatened by multiple factors: subsidence, salt water intrusion, sea level rise, persistent flooding, hydrologic modification, hurricanes, insect and nutria damage, timber harvesting, and land use conversion. Unfortunately, there are many information gaps regarding the type, location, extent, and condition of these forests. Better more up to date swamp forest mapping products are needed to aid coastal forest conservation and restoration work (e.g., through the Coastal Forest Conservation Initiative or CFCI). In response, a collaborative project was initiated to develop, test and demonstrate cypress swamp forest mapping products, using NASA supported Landsat, ASTER, and MODIS satellite data. Research Objectives are: Develop, test, and demonstrate use of Landsat and ASTER data for computing new cypress forest classification products and Landsat, ASTER, and MODIS satellite data for detecting and monitoring swamp forest change

  11. THE DISTRIBUTION OF ORGANIC CARBON IN MAJOR COMPONENTS OF FORESTS LOCATED IN FIVE LIFE ZONES OF VENEZUELA

    EPA Science Inventory

    One of the major uncertainties concerning the role of tropical forests in the global carbon cycle is the lack of adequate data on the carbon content of all their components. The goal of this study was to contribute to filling this data gap by estimating the quantity of carbon in ...

  12. Seedling survival and growth of three forest tree species: The role of spatial heterogeneity

    Treesearch

    Brian Beckage; James S. Clark

    2003-01-01

    Spatial heterogeneity in microenvironments may provide unique regeneration niches for trees and may promote forest diversity. We examined how heterogeneity in understory cover, mineral nutrients, and moisture and their interactions with canopy gaps contribute to the coexistence of three common, co-occuring tree species. We measured survival and height growth of 1080...

  13. Ecohydrological consequences of drought- and infestation-triggered tree die-off: Insights and hypotheses

    Treesearch

    Henry D. Adams; Charles H. Luce; David D. Breshears; Craig D. Allen; Markus Weiler; V. Cody Hale; Alistair M. S. Smith; Travis E. Huxman

    2012-01-01

    Widespread, rapid, drought-, and infestation-triggered tree mortality is emerging as a phenomenon affecting forests globally and may be linked to increasing temperatures and drought frequency and severity. The ecohydrological consequences of forest die-off have been little studied and remain highly uncertain. To explore this knowledge gap, we apply the extensive...

  14. Characterizing movement of ground-dwelling arthropods with a novel mark-capture method using fluorescent powder

    Treesearch

    Kayla I. Perry; Kimberly F. Wallin; John W. Wenzel; Daniel A. Herms

    2017-01-01

    A major knowledge gap exists in understanding dispersal potential of ground-dwelling arthropods, especially in forest ecosystems. Movement of the ground-dwelling arthropod community was quantified using a novel markcapture technique in which three different colored fluorescent powders in two separate mixtures were applied to the floor of a deciduous forest in...

  15. Forest fire risk zonation mapping using remote sensing technology

    NASA Astrophysics Data System (ADS)

    Chandra, Sunil; Arora, M. K.

    2006-12-01

    Forest fires cause major losses to forest cover and disturb the ecological balance in our region. Rise in temperature during summer season causing increased dryness, increased activity of human beings in the forest areas, and the type of forest cover in the Garhwal Himalayas are some of the reasons that lead to forest fires. Therefore, generation of forest fire risk maps becomes necessary so that preventive measures can be taken at appropriate time. These risk maps shall indicate the zonation of the areas which are in very high, high, medium and low risk zones with regard to forest fire in the region. In this paper, an attempt has been made to generate the forest fire risk maps based on remote sensing data and other geographical variables responsible for the occurrence of fire. These include altitude, temperature and soil variations. Key thematic data layers pertaining to these variables have been generated using various techniques. A rule-based approach has been used and implemented in GIS environment to estimate fuel load and fuel index leading to the derivation of fire risk zonation index and subsequently to fire risk zonation maps. The fire risk maps thus generated have been validated on the ground for forest types as well as for forest fire risk areas. These maps would help the state forest departments in prioritizing their strategy for combating forest fires particularly during the fire seasons.

  16. Forest inventories generate scientifically sound information on the forest resource, but do our data and information really matter?

    Treesearch

    Christoph Keinn; Goran Stahl

    2009-01-01

    Current research in forest inventory focuses very much on technical-statistical problems geared mainly to the optimization of data collection and information generation. The basic assumption is that better information leads to better decisions and, therefore, to better forest management and forest policy. Not many studies, however, strive to explicitly establish the...

  17. The Distributional Ecology of the Maned Sloth: Environmental Influences on Its Distribution and Gaps in Knowledge

    PubMed Central

    Coutinho, Bruno Rocha; Zanon, Mariana Santos; Mendes, Sérgio Lucena

    2014-01-01

    The maned sloth Bradypus torquatus (Pilosa, Bradypodidae) is endemic to a small area in the Atlantic Forest of coastal Brazil. It has been listed as a threatened species because of its restricted geographic range, habitat loss and fragmentation, and declining populations. The major objectives of this study were to estimate its potential geographic distribution, the climatic conditions across its distributional range, and to identify suitable areas and potential species strongholds. We developed a model of habitat suitability for the maned sloth using two methods, Maxent and Mahalanobis Distance, based on 42 occurrence points. We evaluated environmental variable importance and the predictive ability of the generated distribution models. Our results suggest that the species distribution could be strongly influenced by environmental factors, mainly temperature seasonality. The modeled distribution of the maned sloth included known areas of occurrence in the Atlantic Forest (Sergipe, Bahia, Espírito Santo, and Rio de Janeiro), but did not match the observed distributional gaps in northern Rio de Janeiro, northern Espírito Santo or southern Bahia. Rather, the model showed that these areas are climatically suitable for the maned sloth, and thus suggests that factors other than climate might be responsible for the absence of species. Suitable areas for maned sloth were located mainly in the mountainous region of central Rio de Janeiro throughout Espírito Santo and to the coastal region of southern Bahia. We indicate 17 stronghold areas and recommended survey areas for the maned sloth. In addition, we highlight specific areas for conservation, including the current network protected areas. Our results can be applied for novel surveys and discovery of unknown populations, and help the selection of priority areas for management and conservation planning, especially of rare and relatively cryptic species directed associated with forested habitats. PMID:25338139

  18. Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD.

    PubMed

    Mitchell, Anthea L; Rosenqvist, Ake; Mora, Brice

    2017-12-01

    Forest degradation is a global phenomenon and while being an important indicator and precursor to further forest loss, carbon emissions due to degradation should also be accounted for in national reporting within the frame of UN REDD+. At regional to country scales, methods have been progressively developed to detect and map forest degradation, with these based on multi-resolution optical, synthetic aperture radar (SAR) and/or LiDAR data. However, there is no one single method that can be applied to monitor forest degradation, largely due to the specific nature of the degradation type or process and the timeframe over which it is observed. The review assesses two main approaches to monitoring forest degradation: first, where detection is indicated by a change in canopy cover or proxies, and second, the quantification of loss (or gain) in above ground biomass (AGB). The discussion only considers degradation that has a visible impact on the forest canopy and is thus detectable by remote sensing. The first approach encompasses methods that characterise the type of degradation and track disturbance, detect gaps in, and fragmentation of, the forest canopy, and proxies that provide evidence of forestry activity. Progress in these topics has seen the extension of methods to higher resolution (both spatial and temporal) data to better capture the disturbance signal, distinguish degraded and intact forest, and monitor regrowth. Improvements in the reliability of mapping methods are anticipated by SAR-optical data fusion and use of very high resolution data. The second approach exploits EO sensors with known sensitivity to forest structure and biomass and discusses monitoring efforts using repeat LiDAR and SAR data. There has been progress in the capacity to discriminate forest age and growth stage using data fusion methods and LiDAR height metrics. Interferometric SAR and LiDAR have found new application in linking forest structure change to degradation in tropical forests. Estimates of AGB change have been demonstrated at national level using SAR and LiDAR-assisted approaches. Future improvements are anticipated with the availability of next generation LiDAR sensors. Improved access to relevant satellite data and best available methods are key to operational forest degradation monitoring. Countries will need to prioritise their monitoring efforts depending on the significance of the degradation, balanced against available resources. A better understanding of the drivers and impacts of degradation will help guide monitoring and restoration efforts. Ultimately we want to restore ecosystem service and function in degraded forests before the change is irreversible.

  19. Disturbance and diversity of wood-inhabiting fungi: effects of canopy gaps and downed woody debris

    Treesearch

    Nicholas J. Brazee; Daniel L. Lindner; Anthony W. D' Amato; Shawn Fraver; Jodi A. Forrester; David J. Mladenoff

    2014-01-01

    Experimental canopy gap formation and additions of coarse woody debris (CWD) are techniques intended to mimic the disturbance regime and accelerate the development of northern hardwood forests. The effects of these techniques on biodiversity and ecosystem functioning were investigated by surveying the abundance and diversity of wood-inhabiting fungi in six treatments...

  20. Differential effects of understory and overstory gaps on tree regeneration

    Treesearch

    Brian Beckage; Brian D. Kloppel; J. Alan Yenkley; Sharon F. Taylor; David C. Coleman

    2008-01-01

    Gaps in the forest canopy can increase the diversity of tree regeneration. Understory shrubs also compete with tree seedlings for limited resources and may depress tree recruitment We compared effects of shrub removal and canopy windthrow gups on seedling recruitment and understory resource levels. Shrub removal, with the canopy left intact, was associated with...

  1. Survivorship and Growth of Oak Regeneration in Wind-Created Gaps

    Treesearch

    Erik C. Berg

    2004-01-01

    The effects of wind on upland hardwood forest structure and composition have been studied mostly in the context of either one to two tree mortality gap-phase openings or in retrospective studies of ancient disturbances. Larger (> 0.1 ha) wind-created openings are common across Southern Appalachian landscapes and can be an important factor in shaping understory...

  2. Chapter 6: The scientific basis for conserving forest carnivores: considerations for management

    Treesearch

    L. Jack Lyon; Keith B. Aubry; William J. Zielinski; Steven W. Buskirk; Leonard F. Ruggiero

    1994-01-01

    The reviews presented in previous chapters reveal substantial gaps in our knowledge about marten, fisher, lynx, and wolverine. These gaps severely constrain our ability to design reliable conservation strategies. This problem will be explored in depth in Chapter 7. In this chapter, our objective is to discuss management considerations resulting from what we currently...

  3. Comprehensive comparison of gap filling techniques for eddy covariance net carbon fluxes

    NASA Astrophysics Data System (ADS)

    Moffat, A. M.; Papale, D.; Reichstein, M.; Hollinger, D. Y.; Richardson, A. D.; Barr, A. G.; Beckstein, C.; Braswell, B. H.; Churkina, G.; Desai, A. R.; Falge, E.; Gove, J. H.; Heimann, M.; Hui, D.; Jarvis, A. J.; Kattge, J.; Noormets, A.; Stauch, V. J.

    2007-12-01

    Review of fifteen techniques for estimating missing values of net ecosystem CO2 exchange (NEE) in eddy covariance time series and evaluation of their performance for different artificial gap scenarios based on a set of ten benchmark datasets from six forested sites in Europe. The goal of gap filling is the reproduction of the NEE time series and hence this present work focuses on estimating missing NEE values, not on editing or the removal of suspect values in these time series due to systematic errors in the measurements (e.g. nighttime flux, advection). The gap filling was examined by generating fifty secondary datasets with artificial gaps (ranging in length from single half-hours to twelve consecutive days) for each benchmark dataset and evaluating the performance with a variety of statistical metrics. The performance of the gap filling varied among sites and depended on the level of aggregation (native half- hourly time step versus daily), long gaps were more difficult to fill than short gaps, and differences among the techniques were more pronounced during the day than at night. The non-linear regression techniques (NLRs), the look-up table (LUT), marginal distribution sampling (MDS), and the semi-parametric model (SPM) generally showed good overall performance. The artificial neural network based techniques (ANNs) were generally, if only slightly, superior to the other techniques. The simple interpolation technique of mean diurnal variation (MDV) showed a moderate but consistent performance. Several sophisticated techniques, the dual unscented Kalman filter (UKF), the multiple imputation method (MIM), the terrestrial biosphere model (BETHY), but also one of the ANNs and one of the NLRs showed high biases which resulted in a low reliability of the annual sums, indicating that additional development might be needed. An uncertainty analysis comparing the estimated random error in the ten benchmark datasets with the artificial gap residuals suggested that the techniques are already at or very close to the noise limit of the measurements. Based on the techniques and site data examined here, the effect of gap filling on the annual sums of NEE is modest, with most techniques falling within a range of ±25 g C m-2 y-1.

  4. Forests and Their Canopies: Achievements and Horizons in Canopy Science.

    PubMed

    Nakamura, Akihiro; Kitching, Roger L; Cao, Min; Creedy, Thomas J; Fayle, Tom M; Freiberg, Martin; Hewitt, C N; Itioka, Takao; Koh, Lian Pin; Ma, Keping; Malhi, Yadvinder; Mitchell, Andrew; Novotny, Vojtech; Ozanne, Claire M P; Song, Liang; Wang, Han; Ashton, Louise A

    2017-06-01

    Forest canopies are dynamic interfaces between organisms and atmosphere, providing buffered microclimates and complex microhabitats. Canopies form vertically stratified ecosystems interconnected with other strata. Some forest biodiversity patterns and food webs have been documented and measurements of ecophysiology and biogeochemical cycling have allowed analyses of large-scale transfer of CO 2 , water, and trace gases between forests and the atmosphere. However, many knowledge gaps remain. With global research networks and databases, and new technologies and infrastructure, we envisage rapid advances in our understanding of the mechanisms that drive the spatial and temporal dynamics of forests and their canopies. Such understanding is vital for the successful management and conservation of global forests and the ecosystem services they provide to the world. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Structure and development of old-growth, unmanaged second-growth, and extended rotation Pinus resinosa forests in Minnesota, USA

    USGS Publications Warehouse

    Silver, Emily J.; D'Amato, Anthony W.; Fraver, Shawn; Palik, Brian J.; Bradford, John B.

    2013-01-01

    The structure and developmental dynamics of old-growth forests often serve as important baselines for restoration prescriptions aimed at promoting more complex structural conditions in managed forest landscapes. Nonetheless, long-term information on natural patterns of development is rare for many commercially important and ecologically widespread forest types. Moreover, the effectiveness of approaches recommended for restoring old-growth structural conditions to managed forests, such as the application of extended rotation forestry, has been little studied. This study uses several long-term datasets from old growth, extended rotation, and unmanaged second growth Pinus resinosa (red pine) forests in northern Minnesota, USA, to quantify the range of variation in structural conditions for this forest type and to evaluate the effectiveness of extended rotation forestry at promoting the development of late-successional structural conditions. Long-term tree population data from permanent plots for one of the old-growth stands and the extended rotation stands (87 and 61 years, respectively) also allowed for an examination of the long-term structural dynamics of these systems. Old-growth forests were more structurally complex than unmanaged second-growth and extended rotation red pine stands, due in large part to the significantly higher volumes of coarse woody debris (70.7 vs. 11.5 and 4.7 m3/ha, respectively) and higher snag basal area (6.9 vs. 2.9 and 0.5 m2/ha, respectively). In addition, old-growth forests, although red pine-dominated, contained a greater abundance of other species, including Pinus strobus, Abies balsamea, and Picea glauca relative to the other stand types examined. These differences between stand types largely reflect historic gap-scale disturbances within the old-growth systems and their corresponding structural and compositional legacies. Nonetheless, extended rotation thinning treatments, by accelerating advancement to larger tree diameter classes, generated diameter distributions more closely approximating those found in old growth within a shorter time frame than depicted in long-term examinations of old-growth structural development. These results suggest that extended rotation treatments may accelerate the development of old-growth structural characteristics, provided that coarse woody debris and snags are deliberately retained and created on site. These and other developmental characteristics of old-growth systems can inform forest management when objectives include the restoration of structural conditions found in late-successional forests.

  6. US strategy for forest management adaptation to climate change: building a framework for decision making

    Treesearch

    V. Alaric Sample; Jessica E. Halofsky; David L. Peterson

    2014-01-01

    This paper describes methods developed to (1) assess current risks, vulnerabilities, and gaps in knowledge; (2) engage internal agency resources and external partners in the development of options and solutions; and (3) manage forest resources for resilience, not just in terms of natural ecosystems but in affected human communities as well. We describe an approach...

  7. Biotic resistance to exotic invasions: its role in forest ecosystems, confounding artifacts, and future directions

    Treesearch

    Gabriela C. Nunez-Mir; Andrew M. Liebhold; Qinfeng Guo; Eckehard G. Brockerhoff; Insu Jo; Kimberly Ordonez; Songlin Fei

    2017-01-01

    Biotic resistance, the ability of communities to resist exotic invasions, has long attracted interest in the research and management communities. However, inconsistencies exist in various biotic resistance studies and less is known about the current status and knowledge gaps of biotic resistance in forest ecosystems. In this paper, we provide a brief review of the...

  8. Using hyperdocuments to manage scientific knowledge: the prototype Encyclopedia of Southern Appalachian Forest Ecosystems

    Treesearch

    Deborah K. Kennard; H. Michael Rauscher; Patricia A. Flebbe; Daniel L. Schmoldt; William G. Hubbard; J. Bryan Jordin; William Milnor

    2005-01-01

    Despite the overwhelming body of research available on the ecology and management of Southern Appalachian forests, a gap exists between what scientists know and what the management community is able to apply on the ground. Most research knowledge still resides in highly technical, narrowly focused research publications housed in libraries. The internet, combined with...

  9. Light, temperature, and soil moisture responses to elevation, evergreen understory, and small canopy gaps in the southern Appalachians

    Treesearch

    Barton D. Clinton

    2003-01-01

    Small canopy openings often alter understory microclimate, leading to changes in forest structure and composition. It is generally accepted that physical changes in the understory (i.e., microclimatic) due to canopy removal drive changes in basic forest processes, particularly seedling recruitment which is intrinsically linked to soil moisture availability, light and,...

  10. Historic disturbance regimes promote tree diversity only under low browsing regimes in eastern deciduous forest

    Treesearch

    Tim Nuttle; Alejandro A. Royo; Mary Beth Adams; Walter P. Carson

    2013-01-01

    Eastern deciduous forests are changing in species composition and diversity outside of classical successional trajectories. Three disturbance mechanisms appear central to this phenomenon: fire frequency is reduced, canopy gaps are smaller, and browsers are more abundant. Which factor is most responsible is a matter of great debate and remains unclear, at least partly...

  11. Monitoring the effects of partial cutting and gap size on microclimate and vegetation responses in northern hardwood forests in Wisconsin

    Treesearch

    Terry F. Strong; Ron M. Teclaw; John C. Zasada

    1997-01-01

    Silviculture modifies the environment. Past monitoring of silvicultural practices has been usually limited to vegetation responses, but parallel monitoring of the environment is needed to better predict these responses. In an example of monitoring temperatures in two studies of northern hardwood forests in Wisconsin, we found that different silvicultural practices...

  12. The Acadian Forest Ecosystem Research Program: an example of natural disturbance-based silviculture in the northeast

    Treesearch

    Mike R. Saunders; Robert S. Seymour; Robert G. Wagner

    2014-01-01

    The Acadian Forest Ecosystem Research Program (AFERP) began in 1994 as one of the nation's first trials of natural disturbance-based silviculture. The study tests the ecological impacts of two versions of expanding-gap silvicultural systems that are designed to emulate the spatial extent and frequency of natural disturbances in northeastern North America. The...

  13. Fire in Eastern North American Oak Ecosystems: Filling the Gaps

    Treesearch

    Julian (Morgan) Varner; Mary Arthur; Stacy Clark; Daniel C. Dey; Justin Hart; Callie Schweitzer

    2016-01-01

    This special issue of Fire Ecology is focused on the fire ecology of eastern USA oak (Quercus L.) forests, woodlands, and savannas. The papers were presented as part of the Fifth Fire in Eastern Oak Forests Conference in Tuscaloosa, Alabama, USA, in 2015. The topic of fire in eastern oak ecosystems is one that has received insufficient interest from the...

  14. Internal habitat quality determines the effects of fragmentation on austral forest climbing and epiphytic angiosperms.

    PubMed

    Magrach, Ainhoa; Larrinaga, Asier R; Santamaría, Luis

    2012-01-01

    Habitat fragmentation has become one of the major threats to biodiversity worldwide, particularly in the case of forests, which have suffered enormous losses during the past decades. We analyzed how changes in patch configuration and habitat quality derived from the fragmentation of austral temperate rainforests affect the distribution of six species of forest-dwelling climbing and epiphytic angiosperms. Epiphyte and vine abundance is primarily affected by the internal characteristics of patches (such as tree size, the presence of logging gaps or the proximity to patch edges) rather than patch and landscape features (such as patch size, shape or connectivity). These responses were intimately related to species-specific characteristics such as drought- or shade-tolerance. Our study therefore suggests that plant responses to fragmentation are contingent on both the species' ecology and the specific pathways through which the study area is being fragmented, (i.e. extensive logging that shaped the boundaries of current forest patches plus recent, unregulated logging that creates gaps within patches). Management practices in fragmented landscapes should therefore consider habitat quality within patches together with other spatial attributes at landscape or patch scales.

  15. Forest-climate interactions in fragmented tropical landscapes.

    PubMed

    Laurance, William F

    2004-03-29

    In the tropics, habitat fragmentation alters forest-climate interactions in diverse ways. On a local scale (less than 1 km), elevated desiccation and wind disturbance near fragment margins lead to sharply increased tree mortality, thus altering canopy-gap dynamics, plant community composition, biomass dynamics and carbon storage. Fragmented forests are also highly vulnerable to edge-related fires, especially in regions with periodic droughts or strong dry seasons. At landscape to regional scales (10-1000 km), habitat fragmentation may have complex effects on forest-climate interactions, with important consequences for atmospheric circulation, water cycling and precipitation. Positive feedbacks among deforestation, regional climate change and fire could pose a serious threat for some tropical forests, but the details of such interactions are poorly understood.

  16. Capillary rise in a textured channel

    NASA Astrophysics Data System (ADS)

    Beilharz, Daniel; Clanet, Christophe; Quere, David

    2016-11-01

    A wetting liquid can invade a textured material, for example a forest of micropillars. The driving and the viscous forces of this motion are determined by the texture parameters and the influence of shape, height and spacing of posts has been widely studied for the last decade. In this work, we build a channel with textured walls. Brought into contact with a reservoir of wetting liquid, we observe in some cases two advancing fronts. A first one ahead invading the forest of micropillars, and a second one behind filling the remaining gap. We study and model the conditions of existence and the dynamics of these two fronts as a function of the characteristics of both microstructure and gap of this elementary porous medium.

  17. Detection capacity, information gaps and the design of surveillance programs for invasive forest pests

    Treesearch

    Denys Yemshanov; Frank Koch; Yakov Ben-Haim; William Smith

    2010-01-01

    Integrated pest risk maps and their underlying assessments provide broad guidance for establishing surveillance programs for invasive species, but they rarely account for knowledge gaps regarding the pest of interest or how these can be reduced. In this study we demonstrate how the somewhat competing notions of robustness to uncertainty and potential knowledge gains...

  18. Disturbance and canopy gaps as indicators of forest health in the Blue Mountains of Oregon.

    Treesearch

    Jerome S. Beatty; Brian W. Geils; John E. Lundquist

    1995-01-01

    Disturbance profiles, indices based on both spatial and non-spatial statistics, are used to examine how small-scale disturbances and the resulting canopy gaps disrupt ecosystem patterns and processes in selected stands in the Blue Mountains of Oregon. The biological meaning of many indices remains undefined for small scale disturbance phenomena, but their disturbance...

  19. Seeing the Forest as Well as the Trees: General vs. Specific Predictors of Environmental Behavior

    ERIC Educational Resources Information Center

    Carmi, Nurit; Arnon, Sara; Orion, Nir

    2015-01-01

    The domain of environmental protection is comprised from many sub-domains as recycling, conserving water, or reducing the consumption of energy. The attitude-behavior gap is partly explained by the gap between the specificity levels of the particular measured behavior and of its antecedent(s). The present study aimed at assessing the effects of…

  20. Accuracy assessment of the vegetation continuous field tree cover product using 3954 ground plots in the southwestern USA

    Treesearch

    M. A. White; J. D. Shaw; R. D. Ramsey

    2005-01-01

    An accuracy assessment of the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation continuous field (VCF) tree cover product using two independent ground-based tree cover databases was conducted. Ground data included 1176 Forest Inventory and Analysis (FIA) plots for Arizona and 2778 Southwest Regional GAP (SWReGAP) plots for Utah and western Colorado....

  1. Predation on Artificial Nests in Hurricane-Created Gaps and Adjacent Forest of the Southern Appalachians

    Treesearch

    Cathryn H. Greenberg; C. Reed Rossell; David B. Johnson

    2002-01-01

    Predation rates were compared during three 7-day trials on 742 artificial ground nests located in 10 hurricane-created canopy gaps and IO adjacent closed-canopy controls in the southern Appalachian mountains of North Carolina. White northern bobwhite (Colinus virginianus) eggs were used in trials 1 and 2, but brown-speckled Japanese Quail (...

  2. Managing for diversity: harvest gap size drives complex light, vegetation, and deer herbivory impacts on tree seedlings

    Treesearch

    Michael B. Walters; Evan J. Farinosi; John L. Willis; Kurt W. Gottschalk

    2016-01-01

    Many managed northern hardwood forests are characterized by low-diversity tree regeneration. Small harvest gaps, competition from shrub–herb vegetation, and browsing by white-tailed deer (Odocoileus virginianus) contribute to this pattern, but we know little about how these factors interact. With a stand-scale experiment, we examined the effects of...

  3. Bat activity in harvested and intact forest stands in the allegheny mountains

    USGS Publications Warehouse

    Owen, S.F.; Menzel, M.A.; Edwards, J.W.; Ford, W.M.; Menzel, J.M.; Chapman, B.R.; Wood, P.B.; Miller, K.V.

    2004-01-01

    We used Anabat acoustical monitoring devices to examine bat activity in intact canopy forests, complex canopy forests with gaps, forests subjected to diameter-limit harvests, recent deferment harvests, clearcuts and unmanaged forested riparian areas in the Allegheny Mountains of West Virginia in the summer of 1999. We detected eight species of bats, including the endangered Indiana bat (Myotis sodalis). Most bat activity was concentrated in forested riparian areas. Among upland habitats, activity of silver-haired bats (Lasionycteris noctivagans) and hoary bats (Lasiurus cinereus) was higher in open, less cluttered vegetative types such as recent deferment harvests and clearcuts. Our results suggest that bat species in the central Appalachians partially segregate themselves among vegetative conditions based on differences in body morphology and echolocation call characteristics. From the standpoint of conserving bat foraging habitat for the maximum number of species in the central Appalachians, special emphasis should be placed on protecting forested riparian areas.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danilo Dragoni; Hans Peter Schmid; C.S.B. Grimmond

    During the project period we continued to conduct long-term (multi-year) measurements, analysis, and modeling of energy and mass exchange in and over a deciduous forest in the Midwestern United States, to enhance the understanding of soil-vegetation-atmosphere exchange of carbon. At the time when this report was prepared, results from nine years of measurements (1998 - 2006) of above canopy CO2 and energy fluxes at the AmeriFlux site in the Morgan-Monroe State Forest, Indiana, USA (see Table 1), were available on the Fluxnet database, and the hourly CO2 fluxes for 2007 are presented here (see Figure 1). The annual sequestration ofmore » atmospheric carbon by the forest is determined to be between 240 and 420 g C m-2 a-1 for the first ten years. These estimates are based on eddy covariance measurements above the forest, with a gap-filling scheme based on soil temperature and photosynthetically active radiation. Data gaps result from missing data or measurements that were rejected in qua)lity control (e.g., during calm nights). Complementary measurements of ecological variables (i.e. inventory method), provided an alternative method to quantify net carbon uptake by the forest, partition carbon allocation in each ecosystem components, and reduce uncertainty on annual net ecosystem productivity (NEP). Biometric datasets are available on the Fluxnext database since 1998 (with the exclusion of 2006). Analysis for year 2007 is under completion.« less

  5. Interpretation of forest characteristics from computer-generated images.

    Treesearch

    T.M. Barrett; H.R. Zuuring; T. Christopher

    2006-01-01

    The need for effective communication in the management and planning of forested landscapes has led to a substantial increase in the use of visual information. Using forest plots from California, Oregon, and Washington, and a survey of 183 natural resource professionals in these states, we examined the use of computer-generated images to convey information about forest...

