Influences of management of Southern forests on water quantity and quality
Ge Sun; Mark Riedel; Rhett Jackson; Randy Kolka; Devendra Amatya; Jim Shepard
2004-01-01
Water is a key output of southern forests and is critical to other processes, functions, and values of forest ecosystems. This chapter synthesizes published literature about the effects of forest management practices on water quantity and water quality across the Southern United States region. We evaluate the influences of forest management at different temporal and...
Yousefpour, Rasoul; Temperli, Christian; Bugmann, Harald; Elkin, Che; Hanewinkel, Marc; Meilby, Henrik; Jacobsen, Jette Bredahl; Thorsen, Bo Jellesmark
2013-06-15
We study climate uncertainty and how managers' beliefs about climate change develop and influence their decisions. We develop an approach for updating knowledge and beliefs based on the observation of forest and climate variables and illustrate its application for the adaptive management of an even-aged Norway spruce (Picea abies L. Karst) forest in the Black Forest, Germany. We simulated forest development under a range of climate change scenarios and forest management alternatives. Our analysis used Bayesian updating and Dempster's rule of combination to simulate how observations of climate and forest variables may influence a decision maker's beliefs about climate development and thereby management decisions. While forest managers may be inclined to rely on observed forest variables to infer climate change and impacts, we found that observation of climate state, e.g. temperature or precipitation is superior for updating beliefs and supporting decision-making. However, with little conflict among information sources, the strongest evidence would be offered by a combination of at least two informative variables, e.g., temperature and precipitation. The success of adaptive forest management depends on when managers switch to forward-looking management schemes. Thus, robust climate adaptation policies may depend crucially on a better understanding of what factors influence managers' belief in climate change. Copyright © 2013 Elsevier Ltd. All rights reserved.
Integrating concerns about wood production and sustainable forest management in the United States.
R.W. Haynes
2007-01-01
The implementation of Sustainable Forest Management (SFM) in the United States is strongly influenced by U.S. forest products markets and the numerous management decisions made by individual landowners and managers. These decisions are influenced by a mix of market incentives and regulatory actions reducing predictability in assessing progress towards SFM and causing...
How forest context influences the acceptability of prescribed burning and mechanical thinning
Alan D. Bright; Peter Newman
2006-01-01
We examined how forest factors influenced public perceptions of three fuels management alternatives: prescribed burns, mechanical thinning, or no artificial fire management. The factors included the forest?s proximity to urban areas, primary use, wildfire history, and current fire conditions. Surveying three study strata with different wildfire histories and...
Rare Plants of the Redwood Forest and Forest Management Effects
Teresa Sholars; Clare Golec
2007-01-01
Coast redwood forests are predominantly a timber managed habitat type, subjected to repeated disturbances and short rotation periods. What does this repeated disturbance mean for rare plants associated with the redwood forests? Rare plant persistence through forest management activities is influenced by many factors. Persistence of rare plants in a managed landscape is...
Callie Schweitzer; Dawn Lemke; Wubishet Tadesse; Yong Wang
2015-01-01
Forests contain a large amount of carbon (C) stored as tree biomass (above and below ground), detritus, and soil organic material. The aboveground tree biomass is the most rapid change component in this forest C pool. Thus, management of forest resources can influence the net C exchange with the atmosphere by changing the amount of C stored, particularly in landscapes...
Brian Brookshire; Carl Hauser
1993-01-01
The effects of forest management on non-timber resources are of growing concern to forest managers and the public. While many previous studies have reported effects of stand-level treatments (less than 15 ha) on various stand-level attributes, few studies have attempted to document the influence of forest management on the biotic and abiotic characteristics of entire...
Danelle M. Laflower; Matthew D. Hurteau; George W. Koch; Malcolm P. North; Bruce A. Hungate
2016-01-01
Projecting the response of forests to changing climate requires understanding how biotic and abiotic controls on tree growth will change over time. As temperature and interannual precipitation variability increase, the overall forest response is likely to be influenced by species-specific responses to changing climate. Management actions that alter composition...
Patrick A. Zollner; L. Jay Roberts; Eric J. Gustafson; Hong S. He; Volker Radeloff
2008-01-01
Incorporating an ecosystem management perspective into forest planning requires consideration of the impacts of timber management on a suite of landscape characteristics at broad spatial and long temporal scales. We used the LANDIS forest landscape simulation model to predict forest composition and landscape pattern under seven alternative forest management plans...
Joshua J. Puhlick; Aaron R. Weiskittel; Shawn Fraver; Matthew B. Russell; Laura S. Kenefic
2016-01-01
Dead wood pools are strongly influenced by natural disturbance events, stand development processes, and forest management activities. However, the relative importance of these influences can vary over time. In this study, we evaluate the role of these factors on dead wood biomass pools across several forest management alternatives after 60 years of treatment on the...
Factors influencing sediment plume development from forest roads
Johnny M. Grace
2005-01-01
Southern forests, which rely on intensive management practices, are some of the most productive forests in the United States. Intensive forest management utilizes forest operations, such as site preparation, fertilization, thinning, and harvesting, to increase site productivity and reduce rotation time. These forest operations are essential to meet the ever-...
Development of a stand-scale forest biodiversity index based on the state forest inventory
Diego Van Den Meersschaut; Kris Vandekerkhove
2000-01-01
Ecological aspects are increasingly influencing silvicultural management. Estimating forest biodiversity has become one often major tools for evaluating management strategies. A stand-scale forest biodiversity index is developed, based on available data from the state forest inventory. The index combines aspects of forest structure, woody and herbal layer composition,...
Stephanie A. Snyder; Michael A. Kilgore
2018-01-01
A national assessment of how the number of parcel owners influence family forest land management and use decisions in the US was conducted using a subset of the US Forest Service's National Woodland Owner Survey Dataset. Seventy-two percent of single parcel family forest land ownership respondents of at least 4.05 ha had multiple owners. The extent to which past...
NASA Astrophysics Data System (ADS)
Burcsu, Theresa Katherine
Edge effects are among the most serious threats to forest integrity because as global forest cover decreases overall, forest edge influence increases proportionally, driving habitat change and loss. Edge effects occur at the division between adjacent habitat types. Our understanding of edge effects comes mainly from tropical wet, temperate and boreal forests. Because forest structure in moisture-limited forests differs from wetter forest types, edge dynamics are likely to differ as well. Moreover, dry forests in the tropics have been nearly eliminated or exist only as forest fragments, making edge influence an important conservation and management concern for remaining dry forests. This study addresses this gap in the edge influence knowledge by examining created, regenerating edges associated with forest management in a seasonally dry pine-oak forest of Oaxaca, creating a new data point in edge effects research. In this study I used Landsat TM imagery and a modified semivariance analysis to estimate the distance of edge influence for vegetation. I also used field methods to characterize forest structure and estimate edge influence on canopy and subcanopy vegetation. To finalize the project I extended the study to bird assemblages to identify responses and habitat preferences to local-scale changes associated with regenerating edges created by group-selection timber harvest. Remote sensing analysis estimated that the distance of edge influence was 30-90 m from the edge. Vegetation analysis suggested that edge effects were weak relative to wetter forest types and that remote sensing data did not provide an estimate that was directly applicable to field-measured vegetative edge effects. The bird assemblages likewise responded weakly to habitat change associated with edge effect. Open canopy structure, simple vertical stratigraphy, and topographic variation create forest conditions in which small openings do not create a high contrast to undisturbed forest. Thus, in this seasonally dry, open forest, vegetation and bird communities respond less to small openings than they do in wetter, more closed-canopy forests. Management practices and historical land-use interact and interfere with the detectability of edge influence in our study area. These results support hypotheses proposed for open forest types and suggest that patterns in edge influence in wet forest types may not be applicable to dry sites.
Theresa B. Jain; Russell T. Graham; David Adams
2010-01-01
Although "carbonâ management may not be a primary objective in forest management, influencing the distribution, composition, growth, and development of biomass to fulfill multiple objectives is; therefore, given a changing climate, managing carbon could influence future management decisions. Also, typically, the conversion from total biomass to total carbon is 50...
Development effects on private forest management: a critical look at the evidence.
J.D. Kline
2007-01-01
The timber production and ecological effects of forest land development are influenced by both the rate and spatial distribution of forest land development, and how remaining undeveloped forest lands are managed. Regarding effects on management, research conducted in the U.S. South and in Oregon suggests that development can reduce the intensity with which landowners...
Public and private forest ownership in the conterminous United States. Chapter 6.
Greg C. Liknes; Mark D. Nelson; Brett J. Butler
2010-01-01
Forests and the goods and services they provide are influenced by both the biophysical and human environments. To fully understand forest ecosystems, we need to understand the social context in which forests exist because landowners determine land use and management practice. To influence decisions related to the forests, we need to...
Forest management strategy, spatial heterogeneity, and winter birds in Washington.
B. Haveri; A.B. Carey
2000-01-01
Ecological management of second-growth forest holds great promise for conservation of biodiversity, yet little experimental evidence exists to compare alternative management approaches. Wintering birds are one of several groups of species most likely to be influenced by forest management activities. We compared species richness and proportion of stand area used over...
Forest management for mitigation and adaptation: insights from long-term silvicultural experiments
Anthony W. D' Amato; John B. Bradford; Shawn Fraver; Brian J. Palik
2011-01-01
Developing management strategies for addressing global climate change has become an increasingly important issue influencing forest management around the globe. Currently, management approaches are being proposed that intend to (1) mitigate climate change by enhancing forest carbon stores and (2) foster adaptation by maintaining compositionally and structurally complex...
Public perceptions about climate change mitigation in British Columbia's forest sector
Hagerman, Shannon; Kozak, Robert; Hoberg, George
2018-01-01
The role of forest management in mitigating climate change is a central concern for the Canadian province of British Columbia. The successful implementation of forest management activities to achieve climate change mitigation in British Columbia will be strongly influenced by public support or opposition. While we now have increasingly clear ideas of the management opportunities associated with forest mitigation and some insight into public support for climate change mitigation in the context of sustainable forest management, very little is known with respect to the levels and basis of public support for potential forest management strategies to mitigate climate change. This paper, by describing the results of a web-based survey, documents levels of public support for the implementation of eight forest carbon mitigation strategies in British Columbia’s forest sector, and examines and quantifies the influence of the factors that shape this support. Overall, respondents ascribed a high level of importance to forest carbon mitigation and supported all of the eight proposed strategies, indicating that the British Columbia public is inclined to consider alternative practices in managing forests and wood products to mitigate climate change. That said, we found differences in levels of support for the mitigation strategies. In general, we found greater levels of support for a rehabilitation strategy (e.g. reforestation of unproductive forest land), and to a lesser extent for conservation strategies (e.g. old growth conservation, reduced harvest) over enhanced forest management strategies (e.g. improved harvesting and silvicultural techniques). We also highlighted multiple variables within the British Columbia population that appear to play a role in predicting levels of support for conservation and/or enhanced forest management strategies, including environmental values, risk perception, trust in groups of actors, prioritized objectives of forest management and socio-demographic factors. PMID:29684041
Public perceptions about climate change mitigation in British Columbia's forest sector.
Peterson St-Laurent, Guillaume; Hagerman, Shannon; Kozak, Robert; Hoberg, George
2018-01-01
The role of forest management in mitigating climate change is a central concern for the Canadian province of British Columbia. The successful implementation of forest management activities to achieve climate change mitigation in British Columbia will be strongly influenced by public support or opposition. While we now have increasingly clear ideas of the management opportunities associated with forest mitigation and some insight into public support for climate change mitigation in the context of sustainable forest management, very little is known with respect to the levels and basis of public support for potential forest management strategies to mitigate climate change. This paper, by describing the results of a web-based survey, documents levels of public support for the implementation of eight forest carbon mitigation strategies in British Columbia's forest sector, and examines and quantifies the influence of the factors that shape this support. Overall, respondents ascribed a high level of importance to forest carbon mitigation and supported all of the eight proposed strategies, indicating that the British Columbia public is inclined to consider alternative practices in managing forests and wood products to mitigate climate change. That said, we found differences in levels of support for the mitigation strategies. In general, we found greater levels of support for a rehabilitation strategy (e.g. reforestation of unproductive forest land), and to a lesser extent for conservation strategies (e.g. old growth conservation, reduced harvest) over enhanced forest management strategies (e.g. improved harvesting and silvicultural techniques). We also highlighted multiple variables within the British Columbia population that appear to play a role in predicting levels of support for conservation and/or enhanced forest management strategies, including environmental values, risk perception, trust in groups of actors, prioritized objectives of forest management and socio-demographic factors.
Forest carbon calculators: a review for managers, policymakers, and educators
Harold S.J. Zald; Thomas A. Spies; Mark E. Harmon; Mark J. Twery
2016-01-01
Forests play a critical role sequestering atmospheric carbon dioxide, partially offsetting greenhouse gas emissions, and thereby mitigating climate change. Forest management, natural disturbances, and the fate of carbon in wood products strongly influence carbon sequestration and emissions in the forest sector. Government policies, carbon offset and trading programs,...
Jenkins, Kurt J.; Starkey, Edward E.
1996-01-01
Modern timber management practices often influence forage production for elk (Cervus elaphus) on broad temporal and spatial scales in forested landscapes. We incorporated site-specific information on postharvesting forest succession and forage characteristics in a simulation model to evaluate past and future influences of forest management practices on forage values for elk in a commercially managed Douglas fir (Pseudotsuga menziesii, PSME)-western hemlock (Tsuga heterophylla, TSHE) forest in western Washington. We evaluated future effects of: (1) clear-cut logging 0, 20, and 40% of harvestable stands every five years; (2) thinning 20-year-old Douglas fir forests; and (3) reducing the harvesting cycle from 60 to 45 years. Reconstruction of historical patterns of vegetation succession indicated that forage values peaked in the 1960s and declined from the 1970s to the present, but recent values still were higher than may have existed in the unmanaged landscape in 1945. Increased forest harvesting rates had little short-term influence on forage trends because harvestable stands were scarce. Simulations of forest thinning also produced negligible benefits because thinning did not improve forage productivity appreciably at the stand level. Simulations of reduced harvesting cycles shortened the duration of declining forage values from approximately 30 to 15 years. We concluded that simulation models are useful tools for examining landscape responses of forage production to forest management strategies, but the options examined provided little potential for improving elk forages in the immediate future.
Nitrogen dynamics in managed boreal forests: Recent advances and future research directions.
Sponseller, Ryan A; Gundale, Michael J; Futter, Martyn; Ring, Eva; Nordin, Annika; Näsholm, Torgny; Laudon, Hjalmar
2016-02-01
Nitrogen (N) availability plays multiple roles in the boreal landscape, as a limiting nutrient to forest growth, determinant of terrestrial biodiversity, and agent of eutrophication in aquatic ecosystems. We review existing research on forest N dynamics in northern landscapes and address the effects of management and environmental change on internal cycling and export. Current research foci include resolving the nutritional importance of different N forms to trees and establishing how tree-mycorrhizal relationships influence N limitation. In addition, understanding how forest responses to external N inputs are mediated by above- and belowground ecosystem compartments remains an important challenge. Finally, forestry generates a mosaic of successional patches in managed forest landscapes, with differing levels of N input, biological demand, and hydrological loss. The balance among these processes influences the temporal patterns of stream water chemistry and the long-term viability of forest growth. Ultimately, managing forests to keep pace with increasing demands for biomass production, while minimizing environmental degradation, will require multi-scale and interdisciplinary perspectives on landscape N dynamics.
Seidl, Rupert; Aggestam, Filip; Rammer, Werner; Blennow, Kristina; Wolfslehner, Bernhard
2016-05-01
Climate vulnerability of managed forest ecosystems is not only determined by ecological processes but also influenced by the adaptive capacity of forest managers. To better understand adaptive behaviour, we conducted a questionnaire study among current and future forest managers (i.e. active managers and forestry students) in Austria. We found widespread belief in climate change (94.7 % of respondents), and no significant difference between current and future managers. Based on intended responses to climate-induced ecosystem changes, we distinguished four groups: highly sensitive managers (27.7 %), those mainly sensitive to changes in growth and regeneration processes (46.7 %), managers primarily sensitive to regeneration changes (11.2 %), and insensitive managers (14.4 %). Experiences and beliefs with regard to disturbance-related tree mortality were found to particularly influence a manager's sensitivity to climate change. Our findings underline the importance of the social dimension of climate change adaptation, and suggest potentially strong adaptive feedbacks between ecosystems and their managers.
Strauch, Ayron M; Rurai, Masegeri T; Almedom, Astier M
2016-09-15
Social, religious and economic facets of rural livelihoods in Sub-Saharan Africa are heavily dependent on natural resources, but improper resource management, drought, and social instability frequently lead to their unsustainable exploitation. In rural Tanzania, natural resources are often governed locally by informal systems of traditional resource management (TRM), defined as cultural practices developed within the context of social and religious institutions over hundreds of years. However, following independence from colonial rule, centralized governments began to exercise jurisdictional control over natural resources. Following decades of mismanagement that resulted in lost ecosystem services, communities demanded change. To improve resource protection and participation in management among stakeholders, the Tanzanian government began to decentralize management programs in the early 2000s. We investigated these two differing management approaches (traditional and decentralized government) in Sonjo communities, to examine local perceptions of resource governance, management influences on forest use, and their consequences for forest and water resources. While 97% of households understood the regulations governing traditionally-managed forests, this was true for only 39% of households for government-managed forests, leading to differences in forest use. Traditional management practices resulted in improved forest condition and surface water quality. This research provides an essential case study demonstrating the importance of TRM in shaping decision frameworks for natural resource planning and management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Considering Forest and Grassland Carbon in Land Management
M. Janowiak; W.J. Connelly; K. Dante-Wood; G.M. Domke; C. Giardina; Z. Kayler; K. Marcinkowski; T. Ontl; C. Rodriguez-Franco; C. Swanston; C.W. Woodall; M. Buford
2017-01-01
Forest and grassland ecosystems in the United States play a critical role in the global carbon cycle, and land management activities influence their ability to absorb and sequester carbon. These ecosystems provide a critical regulating function, offsetting about 12 to 19 percent of the Nation's annual greenhouse gas emissions. Forests and grasslands are managed...
Public acceptance of disturbance-based forest management: factors influencing support
Christine S. Olsen; Angela L. Mallon; Bruce A. Shindler
2012-01-01
Growing emphasis on ecosystem and landscape-level forest management across North America has spurred an examination of alternative management strategies which focus on emulating dynamic natural disturbance processes, particularly those associated with forest fire regimes. This topic is the cornerstone of research in the Blue River Landscape Study (BRLS) on the...
Bradford, John B.; Jensen, Nicholas R.; Domke, Grant M.; D’Amato, Anthony W.
2013-01-01
Forested ecosystems contain the majority of the world’s terrestrial carbon, and forest management has implications for regional and global carbon cycling. Carbon stored in forests changes with stand age and is affected by natural disturbance and timber harvesting. We examined how harvesting and disturbance interact to influence forest carbon stocks over the Superior National Forest, in northern Minnesota. Forest inventory data from the USDA Forest Service, Forest Inventory and Analysis program were used to characterize current forest age structure and quantify the relationship between age and carbon stocks for eight forest types. Using these findings, we simulated the impact of alternative management scenarios and natural disturbance rates on forest-wide terrestrial carbon stocks over a 100-year horizon. Under low natural mortality, forest-wide total ecosystem carbon stocks increased when 0% or 40% of planned harvests were implemented; however, the majority of forest-wide carbon stocks decreased with greater harvest levels and elevated disturbance rates. Our results suggest that natural disturbance has the potential to exert stronger influence on forest carbon stocks than timber harvesting activities and that maintaining carbon stocks over the long-term may prove difficult if disturbance frequency increases in response to climate change.
Altman, Bob; Hagar, Joan
2007-01-01
An underlying premise of the Guide is that forest management has a direct and significant influence on bird populations. Consequently, manipulation of forest conditions as part of forest management can be designed and implemented to achieve bird conservation objectives (Busing and Garman, 2002; Lehmkuhl and others, 2002). It is not our intent to describe all the potential forest management activities that could be conducted to achieve the desired habitat conditions for birds. Those need to be determined locally by assessing the most ecologically appropriate management at each site. However, to assist land managers, the Guide offers some basic forest management activities that are widely accepted for achieving habitat conditions and features which benefit breeding birds.
Wildlife of southern forests habitat & management (Chapter 7): Managing Forests for Wildlife
James G. Dickson; T. Bently Wigley
2003-01-01
Wildlife species and communities are molded and influenced by a variety of factors, including some abiotic conditions such as climate, topography, soils, and site. These conditions form the basis for productive and diverse southern forests and their wildlife communities.
Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Jariyavidyanont, Katalee; Kaunzner, Jennifer; Juncheed, Kantida; Uengwetwanit, Tanaporn; Rudloff, Renate; Schulz, Elke; Hofrichter, Martin; Schloter, Michael; Krüger, Dirk; Buscot, François
2015-05-01
Forest management practices (FMPs) significantly influence important ecological processes and services in Central European forests, such as leaf litter decomposition and nutrient cycling. Changes in leaf litter diversity, and thus, its quality as well as microbial community structure and function induced by different FMPs were hypothesized to be the main drivers causing shifts in decomposition rates and nutrient release in managed forests. In a litterbag experiment lasting 473 days, we aimed to investigate the effects of FMPs (even-aged timber management, selective logging and unmanaged) on bacterial and fungal communities involved in leaf litter degradation over time. Our results showed that microbial communities in leaf litter were strongly influenced by both FMPs and sampling date. The results from nonmetric multidimensional scaling (NMDS) ordination revealed distinct patterns of bacterial and fungal successions over time in leaf litter. We demonstrated that FMPs and sampling dates can influence a range of factors, including leaf litter quality, microbial macronutrients, and pH, which significantly correlate with microbial community successions.
Alexa J. Dugan; Richard Birdsey; Sean P. Healey; Yude Pan; Fangmin Zhang; Gang Mo; Jing Chen; Christopher W. Woodall; Alexander J. Hernandez; Kevin McCullough; James B. McCarter; Crystal L. Raymond; Karen Dante-Wood
2017-01-01
Management of forest carbon stocks on public lands is critical to maintaining or enhancing carbon dioxide removal from the atmosphere. Acknowledging this, an array of federal regulations and policies have emerged that requires US National Forests to report baseline carbon stocks and changes due to disturbance and management and assess how management activities and...
Jody C. Vogeler; Andrew T. Hudak; Lee A. Vierling; Jeffrey Evans; Patricia Green; Kerri T. Vierling
2014-01-01
Using remotely-sensed metrics to identify regions containing high animal diversity and/or specific animal species or guilds can help prioritize forest management and conservation objectives across actively managed landscapes. We predicted avian species richness in two mixed conifer forests, Moscow Mountain and Slate Creek, containing different management contexts and...
R. Bruce Medhurst; Mark S. Wipfli; Chris Binckley; Karl Polivka; Paul F. Hessburg; R. Brion. Salter
2010-01-01
Effects of forest management on stream communities have been widely documented, but the role that climate plays in the disturbance outcomes is not understood. In order to determine whether the effect of disturbance from forest management on headwater stream communities varies by climate, we evaluated benthic macroinvertebrate communities in 24 headwater streams that...
Philip A. Tappe; Robert C. Weih; Ronald E. Thill; M. Anthony Melchiors; T. Bently Wigley
2004-01-01
Abstract - Recent changes in philosophy concerning forest management have focused attention on managing ecosystems at scales beyond the stand level. Properties of forested landscapes, such as patch size and shape, edge density, and interspersion have direct influences on flora and fauna. However, there is little information regarding spatial patterns...
Jerry J. Vaske; Maureen P. Donnelly; Daniel R. Williams; Sandra Jonker
2001-01-01
Using the cognitive hierarchy as the theoretical foundation, this article examines the predictive influence of individuals' demographic characteristics on environmental value orientations and normative beliefs about national forest management. Data for this investigation were obtained from a random sample of Colorado residents (n = 960). As predicted by theory, a...
John B. Bradford; Nicholas R. Jensen; Grant M. Domke; Anthony W. D' Amato
2013-01-01
Forested ecosystems contain the majority of the worldâs terrestrial carbon, and forest management has implications for regional and global carbon cycling. Carbon stored in forests changes with stand age and is affected by natural disturbance and timber harvesting. We examined how harvesting and disturbance interact to influence forest carbon stocks over the Superior...
Proceedings of the Fifth Biennial Southern Silvicultural Research Conference
James H. Miller; [Compiler
1989-01-01
Forest Service, forest industry, and university representatives present 4 general session papers giving projections for the 2030 forest and an additional 93 papers dealing with 15 subject areas: atmospheric influences, ecophysiology, seedling production, site preparation, pine regeneration, pine management, hardwood regeneration, hardwood management, vegetation,...
Robert H. Ruth; A.S. Harris
1975-01-01
The forest manager must balance all the interacting and often conflicting factors influencing residue management and decide on the best course of action. He needs to determine optimum volume, size, and arrangement of residues to leave on an area after logging, then to select the harvesting methods and residue management alternatives that best provide these conditions....
George R., Jr. Trimble
1959-01-01
The U. S. Forest Service was authorized by Congress in late summer of 1954 to conduct watershed management research in New Hampshire. The purpose of this work is to determine the effect of forest cover on streamflow: the influence of forest cover type, forest condition, and forest treatment practices on water yield, rate of delivery, and on water quality. This is the...
Douglas J. Shinneman; Brian J. Palik; Meredith W. Cornett
2012-01-01
Management strategies to restore forest landscapes are often designed to concurrently reduce fire risk. However, the compatibility of these two objectives is not always clear, and uncoordinated management among landowners may have unintended consequences. We used a forest landscape simulation model to compare the effects of contemporary management and hypothetical...
Managing Southeastern US Forests for Increased Water Yield
NASA Astrophysics Data System (ADS)
Acharya, S.; Kaplan, D. A.; Mclaughlin, D. L.; Cohen, M. J.
2017-12-01
Forested lands influence watershed hydrology by affecting water quantity and quality in surface and groundwater systems, making them potentially effective tools for regional water resource planning. In this study, we quantified water use and water yield by pine forests under varying silvicultural management (e.g., high density plantation, thinning, and prescribed burning). Daily forest water use (evapotranspiration, ET) was estimated using continuously monitored soil-moisture in the root-zone at six sites across Florida (USA), each with six plots ranging in forest leaf-area index (LAI). Plots included stands with different rotational ages (from clear-cut to mature pine plantations) and those restored to more historical conditions. Estimated ET relative to potential ET (PET) was strongly associated with LAI, root-zone soil-moisture status, and site hydroclimate; these factors explained 85% of the variation in the ET:PET ratio. Annual water yield (Yw) calculated from these ET estimates and a simple water balance differed significantly among sites and plots (ranging from -0.12 cm/yr to > 100 cm/yr), demonstrating substantive influence of management regimes. LAI strongly influenced Yw in all sites, and a general linear model with forest attributes (LAI and groundcover), hydroclimate, and site characteristics explained >90% of variation in observed Yw. These results can be used to predict water yield changes under different management and climate scenarios and may be useful in the development of payment for ecosystem services approaches that identify water as an important product of forest best management practices.
Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield
2012-01-01
This criterion focuses on the social context of forestsâthe laws, policies, administrative rules, and social and economic institutionsâthat governs forest resource management and use. What society permits or restricts, encourages or discourages all influence the sustainability of forest resources. Criterion 7 captures this by turning attention to all the different...
Joseph L. Ganey; William M. Block; Jeffrey S. Jenness; Randolph A. Wilson
1998-01-01
To better understand the habitat relationships of the Mexican spotted owl (Strix occidentalis lucida), and how such relationships might influence forest management, we studied home-range and habitat use of radio-marked owls in ponderosa pine (Pinus ponderosa) Gambel oak (Quercus gambelii) forest. Annual home-range size (95% adaptive-kernel estimate) averaged 895 ha...
Legal, institutional, and policy framework for forest conservation and sustainable management
Brett J. Butler
2016-01-01
One conclusion from the 50-year forest projections described in Chapters 2 through 8 is that some of the most dramatic changes to the forests of the North will be the direct result of human activities, including land-use change, forest management, greenhouse gas emissions, and invasive species introductions. The tools that society will have available to influence the...
Historical harvests reduce neighboring old-growth basal area across a forest landscape.
Bell, David M; Spies, Thomas A; Pabst, Robert
2017-07-01
While advances in remote sensing have made stand, landscape, and regional assessments of the direct impacts of disturbance on forests quite common, the edge influence of timber harvesting on the structure of neighboring unharvested forests has not been examined extensively. In this study, we examine the impact of historical timber harvests on basal area patterns of neighboring old-growth forests to assess the magnitude and scale of harvest edge influence in a forest landscape of western Oregon, USA. We used lidar data and forest plot measurements to construct 30-m resolution live tree basal area maps in lower and middle elevation mature and old-growth forests. We assessed how edge influence on total, upper canopy, and lower canopy basal area varied across this forest landscape as a function of harvest characteristics (i.e., harvest size and age) and topographic conditions in the unharvested area. Upper canopy, lower canopy, and total basal area increased with distance from harvest edge and elevation. Forests within 75 m of harvest edges (20% of unharvested forests) had 4% to 6% less live tree basal area compared with forest interiors. An interaction between distance from harvest edge and elevation indicated that elevation altered edge influence in this landscape. We observed a positive edge influence at low elevations (<800 m) and a negative edge influence at moderate to high elevations (>800 m). Surprisingly, we found no or weak effects of harvest age (13-60 yr) and harvest area (0.2-110 ha) on surrounding unharvested forest basal area, implying that edge influence was relatively insensitive to the scale of disturbance and multi-decadal recovery processes. Our study indicates that the edge influence of past clearcutting on the structure of neighboring uncut old-growth forests is widespread and persistent. These indirect and diffuse legacies of historical timber harvests complicate forest management decision-making in old-growth forest landscapes by broadening the traditional view of stand boundaries. Furthermore, the consequences of forest harvesting may reach across ownership boundaries, highlighting complex governance issues surrounding landscape management of old-growth forests. © 2017 by the Ecological Society of America.
Forest Insect Pest Management and Forest Management in China: An Overview
NASA Astrophysics Data System (ADS)
Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli
2011-12-01
According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations— Eucalyptus, poplar and Masson pine plantations—with respect to their insect diversity, pest problems and pest management measures.
Forest insect pest management and forest management in China: an overview.
Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli
2011-12-01
According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations-Eucalyptus, poplar and Masson pine plantations-with respect to their insect diversity, pest problems and pest management measures.
C.C. Grier; K.M. Lee; N.M. [and others] Nadkarni
1989-01-01
Data on net primary biological productivity of United States forests are summarized by geographic region. Site factors influencing productivity are reviewed. This paper is a review of existing literature in the productivity of various forest regions of the United States, the influence of site factors on forest productivity, and the impact of various...
Kline, Jeffrey D; Harmon, Mark E; Spies, Thomas A; Morzillo, Anita T; Pabst, Robert J; McComb, Brenda C; Schnekenburger, Frank; Olsen, Keith A; Csuti, Blair; Vogeler, Jody C
2016-10-01
Forest policymakers and managers have long sought ways to evaluate the capability of forest landscapes to jointly produce timber, habitat, and other ecosystem services in response to forest management. Currently, carbon is of particular interest as policies for increasing carbon storage on federal lands are being proposed. However, a challenge in joint production analysis of forest management is adequately representing ecological conditions and processes that influence joint production relationships. We used simulation models of vegetation structure, forest sector carbon, and potential wildlife habitat to characterize landscape-level joint production possibilities for carbon storage, timber harvest, and habitat for seven wildlife species across a range of forest management regimes. We sought to (1) characterize the general relationships of production possibilities for combinations of carbon storage, timber, and habitat, and (2) identify management variables that most influence joint production relationships. Our 160 000-ha study landscape featured environmental conditions typical of forests in the Western Cascade Mountains of Oregon (USA). Our results indicate that managing forests for carbon storage involves trade-offs among timber harvest and habitat for focal wildlife species, depending on the disturbance interval and utilization intensity followed. Joint production possibilities for wildlife species varied in shape, ranging from competitive to complementary to compound, reflecting niche breadth and habitat component needs of species examined. Managing Pacific Northwest forests to store forest sector carbon can be roughly complementary with habitat for Northern Spotted Owl, Olive-sided Flycatcher, and red tree vole. However, managing forests to increase carbon storage potentially can be competitive with timber production and habitat for Pacific marten, Pileated Woodpecker, and Western Bluebird, depending on the disturbance interval and harvest intensity chosen. Our analysis suggests that joint production possibilities under forest management regimes currently typical on industrial forest lands (e.g., 40- to 80-yr rotations with some tree retention for wildlife) represent but a small fraction of joint production outcomes possible in the region. Although the theoretical boundaries of the production possibilities sets we developed are probably unachievable in the current management environment, they arguably define the long-term potential of managing forests to produce multiple ecosystem services within and across multiple forest ownerships. © 2016 by the Ecological Society of America.
Impacts and management implications of ice storms on forests in the southern United States
Don C. Bragg; Michael G Shelton; Boris Zeide
2003-01-01
Abstract: This review explores the ecological and silvicultural impacts of ice storms on forests in the southern United States. Different environmental factors like weather conditions, topography, vegetation, stand density, and management practices influence the degree of glaze damage a particular forest may experience. Additionally, the frequent...
Loraine Ketzler,; Christopher Comer,; Twedt, Daniel J.
2017-01-01
Silviculture used to alter forest structure and thereby enhance wildlife habitat has been advocated for bottomland hardwood forest management on public conservation lands in the Mississippi Alluvial Valley. Although some songbirds respond positively to these management actions to attain desired forest conditions for wildlife, the response of other species, is largely unknown. Nocturnal insects are a primary prey base for bats, thereby influencing trophic interactions within hardwood forests. To better understand how silviculture influences insect availability for bats, we conducted vegetation surveys and sampled insect biomass within silviculturally treated bottomland hardwood forest stands. We used passive blacklight traps to capture nocturnal flying insects in 64 treated and 64 untreated reference stands, located on 15 public conservation areas in Arkansas, Louisiana, and Mississippi. Dead wood and silvicultural treatments were positively associated with greater biomass of macro-Lepidoptera, macro-Coleoptera, and all insect taxa combined. Biomass of micro-Lepidoptera was negatively associated with silvicultural treatment but comprised only a small proportion of total biomass. Understanding the response of nocturnal insects to wildlife-forestry silviculture provides insight for prescribed silvicultural management affecting bat species.
Silvis, Alexander; Perry, Roger W.; Ford, W. Mark
2016-01-01
Forest management activities can have substantial effects on forest structure and community composition and response of wildlife therein. Bats can be highly influenced by these structural changes, and understanding how forest management affects day-roost and foraging ecology of bats is currently a paramount conservation issue. With populations of many cave-hibernating bat species in eastern North America declining as a result of white-nose syndrome (WNS), it is increasingly critical to understand relationships among bats and forest-management activities. Herein, we provide a comprehensive literature review and synthesis of: (1) responses of northern long-eared (Myotis septentrionalis) and tri-colored (Perimyotis subflavus) bats—two species affected by WNS that use forests during summer—to forest management, and (2) an update to a previous review on the ecology of the endangered Indiana bat (Myotis sodalis).
Zald, Harold S.J.; Spies, Thomas A.; Seidl, Rupert; Pabst, Robert J.; Olsen, Keith A.; Steel, E. Ashley
2016-01-01
Forest carbon (C) density varies tremendously across space due to the inherent heterogeneity of forest ecosystems. Variation of forest C density is especially pronounced in mountainous terrain, where environmental gradients are compressed and vary at multiple spatial scales. Additionally, the influence of environmental gradients may vary with forest age and developmental stage, an important consideration as forest landscapes often have a diversity of stand ages from past management and other disturbance agents. Quantifying forest C density and its underlying environmental determinants in mountain terrain has remained challenging because many available data sources lack the spatial grain and ecological resolution needed at both stand and landscape scales. The objective of this study was to determine if environmental factors influencing aboveground live carbon (ALC) density differed between young versus old forests. We integrated aerial light detection and ranging (lidar) data with 702 field plots to map forest ALC density at a grain of 25 m across the H.J. Andrews Experimental Forest, a 6369 ha watershed in the Cascade Mountains of Oregon, USA. We used linear regressions, random forest ensemble learning (RF) and sequential autoregressive modeling (SAR) to reveal how mapped forest ALC density was related to climate, topography, soils, and past disturbance history (timber harvesting and wildfires). ALC increased with stand age in young managed forests, with much greater variation of ALC in relation to years since wildfire in old unmanaged forests. Timber harvesting was the most important driver of ALC across the entire watershed, despite occurring on only 23% of the landscape. More variation in forest ALC density was explained in models of young managed forests than in models of old unmanaged forests. Besides stand age, ALC density in young managed forests was driven by factors influencing site productivity, whereas variation in ALC density in old unmanaged forests was also affected by finer scale topographic conditions associated with sheltered sites. Past wildfires only had a small influence on current ALC density, which may be a result of long times since fire and/or prevalence of non-stand replacing fire. Our results indicate that forest ALC density depends on a suite of multi-scale environmental drivers mediated by complex mountain topography, and that these relationships are dependent on stand age. The high and context-dependent spatial variability of forest ALC density has implications for quantifying forest carbon stores, establishing upper bounds of potential carbon sequestration, and scaling field data to landscape and regional scales. PMID:27041818
NASA Astrophysics Data System (ADS)
Conway, S.
2014-12-01
The Truckee Ranger District on the Tahoe National Forest, in the heart of the Sierra Nevada Mountains, has a rich history of human activities. Native American influences, comstock-era logging, fire suppression, development, and recreation have all shaped the natural environment into what it is today. Like much of our national forests in California, forest conditions that have developed are generally much more homogenous and less resistant to disturbance from fire, insect, and disease than they might have been without the myriad of human influences. However, in order to improve the resiliency of our forests to stand replacing disturbances like high severity fire, while managing for integrated anthropomorphic values, it is imperative that management evolve to meet those dynamic needs. Recent advances in remote sensing and GIS allow land managers more access to forest information and can inform site specific prescriptions to change site specific undesirable conditions. It is ecologically and politically complex, yet our forests deserve that microscope. This particular presentation will focus on how the Truckee Ranger District began this process of incorporating several values, generated from stakeholder collaboration, into one project's goals and how those lessons learned informed their most recent project.
Zald, Harold S J; Dunn, Christopher J
2018-04-26
Many studies have examined how fuels, topography, climate, and fire weather influence fire severity. Less is known about how different forest management practices influence fire severity in multi-owner landscapes, despite costly and controversial suppression of wildfires that do not acknowledge ownership boundaries. In 2013, the Douglas Complex burned over 19,000 ha of Oregon & California Railroad (O&C) lands in Southwestern Oregon, USA. O&C lands are composed of a checkerboard of private industrial and federal forestland (Bureau of Land Management, BLM) with contrasting management objectives, providing a unique experimental landscape to understand how different management practices influence wildfire severity. Leveraging Landsat based estimates of fire severity (Relative differenced Normalized Burn Ratio, RdNBR) and geospatial data on fire progression, weather, topography, pre-fire forest conditions, and land ownership, we asked (1) what is the relative importance of different variables driving fire severity, and (2) is intensive plantation forestry associated with higher fire severity? Using Random Forest ensemble machine learning, we found daily fire weather was the most important predictor of fire severity, followed by stand age and ownership, followed by topographic features. Estimates of pre-fire forest biomass were not an important predictor of fire severity. Adjusting for all other predictor variables in a general least squares model incorporating spatial autocorrelation, mean predicted RdNBR was higher on private industrial forests (RdNBR 521.85 ± 18.67 [mean ± SE]) vs. BLM forests (398.87 ± 18.23) with a much greater proportion of older forests. Our findings suggest intensive plantation forestry characterized by young forests and spatially homogenized fuels, rather than pre-fire biomass, were significant drivers of wildfire severity. This has implications for perceptions of wildfire risk, shared fire management responsibilities, and developing fire resilience for multiple objectives in multi-owner landscapes. © 2018 by the Ecological Society of America.
Effects of scale and logging on landscape structure in a forest mosaic.
Leimgruber, P; McShea, W J; Schnell, G D
2002-03-01
Landscape structure in a forest mosaic changes with spatial scale (i.e. spatial extent) and thresholds may occur where structure changes markedly. Forest management alters landscape structure and may affect the intensity and location of thresholds. Our purpose was to examine landscape structure at different scales to determine thresholds where landscape structure changes markedly in managed forest mosaics of the Appalachian Mountains in the eastern United States. We also investigated how logging influences landscape structure and whether these management activities change threshold values. Using threshold and autocorrelation analyses, we found that thresholds in landscape indices exist at 400, 500, and 800 m intervals from the outer edge of management units in our study region. For landscape indices that consider all landcover categories, such as dominance and contagion, landscape structure and thresholds did not change after logging occurred. Measurements for these overall landscape indices were strongly influenced by midsuccessional deciduous forest, the most common landcover category in the landscape. When restricting analyses for mean patch size and percent cover to individual forest types, thresholds for early-successional forests changed after logging. However, logging changed the landscape structure at small spatial scale, but did not alter the structure of the entire forest mosaic. Previous forest management may already have increased the heterogeneity of the landscape beyond the point where additional small cuts alter the overall structure of the forest. Because measurements for landscape indices yield very different results at different spatial scales, it is important first to identify thresholds in order to determine the appropriate scales for landscape ecological studies. We found that threshold and autocorrelation analyses were simple but powerful tools for the detection of appropriate scales in the managed forest mosaic under study.
NASA Astrophysics Data System (ADS)
Arnberger, Arne; Ebenberger, Martin; Schneider, Ingrid E.; Cottrell, Stuart; Schlueter, Alexander C.; von Ruschkowski, Eick; Venette, Robert C.; Snyder, Stephanie A.; Gobster, Paul H.
2018-02-01
Extensive outbreaks of tree-killing insects are increasing across forests in Europe and North America due to climate change and other factors. Yet, little recent research examines visitor response to visual changes in conifer forest recreation settings resulting from forest insect infestations, how visitors weigh trade-offs between physical and social forest environment factors, or how visitor preferences might differ by nationality. This study explored forest visitor preferences with a discrete choice experiment that photographically simulated conifer forest stands with varying levels of bark beetle outbreaks, forest and visitor management practices, and visitor use levels and compositions. On-site surveys were conducted with visitors to State Forest State Park in Colorado ( n = 200), Lake Bemidji State Park in Minnesota ( n = 228), and Harz National Park in Germany ( n = 208). Results revealed that the condition of the immediate forest surrounding was the most important variable influencing visitors' landscape preferences. Visitors preferred healthy mature forest stands and disliked forests with substantial dead wood. The number of visitors was the most important social factor influencing visitor landscape preferences. Differences in the influence of physical and social factors on visual preferences existed between study sites. Findings suggest that both visual forest conditions and visitor use management are important concerns in addressing landscape preferences for beetle-impacted forest recreation areas.
Arnberger, Arne; Ebenberger, Martin; Schneider, Ingrid E; Cottrell, Stuart; Schlueter, Alexander C; von Ruschkowski, Eick; Venette, Robert C; Snyder, Stephanie A; Gobster, Paul H
2018-02-01
Extensive outbreaks of tree-killing insects are increasing across forests in Europe and North America due to climate change and other factors. Yet, little recent research examines visitor response to visual changes in conifer forest recreation settings resulting from forest insect infestations, how visitors weigh trade-offs between physical and social forest environment factors, or how visitor preferences might differ by nationality. This study explored forest visitor preferences with a discrete choice experiment that photographically simulated conifer forest stands with varying levels of bark beetle outbreaks, forest and visitor management practices, and visitor use levels and compositions. On-site surveys were conducted with visitors to State Forest State Park in Colorado (n = 200), Lake Bemidji State Park in Minnesota (n = 228), and Harz National Park in Germany (n = 208). Results revealed that the condition of the immediate forest surrounding was the most important variable influencing visitors' landscape preferences. Visitors preferred healthy mature forest stands and disliked forests with substantial dead wood. The number of visitors was the most important social factor influencing visitor landscape preferences. Differences in the influence of physical and social factors on visual preferences existed between study sites. Findings suggest that both visual forest conditions and visitor use management are important concerns in addressing landscape preferences for beetle-impacted forest recreation areas.
NASA Astrophysics Data System (ADS)
Widayanto, B.; Karsidi, R.; Kusnandar; Sutrisno, J.
2018-03-01
Forests have a role and function in providing good atmosphere with stable oxygen content and affecting global climate stability. Good forest management will provide stable climatic conditions in global climate change. A good forest is managed to provide a sustainable environment condition. This study aims to analyze the relationship of various factors affecting the sustainability of private forests management. This research is a quantitative research with survey method and determination of sampling are was by purposive sampling. Sampling method using multiple stage cluster sampling with 60 samples. From the results it was found that the successful sustainable private forest management influenced by various factors, such as group dynamics, stakeholder support, community institutions, and farmer participation. The continuity of private forest management is determined by the fulfillment of economic, social and environmental dimensions. The most interesting finding is that the group dynamics conditions are very good, whereas the sense of togetherness among community is very strong under limited resources managing private forests. The sense of togetherness resulted creativity to diversify business and thus reduced the pressure in exploiting the forest. Some people think that managing the people's forest as a culture so that its existence can be more sustainable.
Ned B. Klopfenstein; Mee-Sook Kim; John W. Hanna; Bryce A. Richardson; John E. Lundquist
2009-01-01
Predicting climate change influences on forest diseases will foster forest management practices that minimize adverse impacts of diseases. Precise locations of accurately identified pathogens and hosts must be documented and spatially referenced to determine which climatic factors influence species distribution. With this information, bioclimatic models can predict the...
The Increasing Influence of Urban Environments on US Forest Management
David J. Nowak; Jeffrey T. Walton; John F. Dwyer; Latif G. Kaya; Soojeong Myeong; Soojeong Myeong
2005-01-01
The expansion of urban land promises to have an increasingly significant influence on US forest management in the coming decades. Percent of the coterminous United States classified as urban increased from 2.5% in 1990 to 3.1% in 2000, an area about the size of Vermont and New Hampshire combined. Patterns of urban expansion reveal that increased growth rates are likely...
Iris B. Montague
2013-01-01
Forest certification has gained momentum around the world over the past two decades. Although there are advantages to being certified, many forest landowners and forest products manufacturers consider forest certification of U.S. forest and forest products unnecessary. Many believe that U.S. forests are already sustainably managed, the current certification systems are...
Snag longevity in managed northern hardwoods
Mariko Yamasaki; William B. Leak
2006-01-01
Little information on standing snag and coarse woody debris longevity exists for New England forest types. Forest managers thus lack the information on changes over time of the habitat components influenced by the decay process. We examined the fate of 568 snags that occurred on a long-term hardwood growth study on the Bartlett Experimental Forest, NH. Approximately...
Predicting forest road surface erosion and storm runoff from high-elevation sites
J. M. Grace III
2017-01-01
Forest roads are a concern in management because they represent areas of elevated risks associated with soil erosion and storm runoff connectivity to stream systems. Storm runoff emanating from forest roads and their connectivity to downslope resources can be influenced by a myriad of factors, including storm characteristics, management practices, and the interaction...
Gillian L. Holloway; Winston P. Smith; Charles B. Halpern; Robert A. Gitzen; Christine C. Maguire; Stephen D. West
2012-01-01
In many regions of the world, forest management has shifted from practices emphasizing timber production to more sustainable harvesting that integrates ecological values, including maintenance of biodiversity, wildlife habitat, and ecological goods and services. To this end, management strategies emphasize retention of stand structures that meet the needs of forest-...
On the patterns and processes of wood in northern California streams
NASA Astrophysics Data System (ADS)
Benda, Lee; Bigelow, Paul
2014-03-01
Forest management and stream habitat can be improved by clarifying the primary riparian and geomorphic controls on streams. To this end, we evaluated the recruitment, storage, transport, and the function of wood in 95 km of streams (most drainage areas < 30 km2) in northern California, crossing four coastal to inland regions with different histories of forest management (managed, less-managed, unmanaged). The dominant source of variability in stream wood storage and recruitment is driven by local variation in rates of bank erosion, forest mortality, and mass wasting. These processes are controlled by changes in watershed structure, including the location of canyons, floodplains and tributary confluences; types of geology and topography; and forest types and management history. Average wood storage volumes in coastal streams are 5 to 20 times greater than inland sites primarily from higher riparian forest biomass and growth rates (productivity), with some influence by longer residence time of wood in streams and more wood from landsliding and logging sources. Wood recruitment by mortality (windthrow, disease, senescence) was substantial across all sites (mean 50%) followed by bank erosion (43%) and more locally by mass wasting (7%). The distances to sources of stream wood are controlled by recruitment process and tree height. Ninety percent of wood recruitment occurs within 10 to 35 m of channels in managed and less-managed forests and upward of 50 m in unmanaged Sequoia and coast redwood forests. Local landsliding extends the source distance. The recruitment of large wood pieces that create jams (mean diameter 0.7 m) is primarily by bank erosion in managed forests and by mortality in unmanaged forests. Formation of pools by wood is more frequent in streams with low stream power, indicating the further relevance of environmental context and watershed structure. Forest management influences stream wood dynamics, where smaller trees in managed forests often generate shorter distances to sources of stream wood, lower stream wood storage, and smaller diameter stream wood. These findings can be used to improve riparian protection and inform spatially explicit riparian management.
Trends in the use of tissue culture in forest improvement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haissig, B.E.; Nelson, N.D.; Kidd, G.H.
1987-01-01
We have analyzed and described the problems and potentials of using tissue culture in micropropagation and biotechnologies related to forest improvement. Trends in forest management concepts, commerical micropropagation, and tissue culture biotechnologies are discussed. Our analysis suggests that tissue culture will contribute significantly to the improvement of forests through exploitation of existing genotypes and production of new, commercially valuble genotypes. Such changes may significantly influence worldwide management decisions in forestry. 97 references.
Lynne C. Thompson; Brian Roy Lockhart
2006-01-01
Little information is available on how insects are affected by anthropogenic influences in the bottomland forests of the West Gulf Coastal Plain. This study investigates one genus of ground beetles that lives in managed forested landscapes to discover which species are positively and negatively influenced by human disturbances. Ground beetles (Carabidae) were collected...
Mark S. Wipfli; Robert L. Deal; Paul E. Hennon; Adelaide C. Johnson; Toni L. de Santo; Thomas A. Hanley; Mark E. Schultz; Mason D. Bryant; Richard T. Edwards; Ewa H. Orlikowska; Takashi Gomi
2002-01-01
Red alder (Alnus rubra Bong.) appears to influence the productivity of young-growth conifer forests and affect the major resources (timber, wildlife, and fisheries) of forested ecosystems in southeast Alaska. We propose an integrated approach to understanding how alder influences trophic links and processes in young-growth ecosystems. The presence...
Soil physical changes associated with forest harvesting operations on a organic soil
Johnny M. Grace; R.W. Skaggs; D.K. Cassel
2006-01-01
The influence of forest operations on forest soil and water continues to be an issue of concern in forest management. Research has focused on evaluating forest operation effects on numerous soil and water quality indicators. However, poorly drained forested watersheds with organic soil surface horizons have not been extensively investigated. A study was initiated in...
William B. Leak
2009-01-01
New England forest managers are faced with numerous environmental issues, such as global warming, nutrient depletion, and species declines that could influence the choice of appropriate silvicultural techniques and objectives. On the Bartlett Experimental Forest, New Hampshire, 70 years of change on more than 400 remeasured cruise plots by elevation classes ranging...
Carbon storage in managed forests of the northern Great Lake States
Jeanette L. Rollinger; Terry F. Strong
1996-01-01
Carbon (C) storage in forest ecosystems is a significant part of the total terrestrial C pool, and may potentially be manipulated as an important C sink. The influence of management on C pools must be understood before guidelines can be suggested for maximizing C sequestration in forests. Studies of hardwood, red pine (Pinus resinosa Ait.), aspen and...
C.B. LeDoux; J.E. Baumgras
1991-01-01
The impact of selected site and stand attributes on stand management is demonstrated using actual forest model plot data and a complete systems simulation model called MANAGE. The influence of terrain on the type of logging technology required to log a stand and the resulting impact on stand management is also illustrated. The results can be used by managers and...
Mangels, Jule; Blüthgen, Nico; Frank, Kevin; Grassein, Fabrice; Hilpert, Andrea; Mody, Karsten
2015-01-01
Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores. PMID:25938417
Vegetation composition and structure of forest patches along urban-rural gradients
W.C. Zipperer; G.R. Guntenspergen
2009-01-01
The urban landscape is highly altered by human activities and is a mosaic of different land covers and land uses. Imbedded in this are forest patches of different origins (Zipperer et al .⢠1997). How these patches influence and are influenced by the urban landscape is of ecological importance when managing the urban forest for ecosystem goods and services.
Phillips, Richard P.; Ibanez, Ines; D’Orangeville, Loic; ...
2016-09-13
Predicted increases in the frequency and intensity of droughts across the temperate biome have highlighted the need to examine the extent to which forests may differ in their sensitivity to water stress. At present, a rich body of literature exists on how leaf- and stem-level physiology influence tree drought responses; however, less is known regarding the dynamic interactions that occur below ground between roots and soil physical and biological factors. Hence, there is a need to better understand how and why processes occurring below ground influence forest sensitivity to drought. Here, we review what is known about tree species’ belowmore » ground strategies for dealing with drought, and how physical and biological characteristics of soils interact with rooting strategies to influence forest sensitivity to drought. Then, we highlight how a below ground perspective of drought can be used in models to reduce uncertainty in predicting the ecosystem consequences of droughts in forests. Lastly, we describe the challenges and opportunities associated with managing forests under conditions of increasing drought frequency and intensity, and explain how a below ground perspective on drought may facilitate improved forest management.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Richard P.; Ibanez, Ines; D’Orangeville, Loic
Predicted increases in the frequency and intensity of droughts across the temperate biome have highlighted the need to examine the extent to which forests may differ in their sensitivity to water stress. At present, a rich body of literature exists on how leaf- and stem-level physiology influence tree drought responses; however, less is known regarding the dynamic interactions that occur below ground between roots and soil physical and biological factors. Hence, there is a need to better understand how and why processes occurring below ground influence forest sensitivity to drought. Here, we review what is known about tree species’ belowmore » ground strategies for dealing with drought, and how physical and biological characteristics of soils interact with rooting strategies to influence forest sensitivity to drought. Then, we highlight how a below ground perspective of drought can be used in models to reduce uncertainty in predicting the ecosystem consequences of droughts in forests. Lastly, we describe the challenges and opportunities associated with managing forests under conditions of increasing drought frequency and intensity, and explain how a below ground perspective on drought may facilitate improved forest management.« less
J.A. Foote; T.W. Boutton; D.A. Scott
2015-01-01
Land management practices have strong potential to modify the biogeochemistry of forest soils, with implications for the long-term sustainability and productivity of forestlands. The Long-Term Soil Productivity (LTSP) program, a network of 62 sites across the USA and Canada, was initiated to address concerns over possible losses of soil productivity due to soil...
Gregory, Stephen D.; Brook, Barry W.; Goossens, Benoît; Ancrenaz, Marc; Alfred, Raymond; Ambu, Laurentius N.; Fordham, Damien A.
2012-01-01
Background Southeast Asian deforestation rates are among the world’s highest and threaten to drive many forest-dependent species to extinction. Climate change is expected to interact with deforestation to amplify this risk. Here we examine whether regional incentives for sustainable forest management will be effective in improving threatened mammal conservation, in isolation and when combined with global climate change mitigation. Methodology/Principal Findings Using a long time-series of orangutan nest counts for Sabah (2000–10), Malaysian Borneo, we evaluated the effect of sustainable forest management and climate change scenarios, and their interaction, on orangutan spatial abundance patterns. By linking dynamic land-cover and downscaled global climate model projections, we determine the relative influence of these factors on orangutan spatial abundance and use the resulting statistical models to identify habitat crucial for their long-term conservation. We show that land-cover change the degradation of primary forest had the greatest influence on orangutan population size. Anticipated climate change was predicted to cause reductions in abundance in currently occupied populations due to decreased habitat suitability, but also to promote population growth in western Sabah by increasing the suitability of presently unoccupied regions. Conclusions/Significance We find strong quantitative support for the Sabah government’s proposal to implement sustainable forest management in all its forest reserves during the current decade; failure to do so could result in a 40 to 80 per cent regional decline in orangutan abundance by 2100. The Sabah orangutan is just one (albeit iconic) example of a forest-dependent species that stands to benefit from sustainable forest management, which promotes conservation of existing forests. PMID:22970145
Gregory, Stephen D; Brook, Barry W; Goossens, Benoît; Ancrenaz, Marc; Alfred, Raymond; Ambu, Laurentius N; Fordham, Damien A
2012-01-01
Southeast Asian deforestation rates are among the world's highest and threaten to drive many forest-dependent species to extinction. Climate change is expected to interact with deforestation to amplify this risk. Here we examine whether regional incentives for sustainable forest management will be effective in improving threatened mammal conservation, in isolation and when combined with global climate change mitigation. Using a long time-series of orangutan nest counts for Sabah (2000-10), Malaysian Borneo, we evaluated the effect of sustainable forest management and climate change scenarios, and their interaction, on orangutan spatial abundance patterns. By linking dynamic land-cover and downscaled global climate model projections, we determine the relative influence of these factors on orangutan spatial abundance and use the resulting statistical models to identify habitat crucial for their long-term conservation. We show that land-cover change the degradation of primary forest had the greatest influence on orangutan population size. Anticipated climate change was predicted to cause reductions in abundance in currently occupied populations due to decreased habitat suitability, but also to promote population growth in western Sabah by increasing the suitability of presently unoccupied regions. We find strong quantitative support for the Sabah government's proposal to implement sustainable forest management in all its forest reserves during the current decade; failure to do so could result in a 40 to 80 per cent regional decline in orangutan abundance by 2100. The Sabah orangutan is just one (albeit iconic) example of a forest-dependent species that stands to benefit from sustainable forest management, which promotes conservation of existing forests.
Eric Toman; David M. Hix; P. Charles Goebel; Stanley D. Gehrt; Robyn S. Wilson; Jennifer A. Sherry; Alexander Silvis; Priscilla Nyamai; Roger A. Williams; Sarah McCaffrey
2014-01-01
Fuels reduction decisions are made within a larger context of resource management characterized by multiple objectives including ecosystem restoration, wildlife management, commodity production (from timber to nontraditional forest products), and provision of recreation opportunities and amenity values. Implementation of fuels treatments is strongly influenced by their...
Effects of forest management practices and environment on occurrence of Armillaria species
Mee-Sook Kim; Ned B. Klopfenstein; Geral I. McDonald
2010-01-01
Influences of environment (indicated by plant associations) and forest management practices on the distribution of Armillaria spp. and genets (vegetative clones) were investigated. A total of 142 isolates of Armillaria was collected from various host trees on pristine and managed sites (thinned and/or fertilized) growing in relatively wet and dry environments in...
Elizabeth A Nauertz; Thomas R. Crow; John Zasada; Ronald M. Teclaw
2004-01-01
Temperature, light, wind, and precipitation were measured in the understory of managed and unmanaged northern hardwood forests in the Upper Peninsula of Michigan from 1995 through 2001. These measurements provide a baseline of information to compare the microclimate under managed and unmanaged conditions. Extreme climatic events may influence growth and development...
NASA Astrophysics Data System (ADS)
Easterday, K.; Kelly, M.; McIntyre, P. J.
2015-12-01
Climate change is forecasted to have considerable influence on the distribution, structure, and function of California's forests. However, human interactions with forested landscapes (e.g. fire suppression, resource extraction and etc.) have complicated scientific understanding of the relative contributions of climate change and anthropogenic land management practices as drivers of change. Observed changes in forest structure towards smaller, denser forests across California have been attributed to both climate change (e.g. increased temperatures and declining water availability) and management practices (e.g. fire suppression and logging). Disentangling how these drivers of change act both together and apart is important to developing sustainable policy and land management practices as well as enhancing knowledge of human and natural system interactions. To that end, a comprehensive historical dataset - the Vegetation Type Mapping project (VTM) - and a modern forest inventory dataset (FIA) are used to analyze how spatial variations in vegetation composition and structure over a ~100 year period can be explained by land ownership.Climate change is forecasted to have considerable influence on the distribution, structure, and function of California's forests. However, human interactions with forested landscapes (e.g. fire suppression, resource extraction and etc.) have complicated scientific understanding of the relative contributions of climate change and anthropogenic land management practices as drivers of change. Observed changes in forest structure towards smaller, denser forests across California have been attributed to both climate change (e.g. increased temperatures and declining water availability) and management practices (e.g. fire suppression and logging). Disentangling how these drivers of change act both together and apart is important to developing sustainable policy and land management practices as well as enhancing knowledge of human and natural system interactions. To that end, a comprehensive historical dataset - the Vegetation Type Mapping project (VTM) - and a modern forest inventory dataset (FIA) are used to analyze how spatial variations in vegetation composition and structure over a ~100 year period can be explained by land ownership.
Vleut, Ivar; Levy-Tacher, Samuel Israel; de Boer, Willem Frederik; Galindo-González, Jorge; Vazquez, Luis-Bernardo
2013-01-01
Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H') was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests' structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats.
Jones, Jay E; Kroll, Andrew J; Giovanini, Jack; Duke, Steven D; Ellis, Tana M; Betts, Matthew G
2012-01-01
Managers of landscapes dedicated to forest commodity production require information about how practices influence biological diversity. Individual species and communities may be threatened if management practices truncate or simplify forest age classes that are essential for reproduction and survival. For instance, the degradation and loss of complex diverse forest in young age classes have been associated with declines in forest-associated Neotropical migrant bird populations in the Pacific Northwest, USA. These declines may be exacerbated by intensive forest management practices that reduce hardwood and broadleaf shrub cover in order to promote growth of economically valuable tree species in plantations. We used a Bayesian hierarchical model to evaluate relationships between avian species richness and vegetation variables that reflect stand management intensity (primarily via herbicide application) on 212 tree plantations in the Coast Range, Oregon, USA. Specifically, we estimated the influence of broadleaf hardwood vegetation cover, which is reduced through herbicide applications, on bird species richness and individual species occupancy. Our model accounted for imperfect detection. We used average predictive comparisons to quantify the degree of association between vegetation variables and species richness. Both conifer and hardwood cover were positively associated with total species richness, suggesting that these components of forest stand composition may be important predictors of alpha diversity. Estimates of species richness were 35-80% lower when imperfect detection was ignored (depending on covariate values), a result that has critical implications for previous efforts that have examined relationships between forest composition and species richness. Our results revealed that individual and community responses were positively associated with both conifer and hardwood cover. In our system, patterns of bird community assembly appear to be associated with stand management strategies that retain or increase hardwood vegetation while simultaneously regenerating the conifer cover in commercial tree plantations.
Medhurst, R. Bruce; Wipfli, Mark S.; Binckley, Chris; Polivka, Karl; Hessburg, Paul F.; Salter, R. Brion
2010-01-01
Effects of forest management on stream communities have been widely documented, but the role that climate plays in the disturbance outcomes is not understood. In order to determine whether the effect of disturbance from forest management on headwater stream communities varies by climate, we evaluated benthic macroinvertebrate communities in 24 headwater streams that differed in forest management (logged-roaded vs. unlogged-unroaded, hereafter logged and unlogged) within two ecological sub-regions (wet versus dry) within the eastern Cascade Range, Washington, USA. In both ecoregions, total macroinvertebrate density was highest at logged sites (P = 0.001) with gathering-collectors and shredders dominating. Total taxonomic richness and diversity did not differ between ecoregions or forest management types. Shredder densities were positively correlated with total deciduous and Sitka alder (Alnus sinuata) riparian cover. Further, differences in shredder density between logged and unlogged sites were greater in the wet ecoregion (logging × ecoregion interaction; P = 0.006) suggesting that differences in post-logging forest succession between ecoregions were responsible for differences in shredder abundance. Headwater stream benthic community structure was influenced by logging and regional differences in climate. Future development of ecoregional classification models at the subbasin scale, and use of functional metrics in addition to structural metrics, may allow for more accurate assessments of anthropogenic disturbances in mountainous regions where mosaics of localized differences in climate are common.
Daniel C. Dey; Randy G. Jensen
2002-01-01
We evaluated the stump sprouting potential of white oak, black oak, and scarlet oak in relation to tree age, stem diameter, and overstory density in Ozark forests managed by even-aged and uneven-aged silvicultural systems. In eastern North America, few studies have evaluated the influence of a forest canopy on the potential of hardwood stumps to sprout and contribute...
Vleut, Ivar; Levy-Tacher, Samuel Israel; de Boer, Willem Frederik; Galindo-González, Jorge; Vazquez, Luis-Bernardo
2013-01-01
Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H’) was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests’ structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats. PMID:24147029
Legacy retention versus thinning: influences on small mammals.
S.M. Wilson; A.B. Carey
2000-01-01
Management strategies for promoting late-seral attributes in second-growth forest need evaluation for their efficacy in maintaining biodiversity, including complete forest-floor, small-mammal communities. Two common strategies in the Pacific Northwest are (1) management with thinnings to promote large trees with developed understories and (2) retention of legacies,...
The Changing Roles Professional Development Program
A. Hermansen-Baez; N. Wulff
2010-01-01
As populations and urbanization expand in the Southern United States, human influences on forests and other natural areas are increasing. As a result, natural resource professionals are faced with complex challenges, such as managing smaller forest parcels for multiple benefits, and wildfire prevention and management in the wildland-urban interface (areas where urban...
The Influence of Proximity to a National Forest on Emotions and Fire-Management Decisions
NASA Astrophysics Data System (ADS)
Vining, Joanne; Merrick, Melinda S.
2008-02-01
Because American national forests are managed for all citizens, it is important that researchers explore the differences and similarities between citizens living both near and far from publicly managed land. We surveyed residents living at various distances from nationally managed land to collect resident perceptions of different forest fire-management techniques, to determine public preferences for these techniques, and to examine the motivations behind these preferences. Participants both close to and far away from national forests tended to favor a multipronged approach to fire management by preferring the use of a combination of two or more fire-management techniques. There were no significant differences by proximity in participants’ self-rated emotions, types of fire-management techniques preferred, or the reasons and rationales for their preferred fire-management technique(s), indicating that the proximity variable may not be as significant as previously thought.
The influence of proximity to a national forest on emotions and fire-management decisions.