  6. Not so hot: Rapid recovery of soil temperature and respiration following tornado damage, regardless of disturbance severity

    NASA Astrophysics Data System (ADS)

    Nagendra, U.; Peterson, C.

    2013-12-01

    Forest disturbances such as tornadoes are expected to raise soil temperatures and increase soil respiration. Opening canopy gaps allows solar radiation to heat the forest floor, and damaged plant roots provide fuel for decomposition. Patches of disturbed forest can range from low severity (some defoliation, broken branches) to high severity (uprooted or snapped trees). Disturbance severity affects plant population and community processes, such as regeneration mode, species diversity, and community structure. We expect disturbance severity to also affect ecosystem processes such as soil respiration. Severe disturbances cause more distinct, and often larger, canopy gaps than mild disturbances, and damage more standing biomass, both above- and below-ground. We would expect these larger gaps and greater litter amounts to increase soil temperature and respiration in more severely disturbed forest patches. In April 2011, a moderate (EF-3) tornado damaged portions of the Chattahoochee National Forest in NE Georgia, USA. Our lab has been characterizing the damage and regeneration in sections of the forest since summer 2011. In Spring 2013, we installed 4 iButton temperature sensors in each of 14 plots across a range of disturbance severity (for a total of 56 sensors). Severity was determined by percent of initial tree basal area downed by the tornado, and ranged from 8% to 100% basal area down. The iButtons monitored soil temperature at a depth of 5 cm every hour for 85 days. In July 2013, integrated 24-hour soil respiration was measured at the same locations using soda lime absorption in sealed PVC collars. Soil temperature at 5 cm averaged 12.66 °C. Contrary to expectations, average daily temperatures did not increase with greater plot damage severity (R2 = 0.001). Daily variation was only slightly higher in plots of very high severity. Overall, soil temperatures appeared to have returned to pre-disturbance temperatures more quickly than expected. Results for upcoming months will be presented at the meeting. Soil respiration was relatively high in all plots (4.49 +/-1.19 g C m-2 hr-1). Contrary to expectations, respiration did not vary significantly with plot damage severity (R2 = 0.0676). The temperature and respiration data together suggest potentially rapid ecosystem recovery after these types of wind disturbances. The flush of understory growth in open patches may insulate the forest floor from solar radiation, even though the forest canopy is still open. These unexpected preliminary results may indicate that ecosystem processes in southern forests are more resilient to disturbances than previously thought. Although forests become carbon sinks immediately after disturbances, they may return to carbon neutral or sink status relatively quickly, given the right circumstances.

  7. Simulating effects of fire on northern Rocky Mountain landscapes with the ecological process model FIRE-BGC.

    PubMed

    Keane, R E; Ryan, K C; Running, S W

    1996-03-01

    A mechanistic, biogeochemical succession model, FIRE-BGC, was used to investigate the role of fire on long-term landscape dynamics in northern Rocky Mountain coniferous forests of Glacier National Park, Montana, USA. FIRE-BGC is an individual-tree model-created by merging the gap-phase process-based model FIRESUM with the mechanistic ecosystem biogeochemical model FOREST-BGC-that has mixed spatial and temporal resolution in its simulation architecture. Ecological processes that act at a landscape level, such as fire and seed dispersal, are simulated annually from stand and topographic information. Stand-level processes, such as tree establishment, growth and mortality, organic matter accumulation and decomposition, and undergrowth plant dynamics are simulated both daily and annually. Tree growth is mechanistically modeled based on the ecosystem process approach of FOREST-BGC where carbon is fixed daily by forest canopy photosynthesis at the stand level. Carbon allocated to the tree stem at the end of the year generates the corresponding diameter and height growth. The model also explicitly simulates fire behavior and effects on landscape characteristics. We simulated the effects of fire on ecosystem characteristics of net primary productivity, evapotranspiration, standing crop biomass, nitrogen cycling and leaf area index over 200 years for the 50,000-ha McDonald Drainage in Glacier National Park. Results show increases in net primary productivity and available nitrogen when fires are included in the simulation. Standing crop biomass and evapotranspiration decrease under a fire regime. Shade-intolerant species dominate the landscape when fires are excluded. Model tree increment predictions compared well with field data.

  8. Comparing models for growth and management of forest tracts

    Treesearch

    J.J. Colbert; Michael Schuckers; Desta Fekedulegn

    2003-01-01

    The Stand Damage Model (SDM) is a PC-based model that is easily installed, calibrated and initialized for use in exploring the future growth and management of forest stands or small wood lots. We compare the basic individual tree growth model incorporated in this model with alternative models that predict the basal area growth of trees. The SDM is a gap-type simulator...

  9. Effects of intermediate-scale wind disturbance on composition, structure, and succession in Quercus stands: Implications for natural disturbance-based silviculture

    Treesearch

    M.M. Cowden; J.L. Hart; C.J. Schweitzer; D.C. Dey

    2014-01-01

    Forest disturbances are discrete events in space and time that disrupt the biophysical environment and impart lasting legacies on forest composition and structure. Disturbances are often classified along a gradient of spatial extent and magnitude that ranges from catastrophic events where most of the overstory is removed to gap-scale events that modify local...

  10. Soil heating during burning of forest slash piles and wood piles

    Treesearch

    Matt D. Busse; Carol J. Shestak; Ken R. Hubbert

    2013-01-01

    Pile burning of conifer slash is a common fuel reduction practice in forests of the western United States that has a direct, yet poorly quantified effect on soil heating. To address this knowledge gap, we measured the heat pulse beneath hand-built piles ranging widely in fuel composition and pile size in sandy-textured soils of the Lake Tahoe Basin. The soil heat pulse...

  11. Long-term drought sensitivity of trees in second-growth forests in a humid region

    Treesearch

    Neil Pederson; Kacie Tackett; Ryan W. McEwan; Stacy Clark; Adrienne Cooper; Glade Brosi; Ray Eaton; R. Drew Stockwell

    2012-01-01

    Classical field methods of reconstructing drought using tree rings in humid, temperate regions typically target old trees from drought-prone sites. This approach limits investigators to a handful of species and excludes large amounts of data that might be useful, especially for coverage gaps in large-scale networks. By sampling in more “typical” forests, network...

  12. Challenges and a checklist for biodiversity conservation in fire-prone forests: perspecitves from the Pacific Northwest of USA and Southeastern Australia

    Treesearch

    Thomas A. Spies; David B. Lindenmayer; A. Malcolm Gill; Scott L. Stephens; James K. Agee

    2012-01-01

    Conserving biodiversity in fire-prone forest ecosystems is challenging for several reasons including differing and incomplete conceptual models of fire-related ecological processes, major gaps in ecological and management knowledge, high variability in fire behavior and ecological responses to fires, altered fire regimes as a result of land-use history and climate...

  13. Release of Suppressed Red Spruce Using Canopy Gap Creation--Ecological Restoration in the Central Appalachians

    Treesearch

    J.S. Rentch; W.M. Ford; Thomas Schuler; Jeff Palmer; C.A. Diggins

    2016-01-01

    Red spruce (Picea rubens) and red spruce-northern hardwood mixed stands once covered as much as 300,000 ha in the Central Appalachians, but now comprise no more than 21,000 ha. Recently, interest in restoration of this forest type has increased because red spruce forests provide habitat for a number of rare animal species. Our study reports the...

  14. Disturbance size and severity covary in small and mid-size wind disturbances in Pennsylvania northern hardwoods forests

    Treesearch

    Chris J. Peterson; Lisa M. Krueger; Alejandro A. Royo; Scott Stark; Walter P. Carson

    2013-01-01

    Do large disturbances differ from small ones in characteristics other than size? The importance of disturbances in forest dynamics is unquestioned, and the size of the disturbed area (size of gap) is the most common way of differentiating disturbances. But few studies have examined other disturbance characteristics to see if small and large disturbances are different....

  15. Use of Fouler Transforms to define landscape scales of analysis for disturbances: A case study of thinned and unthinned forest stands

    Treesearch

    J. E. Lundquist; R. A. Sommerfeld

    2002-01-01

    Various disturbances such as disease and management practices cause canopy gaps that change patterns of forest stand structure. This study examined the usefulness of digital image analysis using aerial photos, Fourier Tranforms, and cluster analysis to investigate how different spatial statistics are affected by spatial scale. The specific aims were to: 1) evaluate how...

  16. Comparison of LiDAR-derived data and high resolution true color imagery for extracting urban forest cover

    Treesearch

    Aaron E. Maxwell; Adam C. Riley; Paul Kinder

    2013-01-01

    Remote sensing has many applications in forestry. Light detection and ranging (LiDAR) and high resolution aerial photography have been investigated as means to extract forest data, such as biomass, timber volume, stand dynamics, and gap characteristics. LiDAR return intensity data are often overlooked as a source of input raster data for thematic map creation. We...

  17. Timber productivity research gaps for extensive forest management

    Treesearch

    L.C. Irland

    2011-01-01

    On extensive areas of small scale forests, significant opportunities for improving the value of future timber harvests while also improving other resource values are now being missed. A new focus on practical extensive management research is needed, especially as implementation of intensive practices has been declining in many areas, and new ‘‘close to nature’’...

  18. Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty

    Treesearch

    Katharine White; Jennifer Pontius; Paul Schaberg

    2014-01-01

    Current remote sensing studies of phenology have been limited to coarse spatial or temporal resolution and often lack a direct link to field measurements. To address this gap, we compared remote sensing methodologies using Landsat Thematic Mapper (TM) imagery to extensive field measurements in a mixed northern hardwood forest. Five vegetation indices, five mathematical...

  19. Economic considerations in Douglas-fir stand establishment.

    Treesearch

    T.A. McClay

    1955-01-01

    One of the most important problem facing a forest manager is how to successfully bridge the gap between the cutting of the old stand and establishment of the new one. Perhaps its importance is due to the fact that it requires prompt action based upon definite planning. At most other points in a forest stand's history, failure to take action is not quite so obvious...

  20. Passive restoration augments active restoration in deforested landscapes: the role of root suckering adjacent to planted stands of Acacia koa

    Treesearch

    Paul G. Scowcroft; Justin T. Yeh

    2013-01-01

    Active forest restoration in Hawaii’s Hakalau Forest National Wildlife Refuge has produced a network of Acacia koa tree corridors and islands in deforested grasslands. Passive restoration by root suckering has potential to expand tree cover and close gaps between planted stands. This study documents rates of encroachment into grassland, clonal...

  1. Catastrophic flood and forest cover change in the Huong river basin, central Viet Nam: a gap between common perceptions and facts.

    PubMed

    Tran, Phong; Marincioni, Fausto; Shaw, Rajib

    2010-11-01

    Recent catastrophic floods in Viet Nam have been increasingly linked to land use and forest cover change in the uplands. Despite the doubts that many scientists have expressed on such nexus, this common view prompted both positive forest protection/reforestation programs and often-unwarranted blame on upland communities for their forest management practices. This study discusses the disparity between public perceptions and scientific evidences relating the causes of catastrophic floods. The former was drawn on the results of a questionnaire and focus groups discussions with key informants of different mountainous communities, whereas the latter was based on GIS and remote sensing analysis of land cover change, including a statistical analysis of hydro-meteorological data of the Huong river basin in Viet Nam. Results indicate that there is a gap between the common beliefs and the actual relationship between the forest cover change and catastrophic floods. Undeniably, the studied areas showed significant changes in land cover over the period 1989-2008, yet, 71% of the variance of catastrophic flood level in the downstream areas appeared related to variance in rainfall. Evidences from this study showed that the overall increasing trends of catastrophic flooding in the Huong river basin was mainly due to climate variability and to the development of main roads and dyke infrastructures in the lowlands. Forest management policies and programs, shaped on the common assumption that forest degradation in the upland is the main cause of catastrophic flood in the downstream areas, should be reassessed to avoid unnecessary strain on upland people. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Global, long-term Earth Science Data Records of forest cover, change, and fragmentation from Landsat: the Global Forest Cover Change Project

    NASA Astrophysics Data System (ADS)

    Sexton, J.; Huang, C.; Channan, S.; Feng, M.; Song, X.; Kim, D.; Song, D.; Vermote, E.; Masek, J.; Townshend, J. R.

    2013-12-01

    Monitoring, analysis, and management of forests require measurements of forest cover that are both spatio-temporally consistent and resolved globally at sub-hectare resolution. The Global Forest Cover Change project, a cooperation between the University of Maryland Global Land Cover Facility and NASA Goddard Space Flight Center, is providing the first long-term, sub-hectare, globally consistent data records of forest cover, change, and fragmentation in circa-1975, -1990, -2000, and -2005 epochs. These data are derived from the Global Land Survey collection of Landsat images in the respective epochs, atmospherically corrected to surface reflectance in 1990, 2000, and 2005 using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) implementation of the 6S radiative transfer algorithm, with ancillary information from MODIS Land products, ASTER Global Digital Elevation Model (GDEM), and climatological data layers. Forest cover and change were estimated by a novel continuous-field approach, which produced for the 2000 and 2005 epochs the world's first global, 30-m resolution database of tree cover. Surface reflectance estimates were validated against coincident MODIS measurements, the results of which have been corroborated by subsequent, independent validations against measurements from AERONET sites. Uncertainties in tree- and forest-cover values were estimated in each pixel as a compounding of within-sample uncertainty and accuracy relative to a sample of independent measurements from small-footprint lidar. Accuracy of forest cover and change estimates was further validated relative to expert-interpreted high-resolution imagery, from which unbiased estimates of forest cover and change have been produced at national and eco-regional scales. These first-of-kind Earth Science Data Records--surface reflectance in 1990, 2000, and 2005 and forest cover, change, and fragmentation in and between 1975, 1990, 2000, and 2005--are hosted at native, Landsat resolution for free public access at the Global Land Cover Facility website (www.landcover.org). Global mosaic of circa-2000, Landsat-based estimates of tree cover. Gaps due to clouds and/or snow in each scene were filled first with Landsat-based data from overlapping paths, and the remaining gaps were filled with data from the MODIS VCF Tree Cover layer in 2000.

  3. Piecing together the fragments: Elucidating edge effects on forest carbon dynamics

    NASA Astrophysics Data System (ADS)

    Hutyra, L.; Smith, I. A.; Reinmann, A.; Marrs, J.; Thompson, J.

    2017-12-01

    Forest fragmentation is pervasive throughout the world's forests, impacting growing conditions and carbon dynamics through edge effects that produce gradients in microclimate, biogeochemistry, and stand structure. Despite the majority of the world's forests being <1km from an edge, our understanding of forest carbon dynamics is largely derived from intact forest systems. In the northeastern USA, we find that over 23% of the current forest area is just 30m from an agricultural or developed edge. Edge effects on the carbon cycle vary in their magnitude by biome, but current forest carbon accounting methods and ecosystem models largely do not include edge effects, highlighting an important gap in our understanding of the terrestrial carbon cycle. Characterizing the role of forest fragmentation in regional and global biogeochemical cycles necessitates advancing our understanding of how shifts in microenvironment at the forest edge interact with local prevailing drivers of global change and limitations to microbial activity and forest growth. This study synthesizes the literature related to edge effects and the carbon cycle, considering how fragmentation affects the growing conditions of the world's remaining forests based on risks and opportunities for forests near the edge.

  4. GAPPARD: a computationally efficient method of approximating gap-scale disturbance in vegetation models

    NASA Astrophysics Data System (ADS)

    Scherstjanoi, M.; Kaplan, J. O.; Thürig, E.; Lischke, H.

    2013-02-01

    Models of vegetation dynamics that are designed for application at spatial scales larger than individual forest gaps suffer from several limitations. Typically, either a population average approximation is used that results in unrealistic tree allometry and forest stand structure, or models have a high computational demand because they need to simulate both a series of age-based cohorts and a number of replicate patches to account for stochastic gap-scale disturbances. The detail required by the latter method increases the number of calculations by two to three orders of magnitude compared to the less realistic population average approach. In an effort to increase the efficiency of dynamic vegetation models without sacrificing realism, and to explore patterns of spatial scaling in forests, we developed a new method for simulating stand-replacing disturbances that is both accurate and 10-50x faster than approaches that use replicate patches. The GAPPARD (approximating GAP model results with a Probabilistic Approach to account for stand Replacing Disturbances) method works by postprocessing the output of deterministic, undisturbed simulations of a cohort-based vegetation model by deriving the distribution of patch ages at any point in time on the basis of a disturbance probability. With this distribution, the expected value of any output variable can be calculated from the output values of the deterministic undisturbed run at the time corresponding to the patch age. To account for temporal changes in model forcing, e.g., as a result of climate change, GAPPARD performs a series of deterministic simulations and interpolates between the results in the postprocessing step. We integrated the GAPPARD method in the forest models LPJ-GUESS and TreeM-LPJ, and evaluated these in a series of simulations along an altitudinal transect of an inner-alpine valley. With GAPPARD applied to LPJ-GUESS results were insignificantly different from the output of the original model LPJ-GUESS using 100 replicate patches, but simulation time was reduced by approximately the factor 10. Our new method is therefore highly suited rapidly approximating LPJ-GUESS results, and provides the opportunity for future studies over large spatial domains, allows easier parameterization of tree species, faster identification of areas of interesting simulation results, and comparisons with large-scale datasets and forest models.

  5. The Legacy of Episodic Climatic Events in Shaping Temperate, Broadleaf Forests

    NASA Technical Reports Server (NTRS)

    Pederson, Neil; Dyer, James M.; McEwan, Ryan W.; Hessl, Amy E.; Mock, Cary J.; Orwig, David A.; Rieder, Harald E.; Cook, Benjamin I.

    2015-01-01

    In humid, broadleaf-dominated forests where gap dynamics and partial canopy mortality appears to dominate the disturbance regime at local scales, paleoecological evidence shows alteration at regional-scales associated with climatic change. Yet, little evidence of these broad-scale events exists in extant forests. To evaluate the potential for the occurrence of large-scale disturbance, we used 76 tree-ring collections spanning approx. 840 000 sq km and 5327 tree recruitment dates spanning approx. 1.4 million sq km across the humid eastern United States. Rotated principal component analysis indicated a common growth pattern of a simultaneous reduction in competition in 22 populations across 61 000 km2. Growth-release analysis of these populations reveals an intense and coherent canopy disturbance from 1775 to 1780, peaking in 1776. The resulting time series of canopy disturbance is so poorly described by a Gaussian distribution that it can be described as ''heavy tailed,'' with most of the years from 1775 to 1780 comprising the heavy-tail portion of the distribution. Historical documents provide no evidence that hurricanes or ice storms triggered the 1775-1780 event. Instead, we identify a significant relationship between prior drought and years with elevated rates of disturbance with an intense drought occurring from 1772 to 1775. We further find that years with high rates of canopy disturbance have a propensity to create larger canopy gaps indicating repeated opportunities for rapid change in species composition beyond the landscape scale. Evidence of elevated, regional-scale disturbance reveals how rare events can potentially alter system trajectory: a substantial portion of old-growth forests examined here originated or were substantially altered more than two centuries ago following events lasting just a few years. Our recruitment data, comprised of at least 21 species and several shade-intolerant species, document a pulse of tree recruitment at the subcontinental scale during the late-1600s suggesting that this event was severe enough to open large canopy gaps. These disturbances and their climatic drivers support the hypothesis that punctuated, episodic, climatic events impart a legacy in broadleaf-dominated forests centuries after their occurrence. Given projections of future drought, these results also reveal the potential for abrupt, meso- to large-scale forest change in broadleaf-dominated forests over future decades.

  6. Quantifying trade-offs between future yield levels, food availability and forest and woodland conservation in Benin.

    PubMed

    Duku, Confidence; Zwart, Sander J; van Bussel, Lenny G J; Hein, Lars

    2018-01-01

    Meeting the dual objectives of food security and ecosystem protection is a major challenge in sub-Saharan Africa (SSA). To this end agricultural intensification is considered desirable, yet, there remain uncertainties regarding the impact of climate change on opportunities for agricultural intensification and the adequacy of intensification options given the rapid population growth. We quantify trade-offs between levels of yield gap closure, food availability and forest and woodland conservation under different scenarios. Each scenario is made up of a combination of variants of four parameters i.e. (1) climate change based on Representative Concentration Pathways (RCPs); (2) population growth based on Shared Socioeconomic Pathways (SSPs); (3) cropland expansion with varying degrees of deforestation; and (4) different degrees of yield gap closure. We carry out these analyses for three major food crops, i.e. maize, cassava and yam, in Benin. Our analyses show that in most of the scenarios, the required levels of yield gap closures required to maintain the current levels of food availability can be achieved by 2050 by maintaining the average rate of yield increases recorded over the past two and half decades in addition to the current cropping intensity. However, yields will have to increase at a faster rate than has been recorded over the past two and half decades in order to achieve the required levels of yield gap closures by 2100. Our analyses also show that without the stated levels of yield gap closure, the areas under maize, cassava and yam cultivation will have to increase by 95%, 102% and 250% respectively in order to maintain the current levels of per capita food availability. Our study shows that food security outcomes and forest and woodland conservation goals in Benin and likely the larger SSA region are inextricably linked together and require holistic management strategies that considers trade-offs and co-benefits. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Moderate forest disturbance as a stringent test for gap and big-leaf models

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B. P.; Fisk, J.; Holm, J. A.; Bailey, V. L.; Gough, C. M.

    2014-12-01

    Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. In particular, it is unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging U.S. forests. We tested whether three forest ecosystem models—Biome-BGC, a classic big-leaf model, and the ED and ZELIG gap-oriented models—could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experiment in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols, and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ED and ZELIG correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes. Biome-BGC net primary production (NPP) was correctly resilient, but for the wrong reasons, while ED and ZELIG exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. As a result we expect that most ecosystem models, developed to simulate processes following stand-replacing disturbances, will not simulate well the gradual and less extensive tree mortality characteristic of moderate disturbances.

  8. Moderate forest disturbance as a stringent test for gap and big-leaf models

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B.; Fisk, J.; Holm, J. A.; Bailey, V.; Gough, C. M.

    2014-07-01

    Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. In particular, it is unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging US forests. We tested whether three forest ecosystem models - Biome-BGC, a classic big-leaf model, and the ED and ZELIG gap-oriented models - could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experiment in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols, and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ED and ZELIG correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes. Biome-BGC net primary production (NPP) was correctly resilient, but for the wrong reasons, while ED and ZELIG exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. As a result we expect that most ecosystem models, developed to simulate processes following stand-replacing disturbances, will not simulate well the gradual and less extensive tree mortality characteristic of moderate disturbances.

  9. Climate change reverses the competitive balance of ash and beech seedlings under simulated forest conditions.

    PubMed

    Saxe, H; Kerstiens, G

    2005-07-01

    This study identifies the important role of climate change and photosynthetic photon flux density (PPFD) in the regenerative competence of ash and beech seedlings in 12 inter- and intra-specific competition designs in simulated mixed ash-beech forest gaps under conditions of non-limiting soil volume, water and nutrient supply. The growth conditions simulated natural forest conditions as closely as possible. Simulations were performed by growing interacting seedling canopies for one season in temperature-regulated closed-top chambers (CTCs). Eight CTCs were used in a factorial design with replicate treatments of [CO2] x temperature x PPFD x competition design. [CO2] tracked ambient levels or was 360 micromol mol-1 higher. Temperature tracked ambient levels or was 2.8 degrees C higher. PPFD on two plant tables inside each CTC was 16% and 5% of open-field levels, respectively, representative of typical light flux levels in a natural forest gap. In several of the competition designs, climate change made the ash seedlings grow taller than the beech seedlings and, at the same time, attain a larger leaf area and a larger total biomass. Advantages of this type for ash were found particularly at lower PPFD. There was a positive synergistic interaction of elevated temperature x [CO2] for both species, but more so for ash. There are many uncertainties when a study of chambered seedlings is to be projected to real changes in natural forests. Nevertheless, this study supports a possible future shift towards ash in north European, unmanaged, mixed ash-beech forests in response to the predicted climate change.

  10. Linking landscape characteristics to mineral site use by band-tailed pigeons in Western Oregon: Coarse-filter conservation with fine-filter tuning

    USGS Publications Warehouse

    Overton, C.T.; Schmitz, R.A.; Casazza, Michael L.

    2006-01-01

    Mineral sites are scarce resources of high ion concentration used heavily by the Pacific Coast subpopulation of band-tailed pigeons. Over 20% of all known mineral sites used by band-tailed pigeons in western Oregon, including all hot springs, have been abandoned. Prior investigations have not analyzed stand or landscape level habitat composition in relation to band-tailed pigeon use of mineral sites. We used logistic regression models to evaluate the influence of habitat types, identified from Gap Analysis Program (GAP) products at two spatial scales, on the odds of mineral site use in Oregon (n = 69 currently used and 20 historically used). Our results indicated that the odds of current use were negatively associated with non-forested terrestrial and private land area around mineral sites. Similarly, the odds of current mineral site use were positively associated with forested and special status (GAP stewardship codes 1 and 2) land area. The most important variable associated with the odds of mineral site use was the amount of non-forested land cover at either spatial scale. Our results demonstrate the utility of meso-scale geographic information designed for regional, coarse-filter approaches to conservation in fine-filter investigation of wildlife-habitat relationships. Adjacent landcover and ownership status explain the pattern of use for known mineral sites in western Oregon. In order for conservation and management activities for band-tailed pigeons to be successful, mineral sites need to be addressed as important and vulnerable resources. Management of band-tailed pigeons should incorporate the potential for forest management activities and land ownership patterns to influence the risk of mineral site abandonment.

  11. Experimental Investigation of Aerodynamic Noise Generated by a Train-Car Gap

    NASA Astrophysics Data System (ADS)

    Mizushima, Fumio; Takakura, Hiroyuki; Kurita, Takeshi; Kato, Chisachi; Iida, Akiyoshi

    To investigate the mechanism of noise generation by a train-car gap, which is one of a major source of noise in Shinkansen trains, experiments were carried out in a wind tunnel using a 1/5-scale model train. We measured velocity profiles of the boundary layer that approaches the gap and confirmed that the boundary layer is turbulent. We also measured the power spectrum of noise and surface pressure fluctuations around the train-car gap. Peak noise and broadband noise were observed. It is found that strong peak noise is generated when the vortex shedding frequency corresponds to the acoustic resonance frequency determined by the geometrical shape of the gap, and that broadband noise is generated at the downstream edge of the gap where vortexes collide. It is estimated that the convection velocity of the vortices in the gap is approximately 45% of the uniform flow velocity.

  12. Reviews and syntheses: Soil N2O and NO emissions from land use and land-use change in the tropics and subtropics: a meta-analysis

    NASA Astrophysics Data System (ADS)

    van Lent, J.; Hergoualc'h, K.; Verchot, L. V.

    2015-12-01

    Deforestation and forest degradation in the tropics may substantially alter soil N-oxide emissions. It is particularly relevant to accurately quantify those changes to properly account for them in a REDD+ climate change mitigation scheme that provides financial incentives to reduce the emissions. With this study we provide updated land use (LU)-based emission rates (104 studies, 392 N2O and 111 NO case studies), we determine the trend and magnitude of flux changes with land-use change (LUC) using a meta-analysis approach (44 studies, 135 N2O and 37 NO cases) and evaluate biophysical drivers of N2O and NO emissions and emission changes for the tropics. The average N2O and NO emissions in intact upland tropical forest amounted to 2.0 ± 0.2 (n = 90) and 1.7 ± 0.5 (n = 36) kg N ha-1 yr-1, respectively. In agricultural soils annual N2O emissions were exponentially related to N fertilization rates and average water-filled pore space (WFPS) whereas in non-agricultural sites a Gaussian response to WFPS fit better with the observed NO and N2O emissions. The sum of soil N2O and NO fluxes and the ratio of N2O to NO increased exponentially and significantly with increasing nitrogen availability (expressed as NO3- / [NO3-+NH4+]) and WFPS, respectively; following the conceptual Hole-In-the-Pipe model. Nitrous and nitric oxide fluxes did not increase significantly overall as a result of LUC (Hedges's d of 0.11 ± 0.11 and 0.16 ± 0.19, respectively), however individual LUC trajectories or practices did. Nitrous oxide fluxes increased significantly after intact upland forest conversion to croplands (Hedges's d = 0.78 ± 0.24) and NO increased significantly following the conversion of low forest cover (secondary forest younger than 30 years, woodlands, shrublands) (Hedges's d of 0.44 ± 0.13). Forest conversion to fertilized systems significantly and highly raised both N2O and NO emission rates (Hedges's d of 1.03 ± 0.23 and 0.52 ± 0.09, respectively). Changes in nitrogen availability and WFPS were the main factors explaining changes in N2O emissions following LUC, therefore it is important that experimental designs monitor their spatio-temporal variation. Gaps in the literature on N oxide fluxes included geographical gaps (Africa, Oceania) and LU gaps (degraded forest, wetland (notably peat) forest, oil palm plantation and soy cultivation).

  13. Soil N2O and NO emissions from land use and land-use change in the tropics and subtropics: a meta-analysis

    NASA Astrophysics Data System (ADS)

    van Lent, J.; Hergoualc'h, K.; Verchot, L. V.

    2015-08-01

    Deforestation and forest degradation in the tropics may substantially alter soil N-oxide emissions. It is particularly relevant to accurately quantify those changes to properly account for them in a REDD+ climate change mitigation scheme that provides financial incentives to reduce the emissions. With this study we provide updated land use (LU)-based emission rates (103 studies, 387 N2O and 111 NO case studies), determine the trend and magnitude of flux changes with land-use change (LUC) using a meta-analysis approach (43 studies, 132 N2O and 37 NO cases) and evaluate biophysical drivers of N2O and NO emissions and emission changes for the tropics. The average N2O and NO emissions in intact upland tropical forest amounted to 2.0 ± 0.2 (n = 88) and 1.7 ± 0.5 (n = 36) kg N ha-1 yr-1, respectively. In agricultural soils annual N2O emissions were exponentially related to N fertilization rates and average water-filled pore space (WFPS) whereas in non-agricultural sites a Gaussian response to WFPS fit better the observed NO and N2O emissions. The sum of soil N2O and NO fluxes and the ratio of N2O to NO increased exponentially and significantly with increasing nitrogen availability (expressed as NO3-/[NO3-+NH4+]) and WFPS, respectively; following the conceptual Hole-In-the-Pipe model. Nitrous and nitric oxide fluxes did not overall increase significantly as a result of LUC (Hedges's d of 0.11 ± 0.11 and 0.16 ± 0.19, respectively), however individual LUC trajectories or practices did. Nitrous oxide fluxes increased significantly after intact upland forest conversion to croplands (Hedges's d = 0.78 ± 0.24) and NO increased significantly following the conversion of low forest cover (secondary forest younger than 30 years, woodlands, shrublands) (Hedges's d of 0.44 ± 0.13). Forest conversion to fertilized systems significantly and highly raised both N2O and NO emission rates (Hedges's d of 1.03 ± 0.23 and 0.52 ± 0.09, respectively). Changes in nitrogen availability and WFPS were the main factors explaining changes in N2O emissions following LUC, therefore it is important that experimental designs monitor their spatio-temporal variation. Gaps in the literature on N oxide fluxes included geographical gaps (Africa, Oceania) and LU gaps (degraded forest, wetland (notably peat) forest, oil palm plantation and soy cultivation).

  14. The Generation Gap: Age or Issues?

    ERIC Educational Resources Information Center

    Borelli, Kenneth

    1971-01-01

    The author examines the breakdown in family communication, the parent youth ideological gap, and the issues affecting family polarization. He suggests that the generation gap may be an issues gap and briefly explores the possible role of the social worker in dealing with such differences. (Author)

  15. A Semi-parametric Multivariate Gap-filling Model for Eddy Covariance Latent Heat Flux

    NASA Astrophysics Data System (ADS)

    Li, M.; Chen, Y.

    2010-12-01

    Quantitative descriptions of latent heat fluxes are important to study the water and energy exchanges between terrestrial ecosystems and the atmosphere. The eddy covariance approaches have been recognized as the most reliable technique for measuring surface fluxes over time scales ranging from hours to years. However, unfavorable micrometeorological conditions, instrument failures, and applicable measurement limitations may cause inevitable flux gaps in time series data. Development and application of suitable gap-filling techniques are crucial to estimate long term fluxes. In this study, a semi-parametric multivariate gap-filling model was developed to fill latent heat flux gaps for eddy covariance measurements. Our approach combines the advantages of a multivariate statistical analysis (principal component analysis, PCA) and a nonlinear interpolation technique (K-nearest-neighbors, KNN). The PCA method was first used to resolve the multicollinearity relationships among various hydrometeorological factors, such as radiation, soil moisture deficit, LAI, and wind speed. The KNN method was then applied as a nonlinear interpolation tool to estimate the flux gaps as the weighted sum latent heat fluxes with the K-nearest distances in the PCs’ domain. Two years, 2008 and 2009, of eddy covariance and hydrometeorological data from a subtropical mixed evergreen forest (the Lien-Hua-Chih Site) were collected to calibrate and validate the proposed approach with artificial gaps after standard QC/QA procedures. The optimal K values and weighting factors were determined by the maximum likelihood test. The results of gap-filled latent heat fluxes conclude that developed model successful preserving energy balances of daily, monthly, and yearly time scales. Annual amounts of evapotranspiration from this study forest were 747 mm and 708 mm for 2008 and 2009, respectively. Nocturnal evapotranspiration was estimated with filled gaps and results are comparable with other studies. Seasonal and daily variability of latent heat fluxes were also discussed.

  16. Robustness of risk maps and survey networks to knowledge gaps about a new invasive pest.

    PubMed

    Yemshanov, Denys; Koch, Frank H; Ben-Haim, Yakov; Smith, William D

    2010-02-01

    In pest risk assessment it is frequently necessary to make management decisions regarding emerging threats under severe uncertainty. Although risk maps provide useful decision support for invasive alien species, they rarely address knowledge gaps associated with the underlying risk model or how they may change the risk estimates. Failure to recognize uncertainty leads to risk-ignorant decisions and miscalculation of expected impacts as well as the costs required to minimize these impacts. Here we use the information gap concept to evaluate the robustness of risk maps to uncertainties in key assumptions about an invading organism. We generate risk maps with a spatial model of invasion that simulates potential entries of an invasive pest via international marine shipments, their spread through a landscape, and establishment on a susceptible host. In particular, we focus on the question of how much uncertainty in risk model assumptions can be tolerated before the risk map loses its value. We outline this approach with an example of a forest pest recently detected in North America, Sirex noctilio Fabricius. The results provide a spatial representation of the robustness of predictions of S. noctilio invasion risk to uncertainty and show major geographic hotspots where the consideration of uncertainty in model parameters may change management decisions about a new invasive pest. We then illustrate how the dependency between the extent of uncertainties and the degree of robustness of a risk map can be used to select a surveillance network design that is most robust to knowledge gaps about the pest.

  17. Legal, Institutional, and Economic Indicators of Forest Conservation and Sustainable Management: Review of Information Available for the United States

    Treesearch

    Paul V. Ellefson; Calder M. Hibbard; Michael A. Kilgore; James E. Granskog

    2005-01-01

    This review looks at the Nation’s legal, institutional, and economic capacity to promote forest conservation and sustainable resource management. It focuses on 20 indicators of Criterion Seven of the so-called Montreal Process and involves an extensive search and synthesis of information from a variety of sources. It identifies ways to fill information gaps and improve...

  18. Effects of gap size, duration of daylight, and presence of leaf litter on forest regeneration

    Treesearch

    G. Andrew Bartholomay; Todd W. Bowersox

    2003-01-01

    Selection systems are used to manage multi-cohort forest stands by removing individual and/or groups of trees to create 0.01- to 1.0-ha openings in the canopy. Inherent in the selection system are the dual roles of tending the residual trees and regenerating a new cohort of tree seedlings. Research of silvicultural selection systems has historically focused on the...

  19. Response of pin cherry to fire, canopy disturbance, and deer herbivory on the Westvaco Wildlife and Ecosystem Research Forest

    Treesearch

    David W. McGill; Rachel J. Collins; Walter P. Carson

    2003-01-01

    We studied the impact of fire, canopy disturbance, and deer herbivory on the germination and development of pin cherry in four Appalachian hardwood stands located on the Westvaco Wildlife and Ecosystem Research Forest in Randolph County, West Virginia. Plots with simulated gaps and woven-wire fences were used to evaluate impacts of light and deer on regeneration. All...

  20. Species presence frequency and diversity in different patch types along an altitudinal gradient: Larix chinensis Beissn in Qinling Mountains (China).

    PubMed

    Huang, Minyi; Duan, Renyan; Wang, Shixiong; Wang, Zhigao; Fan, Weiyi

    2016-01-01

    Forest communities are mosaic systems composed of patches classified into four different developmental patch types: gap patch (G), building patch (B), mature patch (M) and degenerate patch (D). To study the mechanisms maintaining diversity in subalpine coniferous forests, species presence frequency and diversity in the four distinct patch types (G, B, M and D) of Larix chinensis conifer forests at three altitudinal gradients in the Qinling Mountains were analyzed. Our results were as follows: (1) Different species (or functional groups) had distinct presence frequencies in the four different patch types along the altitudinal gradient; (2) Some species or functional groups (species groups sharing similar traits and responses to the environment) only occurred in some specific patches. For seed dispersal, species using wind mainly occurred in G and D, while species using small animals mainly occurred in B and M; (3) Species composition of adjacent patch types was more similar than non-adjacent patch types, based on the lower β diversity index of the former; (4) The maximum numbers of species and two diversity indices (D' and H') were found in the middle altitudes. Various gap-forming processes and dispersal limitation may be the two major mechanisms determining species diversity in Larix chinensis coniferous forests at the patch scale.

  1. Modeling bidirectional reflectance of forests and woodlands using Boolean models and geometric optics

    NASA Technical Reports Server (NTRS)

    Strahler, Alan H.; Jupp, David L. B.

    1990-01-01

    Geometric-optical discrete-element mathematical models for forest canopies have been developed using the Boolean logic and models of Serra. The geometric-optical approach is considered to be particularly well suited to describing the bidirectional reflectance of forest woodland canopies, where the concentration of leaf material within crowns and the resulting between-tree gaps make plane-parallel, radiative-transfer models inappropriate. The approach leads to invertible formulations, in which the spatial and directional variance provides the means for remote estimation of tree crown size, shape, and total cover from remotedly sensed imagery.

  2. Statewide land cover derived from multiseasonal Landsat TM data: A retrospective of the WISCLAND project

    USGS Publications Warehouse

    Reese, H.M.; Lillesand, T.M.; Nagel, D.E.; Stewart, J.S.; Goldmann, R.A.; Simmons, T.E.; Chipman, J.W.; Tessar, P.A.

    2002-01-01

    Landsat Thematic Mapper (TM) data were the basis in production of a statewide land cover data set for Wisconsin, undertaken in partnership with U.S. Geological Survey's (USGS) Gap Analysis Program (GAP). The data set contained seven classes comparable to Anderson Level I and 24 classes comparable to Anderson Level II/III. Twelve scenes of dual-date TM data were processed with methods that included principal components analysis, stratification into spectrally consistent units, separate classification of upland, wetland, and urban areas, and a hybrid supervised/unsupervised classification called "guided clustering." The final data had overall accuracies of 94% for Anderson Level I upland classes, 77% for Level II/III upland classes, and 84% for Level II/III wetland classes. Classification accuracies for deciduous and coniferous forest were 95% and 93%, respectively, and forest species' overall accuracies ranged from 70% to 84%. Limited availability of acceptable imagery necessitated use of an early May date in a majority of scene pairs, perhaps contributing to lower accuracy for upland deciduous forest species. The mixed deciduous/coniferous forest class had the lowest accuracy, most likely due to distinctly classifying a purely mixed class. Mixed forest signatures containing oak were often confused with pure oak. Guided clustering was seen as an efficient classification method, especially at the tree species level, although its success relied in part on image dates, accurate ground troth, and some analyst intervention. ?? 2002 Elsevier Science Inc. All rights reserved.

  3. Regeneration patterns of northern white cedar, an old-growth forest dominant

    USGS Publications Warehouse

    Scott, Michael L.; Murphy, Peter G.

    1987-01-01

    Regeneration of Thuja occidentalis L. was examined in an old-growth dune forest on South Manitou Island, Michigan. To estimate the current status of cedar regeneration, we determined size structure of seedlings and stems and analyzed present patterns of establishment and persistence relative to substrate type. There has been a shift in the pattern of cedar establishment from soil to log substrates. While 97% of all stems ≥15 cm dbh are associated with a soil substrate, 81% of stems ≥2.5cm-25 cm tall. There was no significant relationship between the state of log decay and the density of seedlings >25 cm in height, indicating that long-term survival is not dependent on the degree of log decomposition. However, survival on logs is associated with canopy openings. Seedlings >25 cm tall were associated with gaps, and 78% of cedar stems (≥2.5 cm dbh) on logs were associated with a single windthrow gap. Thus, current cedar regeneration in this old-growth forest depends on logs and the canopy openings associated with them.

  4. Soil organic carbon sequestration potential and gap of the sub-tropical region

    NASA Astrophysics Data System (ADS)

    Chiti, T.; Santini, M.; Valentini, R.

    2012-04-01

    A database of soil organic carbon (SOC) stocks was created for the sub-tropical belt using existing global SOC databases (WISE3; various SOTER) and new data from an ongoing project (ERC Africa-GHG) specific for the tropical forests of the African continent. The intent of this database is to evaluate the sequestration potential of a critical area of the world where most of the primary rainforests are located, and actually show undoubtedly high SOC losses associated with deforestation. About 4100 profiles, quite well distributed over the entire sub-tropical belt, were used to calculate the actual SOC stock for the 0-30 cm and 30-100 cm depths of mineral soil. First, this actual SOC stock has been related to the current Land Use Systems; successively, it has been interpolated taking into account Homogeneous Land Units (HLUs) in terms of soil type, climate zone and land use. Then, relying on consistent projections, of both climate and land use changes, for the years 2050 and 2100 under extremes IPCC-SRES emission scenarios such as the B1 and the A2, potential SOC stocks for these time frames has been calculated. Soil carbon sequestration gap is calculated by the difference of the actual SOC stock and the future projections. When subtracting potential from the actual SOC stocks, negative values represent a gap in terms of possible SOC losses and so reduced carbon sequestration. The soil carbon gap indicates locations where there will be low soil-carbon levels associated with medium-to-high actual SOC stocks, and medium soil-carbon levels associated with high actual SOC stocks, depending on soil type, climate and land use conditions. On the long term, 2076-2100, a SOC gap is observed under all scenarios in South America, just below the Amazonia basin, where are located open and fragmented forests. However, in the Amazonia basin deforestation decrease since no sensible SOC losses were observed. An important gap is observed also in the Congo basin and West Africa, but the gap is more fragmented in small spots than that observed in South America. Forests of Asia seems to be less interested from SOC losses and the projections show almost no gaps under both scenarios. The soil organic carbon sequestration potential database is intended to provide an indication at the regional level of the potential for policy makers to provide environmental services and drive specific policy to increase sustainable land management.

  5. Potential effects of forest management on surface albedo

    NASA Astrophysics Data System (ADS)

    Otto, J.; Bréon, F.-M.; Schelhaas, M.-J.; Pinty, B.; Luyssaert, S.

    2012-04-01

    Currently 70% of the world's forests are managed and this figure is likely to rise due to population growth and increasing demand for wood based products. Forest management has been put forward by the Kyoto-Protocol as one of the key instruments in mitigating climate change. For temperate and boreal forests, the effects of forest management on the stand-level carbon balance are reasonably well understood, but the biophysical effects, for example through changes in the albedo, remain elusive. Following a modeling approach, we aim to quantify the variability in albedo that can be attributed to forest management through changes in canopy structure and density. The modelling approach chains three separate models: (1) a forest gap model to describe stand dynamics, (2) a Monte-Carlo model to estimate the probability density function of the optical path length of photons through the canopy and (3) a physically-based canopy transfer model to estimate the interaction between photons and leaves. The forest gap model provides, on a monthly time step the position, height, diameter, crown size and leaf area index of individual trees. The Monte-Carlo model computes from this the probability density function of the distance a photon travels through crown volumes to determine the direct light reaching the forest floor. This information is needed by the canopy transfer model to calculate the effective leaf area index - a quantity that allows it to correctly represent a 3D process with a 1D model. Outgoing radiation is calculated as the result of multiple processes involving the scattering due to the canopy layer and the forest floor. Finally, surface albedo is computed as the ratio between incident solar radiation and calculated outgoing radiation. The study used two time series representing thinning from below of a beech and a Scots pine forest. The results show a strong temporal evolution in albedo during stand establishment followed by a relatively stable albedo once the canopy is closed. During this period, albedo is affected for a short time by forest operations. The modelling approach allowed us to estimate the importance of ground vegetation in the stand albedo. Given that ground vegetation depends on the light reaching the forest floor, ground vegetation could act as a natural buffer to dampen changes in albedo, allowing the stand to maintain optimal leaf temperature. Consequently, accounting for only the carbon balance component of forest management ignores albedo impacts and is thus likely to yield biased estimates of the climate benefits of forest ecosystems.

  6. Two-dimensional gap analysis: a tool for efficient conservation planning and biodiversity policy implementation.

    PubMed

    Angelstam, Per; Mikusiński, Grzegorz; Rönnbäck, Britt-Inger; Ostman, Anders; Lazdinis, Marius; Roberge, Jean-Michel; Arnberg, Wolter; Olsson, Jan

    2003-12-01

    The maintenance of biodiversity by securing representative and well-connected habitat networks in managed landscapes requires a wise combination of protection, management, and restoration of habitats at several scales. We suggest that the integration of natural and social sciences in the form of "Two-dimensional gap analysis" is an efficient tool for the implementation of biodiversity policies. The tool links biologically relevant "horizontal" ecological issues with "vertical" issues related to institutions and other societal issues. Using forest biodiversity as an example, we illustrate how one can combine ecological and institutional aspects of biodiversity conservation, thus facilitating environmentally sustainable regional development. In particular, we use regional gap analysis for identification of focal forest types, habitat modelling for ascertaining the functional connectivity of "green infrastructures", as tools for the horizontal gap analysis. For the vertical dimension we suggest how the social sciences can be used for assessing the success in the implementation of biodiversity policies in real landscapes by identifying institutional obstacles while implementing policies. We argue that this interdisciplinary approach could be applied in a whole range of other environments including other terrestrial biota and aquatic ecosystems where functional habitat connectivity, nonlinear response to habitat loss and a multitude of economic and social interests co-occur in the same landscape.

  7. [Dynamics of microbial biomass carbon and nitrogen during foliar litter decomposition under artificial forest gap in Pinus massoniana plantation.

    PubMed

    Zhang, Ming Jin; Chen, Liang Hua; Zhang, Jian; Yang, Wan Qin; Liu, Hua; Li, Xun; Zhang, Yan

    2016-03-01

    Nowadays large areas of plantations have caused serious ecological problems such as soil degradation and biodiversity decline. Artificial tending thinning and construction of mixed forest are frequently used ways when we manage plantations. To understand the effect of this operation mode on nutrient cycle of plantation ecosystem, we detected the dynamics of microbial bio-mass carbon and nitrogen during foliar litter decomposition of Pinus massoniana and Toona ciliate in seven types of gap in different sizes (G 1 : 100 m 2 , G 2 : 225 m 2 , G 3 : 400 m 2 , G 4 : 625 m 2 , G 5 : 900 m 2 , G 6 : 1225 m 2 , G 7 : 1600 m 2 ) of 42-year-old P. massoniana plantations in a hilly area of the upper Yang-tze River. The results showed that small and medium-sized forest gaps(G 1 -G 5 ) were more advantageous for the increment of microbial biomass carbon and nitrogen in the process of foliar litter decomposition. Along with the foliar litter decomposition during the experiment (360 d), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) in P. massoniana foliar litter and MBN in T. ciliata foliar litter first increased and then decreased, and respectively reached the maxima 9.87, 0.22 and 0.80 g·kg -1 on the 180 th d. But the peak (44.40 g·kg -1 ) of MBC in T. ciliata foliar litter appeared on the 90 th d. Microbial biomass carbon and nitrogen in T. ciliate was significantly higher than that of P. massoniana during foliar litter decomposition. Microbial biomass carbon and nitrogen in foliar litter was not only significantly associated with average daily temperature and the water content of foliar litter, but also closely related to the change of the quality of litter. Therefore, in the thinning, forest gap size could be controlled in the range of from 100 to 900 m 2 to facilitate the increase of microbial biomass carbon and nitrogen in the process of foliar litter decomposition, accelerate the decomposition of foliar litter and improve soil fertility of plantations.

  8. Spatial and temporal trends of drought effects in a heterogeneous semi-arid forest ecosystem

    USGS Publications Warehouse

    Assal, Timothy J.; Anderson, Patrick J.; Sibold, Jason

    2016-01-01

    Drought has long been recognized as a driving mechanism in the forests of western North America and drought-induced mortality has been documented across genera in recent years. Given the frequency of these events are expected to increase in the future, understanding patterns of mortality and plant response to severe drought is important to resource managers. Drought can affect the functional, physiological, structural, and demographic properties of forest ecosystems. Remote sensing studies have documented changes in forest properties due to direct and indirect effects of drought; however, few studies have addressed this at local scales needed to characterize highly heterogeneous ecosystems in the forest-shrubland ecotone. We analyzed a 22-year Landsat time series (1985–2012) to determine changes in forest in an area that experienced a relatively dry decade punctuated by two years of extreme drought. We assessed the relationship between several vegetation indices and field measured characteristics (e.g. plant area index and canopy gap fraction) and applied these indices to trend analysis to uncover the location, direction and timing of change. Finally, we assessed the interaction of climate and topography by forest functional type. The Normalized Difference Moisture Index (NDMI), a measure of canopy water content, had the strongest correlation with short-term field measures of plant area index (R2 = 0.64) and canopy gap fraction (R2 = 0.65). Over the entire time period, 25% of the forested area experienced a significant (p-value < 0.05) negative trend in NDMI, compared to less than 10% in a positive trend. Coniferous forests were more likely to be associated with a negative NDMI trend than deciduous forest. Forests on southern aspects were least likely to exhibit a negative trend while north aspects were most prevalent. Field plots with a negative trend had a lower live density, and higher amounts of standing dead and down trees compared to plots with no trend. Our analysis identifies spatially explicit patterns of long-term trends anchored with ground based evidence to highlight areas of forest that are resistant, persistent or vulnerable to severe drought. The results provide a long-term perspective for the resource management of this area and can be applied to similar ecosystems throughout western North America.

  9. Three-dimensional feature extraction and geometric mappings for improved parameter estimation in forested terrain using airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Lee, Heezin

    Scanning laser ranging technology is well suited for measuring point-to-point distances because of its ability to generate small beam divergences. As a result, many of the laser pulses emitted from airborne light detection and ranging (LiDAR) systems are able to reach the ground underneath tree canopies through small (10 cm scale) gaps in the foliage. Using high pulse rate lasers and fast optical scanners, airborne LiDAR systems can provide both high spatial resolution and canopy penetration, and these data have become more widely available in recent years for use in environmental and forestry applications. The small-footprint, discrete-return Airborne Laser Swath Mapping (ALSM) system at the University of Florida (UF) is used to directly measure ground surface elevations and the three-dimensional (3D) distribution of the vegetative material above the soil surface. Field of view geometric mappings are explored to find optical gaps inside forests. First, a method is developed to detect walking trails in natural forests that are obscured from above by the canopy. Several features are derived from the ALSM data and used to constrain the search space and infer the location of trails. Second, a robust and simple procedure for estimating intercepted photosynthetically active radiation (IPAR), which is an important measure of forest timber productivity and of daylight visibility in forested terrain, is presented. Simple scope functions that isolate the relevant LiDAR reflections between observer locations and the sun are defined and shown to give good agreement between the LiDAR-derived estimates and values of IPAR measured in situ. A conical scope function with an angular divergence from the centerline of +/-7° provided the best agreement with the in situ measurements. This scope function yielded remarkably consistent IPAR estimates for different pine species and growing conditions. The developed idea could be extended, through potential future work, to characterize the spatial distribution of attenuation of GPS (L-band) microwave signals and of detectability from the sky for military personnel operating in forested terrain. Measuring individual trees can provide valuable information about forests, and airborne LiDAR sensors have been recently used to identify individual trees and measure structural tree parameters. Past results, however, have been mixed because of reliance on interpolated (image) versions of the LiDAR measurements and search methods that do not adapt to variations in canopies. In this work, an adaptive clustering method is developed using 3D airborne LiDAR data acquired over two distinctly different managed pine forests in North-Central Florida, USA. A critical issue in isolating individual trees is determining the appropriate size of the moving window (search radius) when locating seed points. The proposed approach works directly on the 3D "cloud" of LiDAR points and adapts to irregular canopy sizes. The region growing step yields collectively exhaustive sets in an initial segmentation of tree canopies. An agglomerative clustering step is then used to merge clusters that represent parts of whole canopies using the locally varying height distribution. The overall tree detection accuracy achieved is 95.1% with no significant bias. The tree detection enables subsequent estimation of tree height and vertical crown length to an accuracy of better than 0.8 m and 1.5 m, respectively. Lastly, a compact representation of the different geometric characteristics of the segmented LiDAR points is introduced using spin images as a new tool that can potentially help tree detection in complex natural forests.

  10. Application of a computationally efficient method to approximate gap model results with a probabilistic approach

    NASA Astrophysics Data System (ADS)

    Scherstjanoi, M.; Kaplan, J. O.; Lischke, H.

    2014-07-01

    To be able to simulate climate change effects on forest dynamics over the whole of Switzerland, we adapted the second-generation DGVM (dynamic global vegetation model) LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator) to the Alpine environment. We modified model functions, tuned model parameters, and implemented new tree species to represent the potential natural vegetation of Alpine landscapes. Furthermore, we increased the computational efficiency of the model to enable area-covering simulations in a fine resolution (1 km) sufficient for the complex topography of the Alps, which resulted in more than 32 000 simulation grid cells. To this aim, we applied the recently developed method GAPPARD (approximating GAP model results with a Probabilistic Approach to account for stand Replacing Disturbances) (Scherstjanoi et al., 2013) to LPJ-GUESS. GAPPARD derives mean output values from a combination of simulation runs without disturbances and a patch age distribution defined by the disturbance frequency. With this computationally efficient method, which increased the model's speed by approximately the factor 8, we were able to faster detect the shortcomings of LPJ-GUESS functions and parameters. We used the adapted LPJ-GUESS together with GAPPARD to assess the influence of one climate change scenario on dynamics of tree species composition and biomass throughout the 21st century in Switzerland. To allow for comparison with the original model, we additionally simulated forest dynamics along a north-south transect through Switzerland. The results from this transect confirmed the high value of the GAPPARD method despite some limitations towards extreme climatic events. It allowed for the first time to obtain area-wide, detailed high-resolution LPJ-GUESS simulation results for a large part of the Alpine region.

  11. Gapped Spectral Dictionaries and Their Applications for Database Searches of Tandem Mass Spectra*

    PubMed Central

    Jeong, Kyowon; Kim, Sangtae; Bandeira, Nuno; Pevzner, Pavel A.

    2011-01-01

    Generating all plausible de novo interpretations of a peptide tandem mass (MS/MS) spectrum (Spectral Dictionary) and quickly matching them against the database represent a recently emerged alternative approach to peptide identification. However, the sizes of the Spectral Dictionaries quickly grow with the peptide length making their generation impractical for long peptides. We introduce Gapped Spectral Dictionaries (all plausible de novo interpretations with gaps) that can be easily generated for any peptide length thus addressing the limitation of the Spectral Dictionary approach. We show that Gapped Spectral Dictionaries are small thus opening a possibility of using them to speed-up MS/MS searches. Our MS-GappedDictionary algorithm (based on Gapped Spectral Dictionaries) enables proteogenomics applications (such as searches in the six-frame translation of the human genome) that are prohibitively time consuming with existing approaches. MS-GappedDictionary generates gapped peptides that occupy a niche between accurate but short peptide sequence tags and long but inaccurate full length peptide reconstructions. We show that, contrary to conventional wisdom, some high-quality spectra do not have good peptide sequence tags and introduce gapped tags that have advantages over the conventional peptide sequence tags in MS/MS database searches. PMID:21444829

  12. Moderate forest disturbance as a stringent test for gap and big-leaf models

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B.; Fisk, J. P.; Holm, J. A.; Bailey, V.; Bohrer, G.; Gough, C. M.