Vining, Joanne; Merrick, Melinda S
2008-02-01
Because American national forests are managed for all citizens, it is important that researchers explore the differences and similarities between citizens living both near and far from publicly managed land. We surveyed residents living at various distances from nationally managed land to collect resident perceptions of different forest fire-management techniques, to determine public preferences for these techniques, and to examine the motivations behind these preferences. Participants both close to and far away from national forests tended to favor a multipronged approach to fire management by preferring the use of a combination of two or more fire-management techniques. There were no significant differences by proximity in participants' self-rated emotions, types of fire-management techniques preferred, or the reasons and rationales for their preferred fire-management technique(s), indicating that the proximity variable may not be as significant as previously thought.
Lisa J. Bate; Michael J. Wisdom; Barbara C. Wales
2007-01-01
A key element of forest management is the maintenance of sufficient densities of snags (standing dead trees) to support associated wildlife. Management factors that influence snag densities, however, are numerous and complex. Consequently, accurate methods to estimate and model snag densities are needed. Using data collected in 2002 and Current Vegetation Survey (CVS)...
Oak silviculture, management, and defoliation effects in France and Germany
Kurt W. Gottschalk
1993-01-01
A study tour of four areas of France and Germany (two in each country) was conducted to examine oak silvicultural and managerial practices and the influence of insect defoliators on the ecology and management of oak forests. The French and German situations may provide useful information for managing oak forests and gypsy moth in the United States, especially the...
National forest visitor spending averages and the influence of trip-type and recreation activity.
Eric M. White; Daniel I. Stynes
2008-01-01
Estimates of national forest recreation visitor spending serve us inputs to regional economic analyses and help to identify the economic linkages between national forest recreation use and local forest communities. When completing recreation-related analyses, managers, planners, and researchers frequently think of visitors in terms of recreation activity. When...
Influence of financial incentive programs in sustaining wildlife values
Thomas J. Straka; Michael A. Kilgore; Michael G. Jacobson; John L. Greene; Steven E. Daniels
2007-01-01
Conservation incentive programs have substantial impacts on the nationâs forests and wildlife habitat. There are eight major conservation incentive programs. The Forest Stewardship Program (FSP) provides forest landowner assistance by focusing on resource management plans embodying multi-resource stewardship principles. The Forest Land Enhancement Program (FLEP) is the...
Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk
2014-01-01
Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling. PMID:24699676
Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk
2014-01-01
Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.
John C. Brissette; Laura S. Kenefic
2014-01-01
Established between 1952 and 1957, the U.S. Department of Agriculture, Forest Service experiment comparing several silvicultural treatments is not only the centerpiece of research on the Penobscot Experimental Forest in Maine, it is also one of the longest-running, replicated studies of how management techniques influence forest dynamics in North America. Ten...
S. McLaughlin; K. Percy
1999-01-01
The perceived health of forest ecosystems over large temporal and spatial scales can be strongly influenced by the frames of reference chosen to evaluate both forest condition and the functional integrity of sustaining forest processes. North American forests are diverse in range, species composition, past disturbance history, and current management practices....
Wildlife of southern forests habitat & management (Chapter 2): Early History
James G. Dickson
2003-01-01
According to fossil records from coal beds, primeval forests of the South eons ago were complex forests of club moss trees and ferns (Burdette 1995). Since that time forest composition and distribution have changed in response to natural phenomena and later, to the influences of man. Over a long period of time primeval forests evolved from club mosses and ferns...
Chris Ringo; Alan A. Ager; Michelle A. Day; Sarah Crim
2016-01-01
Understanding the capacity to reduce wildfire risk and restore dry forests on Western national forests is a key part of prioritizing new accelerated restoration programs initiated by the Forest Service. Although a number of social and biophysical factors influence the ability to implement restoration programs, one key driver is the suite of forest plan land...
Ajaz Ahmed, Mukhtar Ahmed; Abd-Elrahman, Amr; Escobedo, Francisco J; Cropper, Wendell P; Martin, Timothy A; Timilsina, Nilesh
2017-09-01
Understanding ecosystem processes and the influence of regional scale drivers can provide useful information for managing forest ecosystems. Examining more local scale drivers of forest biomass and water yield can also provide insights for identifying and better understanding the effects of climate change and management on forests. We used diverse multi-scale datasets, functional models and Geographically Weighted Regression (GWR) to model ecosystem processes at the watershed scale and to interpret the influence of ecological drivers across the Southeastern United States (SE US). Aboveground forest biomass (AGB) was determined from available geospatial datasets and water yield was estimated using the Water Supply and Stress Index (WaSSI) model at the watershed level. Our geostatistical model examined the spatial variation in these relationships between ecosystem processes, climate, biophysical, and forest management variables at the watershed level across the SE US. Ecological and management drivers at the watershed level were analyzed locally to identify whether drivers contribute positively or negatively to aboveground forest biomass and water yield ecosystem processes and thus identifying potential synergies and tradeoffs across the SE US region. Although AGB and water yield drivers varied geographically across the study area, they were generally significantly influenced by climate (rainfall and temperature), land-cover factor1 (Water and barren), land-cover factor2 (wetland and forest), organic matter content high, rock depth, available water content, stand age, elevation, and LAI drivers. These drivers were positively or negatively associated with biomass or water yield which significantly contributes to ecosystem interactions or tradeoff/synergies. Our study introduced a spatially-explicit modelling framework to analyze the effect of ecosystem drivers on forest ecosystem structure, function and provision of services. This integrated model approach facilitates multi-scale analyses of drivers and interactions at the local to regional scale. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of timber harvests and silvicultural edges on terrestrial salamanders.
MacNeil, Jami E; Williams, Rod N
2014-01-01
Balancing timber production and conservation in forest management requires an understanding of how timber harvests affect wildlife species. Terrestrial salamanders are useful indicators of mature forest ecosystem health due to their importance to ecosystem processes and sensitivity to environmental change. However, the effects of timber harvests on salamanders, though often researched, are still not well understood. To further this understanding, we used artificial cover objects to monitor the relative abundance of terrestrial salamanders for two seasons (fall and spring) pre-harvest and five seasons post-harvest in six forest management treatments, and for three seasons post-harvest across the edge gradients of six recent clearcuts. In total, we recorded 19,048 encounters representing nine species of salamanders. We observed declines in mean encounters of eastern red-backed salamanders (Plethodon cinereus) and northern slimy salamanders (P. glutinosus) from pre- to post-harvest in group selection cuts and in clearcuts. However, we found no evidence of salamander declines at shelterwoods and forested sites adjacent to harvests. Edge effects induced by recent clearcuts influenced salamanders for approximately 20 m into the forest, but edge influence varied by slope orientation. Temperature, soil moisture, and canopy cover were all correlated with salamander counts. Our results suggest silvicultural techniques that remove the forest canopy negatively affect salamander relative abundance on the local scale during the years immediately following harvest, and that the depth of edge influence of clearcuts on terrestrial salamanders is relatively shallow (<20 m). Small harvests (<4 ha) and techniques that leave the forest canopy intact may be compatible with maintaining terrestrial salamander populations across a forested landscape. Our results demonstrate the importance of examining species-specific responses and monitoring salamanders across multiple seasons and years. Long-term monitoring will be necessary to understand the full impacts of forest management on terrestrial salamanders.
Effects of Timber Harvests and Silvicultural Edges on Terrestrial Salamanders
MacNeil, Jami E.; Williams, Rod N.
2014-01-01
Balancing timber production and conservation in forest management requires an understanding of how timber harvests affect wildlife species. Terrestrial salamanders are useful indicators of mature forest ecosystem health due to their importance to ecosystem processes and sensitivity to environmental change. However, the effects of timber harvests on salamanders, though often researched, are still not well understood. To further this understanding, we used artificial cover objects to monitor the relative abundance of terrestrial salamanders for two seasons (fall and spring) pre-harvest and five seasons post-harvest in six forest management treatments, and for three seasons post-harvest across the edge gradients of six recent clearcuts. In total, we recorded 19,048 encounters representing nine species of salamanders. We observed declines in mean encounters of eastern red-backed salamanders (Plethodon cinereus) and northern slimy salamanders (P. glutinosus) from pre- to post-harvest in group selection cuts and in clearcuts. However, we found no evidence of salamander declines at shelterwoods and forested sites adjacent to harvests. Edge effects induced by recent clearcuts influenced salamanders for approximately 20 m into the forest, but edge influence varied by slope orientation. Temperature, soil moisture, and canopy cover were all correlated with salamander counts. Our results suggest silvicultural techniques that remove the forest canopy negatively affect salamander relative abundance on the local scale during the years immediately following harvest, and that the depth of edge influence of clearcuts on terrestrial salamanders is relatively shallow (<20 m). Small harvests (<4 ha) and techniques that leave the forest canopy intact may be compatible with maintaining terrestrial salamander populations across a forested landscape. Our results demonstrate the importance of examining species-specific responses and monitoring salamanders across multiple seasons and years. Long-term monitoring will be necessary to understand the full impacts of forest management on terrestrial salamanders. PMID:25517409
Fujiwara, Akio; Saito, Haruo; Horiuchi, Masahiro
2017-01-01
We investigated the influence of forest management on landscape appreciation and psychological restoration in on-site settings by exposing respondents to an unmanaged, dense coniferous (crowding) forest and a managed (thinned) coniferous forest; we set the two experimental settings in the forests of the Fuji Iyashinomoroi Woodland Study Center. The respondents were individually exposed to both settings while sitting for 15 min and were required to answer three questionnaires to analyze the psychological restorative effects before and after the experiment (feeling (the Profile of Mood States), affect (the Positive and Negative Affect Schedule), and subjective restorativeness (the Restorative Outcome Scale). To compare landscape appreciation, they were required to answer another two questionnaires only after the experiment, for scene appreciation (the semantic differential scale) and for the restorative properties of each environment (the Perceived Restorativeness Scale). Finally, we obtained these findings: (1) the respondents evaluated each forest environment highly differently and evaluated the thinned forest setting more positively; (2) the respondents’ impressions of the two physical environments did not appear to be accurately reflected in their evaluations; (3) forest environments have potential restorative effects whether or not they are managed, but these effects can be partially enhanced by managing the forests. PMID:28718831
NASA Astrophysics Data System (ADS)
Rist, Lucy; Shackleton, Charlie; Gadamus, Lily; Chapin, F. Stuart; Gowda, C. Made; Setty, Siddappa; Kannan, Ramesh; Shaanker, R. Uma
2016-04-01
Multiple actors are typically involved in forest management, namely communities, managers and researchers. In such cases, suboptimal management outcomes may, in addition to other factors, be symptomatic of a divergence in perspectives among these actors driven by fundamental differences in ecological knowledge. We examine the degree of congruence between the understandings of actors surrounding key issues of management concern in three case studies from tropical, subtropical and boreal forests. We identify commonly encountered points of divergence in ecological knowledge relating to key management processes and issues. We use these to formulate seven hypotheses about differences in the bodies of knowledge that frequently underlie communication and learning failures in forest management contexts where multiple actors are involved and outcomes are judged to be suboptimal. Finally, we present a set of propositions to acknowledge and narrow these differences. A more complete recognition of the full triangulation between all actors involved, and of the influence that fundamental differences in ecological knowledge can exert, may help lead to a more fruitful integration between local knowledge and practice, manager knowledge and practice, and contemporary science in forest management.
David S. Buckley; Thomas R. Crow; Elizabeth A. Nauertz; Kurt E. Schulz
2003-01-01
We evaluated impacts of disturbance in interior haul roads and skid trails on understory vegetation by documenting the areal extent of these features and plant composition along 10 m x 100 m belt transects. Ten belt transects were sampled in each of three comparable northern hardwood forests under even-aged management. These forests were approximately 80 years old and...
Forest management under uncertainty for multiple bird population objectives
Moore, C.T.; Plummer, W.T.; Conroy, M.J.; Ralph, C. John; Rich, Terrell D.
2005-01-01
We advocate adaptive programs of decision making and monitoring for the management of forest birds when responses by populations to management, and particularly management trade-offs among populations, are uncertain. Models are necessary components of adaptive management. Under this approach, uncertainty about the behavior of a managed system is explicitly captured in a set of alternative models. The models generate testable predictions about the response of populations to management, and monitoring data provide the basis for assessing these predictions and informing future management decisions. To illustrate these principles, we examine forest management at the Piedmont National Wildlife Refuge, where management attention is focused on the recovery of the Red-cockaded Woodpecker (Picoides borealis) population. However, managers are also sensitive to the habitat needs of many non-target organisms, including Wood Thrushes (Hylocichla mustelina) and other forest interior Neotropical migratory birds. By simulating several management policies on a set of-alternative forest and bird models, we found a decision policy that maximized a composite response by woodpeckers and Wood Thrushes despite our complete uncertainty regarding system behavior. Furthermore, we used monitoring data to update our measure of belief in each alternative model following one cycle of forest management. This reduction of uncertainty translates into a reallocation of model influence on the choice of optimal decision action at the next decision opportunity.
William R. tech. ed. Meehan
1985-01-01
Although many effects of forest and rangeland management on anadromous fisheries are difficult to measure, economic methods for the evaluation of costs and benefits can be helpful. Such methods can be used to address questions of equity as well as efficiency. Evaluations of equity can show who bears the costs and who captures the benefits of management actions, but...
Soil Respiration at Dominant Patch Types within a Managed Northern Wisconsin Landscape
Eug& #233; nie Euskirchen; Jiquan Chen; Eric J. Gustafson; Siyan Ma; Siyan Ma
2003-01-01
Soil respiration (SR), a substantial component of the forest carbon budget, has been studied extensively at the ecosystem, regional, continental, and global scales, but little progress has been made toward understanding SR over managed forest landscapes. Soil respiration is often influenced by soil temperature (Ts), soil moisture (Ms...
Soil respiration at dominant patch types within a managed northern Wisconsin landscape
Eugenie S. Euskirchen; Jiquan Chen; Eric J. Gustafson; Siyan Ma
2003-01-01
Soil respiration (SR), a substantial component of the forest carbon budget, has been studied extensively at the ecosystem, regional, continental, and global scales, but little progress has been made toward understanding SR over managed forest landscapes. Soil respiration is often influenced by soil temperature (Ts), soil moisture (Ms...
Evaluating the vulnerability of Maine forests to wind damage
Thomas E. Perry; Jeremy S. Wilson
2010-01-01
Numerous factors, some of which cannot be controlled, are continually interacting with the forest resource, introducing risk to management, and making consistent predictable management outcomes uncertain. Included in these factors are threats or hazards such as windstorms and wildfire. Factors influencing the probability (risk) of windthrow or windsnap occurring can be...
Joshua J. Puhlick; Aaron R. Weiskittel; Ivan J. Fernandez; Shawn Fraver; Laura S. Kenefic; Robert S. Seymour; Randall K. Kolka; Lindsey E. Rustad; John C. Brissette
2016-01-01
Developing strategies for reducing atmospheric CO2 is one of the foremost challenges facing natural resource professionals today. The goal of this study was to evaluate total ecosystem and harvested wood product carbon (C) stocks among alternative forest management treatments (selection cutting, shelterwood cutting, commercial clearcutting, and...
Roger W. Perry; T. Bently Wigley; M. Anthony Melchiors; Ronald E. Thill; Philip A. Tappe; Darren A. Miller
2011-01-01
Conservation of biodiversity on forest landscapes dominated by plantations has become an increasingly important topic, and opportunities to maintain or enhance biodiversity within these forests need to be recognized and applied. Riparian buffers of mature forest retained along streams in managed forest landscapes offer an opportunity to enhance biodiversity across...
Forests and water: effects of forest management on floods, sedimentation, and water supply
Henry W. Anderson; Marvin D. Hoover; Kenneth G. Reinhart
1976-01-01
From the background of more than 100 years' collective experience in watershed research and from comprehensive review of the literature of forest hydrology, the authors summarize what is known about the forest's influence on the water resource, particularly the effects of current forestry practices. They first examine the fundamental hydrologic processes in...
Avian relationships with wildfire at two dry forest locations with different historical fire regimes
Quresh Latif; Jamie Sanderlin; Vicki Saab; William Block; Jonathan Dudley
2016-01-01
Wildfire is a key factor influencing bird community composition in western North American forests. We need to understand species and community responses to wildfire and how responses vary regionally to effectively manage dry conifer forests for maintaining biodiversity. We compared avian relationships with wildfire burn severity between two dry forest...
Forest cover changes in the Oregon Coast Range from 1939 to 1993.
Rebecca S.H. Kennedy; Thomas A. Spies
2004-01-01
Understanding the shifts over time in the distribution and amount of forest vegetation types in relation to forest management and environmental conditions is critical for many policy and ecological questions. Our objective was to assess the influences of ownership and environment on changes !n forest vegetation from post-settlement historical to recent times in the...
Using silviculture to influence carbon sequestration in southern Appalachian spruce-fir forests
Patrick T. Moore; R. Justin DeRose; James N. Long; Helga van Miegroet
2012-01-01
Enhancement of forest growth through silvicultural modification of stand density is one strategy for increasing carbon (C) sequestration. Using the Fire and Fuels Extension of the Forest Vegetation Simulator, the effects of even-aged, uneven-aged and no-action management scenarios on C sequestration in a southern Appalachian red spruce-Fraser fir forest were modeled....
Individual legacy trees influence vertebrate wildlife diversity in commercial forests
M.J. Mazurek; William J. Zielinski
2007-01-01
Old-growth forests provide important structural habitat elements for many species of wildlife. These forests, however, are rare where lands are managed for timber. In commercial forests, large and old trees sometimes exist only as widely-dispersed residual or legacy trees. Legacy trees are old trees that have been spared during harvest or have survived stand-replacing...
NASA Astrophysics Data System (ADS)
D'Aprile, Fabrizio; McShane, Paul; Tapper, Nigel
2013-04-01
Change of climate conditions influence energy fluxes applicable to forest ecosystems. These affect cycles of nutrients and materials, primary productivity of the ecosystem, biodiversity, ecological functionality and, consequently, carbon equilibria of the forest ecosystem. Temporal factors influence physical, biological, ecological, and climatic processes and functions. For example, seasonality, cycles, periodicity, and trends in climate variables; tree growth, forest growth, and forest metabolic activities (i.e., photosynthesis and respiration) are commonly known to be time-related. In tropical forests, the impacts of changing climate conditions may exceed temperature and/or precipitation thresholds critical to forest tree growth or health. Historically, forest management emphasises growth rates and financial returns as affected by species and site. Until recently, the influence of climate variability on growth dynamics has not been influential in forest planning and management. Under this system, especially in climatic and forest regions where most of species are stenoecious, periodical wood harvesting may occur in any phase of growth (increasing, decreasing, peak, and trough). This scenario presents four main situations: a) harvesting occurs when the rate of growth is decreasing: future productivity is damaged; the minimum biomass capital may be altered, and CO2 storage is negatively affected; b) harvesting occurs during a trough of the rate of growth: the minimum biomass capital necessary to preserve the resilience of the forest is damaged; the damage can be temporary (decades) or permanent; CO2 storage capacity is deficient - which may be read as an indirect emission of CO2 since the balance appears negative; c) harvesting occurs when the rate of growth is increasing: the planned wood mass can be used without compromising the resilience and recovery of the forest; CO2 storage remains increasing; d) harvesting occurs during a peak period of growth: the wood mass harvested can be even higher than planned, and the rate of CO2 storage can be above the average. A real risk for SFM under changing climatic conditions is that negative effects may be amplified; critical thresholds of temperature and/or rainfall for tree growth and stress may be exceeded with impacts on growth response, resilience, and CO2 balance that are not completely known. Furthermore, temporal changes in silvicultural and harvesting operations may lead to increased carbon emissions. Under this scenario and the consequent risks to SFM forestry operations should be planned or scheduled in periods when climate variables influencing tree growth and stress are within the relative thresholds. In this way, silvicultural operations and harvesting are going to be optimised to climate variability and forest growth responses, rather than just forest timber production.
NASA Astrophysics Data System (ADS)
Kiedrzyński, Marcin; Kurowski, Józef Krzysztof; Kiedrzyńska, Edyta
2017-11-01
Identifying potential refugial habitats in the face of rapid environmental change is a challenge faced by scientists and nature conservation managers. Relict populations and refugial habitats are the model objects in those studies. Based on the example of Actaea europaea from Central Poland, we analyse the habitat factors influencing relict populations of continental, light-demanding species in lowland forests and examine which habitats of studied species corresponding most closely to ancient vegetation. Our results indicate that the current refugial habitats of Actaea europaea include not only communities which are very similar to ancient open forest but also forests with a closed canopy. Although the populations are influenced by nitrogen and light availability, the co-occurrence of these two factors in forest communities is limited by dense canopy formation by hornbeam and beech trees on fertile soils and in more humid conditions. Our findings indicate that the future survival of relict, light-demanding communities in lowland forests requires low-intensity disturbances to be performed in tree-stands, according to techniques, which imitate traditional forests management.
The sustainable management and protection of forests: analysis of the current position globally.
Freer-Smith, Peter; Carnus, Jean-Michel
2008-06-01
The loss of forest area globally due to change of land use, the importance of forests in the conservation of biodiversity and in carbon and other biogeochemical cycles, together with the threat to forests from pollution and from the impacts of climate change, place forestry policy and practice at the center of global environmental and sustainability strategy. Forests provide important economic, environmental, social, and cultural benefits, so that in forestry, as in other areas of environmental policy and management, there are tensions between economic development and environmental protection. In this article we review the current information on global forest cover and condition, examine the international processes that relate to forest protection and to sustainable forest management, and look at the main forest certification schemes. We consider the link between the international processes and certification schemes and also their combined effectiveness. We conclude that in some regions of the world neither mechanism is achieving forest protection, while in others local or regional implementation is occurring and is having a significant impact. Choice of certification scheme and implementation of management standards are often influenced by a consideration of the associated costs, and there are some major issues over the monitoring of agreed actions and of the criteria and indicators of sustainability. There are currently a number of initiatives seeking to improve the operation of the international forestry framework (e.g., The Montreal Process, the Ministerial Convention of the Protection of Forests in Europe and European Union actions in Europe, the African Timber Organisation and International Tropical Timber Organisation initiative for African tropical forest, and the development of a worldwide voluntary agreement on forestry in the United Nations Forum on Forests). We suggest that there is a need to improve the connections between scientific understanding, policy development, and forestry practice, and also the cooperation between the various international initiatives and processes, so that the international framework is more effective and its influence is extended geographically.
Influence of alternative silviculture on small mammals
Waldien, David L.; Hayes, John P.
2006-01-01
HIGHLIGHT: A variety of harvest methods promote diversity within forests while still generating income. For example, recent studies have shown that when dead wood is left on the forest floor during harvest, biodiversity increases. A new Cooperative Forest Ecosystem Research (CFER) program fact sheet summarizes how small mammals respond to dead wood in forests that are harvested with alternative methods. CFER is developing a series of fact sheets about responses to changes in young western Oregon forests. The fact sheets are designed to help resource managers balance management needs, including timber and wildlife. The USGS provides a primary source of financial support for CFER, a consortium of federal and state partners conducting research in support of the Northwest Forest Plan.
Influence of benchmarking on wilderness visitor and manager perceptions of campsite conditions
Joseph P. Flood
2003-01-01
The purpose of this study was to compare visitor and manager perceptions of how heavily impacted wilderness campsites and restoration activities to restore them influence quality of visitor experience and opinions of managers. The study conducted in the Mission Mountains Wilderness ("MMW") is located in northwestern Montana and managed by the USDA Forest...
NASA Astrophysics Data System (ADS)
Lutz, D. A.; Burakowski, E. A.; Murphy, M. B.; Borsuk, M. E.; Niemiec, R. M.; Howarth, R. B.
2014-12-01
Albedo is an important physical property of the land surface which influences the total amount of incoming solar radiation that is reflected back into space. It is a critical ecosystem service that helps regulate the Earth's energy balance and, in the context of climate mitigation, has been shown to have a strong influence on the overall effectiveness of land management schemes designed to counteract climate change. Previously, we demonstrated that incorporating the physical effects of albedo into an ecological economic forest model of locations in the White Mountain National Forest, in New Hampshire, USA, leads to a substantially shorter optimal rotation period for forest harvest than under a carbon- and timber-only approach. In this study, we investigate similar tradeoffs at 565 sites across the entire state of New Hampshire in a variety of different forest types, latitudes, and elevations. Additionally, we use a regression tree approach to calculate the influence of biogeochemical and physical factors on the optimal rotation period. Our results suggest that in many instances, incorporating albedo may lead to optimal rotation times approaching zero, or, perpetual clear-cut. Overall, the difference between growing season and winter-time albedo for forested and harvested states was the most significant variable influencing the rotation period, followed by timber stumpage price, and biomass growth rate. These results provide an initial understanding of tradeoffs amongst these three ecosystem services and provide guidance for forest managers as to the relative important properties of their forests when these three services are incentivized economically.
Forest Soil Disturbance Monitoring Protocol: Volume I: Rapid assessment
Deborah S. Page-Dumroese; Ann M. Abbott; Thomas M. Rice
2009-01-01
This volume of the Forest Soil Disturbance Monitoring Protocol (FSDMP) describes how to monitor forest sites before and after ground disturbing management activities for physical attributes that could influence site resilience and long-term sustainability. The attributes describe surface conditions that affect site sustainability and hydrologic function. Monitoring the...
Enhancing wildlife habitat when regenerating stands
Frank R., III Thompson
1989-01-01
Forest regeneration cuttings affect wildlife habitat more drastically than most forest management practices because a mature forest stand is replaced by a young sapling stand. Regeneration cuttings quickly provide habitat for many wildlife species but they also influence wildlife use of the new stand and adjacent areas throughout the rotation. Retaining snags, cavity...
Agne, Michelle C; Beedlow, Peter A; Shaw, David C; Woodruff, David R; Lee, E Henry; Cline, Steven P; Comeleo, Randy L
2018-02-01
Forest disturbance regimes are beginning to show evidence of climate-mediated changes, such as increasing severity of droughts and insect outbreaks. We review the major insects and pathogens affecting the disturbance regime for coastal Douglas-fir forests in western Oregon and Washington State, USA, and ask how future climate changes may influence their role in disturbance ecology. Although the physiological constraints of light, temperature, and moisture largely control tree growth, episodic and chronic disturbances interacting with biological factors have substantial impacts on the structure and functioning of forest ecosystems in this region. Understanding insect and disease interactions is critical to predicting forest response to climate change and the consequences for ecosystem services, such as timber, clean water, fish and wildlife. We focused on future predictions for warmer wetter winters, hotter drier summers, and elevated atmospheric CO 2 to hypothesize the response of Douglas-fir forests to the major insects and diseases influencing this forest type: Douglas-fir beetle, Swiss needle cast, black stain root disease, and laminated root rot. We hypothesize that 1) Douglas-fir beetle and black stain root disease could become more prevalent with increasing, fire, temperature stress, and moisture stress, 2) future impacts of Swiss needle cast are difficult to predict due to uncertainties in May-July leaf wetness, but warmer winters could contribute to intensification at higher elevations, and 3) laminated root rot will be influenced primarily by forest management, rather than climatic change. Furthermore, these biotic disturbance agents interact in complex ways that are poorly understood. Consequently, to inform management decisions, insect and disease influences on disturbance regimes must be characterized specifically by forest type and region in order to accurately capture these interactions in light of future climate-mediated changes.
Sediment deposition from forest roads at stream crossings as influenced by road characteristics
A.J. Lang; W.M. Aust; M.C. Bolding; K.J. McGuire
2015-01-01
Recent controversies associated with ditched forest roads and stream crossings in the Pacific Northwest have focused national attention on sediment production and best management practices (BMPs) at stream crossings. Few studies have quantified soil erosion rates at stream crossings as influenced by road characteristics and compared them to modeled rates. Soil erosion...
Deanh M. Donner; John R. Probst; Christine A. Ribic
2008-01-01
Kirtland's warblers (Dendroica kirtlandii) persist in a naturally patchy environment of young, regenerating jack pine forests (i.e., 5-23 years old) created after wildfires and human logging activities. We examined how changing landscape structure from 26 years of forest management and wildfire disturbances influenced population size and spatial...
Effects of riparian buffer width on wood loading in headwater streams after repeated forest thinning
Julia I. Burton; Deanna H. Olson; Klaus J. Puettmann
2016-01-01
Forested riparian buffer zones are used in conjunction with upland forest management, in part, to provide for the recruitment for large wood to streams. Small headwater streams account for the majority of stream networks in many forested regions. Yet, our understanding of how riparian buffer width influences wood dynamics in headwater streams is relatively less...
Influence of forest road buffer zones on sediment transport in the Southern Appalachian Region
Johnny M. Grace; Stanley J. Zarnoch
2013-01-01
A gap exists in the understanding of the effectiveness of forest road best management practices (BMP) in controlling sediment movement and minimizing risks of sediment delivery to forest streams. The objective of this paper is to report the findings of investigations to assess sediment travel distances downslope of forest roads in the Appalachian region, relate...
The influence of forest management on vulnerability of forests to severe weather
Robert H. Beach; Erin O. Sills; Tzu-Ming Liu; Subhrendu Pattanayak
2010-01-01
Excessive wind, ice, and snow regularly cause major disturbances to forests in many parts of the world, significantly impacting both ecological conditions and economic returns to forest landowners. These events cause immediate losses for landowners, and the broken and uprooted trees left in the wake of a storm increase the risk that wildfires, disease, and pest...
Bernard R. Parresol; Steven C. Stedman
2004-01-01
The accuracy of forest growth and yield forecasts affects the quality of forest management decisions (Rauscher et al. 2000). Users of growth and yield models want assurance that model outputs are reasonable and mimic local/regional forest structure and composition and accurately reflect the influences of stand dynamics such as competition and disturbance. As such,...
Dung Tuan Nguyen
2012-01-01
Forest harvest scheduling has been modeled using deterministic and stochastic programming models. Past models seldom address explicit spatial forest management concerns under the influence of natural disturbances. In this research study, we employ multistage full recourse stochastic programming models to explore the challenges and advantages of building spatial...
Agroforestry landscapes and global change: landscape ecology tools for management and conservation
Guillermo Martinez Pastur; Emilie Andrieu; Louis R. Iverson; Pablo Luis Peri
2012-01-01
Forest ecosystems are impacted by multiple uses under the influence of global drivers, and where landscape ecology tools may substantially facilitate the management and conservation of the agroforestry ecosystems. The use of landscape ecology tools was described in the eight papers of the present special issue, including changes in forested landscapes due to...
Integrating fuel and forest management: developing prescriptions for the Central Hardwood Region
Edward F. Loewenstein; Keith W. Grabner; George W. Hartman; Erin R. McMurry
2003-01-01
The oak dominated forests in the Ozarks of southern Missouri evolved under the influence of fire for thousands of years. However, fire exclusion and timber harvests have changed historical fuel loads and modified vegetative structure. The resurgent interest in restoration of fire dependent ecosystems in conjunction with the needs of resource managers to control fuel...
Rating spruce-fir silviculture for wildlife and forestry
H.S. Crawford; R.M. Frank
1985-01-01
Forest managers face a wide array of potential choices when they consider all of the products derived from woodlands. Many of these products compete with one another to some degree. For instance, hardwood regeneration may be removed in thinnings to favor softwood growth. Forest wildlife-is also influenced by silvicultural practice and the manager must decide whether to...
Using thinning as a management tool for gypsy moth: the influence on small mammal abundance
R.M. Muzika; S.T. Grushecky; A.M. Liebhold; R.L. Smith
2004-01-01
Silvicultural manipulations may be used to reduce forest susceptibility or vulnerability to defoliation by the gypsy moth. The effects of this management strategy on small mammal abundance were determined by pitfall trapping small mammals 1 year before silvicultural thinnings and for 3 years following thinning in a deciduous montane forest. Sorex cinereus...
Paula E. Marquardt; Craig S. Echt; Bryan K. Epperson; Dan M. Pubanz
2007-01-01
Resource sustainability requires a thorough understanding of the influence of forest management programs on the conservation of genetic diversity in tree populations. To observe how differences in forest structure affect the genetic structure of eastern white pine (Pinus strobus L.), we evaluated six eastern white pine sites across the 234000 acre (1...
Egunyu, Felicitas; Reed, Maureen G; Sinclair, John A
2016-04-01
Collaborative forest governance arrangements have been viewed as promising for sustainable forestry because they allow local communities to participate directly in management and benefit from resource use or protection. Such arrangements are strengthened through social learning during management activities that can enhance capacity to solve complex problems. Despite significant research on social learning in collaborative environmental governance, it is not clear how social learning evolves over time, who influences social learning, and whether learning influences management effectiveness. This study investigates how social learning outcomes change over time, using an in-depth study of a community forest in Canada. Personal interviews, focus group meetings, and participant observation revealed that most participants started engaging in community forestry with limited knowledge and learned as they participated in management activities. However, as the community forest organization became effective at complying with forestry legislation, learning opportunities and outcomes became more restricted. Our results run contrary to the prevalent view that opportunities for and outcomes of social learning become enlarged over time. In our case, learning how to meet governmental requirements increased professionalism and reduced opportunities for involvement and learning to a smaller group. Our findings suggest the need to further test propositions about social learning and collaborative governance, particularly to determine how relationships evolve over time.
NASA Astrophysics Data System (ADS)
Egunyu, Felicitas; Reed, Maureen G.; Sinclair, John A.