    2015-01-01

    Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. It is thus unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging US forests. We tested whether three forest ecosystem models - Biome-BGC (BioGeochemical Cycles), a classic big-leaf model, and the ZELIG and ED (Ecosystem Demography) gap-oriented models - could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experiment in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ZELIG and ED correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes, in particular gross primary production or net primary production (NPP). Biome-BGC NPP was correctly resilient but for the wrong reasons, and could not match the absolute observational values. ZELIG and ED, in contrast, exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. It is thus an open question whether most ecosystem models will simulate correctly the gradual and less extensive tree mortality characteristic of moderate disturbances.

  13. Moderate forest disturbance as a stringent test for gap and big-leaf models

    DOE PAGES

    Bond-Lamberty, Benjamin; Fisk, Justin P.; Holm, Jennifer; ...

    2015-01-27

    Disturbance-induced tree mortality is a key factor regulating the carbon balance of a forest, but tree mortality and its subsequent effects are poorly represented processes in terrestrial ecosystem models. It is thus unclear whether models can robustly simulate moderate (non-catastrophic) disturbances, which tend to increase biological and structural complexity and are increasingly common in aging US forests. We tested whether three forest ecosystem models – Biome-BGC (BioGeochemical Cycles), a classic big-leaf model, and the ZELIG and ED (Ecosystem Demography) gap-oriented models – could reproduce the resilience to moderate disturbance observed in an experimentally manipulated forest (the Forest Accelerated Succession Experimentmore » in northern Michigan, USA, in which 38% of canopy dominants were stem girdled and compared to control plots). Each model was parameterized, spun up, and disturbed following similar protocols and run for 5 years post-disturbance. The models replicated observed declines in aboveground biomass well. Biome-BGC captured the timing and rebound of observed leaf area index (LAI), while ZELIG and ED correctly estimated the magnitude of LAI decline. None of the models fully captured the observed post-disturbance C fluxes, in particular gross primary production or net primary production (NPP). Biome-BGC NPP was correctly resilient but for the wrong reasons, and could not match the absolute observational values. ZELIG and ED, in contrast, exhibited large, unobserved drops in NPP and net ecosystem production. The biological mechanisms proposed to explain the observed rapid resilience of the C cycle are typically not incorporated by these or other models. It is thus an open question whether most ecosystem models will simulate correctly the gradual and less extensive tree mortality characteristic of moderate disturbances.« less

  14. Short dry spells in the wet season increase mortality of tropical pioneer seedlings.

    PubMed

    Engelbrecht, Bettina M J; Dalling, James W; Pearson, Timothy R H; Wolf, Robert L; Gálvez, David A; Koehler, Tobias; Tyree, Melvin T; Kursar, Thomas A

    2006-06-01

    Variation in plant species performance in response to water availability offers a potential axis for temporal and spatial habitat partitioning and may therefore affect community composition in tropical forests. We hypothesized that short dry spells during the wet season are a significant source of mortality for the newly emerging seedlings of pioneer species that recruit in treefall gaps in tropical forests. An analysis of a 49-year rainfall record for three forests across a rainfall gradient in central Panama confirmed that dry spells of > or = 10 days during the wet season occur on average once a year in a deciduous forest, and once every other year in a semi-deciduous moist and an evergreen wet forest. The effect of wet season dry spells on the recruitment of pioneers was investigated by comparing seedling survival in rain-protected dry plots and irrigated control plots in four large artificially created treefall gaps in a semi-deciduous tropical forest. In rain-protected plots surface soil layers dried rapidly, leading to a strong gradient in water potential within the upper 10 cm of soil. Seedling survival for six pioneer species was significantly lower in rain-protected than in irrigated control plots after only 4 days. The strength of the irrigation effect differed among species, and first became apparent 3-10 days after treatments started. Root allocation patterns were significantly, or marginally significantly, different between species and between two groups of larger and smaller seeded species. However, they were not correlated with seedling drought sensitivity, suggesting allocation is not a key trait for drought sensitivity in pioneer seedlings. Our data provide strong evidence that short dry spells in the wet season differentially affect seedling survivorship of pioneer species, and may therefore have important implications to seedling demography and community dynamics.

  15. Crossing the Generational Divide: Supporting Generational Differences at Work

    ERIC Educational Resources Information Center

    Berl, Patricia Scallan

    2006-01-01

    Differences in attitudes and behaviors, regularly exhibited between youth and their elders, are frequently referred to as the "generation gap". On the job, these generational distinctions are becoming increasingly complex as "multi-generation gaps" emerge, with three or more generations defining roles and expectations, each vying for positions in…

  16. Functional redundancy and complementarities of seed dispersal by the last neotropical megafrugivores.

    PubMed

    Bueno, Rafael S; Guevara, Roger; Ribeiro, Milton C; Culot, Laurence; Bufalo, Felipe S; Galetti, Mauro

    2013-01-01

    Functional redundancy has been debated largely in ecology and conservation, yet we lack detailed empirical studies on the roles of functionally similar species in ecosystem function. Large bodied frugivores may disperse similar plant species and have strong impact on plant recruitment in tropical forests. The two largest frugivores in the neotropics, tapirs (Tapirus terrestris) and muriquis (Brachyteles arachnoides) are potential candidates for functional redundancy on seed dispersal effectiveness. Here we provide a comparison of the quantitative, qualitative and spatial effects on seed dispersal by these megafrugivores in a continuous Brazilian Atlantic forest. We found a low overlap of plant species dispersed by both muriquis and tapirs. A group of 35 muriquis occupied an area of 850 ha and dispersed 5 times more plant species, and 13 times more seeds than 22 tapirs living in the same area. Muriquis dispersed 2.4 times more seeds in any random position than tapirs. This can be explained mainly because seed deposition by muriquis leaves less empty space than tapirs. However, tapirs are able to disperse larger seeds than muriquis and move them into sites not reached by primates, such as large forest gaps, open areas and fragments nearby. Based on published information we found 302 plant species that are dispersed by at least one of these megafrugivores in the Brazilian Atlantic forest. Our study showed that both megafrugivores play complementary rather than redundant roles as seed dispersers. Although tapirs disperse fewer seeds and species than muriquis, they disperse larger-seeded species and in places not used by primates. The selective extinction of these megafrugivores will change the spatial seed rain they generate and may have negative effects on the recruitment of several plant species, particularly those with large seeds that have muriquis and tapirs as the last living seed dispersers.

  17. Influence of the electrode gap separation on the pseudospark-sourced electron beam generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J., E-mail: junping.zhao@qq.com; State Key Laboratory of Electrical Insulation and Power Equipment, West Xianning Road, Xi'an 710049; Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland

    Pseudospark-sourced electron beam is a self-focused intense electron beam which can propagate without any external focusing magnetic field. This electron beam can drive a beam-wave interaction directly or after being post-accelerated. It is especially suitable for terahertz radiation generation due to the ability of a pseudospark discharge to produce small size in the micron range and very high current density and bright electron beams. In this paper, a single-gap pseudospark discharge chamber has been built and tested with several electrode gap separations to explore the dependence of the pseudospark-sourced electron beam current on the discharge voltage and the electrode gapmore » separation. Experimental results show that the beam pulses have similar pulse width and delay time from the distinct drop of the applied voltage for smaller electrode gap separations but longer delay time for the largest gap separation used in the experiment. It has been found that the electron beam only starts to occur when the charging voltage is above a certain value, which is defined as the starting voltage of the electron beam. The starting voltage is different for different electrode gap separations and decreases with increasing electrode gap separation in our pseudospark discharge configuration. The electron beam current increases with the increasing discharge voltage following two tendencies. Under the same discharge voltage, the configuration with the larger electrode gap separation will generate higher electron beam current. When the discharge voltage is higher than 10 kV, the beam current generated at the electrode gap separation of 17.0 mm, is much higher than that generated at smaller gap separations. The ionization of the neutral gas in the main gap is inferred to contribute more to the current increase with increasing electrode gap separation.« less

  18. Estimation of leaf area index and foliage clumping in deciduous forests using digital photography

    NASA Astrophysics Data System (ADS)

    Chianucci, Francesco; Cutini, Andrea

    2013-04-01

    Rapid, reliable and meaningful estimates of leaf area index (LAI) are essential to the characterization of forest ecosystems. In this contribution the accuracy of both fisheye and non-fisheye digital photography for the estimation of forest leaf area in deciduous stands was evaluated. We compared digital hemispherical photography (DHP), the most widely used technique that measures the gap fraction at multiple zenith angles, with methods that measure the gap fraction at a single zenith angle, namely 57.5 degree photography and cover photography (DCP). Comparison with other different gap fraction methods used to calculate LAI such as canopy transmittance measurements from AccuPAR ceptometer and LAI- 2000 Plant Canopy Analyzer (PCA) were also performed. LAI estimated from all these indirect methods were compared with direct measurements obtained by litter traps (LAILT). We applied these methods in 10 deciduous stands of Quercus cerris, Castanea sativa and Fagus sylvatica, the most common deciduous species in Italy, where LAILT ranged from 3.9 to 7.3. DHP and DCP provided good indirect estimates of LAILT, and outperformed the other indirect methods. The DCP method provided estimates of crown porosity, crown cover, foliage cover and the clumping index at the zenith, but required assumptions about the light extinction coefficient at the zenith (k), to accurately estimate LAI. Cover photography provided good indirect estimates of LAI assuming a spherical leaf angle distribution, even though k appeared to decrease as LAI increased, thus affecting the accuracy of LAI estimates in DCP. In contrast, the accuracy of LAI estimates in DHP appeared insensitive to LAILT values, but the method was sensitive to photographic exposure, gamma-correction and was more time-consuming than DCP. Foliage clumping was estimated from all the photographic methods by analyzing either gap size distribution (DCP) or gap fraction distribution (DHP). Foliage clumping was also calculated from PCA and compared with DHP. The studied stands were characterized by fairly homogeneous canopies with higher within-crown clumping than between-crowns clumping; only the segmented analysis of gap fraction for each ring of the fisheye images was found to provide useful clumping index in such homogeneous canopies. By contrast, the 1-azimuth segment method employed in PCA poorly detected clumping in dense canopies. We conclude both fisheye and non-fisheye photographic methods are suitable for dense deciduous forests. Cover photography holds great promise as a means to quickly obtain inexpensive estimates of LAI over large areas. However, in situations where no direct reference measurements of k are available, we recommend using both DHP and DCP, in order to cross-calibrate the two methods; DCP could then be used for more routinely indirect measurement and monitoring of LAI. Keywords: digital hemispherical photography, cover photography, litter trap, AccuPAR ceptometer, LAI-2000.

  19. Shade images of forested areas obtained from Landsat MSS data

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Yosio Edemir; Smith, James A.

    1989-01-01

    The objective of this report is to generate a shade (shadow) image of forested areas from Landsat MSS data by implementing a linear mixing model, where shadow is considered as one of the primary components in a pixel. The shade images are related to the observed variation in forest structure; i.e., the proportion of inferred shadow in a pixel is related to different forest ages, forest types, and tree crown cover. The constrained least-squares method is used to generate shade images for forest of eucalyptus and vegetation of 'cerrado' over the Itapeva study area in Brazil. The resulted shade images may explain the difference on ages for forest of eucalyptus and the difference on tree crown cover for vegetation of cerrado.

  20. A Decision Support System for Identifying and Ranking Critical Habitat Parcels on and in the Vicinity of Department of Defense Installations

    DTIC Science & Technology

    2011-01-01

    27 FIGURE 17. SIMULATED MOVEMENT OF MALE FLOATERS ACROSS A LANDSCAPE...effect of forest gaps larger than 150 m on both juvenile female forays and movement of floater females. Finally, we incorporated jumping by allowing...a portion of floater females to cross gaps of any size. Description of Model Changes Both high and low-level model modifications to the original

  1. Application of a dual unscented Kalman filter for simultaneous state and parameter estimation in problems of surface-atmosphere exchange

    Treesearch

    J.H. Gove; D.Y. Hollinger; D.Y. Hollinger

    2006-01-01

    A dual unscented Kalman filter (UKF) was used to assimilate net CO2 exchange (NEE) data measured over a spruce-hemlock forest at the Howland AmeriFlux site in Maine, USA, into a simple physiological model for the purpose of filling gaps in an eddy flux time series. In addition to filling gaps in the measurement record, the UKF approach provides continuous estimates of...

  2. Climate-based models for pulsed resources improve predictability of consumer population dynamics: outbreaks of house mice in forest ecosystems.

    PubMed

    Holland, E Penelope; James, Alex; Ruscoe, Wendy A; Pech, Roger P; Byrom, Andrea E

    2015-01-01

    Accurate predictions of the timing and magnitude of consumer responses to episodic seeding events (masts) are important for understanding ecosystem dynamics and for managing outbreaks of invasive species generated by masts. While models relating consumer populations to resource fluctuations have been developed successfully for a range of natural and modified ecosystems, a critical gap that needs addressing is better prediction of resource pulses. A recent model used change in summer temperature from one year to the next (ΔT) for predicting masts for forest and grassland plants in New Zealand. We extend this climate-based method in the framework of a model for consumer-resource dynamics to predict invasive house mouse (Mus musculus) outbreaks in forest ecosystems. Compared with previous mast models based on absolute temperature, the ΔT method for predicting masts resulted in an improved model for mouse population dynamics. There was also a threshold effect of ΔT on the likelihood of an outbreak occurring. The improved climate-based method for predicting resource pulses and consumer responses provides a straightforward rule of thumb for determining, with one year's advance warning, whether management intervention might be required in invaded ecosystems. The approach could be applied to consumer-resource systems worldwide where climatic variables are used to model the size and duration of resource pulses, and may have particular relevance for ecosystems where global change scenarios predict increased variability in climatic events.

  3. Assessing Impacts of Selective Logging on Water, Energy, and Carbon Fluxes in Amazon Forests Using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES)

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Huang, M.; Keller, M. M.; Longo, M.; Knox, R. G.; Koven, C.; Fisher, R.

    2016-12-01

    As a key component in the climate system, old-growth tropical forests act as carbon sinks that remove CO2 from the atmosphere. However, these forests could be easily turned into C sources when disturbed. In fact, over half of tropical forests have been cleared or logged, and almost half of standing primary tropical forests are designated for timber production. Existing literature suggests that timber harvests alone could contribute up to 25% as much C losses as deforestation in Amazon. Yet, the spatial extent and recovery trajectory of disturbed forests in a changing climate are highly uncertain. This study constitutes our first attempt to quantify impacts of selective logging on water, energy, and carbon budgets in Amazon forests using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES). The Community Land Model version 4.5 (CLM4.5), with and without FATES turned on, are configured to run at two flux towers established in the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). One tower is located at in an old-growth forest (i.e. KM67) and the other is located in a selectively logged site (i.e., KM83). The three CLM4.5 options, (1) Satellite Phenology (CLM4.5-SP), (2) Century-based biogeochemical cycling with prognostic phenology (CLM4.5-BGC), and (3) CLM4.5-FATES, are spun up to equilibrium by recycling the observed meteorology at the towers, respectively. The simulated fluxes (i.e., sensible heat, latent heat, and net ecosystem exchange) are then compared to observations at KM67 to evaluate the capability of the models in capturing water and carbon dynamics in old-growth tropical forests. Our results suggest that all three models perform reasonably well in capturing the fluxes but demographic features simulated by FATES, such as distributions of diameter at breast height (DBH) and stem density (SD), are skewed heavily toward extremely large trees (e.g., > 100 cm in DBH) when compared to site surveys at the forest plots. Efforts are underway to evaluate parametric sensitivity in FATES to improve simulations in old-growth forests, and to implement parameterization to represent pulse disturbance to carbon pools created by logging events at different intensities, and follow-up recovery closely related to gap-phase regeneration and competition for lights within the gaps.

  4. Inside the Gap: Innovative Uses of Technology and Student Teachers

    ERIC Educational Resources Information Center

    Mahoney-O'Neil, Maryellen

    2010-01-01

    The technological generation gap is a societal phenomenon that also reaches into school classrooms. Typically when the generation gap in technology is discussed it puts students on one side of the gap and teachers on the other, with a clear demarcation implied based on age and assumed experience. This assumption does not account for the emergence…

  5. Axial gap rotating electrical machine

    DOEpatents

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  6. Social preferences toward energy generation with woody biomass from public forests in Montana, USA

    Treesearch

    Robert M. Campbell; Tyron J. Venn; Nathaniel M. Anderson

    2016-01-01

    In Montana, USA, there are substantial opportunities for mechanized thinning treatments on public forests to reduce the likelihood of severe and damaging wildfires and improve forest health. These treatments produce residues that can be used to generate renewable energy and displace fossil fuels. The choice modeling method is employed to examine the marginal...

  7. Effect of air gap variation on the performance of single stator single rotor axial flux permanent magnet generator

    NASA Astrophysics Data System (ADS)

    Kasim, Muhammad; Irasari, Pudji; Hikmawan, M. Fathul; Widiyanto, Puji; Wirtayasa, Ketut

    2017-02-01

    The axial flux permanent magnet generator (AFPMG) has been widely used especially for electricity generation. The effect of the air gap variation on the characteristic and performances of single rotor - single stator AFPMG has been described in this paper. Effect of air gap length on the magnetic flux distribution, starting torque and MMF has been investigated. The two dimensional finite element magnetic method has been deployed to model and simulated the characteristics of the machine which is based on the Maxwell equation. The analysis has been done for two different air gap lengths which were 2 mm and 4 mm using 2D FEMM 4.2 software at no load condition. The increasing of air gap length reduces the air-gap flux density. For air gap 2 mm, the maximum value of the flux density was 1.04 T while 0.73 T occured for air gap 4 mm.. Based on the experiment result, the increasing air gap also reduced the starting torque of the machine with 39.2 Nm for air gap 2 mm and this value decreased into 34.2 Nm when the air gap increased to 4 mm. Meanwhile, the MMF that was generated by AFPMG decreased around 22% at 50 Hz due to the reduction of magnetic flux induced on stator windings. Overall, the research result showed that the variation of air gap has significant effect on the machine characteristics.

  8. Massive structural and compositional changes over two decades in forest fragments near Kampala, Uganda

    PubMed Central

    Bulafu, C; Baranga, D; Mucunguzi, P; Telford, R J; Vandvik, V

    2013-01-01

    Private forests harbor considerable biodiversity, however, they are under greater threat than reserved areas, particularly from urbanization, agriculture, and intense exploitation for timber and fuel wood. The extent to which they may act as habitats for biodiversity and how level of protection impacts trends in biodiversity and forest structure over time remain underresearched. We contribute to filling this research gap by resampling a unique data set, a detailed survey from 1990 of 22 forests fragments of different ownership status and level of protection near Kampala, Uganda. Eleven of the 22 fragments were lost over 20 years, and six of the remnants reduced in size. Forest structure and composition also showed dramatic changes, with six of the remnant fragments showing high temporal species turnover. Species richness increased in four of the remaining forests over the resample period. Forest ownership affected the fate of the forests, with higher loss in privately owned forests. Our study demonstrates that ownership affects the fate of forest fragments, with private forests having both higher rates of area loss, and of structural and compositional change within the remaining fragments. Still, the private forests contribute to the total forest area, and they harbor biodiversity including IUCN “vulnerable” and “endangered” species. This indicates the conservation value of the fragments and suggests that they should be taken into account in forest conservation and restoration. PMID:24198941

  9. A review of the ecosystem functions in oil palm plantations, using forests as a reference system.

    PubMed

    Dislich, Claudia; Keyel, Alexander C; Salecker, Jan; Kisel, Yael; Meyer, Katrin M; Auliya, Mark; Barnes, Andrew D; Corre, Marife D; Darras, Kevin; Faust, Heiko; Hess, Bastian; Klasen, Stephan; Knohl, Alexander; Kreft, Holger; Meijide, Ana; Nurdiansyah, Fuad; Otten, Fenna; Pe'er, Guy; Steinebach, Stefanie; Tarigan, Suria; Tölle, Merja H; Tscharntke, Teja; Wiegand, Kerstin

    2017-08-01

    Oil palm plantations have expanded rapidly in recent decades. This large-scale land-use change has had great ecological, economic, and social impacts on both the areas converted to oil palm and their surroundings. However, research on the impacts of oil palm cultivation is scattered and patchy, and no clear overview exists. We address this gap through a systematic and comprehensive literature review of all ecosystem functions in oil palm plantations, including several (genetic, medicinal and ornamental resources, information functions) not included in previous systematic reviews. We compare ecosystem functions in oil palm plantations to those in forests, as the conversion of forest to oil palm is prevalent in the tropics. We find that oil palm plantations generally have reduced ecosystem functioning compared to forests: 11 out of 14 ecosystem functions show a net decrease in level of function. Some functions show decreases with potentially irreversible global impacts (e.g. reductions in gas and climate regulation, habitat and nursery functions, genetic resources, medicinal resources, and information functions). The most serious impacts occur when forest is cleared to establish new plantations, and immediately afterwards, especially on peat soils. To variable degrees, specific plantation management measures can prevent or reduce losses of some ecosystem functions (e.g. avoid illegal land clearing via fire, avoid draining of peat, use of integrated pest management, use of cover crops, mulch, and compost) and we highlight synergistic mitigation measures that can improve multiple ecosystem functions simultaneously. The only ecosystem function which increases in oil palm plantations is, unsurprisingly, the production of marketable goods. Our review highlights numerous research gaps. In particular, there are significant gaps with respect to socio-cultural information functions. Further, there is a need for more empirical data on the importance of spatial and temporal scales, such as differences among plantations in different environments, of different sizes, and of different ages, as our review has identified examples where ecosystem functions vary spatially and temporally. Finally, more research is needed on developing management practices that can offset the losses of ecosystem functions. Our findings should stimulate research to address the identified gaps, and provide a foundation for more systematic research and discussion on ways to minimize the negative impacts and maximize the positive impacts of oil palm cultivation. © 2016 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  10. Direct and indirect effects of light environment generate ecological trade-offs in herbivore performance and parasitism.

    PubMed

    Stoepler, Teresa M; Lill, John T

    2013-10-01

    A variety of ecological factors influence host use by parasitoids, including both abiotic and biotic factors. Light environment is one important abiotic parameter that differs among habitats and influences a suite of plant nutritional and resistance traits that in turn affect herbivore performance. However, the extent to which these bottom-up effects "cascade up" to affect higher trophic levels and the relative importance of direct and indirect effects of sunlight on tritrophic interactions are unclear. The objective of this study was to test how light environment (light gap vs. shaded forest understory) and leaf type (sun vs. shade leaves) affect the performance and incidence of parasitism of two species of moth larvae, Euclea delphinii and Acharia stimulea (Limacodidae). We manipulated the leaf phenotype of potted white oak saplings by growing them in either full sun or full shade throughout leaf expansion to produce sun and shade leaves, respectively. These saplings were then placed in light gap and adjacent shaded understory habitats in the forest in a full-factorial design, and stocked with sentinel larvae that were exposed to parasitism ("exposed" experiments). We reared additional larvae in sleeve cages (protected from parasitism) to isolate light environment and leaf phenotype treatment effects on larval performance in the absence of enemies ("bagged" experiments). In the exposed experiments, light environment strongly affected the likelihood of parasitism, while leaf phenotype did not. Euclea delphinii larvae were up to 6.6 times more likely to be parasitized in light gaps than in shaded understory habitats. This pattern was consistent for both tachinid fly and wasp parasitoids across two separate experiments. However, the larval performance of both species in the bagged experiments was maximized in the shade-habitat/sun-leaf treatment, a habitat/leaf-type combination that occurs infrequently in nature. Taken together, our results suggest that the direct effects of light environment on the incidence of parasitism supersede any indirect effects resulting from altered leaf quality and reveal inherent ecological trade-offs for herbivores confronted with choosing between sunny (high leaf quality, harsh environment, high parasitism) and shaded (reduced leaf quality less harsh environment, reduced parasitism) habitats.

  11. Tracking populations of Phytophthora ramorum within trees and across the South-western Oregon tanoak (Notholithocarpus densiflorus) forest with DNA fingerprinting and the relative fitness of dominant and rare individuals

    Treesearch

    Jennifer Britt; Everett Hansen

    2011-01-01

    Since the discovery of Phytophthora ramorum Werres, De Cock & Man In't Veld in south-western Oregon forests in 2001, newly infected areas are detected each year. Yet, there are still gaps in our knowledge about how the pathogen spreads or where new infections come from. Our study aims to track the spread of P. ramorum...

  12. Quantifying the variability of snowpack properties and processes in a small-forested catchment representative of the boreal zone

    NASA Astrophysics Data System (ADS)

    Parajuli, A.; Nadeau, D.; Anctil, F.; Parent, A. C.; Bouchard, B.; Jutras, S.

    2017-12-01

    In snow-fed catchments, it is crucial to monitor and to model snow water equivalent (SWE), particularly to simulate the melt water runoff. However, the distribution of SWE can be highly heterogeneous, particularly within forested environments, mainly because of the large variability in snow depths. Although the boreal forest is the dominant land cover in Canada and in a few other northern countries, very few studies have quantified the spatiotemporal variability of snow depths and snowpack dynamics within this biome. The objective of this paper is to fill this research gap, through a detailed monitoring of snowpack dynamics at nine locations within a 3.57 km2 experimental forested catchment in southern Quebec, Canada (47°N, 71°W). The catchment receives 6 m of snow annually on average and is predominantly covered with balsam fir stand with some traces of spruce and white birch. In this study, we used a network of nine so-called `snow profiling stations', providing automated snow depth and snowpack temperature profile measurements, as well as three contrasting sites (juvenile, sapling and open areas) where sublimation rates were directly measured with flux towers. In addition, a total of 1401 manual snow samples supported by 20 snow pits measurements were collected throughout the winter of 2017. This paper presents some preliminary analyses of this unique dataset. Simple empirical relations relying SWE with easy-to-determine proxies, such as snow depths and snow temperature, are tested. Then, binary regression trees and multiple regression analysis are used to model SWE using topographic characteristics (slope, aspect, elevation), forest features (tree height, tree diameter, forest density and gap fraction) and meteorological forcing (solar radiation, wind speed, snow-pack temperature profile, air temperature, humidity). An analysis of sublimation rates comparing open area, saplings and juvenile forest is also presented in this paper.

  13. Factors influencing the sustained participation of farmers in participatory forestry: a case study in central Sal forests in Bangladesh.

    PubMed

    Salam, M A; Noguchi, T; Koike, M

    2005-01-01

    Wide acceptance of sustainable development as a concept and as the goal of forest management has shifted forest management policies from a traditional to a people-oriented approach. Consequently, with its multiple new objectives, forest management has become more complex and an information gap exits between what is known and what is utilized, which hinders the sustained participation of farmers. This gap arose mainly due to an interrupted flow of information. With participatory forestry, the information flow requires a broad approach that goes beyond the forest ecosystem and includes the different stakeholders. Thus in participatory forest management strategies, policymakers, planners and project designers need to incorporate all relevant information within the context of the dynamic interaction between stakeholders and the forest environment. They should understand the impact of factors such as management policies, economics and conflicts on the sustained participation of farmers. This study aimed to use primary cross-sectional data to identify the factors that might influence the sustained participation of farmers in participatory forestry. Using stratified random sampling, 581 participants were selected to take part in this study, and data were collected through a structured questionnaire by interviewing the selected participants. To identify the dominant factors necessary for the sustained participation of farmers, logistic regression analyses were performed. The following results were observed: (a) sustained participation is positively and significantly correlated with (i) satisfaction of the participants with the tree species planted on their plots; (ii) confidence of the participants that their aspired benefits will be received; (iii) provision of training on different aspects of participatory forestry; (iv) contribution of participants' money to Tree Farming Funds. (b) The sustained participation of farmers is negatively and significantly correlated with the disruption of local peoples' interests through implementation of participatory forestry programs, and long delays in the harvesting of trees after completion of the contractual agreement period.

  14. Modeling long-term changes in forested landscapes and their relation to the Earth's energy balance

    NASA Technical Reports Server (NTRS)

    Shugart, H. H.; Emanuel, W. R.; Solomon, A. M.

    1984-01-01

    The dynamics of the forested parts of the Earth's surface on time scales from decades to centuries are discussed. A set of computer models developed at Oak Ridge National Laboratory and elsewhere are applied as tools. These models simulate a landscape by duplicating the dynamics of growth, death and birth of each tree living on a 0.10 ha element of the landscape. This spatial unit is generally referred to as a gap in the case of the forest models. The models were tested against and applied to a diverse array of forests and appear to provide a reasonable representation for investigating forest-cover dynamics. Because of the climate linkage, one important test is the reconstruction of paleo-landscapes. Detailed reconstructions of changes in vegetation in response to changes in climate are crucial to understanding the association of the Earth's vegetation and climate and the response of the vegetation to climate change.

  15. Management guidelines for enhancing Cerulean Warbler breeding habitat in Appalachian hardwood forests

    USGS Publications Warehouse

    Wood, Petra; Sheehan, James; Keyser, Patrick D.; Buehler, David A.; Larkin, Jeff; Rodewald, Amanda D.; Stoleson, Scott H.; Wigley, T. Bently; Mizel, Jeremy; Boves, Than J.; George, Greg; Bakermans, Marja H.; Beachy, Tiffany A.; Evans, Andrea; McDermott, Molly E.; Newell, Felicity L.; Perkins, Kelly A.; White, Matt

    2013-01-01

    The Cerulean Warbler (Setophaga cerulea) is a migratory songbird that breeds in mature deciduous forests of eastern North America. Cerulean Warblers (hereafter, ceruleans) require heavily forested landscapes for nesting and, within Appalachian forests, primarily occur on ridge tops and steep, upper slopes. They are generally associated with oakdominated (Quercus spp.) stands that contain gaps in the forest canopy, that have large diameter trees (>16 inches diameter breast height (dbh)), and that have well-developed understory-and upper-canopy layers. Ceruleans primarily use the midand upper-canopy where they glean insects from the surface of leaves and conceal their open cup nests. Because they are severely declining across much of their range (Fig. 1), habitat management is a high priority. Management for this species can also improve conditions for a number of other wildlife species that depend on the same structure.

  16. Prospects for quantifying structure, floristic composition and species richness of tropical forests

    USGS Publications Warehouse

    Gillespie, T.W.; Brock, J.; Wright, C.W.

    2004-01-01

    Airborne spectral and light detection and ranging (lidar) sensors have been used to quantify biophysical characteristics of tropical forests. Lidar sensors have provided high-resolution data on forest height, canopy topography, volume, and gap size; and provided estimates on number of strata in a forest, successional status of forests, and above-ground biomass. Spectral sensors have provided data on vegetation types, foliar biochemistry content of forest canopies, tree and canopy phenology, and spectral signatures for selected tree species. A number of advances are theoretically possible with individual and combined spectral and lidar sensors for the study of forest structure, floristic composition and species richness. Delineating individual canopies of over-storey trees with small footprint lidar and discrimination of tree architectural types with waveform distributions is possible and would provide scientists with a new method to study tropical forest structure. Combined spectral and lidar data can be used to identify selected tree species and identify the successional status of tropical forest fragments in order to rank forest patches by levels of species richness. It should be possible in the near future to quantify selected patterns of tropical forests at a higher resolution than can currently be undertaken in the field or from space. ?? 2004 Taylor and Francis Ltd.

  17. N : P stoichiometry in a forested runoff during storm events: comparisons with regions and vegetation types.

    PubMed

    Guo, Lanlan; Chen, Yi; Zhang, Zhao; Fukushima, Takehiko

    2012-01-01

    Nitrogen and phosphorus are considered the most important limiting elements in terrestrial and aquatic ecosystems. however, very few studies have focused on which is from forested streams, a bridge between these two systems. To fill this gap, we examined the concentrations of dissolved N and P in storm waters from forested watersheds of five regions in Japan, to characterize nutrient limitation and its potential controlling factors. First, dissolved N and P concentrations and the N : P ratio on forested streams were higher during storm events relative to baseflow conditions. Second, significantly higher dissolved inorganic N concentrations were found in storm waters from evergreen coniferous forest streams than those from deciduous broadleaf forest streams in Aichi, Kochi, Mie, Nagano, and with the exception of Tokyo. Finally, almost all the N : P ratios in the storm water were generally higher than 34, implying that the storm water should be P-limited, especially for Tokyo.

  18. N : P Stoichiometry in a Forested Runoff during Storm Events: Comparisons with Regions and Vegetation Types

    PubMed Central

    Guo, Lanlan; Chen, Yi; Zhang, Zhao; Fukushima, Takehiko

    2012-01-01

    Nitrogen and phosphorus are considered the most important limiting elements in terrestrial and aquatic ecosystems. however, very few studies have focused on which is from forested streams, a bridge between these two systems. To fill this gap, we examined the concentrations of dissolved N and P in storm waters from forested watersheds of five regions in Japan, to characterize nutrient limitation and its potential controlling factors. First, dissolved N and P concentrations and the N : P ratio on forested streams were higher during storm events relative to baseflow conditions. Second, significantly higher dissolved inorganic N concentrations were found in storm waters from evergreen coniferous forest streams than those from deciduous broadleaf forest streams in Aichi, Kochi, Mie, Nagano, and with the exception of Tokyo. Finally, almost all the N : P ratios in the storm water were generally higher than 34, implying that the storm water should be P-limited, especially for Tokyo. PMID:22547978

  19. Automatic Derivation of Forest Cover and Forest Cover Change Using Dense Multi-Temporal Time Series Data from Landsat and SPOT 5 Take5

    NASA Astrophysics Data System (ADS)

    Storch, Cornelia; Wagner, Thomas; Ramminger, Gernot; Pape, Marlon; Ott, Hannes; Hausler, Thomas; Gomez, Sharon

    2016-08-01

    The paper presents a description of the methods development for an automated processing chain for the classification of Forest Cover and Change based on high resolution multi-temporal time series Landsat and SPOT5Take5 data with focus on the dry forest ecosystems of Africa. The method has been developed within the European Space Agency (ESA) funded Global monitoring for Environment and Security Service Element for Forest Monitoring (GSE FM) project on dry forest areas; the demonstration site selected was in Malawi. The methods are based on the principles of a robust, but still flexible monitoring system, to cope with most complex Earth Observation (EO) data scenarios, varying in terms of data quality, source, accuracy, information content, completeness etc. The method allows automated tracking of change dates, data gap filling and takes into account phenology, seasonality of tree species with respect to leaf fall and heavy cloud cover during the rainy season.

  20. Development and Application of an Annual Vegetation-Monitoring Tool in Gishwati Forest Reserve using MODIS NDVI product and Landsat-5 and 7

    NASA Astrophysics Data System (ADS)

    Makar, N. I.; Butler, K.; Fox, T.; Geddes, Q. A.; Janse van Vuuren, L.; Li, A.; Sharma, A.

    2012-12-01

    As the most densely populated country in Africa, Rwanda relies heavily on a limited supply of natural resources to sustain its agrarian economy. Population pressures, economic policy, and the aftermath of the genocide have placed particular stress on the Gishwati Forest in Rwanda's Western Province. Deforestation for agricultural purposes and fuel consumption has disrupted the local climate, soil structure, and topography, leading to increased erosion, landslides and flooding. Once 280 km2, by 1995 the Gishwati Forest was only 6 km2. The Rwandan government and international NGOs have started initiatives to reverse deforestation, which would benefit from monitoring and evaluation using remote sensing technology. This study filled the gaps in the tumultuous history of Gishwati Forest since 1982 using NASA's Earth Observing System, specifically Landsat 5 and AVHRR. In collaboration with partner organizations, we developed a robust, yet simple to use, forest monitoring tool employing MODIS NDVI product and Landsat that provide annual estimates of the forest's health.

  1. [Responses of boreal forest landscape in northern Great Xing'an Mountains of Northeast China to climate change].

    PubMed

    Li, Xiao-Na; He, Hong-Shi; Wu, Zhi-Wei; Liang, Yu

    2012-12-01

    With the combination of forest landscape model (LANDIS) and forest gap model (LINKAGES), this paper simulated the effects of climate change on the boreal forest landscape in the Great Xing'an Mountains, and compared the direct effects of climate change and the effects of climate warming-induced fires on the forest landscape. The results showed that under the current climate conditions and fire disturbances, the forest landscape in the study area could maintain its dynamic balance, and Larix gmelinii was still the dominant tree species. Under the future climate and fire disturbances scenario, the distribution area of L. gmelinii and Pinus pumila would be decreased, while that of Betula platyphylla, Populus davidiana, Populus suaveolens, Chosenia arbutifolia, and Pinus sylvestris var. mongolica would be increased, and the forest fragmentation and forest diversity would have an increase. The changes of the forest landscape lagged behind climate change. Climate warming would increase the growth of most tree species except L. gmelinii, while the increased fires would increase the distribution area of P. davidiana, P. suaveolens, and C. arbutifolia and decrease the distribution area of L. gmelinii, P. sylvestris var. mongolica, and P. pumila. The effects of climate warming-induced fires on the forest landscape were almost equal to the direct effects of climate change, and aggravated the direct effects of climate change on forest composition, forest landscape fragmentation, and forest landscape diversity.

  2. Snowy backgrounds enhance the absorption of visible light in forest canopies

    NASA Astrophysics Data System (ADS)

    Pinty, B.; Widlowski, J.-L.; Verstraete, M. M.; Andredakis, I.; Arino, O.; Clerici, M.; Kaminski, T.; Taberner, M.

    2011-03-01

    The fraction of radiation absorbed in the canopy depends on the amount and angular distribution of the solar irradiance reaching the top of the canopy as well as the fraction of this irradiance that is transmitted through the canopy gaps and reflected back to the vegetation by the background. This contribution shows that the presence of snow on forest floors enhances the fraction of absorbed Photosynthetically Active Radiation (PAR). A global analysis of satellite-derived products reveals that this enhancement affects evergreen and deciduous forests of the boreal zone. This snow-related effect may usefully contribute to the photosynthesis process in evergreen forests especially during spring time when radiation conditions are marginal but other physiological constraints (such as temperature) permit the necessary biochemical functions to take place.

  3. Forest farming practices

    Treesearch

    J.L. Chamberlain; D. Mitchell; T. Brigham; T. Hobby; L. Zabek; J. Davis

    2009-01-01

    Forest farming in North America is becoming popular as a way for landowners to diversify income opportunities, improve management of forest resources, and increase biological diversity. People have been informally "farming the forests" for generations. However, in recent years, attention has been directed at formalizing forest farming and improving it...

  4. Mapping Mexico's Forest Lands with Advanced Very High Resolution Radiometer

    Treesearch

    David J. Evans; Zhiliang Zhu; Susan Eggen-McIntosh; Pedro García Mayoral; Jose Luis Ornelas de Anda

    1992-01-01

    Data from the Advanced Very High Resolution Radiometer (AVHRR) were used in a program sponsored by the U.S. Department of Agriculture, Forest Service, and the United Nations Food and Agriculture Organization to help scientists from Mexico generate forest-cover maps of that country. Two near-cloud-free composite images were generated for December and March 1990 from...

  5. Leaf-on canopy closure in broadleaf deciduous forests predicted during winter

    USGS Publications Warehouse

    Twedt, Daniel J.; Ayala, Andrea J.; Shickel, Madeline R.

    2015-01-01

    Forest canopy influences light transmittance, which in turn affects tree regeneration and survival, thereby having an impact on forest composition and habitat conditions for wildlife. Because leaf area is the primary impediment to light penetration, quantitative estimates of canopy closure are normally made during summer. Studies of forest structure and wildlife habitat that occur during winter, when deciduous trees have shed their leaves, may inaccurately estimate canopy closure. We estimated percent canopy closure during both summer (leaf-on) and winter (leaf-off) in broadleaf deciduous forests in Mississippi and Louisiana using gap light analysis of hemispherical photographs that were obtained during repeat visits to the same locations within bottomland and mesic upland hardwood forests and hardwood plantation forests. We used mixed-model linear regression to predict leaf-on canopy closure from measurements of leaf-off canopy closure, basal area, stem density, and tree height. Competing predictive models all included leaf-off canopy closure (relative importance = 0.93), whereas basal area and stem density, more traditional predictors of canopy closure, had relative model importance of ≤ 0.51.

  6. When sex is not enough: ecological correlates of resprouting capacity in congeneric tropical forest shrubs.

    PubMed

    Lasso, Eloisa; Engelbrecht, Bettina M J; Dalling, James W

    2009-08-01

    In moist tropical forests resprouting may be an important component of life history, contributing to asexual reproduction through the clonal spread of individuals derived from shoot fragments. However, in contrast to other ecosystems where resprouting is common, the ecological correlates of resprouting capacity in tropical forests remain largely unexplored. In this study we characterized shade tolerance, resprouting capacity and sexual reproductive success of eight co-occurring Piper species from lowland forests of Panama. In field experiments we found that shade-tolerant Piper species had a higher capacity to regenerate from excised or pinned stem fragments than light-demanding species in both gap and understory light conditions. In contrast, shade-tolerant species had lower recruitment probabilities from seeds, as a consequence of lower initial seed viability, and lower seedling emergence rates. All Piper species needed gap conditions for successful seedling establishment. Of 8,000 seeds sown in the understory only 0.2% emerged. In gaps, seed germination of light-demanding species was between 10 and 50%, whereas for shade-tolerant species it was 0.5-9.8%. We propose that the capacity to reproduce asexually from resprouts could be adaptive for shade-tolerant species that are constantly exposed to damage from falling litter in the understory. Resprouting may allow Piper populations to persist and spread despite the high rate of pre-dispersal seed predation and low seed emergence rates. Across Piper species, we detected a trade-off between resprouting capacity and the annual viable seed production per plant but not with annual seed mass produced per plant. This suggests that species differences in sexual reproductive success may not necessarily result from differential resource allocation. Instead we suggest that low sexual reproductive success in the understory may in part reflect reduced genetic diversity in populations undergoing clonal growth, resulting in self-fertilization and in-breeding depression.

  7. Arbuscular mycorrhizal fungi in the tree seedlings of two Australian rain forests: occurrence, colonization, and relationships with plant performance.

    PubMed

    Gehring, Catherine A; Connell, Joseph H

    2006-03-01

    The roots of rain forest plants are frequently colonized by arbuscular mycorrhizal fungi (AMF) that can promote plant growth in the nutrient poor soils characteristic of these forests. However, recent studies suggest that both the occurrence of AMF on rain forest plants and the dependence of rain forest plants on AMF can be highly variable. We examined the occurrence and levels of AMF colonization of some common seedling species in a tropical and a subtropical rain forest site in Queensland, Australia. We also used a long-term database to compare the growth and mortality rates of seedling species that rarely formed AMF with those that regularly formed AMF. In both forests, more than one-third of the seedling species rarely formed AMF associations, while 40% of species consistently formed AMF in the tropical site compared to 27% in the subtropical site. Consistent patterns of AMF occurrence were observed among plant families at the two sites. Variation among seedling species in AMF occurrence or colonization was not associated with differences in seed mass among species, variation in seedling size and putative age within a species, or lack of AMF inoculum in the soil. Comparisons of four seedling species growing both in the shaded understory and in small canopy gaps revealed an increase in AMF colonization in two of the four species in gaps, suggesting that light limitation partially explains the low occurrence of AMF. Seedling survival was significantly positively associated with seed biomass but not with AMF colonization. Furthermore, seedling species that regularly formed AMF and those that did not had similar rates of growth and survival, suggesting that mycorrhizal and nonmycorrhizal strategies were equivalent in these forests. Furthermore, the high numbers of seedlings that lacked AMF and the overall low rate of seedling growth (the average seedling required 6 years to double its height) suggest that most seedlings did not receive significant indirect benefits from AMF through connection to canopy trees via a common mycorrhizal network.

  8. Variation in carbon storage and its distribution by stand age and forest type in boreal and temperate forests in northeastern China.

    PubMed

    Wei, Yawei; Li, Maihe; Chen, Hua; Lewis, Bernard J; Yu, Dapao; Zhou, Li; Zhou, Wangming; Fang, Xiangmin; Zhao, Wei; Dai, Limin

    2013-01-01

    The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China.

  9. Variation in Carbon Storage and Its Distribution by Stand Age and Forest Type in Boreal and Temperate Forests in Northeastern China

    PubMed Central

    Wei, Yawei; Li, Maihe; Chen, Hua; Lewis, Bernard J.; Yu, Dapao; Zhou, Li; Zhou, Wangming; Fang, Xiangmin; Zhao, Wei; Dai, Limin

    2013-01-01

    The northeastern forest region of China is an important component of total temperate and boreal forests in the northern hemisphere. But how carbon (C) pool size and distribution varies among tree, understory, forest floor and soil components, and across stand ages remains unclear. To address this knowledge gap, we selected three major temperate and two major boreal forest types in northeastern (NE) China. Within both forest zones, we focused on four stand age classes (young, mid-aged, mature and over-mature). Results showed that total C storage was greater in temperate than in boreal forests, and greater in older than in younger stands. Tree biomass C was the main C component, and its contribution to the total forest C storage increased with increasing stand age. It ranged from 27.7% in young to 62.8% in over-mature stands in boreal forests and from 26.5% in young to 72.8% in over-mature stands in temperate forests. Results from both forest zones thus confirm the large biomass C storage capacity of old-growth forests. Tree biomass C was influenced by forest zone, stand age, and forest type. Soil C contribution to total forest C storage ranged from 62.5% in young to 30.1% in over-mature stands in boreal and from 70.1% in young to 26.0% in over-mature in temperate forests. Thus soil C storage is a major C pool in forests of NE China. On the other hand, understory and forest floor C jointly contained less than 13% and <5%, in boreal and temperate forests respectively, and thus play a minor role in total forest C storage in NE China. PMID:23977252

  10. Release of suppressed red spruce using canopy gap creation—Ecological restoration in the Central Appalachians

    USGS Publications Warehouse

    Rentch, J.S.; Ford, W. Mark; Schuler, T.S.; Palmer, J.; Diggins, Corinne A.

    2016-01-01

    Red spruce (Picea rubens) and red spruce-northern hardwood mixed stands once covered as much as 300,000 ha in the Central Appalachians, but now comprise no more than 21,000 ha. Recently, interest in restoration of this forest type has increased because red spruce forests provide habitat for a number of rare animal species. Our study reports the results of an understory red spruce release experiment in hardwood-dominated stands that have a small component of understory red spruce. In 2005, 188 target spruce were identified in sample plots at six locations in central West Virginia. We projected a vertical cylinder above the crown of all target spruces, and in 2007, we performed a release treatment whereby overtopping hardwoods were treated with herbicide using a stem injection technique. Release treatments removed 0–10% (Control), 11–50% (Low), 51–89% (Medium), and ≤90% (High) of the basal area of overtopping trees. We also took canopy photographs at the time of each remeasurement in 2007, 2010, and 2013, and compared basal removal treatments and resulting 2010 canopy openness and understory light values. The high treatment level provided significantly greater six-year dbh and height growth than the other treatment levels. Based on these results, we propose that a tree-centered release approach utilizing small canopy gaps that emulate the historical, gap-phase disturbance regime provides a good strategy for red spruce restoration in hardwood forests where overstory spruce are virtually absent, and where red spruce is largely relegated to the understory.

  11. The Evolution from Generation to Post-XX

    ERIC Educational Resources Information Center

    Feng, Zhao

    2011-01-01

    Young people represent the future, and youth is an eternal topic. In the 1970s when the American anthropologist Margaret Mead published her famous work "Generation Gap," research on generations gained sudden popularity worldwide, and ever since the 1980s when "Generation Gap" was brought to China, research by scholars in this…

  12. The impact of land-use change from forest to oil palm on soil greenhouse gas and volatile organic compound fluxes in Malaysian Borneo

    NASA Astrophysics Data System (ADS)

    Drewer, Julia; Leduning, Melissa; Kerdraon-Byrne, Deirdre; Sayer, Emma; Sentien, Justin; Skiba, Ute

    2017-04-01

    Monocultures of oil palm have expanded in SE Asia, and more recently also in Africa and South America, frequently replacing tropical forests. The limited data available clearly show that this conversion is associated with a potentially large greenhouse gas (GHG) burden. The physical process of land-use change, such is felling, drainage and ploughing can significantly increase emissions of N2O and soil CO2 respiration and decrease CH4 oxidation rates in the short term; and in the long-term regular nitrogen applications will impact in particular soil N2O fluxes. Little is known about volatile organic compound (VOC) fluxes from soil and litter in tropical forests and their speciation or about the links between GHG and VOC fluxes. VOC emissions are important as they directly and indirectly influence the concentrations and lifetimes of air pollutants and GHGs. For example, oxidation of VOCs generate tropospheric ozone which is also a potent GHG. Within ecosystems, monoterpenes can mediate plant-microbe and plant- interactions and protect photosynthesis during abiotic stress. However, little is known about monoterpene composition in the tropics - a widely recognized major global source of terpenoids to the atmosphere. These knowledge gaps make it difficult for developing countries in the tropics, especially SE Asia, to develop effective mitigation strategies. Current understanding of soil GHG fluxes associated with land-use change from forest to oil palm is not sufficient to provide reliable estimates of their carbon footprints and sustainability or advice on GHG mitigation strategies. To provide the necessary data we have installed a total of 56 flux chambers in logged forests, forest fragments and mature and young oil palm plantations as well as riparian zones within the SAFE landscape in SE Sabah (Stability of Altered Forest Ecosystems; http://www.safeproject.net). Soil respiration rates, N2O, CH4 and VOC fluxes together with soil moisture, pH, mineral and total C and N were measured over a two year period. Additionally the effects of changes in forest litter diversity on soil properties were investigated using mesocosms. For this experiment leaf litter was transplanted into different forest types and oil palm plantations of different stand ages to simulate the change in litter-fall caused by changes in above ground plant composition. Laboratory incubations using soil and litter from the field sites provide additional detailed data on soil properties, carbon storage capacity and microbial activity to identify potential mechanisms for the field observations.

  13. Closing the Social Class Achievement Gap for First-Generation Students in Undergraduate Biology

    PubMed Central

    Harackiewicz, Judith M.; Canning, Elizabeth A.; Tibbetts, Yoi; Giffen, Cynthia J.; Blair, Seth S.; Rouse, Douglas I.; Hyde, Janet S.

    2014-01-01

    Many students start college intending to pursue a career in the biosciences, but too many abandon this goal because they struggle in introductory biology. Interventions have been developed to close achievement gaps for underrepresented minority students and women, but no prior research has attempted to close the gap for first-generation students, a population that accounts for nearly a fifth of college students. We report a values affirmation intervention conducted with 798 U.S. students (154 first-generation) in an introductory biology course for majors. For first-generation students, values affirmation significantly improved final course grades and retention in the second course in the biology sequence, as well as overall GPA for the semester. This brief intervention narrowed the achievement gap between first-generation and continuing generation students for course grades by 50% and increased retention in a critical gateway course by 20%. Our results suggest that educators can expand the pipeline for first-generation students to continue studying in the biosciences with psychological interventions. PMID:25049437

  14. Method and Apparatus for Separating Particles by Dielectrophoresis

    NASA Technical Reports Server (NTRS)

    Pant, Kapil (Inventor); Wang, Yi (Inventor); Bhatt, Ketan (Inventor); Prabhakarpandian, Balabhasker (Inventor)

    2014-01-01

    Particle separation apparatus separate particles and particle populations using dielectrophoretic (DEP) forces generated by one or more pairs of electrically coupled electrodes separated by a gap. Particles suspended in a fluid are separated by DEP forces generated by the at least one electrode pair at the gap as they travel over a separation zone comprising the electrode pair. Selected particles are deflected relative to the flow of incoming particles by DEP forces that are affected by controlling applied potential, gap width, and the angle linear gaps with respect to fluid flow. The gap between an electrode pair may be a single, linear gap of constant gap, a single linear gap having variable width, or a be in the form of two or more linear gaps having constant or variable gap width having different angles with respect to one another and to the flow.

  15. Acceleration of Regeneration of Large Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS)

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W811XWH-13-1-0310 TITLE: Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts...plus amniotic Fluid Derived Stem Cells (AFS). PRINCIPAL INVESTIGATOR: Zhongyu Li, MD, PhD RECIPIENT: Wake Forest University Health Sciences...REPORT DATE September 2016 2. REPORT TYPE Annual 3. DATES COVERED 1Sep2015 - 31Aug2016 4. TITLE AND SUBTITLE Acceleration of Regeneration of Large

  16. A comparison of techniques for generating forest ownership spatial products

    Treesearch

    Brett J. Butler; Jaketon H. Hewes; Greg C. Liknes; Mark D. Nelson; Stephanie A. Snyder

    2014-01-01

    To fully understand forest resources, it is imperative to understand the social context in which the forests exist. A pivotal part of that context is the forest ownership. It is the owners, operating within biophysical and social constraints, who ultimately decide if the land will remain forested, how the resources will be used, and by whom. Forest ownership patterns...

  17. US forest carbon calculation tool: forest-land carbon stocks and net annual stock change

    Treesearch

    James E. Smith; Linda S. Heath; Michael C. Nichols

    2007-01-01

    The Carbon Calculation Tool 4.0, CCTv40.exe, is a computer application that reads publicly available forest inventory data collected by the U.S. Forest Service's Forest Inventory and Analysis Program (FIA) and generates state-level annualized estimates of carbon stocks on forest land based on FORCARB2 estimators. Estimates can be recalculated as...

  18. Stemflow Acid Neutralization Capacity in a Broadleaved Deciduous Forest: The Role of Edge Effects

    NASA Astrophysics Data System (ADS)

    Levia, D. F., Jr.; Shiklomanov, A.

    2014-12-01

    The fragmentation of forests is occurring at an accelerated rate in parts of the United States. Forest fragmentation creates edge habitat that affects the biogeochemistry of forests. Atmospheric deposition is known to increase at the forest edge in comparison to the forest interior. Past research has demonstrated the critical role of edge effects on throughfall chemistry but no known work has examined the relationship between stemflow chemistry and edge effects. To fill this data gap, we quantified the stemflow acid neutralization capacity (ANC) of nineteen Liriodendron tulipifera L. (yellow poplar) trees between forest edge and interior locations in the Piedmont of the mid-Atlantic USA. ANC was measured directly by potentiometric titration. Both stemflow pH and ANC were higher for L. tulipifera trees on the forest edge as opposed to those in interior locations (p < 0.01), although marked variability was observed among individual trees. It is critical to note that the ANC of stemflow of edge trees is almost certainly contextual, depending on geographic locality. This is to say that stemflow from edge trees may neutralize acid inputs in some locations (as in our case) but lead to enhanced acidification of aqueous inputs to forest soils in other locales where the dry deposition of acid anions is high. The experimental results have ramifications for forest management schema seeking to increase or decrease the extent of edge habitat in forest fragments.

  19. A 3D stand generator for central Appalachian hardwood forests

    Treesearch

    Jingxin Wang; Yaoxiang Li; Gary W. Miller

    2002-01-01

    A 3-dimensional (3D) stand generator was developed for central Appalachian hardwood forests. It was designed for a harvesting simulator to examine the interactions of stand, harvest, and machine. The Component Object Model (COM) was used to design and implement the program. Input to the generator includes species composition, stand density, and spatial pattern. Output...

  20. Influence of eastern hemlock (Tsuga canadensis) forests on aquatic invertebrate assemblages in headwater streams

    USGS Publications Warehouse

    Snyder, C.D.; Young, J.A.; Lemarie, D.P.; Smith, D.R.

    2002-01-01

    We conducted a comparative study in the Delaware Water Gap National Recreation Area to determine the potential long-term impacts of hemlock forest decline on stream benthic macroinvertebrate assemblages. Hemlock forests throughout eastern North America have been declining because of the hemlock woolly adelgid, an exotic insect pest. We found aquatic invertebrate community structure to be strongly correlated with forest composition. Streams draining hemlock forests supported significantly more total taxa than streams draining mixed hardwood forests, and over 8% of the taxa were strongly associated with hemlock. In addition, invertebrate taxa were more evenly distributed (i.e., higher Simpson's evenness values) in hemlock-drained streams. In contrast, the number of rare species and total densities were significantly lower in streams draining hemlock, suggesting that diversity differences observed between forest types were not related to stochastic factors associated with sampling and that streams draining mixed hardwood forests may be more productive. Analysis of stream habitat data indicated that streams draining hemlock forests had more stable thermal and hydrologic regimes. Our findings suggest that hemlock decline may result in long-term changes in headwater ecosystems leading to reductions in both within-stream (i.e., alpha) and park-wide (i.e., gamma) benthic community diversity.