2016-04-01
Collaborative forest governance arrangements have been viewed as promising for sustainable forestry because they allow local communities to participate directly in management and benefit from resource use or protection. Such arrangements are strengthened through social learning during management activities that can enhance capacity to solve complex problems. Despite significant research on social learning in collaborative environmental governance, it is not clear how social learning evolves over time, who influences social learning, and whether learning influences management effectiveness. This study investigates how social learning outcomes change over time, using an in-depth study of a community forest in Canada. Personal interviews, focus group meetings, and participant observation revealed that most participants started engaging in community forestry with limited knowledge and learned as they participated in management activities. However, as the community forest organization became effective at complying with forestry legislation, learning opportunities and outcomes became more restricted. Our results run contrary to the prevalent view that opportunities for and outcomes of social learning become enlarged over time. In our case, learning how to meet governmental requirements increased professionalism and reduced opportunities for involvement and learning to a smaller group. Our findings suggest the need to further test propositions about social learning and collaborative governance, particularly to determine how relationships evolve over time.
NASA Astrophysics Data System (ADS)
Joyce, L. A.; Running, S. W.; Breshears, D. D.; Dale, V.; Malmsheimer, R. W.; Sampson, N.; Sohngen, B.; Woodall, C. W.
2012-12-01
Increasingly the value of US forest carbon dynamics and carbon sequestration is being recognized in discussions of adaptation and mitigation to climate change. Past exploitation of forestlands in the United States for timber, fuelwood, and conversion to agriculture resulted in large swings in forestland area and terrestrial carbon dynamics. The National Climate Assessment explored the implications of current and future stressors, including climate change, to the future of forest carbon dynamics in the United States. While U.S forests and associated harvested wood products sequestered roughly 13 percent of all carbon dioxide emitted in the United States in 2010, the capacity of forests to maintain this amount of carbon sequestration will be affected by the effects of climate change on forest disturbances, tree growth and mortality, changes in species composition, and to a greater extent, the economic and societal influences on forest management and forestland use. Carbon mitigation through forest management includes three strategies: 1) land management to increase forest area (afforestation) and/or avoid deforestation; 2) carbon management in existing forests; and 3) use of wood in place of materials that require more carbon emissions to produce, in place of fossil fuels to produce energy or in wood products for carbon storage. A significant financial incentive facing many private forest owners is the value of their forest lands for conversion to urban or developed uses. In addition, consequences of large scale die-off and wildfire disturbance events from climate change pose major challenges to forestland area and forest management with potential impacts occurring up to regional scales for timber, flooding and erosion risks, other changes in water budgets, and biogeochemical changes including carbon storage. Options for carbon management on existing forests include practices that increase forest growth such as fertilization, irrigation, switch to fast-growing planting stock and shorter rotations, and weed, disease, and insect control, and increasing the interval between harvests or decreasing harvest intensity. Economic drivers will affect future carbon cycle of forests such as shifts in forest age class structure in response to markets, land-use changes such as urbanization, and forest type changes. Future changes in forestland objectives include the potential for bioenergy based on forestland resources, which is as large as 504 million acres of timberland and 91 million acres of other forest land out of the 751 million acres of U.S. forestland. Implications of forest product use for bioenergy depend on the context of specific locations such as feedstock type and prior management, land conditions, transport and storage logistics, conversion processes used to produce energy, distribution and use. Markets for energy from biomass appear to be ready to grow in response to energy pricing, policy and demand, although recent increases in the supply of natural gas have reduced urgency for new biomass projects. Beyond use in the forest industry and some residences, biopower is not a large-scale enterprise in the United States. Societal choices about forest policy will also affect the carbon cycles on public and private forestland.
NASA Astrophysics Data System (ADS)
Chen, G.; Hayes, D. J.; Tian, H.
2013-12-01
Planted forest area in the United States gradually increased during the last half century, and by 2007 accounted for about 20% of the total forest area in the southern United States and about 13% in the entire country. Intensive plantation management activities - such as slash burning, thinning, weed control, fertilization and the use of genetically improved seedlings - are routinely applied during the forest rotation. However, no comprehensive assessments have been made to examine the impacts of this increased forest plantation area and associated management practices on ecosystem function. In this study, we integrated field measurement data and process-based modeling to quantitatively estimate the changes in carbon storage, nitrogen cycling and water use as influenced by forest plantations in the United States from 1925 to 2007. The results indicated that forest plantations and management practices greatly increased forest productivity, vegetation carbon, and wood product carbon storage in the United States, but slightly reduce soil carbon storage at some areas; however, the carbon sink induced by forest plantations was at the expense of more water use as represented by higher evapotranspiration. Stronger nitrogen and water limitations were found for forest plantations as compared to natural or naturally-regenerated forests.
Jones, Jay E.; Kroll, Andrew J.; Giovanini, Jack; Duke, Steven D.; Ellis, Tana M.; Betts, Matthew G.
2012-01-01
Background Managers of landscapes dedicated to forest commodity production require information about how practices influence biological diversity. Individual species and communities may be threatened if management practices truncate or simplify forest age classes that are essential for reproduction and survival. For instance, the degradation and loss of complex diverse forest in young age classes have been associated with declines in forest-associated Neotropical migrant bird populations in the Pacific Northwest, USA. These declines may be exacerbated by intensive forest management practices that reduce hardwood and broadleaf shrub cover in order to promote growth of economically valuable tree species in plantations. Methodology and Principal Findings We used a Bayesian hierarchical model to evaluate relationships between avian species richness and vegetation variables that reflect stand management intensity (primarily via herbicide application) on 212 tree plantations in the Coast Range, Oregon, USA. Specifically, we estimated the influence of broadleaf hardwood vegetation cover, which is reduced through herbicide applications, on bird species richness and individual species occupancy. Our model accounted for imperfect detection. We used average predictive comparisons to quantify the degree of association between vegetation variables and species richness. Both conifer and hardwood cover were positively associated with total species richness, suggesting that these components of forest stand composition may be important predictors of alpha diversity. Estimates of species richness were 35–80% lower when imperfect detection was ignored (depending on covariate values), a result that has critical implications for previous efforts that have examined relationships between forest composition and species richness. Conclusion and Significance Our results revealed that individual and community responses were positively associated with both conifer and hardwood cover. In our system, patterns of bird community assembly appear to be associated with stand management strategies that retain or increase hardwood vegetation while simultaneously regenerating the conifer cover in commercial tree plantations. PMID:22905249
[A review on disturbance ecology of forest].
Zhu, Jiaojun; Liu, Zugen
2004-10-01
More than 80% of terrestrial ecosystems have been influenced by natural disasters, human activities and the combination of both natural and human disturbances. Forest ecosystem, as one of the most important terrestrial ecosystems, has also been disturbed without exception. Under the disturbance from natural disasters and human activities, particularly from the unreasonable activities of human beings, forest decline or forest degradation has become more and more severe. For this reason, sustaining or recovering forest service functions is one of the current purposes for managing forest ecosystems. In recent decades, the studies on disturbed ecosystems have been carried out frequently, especially on their ecological processes and their responses to the disturbances. These studies play a very important role in the projects of natural forest conservation and the construction of ecological environment in China. Based on a wide range of literatures collection on forest disturbance research, this paper discussed the fundamental concepts of disturbance ecology, the relationships between forest management and disturbance, and the study contents of forest disturbance ecology. The major research topics of forest disturbance ecology may include: 1) the basic characteristics of disturbed forests; 2) the processes of natural and human disturbances; 3) the responses of forests ecosystem to the disturbances; 4) the main ecological processes or the consequential results of disturbed forests, including the change of biodiversity, soil nutrient and water cycle, eco-physiology and carbon cycle, regeneration mechanism of disturbed forests and so on; 5) the relationships between disturbances and forest management; and 6) the principles and techniques for the management of disturbed forests. This review may be helpful to the management of disturbed forest ecosystem, and to the projects of natural forest conservation in China.
Optical and Electronic Properties of Nano-Materials from First Principles Computation
NASA Astrophysics Data System (ADS)
Deslippe, Jack Richard
This dissertation examines effects of land management on forest structure at both the stand and landscape scales. Specifically, it investigates the effect of five types of silvicultural cutting (clear-cut, improvement thinning, diameter-limited thinning from the top, diameter-limited thinning from below, and the initial cut of a shelterwood system) on forest structural diversity and carbon storage in mixed oak hardwood forests of Pennsylvania. Furthermore, it develops LiDAR (Light Detecting and Ranging) techniques to quantify forest structural diversity at a landscape level to examine forest structure, with comparisons between eco-provinces and management types. At the stand scale, it was found that structural resilience to silvicultural disturbances was greater than compositional resilience, resulting in forests that appeared to recover quickly from disturbance but were compositionally altered. More intense disturbances caused greater changes in forest structure and composition, requiring longer to return to near predisturbance conditions; however, the forest strata disturbed also influenced the disturbance severity and therefore the forest's response. This study demonstrated that silvicultural cutting may be used to increase structural diversity at the stand level (e.g., establishment cut of a shelterwood system); however, this comes at the cost of an increase in shade-tolerant regeneration to the detriment of economically and ecologically valuable mid-successional species. The long-term outcomes of partial cuts were complex and context specific, and this complexity may be useful for maintaining or increasing structural complexity at the landscape level. A variety of silvicultural techniques should be implemented to achieve management objectives of increased forest structural diversity. In terms of carbon storage at the stand scale, although the clearcutting treatment had the highest carbon periodic annual increment (cPAI) in the first 15 years post harvest, it was projected to store considerably less carbon in the long term (over 100-years) than the other treatments. The projected low carbon storage in this treatment is likely due to a shift in species composition to early successional species that store less carbon per tree. Amongst the partial cutting methods, the improvement thin was the best option with moderate timber harvest rates, moderately high cPAI in the first 15 years post-harvest and relatively high carbon storage in the long-term; however, refraining from cutting remains the best option for carbon storage if the forest is in the aggradation phase. Poor silvicultural decisions may lead to reduced carbon storage of forest stands in the long-term, reducing the effectiveness of these forest carbon sinks for climate change mitigation. To explore forest structure at the landscape level, a method to map forest canopy structure over large areas was developed using low-density topographic Light Detection And Ranging (LiDAR) data and orthographic photography collected for Pennsylvania as part of PAMAP (Pennsylvania Map Program). K-means clustering of LiDAR statistics on a grid basis was used in conjunction with multinomial logistic regression to develop a LiDAR Canopy Structure Topology (LCST). The fourteen resulting LCST types reflect vegetation top height and canopy structural complexity with a correct classification rate of 96%. This LCST provides cost-effective forest structure information by relying on remote sensing data freely available for the entire state of Pennsylvania and that could be widely utilized for forest, wildlife and landscape planning. Furthermore, the methods developed here may be adapted to map forest structure in other contexts with different LiDAR data sets. This LCST was then mapped over 20 large landscapes within Pennsylvania, and these contrasting landscapes analyzed to investigate the influence of both site and four differing land management types (non-government, Bureau of Forestry, Bureau of State Parks and Pennsylvania Game Commission) on forest structure. It was found that at the local scale both topography and land management type had significant influences over forest structure; however, combined they only explained 32% of the variation in forest structure. At the landscape scale, there were significant differences in forest landscape structure between both Bailey's eco-provinces and management types. Specifically, non-government forests showed evidence of forest structure fragmentation. These non-government forested lands contained a higher proportion of short vegetation types, higher patch density, and greater heterogeneity of neighboring patches. This within-forest fragmentation is likely to have implications for both biodiversity and ecosystem services. Together, the studies presented in this dissertation show that management has a great impact on forest structure and carbon storage at both the stand and landscape levels. Management modifies the underlying influence of the environment, resulting in the realized forest structure patterns on the landscape. Therefore managers need to consciously incorporate these considerations into their management decisions at both the stand and landscape levels. Furthermore, this dissertation shows that despite its shortcomings, topographic LiDAR can be used for landscape scale vegetation studies in addition to topographic modeling. (Abstract shortened by UMI.).
Human influences on forest ecosystems: the southern wildland-urban interface assessment
Edward A. Macie; L. Annie Hermansen; [Editors
2002-01-01
This publication provides a review of critical wildland-urban interface issues, challenges, and needs for the Southern United States. Chapter topics include population and demographic trends; economic and tax issues; land use planning and policy; urban effects on forest ecosystems; challenges for forest resource management and conservation; social consequences of...
M.T. Curzon; A.W. D' Amato; S. Fraver; B.J. Palik; A. Bottero; J.R. Foster; K.E. Gleason
2017-01-01
Concern over global environmental change and associated uncertainty has given rise to greater emphasis on fostering resilience through forest management. We examined the impact of standard silvicultural systems (including clearcutting, shelterwood, and selection) compared with unharvested controls on tree functional identity and functional diversity in three forest...
Forest thinning changes movement patterns and habitat use by Pacific marten
Katie M. Moriarty; Clinton W. Epps; William J. Zielinski
2016-01-01
ABSTRACT Simplifying stand structure to reduce fuel density is a high priority for forest managers; however, affects to Pacific marten (Martes caurina) movement and connectivity are unknown. We evaluated whether thinning forests to reduce fuels influenced movements of Pacific marten. We collected movement paths from 22 martens using global positioning system telemetry...
Management strategies for bark beetles in conifer forests
Christopher Fettig; Jacek Hilszczański
2015-01-01
Several species of bark beetles (Coleoptera: Curculionidae, Scolytinae) are capable of causing significant amounts of tree mortality in conifer forests throughout much of the world. In most cases, these events are part of the ecology of conifer forests and positively influence many ecological processes, but the economic and social implications can be...
Mitigating Anthropocene influences in forests in the United States
Chadwick Dearing Oliver
2014-01-01
Anthropogenic and other climate changes, land use changes, forest structure changes, and introduced organisms are difficult to isolate with respect to their cumulative consequences. Similar changes have occurred before with undesirable effects and the currently high human population could suffer greatly if they happen again. Active forest management can help avoid...
Cavity nesting bird habitat in the oak-hickory forests--a review.
Kimberly I. Hardin; Keith E. Evans
1977-01-01
Summarizes and discusses the literature about the nesting habitat of the 26 cavity-nesting bird species found in the oak-hickory forest. Also discusses the potential influences of silvicultural practices and management alternatives.
W. Keith Moser; Mark D. Nelson
2009-01-01
Ecosystem management requires an understanding of disturbance processes and their influence on forests. One of these disturbances is damage due to severe wind events. In an ideal model, assessing risk of windstorm damage to a forested ecosystem entails defining tree-, stand-, and landscape-level factors that influence response and recovery. Data are not always...
Joseph L. Ganey; Scott C. Vojta
2012-01-01
Down logs provide important ecosystem services in forests and affect surface fuel loads and fire behavior. Amounts and kinds of logs are influenced by factors such as forest type, disturbance regime, forest man-agement, and climate. To quantify potential short-term changes in log populations during a recent global- climate-change type drought, we sampled logs in mixed-...
T.A. Hanley; C.T. Robbins; D.E. Spalinger
1989-01-01
Research on forest habitats and the nutritional ecology of Sitka black-tailed deer conducted during 1981 through 1986 is reviewed and synthesized. The research approach was based on the assumption that foraging efficiency is the best single measure of habitat quality for an individual deer. Overstory-understory relations and the influence of forest overstory on snow...
Controls on soil organic matter content within a northern hardwood forest
K.D. Johnson; F.N. Scatena; A.H. Johnson; Y. Pan
2009-01-01
Forest soils can act as both sinks and sources for atmospheric CO2 and therefore have an important role in the global carbon cycle. Yet the controls on forest soil organic matter content (SOM) distribution at the scale of operational land management scales within forest types are rarely quantified in detail. To identify factors that influence the...
Richard N. Conner; James G. Dickson
1997-01-01
Bird communities of the West Gulf Coastal Plain are strongly influenced by the stage of forest succession, species composition of understory and overstory vegetation, and forest structure. Alteration of plant communities through forest management and natural disturbances typically does not eliminate birds as a fauna1 group from the area affected, but will replace some...
Roger N. Clark; Dave R. Gibbons; Gilbert B. Pauley
1985-01-01
Public and private lands in the United States are used by millions of people for recreational activities. Many of these activities occur in or near streams and coastal areas that produce various species of anadromous fish. A major concern of fishery managers is the possible adverse effect of recreational uses on fish habitat. Conversely, the management of fish habitats...
Briner, Simon; Elkin, Ché; Huber, Robert
2013-11-15
Provisioning of ecosystem services (ES) in mountainous regions is predicted to be influenced by i) the direct biophysical impacts of climate change, ii) climate mediated land use change, and iii) socioeconomic driven changes in land use. The relative importance and the spatial distribution of these factors on forest and agricultural derived ES, however, is unclear, making the implementation of ES management schemes difficult. Using an integrated economic-ecological modeling framework, we evaluated the impact of these driving forces on the provision of forest and agricultural ES in a mountain region of southern Switzerland. Results imply that forest ES will be strongly influenced by the direct impact of climate change, but that changes in land use will have a comparatively small impact. The simulation of direct impacts of climate change affects forest ES at all elevations, while land use changes can only be found at high elevations. In contrast, changes to agricultural ES were found to be primarily due to shifts in economic conditions that alter land use and land management. The direct influence of climate change on agriculture is only predicted to be substantial at high elevations, while socioeconomic driven shifts in land use are projected to affect agricultural ES at all elevations. Our simulation results suggest that policy schemes designed to mitigate the negative impact of climate change on forests should focus on suitable adaptive management plans, accelerating adaptation processes for currently forested areas. To maintain provision of agricultural ES policy needs to focus on economic conditions rather than on supporting adaptation to new climate. Copyright © 2013 Elsevier Ltd. All rights reserved.
Todd A. Ontl; Chris Swanston; Leslie A. Brandt; Patricia R. Butler; Anthony W. D’Amato; Stephen D. Handler; Maria K. Janowiak; P. Danielle Shannon
2018-01-01
Climate adaptation planning and implementation are likely to increase rapidly within the forest sector not only as climate continues to change but also as we intentionally learn from real-world examples. We sought to better understand how adaptation is being incorporated in land management decision-making across diverse land ownership types in the Midwest by evaluating...
Christopher P. Hansen; Mark A. Rumble; Joshua J. Millspaugh
2010-01-01
Monitoring ruffed grouse (Bonasa umbellus) in the Black Hills National Forest is a priority for forest managers due to the bird's status as the management indicator species for quaking aspen (Populus tremuloides) and its value to hunters and other recreational groups. We conducted drumming surveys, estimated occupancy, and assessed the influence of sampling and...
Joseph L. Ganey; Gary C. White; Jeffrey S. Jenness; Scott C. Vojta
2015-01-01
Snags (standing dead trees) are important components of forests that provide resources for numerous species of wildlife and contribute to decay dynamics and other ecological processes. Managers charged with managing populations of snags need information about standing rates of snags and factors influencing those rates, yet such data are limited for ponderosa pine (...
Jones, Matthew S; Halteman, William A; Drummond, Francis A
2016-10-01
Predators and scavengers play a vital role in regulating insect pests, weeds, and vertebrate scat in perennial agroecosystems. Understanding how farm management practices and surrounding habitat influence these beneficial ecosystem services contributes to our understanding of these complex ecological systems and guides future management decisions. In a mensurative 2-yr study, we determined how different pest management strategies and surrounding forest composition influenced levels of sentinel insect pupae, weed seeds, and deer scat (feces) removal. Removal of these bioresources was measured within 12 commercial lowbush blueberry fields during 2011 and 2012; farms differed in surrounding landscape composition and farm management strategies. Both the removal of sentinel pupae and scat, was significantly higher within field interiors than at field edges and within adjacent forests. Additionally, farm management strategy interacted with field position to result in significantly higher scat removal in conventional field interiors than organic field interiors. Surrounding forest composition had variable effects on removal of materials. Our results indicate higher levels of activity within field centers as opposed to field edges; this is contrary to what has been observed in other perennial cropping agroecosystems. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Reconciling salvage logging of boreal forests with a tural-disturbance management model.
Schmiegelow, Fiona K A; Stepnisky, David P; Stambaugh, Curtis A; Koivula, Matti
2006-08-01
In North American boreal forests, wildfire is the dominant agent of natural disturbance. A natural-disturbance model has therefore been promoted as an ecologically based approach to forest harvesting in these systems. Given accelerating resource demands, fire competes with harvest for timber and there is increasing pressure to salvage naturally burned areas. This creates a management paradox: simultaneous promotion of natural disturbance as a guide to sustainability while salvaging forests that have been naturally disturbed. The major drivers of postfire salvage in Canadian boreal forests are societal perceptions, overallocation of forest resources, and economic and policy incentives, and postfire salvage compromisesforest sustainability by diminishing the role of fire as a critical, natural process. These factors might be reconciled through consideration of fire in resource allocations and application of active adaptive management. We provide novel treatment of the role of burn severity in mediating biotic response by examining its influence on the amount, type, and distribution of live, postfire residual material, and we highlight the role of fire in shaping spatial and temporal patterns in forest biodiversity. Maintenance of natural postfire forests is a critical component of an ecosystem-based approach to forest management in boreal systems. Nevertheless, presentpracticesfocus heavily on expediting removal of timber from burned forests, despite increasing evidence that postfire communities differ markedly from postharvest systems, and there is a mismatch between emerging management models and past management practices. Policies that recognize the critical role of fire in these systems and facilitate enhanced understanding of natural system dynamics in support of development of sustainable management practices are urgently needed.
Quantifying Forest Ecosystem Services Tradeoff—Coupled Ecological and Economic Models
NASA Astrophysics Data System (ADS)
Haff, P. K.; Ling, P. Y.
2015-12-01
Quantification of the effect of carbon-related forestland management activities on ecosystem services is difficult, because knowledge about the dynamics of coupled social-ecological systems is lacking. Different forestland management activities, such as various amount, timing, and methods of harvesting, and natural disturbances events, such as wind and fires, create shocks and uncertainties to the forest carbon dynamics. A spatially explicit model, Landis-ii, was used to model the forest succession for different harvest management scenarios at the Grandfather District, North Carolina. In addition to harvest, the model takes into account of the impact of natural disturbances, such as fire and insects, and species competition. The result shows the storage of carbon in standing biomass and in wood product for each species for each scenario. In this study, optimization is used to analyze the maximum profit and the number of tree species that each forest landowner can gain at different prices of carbon, roundwood, and interest rates for different harvest management scenarios. Time series of roundwood production of different types were estimated using remote sensing data. Econometric analysis is done to understand the possible interaction and relations between the production of different types of roundwood and roundwood prices, which can indicate the possible planting scheme that a forest owner may make. This study quantifies the tradeoffs between carbon sequestration, roundwood production, and forest species diversity not only from an economic perspective, but also takes into account of the forest succession mechanism in a species-diverse region. The resulting economic impact on the forest landowners is likely to influence their future planting decision, which in turn, will influence the species composition and future revenue of the landowners.
Owen, Sheldon F.; Berl, Jacob L.; Edwards, John W.; Ford, W. Mark; Wood, Petra Bohall
2015-01-01
Intensive forest management may influence the availability of suitable den sites for large den-seeking species, such as Procyon lotor (Raccoon). As part of a Raccoon ecology study on an industrial forest in the Allegheny Mountains of central West Virginia, we radio-tracked 32 Raccoons to 175 diurnal den sites to determine relative use of dens that included cavity trees, rock dens, log piles, slash piles, and exposed limbs. Patterns of den use significantly differed between sexes and among seasons. Overall, we recorded 58 cavity dens in 12 tree species with 7 maternal dens found in 5 tree species. Raccoons selected larger-diameter den trees than available cavity trees and non-cavity trees. Because the abundance of suitable tree cavities is known to influence Raccoon densities and recruitment at fine spatial scales and female Raccoons in this study used tree cavities as maternal den sites, the continued harvest of large-diameter trees (i.e., those capable of developing den cavities) without replacement may impact Raccoon recruitment within intensively managed forests throughout the central Appalachians.
Yao, Jing; He, Xingyuan; Wang, Anzhi; Chen, Wei; Li, Xiaoyu; Lewis, Bernard J.; Lv, Xiaotao
2012-01-01
Balancing forest harvesting and restoration is critical for forest ecosystem management. In this study, we used LANDIS, a spatially explicit forest landscape model, to evaluate the effects of 21 alternative forest management initiatives which were drafted for forests in the upstream region of the Hun River in northeastern China. These management initiatives included a wide range of planting and harvest intensities for Pinus koraiensis, the historically dominant tree species in the region. Multivariate analysis of variance, Shannon's Diversity Index, and planting efficiency (which indicates how many cells of the target species at the final year benefit from per-cell of the planting trees) estimates were used as indicators to analyze the effects of planting and harvesting regimes on forests in the region. The results showed that the following: (1) Increased planting intensity, although augmenting the coverage of P. koraiensis, was accompanied by decreases in planting efficiency and forest diversity. (2) While selective harvesting could increase forest diversity, the abrupt increase of early succession species accompanying this method merits attention. (3) Stimulating rapid forest succession may not be a good management strategy, since the climax species would crowd out other species which are likely more adapted to future climatic conditions in the long run. In light of the above, we suggest a combination of 30% planting intensity with selective harvesting of 50% and 70% of primary and secondary timber species, respectively, as the most effective management regime in this area. In the long run this would accelerate the ultimate dominance of P. koraiensis in the forest via a more effective rate of planting, while maintaining a higher degree of forest diversity. These results are particularly useful for forest managers constrained by limited financial and labor resources who must deal with conflicts between forest harvesting and restoration. PMID:22723930
Legaard, Kasey R; Sader, Steven A; Simons-Legaard, Erin M
2015-01-01
Sustainable forest management is based on functional relationships between management actions, landscape conditions, and forest values. Changes in management practices make it fundamentally more difficult to study these relationships because the impacts of current practices are difficult to disentangle from the persistent influences of past practices. Within the Atlantic Northern Forest of Maine, U.S.A., forest policy and management practices changed abruptly in the early 1990s. During the 1970s-1980s, a severe insect outbreak stimulated salvage clearcutting of large contiguous tracts of spruce-fir forest. Following clearcut regulation in 1991, management practices shifted abruptly to near complete dependence on partial harvesting. Using a time series of Landsat satellite imagery (1973-2010) we assessed cumulative landscape change caused by these very different management regimes. We modeled predominant temporal patterns of harvesting and segmented a large study area into groups of landscape units with similar harvest histories. Time series of landscape composition and configuration metrics averaged within groups revealed differences in landscape dynamics caused by differences in management history. In some groups (24% of landscape units), salvage caused rapid loss and subdivision of intact mature forest. Persistent landscape change was created by large salvage clearcuts (often averaging > 100 ha) and conversion of spruce-fir to deciduous and mixed forest. In groups that were little affected by salvage (56% of landscape units), contemporary partial harvesting caused loss and subdivision of intact mature forest at even greater rates. Patch shape complexity and edge density reached high levels even where cumulative harvest area was relatively low. Contemporary practices introduced more numerous and much smaller patches of stand-replacing disturbance (typically averaging <15 ha) and a correspondingly large amount of edge. Management regimes impacted different areas to different degrees, producing different trajectories of landscape change that should be recognized when studying the impact of policy and management practices on forest ecology.
Legaard, Kasey R.; Sader, Steven A.; Simons-Legaard, Erin M.
2015-01-01
Sustainable forest management is based on functional relationships between management actions, landscape conditions, and forest values. Changes in management practices make it fundamentally more difficult to study these relationships because the impacts of current practices are difficult to disentangle from the persistent influences of past practices. Within the Atlantic Northern Forest of Maine, U.S.A., forest policy and management practices changed abruptly in the early 1990s. During the 1970s-1980s, a severe insect outbreak stimulated salvage clearcutting of large contiguous tracts of spruce-fir forest. Following clearcut regulation in 1991, management practices shifted abruptly to near complete dependence on partial harvesting. Using a time series of Landsat satellite imagery (1973-2010) we assessed cumulative landscape change caused by these very different management regimes. We modeled predominant temporal patterns of harvesting and segmented a large study area into groups of landscape units with similar harvest histories. Time series of landscape composition and configuration metrics averaged within groups revealed differences in landscape dynamics caused by differences in management history. In some groups (24% of landscape units), salvage caused rapid loss and subdivision of intact mature forest. Persistent landscape change was created by large salvage clearcuts (often averaging > 100 ha) and conversion of spruce-fir to deciduous and mixed forest. In groups that were little affected by salvage (56% of landscape units), contemporary partial harvesting caused loss and subdivision of intact mature forest at even greater rates. Patch shape complexity and edge density reached high levels even where cumulative harvest area was relatively low. Contemporary practices introduced more numerous and much smaller patches of stand-replacing disturbance (typically averaging <15 ha) and a correspondingly large amount of edge. Management regimes impacted different areas to different degrees, producing different trajectories of landscape change that should be recognized when studying the impact of policy and management practices on forest ecology. PMID:26106893
L.A. Norris; H.W. Lorz; S.V. Gregory
1983-01-01
Herbicides, insecticides, fertilizers, and fire retardants are chemicals used to protect or enhance certain forest resources. Their use may directly affect anadromous fish by exposing them to toxic amounts of the chemical. Indirect effects are also possible through chemically induced alteration of habitat, including direct effects on fish-food organisms.Data...
Influences on Prescribed Burning Activity and Costs in the National Forest System
David A. Cleaves; Jorge Martinez; Terry K. Haines
2000-01-01
The results of a survey concerning National Forest System prescribed burning activity and costs from 1985 to 1995 are examined. Ninety-five of one hundred and fourteen national forests responded. Acreage burned and costs for conducting burns are reported for four types of prescribed fires slash reduction; management-ignited fires; prescribed natural fires; and brush,...
Fred H. Everest; R. Dennis. Harr
1982-01-01
Distribution of anadromous salmonids and coniferous forest coincides along much of the Pacific slope; consequently, the habitat of anadromous' fish is subject to a wide variety of silvicultural treatments required to establish and nurture young forests. Silvicultural treatments discussed in this report include cutting prescriptions, broadcast burning, mechanical...
Historical vegetation change in Oakland and its implications for urban forest management
David J. Nowak
1993-01-01
The history of Oakland, California's urban forest was researched to determine events that could influence future urban forests. Vegetation in Oakland has changed drastically from a preurbanized area with approximately 2% tree cover to a present tree cover of 19%. Species composition of trees was previously dominated by coast live oak (Quercus agrifolia...
Ponderosa pine forest restoration treatment longevity: Implications of regeneration on fire hazard
Wade T. Tinkham; Chad M. Hoffman; Seth A. Ex; Michael A. Battaglia; Jarred D. Saralecos
2016-01-01
Restoration of pine forests has become a priority for managers who are beginning to embrace ideas of highly heterogeneous forest structures that potentially encourages high levels of regeneration. This study utilizes stem-mapped stands to assess how simulated regeneration timing and magnitude influence longevity of reduced fire behavior by linking growth and...
Influence of forest structure on the abundance of snowshoe hares in western Wyoming
Nathan D. Berg; Eric M. Gese; John R. Squires; Lise M. Aubry
2012-01-01
Snowshoe hares (Lepus americanus) are a primary prey species for Canada lynx (Lynx canadensis) in western North America. Lynx management plans require knowledge of potential prey distribution and abundance in the western United States. Whether even-aged regenerating forests or multi-storied forests contain more snowshoe hares is currently unknown. During 2006-...
Assessing pathogen and insect succession functions in forest ecosystems
Susan K. Hagle; Sandra J. Kegley; Stephen B. Williams
1995-01-01
The pilot test of a method to assess the ecological function of pathogens and insects in forests is reported. The analysis is a practical application of current ecosystem management theory.The influences of pathogens and insects on forest succession are measured by relating successional transition rates and types to conditions for pathogen and insect activities which...
Emily J. Comfort; Scott D. Roberts; Constance A. Harrington
2010-01-01
Midcanopy layers are essential structures in "old-growth" forests on the Olympic Peninsula. Little is known about which stand and tree factors influence the ability of midcanopy trees in young-growth forests to respond to release; however, this information is important to managers interested in accelerating development of late-successional structural...
Nathan J. Poage; Peter J. Weisberg; Peter C. Impara; John C. Tappeiner; Thomas S. Sensenig
2009-01-01
Knowledge of forest development is basic to understanding the ecology, dynamics, and management of forest ecosystems. We hypothesized that the age structure patterns of Douglas-fir at 205 old forest sites in western Oregon are extremely variable with long and (or) multiple establishment periods common, and that these patterns reflect variation in regional-scale climate...
Ann L. Lezberg; Michael A. Battaglia; Wayne D. Shepperd; Anna W. Schoettle
2008-01-01
Wildfire severity and subsequent ecological effects may be influenced by prior land management, via modification of forest structure and lingering changes in fuels. In 2002, the Hayman wildfire burned as a low to moderate-severity surface fire through a 21-year pine regeneration experiment with two overstory harvest cuttings (shelterwood, seed-tree) and two site...