  1. Assessing the impact of Amazonia logging with a new ecosystem model

    NASA Astrophysics Data System (ADS)

    Huang, M.; Asner, G. P.; Keller, M.; Berry, J. A.; Bustamante, M. M.

    2006-12-01

    Old-growth Amazonian forests play a fundamental role in the global climate and carbon cycle. Land use in old- growth tropical forests contributes to the accumulation of CO2 in the atmosphere and can alter the hydrological cycle, locally, regionally, and globally. Although deforestation, largely for the conversion of land to food crops or pastures, is the major destructive force in tropical forests worldwide (Houghton et al., 2000), other forest disturbances such as the selective logging have also increased in frequency and extent. Selective logging causes widespread collateral damage to remaining trees, sub-canopy vegetation, and soils, with impacts on hydrological processes, erosion, fire, carbon storage, and plant and animal species. In this study, the impact of selective logging on the carbon budget of the Brazil Amazon region is assessed with a new 3-D version of the Carnegie-Ames-Stanford Approach (CASA) ecosystem model, which features: (1) an alternative way of estimating absorbed photosynthetically-active radiation (APAR) by taking advantage of new high-resolution maps of forest canopy gap fraction; (2) a pulse disturbance module to realistically modify the carbon pools after timber harvest; (3) a regrowth module considering changes in community composition; and (4) a radiative transfer module for charactering the dynamic 3-D light environment above the canopy and within gaps after logging. The model was calibrated and validated with field observations from the Large-scale Biosphere Atmosphere Experiment (LBA) and its sensitivity was evaluated with Monte Carlo simulations. The impacts of selected logging on regional carbon budget of the Brazilian Amazon were then assessed under different future climate change scenarios. Results from this study quantify the gross and net carbon storage effects of widespread logging practices throughout the Brazilian Amazon.

  2. Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas.

    PubMed

    de Ceglia, Domenico; Vincenti, Maria Antonietta; De Angelis, Costantino; Locatelli, Andrea; Haus, Joseph W; Scalora, Michael

    2015-01-26

    We study optical second harmonic generation from metallic dipole antennas with narrow gaps. Enhancement of the fundamental-frequency field in the gap region plays a marginal role on conversion efficiency. In the symmetric configuration, i.e., with the gap located at the center of the antenna axis, reducing gap size induces a significant red-shift of the maximum conversion efficiency peak. Either enhancement or inhibition of second-harmonic emission may be observed as gap size is decreased, depending on the antenna mode excited at the harmonic frequency. The second-harmonic signal is extremely sensitive to the asymmetry introduced by gap's displacements with respect to the antenna center. In this situation, second-harmonic light can couple to all the available antenna modes. We perform a multipolar analysis that allows engineering the far-field SH emission and find that the interaction with quasi-odd-symmetry modes generates radiation patterns with a strong dipolar component.

  3. EO Underpinning the Quality of Ecosystem Services with Geospatial Data- The Case of Sustainable Forest Management

    NASA Astrophysics Data System (ADS)

    Crosthwaite Eyre, Charles

    2010-12-01

    Payments for Ecosystem Services (PES) is an exciting and expanding opportunity for sustainably managed forests. PES are derived from a range of ecosystem benefits from forests including climate change mitigation through afforestation and avoided deforestation, green power generation, wetland and watershed rehabilitation, water quality improvement, marine flood defence and the reduction in desertification and soil erosion. Forests are also the ancestral home to many vulnerable communities which need protection. Sustainable forest management plays a key role in many of these services which generates a potentially critical source of finance. However, for forests to realise revenues from these PES, they must meet demanding standards of project validation and service verification. They also need geospatial data to manage and monitor operational risk. In many cases the data is difficult to collect on the ground - in some cases impossible. This will create a new demand for data that must be impartial, timely, area wide, accurate and cost effective. This presentation will highlight the unique capacity of EO to provide these geospatial inputs required in the generation of PES from forestry and demonstrate products with practical examples.

  4. Net ecosystem carbon exchange of a dry temperate eucalypt forest

    NASA Astrophysics Data System (ADS)

    Hinko-Najera, Nina; Isaac, Peter; Beringer, Jason; van Gorsel, Eva; Ewenz, Cacilia; McHugh, Ian; Exbrayat, Jean-François; Livesley, Stephen J.; Arndt, Stefan K.

    2017-08-01

    Forest ecosystems play a crucial role in the global carbon cycle by sequestering a considerable fraction of anthropogenic CO2, thereby contributing to climate change mitigation. However, there is a gap in our understanding about the carbon dynamics of eucalypt (broadleaf evergreen) forests in temperate climates, which might differ from temperate evergreen coniferous or deciduous broadleaved forests given their fundamental differences in physiology, phenology and growth dynamics. To address this gap we undertook a 3-year study (2010-2012) of eddy covariance measurements in a dry temperate eucalypt forest in southeastern Australia. We determined the annual net carbon balance and investigated the temporal (seasonal and inter-annual) variability in and environmental controls of net ecosystem carbon exchange (NEE), gross primary productivity (GPP) and ecosystem respiration (ER). The forest was a large and constant carbon sink throughout the study period, even in winter, with an overall mean NEE of -1234 ± 109 (SE) g C m-2 yr-1. Estimated annual ER was similar for 2010 and 2011 but decreased in 2012 ranging from 1603 to 1346 g C m-2 yr-1, whereas GPP showed no significant inter-annual variability, with a mean annual estimate of 2728 ± 39 g C m-2 yr-1. All ecosystem carbon fluxes had a pronounced seasonality, with GPP being greatest during spring and summer and ER being highest during summer, whereas peaks in NEE occurred in early spring and again in summer. High NEE in spring was likely caused by a delayed increase in ER due to low temperatures. A strong seasonal pattern in environmental controls of daytime and night-time NEE was revealed. Daytime NEE was equally explained by incoming solar radiation and air temperature, whereas air temperature was the main environmental driver of night-time NEE. The forest experienced unusual above-average annual rainfall during the first 2 years of this 3-year period so that soil water content remained relatively high and the forest was not water limited. Our results show the potential of temperate eucalypt forests to sequester large amounts of carbon when not water limited. However, further studies using bottom-up approaches are needed to validate measurements from the eddy covariance flux tower and to account for a possible underestimation in ER due to advection fluxes.

  5. Forest structure and light regimes following moderate wind storms: implications for multi-cohort management.

    PubMed

    Hanson, Jacob J; Lorimer, Craig G

    2007-07-01

    Moderate-severity disturbances appear to be common throughout much of North America, but they have received relatively little detailed study compared to catastrophic disturbances and small gap dynamics. In this study, we examined the immediate impact of moderate-intensity wind storms on stand structure, opening sizes, and light regimes in three hemlock-hardwood forests of northeastern Wisconsin. These were compared to three stands managed by single-tree and group selection, the predominant forest management system for northern hardwoods in the region. Wind storms removed an average of 41% of the stand basal area, compared to 27% removed by uneven-aged harvests, but both disturbances removed trees from a wide range of size classes. The removal of nearly half of the large trees by wind in two old-growth stands caused partial retrogression to mature forest structure, which has been hypothesized to be a major disturbance pathway in the region. Wind storms resulted in residual stand conditions that were much more heterogeneous than in managed stands. Gap sizes ranged from less than 10 m2 up to 5000 m2 in wind-disturbed stands, whereas the largest opening observed in managed stands was only 200 m2. Wind-disturbed stands had, on average, double the available solar radiation at the forest floor compared to managed stands. Solar radiation levels were also more heterogeneous in wind-disturbed stands, with six times more variability at small scales (0.1225 ha) and 15 times more variability at the whole-stand level. Modification of uneven-aged management regimes to include occasional harvests of variable intensity and spatial pattern may help avoid the decline in species diversity that tends to occur after many decades of conventional uneven-aged management. At the same time, a multi-cohort system with these properties would retain a high degree of average crown cover, promote structural heterogeneity typical of old-growth forests, and maintain dominance by late-successional species.

  6. DNA barcoding of odonates from the Upper Plata basin: Database creation and genetic diversity estimation.

    PubMed

    Koroiva, Ricardo; Pepinelli, Mateus; Rodrigues, Marciel Elio; Roque, Fabio de Oliveira; Lorenz-Lemke, Aline Pedroso; Kvist, Sebastian

    2017-01-01

    We present a DNA barcoding study of Neotropical odonates from the Upper Plata basin, Brazil. A total of 38 species were collected in a transition region of "Cerrado" and Atlantic Forest, both regarded as biological hotspots, and 130 cytochrome c oxidase subunit I (COI) barcodes were generated for the collected specimens. The distinct gap between intraspecific (0-2%) and interspecific variation (15% and above) in COI, and resulting separation of Barcode Index Numbers (BIN), allowed for successful identification of specimens in 94% of cases. The 6% fail rate was due to a shared BIN between two separate nominal species. DNA barcoding, based on COI, thus seems to be a reliable and efficient tool for identifying Neotropical odonate specimens down to the species level. These results underscore the utility of DNA barcoding to aid specimen identification in diverse biological hotspots, areas that require urgent action regarding taxonomic surveys and biodiversity conservation.

  7. Next-generation simulation and optimization platform for forest management and analysis

    Treesearch

    Antti Makinen; Jouni Kalliovirta; Jussi Rasinmaki

    2009-01-01

    Late developments in the objectives and the data collection methods of forestry create new challenges and possibilities in forest management planning. Tools in forest management and forest planning systems must be able to make good use of novel data sources, use new models, and solve complex forest planning tasks at different scales. The SIMulation and Optimization (...

  8. Forest habitat conservation in Africa using commercially important insects.

    PubMed

    Raina, Suresh Kumar; Kioko, Esther; Zethner, Ole; Wren, Susie

    2011-01-01

    African forests, which host some of the world's richest biodiversity, are rapidly diminishing. The loss of flora and fauna includes economically and socially important insects. Honey bees and silk moths, grouped under commercial insects, are the source for insect-based enterprises that provide income to forest-edge communities to manage the ecosystem. However, to date, research output does not adequately quantify the impact of such enterprises on buffering forest ecosystems and communities from climate change effects. Although diseases/pests of honey bees and silk moths in Africa have risen to epidemic levels, there is a dearth of practical research that can be utilized in developing effective control mechanisms that support the proliferation of these commercial insects as pollinators of agricultural and forest ecosystems. This review highlights the critical role of commercial insects within the environmental complexity of African forest ecosystems, in modern agroindustry, and with respect to its potential contribution to poverty alleviation and pollination services. It identifies significant research gaps that exist in understanding how insects can be utilized as ecosystem health indicators and nurtured as integral tools for important socioeconomic and industrial gains.

  9. Forests and ozone: productivity, carbon storage, and feedbacks.

    PubMed

    Wang, Bin; Shugart, Herman H; Shuman, Jacquelyn K; Lerdau, Manuel T

    2016-02-22

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution.

  10. Changes in determinants of deforestation and forest degradation in Popa Mountain Park, Central Myanmar.

    PubMed

    Htun, Naing Zaw; Mizoue, Nobuya; Yoshida, Shigejiro

    2013-02-01

    Implementing effective conservation requires an understanding of factors affecting deforestation and forest degradation. Previous studies have investigated factors affecting deforestation, while few studies have examined the determinants of both of deforestation and forest degradation for more than one period. To address this gap, this study examined factors influencing deforestation and forest degradation during 1989-2000 and 2000-2005 in the Popa Mountain Park, Myanmar. We applied multinomial logistic regression (MNL) using land cover maps derived from Landsat images as the dependent variables as well as spatial and biophysical factors as the independent variables. The MNL models revealed influences of the determinants on deforestation and forest degradation changes over time. For example, during 1989-2000, deforestation from closed forest was positively correlated to the distance from the park boundary and was negatively correlated with distance from villages, roads, the park circular road, slope, western aspect and elevation. On the other hand, during 2000-2005, deforestation of closed forest was positively correlated with distance from villages, roads, the park circular road, slope and western aspect, and negatively correlated with distance from the park boundary and elevation. Similar scenarios were observed for the deforestation of open forest and forest degradation of closed forest. The study also found most of the determinants influenced deforestation and forest degradation differently. The changes in determinants of deforestation and forest degradation over time might be attributable to the general decrease in resource availability and to the effect of conservation measures conducted by the park.

  11. Changes in Determinants of Deforestation and Forest Degradation in Popa Mountain Park, Central Myanmar

    NASA Astrophysics Data System (ADS)

    Htun, Naing Zaw; Mizoue, Nobuya; Yoshida, Shigejiro

    2013-02-01

    Implementing effective conservation requires an understanding of factors affecting deforestation and forest degradation. Previous studies have investigated factors affecting deforestation, while few studies have examined the determinants of both of deforestation and forest degradation for more than one period. To address this gap, this study examined factors influencing deforestation and forest degradation during 1989-2000 and 2000-2005 in the Popa Mountain Park, Myanmar. We applied multinomial logistic regression (MNL) using land cover maps derived from Landsat images as the dependent variables as well as spatial and biophysical factors as the independent variables. The MNL models revealed influences of the determinants on deforestation and forest degradation changes over time. For example, during 1989-2000, deforestation from closed forest was positively correlated to the distance from the park boundary and was negatively correlated with distance from villages, roads, the park circular road, slope, western aspect and elevation. On the other hand, during 2000-2005, deforestation of closed forest was positively correlated with distance from villages, roads, the park circular road, slope and western aspect, and negatively correlated with distance from the park boundary and elevation. Similar scenarios were observed for the deforestation of open forest and forest degradation of closed forest. The study also found most of the determinants influenced deforestation and forest degradation differently. The changes in determinants of deforestation and forest degradation over time might be attributable to the general decrease in resource availability and to the effect of conservation measures conducted by the park.

  12. Why do forest products become less available?A pan-tropical comparison of drivers of forest-resource degradation

    NASA Astrophysics Data System (ADS)

    Hermans-Neumann, Kathleen; Gerstner, Katharina; Geijzendorffer, Ilse R.; Herold, Martin; Seppelt, Ralf; Wunder, Sven

    2016-12-01

    Forest products provide an important source of income and wellbeing for rural smallholder communities across the tropics. Although tropical forest products frequently become over-exploited, only few studies explicitly address the dynamics of degradation in response to socio-economic drivers. Our study addresses this gap by analyzing the factors driving changes in tropical forest products in the perception of rural smallholder communities. Using the poverty and environment network global dataset, we studied recently perceived trends of forest product availability considering firewood, charcoal, timber, food, medicine, forage and other forest products. We looked at a pan-tropical sample of 233 villages with forest access. Our results show that 90% of the villages experienced declining availability of forest resources over the last five years according to the informants. Timber and fuelwood together with forest foods were featured as the most strongly affected, though with marked differences across continents. In contrast, availability of at least one main forest product was perceived to increase in only 39% of the villages. Furthermore, the growing local use of forest resources is seen as the main culprit for the decline. In villages with both growing forest resource use and immigration—vividly illustrating demographic pressures—the strongest forest resources degradation was observed. Conversely, villages with little or no population growth and a decreased use of forest resources were most likely to see significant forest-resource increases. Further, villages are less likely to perceive resource declines when local communities own a significant share of forest area. Our results thus suggest that perceived resource declines have only exceptionally triggered adaptations in local resource-use and management patterns that would effectively deal with scarcity. Hence, at the margin this supports neo-Malthusian over neo-Boserupian explanations of local resource-use dynamics.

  13. Retiring the Generation Gap: How Employees Young and Old Can Find Common Ground

    ERIC Educational Resources Information Center

    Deal, Jennifer J.

    2007-01-01

    How different are the generations, really? Everybody knows that the "generation gap" between younger and older people causes stress and frustration at work. Are the differences people complain about just a big misunderstanding, or are they real? And most important, how can one use similarities and differences among the generations to be more…

  14. Closing the Social Class Achievement Gap for First-Generation Students in Undergraduate Biology

    ERIC Educational Resources Information Center

    Harackiewicz, Judith M.; Canning, Elizabeth A.; Tibbetts, Yoi; Giffen, Cynthia J.; Blair, Seth S.; Rouse, Douglas I.; Hyde, Janet S.

    2014-01-01

    Many students start college intending to pursue a career in the biosciences, but too many abandon this goal because they struggle in introductory biology. Interventions have been developed to close achievement gaps for underrepresented minority students and women, but no prior research has attempted to close the gap for first-generation students,…

  15. Leaky nitrogen cycle in pristine African montane rainforest soil

    NASA Astrophysics Data System (ADS)

    Rütting, Tobias; Cizungu Ntaboba, Landry; Roobroeck, Dries; Bauters, Marijn; Huygens, Dries; Boeckx, Pascal

    2015-10-01

    Many pristine humid tropical forests show simultaneously high nitrogen (N) richness and sustained loss of bioavailable N forms. To better understand this apparent upregulation of the N cycle in tropical forests, process-based understanding of soil N transformations, in geographically diverse locations, remains paramount. Field-based evidence is limited and entirely lacking for humid tropical forests on the African continent. This study aimed at filling both knowledge gaps by monitoring N losses and by conducting an in situ 15N labeling experiment in the Nyungwe tropical montane forest in Rwanda. Here we show that this tropical forest shows high nitrate (NO3-) leaching losses, confirming findings from other parts of the world. Gross N transformation rates point to an open soil N cycle with mineralized N nitrified rather than retained via immobilization; gross immobilization of NH4+ and NO3- combined accounted for 37% of gross mineralization, and plant N uptake is dominated by ammonium (NH4+). This study provided new process understanding of soil N cycling in humid tropical forests and added geographically independent evidence that humid tropical forests are characterized by soil N dynamics and N inputs sustaining bioavailable N loss.

  16. Experimental investigations of argon spark gap recovery times by developing a high voltage double pulse generator.

    PubMed

    Reddy, C S; Patel, A S; Naresh, P; Sharma, Archana; Mittal, K C

    2014-06-01

    The voltage recovery in a spark gap for repetitive switching has been a long research interest. A two-pulse technique is used to determine the voltage recovery times of gas spark gap switch with argon gas. First pulse is applied to the spark gap to over-volt the gap and initiate the breakdown and second pulse is used to determine the recovery voltage of the gap. A pulse transformer based double pulse generator capable of generating 40 kV peak pulses with rise time of 300 ns and 1.5 μs FWHM and with a delay of 10 μs-1 s was developed. A matrix transformer topology is used to get fast rise times by reducing L(l)C(d) product in the circuit. Recovery Experiments have been conducted for 2 mm, 3 mm, and 4 mm gap length with 0-2 bars pressure for argon gas. Electrodes of a sparkgap chamber are of rogowsky profile type, made up of stainless steel material, and thickness of 15 mm are used in the recovery study. The variation in the distance and pressure effects the recovery rate of the spark gap. An intermediate plateu is observed in the spark gap recovery curves. Recovery time decreases with increase in pressure and shorter gaps in length are recovering faster than longer gaps.

  17. High-voltage pulse generator developed for wide-gap spark chambers

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Walschon, E. G.

    1968-01-01

    Low-inductance, high-capacitance Marx pulse generator provides for minimization of internal inductance and suppression of external electromagnetic radiation. The spark gaps of the generator are enclosed in a pressurized nitrogen atmosphere which allows the charging voltage to be varied by changing the nitrogen pressure.

  18. Biological effects of carbon nanotubes generated in forest wildfire ecosystems rich in resinous trees on native plants

    PubMed Central

    Dasgupta-Schubert, Nabanita; Borjas-García, Salomón; Tiwari, DK; Paraguay-Delgado, Francisco; Jiménez-Sandoval, Sergio; Alonso-Nuñez, Gabriel; Gómez-Romero, Mariela; Lindig-Cisneros, Roberto; Reyes De la Cruz, Homero

    2017-01-01

    Carbon nanotubes (CNTs) have a broad range of applications and are generally considered human-engineered nanomaterials. However, carbon nanostructures have been found in ice cores and oil wells, suggesting that nature may provide appropriate conditions for CNT synthesis. During forest wildfires, materials such as turpentine and conifer tissues containing iron under high temperatures may create chemical conditions favorable for CNT generation, similar to those in synthetic methods. Here, we show evidence of naturally occurring multiwalled carbon nanotubes (MWCNTs) produced from Pinus oocarpa and Pinus pseudostrobus, following a forest wildfire. The MWCNTs showed an average of 10 walls, with internal diameters of ∼2.5 nm and outer diameters of ∼14.5 nm. To verify whether MWCNT generation during forest wildfires has a biological effect on some characteristic plant species of these ecosystems, germination and development of seedlings were conducted. Results show that the utilization of comparable synthetic MWCNTs increased seed germination rates and the development of Lupinus elegans and Eysenhardtia polystachya, two plants species found in the burned forest ecosystem. The finding provides evidence that supports the generation and possible ecological functions of MWCNTs in nature. PMID:28828256

  19. Biological effects of carbon nanotubes generated in forest wildfire ecosystems rich in resinous trees on native plants.

    PubMed

    Lara-Romero, Javier; Campos-García, Jesús; Dasgupta-Schubert, Nabanita; Borjas-García, Salomón; Tiwari, D K; Paraguay-Delgado, Francisco; Jiménez-Sandoval, Sergio; Alonso-Nuñez, Gabriel; Gómez-Romero, Mariela; Lindig-Cisneros, Roberto; Reyes De la Cruz, Homero; Villegas, Javier A

    2017-01-01

    Carbon nanotubes (CNTs) have a broad range of applications and are generally considered human-engineered nanomaterials. However, carbon nanostructures have been found in ice cores and oil wells, suggesting that nature may provide appropriate conditions for CNT synthesis. During forest wildfires, materials such as turpentine and conifer tissues containing iron under high temperatures may create chemical conditions favorable for CNT generation, similar to those in synthetic methods. Here, we show evidence of naturally occurring multiwalled carbon nanotubes (MWCNTs) produced from Pinus oocarpa and Pinus pseudostrobus, following a forest wildfire. The MWCNTs showed an average of 10 walls, with internal diameters of ∼2.5 nm and outer diameters of ∼14.5 nm. To verify whether MWCNT generation during forest wildfires has a biological effect on some characteristic plant species of these ecosystems, germination and development of seedlings were conducted. Results show that the utilization of comparable synthetic MWCNTs increased seed germination rates and the development of Lupinus elegans and Eysenhardtia polystachya , two plants species found in the burned forest ecosystem. The finding provides evidence that supports the generation and possible ecological functions of MWCNTs in nature.

  20. Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Huth, A.

    2010-08-01

    The canopy height h of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or LIDAR. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground life biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI) and identify how correlation and uncertainty vary for two different spatial scales. The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. In both undisturbed and disturbed forests AGB can be expressed as a power-law function of canopy height h (AGB = a · hb) with an r2 ~ 60% if data are analysed in a spatial resolution of 20 m × 20 m (0.04 ha, also called plot size). The correlation coefficient of the regression is becoming significant better in the disturbed forest sites (r2 = 91%) if data are analysed hectare wide. There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2 ~ 60%) between AGB and the area fraction of gaps in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot (PSP) data from the same region and with the large-scale forest inventory in Lambir. We conclude that the spaceborne remote sensing techniques such as LIDAR and radar interferometry have the potential to quantify the carbon contained in the vegetation, although this calculation contains due to the heterogeneity of the forest landscape structural uncertainties which restrict future applications to spatial averages of about one hectare in size. The uncertainties in AGB for a given canopy height are here 20-40% (95% confidence level) corresponding to a standard deviation of less than ± 10%. This uncertainty on the 1 ha-scale is much smaller than in the analysis of 0.04 ha-scale data. At this small scale (0.04 ha) AGB can only be calculated out of canopy height with an uncertainty which is at least of the magnitude of the signal itself due to the natural spatial heterogeneity of these forests.

  1. Further Studies of Forest Structure Parameter Retrievals Using the Echidna® Ground-Based Lidar

    NASA Astrophysics Data System (ADS)

    Strahler, A. H.; Yao, T.; Zhao, F.; Yang, X.; Schaaf, C.; Wang, Z.; Li, Z.; Woodcock, C. E.; Culvenor, D.; Jupp, D.; Newnham, G.; Lovell, J.

    2012-12-01

    Ongoing work with the Echidna® Validation Instrument (EVI), a full-waveform, ground-based scanning lidar (1064 nm) developed by Australia's CSIRO and deployed by Boston University in California conifers (2008) and New England hardwood and softwood (conifer) stands (2007, 2009, 2010), confirms the importance of slope correction in forest structural parameter retrieval; detects growth and disturbance over periods of 2-3 years; provides a new way to measure the between-crown clumping factor in leaf area index retrieval using lidar range; and retrieves foliage profiles with more lower-canopy detail than a large-footprint aircraft scanner (LVIS), while simulating LVIS foliage profiles accurately from a nadir viewpoint using a 3-D point cloud. Slope correction is important for accurate retrieval of forest canopy structural parameters, such as mean diameter at breast height (DBH), stem count density, basal area, and above-ground biomass. Topographic slope can induce errors in parameter retrievals because the horizontal plane of the instrument scan, which is used to identify, measure, and count tree trunks, will intersect trunks below breast height in the uphill direction and above breast height in the downhill direction. A test of three methods at southern Sierra Nevada conifer sites improved the range of correlations of these EVI-retrieved parameters with field measurements from 0.53-0.68 to 0.85-0.93 for the best method. EVI scans can detect change, including both growth and disturbance, in periods of two to three years. We revisited three New England forest sites scanned in 2007-2009 or 2007-2010. A shelterwood stand at the Howland Experimental Forest, Howland, Maine, showed increased mean DBH, above-ground biomass and leaf area index between 2007 and 2009. Two stands at the Harvard Forest, Petersham, Massachusetts, suffered reduced leaf area index and reduced stem count density as the result of an ice storm that damaged the stands. At one stand, broken tops were visible in the 2010 point cloud canopy reconstruction. A new method for retrieval of the forest canopy between-crown clumping index from angular gaps in hemispherically-projected EVI data traces gaps as they narrow with range from the instrument, thus providing the approximate physical size, rather than angular size, of the gaps. In applying this method to a range of sites in the southern Sierra Nevada, element clumping index values are lower (more between-crown clumping effect) in more open stands, providing improved results as compared to conventional hemispherical photography. In dense stands with fewer gaps, the clumping index values were closer. Foliage profiles retrieved from EVI scans at five Sierra Nevada sites are closely correlated with those of the airborne Lidar Vegetation Imaging Sensor (LVIS) when averaged over a diameter of 100 m. At smaller diameters, the EVI scans have more detail in lower canopy layers and the LVIS and EVI foliage profiles are more distinct. Foliage profiles derived from processing 3-D site point clouds with a nadir view match the LVIS foliage profiles more closely than profiles derived from EVI in scan mode. Removal of terrain effects significantly enhances the match with LVIS profiles. This research was supported by the US National Science Foundation under grant MRI DBI-0923389.

  2. Apparatus and method for tuned unsteady flow purging of high pulse rate spark gaps

    DOEpatents

    Thayer, III, William J.

    1990-01-01

    A spark gap switch apparatus is disclosed which is capable of operating at a high pulse rate which comprises an insulated housing; a pair of spaced apart electrodes each having one end thereof within a first bore formed in the housing and defining a spark gap therebetween; a pressure wave reflector in the first bore in the housing and spaced from the spark gap and capable of admitting purge flow; and a second enlarged bore contiguous with the first bore and spaced from the opposite side of the spark gap; whereby pressure waves generated during discharge of a spark across the spark gap will reflect off the wave reflector and back from the enlarged bore to the spark gap to clear from the spark gap hot gases residues generated during the discharge and simultaneously restore the gas density and pressure in the spark gap to its initial value.

  3. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation.