Berninger, Kati; Kneeshaw, Daniel; Messier, Christian
2009-02-01
Differences in the way local and regional interest groups perceive Sustainable Forest Management in regions with different forest use histories were studied using Southeastern Finland, the Mauricie in Quebec and Central Labrador in Canada as examples of regions with high, medium and low importance of commercial forestry. We present a conceptual model illustrating the cyclic interaction between the forest, cultural models about forests and forest management. We hypothesized that peoples' perceptions would be influenced by their cultural models about forests and would thus vary amongst regions with different forest use histories and among different interest groups. The weightings of the environmental, economic and social components of sustainability as well as themes important for each of the interest groups were elicited using individual listing of SFM indicators and group work aimed at developing a consensus opinion on a common indicator list. In Southeastern Finland the views of the different groups were polarized along the environment-economy axis, whereas in Central Labrador all groups were environmentally oriented. The social dimension was low overall except among the Metis and the Innu in Labrador. Only environmental groups were similar in all three research regions, the largest differences between regions were found among the forestry professionals in their weightings concerning economy and nature. As the importance of commercial forestry increased, a greater importance of economic issues was expressed whereas the opposite trend was observed for issues regarding nature. Also inter-group differences grew as the importance of commercial forestry increased in the region. Forest management and forest use can be seen as factors strongly influencing peoples' cultural models on forests.
Hartter, Joel; Stevens, Forrest R.; Hamilton, Lawrence C.; Congalton, Russell G.; Ducey, Mark J.; Oester, Paul T.
2015-01-01
Opinions about public lands and the actions of private non-industrial forest owners in the western United States play important roles in forested landscape management as both public and private forests face increasing risks from large wildfires, pests and disease. This work presents the responses from two surveys, a random-sample telephone survey of more than 1500 residents and a mail survey targeting owners of parcels with 10 or more acres of forest. These surveys were conducted in three counties (Wallowa, Union, and Baker) in northeast Oregon, USA. We analyze these survey data using structural equation models in order to assess how individual characteristics and understanding of forest management issues affect perceptions about forest conditions and risks associated with declining forest health on public lands. We test whether forest understanding is informed by background, beliefs, and experiences, and whether as an intervening variable it is associated with views about forest conditions on publicly managed forests. Individual background characteristics such as age, gender and county of residence have significant direct or indirect effects on our measurement of understanding. Controlling for background factors, we found that forest owners with higher self-assessed understanding, and more education about forest management, tend to hold more pessimistic views about forest conditions. Based on our results we argue that self-assessed understanding, interest in learning, and willingness to engage in extension activities together have leverage to affect perceptions about the risks posed by declining forest conditions on public lands, influence land owner actions, and affect support for public policies. These results also have broader implications for management of forested landscapes on public and private lands amidst changing demographics in rural communities across the Inland Northwest where migration may significantly alter the composition of forest owner goals, understanding, and support for various management actions. PMID:25671619
Eric J. Gustafson; Patrick A. Zollner; Brian R. Sturtevant; S. He Hong; David J. Mladenoff
2004-01-01
We used the LANDIS disturbance and succession model to study the effects of six alternative vegetation management scenarios on forest succession and the subsequent risk of canopy fire on a 2791 km2 landscape in northern Wisconsin, USA. The study area is a mix of fire-prone and fire-resistant land types. The alternatives vary the spatial...
Heather R. McCarthy; Ram Oren; Hyun-Seok Kim; Kurt H. Johnsen; Chris Maier; Seth G. Pritchard; Michael A. Davis
2006-01-01
Ice storms are disturbance events with potential impacts on carbon sequestration. Common forest management practices, such as fertilization and thinning, can change wood and stand properties and thus may change vulnerability to ice storm damage. At the same time, increasing atmospheric CO2 levels may also influence ice storm vulnerability. Here...
Proceedings of the Third Biennial Southern Silvicultural Research Conference
Eugene Shoulders; [Editor
1985-01-01
107 papers are presented in 13 categories: Seedling production, Site preparation, Stand establishment, Stand management, Genetics, Vegetation management, Soil-site relationships, Tree nutrition, Symbiotic relationships, Growth and yield modeling, Pest management strategies, Interactions, and Forest influences.
Kurz, Werner A; Stinson, Graham; Rampley, Gregory J; Dymond, Caren C; Neilson, Eric T
2008-02-05
A large carbon sink in northern land surfaces inferred from global carbon cycle inversion models led to concerns during Kyoto Protocol negotiations that countries might be able to avoid efforts to reduce fossil fuel emissions by claiming large sinks in their managed forests. The greenhouse gas balance of Canada's managed forest is strongly affected by naturally occurring fire with high interannual variability in the area burned and by cyclical insect outbreaks. Taking these stochastic future disturbances into account, we used the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) to project that the managed forests of Canada could be a source of between 30 and 245 Mt CO(2)e yr(-1) during the first Kyoto Protocol commitment period (2008-2012). The recent transition from sink to source is the result of large insect outbreaks. The wide range in the predicted greenhouse gas balance (215 Mt CO(2)e yr(-1)) is equivalent to nearly 30% of Canada's emissions in 2005. The increasing impact of natural disturbances, the two major insect outbreaks, and the Kyoto Protocol accounting rules all contributed to Canada's decision not to elect forest management. In Canada, future efforts to influence the carbon balance through forest management could be overwhelmed by natural disturbances. Similar circumstances may arise elsewhere if global change increases natural disturbance rates. Future climate mitigation agreements that do not account for and protect against the impacts of natural disturbances, for example, by accounting for forest management benefits relative to baselines, will fail to encourage changes in forest management aimed at mitigating climate change.
Emerging themes in the ecology and management of North American forests
Sharik, Terry L.; Adair, William; Baker, Fred A.; Battaglia, Michael; Comfort, Emily J.; D'Amato, Anthony W.; Delong, Craig; DeRose, R. Justin; Ducey, Mark J.; Harmon, Mark; Levy, Louise; Logan, Jesse A.; O'Brien, Joseph; Palik, Brian J.; Roberts, Scott D.; Rogers, Paul C.; Shinneman, Douglas J.; Spies, Thomas; Taylor, Sarah L.; Woodall, Christopher; Youngblood, Andrew
2010-01-01
The 7th North American Forest Ecology Workshop, consisting of 149 presentations in 16 oral sessions and a poster session, reflected a broad range of topical areas currently under investigation in forest ecology and management. There was an overarching emphasis on the role of disturbance, both natural and anthropogenic, in the dynamics of forest ecosystems, and the recognition that legacies from past disturbances strongly influence future trajectories. Climate was invoked as a major driver of ecosystem change. An emphasis was placed on application of research findings for predicting system responses to changing forest management initiatives. Several “needs” emerged from the discussions regarding approaches to the study of forest ecosystems, including (1) consideration of variable spatial and temporal scales, (2) long-term monitoring, (3) development of universal databases more encompassing of time and space to facilitate meta-analyses, (4) combining field studies and modeling approaches, (5) standardizing methods of measurement and assessment, (6) guarding against oversimplification or overgeneralization from limited site-specific results, (7) greater emphasis on plant-animal interactions, and (8) better alignment of needs and communication of results between researchers and managers.
Jacobson, Michael G
2002-10-01
Many factors influence forest landowner management decisions. This study examines landowner decisions regarding participation in ecosystem management activities, such as a landscape corridor cutting across their private lands. Landscape corridors are recognized worldwide as an important tool in biodiversity conservation. For ecosystem management activities to occur in areas dominated by a multitude of small private forest landholdings, landowner participation and cooperation is necessary. Data from a survey of landowners combined with an analysis of their land's spatial attributes is used to assess their interest in ecosystem management. Results suggest that spatial attributes are not good predictors of an owner's interest in ecosystem management. Other factors such as attitudes and opinions about the environment are more effective in explaining landowner interest. The results have implications for any land manager using GIS data and implementing ecosystem management activities on private forestland.
Status of native fishes in the western United States and issues for fire and fuels management
Rieman, B.; Lee, D.; Burns, D.; Gresswell, Robert E.; Young, M.; Stowell, R.; Rinne, J.; Howell, P.
2003-01-01
Conservation of native fishes and changing patterns in wildfire and fuels are defining challenges for managers of forested landscapes in the western United States. Many species and populations of native fishes have declined in recorded history and some now occur as isolated remnants of what once were larger more complex systems. Land management activities have been viewed as one cause of this problem. Fires also can have substantial effects on streams and riparian systems and may threaten the persistence of some populations of fish, particularly those that are small and isolated. Despite that, major new efforts to actively manage fires and fuels in forests throughout the region may be perceived as a threat rather than a benefit to conservation of native fishes and their habitats. The management of terrestrial and aquatic resources has often been contentious, divided among a variety of agencies with different goals and mandates. Management of forests, for example, has generally been viewed as an impact on aquatic systems. Implementation of the management-regulatory process has reinforced a uniform approach to mitigate the threats to aquatic species and habitats that may be influenced by management activities. The problems and opportunities, however, are not the same across the landscapes of interest. Attempts to streamline the regulatory process often search for generalized solutions that may oversimplify the complexity of natural systems. Significant questions regarding the influence of fire on aquatic ecosystems, changing fire regimes, and the effects of fire-related management remain unresolved and contribute to the uncertainty. We argue that management of forests and fishes can be viewed as part of the same problem, that of conservation and restoration of the natural processes that create diverse and productive ecosystems. We suggest that progress toward more integrated management of forests and native fishes will require at least three steps: (1) better integration and development of a common conceptual foundation and ecological goals; (2) attention to landscape and ecological context; and (3) recognition of uncertainty.
Land crabs as key drivers in tropical coastal forest recruitment
Lindquist, E.S.; Krauss, K.W.; Green, P.T.; O'Dowd, D. J.; Sherman, P.M.; Smith, T. J.
2009-01-01
Plant populations are regulated by a diverse assortment of abiotic and biotic factors that influence seed dispersal and viability, and seedling establishment and growth at the microsite. Rarely does one animal guild exert as significant an influence on different plant assemblages as land crabs. We review three tropical coastal ecosystems-mangroves, island maritime forests, and mainland coastal terrestrial forests-where land crabs directly influence forest composition by limiting tree establishment and recruitment. Land crabs differentially prey on seeds, propagules and seedlings along nutrient, chemical and physical environmental gradients. In all of these ecosystems, but especially mangroves, abiotic gradients are well studied, strong and influence plant species distributions. However, we suggest that crab predation has primacy over many of these environmental factors by acting as the first limiting factor of tropical tree recruitment to drive the potential structural and compositional organisation of coastal forests. We show that the influence of crabs varies relative to tidal gradient, shoreline distance, canopy position, time, season, tree species and fruiting periodicity. Crabs also facilitate forest growth and development through such activities as excavation of burrows, creation of soil mounds, aeration of soils, removal of leaf litter into burrows and creation of carbon-rich soil microhabitats. For all three systems, land crabs influence the distribution, density and size-class structure of tree populations. Indeed, crabs are among the major drivers of tree recruitment in tropical coastal forest ecosystems, and their conservation should be included in management plans of these forests. ?? 2009 Cambridge Philosophical Society.
Reconstructing European forest management from 1600 to 2010
NASA Astrophysics Data System (ADS)
McGrath, M. J.; Luyssaert, S.; Meyfroidt, P.; Kaplan, J. O.; Bürgi, M.; Chen, Y.; Erb, K.; Gimmi, U.; McInerney, D.; Naudts, K.; Otto, J.; Pasztor, F.; Ryder, J.; Schelhaas, M.-J.; Valade, A.
2015-07-01
Because of the slow accumulation and long residence time of carbon in biomass and soils, the present state and future dynamics of temperate forests are influenced by management that took place centuries to millennia ago. Humans have exploited the forests of Europe for fuel, construction materials and fodder for the entire Holocene. In recent centuries, economic and demographic trends led to increases in both forest area and management intensity across much of Europe. In order to quantify the effects of these changes in forests and to provide a baseline for studies on future land-cover-climate interactions and biogeochemical cycling, we created a temporally and spatially resolved reconstruction of European forest management from 1600 to 2010. For the period 1600-1828, we took a supply-demand approach, in which supply was estimated on the basis of historical annual wood increment and land cover reconstructions. We made demand estimates by multiplying population with consumption factors for construction materials, household fuelwood, industrial food processing and brewing, metallurgy, and salt production. For the period 1829-2010, we used a supply-driven backcasting method based on national and regional statistics of forest age structure from the second half of the 20th century. Our reconstruction reproduces the most important changes in forest management between 1600 and 2010: (1) an increase of 593 000 km2 in conifers at the expense of deciduous forest (decreasing by 538 000 km2); (2) a 612 000 km2 decrease in unmanaged forest; (3) a 152 000 km2 decrease in coppice management; (4) a 818 000 km2 increase in high-stand management; and (5) the rise and fall of litter raking, which at its peak in 1853 resulted in the removal of 50 Tg dry litter per year.
NASA Astrophysics Data System (ADS)
Horstkotte, Tim; Lind, Torgny; Moen, Jon
2016-04-01
In the management of natural resources, conflicting interests and objectives among different stakeholders often need to be considered. Here, we examine how two contrasting management scenarios of boreal forests in northern Sweden differ in their consequences on forest structural composition and the economic gains at harvest. Management strategies prioritize either (i) forest characteristics that promote grazing resources for reindeer herded by the indigenous Sámi, or (ii) timber production as practiced in Sweden today. When prioritizing reindeer grazing, forest stands develop a higher abundance of older age classes with larger trees and lower stem density, which reduces harvest and revenue levels by approximately 20 % over a 100-year period. The differences between these strategies illustrate the complexity in finding a trade-off for coexistence between industrial land users and other livelihoods that share the same landscape. Political support and institutional solutions are necessary to initiate changes in policy in finding such trade-offs in the management of environmental resources and thereby influence the optimal distribution of costs and benefits between different actors.
Horstkotte, Tim; Lind, Torgny; Moen, Jon
2016-04-01
In the management of natural resources, conflicting interests and objectives among different stakeholders often need to be considered. Here, we examine how two contrasting management scenarios of boreal forests in northern Sweden differ in their consequences on forest structural composition and the economic gains at harvest. Management strategies prioritize either (i) forest characteristics that promote grazing resources for reindeer herded by the indigenous Sámi, or (ii) timber production as practiced in Sweden today. When prioritizing reindeer grazing, forest stands develop a higher abundance of older age classes with larger trees and lower stem density, which reduces harvest and revenue levels by approximately 20% over a 100-year period. The differences between these strategies illustrate the complexity in finding a trade-off for coexistence between industrial land users and other livelihoods that share the same landscape. Political support and institutional solutions are necessary to initiate changes in policy in finding such trade-offs in the management of environmental resources and thereby influence the optimal distribution of costs and benefits between different actors.
NASA Astrophysics Data System (ADS)
Waluyo Jati, Irawan; Pribadi, Rudhi
2018-02-01
The Baros mangrove forest in Bantul Regency is now beginning to develop. Many government and private sectors programs are rolled out to support its development. The development of the Baros mangrove forest must be in accordance with the rules of conservation so that it will not damage the mangrove ecosystem. Mangrove forest has high economical and ecological value but is very vulnerable if lack of wisdom in maintaining, preserving and managing them. The involvement of government and other stakeholders are essential in determining management policies. Unawareness of society and the government to the importance of mangrove ecosystem can cause development of it becomes uncontrolled, consequently can destroy it. Mangrove forests are an important natural resource in coastal environments, and have three main functions: physical, biological, and economic functions. To quantify the functions of mangrove forests as the basis to determine the policy is required a research instrument called economic valuation. The approach of this study is the literature review from various studies before to perceive the influence of economic valuation in determining the management strategy of Baros mangrove forest in Bantul Regency, Yogyakarta, Indonesia.
Jane E. Smith; Donaraye McKay; Greg Brenner; Jim McIver; Joseph W. Spatafora
2005-01-01
1. The obligate symbiosis formed between ectomycorrhizal fungi (EMF) and roots of tree species in the Pinaceae influences nutrient uptake and surrounding soil structure. Understanding how EMF respond to prescribed fire and thinning will assist forest managers in selecting fuel-reducing restoration treatments that maintain critical soil processes and site productivity....
Carl P.J. Mitchell; Randall K. Kolka; Shawn Fraver
2012-01-01
A number of factors influence the amount of mercury (Hg) in forest floors and soils, including deposition, volatile emission, leaching, and disturbances such as fire. Currently the impact on soil Hg pools from other widespread forest disturbances such as blowdown and management practices like salvage logging are unknown. Moreover, ecological and biogeochemical...
Management recommendations for the northern goshawk in the southwestern United States
Richard T. Reynolds; Russell T. Graham; M. Hildegard Reiser
1992-01-01
Present forest conditions  loss of a herbaceous and shrubby understory, reductions in the amount of older forests, and increased areas of dense tree regeneration  reflect the extent of human influence on these forests. These changes may also be affecting goshawk populations. Information on goshawk nesting habitat and foraging behavior, and the food and habitats of...
Patrick A. Zollner; Eric J. Gustafson; Hong S. He; Volker C. Radeloff; David J. Mladenoff
2005-01-01
Dynamic zoning (systematic alteration in the spatial and temporal allocation of even-aged forest management practices) has been proposed as a means to change the spatial pattern of timber harvest across a landscape to maximize forest interior habitat while holding timber harvest levels constant. Simulation studies have established that dynamic zoning strategies...
Deahn M. Donner; Christine A. Ribic; Matthew St. Pierre; Daniel Eklund
2011-01-01
The most readily available source of woody biomass is through whole-tree harvesting that removes what has been traditionally left as slash [i.e., fine woody debris (FWD)]. While FWD has the potential to be used as energy feedstock, a critical element of managing for biodiversity is maintaining woody debris on the forest floor.
Carlton S. Yee; Terry D. Roelofs
1980-01-01
The construction and existence of forest roads, landings, and decking areas may have significant effects on anadromous fish habitat . Major effects discussed in this paper are increased sedimentation from transportation networks, the hindrance to fish migration of drainage structures, and possible changes in water quality from road stabilization additives. Guidelines...
Matthew B. Russell; Anthony W. D' Amato; Michael A. Albers; Christopher W. Woodall; Klaus J. Puettmann; Michael R. Saunders; Curtis L. VanderSchaaf
2015-01-01
Silvicultural strategies such as thinning may minimize productivity losses from a variety of forest disturbances, including forest insects. This study analyzed the 10-year postthinning response of stands and individual trees in thinned white spruce (Picea glauca [Moench] Voss) plantations in northern Minnesota, USA, with light to moderate defoliation...
Price, Owen; Bradstock, Ross
2013-01-01
Previous investigations into the factors associated with house loss in wildfires have focused on the house construction and its immediate environment (e.g. gardens). Here, we examine how nearby native forest and other houses can influence house loss. Specifically, we used a sample of 3500 houses affected by the Victorian bushfires of February 7th 2009 to explore how the amount of forest, proportion of forest burned by crown fire and the number of nearby houses affected house loss and how far from the house this influence was exerted. These fires were the most destructive in Australian history and so represent the extreme of fire risk. Using generalized linear modeling we found that the probability of house loss increased with forest extent and the proportion burnt by crown fire and this relationship was strongest for forest measured 1 km from the houses. Houses were more likely to be destroyed if there were other houses within 50 m and if they were on a slope. A model containing these variables predicted house loss with 72% accuracy. Our findings have three important implications: i) management to change the occurrence of crown fire will be effective in reducing house loss; ii) this management may be required up to 1 km away from houses in some situations (a much larger zone than is currently used); iii) high density of houses may increase risk of loss. Given the potentially large width of this management zone and the hazard from nearby houses, it may be more sensible to concentrate on modification of buildings to reduce their vulnerability. PMID:24009753
Differential Responses of Herbivores and Herbivory to Management in Temperate European Beech
Gossner, Martin M.; Pašalić, Esther; Lange, Markus; Lange, Patricia; Boch, Steffen; Hessenmöller, Dominik; Müller, Jörg; Socher, Stephanie A.; Fischer, Markus; Schulze, Ernst-Detlef; Weisser, Wolfgang W.
2014-01-01
Forest management not only affects biodiversity but also might alter ecosystem processes mediated by the organisms, i.e. herbivory the removal of plant biomass by plant-eating insects and other arthropod groups. Aiming at revealing general relationships between forest management and herbivory we investigated aboveground arthropod herbivory in 105 plots dominated by European beech in three different regions in Germany in the sun-exposed canopy of mature beech trees and on beech saplings in the understorey. We separately assessed damage by different guilds of herbivores, i.e. chewing, sucking and scraping herbivores, gall-forming insects and mites, and leaf-mining insects. We asked whether herbivory differs among different forest management regimes (unmanaged, uneven-aged managed, even-aged managed) and among age-classes within even-aged forests. We further tested for consistency of relationships between regions, strata and herbivore guilds. On average, almost 80% of beech leaves showed herbivory damage, and about 6% of leaf area was consumed. Chewing damage was most common, whereas leaf sucking and scraping damage were very rare. Damage was generally greater in the canopy than in the understorey, in particular for chewing and scraping damage, and the occurrence of mines. There was little difference in herbivory among differently managed forests and the effects of management on damage differed among regions, strata and damage types. Covariates such as wood volume, tree density and plant diversity weakly influenced herbivory, and effects differed between herbivory types. We conclude that despite of the relatively low number of species attacking beech; arthropod herbivory on beech is generally high. We further conclude that responses of herbivory to forest management are multifaceted and environmental factors such as forest structure variables affecting in particular microclimatic conditions are more likely to explain the variability in herbivory among beech forest plots. PMID:25119984
NASA Astrophysics Data System (ADS)
Zhang, Changshun; Xie, Gaodi; Fan, Shaohui; Zhen, Lin
2010-04-01
Biodiversity maintenance and soil improvement are key sustainable forestry objectives. Research on the effects of bamboo forest management on plant diversity and soil properties are therefore necessary in bamboo-growing regions, such as southeastern China’s Shunchang County, that have not been studied from this perspective. We analyzed the effects of different Phyllostachys pubescens proportions in managed forests on vegetation structure and soil properties using pure Cunninghamia lanceolata forests as a contrast, and analyzed the relation between understory plants and environmental variables (i.e., topography, stand and soil characteristics) by canonical correspondence analysis (CCA). The forest with 80% P. pubescens and 20% hardwoods (such as Phoebe bournei, Jatropha curcas, Schima superba) maintained the highest plant diversity and best soil properties, with significantly higher plant diversity than the C. lanceolata forest, and better soil physicochemical and biological properties. The distribution of understory plants is highly related to environmental factors. Silvicultural disturbance strongly influenced the ability of different bamboo forests to maintain biodiversity and soil quality under extensive management, and the forest responses to management were consistent with the intermediate-disturbance hypothesis (i.e., diversity and soil properties were best at intermediate disturbance levels). Our results suggest that biodiversity maintenance and soil improvement are important management goals for sustainable bamboo management. To achieve those objectives, managers should balance the inputs and outputs of nutrients and protect understory plants by using appropriate fertilizer (e.g., organic fertilizer), adjusting stand structure, modifying utilization model and the harvest time, and controlling the intensity of culms and shoots harvests.
Joelsson, Klara; Hjältén, Joakim; Gibb, Heloise
2018-01-01
Management of forest for wood production has altered ecosystem structures and processes and led to habitat loss and species extinctions, worldwide. Deadwood is a key resource supporting forest biodiversity, and commonly declines following forest management. However, different forest management methods affect dead wood differently. For example, uneven-aged silviculture maintains an age-stratified forest with ongoing dead wood production, while even-aged silviculture breaks forest continuity, leading to long periods without large trees. We asked how deadwood-dependent beetles respond to different silvicultural practices and if their responses depend on deadwood volume, and beetles preference for decay stages of deadwood. We compared beetle assemblages in five boreal forest types with different management strategies: clearcutting and thinning (both representing even-aged silviculture), selective felling (representing uneven-aged silviculture), reference and old growth forest (both uneven-aged controls without a recent history [~50 years] of management, but the latter with high conservation values). We collected beetles using window traps and by sieving the bark from experimental logs (bolts). Beetle assemblages on clear-cuts differed from all other stand types, regardless of trapping method or decay stage preference. Thinning differed from reference stands, indicating incomplete recovery after clear-cutting, while selective felling differed only from clear-cuts. In contrast to our predictions, early and late successional species responded similarly to different silvicultural practices. However, there were indications of marginal assemblage differences both between thinned stands and selective felling and between thinned and old growth stands (p = 0.10). The stand volume of early decay stage wood influenced assemblage composition of early, but not late successional species. Uneven-aged silviculture maintained species assemblages similar to those of the reference and old growth stands and might therefore be a better management option when considering biodiversity conservation.
Salam, M A; Noguchi, T; Koike, M
2005-01-01
Wide acceptance of sustainable development as a concept and as the goal of forest management has shifted forest management policies from a traditional to a people-oriented approach. Consequently, with its multiple new objectives, forest management has become more complex and an information gap exits between what is known and what is utilized, which hinders the sustained participation of farmers. This gap arose mainly due to an interrupted flow of information. With participatory forestry, the information flow requires a broad approach that goes beyond the forest ecosystem and includes the different stakeholders. Thus in participatory forest management strategies, policymakers, planners and project designers need to incorporate all relevant information within the context of the dynamic interaction between stakeholders and the forest environment. They should understand the impact of factors such as management policies, economics and conflicts on the sustained participation of farmers. This study aimed to use primary cross-sectional data to identify the factors that might influence the sustained participation of farmers in participatory forestry. Using stratified random sampling, 581 participants were selected to take part in this study, and data were collected through a structured questionnaire by interviewing the selected participants. To identify the dominant factors necessary for the sustained participation of farmers, logistic regression analyses were performed. The following results were observed: (a) sustained participation is positively and significantly correlated with (i) satisfaction of the participants with the tree species planted on their plots; (ii) confidence of the participants that their aspired benefits will be received; (iii) provision of training on different aspects of participatory forestry; (iv) contribution of participants' money to Tree Farming Funds. (b) The sustained participation of farmers is negatively and significantly correlated with the disruption of local peoples' interests through implementation of participatory forestry programs, and long delays in the harvesting of trees after completion of the contractual agreement period.
76 FR 56145 - Clearwater National Forest; ID; Upper Lochsa Land Exchange EIS
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-12
... for timber production. For the most part these lands currently meet State Best Management Practices... River drainage to provide more efficient and effective resource management. This purpose can be achieved... years, differing management practices on the private lands has influenced resource management decision...
G. A. Pearson
1913-01-01
The object of the study, the results of which are presented here, was to determine the influence of the forest cover upon climate locally in the Southwest, in so far as this influence might be of importance in the management of timberlands and the possible afforestation of parks and denuded areas. Since the bearing upon forestry rather than upon meteorology is the...
Economic dynamics of forests and forest industries in the Southern United States
Thomas J. Brandeis; Andrew J. Hartsell; James W. Bentley; Consuelo Brandeis
2012-01-01
This report reviews how recent (2005-present) economic conditions have accelerated mill closings and job losses, and, to a lesser extent, influenced forest management in the Southern United States. We show that the number of primary roundwood-using mills has decreased across the South since the 1970s. At the same time, mill output has increased as the production of the...
The Kyoto Protocol and forestry practices in the United States
Bov B. Eav; Richard A. Birdsey; Linda S. Heath
2000-01-01
Forestry may play an important if not critical role in the ability of the U.S. to meet its greenhouse gas emissions target under the terms of the Kyoto Protocol. Given the low rate of change in the U.S. forest land area, the major anthropogenic influences on the current net forest carbon flux are forest management and protection activities that have resulted in...
Influence of individual reserve trees on nearby reproduction in two-aged Appalachian hardwood stands
Gary W. Miller; James N. Kochenderfer; Desta B. Fekedulegn
2006-01-01
In the 1970s, public opposition to clearcut harvesting in hardwood forests of the eastern United States led forest managers and scientists to consider alternative practices that retain a low-density overstory forest cover. From 1979 to 1984, a form of clearcut-with-reserves harvesting was applied in 80-year-old Appalachian mixed-hardwoods to create four experimental...
W. Keith Moser; Dale D. Wade
2005-01-01
Forest fires are a disturbance where the effects can range from benign to extreme devastation within a given ecosystem. The stage of stand development coupled with prior management dictates the amount and composition of potential fuels. Thus, fire policy exerts a strong influence on fire effects. Changes in cultural acceptance and use of tire typically drive fire...
Michelle M. Steen-Adams; Nancy Langston; Mark D. O. Adams; David J. Mladenoff
2015-01-01
Current and future human and forest landscape conditions are influenced by the cumulative, unfolding history of socialecological interactions. Examining past system responses, especially unintended consequences, can reveal valuable insights that promote learning and adaptation in forest policy and management. Temporal couplings are complex, however; they can be...
Influence of thinning Loblolly Pine (Pinus taeda L.) on hydraulic properties of an organic soil
Johnny M. Grace; R. W. Skaggs; D. Keith Cassel
2006-01-01
The impact of forest operations on soil properties has been a concern in forest management over the past 30 years. The objective of this study was to evaluate the impact of forest thinning operations on soil hydraulic properties of a shallow organic (Belhaven series) soil in the Tidewater region of North Carolina. Soil physical properties were evaluated in a nested...
H.-E. Andersen; R.J. McGaughey; S.E. Reutebuch
2008-01-01
High resolution, active remote sensing technologies, such as interferometric synthetic aperture radar (IFSAR) and airborne laser scanning (LIDAR) have the capability to provide forest managers with direct measurements of 3-dimensional forest canopy surface structure. Although LIDAR systems can provide highly accurate measurements of canopy and terrain surfaces, high-...
Using a Numerical Model to Assess the Geomorphic Impacts of Forest Management Scenarios on Streams
NASA Astrophysics Data System (ADS)
Davidson, S. L.; Eaton, B. C.
2014-12-01
In-stream large wood governs the morphology of many small to intermediate streams, while riparian vegetation influences bank strength and channel pattern. Forest management practices such as harvesting and fire suppression therefore dramatically influence channel processes and associated aquatic habitat. The primary objective of this research is to compare the impacts of three common forest scenarios - natural fire disturbance, forest harvesting with a riparian buffer, and fire suppression - on the volume of in-channel wood and the complexity of aquatic habitat in channels at a range of scales. Each scenario is explored through Monte Carlo simulations run over a period of 1000 years using a numerical reach scale channel simulator (RSCS), with variations in tree toppling rate and forest density used to represent each forest management trajectory. The habitat complexity associated with each scenario is assessed based on the area of the bed occupied by pools and spawning sized sediment, the availability of wood cover, and the probability of avulsion. Within the fire scenario, we also use the model to separately investigate the effects of root decay and recovery on equilibrium channel geometry by varying the rooting depth and associated bank strength through time. The results show that wood loading and habitat complexity are influenced by the timing and magnitude of wood recruitment, as well as channel scale. The forest harvesting scenario produces the lowest wood loads and habitat complexity so long as the buffer width is less than the average mature tree height. The natural fire cycle produces the greatest wood loading and habitat complexity, but also the greatest variability because these streams experience significant periods without wood recruitment as forests regenerate. In reaches that experience recurrent fires, width increases in the post-fire period as roots decay, at times producing a change in channel pattern when a threshold width to depth ratio is exceeded, and decreases as the forest regenerates. In all cases, the effects are greatest in small to intermediate sized streams where wood is the dominant driver of channel morphology, and become negligible in large streams governed by fluvial processes.
Growing concern over climate and management induced changes to soil nutrient status has prompted interest in understanding the spatial distribution of forest soil properties. Recent advancements in remotely sensed geospatial technologies are providing an increasing array of data...
Li, Yingnan; Kang, Wanmo; Han, Yiwen; Song, Youngkeun
2018-01-23
Fragmented forests generate a variety of forest edges, leading to microclimates in the edge zones that differ from those in the forest interior. Understanding microclimatic variation is an important consideration for managers because it helps when making decisions about how to restrict the extent of edge effects. Thus, our study attempted to characterize the changing microclimate features at an urban forest edge located on Mt. Gwanak, Seoul, South Korea. We examined edge effects on air temperature, relative humidity, soil temperature, soil moisture, and photosynthetically active radiation (PAR) during the hottest three consecutive days in August 2016. Results showed that each variable responded differently to the edge effects. This urban forest edge had an effect on temporal changes at a diurnal scale in all microclimate variables, except soil moisture. In addition, all variables except relative humidity were significantly influenced by the edge effect up to 15 m inward from the forest boundary. The relative humidity fluctuated the most and showed the deepest extent of the edge effect. Moreover, the edge widths calculated from the relative humidity and air temperature both peaked in the late afternoon (16:00 h). Our findings provide a reference for forest managers in designing urban forest zones and will contribute to the conservation of fragmented forests in urban areas.
Future Wildfire and Managed Fire Interactions in the Lake Tahoe Basin
NASA Astrophysics Data System (ADS)
Scheller, R.; Kretchun, A.
2017-12-01
Managing large forested landscape in the context of a changing climate and altered disturbance regimes presents new challenges and require integrated assessments of forest disturbance, management, succession, and the carbon cycle. Successful management under these circumstances will require information about trade-offs among multiple objectives and opportunities for spatially optimized landscape-scale management. Improved information about the effects of climate on forest communities, disturbance feedbacks, and the effectiveness of mitigation strategies enables actionable options for landscape managers. We evaluated the effects of fire suppression, wildfires, and forest fuel (thinning) treatments on the long-term carbon storage potential for Lake Tahoe Basin (LTB) forests under various climate futures. We simulated management scenarios that encompass fuel treatments across the larger landscape, beyond the Wildland Urban Interface. We improved upon current fire modeling under climate change via an integrated fire modeling module that, a) explicitly captures the influence of climate, fuels, topography, active fire management (e.g., fire suppression), and fuel treatments, and b) can be parameterized from available data, e.g., remote sensing, field reporting, fire databases, expert opinion. These improvements increase geographic flexibility and decrease reliance on broad historical fire regime statistics - imperfect targets for a no analog future and require minimal parameterization and calibration. We assessed the interactions among fuel treatments, prescribe fire, fire suppression, and stochastically recurring wildfires. Predicted changes in climate and ignition patterns in response to future climatic conditions, vegetation dynamics, and fuel treatments indicate larger potential long-term effects on C emissions, forest structure, and forest composition than prior studies.