    PubMed

    Asner, G P; Martin, R E; Knapp, D E; Tupayachi, R; Anderson, C B; Sinca, F; Vaughn, N R; Llactayo, W

    2017-01-27

    Functional biogeography may bridge a gap between field-based biodiversity information and satellite-based Earth system studies, thereby supporting conservation plans to protect more species and their contributions to ecosystem functioning. We used airborne laser-guided imaging spectroscopy with environmental modeling to derive large-scale, multivariate forest canopy functional trait maps of the Peruvian Andes-to-Amazon biodiversity hotspot. Seven mapped canopy traits revealed functional variation in a geospatial pattern explained by geology, topography, hydrology, and climate. Clustering of canopy traits yielded a map of forest beta functional diversity for land-use analysis. Up to 53% of each mapped, functionally distinct forest presents an opportunity for new conservation action. Mapping functional diversity advances our understanding of the biosphere to conserve more biodiversity in the face of land use and climate change. Copyright © 2017, American Association for the Advancement of Science.

  4. Next-generation forest change mapping across the United States: the landscape change monitoring system (LCMS)

    Treesearch

    Sean P. Healey; Warren B. Cohen; Yang Zhiqiang; Ken Brewer; Evan Brooks; Noel Gorelick; Mathew Gregory; Alexander Hernandez; Chengquan Huang; Joseph Hughes; Robert Kennedy; Thomas Loveland; Kevin Megown; Gretchen Moisen; Todd Schroeder; Brian Schwind; Stephen Stehman; Daniel Steinwand; James Vogelmann; Curtis Woodcock; Limin Yang; Zhe Zhu

    2015-01-01

    Forest change information is critical in forest planning, ecosystem modeling, and in updating forest condition maps. The Landsat satellite platform has provided consistent observations of the world’s ecosystems since 1972. A number of innovative change detection algorithms have been developed to use the Landsat archive to identify and characterize forest change. The...

  5. Use of LIDAR for forest inventory and forest management application

    Treesearch

    Birgit Peterson; Ralph Dubayah; Peter Hyde; Michelle Hofton; J. Bryan Blair; JoAnn Fites-Kaufman

    2007-01-01

    A significant impediment to forest managers has been the difficulty in obtaining large-area forest structure and fuel characteristics at useful resolutions and accuracies. This paper demonstrates how LIDAR data were used to predict canopy bulk density (CBD) and canopy base height (CBH) for an area in the Sierra National Forest. The LIDAR data were used to generate maps...

  6. Turning data into knowledge for over 50 years: USDA Forest Service research on the Penobscot Experimental Forest

    Treesearch

    Laura S. Kenefic; Paul E. Sendak; John C. Brissette

    2006-01-01

    Scientists from the Northeastern Research Station of the USDA Forest Service have been conducting long-term silvicultural research on the Penobscot Experimental Forest (PEF) in Maine since the early 1950s. The core experiment, which includes 10 replicated treatments, has generated an extensive dataset on forest response to both silvicultural treatments and exploitative...

  7. Small-area estimation of forest attributes within fire boundaries

    Treesearch

    T. Frescino; G. Moisen; K. Adachi; J. Breidt

    2014-01-01

    Wildfires are gaining more attention every year as they burn more frequently, more intensely, and across larger landscapes. Generating timely estimates of forest resources within fire perimeters is important for land managers to quickly determine the impact of fi res on U.S. forests. The U.S. Forest Service’s Forest Inventory and Analysis (FIA) program needs tools to...

  8. The effects of cleared larch canopy and nitrogen supply on gas exchange and leaf traits in deciduous broad-leaved tree seedlings.

    PubMed

    Kitaoka, Satoshi; Watanabe, Yoko; Koike, Takayoshi

    2009-12-01

    To understand the leaf-level responses of successional tree species to forest gap formation and nitrogen deposition, we performed canopy clearing and nitrogen-amendment treatments in larch plantations and investigated the changes in the light-use characteristics and the leaf structure of the invading deciduous broad-leaved tree seedlings. We hypothesized that the responses of the tree seedlings to clearing and nitrogen input would reflect specific traits in the shoot development that would be related to the species-specific successional characteristics. The gap phase species Magnolia hyporeuca Siebold et Zucc. and the mid-late successional tree species Quercus mongolica Fischer ex Ledeb. var. crispula (Blume) Ohashi., which grow in or near the forest gaps, had higher light-saturated photosynthetic rates (Psat), enhanced mesophyll surface area (Smes) and increased leaf mass per area (LMA) under both the clearing treatment and the clearing with nitrogen-amendment treatment. These two species therefore increased their Psat via an increase in Smes and LMA. The LMA values of the late successional tree species Prunus ssiori F. Schmidt and Carpinus cordata Blume, which grow in the forest understory, were enhanced by the clearing treatment. However, they displayed lesser responses to the clearing treatment under which there were no marked increases in Psat or Smes values in the second year. These results indicate distinct and varied responses to disturbance regimes among the four seral tree seedlings. The Psat value largely increased in line with the increase in Smes value during the second year in M. hyporeuca and Q. mongolica. The nitrogen supply accelerated the change in LMA and increased the Smes value in the leaves of Q. mongolica.

  9. Forest structure of oak plantations after silvicultural treatment to enhance habitat for wildlife

    USGS Publications Warehouse

    Twedt, Daniel J.; Phillip, Cherrie-Lee P.; Guilfoyle, Michael P.; Wilson, R. Randy; Schweitzer, Callie Jo; Clatterbuck, Wayne K.; Oswalt, Christopher M.

    2016-01-01

    During the past 30 years, thousands of hectares of oak-dominated bottomland hardwood plantations have been planted on agricultural fields in the Mississippi Alluvial Valley. Many of these plantations now have closed canopies and sparse understories. Silvicultural treatments could create a more heterogeneous forest structure, with canopy gaps and increased understory vegetation for wildlife. Lack of volume sufficient for commercial harvest in hardwood plantations has impeded treatments, but demand for woody biomass for energy production may provide a viable means to introduce disturbance beneficial for wildlife. We assessed forest structure in response to prescribed pre-commercial perturbations in hardwood plantations resulting from silvicultural treatments: 1) row thinning by felling every fourth planted row; 2) multiple patch cuts with canopy gaps of <1 0.25 – 2 ha; and 3) tree removal on intersecting corridors diagonal to planted rows. These 3 treatments, and an untreated control, were applied to oak plantations (20 - 30 years post-planting) on three National Wildlife Refuges (Cache River, AR; Grand Cote, LA; and Yazoo, MS) during summer 2010. We sampled habitat using fixed-radius plots in 2009 (pre-treatment) and in 2012 (post-treatment) at random locations. Retained basal area was least in diagonal corridor treatments but had greater variance in patch-cut treatments. All treatments increased canopy openness and the volume of coarse woody debris. Occurrence of birds using early successional habitats was greater on sites treated with patch cuts and diagonal intersections. Canopy openings on row-thinned stands are being filled by lateral crown growth of retained trees whereas patch cut and diagonal intersection gaps appear likely to be filled by regenerating saplings.

  10. Tree seedlings respond to both light and soil nutrients in a Patagonian evergreen-deciduous forest.

    PubMed

    Promis, Alvaro; Allen, Robert B

    2017-01-01

    Seedlings of co-occurring species vary in their response to resource availability and this has implications for the conservation and management of forests. Differential shade-tolerance is thought to influence seedling performance in mixed Nothofagus betuloides-Nothofagus pumilio forests of Patagonia. However, these species also vary in their soil nutrient requirements. To determine the effects of light and soil nutrient resources on small seedlings we examined responses to an experimental reduction in canopy tree root competition through root trenching and restricting soil nutrient depletion through the addition of fertilizer. To understand the effect of light these treatments were undertaken in small canopy gaps and nearby beneath undisturbed canopy with lower light levels. Seedling diameter growth was greater for N. pumilio and height growth was greater for N. betuloides. Overall, diameter and height growth were greater in canopy gaps than beneath undisturbed canopy. Such growths were also greater with fertilizer and root trenching treatments, even beneath undisturbed canopy. Seedling survival was lower under such treatments, potentially reflecting thinning facilitated by resource induced growth. Finally, above-ground biomass did not vary among species although the less shade tolerant N. pumilio had higher below-ground biomass and root to shoot biomass ratio than the more shade tolerant N. betuloides. Above- and below-ground biomass were higher in canopy gaps so that the root to shoot biomass ratio was similar to that beneath undisturbed canopy. Above-ground biomass was also higher with fertilizer and root trenching treatments and that lowered the root to shoot biomass ratio. Restricting soil nutrient depletion allowed seedlings of both species to focus their responses above-ground. Our results support a view that soil nutrient resources, as well as the more commonly studied light resources, are important to seedlings of Nothofagus species occurring on infertile soils.

  11. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales.

    PubMed

    Stickler, Claudia M; Coe, Michael T; Costa, Marcos H; Nepstad, Daniel C; McGrath, David G; Dias, Livia C P; Rodrigues, Hermann O; Soares-Filho, Britaldo S

    2013-06-04

    Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests.

  12. Canopy rainfall partitioning across an urbanization gradient in forest structure as characterized by terrestrial LiDAR

    NASA Astrophysics Data System (ADS)

    Mesta, D. C.; Van Stan, J. T., II; Yankine, S. A.; Cote, J. F.; Jarvis, M. T.; Hildebrandt, A.; Friesen, J.; Maldonado, G.

    2017-12-01

    As urbanization expands, greater forest area is shifting from natural stand structures to urban stand structures, like forest fragments and landscaped tree rows. Changes in forest canopy structure have been found to drastically alter the amount of rainwater reaching the surface. However, stormwater management models generally treat all forest structures (beyond needle versus broadleaved) similarly. This study examines the rainfall partitioning of Pinus spp. canopies along a natural-to-urban forest gradient and compares these to canopy structural measurements using terrestrial LiDAR. Throughfall and meteorological observations were also used to estimate parameters of the commonly-used Gash interception model. Preliminary findings indicate that as forest structure changed from natural, closed canopy conditions to semi-closed canopy fragments and, ultimately, to exposed urban landscaping tree rows, the interchange between throughfall and rainfall interception also changed. This shift in partitioning between throughfall and rainfall interception may be linked to intuitive parameters, like canopy closure and density, as well as more complex metrics, like the fine-scale patterning of gaps (ie, lacunarity). Thus, results indicate that not all forests of the same species should be treated the same by stormwater models. Rather, their canopy structural characteristics should be used to vary their hydrometeorological interactions.

  13. Aboveground-belowground biodiversity linkages differ in early and late successional temperate forests

    PubMed Central

    Li, Hui; Wang, Xugao; Liang, Chao; Hao, Zhanqing; Zhou, Lisha; Ma, Sam; Li, Xiaobin; Yang, Shan; Yao, Fei; Jiang, Yong

    2015-01-01

    Understanding ecological linkages between above- and below-ground biota is critical for deepening our knowledge on the maintenance and stability of ecosystem processes. Nevertheless, direct comparisons of plant-microbe diversity at the community level remain scarce due to the knowledge gap between microbial ecology and plant ecology. We compared the α- and β- diversities of plant and soil bacterial communities in two temperate forests that represented early and late successional stages. We documented different patterns of aboveground-belowground diversity relationships in these forests. We observed no linkage between plant and bacterial α-diversity in the early successional forest, and even a negative correlation in the late successional forest, indicating that high bacterial α-diversity is not always linked to high plant α-diversity. Beta-diversity coupling was only found at the late successional stage, while in the early successional forest, the bacterial β-diversity was closely correlated with soil property distances. Additionally, we showed that the dominant competitive tree species in the late successional forest may play key roles in driving forest succession by shaping the soil bacterial community in the early successional stage. This study sheds new light on the potential aboveground-belowground linkage in natural ecosystems, which may help us understand the mechanisms that drive ecosystem succession. PMID:26184121

  14. Remote plasma enhanced chemical vapor deposition of GaP with in situ generation of phosphine precursors

    NASA Technical Reports Server (NTRS)

    Choi, S. W.; Lucovsky, G.; Bachmann, Klaus J.

    1993-01-01

    Thin homoepitaxial films of gallium phosphide (GaP) were grown by remote plasma enhanced chemical vapor deposition utilizing in situ generated phosphine precursors. The GaP forming reaction is kinetically controlled with an activation energy of 0.65 eV. The increase of the growth rate with increasing radio frequency (rf) power between 20 and 100 W is due to the combined effects of increasingly complete excitation and the spatial extension of the glow discharge toward the substrate, however, the saturation of the growth rate at even higher rf power indicates the saturation of the generation rate of phosphine precursors at this condition. Slight interdiffusion of P into Si and Si into GaP is indicated from GaP/Si heterostructures grown under similar conditions as the GaP homojunctions.

  15. Remote plasma enhanced chemical vapor deposition of GaP with in situ generation of phosphine precursors

    NASA Technical Reports Server (NTRS)

    Choi, S. W.; Lucovsky, G.; Bachmann, K. J.

    1992-01-01

    Thin homoepitaxial films of gallium phosphide (GaP) have been grown by remote plasma enhanced chemical vapor deposition utilizing in situ-generated phosphine precursors. The GaP forming reaction is kinetically controlled with an activation energy of 0.65 eV. The increase of the growth rate with increasing radio frequency (RF) power between 20 and 100 W is due to the combined effects of increasingly complete excitation and the spatial extension of the glow discharge toward the substrate; however, the saturation of the growth rate at even higher RF power indicates the saturation of the generation rate of phosphine precursors at this condition. Slight interdiffusion of P into Si and Si into GaP is indicated from GaP/Si heterostructures grown under similar conditions as the GaP homojunctions.

  16. Annual Dynamics of Forest Areas in South America during 2007-2010 at 50-m Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Xiao, X.; Dong, J.; Zhou, Y.; Wang, J.; Doughty, R.; Chen, Y.; Zou, Z.; Moore, B., III

    2017-12-01

    The user community has an urgent need for high accuracy tropical forest distribution and spatio-temporal changes since tropical forests are facing defragmentation and persistent clouds. In this study, we selected South America as a hotspot and presented a robust approach to map annual forests during 2007-2010 based on the coupled greenness-relevant MOD13Q1 NDVI and structure/biomass-relevant ALOS PALSAR time series data. We analyzed the consistency and uncertainty among eight major forest maps at continental, country, and pixel scales. The 50-m PALSAR/MODIS forest area in South America was about 8.63×106 km2 in 2010. Large differences in total forest area (8.2×106 km2-12.7×106 km2) existed among these forest products. Forest products generated under a similar forest definition had similar or even larger variation than those generated under differing forest definitions. One needs to consider leaf area index as an adjusting factor and use much higher threshold values in the VCF datasets to estimate forest cover. Analyses of PALSAR/MODIS forest maps showed a relatively small and equivalent rate of loss (3.2×104 km2 year-1) in net forest cover to that of FAO FRA (3.3×104 km2 year-1). PALSAR/MODIS forest maps showed that more and more deforestation occurred in the intact forest areas. The rate of forest loss (1.95×105 km2 year-1) was higher than that of Global Forest Watch (0.81×105 km2 year-1). Caution should be used when using the different forest maps to analyze forest loss and make policies regarding forest ecosystem services and biodiversity conservation.

  17. Forests of opportunities and mischief: disentangling the interactions between forests, parasites and immune responses.

    PubMed

    Renner, Swen C; Lüdtke, Bruntje; Kaiser, Sonja; Kienle, Julia; Schaefer, H Martin; Segelbacher, Gernot; Tschapka, Marco; Santiago-Alarcon, Diego

    2016-08-01

    Habitat characteristics determine the presence of individuals through resource availability, but at the same time, such features also influence the occurrence of parasites. We analyzed how birds respond to changes in interior forest structures, to forest management regimes, and to the risk of haemosporidian infections. We captured and took blood samples from blackcaps (Sylvia atricapilla) and chaffinches (Fringilla coelebs) in three different forest types (beech, mixed deciduous, spruce). We measured birds' body asymmetries, detected avian haemosporidians, and counted white blood cells as an immune measure of each individual per forest type. We used, to our knowledge for the first time, continuous forest structural parameters to quantify habitat structure, and found significant effects of habitat structure on parasite prevalence that previously have been undetected. We found three times higher prevalence for blackcaps compared with chaffinches. Parasite intensity varied significantly within host species depending on forest type, being lowest in beech forests for both host species. Structurally complex habitats with a high degree of entropy had a positive effect on the likelihood of acquiring an infection, but the effect on prevalence was negative for forest sections with a south facing aspect. For blackcaps, forest gaps also had a positive effect on prevalence, but canopy height had a negative one. Our results suggest that forest types and variations in forest structure influence the likelihood of acquiring an infection, which subsequently has an influence on host health status and body condition; however, responses to some environmental factors are host-specific. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  18. Modeling Coniferous Canopy Structure over Extensive Areas for Ray Tracing Simulations: Scaling from the Leaf to the Stand Level

    NASA Astrophysics Data System (ADS)

    van Aardt, J. A.; van Leeuwen, M.; Kelbe, D.; Kampe, T.; Krause, K.

    2015-12-01

    Remote sensing is widely accepted as a useful technology for characterizing the Earth surface in an objective, reproducible, and economically feasible manner. To date, the calibration and validation of remote sensing data sets and biophysical parameter estimates remain challenging due to the requirements to sample large areas for ground-truth data collection, and restrictions to sample these data within narrow temporal windows centered around flight campaigns or satellite overpasses. The computer graphics community have taken significant steps to ameliorate some of these challenges by providing an ability to generate synthetic images based on geometrically and optically realistic representations of complex targets and imaging instruments. These synthetic data can be used for conceptual and diagnostic tests of instrumentation prior to sensor deployment or to examine linkages between biophysical characteristics of the Earth surface and at-sensor radiance. In the last two decades, the use of image generation techniques for remote sensing of the vegetated environment has evolved from the simulation of simple homogeneous, hypothetical vegetation canopies, to advanced scenes and renderings with a high degree of photo-realism. Reported virtual scenes comprise up to 100M surface facets; however, due to the tighter coupling between hardware and software development, the full potential of image generation techniques for forestry applications yet remains to be fully explored. In this presentation, we examine the potential computer graphics techniques have for the analysis of forest structure-function relationships and demonstrate techniques that provide for the modeling of extremely high-faceted virtual forest canopies, comprising billions of scene elements. We demonstrate the use of ray tracing simulations for the analysis of gap size distributions and characterization of foliage clumping within spatial footprints that allow for a tight matching between characteristics derived from these virtual scenes and typical pixel resolutions of remote sensing imagery.

  19. Mangrove ecosystems under climate change

    USGS Publications Warehouse

    Jennerjahn, T.C.; Gilman, E.; Krauss, Ken W.; Lacerda, L.D.; Nordhaus, I.; Wolanski, E.

    2017-01-01

    This chapter assesses the response of mangrove ecosystems to possible outcomes of climate change, with regard to the following categories: (i) distribution, diversity, and community composition, (ii) physiology of flora and fauna, (iii) water budget, (iv) productivity and remineralization, (v) carbon storage in biomass and sediments, and (vi) the filter function for elements beneficial or harmful to life. These categories are then used to identify the regions most vulnerable to climate change. The four most important factors determining the response of mangrove ecosystems to climate change are sea level rise, an increase in frequency and/or intensity of storms, increases in temperature, and aridity. While these changes may be beneficial for some mangrove forests at latitudinal distribution limits, they will threaten forest structure and functions and related ecosystem services in most cases. The interaction of climate change with human interventions is discussed, as well as the effects on ecosystem services including possible adaptation and management options. The chapter closes with an outlook on knowledge gaps and priority research needed to fill these gaps.

  20. An assessment of forest landowner interest in selling forest carbon credits in the Lake States, USA

    Treesearch

    Kristell A. Miller; Stephanie A. Snyder; Michael A. Kilgore

    2012-01-01

    The nation's family forest lands can be an important contributor to carbon sequestration efforts. Yet very little is known about how family forest landowners view programs that enable them to sell carbon credits generated from the growth of their forest and the compensation that would be required to encourage a meaningful level of participation. To address this...

  1. Application of an imputation method for geospatial inventory of forest structural attributes across multiple spatial scales in the Lake States, U.S.A

    NASA Astrophysics Data System (ADS)

    Deo, Ram K.

    Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.

  2. The forest inventory and analysis database description and users manual version 1.0

    Treesearch

    Patrick D. Miles; Gary J. Brand; Carol L. Alerich; Larry F. Bednar; Sharon W. Woudenberg; Joseph F. Glover; Edward N. Ezell

    2001-01-01

    Describes the structure of the Forest Inventory and Analysis Database (FIADB) and provides information on generating estimates of forest statistics from these data. The FIADB structure provides a consistent framework for storing forest inventory data across all ownerships across the entire United States. These data are available to the public.

  3. Solid Waste Management in Recreational Forest Areas.

    ERIC Educational Resources Information Center

    Spooner, Charles S.

    The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…

  4. A Guide to Assessing Urban Forests

    Treesearch

    David Nowak

    2013-01-01

    Urban forests provide numerous ecosystem services. To quantify these services and guide management to sustain these services for future generations, the structure or composition of the forest must be assessed. There are two basic ways of assessing the structure or composition of the urban forest: Bottom-up approach. Field-based assessments to measure the physical...

  5. Shade images of forested areas obtained from LANDSAT MSS data

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Yosio Edemir; Smith, James A.

    1989-01-01

    The pixel size in the present day Remote Sensing systems is large enough to include different types of land cover. Depending upon the target area, several components may be present within the pixel. In forested areas, generally, three main components are present: tree canopy, soil (understory), and shadow. The objective is to generate a shade (shadow) image of forested areas from multispectral measurements of LANDSAT MSS (Multispectral Scanner) data by implementing a linear mixing model, where shadow is considered as one of the primary components in a pixel. The shade images are related to the observed variation in forest structure, i.e., the proportion of inferred shadow in a pixel is related to different forest ages, forest types, and tree crown cover. The Constrained Least Squares (CLS) method is used to generate shade images for forest of eucalyptus and vegetation of cerrado using LANDSAT MSS imagery over Itapeva study area in Brazil. The resulted shade images may explain the difference on ages for forest of eucalyptus and the difference on three crown cover for vegetation of cerrado.

  6. An Optimization-Based System Model of Disturbance-Generated Forest Biomass Utilization

    ERIC Educational Resources Information Center

    Curry, Guy L.; Coulson, Robert N.; Gan, Jianbang; Tchakerian, Maria D.; Smith, C. Tattersall

    2008-01-01

    Disturbance-generated biomass results from endogenous and exogenous natural and cultural disturbances that affect the health and productivity of forest ecosystems. These disturbances can create large quantities of plant biomass on predictable cycles. A systems analysis model has been developed to quantify aspects of system capacities (harvest,…

  7. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions

    PubMed Central

    Hengl, Tomislav; Heuvelink, Gerard B. M.; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Shepherd, Keith D.; Sila, Andrew; MacMillan, Robert A.; Mendes de Jesus, Jorge; Tamene, Lulseged; Tondoh, Jérôme E.

    2015-01-01

    80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008–2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management—organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15–75% in Root Mean Squared Error (RMSE) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological knowledge from data rich countries to countries with limited soil data. PMID:26110833

  8. Consequences of hydraulic trait coordination and their associated uncertainties for tropical forest function

    NASA Astrophysics Data System (ADS)

    Christoffersen, B. O.; Xu, C.; Koven, C.; Fisher, R.; Knox, R. G.; Kueppers, L. M.; Chambers, J. Q.; McDowell, N.

    2017-12-01

    Recent syntheses of variation in woody plant traits have emphasized how hydraulic traits - those related to the acquisition, transport and retention of water across roots, stems and leaves - are coordinated along a limited set of dimensions or sequence of responses (Reich 2014, Bartlett et al. 2016). However, in many hydraulic trait-trait relationships, there is considerable residual variation, despite the fact that many bivariate relationships are statistically significant. In other instances, such as the relationship between root-stem-leaf vulnerability to embolism, data are so limited that testing the trait coordination hypothesis is not yet possible. The impacts on plant hydraulic function of competing hypotheses regarding trait coordination (or the lack thereof) and residual trait variation have not yet been comprehensively tested and thus remain unknown. We addressed this knowledge gap with a parameter sensitivity analysis using a plant hydraulics model in which all parameters are biologically-interpretable and measurable plant hydraulic traits, as embedded within a size- and demographically-structured ecosystem model, the `Functionally Assembled Terrestrial Ecosystem Simulator' (FATES). We focused on tropical forests, where co-existing species have been observed to possess large variability in their hydraulic traits. Assembling 10 distinct datasets of hydraulic traits of stomata, leaves, stems, and roots, we determined the best-fit theoretical distribution for each trait and quantified interspecific (between-species) trait-trait coordination in tropical forests as a rank correlation matrix. We imputed missing correlations with values based on competing hypotheses of trait coordination, such as coordinated shifts in embolism vulnerability from roots to shoots (the hydraulic fuse hypothesis). Based on the Fourier Amplitude Sensitivity Test and our correlation matrix, we generated thousands of parameter sets for an ensemble of hydraulics model simulations at a tropical forest site in central Amazonia. We explore the sensitivity of simulated leaf water potential and stem sap flux in the context of hypotheses of trait-trait coordination and their associated uncertainties.

  9. Cation export by overland flow in a recently burnt forest area in north-central Portugal.

    PubMed

    Machado, A I; Serpa, D; Ferreira, R V; Rodríguez-Blanco, M L; Pinto, R; Nunes, M I; Cerqueira, M A; Keizer, J J

    2015-08-15

    The current fire regime in the Mediterranean Basin constitutes a serious threat to natural ecosystems because it drastically enhances surface runoff and soil erosion in the affected areas. Besides soil particles themselves, soil cations can be lost by fire-enhanced overland flow, increasing the risk of fertility loss of the typically shallow and nutrient poor Mediterranean soils. Although the importance of cations for land-use sustainability is widely recognized, cation losses by post-fire runoff have received little research attention. The present study aimed to address this research gap by assessing total exports of Na(+), K(+), Ca(2+) and Mg(2+) in a recently burnt forest area in north-central Portugal. These exports were compared for two types of planted forest (eucalypt vs. maritime pine plantations), two types of parent materials (schist vs. granite) and for two spatial scales (micro-plot vs. hill slope). The study sites were a eucalypt plantation on granite (BEG), a eucalypt plantation on schist (BES) and a maritime pine plantation on schist (BPS). Overland flow samples were collected during the first six months after the wildfire. Cation losses differed strikingly between the two forest types on schist, being higher at the eucalypt than pine site. This difference was evident at both spatial scales, and probably due to the extensive cover of a needle cast from the scorched pine crowns. The role of parent material in cation export was less straightforward as it varied with spatial scale. Cation losses were higher for the eucalypt plantation on schist than for that on granite at the micro-plot scale, whereas the reverse was observed at the hill slope scale. Finally, cation yields were higher at the micro-plot than slope scale, in agreement with the general notion of scaling-effect in runoff generation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Functional Redundancy and Complementarities of Seed Dispersal by the Last Neotropical Megafrugivores

    PubMed Central

    Bueno, Rafael S.; Guevara, Roger; Ribeiro, Milton C.; Culot, Laurence; Bufalo, Felipe S.; Galetti, Mauro

    2013-01-01

    Background Functional redundancy has been debated largely in ecology and conservation, yet we lack detailed empirical studies on the roles of functionally similar species in ecosystem function. Large bodied frugivores may disperse similar plant species and have strong impact on plant recruitment in tropical forests. The two largest frugivores in the neotropics, tapirs (Tapirus terrestris) and muriquis (Brachyteles arachnoides) are potential candidates for functional redundancy on seed dispersal effectiveness. Here we provide a comparison of the quantitative, qualitative and spatial effects on seed dispersal by these megafrugivores in a continuous Brazilian Atlantic forest. Methodology/Principal Findings We found a low overlap of plant species dispersed by both muriquis and tapirs. A group of 35 muriquis occupied an area of 850 ha and dispersed 5 times more plant species, and 13 times more seeds than 22 tapirs living in the same area. Muriquis dispersed 2.4 times more seeds in any random position than tapirs. This can be explained mainly because seed deposition by muriquis leaves less empty space than tapirs. However, tapirs are able to disperse larger seeds than muriquis and move them into sites not reached by primates, such as large forest gaps, open areas and fragments nearby. Based on published information we found 302 plant species that are dispersed by at least one of these megafrugivores in the Brazilian Atlantic forest. Conclusions/Significance Our study showed that both megafrugivores play complementary rather than redundant roles as seed dispersers. Although tapirs disperse fewer seeds and species than muriquis, they disperse larger-seeded species and in places not used by primates. The selective extinction of these megafrugivores will change the spatial seed rain they generate and may have negative effects on the recruitment of several plant species, particularly those with large seeds that have muriquis and tapirs as the last living seed dispersers. PMID:23409161

  11. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions.