Water resource use and management by the United States forest products industry.
Wiegand, P S; Flinders, C A; Ice, G G; Malmberg, B J; Fisher, R P
2009-01-01
The connections between forest products operations and water resources in the United States is considered and, where possible, quantified. Manufacture of wood, pulp, and paper products and the influences of forest management and forest products manufacture on water quality are discussed. Most fresh water in the US originates in forested areas. Responsible harvesting strategies, best management practices, and forest re-growth combine to minimize or eliminate changes in water availability and degradation of water quality due to harvesting. Relative to alternative land uses and large-scale disturbance events, forested areas produce the highest quality of fresh water. Water inputs for the manufacture of forest products total about 5.8 billion m(3) per year, an amount equal about 0.4% of the surface and groundwater yield from timberland. Approximately 88% of water used in manufacturing is treated and returned directly to surface waters, about 11% is converted to water vapor and released during the manufacturing process, and 1% is imparted to products or solid residuals. Extensive study and continued monitoring of treated effluents suggest few or no concerns regarding the compatibility of current effluents with healthy aquatic systems.
Application of economic techniques to fire management - A status review and evaluation
Julie K. Gorte; Ross W. Gorte
1979-01-01
Discusses both the historic and contemporary influences of economic in formulating USDA, Forest Service fire management policy in allocating money for fire management and in appraising fire effects. Includes a partial listing of publications that deal with resource valuation.
Müllerová, Jana; Szabó, Péter; Hédl, Radim
2017-01-01
European broadleaved forests have been influenced by humans for centuries. Historical management practices are related to environmental conditions but the role of socio-economic factors is also important. For the successful restoration of traditional management for conservation purposes, detailed knowledge on management history and on the driving forces of historical forest changes is necessary. In order to reconstruct long-term spatio-temporal dynamics in forest management, we chose the Pálava Protected Landscape Area, Czech Republic and analyzed archival sources spanning the past seven centuries. Forests in the study area comprise two relatively large woods (Děvín and Milovice) with different environmental conditions. Historical forest management in both woods was coppicing. The coppice cycle was lengthened from 7 years (14th century) to more than 30 years (19th century) with a fluctuating density of standards. After WWII, coppicing was completely abandoned. This led to pronounced changes in forest age structure accompanied by stand unification indicated by a sharp decrease in the Shannon index of age diversity. To study local attributes responsible for spatial patterns in coppice abandonment, we constructed a regression model with the date of abandonment as a dependent variable and three groups of explanatory variables: i) remoteness of forest parcels, (ii) morphometric environmental factors and iii) site productivity. In Děvín Wood, coppicing was abandoned gradually with the pattern of abandonment related significantly to slope steepness and forest productivity. Poorly accessible upper slopes and low productive forest sites were abandoned earlier. By contrast, in Milovice Wood, where no clear topographic gradient is present, the abandonment of coppicing was not related to any of the variables we studied. Our study brings insights into the history and consequences of past management practices, and can be used in current attempts to re-establish coppice management for conservation purposes and as a source of sustainable energy. PMID:28529404
The Importance of Seedlings Quality in Timber and Bio-energy Production on marginal lands
NASA Astrophysics Data System (ADS)
Fragkiskakis, Nikitas; Kiourtsis, Fotios; Keramitzis, Dimitrios; Papatheodorou, Ioannis; Georgiadou, Margarita; Repmann, Frank; Gerwin, Werner
2017-04-01
One of the main issues that the forest sector is facing is to achieve a balance between the demand for biomass &wood production and the need to preserve the sustainability and biodiversity of forest ecosystems. The purposes of the new approaches are to ensure more efficient management of ecosystems and implement intensive forestry that will increase biomass production & timber yields. To achieve this, we need to determine the macroeconomic potential of the various options available, including the use of biotechnology and genetics. The success of the forests plantations capacity may be solved through forest certification, based on: a) Stabilization of the forests and soils structure. b) Hierarchy of biomass production in the forest's management process. c) Οrganization and implementation of effective plantation on marginal lands. d) Maintenance or increase of forest productivity by introducing new items as and when they are required. It is important to evaluate of the influence of factors such as the quality of soils of plantation areas, the utilization of the genetic resources and the management of forest operations with the environmental economic criteria such as net present value of benefits (NPV) and the corresponding flow annuities (EACF).The existing evaluations studies showed that the quality of the plantation areas has the most influence and through validated quality seed production can generate an increase in the NPV up to 73%. The importance of seedlings quality in timber and bio-energy production on marginal lands based on the literature it is estimated according to the heredity of the characteristics of the wood structure (except shrinkage). This clearly indicate that seedlings with the appropriate morphological characteristics can significantly improve the growth performance and help to support the development of biomass plantations oriented in tailor-made timber and bio-energy production.
Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes.
Petermann, Jana S; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W; Gossner, Martin M
2016-01-01
Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and functioning. We furthermore conclude that artificial tree-hole analogues represent a useful experimental alternative to test effects of changes in forest management on natural communities.
Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes
Petermann, Jana S.; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W.; Gossner, Martin M.
2016-01-01
Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and functioning. We furthermore conclude that artificial tree-hole analogues represent a useful experimental alternative to test effects of changes in forest management on natural communities. PMID:27187741
Fuels management in the Subtropical Mountains Division
James M. Guldin
2012-01-01
The heterogeneity of the forests west of the Mississippi River in the Southern United States is strongly influenced by physiography and topography. The west Gulf Coastal Plain of southern Arkansas, northwestern Louisiana, and eastern Texas features highly productive pine-dominated forests (Pinus spp.) on gentle terrain that are interspersed by major...
Thomas P. Holmes; Will Allen; Robert G. Haight; E. Carina H. Keskitalo; Mariella Marzano; Maria Pettersson; Christopher P. Quine; E. R. Langer
2017-01-01
National and international efforts to manage forest biosecurity create tension between opposing sources of ecological and economic irreversibility. Phytosanitary policies designed to protect national borders from biological invasions incur sunk costs deriving from economic and political irreversibilities that incentivizes wait-and-see decision-making. However, the...
Thinning increases climatic resilience of red pine
Matthew Magruder; Sophan Chhin; Brian Palik; John B. Bradford
2013-01-01
Forest management techniques such as intermediate stand-tending practices (e.g., thinning) can promote climatic resiliency in forest stands by moderating tree competition. Residual trees gain increased access to environmental resources (i.e., soil moisture, light), which in turn has the potential to buffer trees from stressful climatic conditions. The influences of...
Forest health and bark beetles
C. J. Fettig
2012-01-01
In recent years, bark beetles have caused significant tree mortality in the Sierra Nevada, rivaling mortality caused by wildfire in some locations. This chapter addresses two important questions: How can managers prepare for and influence levels of bark beetle-caused tree mortality given current forest conditions and future climate uncertainties? and How would the...
Influence of forest management and previous herbivory on cattle diets
Kenric J. Walburger; Timothy DelCurto; Martin Vavra
2007-01-01
Grazing cattle and timber harvest are common practices associated with forested rangelands. Therefore, the objective was to document the effects of timber harvest and herbivory on nutritional quality and botanical composition of steer diets in grand fir (Abies grandis [Dougl. ex D. Don] Lindl.) and ponderosa pine (Pinus ponderosa...
Seeing the forest beyond the carbon
NASA Astrophysics Data System (ADS)
Schwalm, C.; Giffen, A.; Duffy, P.; Houghton, R. A.; Lowenstein, F.; Perschel, R.; Rogers, B. M.
2016-12-01
Climate policy should be about more than obviating greenhouse gas emissions from fossil fuel combustion. From Kyoto onward forests and forest management have played a role-albeit a misspecified one-in climate policy. The 2015 COP21 Paris Agreement took the unprecedented step of providing funding for REDD+; re-emphasizing the importance of forest stewardship as a policy vehicle. This step is welcome but still falls well short of leveraging the full effect of forests on climate in the context of policy. Forest-climate effects can be grouped in three broad categories: (1) land carbon sink, i.e., maximizing carbon contained in forest carbon stocks; (2) biophysical effects whereby forest structure and extent influence climate directly; and (3) the use of wood in long-lived structures, i.e., "build it with wood". This last category refers to offsetting fossil fuel emissions through forest management and the use of wood products. Climate policy strongly emphasizes the land carbon sink. This ignores management as a means to alter climate-through, for example, evaporative cooling, cloud engineering, and the albedo effect-as well as the up to 31% decrease in CO2 emissions if wood were substituted for other construction materials. We present a new framework for forest-based climate policy that accounts for all three types for forest-climate effects. A clear change in course is needed. This agenda-for-change must move toward policy and subsidy that foster forest management and use that (1) minimizes total CO2 emissions, (2) maximizes biophysical climate benefits, and (3) provides communities with still greater incentives to maintain forest cover and quality. Absent such incentives we are left with the prospect that we are not harnessing the full potential of forests in climate regulation. Indeed, we may be making our climate situation worse.
Senf, Cornelius; Pflugmacher, Dirk; Hostert, Patrick; Seidl, Rupert
2017-08-01
Remote sensing is a key information source for improving the spatiotemporal understanding of forest ecosystem dynamics. Yet, the mapping and attribution of forest change remains challenging, particularly in areas where a number of interacting disturbance agents simultaneously affect forest development. The forest ecosystems of Central Europe are coupled human and natural systems, with natural and human disturbances affecting forests both individually and in combination. To better understand the complex forest disturbance dynamics in such systems, we utilize 32-year Landsat time series to map forest disturbances in five sites across Austria, the Czech Republic, Germany, Poland, and Slovakia. All sites consisted of a National Park and the surrounding forests, reflecting three management zones of different levels of human influence (managed, protected, strictly protected). This allowed for a comparison of spectral, temporal, and spatial disturbance patterns across a gradient from natural to coupled human and natural disturbances. Disturbance maps achieved overall accuracies ranging from 81% to 93%. Disturbance patches were generally small, with 95% of the disturbances being smaller than 10 ha. Disturbance rates ranged from 0.29% yr -1 to 0.95% yr -1 , and differed substantially among management zones and study sites. Natural disturbances in strictly protected areas were longer in duration (median of 8 years) and slightly less variable in magnitude compared to human-dominated disturbances in managed forests (median duration of 1 year). However, temporal dynamics between natural and human-dominated disturbances showed strong synchrony, suggesting that disturbance peaks are driven by natural events affecting managed and unmanaged areas simultaneously. Our study demonstrates the potential of remote sensing for mapping forest disturbances in coupled human and natural systems, such as the forests of Central Europe. Yet, we also highlight the complexity of such systems in terms of agent attribution, as many natural disturbances are modified by management responding to them outside protected areas.
NASA Astrophysics Data System (ADS)
Senf, Cornelius; Pflugmacher, Dirk; Hostert, Patrick; Seidl, Rupert
2017-08-01
Remote sensing is a key information source for improving the spatiotemporal understanding of forest ecosystem dynamics. Yet, the mapping and attribution of forest change remains challenging, particularly in areas where a number of interacting disturbance agents simultaneously affect forest development. The forest ecosystems of Central Europe are coupled human and natural systems, with natural and human disturbances affecting forests both individually and in combination. To better understand the complex forest disturbance dynamics in such systems, we utilize 32-year Landsat time series to map forest disturbances in five sites across Austria, the Czech Republic, Germany, Poland, and Slovakia. All sites consisted of a National Park and the surrounding forests, reflecting three management zones of different levels of human influence (managed, protected, strictly protected). This allowed for a comparison of spectral, temporal, and spatial disturbance patterns across a gradient from natural to coupled human and natural disturbances. Disturbance maps achieved overall accuracies ranging from 81% to 93%. Disturbance patches were generally small, with 95% of the disturbances being smaller than 10 ha. Disturbance rates ranged from 0.29% yr-1 to 0.95% yr-1, and differed substantially among management zones and study sites. Natural disturbances in strictly protected areas were longer in duration (median of 8 years) and slightly less variable in magnitude compared to human-dominated disturbances in managed forests (median duration of 1 year). However, temporal dynamics between natural and human-dominated disturbances showed strong synchrony, suggesting that disturbance peaks are driven by natural events affecting managed and unmanaged areas simultaneously. Our study demonstrates the potential of remote sensing for mapping forest disturbances in coupled human and natural systems, such as the forests of Central Europe. Yet, we also highlight the complexity of such systems in terms of agent attribution, as many natural disturbances are modified by management responding to them outside protected areas.
Fischer, Paul W; Cullen, Alison C; Ettl, Gregory J
2017-01-01
The objectives of this study are to understand tradeoffs between forest carbon and timber values, and evaluate the impact of uncertainty in improved forest management (IFM) carbon offset projects to improve forest management decisions. The study uses probabilistic simulation of uncertainty in financial risk for three management scenarios (clearcutting in 45- and 65-year rotations and no harvest) under three carbon price schemes (historic voluntary market prices, cap and trade, and carbon prices set to equal net present value (NPV) from timber-oriented management). Uncertainty is modeled for value and amount of carbon credits and wood products, the accuracy of forest growth model forecasts, and four other variables relevant to American Carbon Registry methodology. Calculations use forest inventory data from a 1,740 ha forest in western Washington State, using the Forest Vegetation Simulator (FVS) growth model. Sensitivity analysis shows that FVS model uncertainty contributes more than 70% to overall NPV variance, followed in importance by variability in inventory sample (3-14%), and short-term prices for timber products (8%), while variability in carbon credit price has little influence (1.1%). At regional average land-holding costs, a no-harvest management scenario would become revenue-positive at a carbon credit break-point price of $14.17/Mg carbon dioxide equivalent (CO 2 e). IFM carbon projects are associated with a greater chance of both large payouts and large losses to landowners. These results inform policymakers and forest owners of the carbon credit price necessary for IFM approaches to equal or better the business-as-usual strategy, while highlighting the magnitude of financial risk and reward through probabilistic simulation. © 2016 Society for Risk Analysis.
Deborah Page-Dumroese; Richard Miller; Jim Mital; Paul McDaniel; Dan Miller
2007-01-01
Volcanic ash from the eruption of Mt. Mazama ~7,700 years ago has a strong influence on many forested landscapes of the Pacific Northwest and Intermountain regions of the USA and Canada. Because of the unique biological, physical and chemical properties of the ash, it is closely tied to plant communities and forest productivity, and should therefore be considered as a...
NASA Astrophysics Data System (ADS)
Pham, Trinh Hung
Monitoring hydrological behavior of a large tropical watershed following a forest cover variation has an important role in water resource management planning as well as for forest sustainable management. Traditional methods in forest hydrology studies are Experimental watersheds, Upstream-downstream, Experimental plots, Statistical regional analysis and Watershed simulation. Those methodes have limitations for large watersheds concerning the monitoring time, the lack of input data especially about forest cover and the capacity of extrapolating results accurately in terms of large watersheds. Moreover, there is still currently a scientific debate in forest ecology on relation between water and forest. The reason of this problem comes from geographical differences in publication concerning study zones, experimental watershed size and applied methods. It gives differences in the conclusions on the influence of tropical forest cover change on the changes of outlet water and yet on the yearly runoff in terms of large watershed. In order to exceed the limitations of actual methods, to solve the difficulty of acquiring forest cover data and to have a better understanding of the relation between tropical forest cover change and hydrological behavior evolution of a large watershed, it is necessary to develop a new approach by using numeric remote sensing. We used the watershed of Dong Nai as a case study. Results show that a fusion between TM and ETM+ Landsat image series and hydro-meteorologic data allow us to observe and detect flooding trends and flooding peaks after an intensive forest cover change from 16% to 20%. Flooding frequency and flooding peaks have clearly decreased when there is an increase of the forest cover from 1983 to 1990. The influence of tropical forest cover on the hydrological behavior is varying with geographical locations of watershed. There is a significant relation between forest cover evolution and environmental facteurs as the runoff coefficient (R = 0,87) and the yearly precipitation (R = 0,93).
Streby, Henry M.; Andersen, David E.
2013-01-01
We used radio telemetry to monitor movements, cover-type selection, and survival for fledglings of the mature-forest nesting Ovenbird (Seiurus aurocapilla) at two managed forest sites in north-central Minnesota. Both sites contained forested wetlands, regenerating clearcut stands of various ages, and logging roads, but differed in mature forest composition; one deciduous with open understory, and the other mixed coniferous-deciduous with dense understory. We used compositional analysis, modified to incorporate age-specific limitations in fledgling movements, to assess cover-type selection by fledglings throughout the dependent (on adult care) post-fledging period. Compared to those that were depredated, fledglings from nests in deciduous forest that survived the early post-fledging period had more older (sapling-dominated) clearcut available, directed movements toward older clearcuts and forested wetlands, and used older clearcuts more than other cover types relative to availability. Fledglings that were depredated had more young (shrub-dominated) clearcut and unpaved logging road available, and used mature forest and roads more than expected based on availability. For birds from nests in mixed mature forest with dense understory, movements and cover-type selection were similar between fledglings that survived and those that were depredated. However, fledglings that were depredated at that site also had more young clearcut available than fledglings that survived. We conclude that Ovenbird fledgling survival is influenced by distance of their nest to various non-nesting cover types, and by the subsequent selection among those cover types, but that the influence of non-nesting cover types varies depending on the availability of dense understory vegetation in mature forest.
Forest edge burning in the Brazilian Amazon promoted by escaping fires from managed pastures
NASA Astrophysics Data System (ADS)
Cano-Crespo, Ana; Oliveira, Paulo J. C.; Boit, Alice; Cardoso, Manoel; Thonicke, Kirsten
2015-10-01
Understanding to what extent different land uses influence fire occurrence in the Amazonian forest is particularly relevant for its conservation. We evaluate the relationship between forest fires and different anthropogenic activities linked to a variety of land uses in the Brazilian states of Mato Grosso, Pará, and Rondônia. We combine the new high-resolution (30 m) TerraClass land use database with Moderate Resolution Imaging Spectroradiometer burned area data for 2008 and the extreme dry year of 2010. Excluding the non-forest class, most of the burned area was found in pastures, primary and secondary forests, and agricultural lands across all three states, while only around 1% of the total was located in deforested areas. The trend in burned area did not follow the declining deforestation rates from 2001 to 2010, and the spatial overlap between deforested and burned areas was only 8% on average. This supports the claim of deforestation being disconnected from burning since 2005. Forest degradation showed an even lower correlation with burned area. We found that fires used in managing pastoral and agricultural lands that escape into the neighboring forests largely contribute to forest fires. Such escaping fires are responsible for up to 52% of the burned forest edges adjacent to burned pastures and up to 22% of the burned forest edges adjacent to burned agricultural fields, respectively. Our findings call for the development of control and monitoring plans to prevent fires from escaping from managed lands into forests to support effective land use and ecosystem management.
Forest soil carbon is threatened by intensive biomass harvesting.
Achat, David L; Fortin, Mathieu; Landmann, Guy; Ringeval, Bruno; Augusto, Laurent
2015-11-04
Forests play a key role in the carbon cycle as they store huge quantities of organic carbon, most of which is stored in soils, with a smaller part being held in vegetation. While the carbon storage capacity of forests is influenced by forestry, the long-term impacts of forest managers' decisions on soil organic carbon (SOC) remain unclear. Using a meta-analysis approach, we showed that conventional biomass harvests preserved the SOC of forests, unlike intensive harvests where logging residues were harvested to produce fuelwood. Conventional harvests caused a decrease in carbon storage in the forest floor, but when the whole soil profile was taken into account, we found that this loss in the forest floor was compensated by an accumulation of SOC in deeper soil layers. Conversely, we found that intensive harvests led to SOC losses in all layers of forest soils. We assessed the potential impact of intensive harvests on the carbon budget, focusing on managed European forests. Estimated carbon losses from forest soils suggested that intensive biomass harvests could constitute an important source of carbon transfer from forests to the atmosphere (142-497 Tg-C), partly neutralizing the role of a carbon sink played by forest soils.
Guillemot, Joannès; Delpierre, Nicolas; Vallet, Patrick; François, Christophe; Martin-StPaul, Nicolas K; Soudani, Kamel; Nicolas, Manuel; Badeau, Vincent; Dufrêne, Eric
2014-09-01
The structure of a forest stand, i.e. the distribution of tree size features, has strong effects on its functioning. The management of the structure is therefore an important tool in mitigating the impact of predicted changes in climate on forests, especially with respect to drought. Here, a new functional-structural model is presented and is used to assess the effects of management on forest functioning at a national scale. The stand process-based model (PBM) CASTANEA was coupled to a stand structure module (SSM) based on empirical tree-to-tree competition rules. The calibration of the SSM was based on a thorough analysis of intersite and interannual variability of competition asymmetry. The coupled CASTANEA-SSM model was evaluated across France using forest inventory data, and used to compare the effect of contrasted silvicultural practices on simulated stand carbon fluxes and growth. The asymmetry of competition varied consistently with stand productivity at both spatial and temporal scales. The modelling of the competition rules enabled efficient prediction of changes in stand structure within the CASTANEA PBM. The coupled model predicted an increase in net primary productivity (NPP) with management intensity, resulting in higher growth. This positive effect of management was found to vary at a national scale across France: the highest increases in NPP were attained in forests facing moderate to high water stress; however, the absolute effect of management on simulated stand growth remained moderate to low because stand thinning involved changes in carbon allocation at the tree scale. This modelling approach helps to identify the areas where management efforts should be concentrated in order to mitigate near-future drought impact on national forest productivity. Around a quarter of the French temperate oak and beech forests are currently in zones of high vulnerability, where management could thus mitigate the influence of climate change on forest yield.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wigmosta, Mark S.; Burges, S J.
2001-10-01
What is the effect of urbanization and forest use on hydrologic and geomorphic processes? How can we develop land use policies that minimize adverse impacts on ecosystems while sustaining biodiversity? Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas addresses these issues and more. By featuring watersheds principally in the American Pacific Northwest, and the effects of timber harvesting and road construction on stream flow, sediment yield and landslide occurrence, scientists can advance their understanding of what constitutes appropriate management of environments with similar hydro-climatic-geomorphic settings worldwide.
A. Paige Fischer; Susan Charnley
2010-01-01
Nonindustrial privateâor "family"âforests hold great potential for sequestering carbon and have received much attention in discussions about forestry-based climate change mitigation. However, little is known about social and cultural influences on owners' willingness to manage for carbon and respond to policies designed to encourage carbon-oriented...
Akamani, Kofi; Hall, Troy Elizabeth
2015-01-01
This study tested a proposed community resilience model by investigating the role of institutions, capital assets, community and socio-demographic variables as determinants of households' participation in Ghana's collaborative forest management (CFM) program and outcomes of the program. Quantitative survey data were gathered from 209 randomly selected households from two forest-dependent communities. Regression analysis shows that households' participation in the CFM program was predicted by community location, past connections with institutions, and past bonding social capital. Community location and past capitals were the strongest predictors of the outcomes of the CFM program as judged by current levels of capitals. Participation in the CFM program also had a positive effect on human capital but had minimal impact on the other capitals influencing household well-being and resilience, suggesting that the impact of co-management on household resilience may be modest. In all, the findings highlight the need for co-management policies to pay attention to the historical context of community interaction processes influencing access to capital assets and local institutions to successfully promote equitable resilience. Copyright © 2014 Elsevier Ltd. All rights reserved.
Experimental canopy removal enhances diversity of vernal pond amphibians.
Skelly, David K; Bolden, Susan R; Freidenburg, L Kealoha
2014-03-01
Vernal ponds are often treated as protected environments receiving special regulation and management. Within the landscapes where they are found, forest vegetation frequently dominates surrounding uplands and can grow to overtop and shade pond basins. Two bodies of research offer differing views of the role of forest canopy for vernal pond systems. Studies of landscape conversion suggest that removing forest overstory within uplands can cause local extinctions of amphibians by altering terrestrial habitat or hindering movement. Studies of canopy above pond basins imply an opposite relationship; encroachment of overstory vegetation can be associated with local extinctions potentially via changes in light, thermal, and food resource environments. Unresolved uncertainties about the role of forest canopy reveal significant gaps in our understanding of wetland species distributions and dynamics. Any misunderstanding of canopy influences is simultaneously important to managers because current practices emphasize promoting or conserving vegetation growth particularly within buffers immediately adjacent to ponds. We evaluated this apparent contradiction by conducting a landscape-scale, long-term experiment using 14 natural vernal ponds. Tree felling at six manipulated ponds was limited in spatial scope but was nevertheless effective in increasing water temperature. Compared with eight control ponds, manipulated ponds maintained more amphibian species during five years post-manipulation. There was little evidence that any species was negatively influenced, and the reproductive effort of species for which we estimated egg inputs maintained pretreatment population densities in manipulated compared with control ponds. Overall, our experiment shows that a carefully circumscribed reduction of overhead forest canopy can enhance the capacity of vernal ponds to support wildlife diversity and suggests a scale dependence of canopy influences on amphibians. These findings have implications for the connection between current wetland management practices and the goals of wetland stewardship and conservation of wetland-dependent species.
NASA Astrophysics Data System (ADS)
Morales-Molino, César; Colombaroli, Daniele; Valbuena-Carabaña, María; Tinner, Willy; Salomón, Roberto L.; Carrión, José S.; Gil, Luis
2017-05-01
In the Mediterranean Basin, long-lasting human activities have largely resulted in forest degradation or destruction. Consequently, conservation efforts aimed at preserving and restoring Mediterranean forests often lack well-defined targets when using current forest composition and structure as a reference. In the Iberian mountains, the still widespread Pinus sylvestris and Quercus pyrenaica woodlands have been heavily impacted by land-use. To assess future developments and as a baseline for planning, forest managers are interested in understanding the origins of present ecosystems to disclose effects on forest composition that may influence future vegetation trajectories. Quantification of land-use change is particularly interesting to understand vegetation responses. Here we use three well-dated multi-proxy palaeoecological sequences from the Guadarrama Mountains (central Spain) to quantitatively reconstruct changes occurred in P. sylvestris forests and the P. sylvestris-Q. pyrenaica ecotone at multi-decadal to millennial timescales, and assess the driving factors. Our results show millennial stability of P. sylvestris forests under varying fire and climate conditions, with few transient declines caused by the combined effects of fire and grazing. The high value of pine timber in the past would account for long-lasting pine forest preservation and partly for the degradation of native riparian vegetation (mostly composed of Betula and Corylus). Pine forests further spread after planned forest management started at 1890 CE. In contrast, intensive coppicing and grazing caused Q. pyrenaica decline some centuries ago (ca. 1500-1650 CE), with unprecedented grazing during the last decades seriously compromising today's oak regeneration. Thus, land-use history played a major role in determining vegetation changes. Finally, we must highlight that the involvement of forest managers in this work has guaranteed a practical use of palaeoecological data in conservation and management practice.
NASA Astrophysics Data System (ADS)
Varo-Martínez, Mª Ángeles; Navarro-Cerrillo, Rafael M.; Hernández-Clemente, Rocío; Duque-Lazo, Joaquín
2017-04-01
Traditionally, forest-stand delineation has been assessed based on orthophotography. The application of LiDAR has improved forest management by providing high-spatial-resolution data on the vertical structure of the forest. The aim of this study was to develop and test a semi-automated algorithm for stands delineation in a plantation of Pinus sylvestris L. using LiDAR data. Three specific objectives were evaluated, i) to assess two complementary LiDAR metrics, Assmann dominant height and basal area, for the characterization of the structure of P. sylvestris Mediterranean forests based on object-oriented segmentation, ii) to evaluate the influence of the LiDAR pulse density on forest-stand delineation accuracy, and iii) to investigate the algorithmś effectiveness in the delineation of P. sylvestris stands for map prediction of Assmann dominant height and basal area. Our results show that it is possible to generate accurate P. sylvestris forest-stand segmentations using multiresolution or mean shift segmentation methods, even with low-pulse-density LiDAR - which is an important economic advantage for forest management. However, eCognition multiresolution methods provided better results than the OTB (Orfeo Tool Box) for stand delineation based on dominant height and basal area estimations. Furthermore, the influence of pulse density on the results was not statistically significant in the basal area calculations. However, there was a significant effect of pulse density on Assmann dominant height [F2,9595 = 5.69, p = 0.003].for low pulse density. We propose that the approach shown here should be considered for stand delineation in other large Pinus plantations in Mediterranean regions with similar characteristics.
Burivalova, Zuzana; Towsey, Michael; Boucher, Tim; Truskinger, Anthony; Apelis, Cosmas; Roe, Paul; Game, Edward T
2018-02-01
There is global concern about tropical forest degradation, in part, because of the associated loss of biodiversity. Communities and indigenous people play a fundamental role in tropical forest management and are often efficient at preventing forest degradation. However, monitoring changes in biodiversity due to degradation, especially at a scale appropriate to local tropical forest management, is plagued by difficulties, including the need for expert training, inconsistencies across observers, and lack of baseline or reference data. We used a new biodiversity remote-sensing technology, the recording of soundscapes, to test whether the acoustic saturation of a tropical forest in Papua New Guinea decreases as land-use intensity by the communities that manage the forest increases. We sampled soundscapes continuously for 24 hours at 34 sites in different land-use zones of 3 communities. Land-use zones where forest cover was fully retained had significantly higher soundscape saturation during peak acoustic activity times (i.e., dawn and dusk chorus) compared with land-use types with fragmented forest cover. We conclude that, in Papua New Guinea, the relatively simple measure of soundscape saturation may provide a cheap, objective, reproducible, and effective tool for monitoring tropical forest deviation from an intact state, particularly if it is used to detect the presence of intact dawn and dusk choruses. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Mohandass, Dharmalingam; Campbell, Mason J.; Hughes, Alice C.; Mammides, Christos; Davidar, Priya
2017-08-01
The species richness and density of lianas (woody vines) in tropical forests is determined by various abiotic and biotic factors. Factors such as altitude, forest patch size and the degree of forest disturbance are known to exert strong influences on liana species richness and density. We investigated how liana species richness and density were concurrently influenced by altitude (1700-2360 m), forest patch size, forest patch location (edge or interior) and disturbance intensity in the tropical montane evergreen forests, of the Nilgiri and Palni hills, Western Ghats, southern India. All woody lianas (≥1 cm dbh) were enumerated in plots of 30 × 30 m in small, medium and large forest patches, which were located along an altitudinal gradient ranging from 1700 to 2360 m. A total of 1980 individual lianas were recorded, belonging to 45 species, 32 genera and 21 families, from a total sampling area of 13.86 ha (across 154 plots). Liana species richness and density decreased significantly with increasing altitude and increased with increasing forest patch size. Within forest patches, the proportion of forest edge or interior habitat influenced liana distribution and succession especially when compared across the patch size categories. Liana species richness and density also varied along the altitudinal gradient when examined using eco-physiological guilds (i.e. shade tolerance, dispersal mode and climbing mechanism). The species richness and density of lianas within these ecological guilds responded negatively to increasing altitude and positively to increasing patch size and additionally displayed differing sensitivities to forest disturbance. Importantly, the degree of forest disturbance significantly altered the relationship between liana species richness and density to increasing altitude and patches size, and as such is likely the primary influence on liana response to montane forest succession. Our findings suggest that managing forest disturbance in the examined montane forests would assist in conserving local liana diversity across the examined altitudinal range.
Patterns and determinants of plant biodiversity in non-commercial forests of eastern China
Wu, Chuping; Vellend, Mark; Yuan, Weigao; Jiang, Bo; Liu, Jiajia; Shen, Aihua; Liu, Jinliang; Zhu, Jinru
2017-01-01
Non-commercial forests represent important habitats for the maintenance of biodiversity and ecosystem function in China, yet no studies have explored the patterns and determinants of plant biodiversity in these human dominated landscapes. Here we test the influence of (1) forest type (pine, mixed, and broad-leaved), (2) disturbance history, and (3) environmental factors, on tree species richness and composition in 600 study plots in eastern China. In total, we found 143 species in 53 families of woody plants, with a number of species rare and endemic in the study region. Species richness in mixed forest and broad-leaved forest was higher than that in pine forest, and was higher in forests with less disturbance. Species composition was influenced by environment factors in different ways in different forest types, with important variables including elevation, soil depth and aspect. Surprisingly, we found little effect of forest age after disturbance on species composition. Most non-commercial forests in this region are dominated by species poor pine forests and mixed young forests. As such, our results highlight the importance of broad-leaved forests for regional plant biodiversity conservation. To increase the representation of broad-leaved non-commercial forests, specific management practices such as thinning of pine trees could be undertaken. PMID:29161324
Patterns and determinants of plant biodiversity in non-commercial forests of eastern China.