    PubMed

    Hengl, Tomislav; Heuvelink, Gerard B M; Kempen, Bas; Leenaars, Johan G B; Walsh, Markus G; Shepherd, Keith D; Sila, Andrew; MacMillan, Robert A; Mendes de Jesus, Jorge; Tamene, Lulseged; Tondoh, Jérôme E

    2015-01-01

    80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008-2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management--organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15-75% in Root Mean Squared Error (RMSE) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological knowledge from data rich countries to countries with limited soil data.

  12. Variability of carbon and water fluxes following climate extremes over a tropical forest in southwestern Amazonia.

    PubMed

    Zeri, Marcelo; Sá, Leonardo D A; Manzi, Antônio O; Araújo, Alessandro C; Aguiar, Renata G; von Randow, Celso; Sampaio, Gilvan; Cardoso, Fernando L; Nobre, Carlos A

    2014-01-01

    The carbon and water cycles for a southwestern Amazonian forest site were investigated using the longest time series of fluxes of CO2 and water vapor ever reported for this site. The period from 2004 to 2010 included two severe droughts (2005 and 2010) and a flooding year (2009). The effects of such climate extremes were detected in annual sums of fluxes as well as in other components of the carbon and water cycles, such as gross primary production and water use efficiency. Gap-filling and flux-partitioning were applied in order to fill gaps due to missing data, and errors analysis made it possible to infer the uncertainty on the carbon balance. Overall, the site was found to have a net carbon uptake of ≈5 t C ha(-1) year(-1), but the effects of the drought of 2005 were still noticed in 2006, when the climate disturbance caused the site to become a net source of carbon to the atmosphere. Different regions of the Amazon forest might respond differently to climate extremes due to differences in dry season length, annual precipitation, species compositions, albedo and soil type. Longer time series of fluxes measured over several locations are required to better characterize the effects of climate anomalies on the carbon and water balances for the whole Amazon region. Such valuable datasets can also be used to calibrate biogeochemical models and infer on future scenarios of the Amazon forest carbon balance under the influence of climate change.

  13. A Review and Evaluation of Forest Canopy Epiphyte Roles in the Partitioning and Chemical Alteration of Precipitation

    NASA Astrophysics Data System (ADS)

    Van Stan, J. T., II; Pypker, T. G.

    2015-12-01

    Interactions between precipitation and forest canopy elements (bark, leaves, and epiphytes) control the quantity, spatiotemporal patterning, and the chemical concentration, character and constituency of precipitation to soils. Canopy epiphytes are an element that exerts a range of storm-related hydrological and biogeochemical effects due to their diversity of morphological traits and nutrient acquisition mechanisms. We reviewed and evaluated the state of knowledge regarding epiphyte interactions with precipitation partitioning (into interception loss, throughfall, and stemflow) and the chemical alteration of net precipitation fluxes (throughfall and stemflow). As epiphyte species are quite diverse, this review categorized findings by common paraphyletic groups: lichens, bryophytes, and vascular epiphytes. Of these groups, vascular epiphytes have received the least attention and lichens the most. In general, epiphytes decrease throughfall and stemflow and increase interception loss. Epiphytes alter the spatiotemporal pattern of throughfall and increase the overall latent heat fluxes from the canopy. Epiphytes alter biogeochemical processes by impacting the transfer of solutes through the canopy; however, the change in solute concentration varies with epiphyte type and chemical species. We discuss several important knowledge gaps across all epiphyte groups. We also explore innovative methods that currently exist to confront these knowledge gaps and past techniques applied to gain our current understanding. Future research addressing the listed deficiencies will improve our knowledge of epiphyte roles in water and biogeochemical processes coupled within forest canopies—processes crucial to supporting microbe, plant, vertebrate and invertebrate communities within individual epiphytes/epiphyte assemblages, host trees, and even the forest ecosystem as a whole.

  14. Evaluation of Vertical Lacunarity Profiles in Forested Areas Using Airborne Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Székely, B.; Kania, A.; Standovár, T.; Heilmeier, H.

    2016-06-01

    The horizontal variation and vertical layering of the vegetation are important properties of the canopy structure determining the habitat; three-dimensional (3D) distribution of objects (shrub layers, understory vegetation, etc.) is related to the environmental factors (e.g., illumination, visibility). It has been shown that gaps in forests, mosaic-like structures are essential to biodiversity; various methods have been introduced to quantify this property. As the distribution of gaps in the vegetation is a multi-scale phenomenon, in order to capture it in its entirety, scale-independent methods are preferred; one of these is the calculation of lacunarity. We used Airborne Laser Scanning point clouds measured over a forest plantation situated in a former floodplain. The flat topographic relief ensured that the tree growth is independent of the topographic effects. The tree pattern in the plantation crops provided various quasi-regular and irregular patterns, as well as various ages of the stands. The point clouds were voxelized and layers of voxels were considered as images for two-dimensional input. These images calculated for a certain vicinity of reference points were taken as images for the computation of lacunarity curves, providing a stack of lacunarity curves for each reference points. These sets of curves have been compared to reveal spatial changes of this property. As the dynamic range of the lacunarity values is very large, the natural logarithms of the values were considered. Logarithms of lacunarity functions show canopy-related variations, we analysed these variations along transects. The spatial variation can be related to forest properties and ecology-specific aspects.

  15. Variability of Carbon and Water Fluxes Following Climate Extremes over a Tropical Forest in Southwestern Amazonia

    PubMed Central

    Zeri, Marcelo; Sá, Leonardo D. A.; Manzi, Antônio O.; Araújo, Alessandro C.; Aguiar, Renata G.; von Randow, Celso; Sampaio, Gilvan; Cardoso, Fernando L.; Nobre, Carlos A.

    2014-01-01

    The carbon and water cycles for a southwestern Amazonian forest site were investigated using the longest time series of fluxes of CO2 and water vapor ever reported for this site. The period from 2004 to 2010 included two severe droughts (2005 and 2010) and a flooding year (2009). The effects of such climate extremes were detected in annual sums of fluxes as well as in other components of the carbon and water cycles, such as gross primary production and water use efficiency. Gap-filling and flux-partitioning were applied in order to fill gaps due to missing data, and errors analysis made it possible to infer the uncertainty on the carbon balance. Overall, the site was found to have a net carbon uptake of ≈5 t C ha−1 year−1, but the effects of the drought of 2005 were still noticed in 2006, when the climate disturbance caused the site to become a net source of carbon to the atmosphere. Different regions of the Amazon forest might respond differently to climate extremes due to differences in dry season length, annual precipitation, species compositions, albedo and soil type. Longer time series of fluxes measured over several locations are required to better characterize the effects of climate anomalies on the carbon and water balances for the whole Amazon region. Such valuable datasets can also be used to calibrate biogeochemical models and infer on future scenarios of the Amazon forest carbon balance under the influence of climate change. PMID:24558378

  16. Riparian corridors enhance movement of a forest specialist bird in fragmented tropical forest.

    PubMed

    Gillies, Cameron S; St Clair, Colleen Cassady

    2008-12-16

    Riparian corridors and fencerows are hypothesized to increase the persistence of forest animals in fragmented landscapes by facilitating movement among suitable habitat patches. This function may be critically important for forest birds, which have declined dramatically in fragmented habitats. Unfortunately, direct evidence of corridor use has been difficult to collect at landscape scales and this limits support for corridors in conservation planning. Using telemetry and handheld GPS units, we examined the movement of forest birds by translocating territorial individuals of barred antshrikes (Thamnophilus doliatus; a forest specialist) and rufous-naped wrens (Campylorhynchus rufinucha; a forest generalist) 0.7-1.9 km from their territories in the highly fragmented tropical dry forest of Costa Rica. In each translocation, the directly intervening habitat comprised 1 of 3 treatments: forested riparian corridor, linear living fencerow, or open pasture. Antshrikes returned faster and with greater success in riparian corridors relative to pasture treatments. This species also traveled more directly in riparian corridor treatments, detoured to use forested routes in the other 2 treatments, and did not use fencerows even when they led directly to their home territories. By contrast, wrens were more likely to use fencerows when returning, and return time and success were equivalent among the 3 treatments. Both species crossed fewer gaps in tree cover during riparian corridor treatments than in fencerow or pasture treatments. We conclude that antshrikes, which may be representative of other forest specialists, use forested corridors for movement in this landscape and that fencerows are avoided as movement conduits.

  17. Historic Emissions from Deforestation and Forest Degradation in Mato Grosso, Brazil: 1. Source Data Uncertainties

    NASA Technical Reports Server (NTRS)

    Morton, Douglas C.; Sales, Marcio H.; Souza, Carlos M., Jr.; Griscom, Bronson

    2011-01-01

    Historic carbon emissions are an important foundation for proposed efforts to Reduce Emissions from Deforestation and forest Degradation and enhance forest carbon stocks through conservation and sustainable forest management (REDD+). The level of uncertainty in historic carbon emissions estimates is also critical for REDD+, since high uncertainties could limit climate benefits from mitigation actions. Here, we analyzed source data uncertainties based on the range of available deforestation, forest degradation, and forest carbon stock estimates for the Brazilian state of Mato Grosso during 1990-2008. Results: Deforestation estimates showed good agreement for multi-year trends of increasing and decreasing deforestation during the study period. However, annual deforestation rates differed by >20% in more than half of the years between 1997-2008, even for products based on similar input data. Tier 2 estimates of average forest carbon stocks varied between 99-192 Mg C/ha, with greatest differences in northwest Mato Grosso. Carbon stocks in deforested areas increased over the study period, yet this increasing trend in deforested biomass was smaller than the difference among carbon stock datasets for these areas. Conclusions: Patterns of spatial and temporal disagreement among available data products provide a roadmap for future efforts to reduce source data uncertainties for estimates of historic forest carbon emissions. Specifically, regions with large discrepancies in available estimates of both deforestation and forest carbon stocks are priority areas for evaluating and improving existing estimates. Full carbon accounting for REDD+ will also require filling data gaps, including forest degradation and secondary forest, with annual data on all forest transitions.

  18. Emergent central pattern generator behavior in gap-junction-coupled Hodgkin-Huxley style neuron model.

    PubMed

    Horn, Kyle G; Memelli, Heraldo; Solomon, Irene C

    2012-01-01

    Most models of central pattern generators (CPGs) involve two distinct nuclei mutually inhibiting one another via synapses. Here, we present a single-nucleus model of biologically realistic Hodgkin-Huxley neurons with random gap junction coupling. Despite no explicit division of neurons into two groups, we observe a spontaneous division of neurons into two distinct firing groups. In addition, we also demonstrate this phenomenon in a simplified version of the model, highlighting the importance of afterhyperpolarization currents (I(AHP)) to CPGs utilizing gap junction coupling. The properties of these CPGs also appear sensitive to gap junction conductance, probability of gap junction coupling between cells, topology of gap junction coupling, and, to a lesser extent, input current into our simulated nucleus.

  19. Autogenerator of beams of charged particles

    DOEpatents

    Adler, Richard J.; Mazarakis, Michael G.; Miller, Robert B.; Shope, Steven L.; Smith, David L.

    1986-01-01

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  20. Autogenerator of beams of charged particles

    DOEpatents

    Adler, R.J.; Mazarakis, M.G.; Miller, R.M.; Shope, S.L.; Smith, D.L.

    1983-10-31

    An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

  1. Technique for enhancing the power output of an electrostatic generator employing parametric resonance

    DOEpatents

    Post, Richard F.

    2016-02-23

    A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.

  2. Air-jet power ultrasonic field applied to electrical discharge

    NASA Astrophysics Data System (ADS)

    Balek, Rudolf; Pekarek, Stanislav

    2010-01-01

    We describe a new setup of the Hartmann air-jet ultrasonic generator combined with electrical discharge in the nozzle-resonator gap. Using the schlieren visualization of air jet and ultrasonic field we investigated the shape and structure of the discharge and we determined relationship among the acoustic field in the nozzle-resonator gap, generator ultrasonic emission and discharge behavior. Apart of the fact that the discharge in the nozzle-resonator gap is stabilized and becomes more uniform, it increases its volume when the generator works in the regime of ultrasonic emission. At the same time the discharge light emission distribution is more over uniform in the gap. In the regime without the ultrasonic emission the discharge light emission is fragmented. We also found that the impedance of the discharge is decreased in case when the generator works in the regime of ultrasonic emission.

  3. Did 250 years of forest management in Europe cool the climate?

    NASA Astrophysics Data System (ADS)

    Naudts, Kim; Chen, Yiying; McGrath, Matthew; Ryder, James; Valade, Aude; Otto, Juliane; Luyssaert, Sebastiaan

    2016-04-01

    Over the past two centuries European forest has evolved from being an over-exploited source of timber to a sustainably managed provider of diverse ecosystem services. Although this transition is often perceived as exemplary in resources management, the loss of unmanaged forest, the progressive shift from traditional coppice forestry to the current production-oriented management and the massive conversion of broadleaved to coniferous species are typically overlooked when assessing the impact of land-use change on climate. Here we present a study that addressed this gap by: (1) developing and reparameterizing the ORCHIDEE land surface model to simulate the biogeochemical and biophysical effects of forest management, (2) reconstructing the land-use history of Europe, accounting for changes in forest management and land cover. The model was coupled to the atmospheric model LMDz in a factorial simulation experiment to attribute climate change to global anthropogenic greenhouse gas emission and European land-use change since 1750 (i.e., afforestation, wood extraction and species conversion). We find that, despite considerable afforestation, Europe's forests failed to realize a net removal of CO2 from the atmosphere due to wood extraction. Moreover, biophysical changes due to the conversion of deciduous forest into coniferous forest have offset mitigation through the carbon cycle. Thus, two and a half centuries of forest management in Europe did not mitigate climate warming (Naudts et al., 2016). Naudts, K., Chen, Y., McGrath, M.J., Ryder, J., Valade, A., Otto, J., Luyssaert, S, Europe's forest management did not mitigate climate warming, Science, Accepted.

  4. REGENERATION IN GAP MODELS: PRIORITY ISSUES FOR STUDYING FOREST RESPONSES TO CLIMATE CHANGE. (R828785)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  5. Scarification and gap size have interacting effects on northern temperate seedling establishment

    Treesearch

    John L. Willis; Michael B. Walters; Kurt W. Gottschalk

    2015-01-01

    After decades focused on promoting economically valuable species, management of northern temperate forests has increasingly become focused on promoting tree species diversity. Unfortunately, many formerly common species that could contribute to diversity including yellow birch (Betula alleghaniensis Britton.), paper birch (Betula papyrifera...

  6. Community ecology neutral models and the topology of connectivity

    EPA Science Inventory

    This presentation will tie together two threads of past research. The first thread is research on biodiversity starting in the 1990s with the Biodiversity Research consortium initiated by EPA and the US Forest Service, and including the US Fish and Wildlife Service Gap Analysis ...

  7. Tree-cover and topography effects on local-infrasound propagation

    NASA Astrophysics Data System (ADS)

    McKenna, S. M.; Swearingen, M.; Ketcham, S.; White, M.

    2013-12-01

    Infrasound can propagate very long distances and remain at measurable levels. As a result infrasound sensing is used for remote monitoring in many applications. At local ranges terrain relief is capable of scattering and blocking the propagation and assessment of the influence of the presence or absence of forests on the propagation of infrasonic signals is necessary. Because the wavelengths of interest are much larger than the scale of individual components, the forest is modeled as a porous material. This approximation is developed starting with the Relaxation model of porous materials. This representation is then incorporated into a Crank-Nicholson method parabolic equation solver to determine the relative impacts of the physical parameters of a forest (trunk size and basal area), the presence of gaps/trees in otherwise continuous forest/open terrain, and the effects of meteorology coupled with the porous layer. Finally, the simulations are compared to experimental data from a 10.9 kg blast propagated 14.5 km. Comparison to the experimental data shows that appropriate inclusion of a forest layer along the propagation path provides a closer fit to the data than solely changing the ground type across the frequency range from 1-30 Hz. Spatially discontinuous tree cover is a novel undertaking with forested volumes represented as a flow-resisting porous material. With only terrain topography but without tree cover, the model has conformity with measured signals, but addition of treecover properties does not significantly improve this conformity, though this result is consistent with theoretical expectations for the specific central Mississippi forest densities modeled. This study found that continuous tracts of forest produce some sound enhancement for frequencies below 25 Hz, and additional attenuation between 25-50 Hz. These effects are stronger for forests with higher densities of trees present and decrease as forest density decreases. At distances several kilometers, small (up to 500 m) gaps in otherwise continuous forest or stands of trees in otherwise open areas have nearly negligible impacts. However, if the area of interest is close, say within 1 km, of such a change, or within the alternative medium, then the forest properties need to be considered. The effects of meteorology cannot be ignored, and they are coupled with the porous material properties. In upwind conditions, the forest's influence on the microclimate is stronger than the influence of including only a layer, while the opposite is generally true in the downwind condition. The porous layer representation of forests does provide some value in comparisons to experimental data. Particularly at frequencies above 5 Hz, the forest layer appears to have a ducting effect that effectively brings the predicted levels closer to the experimentally measured levels than does simply providing appropriate ground conditions. The method has been shown to work well, albeit with minimal impact in the case studied, in a Finite Difference Time Domain framework as well. While the method is flexible enough to accommodate modeling the entire trees instead of only trunks, the added benefit does not elicit sufficient improvements to accuracy to merit their inclusion.

  8. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.

    PubMed

    Hakkenberg, C R; Zhu, K; Peet, R K; Song, C

    2018-02-01

    The central role of floristic diversity in maintaining habitat integrity and ecosystem function has propelled efforts to map and monitor its distribution across forest landscapes. While biodiversity studies have traditionally relied largely on ground-based observations, the immensity of the task of generating accurate, repeatable, and spatially-continuous data on biodiversity patterns at large scales has stimulated the development of remote-sensing methods for scaling up from field plot measurements. One such approach is through integrated LiDAR and hyperspectral remote-sensing. However, despite their efficiencies in cost and effort, LiDAR-hyperspectral sensors are still highly constrained in structurally- and taxonomically-heterogeneous forests - especially when species' cover is smaller than the image resolution, intertwined with neighboring taxa, or otherwise obscured by overlapping canopy strata. In light of these challenges, this study goes beyond the remote characterization of upper canopy diversity to instead model total vascular plant species richness in a continuous-cover North Carolina Piedmont forest landscape. We focus on two related, but parallel, tasks. First, we demonstrate an application of predictive biodiversity mapping, using nonparametric models trained with spatially-nested field plots and aerial LiDAR-hyperspectral data, to predict spatially-explicit landscape patterns in floristic diversity across seven spatial scales between 0.01-900 m 2 . Second, we employ bivariate parametric models to test the significance of individual, remotely-sensed predictors of plant richness to determine how parameter estimates vary with scale. Cross-validated results indicate that predictive models were able to account for 15-70% of variance in plant richness, with LiDAR-derived estimates of topography and forest structural complexity, as well as spectral variance in hyperspectral imagery explaining the largest portion of variance in diversity levels. Importantly, bivariate tests provide evidence of scale-dependence among predictors, such that remotely-sensed variables significantly predict plant richness only at spatial scales that sufficiently subsume geolocational imprecision between remotely-sensed and field data, and best align with stand components including plant size and density, as well as canopy gaps and understory growth patterns. Beyond their insights into the scale-dependent patterns and drivers of plant diversity in Piedmont forests, these results highlight the potential of remotely-sensible essential biodiversity variables for mapping and monitoring landscape floristic diversity from air- and space-borne platforms. © 2017 by the Ecological Society of America.

  9. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales

    PubMed Central

    Stickler, Claudia M.; Coe, Michael T.; Costa, Marcos H.; Nepstad, Daniel C.; McGrath, David G.; Dias, Livia C. P.; Rodrigues, Hermann O.; Soares-Filho, Britaldo S.

    2013-01-01

    Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations’ energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local “direct” effects (through changes in ET within the watershed) and the potential regional “indirect” effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world’s largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4–8% and 10–12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6–36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry’s own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests. PMID:23671098

  10. In the Eye of the Beholders: Public Views on the Aesthetic Value of Pine Stands Regenerated by Different Methods

    Treesearch

    Jianbang Gan; James H. Miller

    2001-01-01

    Most people enjoy the beauty of forest scenery. There is a unique beauty that emanates from forests that has been treasured by generations of Americans and continues to inspire us all at times. Many non-industrial private forest landowners consider forest scenery as one of their top ownership objectives. Public forest managers, on the other hand, must consider the...

  11. Simulation of Runoff Changes Caused by Cropland to Forest Conversion in the Upper Yangtze River Region, SW China

    PubMed Central

    Yu, Pengtao; Wang, Yanhui; Coles, Neil; Xiong, Wei; Xu, Lihong

    2015-01-01

    The "Grain for Green Project" is a country-wide ecological program to converse marginal cropland to forest, which has been implemented in China since 2002. To quantify influence of this significant vegetation change, Guansihe Hydrological (GSH) Model, a validated physically-based distributed hydrological model, was applied to simulate runoff responses to land use change in the Guansihe watershed that is located in the upper reaches of the Yangtze River basin in Southwestern China with an area of only 21.1 km2. Runoff responses to two single rainfall events, 90 mm and 206 mm respectively, were simulated for 16 scenarios of cropland to forest conversion. The model simulations indicated that the total runoff generated after conversion to forest was strongly dependent on whether the land was initially used for dry croplands without standing water in fields or constructed (or walled) paddy fields. The simulated total runoff generated from the two rainfall events displayed limited variation for the conversion of dry croplands to forest, while it strongly decreased after paddy fields were converted to forest. The effect of paddy terraces on runoff generation was dependent on the rainfall characteristics and antecedent moisture (or saturation) conditions in the fields. The reduction in simulated runoff generated from intense rainfall events suggested that afforestation and terracing might be effective in managing runoff and had the potential to mitigate flooding in southwestern China. PMID:26192181

  12. Modeling of forest canopy BRDF using DIRSIG

    NASA Astrophysics Data System (ADS)

    Rengarajan, Rajagopalan; Schott, John R.

    2016-05-01

    The characterization and temporal analysis of multispectral and hyperspectral data to extract the biophysical information of the Earth's surface can be significantly improved by understanding its aniosotropic reflectance properties, which are best described by a Bi-directional Reflectance Distribution Function (BRDF). The advancements in the field of remote sensing techniques and instrumentation have made hyperspectral BRDF measurements in the field possible using sophisticated goniometers. However, natural surfaces such as forest canopies impose limitations on both the data collection techniques, as well as, the range of illumination angles that can be collected from the field. These limitations can be mitigated by measuring BRDF in a virtual environment. This paper presents an approach to model the spectral BRDF of a forest canopy using the Digital Image and Remote Sensing Image Generation (DIRSIG) model. A synthetic forest canopy scene is constructed by modeling the 3D geometries of different tree species using OnyxTree software. The field collected spectra from the Harvard forest is used to represent the optical properties of the tree elements. The canopy radiative transfer is estimated using the DIRSIG model for specific view and illumination angles to generate BRDF measurements. A full hemispherical BRDF is generated by fitting the measured BRDF to a semi-empirical BRDF model. The results from fitting the model to the measurement indicates a root mean square error of less than 5% (2 reflectance units) relative to the forest's reflectance in the VIS-NIR-SWIR region. The process can be easily extended to generate a spectral BRDF library for various biomes.

  13. GAPPARD: a computationally efficient method of approximating gap-scale disturbance in vegetation models

    NASA Astrophysics Data System (ADS)

    Scherstjanoi, M.; Kaplan, J. O.; Thürig, E.; Lischke, H.

    2013-09-01

    Models of vegetation dynamics that are designed for application at spatial scales larger than individual forest gaps suffer from several limitations. Typically, either a population average approximation is used that results in unrealistic tree allometry and forest stand structure, or models have a high computational demand because they need to simulate both a series of age-based cohorts and a number of replicate patches to account for stochastic gap-scale disturbances. The detail required by the latter method increases the number of calculations by two to three orders of magnitude compared to the less realistic population average approach. In an effort to increase the efficiency of dynamic vegetation models without sacrificing realism, we developed a new method for simulating stand-replacing disturbances that is both accurate and faster than approaches that use replicate patches. The GAPPARD (approximating GAP model results with a Probabilistic Approach to account for stand Replacing Disturbances) method works by postprocessing the output of deterministic, undisturbed simulations of a cohort-based vegetation model by deriving the distribution of patch ages at any point in time on the basis of a disturbance probability. With this distribution, the expected value of any output variable can be calculated from the output values of the deterministic undisturbed run at the time corresponding to the patch age. To account for temporal changes in model forcing (e.g., as a result of climate change), GAPPARD performs a series of deterministic simulations and interpolates between the results in the postprocessing step. We integrated the GAPPARD method in the vegetation model LPJ-GUESS, and evaluated it in a series of simulations along an altitudinal transect of an inner-Alpine valley. We obtained results very similar to the output of the original LPJ-GUESS model that uses 100 replicate patches, but simulation time was reduced by approximately the factor 10. Our new method is therefore highly suited for rapidly approximating LPJ-GUESS results, and provides the opportunity for future studies over large spatial domains, allows easier parameterization of tree species, faster identification of areas of interesting simulation results, and comparisons with large-scale datasets and results of other forest models.

  14. Chapter 15: A desired future condition for Sierra Nevada Forests

    Treesearch

    M. North

    2012-01-01

    An unexpected outcome of U.S. Forest Service General Technical Report PSW-GTR 220, "An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests" (North et al. 2009), was how it generated discussion about a desired future condition for Sierra Nevada forests. The paper did not convey leading-edge research results or provide an exhaustive literature...

  15. Non-timber forest products: alternatives for landowners

    Treesearch

    James L. Chamberlain; A.L. Hammett

    2002-01-01

    Recently a great deal of attention has been given to forest products that are plant-based but do not come from timber. These "alternative" products are found growing under the forest canopy as herbs, shrubs, vines, moss and even lichen. Although they have been gathered for generations, non-timber forest products have had less attention than "more...

  16. Characteristics of sustainable forest management

    Treesearch

    Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield

    2012-01-01

    Forests can provide numerous benefits to society today, tomorrow, and far into the future. Many in society seek sustainable forest management to ensure that future generations enjoy those benefits. The foundation of professional forest management is “the use of the natural resources for the greatest good of the greatest number for the longest time” (Gifford Pinchot...

  17. The Sustainable Forestry Initiative of the American Forest & Paper Association

    Treesearch

    Chris Barneycastle

    2001-01-01

    The Sustainable Forestry Initiative (SFI)is a comprehensive program of forestry and conservation practices designed to ensure that future generations of Americans will have the same abundant forests that we enjoy today. The SFI was developed by the American Forest & Paper Association (AF&PA),the national trade group that represents forest and paper companies....

  18. Runoff Responses to Forest Thinning at Plot and Catchment Scales in a Headwater Catchment Draining Japanese Cypress Forest

    EPA Science Inventory

    We examined the effect of forest thinning on runoff generation at plot and catchment scales in headwater basins draining a Japanese cypress (Chamaecyparis obtusa) forest. We removed 58.3% of the stems (corresponding to 43.2% of the basal area) in the treated headwater basin (catc...

  19. Batch reporting of forest inventory statistics using the EVALIDator

    Treesearch

    Patrick D. Miles

    2015-01-01

    The EVALIDator Web application, developed in 2007, provides estimates and sampling errors of forest statistics (e.g., forest area, number of trees, tree biomass) from data stored in the Forest Inventory and Analysis database. In response to user demand, new features have been added to the EVALIDator. The most recent additions are 1) the ability to generate multiple...

  20. RPA tree-level database users guide

    Treesearch

    Patrick D. Miles; Scott A. Pugh; Brad Smith; Sonja N. Oswalt

    2014-01-01

    The Forest and Rangeland Renewable Resources Planning Act (RPA) of 1974 calls for a periodic assessment of the Nation's renewable resources. The Forest Inventory and Analysis (FIA) program of the U.S. Forest Service supports the RPA effort by providing information on the forest resources of the United States. The RPA tree-level database (RPAtreeDB) was generated...

Top