Wu, Chuping; Vellend, Mark; Yuan, Weigao; Jiang, Bo; Liu, Jiajia; Shen, Aihua; Liu, Jinliang; Zhu, Jinru; Yu, Mingjian
2017-01-01
Non-commercial forests represent important habitats for the maintenance of biodiversity and ecosystem function in China, yet no studies have explored the patterns and determinants of plant biodiversity in these human dominated landscapes. Here we test the influence of (1) forest type (pine, mixed, and broad-leaved), (2) disturbance history, and (3) environmental factors, on tree species richness and composition in 600 study plots in eastern China. In total, we found 143 species in 53 families of woody plants, with a number of species rare and endemic in the study region. Species richness in mixed forest and broad-leaved forest was higher than that in pine forest, and was higher in forests with less disturbance. Species composition was influenced by environment factors in different ways in different forest types, with important variables including elevation, soil depth and aspect. Surprisingly, we found little effect of forest age after disturbance on species composition. Most non-commercial forests in this region are dominated by species poor pine forests and mixed young forests. As such, our results highlight the importance of broad-leaved forests for regional plant biodiversity conservation. To increase the representation of broad-leaved non-commercial forests, specific management practices such as thinning of pine trees could be undertaken.
Linking complex forest fuel structure and fire behavior at fine scales
EL Loudermilk; Joseph O' Brien; RJ Mitchell; JK Hiers; WP Cropper; S Grunwald; J Grego; J Fernandez
2012-01-01
Improved fire management of savannas and open woodlands requires better understanding of the fundamental connection between fuel heterogeneity, variation in fire behaviour and the influence of fire variation on vegetation feedbacks. In this study, we introduce a novel approach to predicting fire behaviour at the submetre scale, including measurements of forest...
Sediment transport and channel morphology of small, forested streams.
Marwan A. Hassan; Michael Church; Thomas E. Lisle; Francesco Brardinoni; Lee Benda; Gordon E. Grant
2005-01-01
This paper reviews sediment transport and channel morphology in small, forested streams in the Pacific Northwest region of North America to assess current knowledge of channel stability and morphology relevant to riparian management practices around small streams. Small channels are defined as ones in which morphology and hydraulics may be significantly influenced by...
Paul D. Anderson; David J. Larson; Samuel S. Chan
2007-01-01
Thinning of 30- to 70-year-old Douglas-fir (Psuedotsuga menziesii [Mirb.] Franco) stands is a common silvicultural activity on federal forest lands of the Pacific Northwest, United States. Empirical relationships among riparian functions, silvicultural treatments, and different riparian buffer widths are not well documented for small headwater...
NASA Astrophysics Data System (ADS)
Price, K.; Jackson, C. R.
2013-12-01
A large amount of research exploring the relationship between watershed forest cover and streamflow quantity has been conducted in the southern Blue Ridge Mountains, particularly in association with the USFS Coweeta Hydrologic Laboratory and the Coweeta LTER. However, a clear answer to the question ';How does changing tree cover influence runoff?' has not yet emerged for guidance of policy and management. The southern Blue Ridge is the source of water reaching much of the drought-sensitive Southeastern US, and a firmer understanding of the complexities of this issue is critical for water resources management for millions of people and diverse aquatic habitats. When this question has been explored in mesoscale systems (10s to 100s km2), results indicate that watersheds with greater forest cover have greater baseflow. Associated work has shown that hydraulic conductivities in forest soils are nearly an order of magnitude greater than lawn and pasture soils in this region. Our interpretation has been that in these mesoscale systems, the compaction of soil associated with forest conversion to other land uses has played a bigger role than related changes in evapotranspiration (ET) in shaping watershed dynamics and the overall water budget. Particular influence has been seen in baseflows, we posit, due to reduced infiltration and recharge. However, nearly a century of research in small experimental watersheds at Coweeta has shown that forest ET substantially reduces streamflows, including baseflows, when soils are not substantially altered. At this smaller scale of observations, details of forest composition and species water use variability have been thoroughly considered, while in the mesoscale studies 'forest cover' is treated as regionally uniform. Current small-scale work at Coweeta has shown that hemlock decline and subsequent replacement with other species has changed the magnitude and seasonality of ET, which is detectible in streamflow quantity and timing. Here, we attempt to resolve the seemingly conflicting results from experimental watershed and mesoscale studies, and consider the implications for even larger systems more directly linked to policy and management. A singular focus on streamflow quantities ignores broader water quality considerations related to forest management and conversion. We explore the idea that the pronounced control of precipitation variability on streamflow variability in this region confounds the inference of the relative importance of other influences, such as ET and soil hydraulics, particularly at moderate levels of disturbance. We also consider the complexities of heterogeneous land use and geomorphology, which are inevitably encountered in larger watersheds. Finally, we suggest preliminary guidance and future research approaches to provide information to policy and management on the sensitivity of various systems to forest removal or species conversion, across a range of spatial scales.
Norris, Jennifer L.; Chamberlain, Michael J.; Twedt, Daniel J.
2009-01-01
Effects of silvicultural activities on birds are of increasing interest because of documented national declines in breeding bird populations for some species and the potential that these declines are in part due to changes in forest habitat. Silviculturally induced disturbances have been advocated as a means to achieve suitable forest conditions for priority wildlife species in bottomland hardwood forests. We evaluated how silvicultural activities on conservation lands in bottomland hardwood forests of Louisiana, USA, influenced species-specific densities of breeding birds. Our data were from independent studies, which used standardized point-count surveys for breeding birds in 124 bottomland hardwood forest stands on 12 management areas. We used Program DISTANCE 5.0, Release 2.0 (Thomas et al. 2006) to estimate density for 43 species with > 50 detections. For 36 of those species we compared density estimates among harvest regimes (individual selection, group selection, extensive harvest, and no harvest). We observed 10 species with similar densities in those harvest regimes compared with densities in stands not harvested. However, we observed 10 species that were negatively impacted by harvest with greater densities in stands not harvested, 9 species with greater densities in individual selection stands, 4 species with greater densities in group selection stands, and 4 species with greater densities in stands receiving an extensive harvest (e.g., > 40% canopy removal). Differences in intensity of harvest influenced densities of breeding birds. Moreover, community-wide avian conservation values of stands subjected to individual and group selection, and stands not harvested, were similar to each other and greater than that of stands subjected to extensive harvest that removed > 40% canopy cover. These results have implications for managers estimating breeding bird populations, in addition to predicting changes in bird communities as a result of prescribed and future forest management practices.
Voutilainen, Liina; Savola, Sakeri; Kallio, Eva Riikka; Laakkonen, Juha; Vaheri, Antti; Vapalahti, Olli; Henttonen, Heikki
2012-01-01
Intensive management of Fennoscandian forests has led to a mosaic of woodlands in different stages of maturity. The main rodent host of the zoonotic Puumala hantavirus (PUUV) is the bank vole (Myodes glareolus), a species that can be found in all woodlands and especially mature forests. We investigated the influence of forest age structure on PUUV infection dynamics in bank voles. Over four years, we trapped small mammals twice a year in a forest network of different succession stages in Northern Finland. Our study sites represented four forest age classes from young (4 to 30 years) to mature (over 100 years) forests. We show that PUUV-infected bank voles occurred commonly in all forest age classes, but peaked in mature forests. The probability of an individual bank vole to be PUUV infected was positively related to concurrent host population density. However, when population density was controlled for, a relatively higher infection rate was observed in voles trapped in younger forests. Furthermore, we found evidence of a “dilution effect” in that the infection probability was negatively associated with the simultaneous density of other small mammals during the breeding season. Our results suggest that younger forests created by intensive management can reduce hantaviral load in the environment, but PUUV is common in woodlands of all ages. As such, the Fennoscandian forest landscape represents a significant reservoir and source of hantaviral infection in humans. PMID:22745755
Forest ecosystems: Vegetation, disturbance, and economics: Chapter 5
Littell, Jeremy S.; Hicke, Jeffrey A.; Shafer, Sarah L.; Capalbo, Susan M.; Houston, Laurie L.; Glick, Patty
2013-01-01
Forests cover about 47% of the Northwest (NW–Washington, Oregon, and Idaho) (Smith et al. 2009, fig. 5.1, table 5.1). The impacts of current and future climate change on NW forest ecosystems are a product of the sensitivities of ecosystem processes to climate and the degree to which humans depend on and interact with those systems. Forest ecosystem structure and function, particularly in relatively unmanaged forests where timber harvest and other land use have smaller effects, is sensitive to climate change because climate has a strong influence on ecosystem processes. Climate can affect forest structure directly through its control of plan physiology and life history (establishment, individual growth, productivity, and morality) or indirectly through its control of disturbance (fire, insects, disease). As climate changes, many forest processes will be affected, altering ecosystem services such as timber production and recreation. These changes have socioeconomic implications (e.g. for timber economies) and will require changes to current management of forests. Climate and management will interact to determine the forests of the future, and the scientific basis for adaptation to climate change in forests thus depends significantly on how forests will be affected.
Sheridan, Christopher D.; Puettmann, Klaus J.; Huso, Manuela M.P.; Hagar, Joan C.; Falk, Kristen R.
2013-01-01
Many land managers in the Pacific Northwest have the goal of increasing late-successional forest structures. Despite the documented importance of Douglas-fir tree bark structure in forested ecosystems, little is known about factors influencing bark development and how foresters can manage development. This study investigated the relative importance of tree size, growth, environmental factors, and thinning on Douglas-fir bark furrow characteristics in the Oregon Coast Range. Bark furrow depth, area, and bark roughness were measured for Douglas-fir trees in young heavily thinned and unthinned sites and compared to older reference sites. We tested models for relationships between bark furrow response and thinning, tree diameter, diameter growth, and environmental factors. Separately, we compared bark responses measured on trees used by bark-foraging birds with trees with no observed usage. Tree diameter and diameter growth were the most important variables in predicting bark characteristics in young trees. Measured environmental variables were not strongly related to bark characteristics. Bark furrow characteristics in old trees were influenced by tree diameter and surrounding tree densities. Young trees used by bark foragers did not have different bark characteristics than unused trees. Efforts to enhance Douglas-fir bark characteristics should emphasize retention of larger diameter trees' growth enhancement.
Carbon sequestration in managed temperate coniferous forests under climate change
NASA Astrophysics Data System (ADS)
Dymond, Caren C.; Beukema, Sarah; Nitschke, Craig R.; Coates, K. David; Scheller, Robert M.
2016-03-01
Management of temperate forests has the potential to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by negative climate change impacts. We therefore need a better understanding of climate change alterations to temperate forest carbon dynamics before developing mitigation strategies. The purpose of this project was to investigate the interactions of species composition, fire, management, and climate change in the Copper-Pine Creek valley, a temperate coniferous forest with a wide range of growing conditions. To do so, we used the LANDIS-II modelling framework including the new Forest Carbon Succession extension to simulate forest ecosystems under four different productivity scenarios, with and without climate change effects, until 2050. Significantly, the new extension allowed us to calculate the net sector productivity, a carbon accounting metric that integrates aboveground and belowground carbon dynamics, disturbances, and the eventual fate of forest products. The model output was validated against literature values. The results implied that the species optimum growing conditions relative to current and future conditions strongly influenced future carbon dynamics. Warmer growing conditions led to increased carbon sinks and storage in the colder and wetter ecoregions but not necessarily in the others. Climate change impacts varied among species and site conditions, and this indicates that both of these components need to be taken into account when considering climate change mitigation activities and adaptive management. The introduction of a new carbon indicator, net sector productivity, promises to be useful in assessing management effectiveness and mitigation activities.
Renner, Swen C; Lüdtke, Bruntje; Kaiser, Sonja; Kienle, Julia; Schaefer, H Martin; Segelbacher, Gernot; Tschapka, Marco; Santiago-Alarcon, Diego
2016-08-01
Habitat characteristics determine the presence of individuals through resource availability, but at the same time, such features also influence the occurrence of parasites. We analyzed how birds respond to changes in interior forest structures, to forest management regimes, and to the risk of haemosporidian infections. We captured and took blood samples from blackcaps (Sylvia atricapilla) and chaffinches (Fringilla coelebs) in three different forest types (beech, mixed deciduous, spruce). We measured birds' body asymmetries, detected avian haemosporidians, and counted white blood cells as an immune measure of each individual per forest type. We used, to our knowledge for the first time, continuous forest structural parameters to quantify habitat structure, and found significant effects of habitat structure on parasite prevalence that previously have been undetected. We found three times higher prevalence for blackcaps compared with chaffinches. Parasite intensity varied significantly within host species depending on forest type, being lowest in beech forests for both host species. Structurally complex habitats with a high degree of entropy had a positive effect on the likelihood of acquiring an infection, but the effect on prevalence was negative for forest sections with a south facing aspect. For blackcaps, forest gaps also had a positive effect on prevalence, but canopy height had a negative one. Our results suggest that forest types and variations in forest structure influence the likelihood of acquiring an infection, which subsequently has an influence on host health status and body condition; however, responses to some environmental factors are host-specific. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Drivers of reforestation in human-dominated forests
Nagendra, Harini
2007-01-01
Tropical forest habitat continues to decline globally, with serious negative consequences for environmental sustainability. The small mountain country of Nepal provides an excellent context in which to examine trajectories of forest-cover change. Despite having experienced large-scale forest clearing in the past, significant reforestation has taken place in recent years. The range of biophysical and ecological environments and diversity of tenure arrangements provide us with a context with sufficient variation to be able to derive insight into the impact of a range of hypothesized drivers of forest change. This article draws on a dataset of 55 forests from the middle hills and Terai plains of Nepal to examine the factors associated with forest clearing or regeneration. Results affirm the central importance of tenure regimes and local monitoring for forest regrowth. In addition, user group size per unit of forest area is an important, independent explanator of forest change. These variables also can be associated with specific practices that further influence forest change such as the management of social conflict, adoption of new technologies to reduce pressure on the forest, and involvement of users in forest maintenance activities. Such large-N, comparative studies are essential if we are to derive more complex, nuanced, yet actionable frameworks that help us to plan better policies for the management of natural resources. PMID:17881576
Huff, Emily Silver; Leahy, Jessica E.; Hiebeler, David; Weiskittel, Aaron R.; Noblet, Caroline L.
2015-01-01
Privately owned woodlands are an important source of timber and ecosystem services in North America and worldwide. Impacts of management on these ecosystems and timber supply from these woodlands are difficult to estimate because complex behavioral theory informs the owner’s management decisions. The decision-making environment consists of exogenous market factors, internal cognitive processes, and social interactions with fellow landowners, foresters, and other rural community members. This study seeks to understand how social interactions, information flow, and peer-to-peer networks influence timber harvesting behavior using an agent-based model. This theoretical model includes forested polygons in various states of ‘harvest readiness’ and three types of agents: forest landowners, foresters, and peer leaders (individuals trained in conservation who use peer-to-peer networking). Agent rules, interactions, and characteristics were parameterized with values from existing literature and an empirical survey of forest landowner attitudes, intentions, and demographics. The model demonstrates that as trust in foresters and peer leaders increases, the percentage of the forest that is harvested sustainably increases. Furthermore, peer leaders can serve to increase landowner trust in foresters. Model output and equations will inform forest policy and extension/outreach efforts. The model also serves as an important testing ground for new theories of landowner decision making and behavior. PMID:26562429
Tempel, Douglas J; Gutiérrez, R J; Whitmore, Sheila A; Reetz, Matthew J; Stoelting, Ricka E; Berigan, William J; Seamans, Mark E; Zachariah Peery, M
Management of many North American forests is challenged by the need to balance the potentially competing objectives of reducing risks posed by high-severity wildfires and protecting threatened species. In the Sierra Nevada, California, concern about high-severity fires has increased in recent decades but uncertainty exists over the effects of fuel-reduction treatments on species associated with older forests, such as the California Spotted Owl (Strix occidentalis occidentalis). Here, we assessed the effects of forest conditions, fuel reductions, and wildfire on a declining population of Spotted Owls in the central Sierra Nevada using 20 years of demographic data collected at 74 Spotted Owl territories. Adult survival and territory colonization probabilities were relatively high, while territory extinction probability was relatively low, especially in territories that had relatively large amounts of high canopy cover (≥70%) forest. Reproduction was negatively associated with the area of medium-intensity timber harvests characteristic of proposed fuel treatments. Our results also suggested that the amount of edge between older forests and shrub/sapling vegetation and increased habitat heterogeneity may positively influence demographic rates of Spotted Owls. Finally, high-severity fire negatively influenced the probability of territory colonization. Despite correlations between owl demographic rates and several habitat variables, life stage simulation (sensitivity) analyses indicated that the amount of forest with high canopy cover was the primary driver of population growth and equilibrium occupancy at the scale of individual territories. Greater than 90% of medium-intensity harvests converted high-canopy-cover forests into lower-canopy-cover vegetation classes, suggesting that landscape-scale fuel treatments in such stands could have short-term negative impacts on populations of California Spotted Owls. Moreover, high-canopy-cover forests declined by an average of 7.4% across territories during our study, suggesting that habitat loss could have contributed to declines in abundance and territory occupancy. We recommend that managers consider the existing amount and spatial distribution of high-canopy forest before implementing fuel treatments within an owl territory, and that treatments be accompanied by a rigorous monitoring program.
Jyh-Min Chiang; Ryan W. McEwan; Daniel A. Yaussy; Kim J. Brown
2008-01-01
More than 70 years of fire suppression has influenced forest dynamics and led to the accumulation of fuels in many forests of the United States. To address these changes, forest managers increasingly seek to restore historical ecosystem structure and function through the reintroduction of fire and disturbance processes that mimic fire such as silvicultural thinning. In...
Brian Palik; Robert J. Mitchell; Stephen Pecot; Mike Battaglia; Mou Pu
2003-01-01
Increasingly, overstory retention is being used in forests traditionally managed for single-cohort structure. One rationale for retention is that residual stand structure better resembles the complex structure of forests after natural disturbance, helping to perpetuate ecosystem fuctions dependent on that structure. The benefits of retention come at the cost of reduced...
Managed forest landscape structure and avian species richness in the southeastern US
Craig Loehle; T. Bently Wigley; Scott Rutzmoser; John A. Gerwin; Patrick D. Keyser; Richard A. Lancia; Christopher J. Reynolds; Ronald E. Thill; Robert Weih; Don White; Petra Bohall Wood
2005-01-01
Forest structural features at the stand scale (e.g., snags, stem density, species composition) and habitat attributes at larger spatial scales (e.g., landscape pattern, road density) can influence biological diversity and have been proposed as indicators in sustainable forestry programs. This study investigated relationships between such factors and total richness of...
Economic analysis in support of broad scale land management strategies.
Richard Haynes
2003-01-01
The US has a century of experience with the development of forest policies that have benefited from or been influenced by economic research activities in the forest sector. At the same time, increasing rigor in policy debates stimulated economics research. During the past four decades economic research has evolved to include increased understanding of consumer demands...
The Entiat Experimental Forest: a unique opportunity to examine hydrologic response to wildfire.
Richard D. Woodsmith; Kellie B. Vache; Jeffrey J. McDonnell; Jan Seibert; J. David Helvey
2007-01-01
Water is generally regarded as the most important natural resource in the interior Columbia River basin (ICRB). Public agencies managing forested headwater source areas are under increasing pressure to document water quantity and quality, and the effects of background and anthropogenic disturbances that influence them. Fire is widely recognized as the primary...
Influence of harvesting on understory vegetation along a boreal riparian-upland gradient
Rebecca L. MacDonald; Han Y.H. Chen; Brian P. Palik; Ellie E. Prepas
2014-01-01
Management of riparian forests, and how they respond to disturbance, continues to be a focus of interest in the literature. Earlier studies on riparian plant community assembly following harvesting in the boreal forest have focused merely on highly contrasting microhabitats within a landscape, for example, streambank riparian habitat or upland habitat. Sustaining...
Brian R. Sturtevant; V. Quinn; L.E. Robert; D. Kneeshaw; P. James; M.-J. Fortin; P. Wolter; P. Townsend; B. Cooke; D. Anderson
2010-01-01
The balance of evidence suggests forest insect outbreaks today are more damaging than ever because of changes in forest composition and structure induced by fire suppression and post-harvest proliferation of tree species intolerant to herbivory. We hypothesized that landscape connectivity of acceptable host trees increases defoliator population connectivity, altering...
Newton, Michael; Ice, George
2016-01-01
Forested riparian buffers isolate streams from the influence of harvesting operations that can lead to water temperature increases. Only forest cover between the sun and stream limits stream warming, but that cover also reduces in-stream photosynthesis, aquatic insect production, and fish productivity. Water temperature increases that occur as streams flow through canopy openings decrease rapidly downstream, in as little as 150 m. Limiting management options in riparian forests restricts maintenance and optimization of various buffer contributions to beneficial uses, including forest products, fish, and their food supply. Some riparian disturbance, especially along cold streams, appears to benefit fish productivity. Options for enhancing environmental investments in buffers should include flexibility in application of water quality standards to address the general biological needs of fish and temporary nature of clearing induced warming. Local prescriptions for optimizing riparian buffers and practices that address long-term habitat needs deserve attention. Options and incentives are needed to entice landowners to actively manage for desirable riparian forest conditions.
Finnegan, J; Regan, J T; Fenton, O; Lanigan, G J; Brennan, R B; Healy, M G
2014-09-01
Management changes such as drainage, fertilisation, afforestation and harvesting (clearfelling) of forested peatlands influence watertable (WT) position and groundwater concentrations of nutrients. This study investigated the impact of clearfelling of a peatland forest on WT and nutrient concentrations. Three areas were examined: (1) a regenerated riparian peatland buffer (RB) clearfelled four years prior to the present study (2) a recently clearfelled coniferous forest (CF) and (3) a standing, mature coniferous forest (SF), on which no harvesting took place. The WT remained consistently below 0.3 m during the pre-clearfelling period. Results showed there was an almost immediate rise in the WT after clearfelling and a rise to 0.15 m below ground level (bgl) within 10 months of clearfelling. Clearfelling of the forest increased dissolved reactive phosphorus concentrations (from an average of 28-230 μg L(-1)) in the shallow groundwater, likely caused by leaching from degrading brash mats. Copyright © 2014 Elsevier Ltd. All rights reserved.
LeSage, C.M.; Merritt, R.W.; Wipfli, M.S.
2005-01-01
We examined how management of young upland forests in southeastern Alaska affect riparian invertebrate taxa richness, density, and biomass, in turn, potentially influencing food abundance for fish and wildlife. Southeastern Alaska forests are dominated by coniferous trees including Sitka spruce (Picea sitchensis (Bong.) Carr.), western hemlock (Tsuga heterophylla (Raf.) Sarg.), with mixed stands of red cedar (Thuja plicata Donn.). Red alder (Alnus rubra Bong.) is hypothesized to influence the productivity of young-growth conifer forests and through forest management may provide increased riparian invertebrate abundance. To compare and contrast invertebrate densities between coniferous and alder riparian habitats, leaf litter and wood debris (early and late decay classes) samples were collected along eleven headwater streams on Prince of Wales Island, Alaska, during the summers of 2000 and 2001. Members of Acarina and Collembola were the most abundant taxa collected in leaf litter with alder litter having significantly higher mean taxa richness than conifer litter. Members of Acarina were the most abundant group collected on wood debris and alder wood had significantly higher mean taxa richness and biomass than conifer wood. Alder wood debris in more advanced decay stages had the highest mean taxa richness and biomass, compared to other wood types, while conifer late decay wood debris had the highest densities of invertebrates. The inclusion of alder in young-growth conifer forests can benefit forest ecosystems by enhancing taxa richness and biomass of riparian forest invertebrates. ?? 2005 by the Northwest Scientific Association. All rights reserved.
Proximal Association of Land Management Preferences: Evidence from Family Forest Owners
Aguilar, Francisco X.; Cai, Zhen; Butler, Brett
2017-01-01
Individual behavior is influenced by factors intrinsic to the decision-maker but also associated with other individuals and their ownerships with such relationship intensified by geographic proximity. The land management literature is scarce in the spatially integrated analysis of biophysical and socio-economic data. Localized land management decisions are likely driven by spatially-explicit but often unobserved resource conditions, influenced by an individual’s own characteristics, proximal lands and fellow owners. This study examined stated choices over the management of family-owned forests as an example of a resource that captures strong pecuniary and non-pecuniary values with identifiable decision makers. An autoregressive model controlled for spatially autocorrelated willingness-to-harvest (WTH) responses using a sample of residential and absentee family forest owners from the U.S. State of Missouri. WTH responses were largely explained by affective, cognitive and experience variables including timber production objectives and past harvest experience. Demographic variables, including income and age, were associated with WTH and helped define socially-proximal groups. The group of closest identity was comprised of resident males over 55 years of age with annual income of at least $50,000. Spatially-explicit models showed that indirect impacts, capturing spillover associations, on average accounted for 14% of total marginal impacts among statistically significant explanatory variables. We argue that not all proximal family forest owners are equal and owners-in-absentia have discernible differences in WTH preferences with important implications for public policy and future research. PMID:28060960
Huo, Hong; Feng, Qi; Su, Yong-hong
2014-01-01
Understanding the factors that influence the distribution of understory vegetation is important for biological conservation and forest management. We compared understory species composition by multi-response permutation procedure and indicator species analysis between plots dominated by Qinghai spruce (Picea crassifolia Kom.) and Qilian juniper (Sabina przewalskii Kom.) in coniferous forests of the Qilian Mountains, northwestern China. Understory species composition differed markedly between the forest types. Many heliophilous species were significantly associated with juniper forest, while only one species was indicative of spruce forest. Using constrained ordination and the variation partitioning model, we quantitatively assessed the relative effects of two sets of explanatory variables on understory species composition. The results showed that topographic variables had higher explanatory power than did site conditions for understory plant distributions. However, a large amount of the variation in understory species composition remained unexplained. Forward selection revealed that understory species distributions were primarily affected by elevation and aspect. Juniper forest had higher species richness and α-diversity and lower β-diversity in the herb layer of the understory plant community than spruce forest, suggesting that the former may be more important in maintaining understory biodiversity and community stability in alpine coniferous forest ecosystems.
Guiding principles for management of forested, agricultural, and urban watersheds
Pamela J. Edwards; Jon E. Schoonover; Karl W.J. Williard
2015-01-01
Human actions must be well planned and include consideration of their potential influences on water and aquatic ecosystems - such consideration is the foundation of watershed management. Watersheds are the ideal land unit for managing and protecting water resources and aquatic health because watersheds integrate the physical, biological and chemical processes within...
Proximal Association of Land Management Preferences: Evidence from Family Forest Owners
Francisco X. Aguilar; Zhen Cai; Brett Butler
2017-01-01
Individual behavior is influenced by factors intrinsic to the decision-maker but also associated with other individuals and their ownerships with such relationship intensified by geographic proximity. The land management literature is scarce in the spatially integrated analysis of biophysical and socio-economic data. Localized land management decisions are likely...
Modeling wildfire incident complexity dynamics.
Thompson, Matthew P
2013-01-01
Wildfire management in the United States and elsewhere is challenged by substantial uncertainty regarding the location and timing of fire events, the socioeconomic and ecological consequences of these events, and the costs of suppression. Escalating U.S. Forest Service suppression expenditures is of particular concern at a time of fiscal austerity as swelling fire management budgets lead to decreases for non-fire programs, and as the likelihood of disruptive within-season borrowing potentially increases. Thus there is a strong interest in better understanding factors influencing suppression decisions and in turn their influence on suppression costs. As a step in that direction, this paper presents a probabilistic analysis of geographic and temporal variation in incident management team response to wildfires. The specific focus is incident complexity dynamics through time for fires managed by the U.S. Forest Service. The modeling framework is based on the recognition that large wildfire management entails recurrent decisions across time in response to changing conditions, which can be represented as a stochastic dynamic system. Daily incident complexity dynamics are modeled according to a first-order Markov chain, with containment represented as an absorbing state. A statistically significant difference in complexity dynamics between Forest Service Regions is demonstrated. Incident complexity probability transition matrices and expected times until containment are presented at national and regional levels. Results of this analysis can help improve understanding of geographic variation in incident management and associated cost structures, and can be incorporated into future analyses examining the economic efficiency of wildfire management.
NASA Astrophysics Data System (ADS)
Jacob, Miro; De Ridder, Maaike; Frankl, Amaury; Guyassa, Etefa; Beeckman, Hans; Nyssen, Jan
2014-05-01
The increasing environmental and human pressure on the vulnerable environment of the North Ethiopian highlands requires sustainable management to avoid further land degradation. High altitude forests play a key role in this environmental balance and are very important for local livelihoods. They function as a hygric buffer by capturing and storing rainfall, which reduces soil erosion and protects against flooding, landslides and rock fall. The hygric buffer effect of mountain forests also provides water for downstream sources and for agriculture in the surrounding lowlands. Improved understanding of the growing patterns, ring formation and forest structure of this afro-alpine high altitude Erica arborea L. forests is essential to improve sustainable forest management practices. This paper studies two mountain forests in the North Ethiopian Highlands under contrasting management conditions; Lib Amba of the Abune Yosef Mt. range (12°04'N, 39°22'E, 3993 m a.s.l.) which is completely protected since five years and Mt. Ferrah Amba (12°52'N, 39°30'E, 3939 m a.s.l.) which is still strongly influenced by anthropo-zoogenic impacts. Dendrochronological results from cambial marked stem discs show complex but annual growth ring formations that reflect these differences in anthropo-zoogenic pressure; Tree-ring width is significantly wider in Mt. Lib Amba. Improved insight in the growing pattern of Erica arborea L. forests is also given by monitoring of tree growth and seedling recruitment in experimental plots since 2012 and by studying the relation between tree growth and the geomorphology and soil thickness. Seedling recruitment and vegetation indices indicate that tree growth is significantly better in the protected forest of Lib Amba. One of the key elements for sustainable land management is the creation of forests at critical locations. Insight in the response of tree growth to different types of land management and different morphological conditions can help to identify these critical locations. But most importantly, dendrochronological results have proven to be a valuable tool for objective validation of the success of land management strategies on a short term.
Monitoring the Impacts of Forest Management on Snowpack Duration
NASA Astrophysics Data System (ADS)
O'Halloran, T.; Tyler, S.; Gaffney, R.; Pai, H.
2017-12-01
Seasonal snowpack constitutes a significant portion of the hydrologic budget in mountain watersheds and influences dynamic (e.g., runoff magnitude and timing, soil moisture availability) and energetic processes (e.g., surface-atmosphere energy fluxes, ground temperature). Altered forest structure can affect snow accumulation and ablation. As part of a long-term monitoring project, this work examines the impact of forest management practices on snow cover in Lassen National Forest, California. We deployed a fiber optic distributed temperature sensing (DTS) cable and multiple meteorological stations in thinned, clear-cut, and untreated areas of forest. The DTS data was collected at 1 meter spatial intervals every 4 hours from February to May 2017. To determine snow cover, daily temperature variations were examined along locations of the DTS cable associated with our areas of interest. Between the various treatments, snow duration was greater in both clear-cut and untreated forest compared to the thinned area. However, snow duration varied by only six days. We also investigated other meteorological forcings, such as average winter temperature and precipitation, which coupled with forest modifications could explain snow duration in our study.
Schwenk, W. Scott; Donovan, Therese; Keeton, William S.; Nunery, Jared S.
2012-01-01
Increasingly, land managers seek ways to manage forests for multiple ecosystem services and functions, yet considerable challenges exist in comparing disparate services and balancing trade-offs among them. We applied multi-criteria decision analysis (MCDA) and forest simulation models to simultaneously consider three objectives: (1) storing carbon, (2) producing timber and wood products, and (3) sustaining biodiversity. We used the Forest Vegetation Simulator (FVS) applied to 42 northern hardwood sites to simulate forest development over 100 years and to estimate carbon storage and timber production. We estimated biodiversity implications with occupancy models for 51 terrestrial bird species that were linked to FVS outputs. We simulated four alternative management prescriptions that spanned a range of harvesting intensities and forest structure retention. We found that silvicultural approaches emphasizing less frequent harvesting and greater structural retention could be expected to achieve the greatest net carbon storage but also produce less timber. More intensive prescriptions would enhance biodiversity because positive responses of early successional species exceeded negative responses of late successional species within the heavily forested study area. The combinations of weights assigned to objectives had a large influence on which prescriptions were scored as optimal. Overall, we found that a diversity of silvicultural approaches is likely to be preferable to any single approach, emphasizing the need for landscape-scale management to provide a full range of ecosystem goods and services. Our analytical framework that combined MCDA with forest simulation modeling was a powerful tool in understanding trade-offs among management objectives and how they can be simultaneously accommodated.
Jonathan W. Long; Carl Skinner; Susan Charnley; Ken Hubbert; Lenya Quinn-Davidson; Marc Meyer
2014-01-01
Wildfires, especially large, severe, and unmanageable events, exert major influences on socioecological systems, not only through risks to life and property, but also losses of important values associated with mature forest stands. These events prompt decisions about post-wildfire management interventions, including short-term emergency responses, salvage logging, and...
Scholl, Andrew E; Taylor, Alan H
2010-03-01
Fire is recognized as a keystone process in dry mixed-conifer forests that have been altered by decades of fire suppression, Restoration of fire disturbance to these forests is a guiding principle of resource management in the U.S. National Park Service. Policy implementation is often hindered by a poor understanding of forest conditions before fire exclusion, the characteristics of forest changes since excluding fire, and the influence of topographic or self-organizing controls on forest structure. In this study the spatial and temporal characteristics of fire regimes and forest structure are reconstructed in a 2125-ha mixed-conifer forest. Forests were multi-aged, burned frequently at low severity and fire-return interval, and forest structure did not vary with slope aspect, elevation, or slope position. Fire exclusion has caused an increase in forest density and basal area and a compositional shift to shade-tolerant and fire-intolerant species. The median point fire-return interval and extent of a fire was 10 yr and 115 ha, respectively. The pre-Euro-American settlement fire rotation of 13 yr increased to 378 yr after 1905. The position of fire scars within tree rings indicates that 79% of fires burned in the midsummer to fall period. The spatial pattern of burns exhibited self-organizing behavior. Area burned was 10-fold greater when an area had not been burned by the previous fire. Fires were frequent and widespread, but patches of similar aged trees were < 0.2 ha, suggesting small fire-caused canopy openings. Managers need to apply multiple burns at short intervals for a sustained period to reduce surface fuels and create small canopy openings characteristic of the reference forest. By coupling explicit reference conditions with consideration of current conditions and projected climate change, management activities can balance restoration and risk management.
Merschel, Andrew; Heyerdahl, Emily K.; Spies, Thomas A; Loehman, Rachel A.
2018-01-01
Context In the interior Northwest, debate over restoring mixed-conifer forests after a century of fire exclusion is hampered by poor understanding of the pattern and causes of spatial variation in historical fire regimes. Objectives To identify the roles of topography, landscape structure, and forest type in driving spatial variation in historical fire regimes in mixed-conifer forests of central Oregon. Methods We used tree rings to reconstruct multicentury fire and forest histories at 105 plots over 10,393 ha. We classified fire regimes into four types and assessed whether they varied with topography, the location of fuel-limited pumice basins that inhibit fire spread, and an updated classification of forest type. Results We identified four fire-regime types and six forest types. Although surface fires were frequent and often extensive, severe fires were rare in all four types. Fire regimes varied with some aspects of topography (elevation), but not others (slope or aspect) and with the distribution of pumice basins. Fire regimes did not strictly co-vary with mixed-conifer forest types. Conclusions Our work reveals the persistent influence of landscape structure on spatial variation in historical fire regimes and can help inform discussions about appropriate restoration of fire-excluded forests in the interior Northwest. Where the goal is to restore historical fire regimes at landscape scales, managers may want to consider the influence of topoedaphic and vegetation patch types that could affect fire spread and ignition frequency.
Satake, Akiko; Leslie, Heather M; Iwasa, Yoh; Levin, Simon A
2007-06-21
We develop an agent-based model for forest harvesting to study how interactions between neighboring land parcels and the degree of information flow among landowners influence harvesting patterns. We assume a forest is composed of a number of land parcels that are individually managed. Each parcel is either mature forested, just-harvested, or immature forested. The state transition of each parcel is described by a Markov chain that incorporates the successional dynamics of the forest ecosystem and landowners' decisions about harvesting. Landowners decide to cut trees based on the expected discounted utility of forested vs. harvested land. One landowner's decision to cut trees is assumed to cause the degradation of ecosystem services on the downstream forested parcels. We investigated two different scenarios: in a strongly-connected society, landowners are familiar with each other and have full information regarding the behavior of other landowners. In a weakly-connected society, landowners do not communicate and therefore need to make subjective predictions about the behavior of others without adequate information. Regardless of the type of society, we observed that the spatial interaction between management units caused a chain reaction of tree harvesting in the neighborhood even when healthy forested land provided greater utility than harvested land. The harvest rate was higher in a weakly-connected society than that in a strongly-connected society. If landowners employed a long-term perspective, the harvest rate declined, and a more robust forested landscape emerged. Our results highlight the importance of institutional arrangements that encourage a long-term perspective and increased information flow among landowners in order to achieve successful forest management.
Climate and species functional traits influence maximum live tree stocking in the Lake States, USA
Mark J. Ducey; Christopher W. Woodall; Andrés Bravo-Oviedo
2017-01-01
Quantifying the density of live trees in forest stands and partitioning it between species or other stand components is critical for predicting forest dynamics and responses to management, as well as understanding the impacts of stand composition and structure on productivity. As plant traits such as shade tolerance have been proven to refine understanding of plant...
Competition for National Forest timber: effects on timber-dependent communities.
Richard W. Haynes
1983-01-01
Results are reported for three studies that dealt with the influence of timber sale practices on competition for timber in the timber-dependent communities of Medford and Grant County An Oregon and those surrounding the Nezperce National Forest in Idaho. Results are also reported for a fourth study that examines how several firms managed their uncut volume under...
Kristen Pelz; C. C. Rhoades; R. M. Hubbard; M. A. Battaglia; F. W. Smith
2015-01-01
Mountain pine beetle outbreaks have killed lodgepole pine on more than one million hectares of Colorado and southern Wyoming forest during the last decade and have prompted harvest operations throughout the region. In northern Colorado, lodgepole pine commonly occurs in mixed stands with subalpine fir, Engelmann spruce, and aspen. Variation in tree species composition...
Fatemeh Bazdid Vahdati; Shahryar Saeidi Mehrvarz; Daniel C. Dey; Alireza Naqinezhad
2016-01-01
Identification of the primary factors that influence the ecological distribution of species groups is important to managers of lowland-mountain forests in northern Iran. The aim of this study was to identify main ecological species groups, describe the site conditions associated with these species groups and the relationships between environmental factors and the...
Mark D. Coleman; David R. Coyle; J. Blake; M. Buford; R.G. Campbell; J. Cox; B. Cregg; D. Daniels; M. Jacobson; Kurt Johnsen; Timothy McDonald; K. McLeod; E. Nelson; D. Robison; R. Rummer; F. Sanchez; John A. Stanturf; B. Stokes; Carl Trettin; J. Tuskan; L. Wright; S. Wullschleger
2004-01-01
Many researchers have studied the productivity potential of intensively managed forest plantations. However, we need to learn more about the effects of fundamental growth processes on forest productivity; especially the influence of above- and belowground resource acquisition and allocation. This report presents installation, establishment, and first-year results of...
Michael J. Falkowski; Alistair M.S. Smith; Paul E. Gessler; Andrew T. Hudak; Lee A. Vierling; Jeffrey S. Evans
2008-01-01
Individual tree detection algorithms can provide accurate measurements of individual tree locations, crown diameters (from aerial photography and light detection and ranging (lidar) data), and tree heights (from lidar data). However, to be useful for forest management goals relating to timber harvest, carbon accounting, and ecological processes, there is a need to...
Preliminary study on flakeboard panels made from aspen slash wood
Yan Yu; Alan Rudie; Zhiyong Cai
2010-01-01
The disposal of forest-thinning residue is one of the major problems for sustainable forest management. The purpose of this study was to investigate the technical possibility of utilizing aspen logging slash wood with a diameter ranging from 50 to 76 mm for flakeboard production. Influences of weight ratio between slash wood and commercial flakes on the selected...
Joseph B. Fontaine; Daniel C. Donato; John L. Campbell; Jonathan G. Martin; Beverley E. Law
2010-01-01
Following stand-replacing wildfire, post-fire (salvage) logging of fire-killed trees is a widely implemented management practice in many forest types. A common hypothesis is that removal of fire-killed trees increases surface temperatures due to loss of shade and increased solar radiation, thereby influencing vegetation establishment and possibly stand development. Six...
Dale G. Brockway; Kenneth W. Outcalt
2017-01-01
Though longleaf pine (Pinus palustris Mill.) forests have been primarily managed with even-aged methods, interest is increasing in uneven-aged systems, as a means of achieving a wider range of stewardship goals. Selection silviculture has been practiced on a limited scale in longleaf pine, but difficulty with using traditional approaches and...
Silvicultural research and the evolution of forest practices in the Douglas-fir region.
Robert O. Curtis; Dean S. DeBell; Richard E. Miller; Michael Newton; J. Bradley St. Clair; William I. Stein
2007-01-01
Silvicultural practices in the Douglas-fir region evolved through a combination of formal research, observation, and practical experience of forest managers and silviculturists, and changing economic and social factors. This process began more than a century ago and still continues. It has had a great influence on the economic well-being of the region and on the...
Robert S. Boyd; John D. Freeman; James H. Miller; M. Boyd Edwards
1995-01-01
Abstract. Maintenance of biodiversity is becoming a goal of forest management. This study determined effects of broadcast pine release herbicide treatments on plant species richness, diversity, and structural proportions seven years after treatment. Three study blocks were established in central Georgia. Plots 0.6-0.8 ha in size were planted to...
We're all in this together: decisionmaking to address climate change in a complex world
Jonathan Thompson; Ralph Alig
2009-01-01
Forests significantly influence the global carbon budget: they store massive amounts of carbon in their wood and soil, they sequester atmospheric carbon as they grow, and they emit carbon as a greenhouse gas when harvested or converted to another use. These factors make forest conservation and management important components of most strategies for adapting to and...
Mohammad Bataineh; Laura Kenefic; Aaron Weiskittel; Robert Wagner; John Brissette
2013-01-01
Understanding the factors regulating the composition and abundance of natural regeneration in forest ecosystems is critical to sustainable management worldwide. Using a long-term silvicultural experiment in Maine, we partitioned the variation in natural regeneration and examined the contribution of overstory and understory vegetation (biotic factors), substrate and...
Megan L. Buchanan; Kurt F. Kipfmueller; Anthony W. D' Amato
2017-01-01
Throughout the deciduous forests of the eastern United States, oak (Quercus) regeneration has declined in stands historically dominated by oak species. In the Wisconsin Driftless Area, the level of decline in oak regeneration is variable and influenced by stand structural development, historical disturbance regime, abiotic site characteristics, and...
NASA Astrophysics Data System (ADS)
Pungkul, S.; Suraswasdi, C.; Phonekeo, V.
2014-02-01
The Great Mekong Subregion (GMS) contains one of the world's largest tropical forests and plays a vital role in sustainable development and provides a range of economic, social and environmental benefits, including essential ecosystem services such as climate change mitigation and adaptation. However, the forest in this Subregion is experiencing deforestation rates at high level due to human activities. The reduction of the forest area has negative influence to the environmental and natural resources issues, particularly, more severe disasters have occurred due to global warming and the release of the greenhouse gases. Therefore, in order to conduct forest management in the Subregion efficiently, the Forest Cover and Carbon Mapping in Greater Mekong Subregion and Malaysia project was initialized by the Asia-Pacific Network for Sustainable Forest Management and Rehabilitation (APFNet) with the collaboration of various research institutions including Institute of Forest Resource Information Technique (IFRIT), Chinese Academy of Forestry (CAF) and the countries in Sub region and Malaysia comprises of Cambodia, the People's Republic of China (Yunnan province and Guangxi province), Lao People's Democratic Republic, Malaysia, Myanmar, Thailand, and Viet Nam. The main target of the project is to apply the intensive use of recent satellite remote sensing technology, establishing regional forest cover maps, documenting forest change processes and estimating carbon storage in the GMS and Malaysia. In this paper, the authors present the implementation of the project in Thailand and demonstrate the result of forest cover mapping in the whole country in 2005 and 2010. The result of the project will contribute towards developing efficient tools to support decision makers to clearly understand the dynamic change of the forest cover which could benefit sustainable forest resource management in Thailand and the whole Subregion.
Sustainable forest management and impacts on forest responses to a changing climate
NASA Astrophysics Data System (ADS)
Stover, D. B.; Parker, G.; Riutta, T.; Capretz, R.; Murthy, I.; Haibao, R.; Bebber, D.
2009-12-01
Impacts from human activities at varying scales and intensities have a profound influence on forest carbon dynamics in addition to interactions with climate. As such, forest carbon stocks and fluxes are among the least well-defined elements of the global carbon cycle, and great uncertainty remains in predicting the effect of climate change on forest dynamics. In some cases, these management-climate interactions are well known, but often represent a fundamental gap in our understanding of ecosystem responses and are likely to be important in improving modeling of climate change, and in valuing forest carbon. To improve understanding of human induced forest management-climate interactions, a network of permanent study plots has been established in five sites around the world - in the US, UK, Brazil, India and China. The sites are near larger global monitoring (Smithsonian CTFS) plots to facilitate comparisons. At each site, a series of 1-ha plots have been placed in forest stands with differing management regimes and histories. Utilizing citizen scientists from HSBC bank, all trees >5 cm dbh are tagged, mapped, identified to species, and diameter is recorded within each plot. A subset of trees have dendrometer bands attached, to record seasonal growth. Dead wood and litterfall samples are taken, and microclimate is recorded with automatic sensors. Serial measurements will allow correlation of forest dynamics with weather. Although the studies are at an early stage current results indicate above-ground biomass estimates are 102-288 Mg ha-1 for intermediate and mature Liriodendron tulipifera-dominated stands in the US, respectively. In India, mature semi-natural evergreen forests biomass estimates are 192-235 Mg ha-1 while plantation and semi-natural core forests in the UK are estimated at 211-292 Mg ha-1. Successional Atlantic forests in Brazil are estimated to contain 192-235 Mg ha-1. In the US, initial results have demonstrated dramatic differences in microclimate (soil and air temperature and penetrance of phosynthetically active radiation) and canopy structure (the vertical distribution of surfaces) between the intact and selectively logged stands. These variables will be used as indicators of the strength and speed of ecosystem recovery to logging. In the UK, plantations had greater biomass than the semi-natural plots, due to differences in age structure; however, trees above 50 cm dbh comprised 3% of total stems but almost 50% of the biomass in the semi-natural plots. Comparisons will be made among the various modes of forest disturbance to determine how these could influence ecosystem responses to climate change. Increasing human and climatic pressures on the world's forests will necessitate further long-term studies and cross-ecosystem comparisons of this nature which lends itself to application of an intensive citizen science program.
Public Timber Supply under Multiple-Use Management
David N. Wear
2003-01-01
In many parts of the world, substantial shares of timber inventories are managed by government agencies. The objective of this chapter is to examine the potential influence of public timber production on market structure as well as on prices, harvest quantities, and economic welfare. National forest management in the United States is used as a tractable case study, but...
NASA Astrophysics Data System (ADS)
Desai, A. R.; Bolstad, P. V.; Moorcroft, P. R.; Davis, K. J.
2005-12-01
The interplay between land use change, forest management and land cover variability complicates the ability to characterize regional scale (10-1000 km) exchange of carbon dioxide between the land surface and atmosphere in heterogeneous landscapes. An attempt was made to observe and model these factors and their influence on the regional carbon cycle across the upper Midwest USA. A high density of eddy-covariance carbon flux, micrometeorology, carbon dioxide mixing ratio, stand-scale biometry and canopy component flux observations have been occurring in this area as part of the Chequamegon Ecosystem-Atmosphere Study. Observations limited to sampling only dominant stands and coarse-resolution biogeochemical models limited to biome-scale parameterization neither accurately capture the variability of carbon fluxes measured by the network of eddy covariance towers nor match the regional-scale carbon flux inferred from very tall tower eddy covariance measurements and multi-site upscaling. Analysis of plot level biometric data, U.S. Forest Service Forest Inventory Analysis data and high-resolution land cover data around the tall tower revealed significant variations in vegetation type, stand age, canopy stocking and structure. Wetlands, clearcuts and recent natural disturbances occur in characteristic small non-uniformly distributed patches that aggregate to form more than 30% of the landscape. The Ecosystem Demography model, a dynamic ecosystem model that incorporates vegetation heterogeneity, canopy structure, stand age, disturbance, land use change and forest management, was parameterized with regional biometric data and meteorology, historical records of land management and high-resolution satellite land cover maps. The model will be used to examine the significance of past land use change, natural disturbance history and current forest management in explaining landscape structure and regional carbon fluxes observed in the region today.
van Riper, Charles; Fontaine, Joseph J.; van Wagtendonk, Jan W.
2013-01-01
We studied great gray owls (Strix nebulosa Forster) in Yosemite National Park, California, measuring variables that could potentially influence patterns of occurrence and conservation of this stateendangered species. We found that owl presence was closely tied to habitat (red fir (Abies magnified A. Murray) and the abundance of meadows), prey, and snags across the landscape. We also found that indicators of human recreational activities negatively influenced owl distribution and habitat use. Great gray owls appear to prefer mid-elevation red fir forest with meadows that are drier and more productive in terms of small mammal populations. That these areas also have the highest human activity presents a paradox, both for individual owls and for the future conservation and management of this California endangered species. The extent to which human recreation in natural areas affects animal behavior, species distribution, and productivity is a growing issue in natural area management. We present information that will allow land managers to better understand how existing natural resources, coupled with human recreation, influence the distribution and habitat use of the great gray owl.
Fire history of Everglades National Park and Big Cypress National Preserve, southern Florida
Smith, Thomas J.; Foster, Ann M.; Jones, John W.
2015-01-01
Fire has been used as a management tool in various ecosystems around the world. Prairies, grasslands, and savannas are fire-maintained ecosystems where fire is used to deter invasion by shrubs and trees (Grant and others, 2009; Scheintaub and others, 2009). Similarly, fire plays an important role in woodlands and forests by influencing species composition and succession such, as the use of fire in coniferous forests to prevent encroachment by hardwoods (Phillippe and others, 2011). Fire also has been used to manage wetland ecosystems for more than 50 years (Lynch, 1941; Frost, 1995). Uses have included returning marshes to early successional states, increasing forage for wildlife (Lynch, 1941). In all fire-influenced ecosystems, prescribed burns are routinely used to reduce fuel loads, reducing the possibility of catastrophic fires.
Simulating adaptive wood harvest in a changing climate
NASA Astrophysics Data System (ADS)
Yousefpour, Rasoul; Nabel, Julia; Pongratz, Julia
2016-04-01
The world's forest experience substantial carbon exchange fluxes between land and atmosphere. Large carbon sinks occur in response to changes in environmental conditions (such as climate change and increased atmospheric CO2 concentrations), removing about one quarter of current anthropogenic CO2-emissions. Large sinks also occur due to regrowth of forest on areas of agricultural abandonment or forest management. Forest management, on the other hand, also leads to substantial amounts of carbon being eventually released to the atmosphere. Both sinks and sources attributable to forests are therefore dependent on the intensity of management. Forest management in turn depends on the availability of resources, which is influenced by environmental conditions and sustainability of management systems applied. Estimating future carbon fluxes therefore requires accounting for the interaction of environmental conditions, forest growth, and management. However, this interaction is not fully captured by current modeling approaches: Earth system models depict in detail interactions between climate, the carbon cycle, and vegetation growth, but use prescribed information on management. Resource needs and land management, however, are simulated by Integrated Assessment Models that typically only have coarse representations of the influence of environmental changes on vegetation growth and are typically based on the demand for wood driven by regional population growth and energy needs. Here we present a study that provides the link between environmental conditions, forest growth and management. We extend the land component JSBACH of the Max Planck Institute's Earth system model (MPI-ESM) to simulate potential wood harvest in response to altered growth conditions and thus as adaptive to changing climate and CO2 conditions. We apply the altered model to estimate potential wood harvest for future climates (representative concentration pathways, RCPs) for the management scenario of "sustained yields" (SY), i.e. that wood harvest is not allowed to reduce wood carbon stocks below their present-day average state. We find that the potentials for SY range from about 420 to 610 PgC cumulatively until 2100 depending on assumed future climate (RCPs 2.6, 4.5 or 8.5). They are thus substantially higher than the harvest prescribed in the context of the same RCPs for the coupled model intercomparison project (CMIP5), which ranged from about 130 to 210 PgC. The underlying drivers of the higher potentials of SY as compared to the RCP harvest are in all scenarios foremost avoided natural mortality, followed by avoided losses due to fire and windbreak. Further, usage of the increase in forest carbon stocks simulated with time under RCP harvest plays a large role in the first decades of the 21st century. The potential wood harvest that we simulate accounting for environmental changes does not include considerations on biodiversity and other ecosystem services or technical feasibility. However, the substantially higher simulated harvest from SY as compared to that prescribed from the RCPs and the difference found between climate scenarios highlights the need to account for effects of environmental changes on vegetation growth also in socio-economic models and thus the need for a consistent representation of climate-landuse interactions.
Factors influencing campground use in the Superior National Forest of Minnesota.
David W. Lime
1971-01-01
From a study of campground use in 1967 and 1968 relationships were determined between the intensity of use and 74 onsite and location characteristics. Campers were interviewed to learn what factors influenced their choice of a particular campground. Recommendations to management and topics for further research are discussed.
Perring, Michael P; Bernhardt-Römermann, Markus; Baeten, Lander; Midolo, Gabriele; Blondeel, Haben; Depauw, Leen; Landuyt, Dries; Maes, Sybryn L; De Lombaerde, Emiel; Carón, Maria Mercedes; Vellend, Mark; Brunet, Jörg; Chudomelová, Markéta; Decocq, Guillaume; Diekmann, Martin; Dirnböck, Thomas; Dörfler, Inken; Durak, Tomasz; De Frenne, Pieter; Gilliam, Frank S; Hédl, Radim; Heinken, Thilo; Hommel, Patrick; Jaroszewicz, Bogdan; Kirby, Keith J; Kopecký, Martin; Lenoir, Jonathan; Li, Daijiang; Máliš, František; Mitchell, Fraser J G; Naaf, Tobias; Newman, Miles; Petřík, Petr; Reczyńska, Kamila; Schmidt, Wolfgang; Standovár, Tibor; Świerkosz, Krzysztof; Van Calster, Hans; Vild, Ondřej; Wagner, Eva Rosa; Wulf, Monika; Verheyen, Kris
2018-04-01
The contemporary state of functional traits and species richness in plant communities depends on legacy effects of past disturbances. Whether temporal responses of community properties to current environmental changes are altered by such legacies is, however, unknown. We expect global environmental changes to interact with land-use legacies given different community trajectories initiated by prior management, and subsequent responses to altered resources and conditions. We tested this expectation for species richness and functional traits using 1814 survey-resurvey plot pairs of understorey communities from 40 European temperate forest datasets, syntheses of management transitions since the year 1800, and a trait database. We also examined how plant community indicators of resources and conditions changed in response to management legacies and environmental change. Community trajectories were clearly influenced by interactions between management legacies from over 200 years ago and environmental change. Importantly, higher rates of nitrogen deposition led to increased species richness and plant height in forests managed less intensively in 1800 (i.e., high forests), and to decreases in forests with a more intensive historical management in 1800 (i.e., coppiced forests). There was evidence that these declines in community variables in formerly coppiced forests were ameliorated by increased rates of temperature change between surveys. Responses were generally apparent regardless of sites' contemporary management classifications, although sometimes the management transition itself, rather than historic or contemporary management types, better explained understorey responses. Main effects of environmental change were rare, although higher rates of precipitation change increased plant height, accompanied by increases in fertility indicator values. Analysis of indicator values suggested the importance of directly characterising resources and conditions to better understand legacy and environmental change effects. Accounting for legacies of past disturbance can reconcile contradictory literature results and appears crucial to anticipating future responses to global environmental change. © 2017 John Wiley & Sons Ltd.
Cultural landscapes of the Araucaria Forests in the northern plateau of Santa Catarina, Brazil.
Machado Mello, Anna Jacinta; Peroni, Nivaldo
2015-06-09
The Araucaria Forest is associated with the Atlantic Forest domain and is a typical ecosystem of southern Brazil. The expansion of Araucaria angustifolia had a human influence in southern Brazil, where historically hunter-gatherer communities used the pinhão, araucaria's seed, as a food source. In the north of the state of Santa Catarina, the Araucaria Forest is a mosaic composed of cultivation and pasture inserted between forest fragments, where pinhão and erva-mate are gathered; some local communities denominate these forest ecotopes as caívas. Therefore, the aim of this study is to understand how human populations transform, manage and conserve landscapes using the case study of caívas from the Araucaria Forests of southern Brazil, as well as to evaluate the local ecological knowledge and how these contribute to conservation of the Araucaria Forest. This study was conducted in the northern plateau of the state of Santa Catarina, Brazil in local five communities. To assess ethnoecological perceptions the historical use and management of caívas, semi-structured interviews, checklist interviews and guided tours were conducted with family units. In total 28 family units participated in the study that had caívas on their properties. During the course of the study two main perceptions of the ecotope caíva were found, there is no consensus to the exact definition; perception of caívas is considered a gradient. In general caívas are considered to have the presence of cattle feeding on native pasture, with denser forest area that is managed, and the presence of specific species. Eleven management practices within caívas were found, firewood collection, cattle grazing, trimming of the herbaceous layer, and erva-mate extraction were the most common. Caívas are perceived and defined through the management practices and native plant resources. All participants stated that there have been many changes to the management practices within caívas and to the caíva itself. These areas still remain today due to cultural tradition, use and management of plant resources. Through this cultural tradition of maintaining caívas the vegetation of the Araucaria Forest has been conserved associated to the use of the Araucaria Forests native plant resources.
NASA Astrophysics Data System (ADS)
Gutenberg, L. W.; Krauss, K.; Qu, J. J.; Hogan, D. M.; Zhu, Z.; Xu, C.
2017-12-01
The Great Dismal Swamp in Virginia and North Carolina, USA, has been greatly impacted by human use and management for the last few hundred years through logging, ditching, and draining. Today, the once dominant cedar, cypress and pocosin forest types are fragmented due to logging and environmental change. Maple-gum forest has taken over more than half the remaining area of the swamp ecosystem, which is now a National Wildlife Refuge and State Park. The peat soils and biomass store a vast quantity of carbon compared with the size of the refuge, but this store is threatened by fire and drying. This study looks at three of the main forest types in the GDS— maple-sweet gum, tall pine pocosin, and Atlantic white cedar— in terms of their carbon dioxide and methane soil flux. Using static chambers to sample soil gas flux in locally representative sites, we found that cedar sites showed a higher carbon dioxide flux rate as the soil temperature increased than maple sites, and the rate of carbon dioxide flux decreased as soil moisture increased faster in cedar sites than in maple sites. Methane flux increased as temperature increased for pocosin, but decreased with temperature for cedar and maple. All of the methane fluxes increased as soil moisture increased. Cedar average carbon dioxide flux was statistically significantly different from both maple and pocosin. These results show that soil carbon gas flux depends on soil moisture and temperature, which are factors that are changing due to human actions, as well as on forest type, which is also the result of human activity. Some of these variables may be adjustable by the managers of the land. Variables other than forest type, temperature and soil moisture/inundation may also play a role in influencing soil flux, such as stand age, tree height, composition of the peat and nutrient availability, and source of moisture as some sites are more influenced by groundwater from ditches and some more by rainfall depending on the direction of groundwater lateral flow. Increasing temperatures and changes in precipitation and soil moisture may impact the carbon storage and health of this ecosystem, although it is already strongly influenced by anthropogenic activities such as past logging and water level management.
Higher levels of multiple ecosystem services are found in forests with more tree species
Gamfeldt, Lars; Snäll, Tord; Bagchi, Robert; Jonsson, Micael; Gustafsson, Lena; Kjellander, Petter; Ruiz-Jaen, María C.; Fröberg, Mats; Stendahl, Johan; Philipson, Christopher D.; Mikusiński, Grzegorz; Andersson, Erik; Westerlund, Bertil; Andrén, Henrik; Moberg, Fredrik; Moen, Jon; Bengtsson, Jan
2013-01-01
Forests are of major importance to human society, contributing several crucial ecosystem services. Biodiversity is suggested to positively influence multiple services but evidence from natural systems at scales relevant to management is scarce. Here, across a scale of 400,000 km2, we report that tree species richness in production forests shows positive to positively hump-shaped relationships with multiple ecosystem services. These include production of tree biomass, soil carbon storage, berry production and game production potential. For example, biomass production was approximately 50% greater with five than with one tree species. In addition, we show positive relationships between tree species richness and proxies for other biodiversity components. Importantly, no single tree species was able to promote all services, and some services were negatively correlated to each other. Management of production forests will therefore benefit from considering multiple tree species to sustain the full range of benefits that the society obtains from forests. PMID:23299890
NASA Astrophysics Data System (ADS)
Alday, Josu G.; Martínez-Ruiz, Carolina; Marrs, Rob H.; Bravo, Felipe
2010-05-01
Understorey plant species composition is an important part of forest ecosystems and its conservation is becoming an increasingly frequent objective in forest management plans. However, there is a lack of knowledge of the effect of timber harvesting on the characteristic understorey species in the Mediterranean region. We investigated the effects of three different harvest intensities on the short-term dynamics of understorey vegetation in a natural Maritime pine forest in Spain, and compared the results with uncut controls. Clear-cutting induced both qualitative and quantitative differences with respect to the controls, but intermediate levels of harvesting (25% and 50% removal) induced only quantitative differences. Harvesting reduced the frequency and cover of 56% of characteristic forest species, but only 22% showed an increase. Of the most abundant plant families only the Fabaceae showed a significant response with respect to harvesting intensity. Our findings suggest that Light- and Medium-harvest regimes are better management options than clear-cutting if the aim is to conserve the understorey vegetation.
William S. Platts
1981-01-01
This paper documents current knowledge on interactions of livestock and fish habitat. Included are discussions of incompatibility and compatibility between livestock grazing and fisheries, present management guidelines, information needed for problem solving, information available for problem solving, and future research needs.
Scouts, forests, and ticks: Impact of landscapes on human-tick contacts.
De Keukeleire, Mathilde; Vanwambeke, Sophie O; Somassè, Elysée; Kabamba, Benoît; Luyasu, Victor; Robert, Annie
2015-07-01
Just as with forest workers or people practicing outdoor recreational activities, scouts are at high risk for tick bites and tick-borne infections. The risk of a tick bite is shaped not only by environmental and climatic factors but also by land management. The aim of this study was to assess which environmental conditions favour scout-tick contacts, and thus to better understand how these factors and their interactions influence the two components of risk: hazard (related to vector and host ecology) and exposure of humans to disease vectors. A survey was conducted in the summer of 2009 on the incidence of tick bites in scout camps taking place in southern Belgium. Joint effects of landscape composition and configuration, weather, climate, forest and wildlife management were examined using a multiple gamma regression with a log link. The landscape was characterized by buffers of varying sizes around the camps using a detailed land use map, and accounting for climate and weather variables. Landscape composition and configuration had a significant influence on scout-tick contacts: the risk was high when the camp was surrounded by a low proportion of arable land and situated in a complex and fragmented landscape. The distance to the nearest forest patch, the composition of the forest ecotone as well as weather and climatic factors were all significantly associated with scout-tick contacts. Both hazard- and exposure-related variables significantly contributed to the frequency of scout-tick contact. Our results show that environmental conditions favour scout-tick contacts. For example, we emphasize the impact of accessibility of environments suitable for ticks on the risk of contact. We also highlight the significant effect of both hazard and exposure. Our results are consistent with current knowledge, but further investigations on the effect of forest management, e.g. through its impact on forest structure, on the tick-host-pathogen system, and on humans exposure, is required. Copyright © 2015 Elsevier GmbH. All rights reserved.
Cheng, Xiao-Fei; Shi, Pei-Jian; Hui, Cang; Wang, Fu-Sheng; Liu, Guo-Hua; Li, Bai-Lian
2015-04-01
Moso bamboos (Phyllostachys edulis) are important forestry plants in southern China, with substantial roles to play in regional economic and ecological systems. Mixing broad-leaved forests and moso bamboos is a common management practice in China, and it is fundamental to elucidate the interactions between broad-leaved trees and moso bamboos for ensuring the sustainable provision of ecosystem services. We examine how the proportion of broad-leaved forest in a mixed managed zone, topology, and soil profile affects the effective productivity of moso bamboos (i.e., those with significant economic value), using linear regression and generalized additive models. Bamboo's diameter at breast height follows a Weibull distribution. The importance of these variables to bamboo productivity is, respectively, slope (25.9%), the proportion of broad-leaved forest (24.8%), elevation (23.3%), gravel content by volume (16.6%), slope location (8.3%), and soil layer thickness (1.2%). Highest productivity is found on the 25° slope, with a 600-m elevation, and 30% broad-leaved forest. As such, broad-leaved forest in the upper slope can have a strong influence on the effective productivity of moso bamboo, ranking only after slope and before elevation. These factors can be considered in future management practice.
In the eye of the stakeholder: The challenges of governing social forest values.
Sténs, Anna; Bjärstig, Therese; Nordström, Eva-Maria; Sandström, Camilla; Fries, Clas; Johansson, Johanna
2016-02-01
This study examines which kinds of social benefits derived from forests are emphasised by Swedish stakeholders and what governance modes and management tools they accept. Our study shows that there exists a great variety among stakeholders' perceptions of forests' social values, where tourism and recreation is the most common reference. There are also differences in preferred governance modes and management where biomass and bioenergy sectors advocate business as usual (i.e. framework regulations and voluntarism) and other stakeholders demand rigid tools (i.e. coercion and targeting) and improved landscape planning. This divide will have implications for future policy orientations and require deliberative policy processes and improved dialogue among stakeholders and authorities. We suggest that there is a potential for these improvements, since actors from almost all stakeholder groups support local influence on governance and management, acknowledged and maintained either by the authorities, i.e. targeting, or by the stakeholders themselves, i.e. voluntarism.
Long-term boreal forest dynamics and disturbances: a multi-proxy approach
NASA Astrophysics Data System (ADS)
Stivrins, Normunds; Aakala, Tuomas; Kuuluvainen, Timo; Pasanen, Leena; Ilvonen, Liisa; Holmström, Lasse; Seppä, Heikki
2017-04-01
The boreal forest provides a variety of ecosystem services that are threatened under the ongoing climate warming. Along with the climate, there are several factors (fire, human-impact, pathogens), which influence boreal forest dynamics. Combination of short and long-term studies allowing complex assessment of forest response to natural abiotic and biotic stress factors is necessary for sustainable management of the boreal forest now and in the future. The ongoing EBOR (Ecological history and long-term dynamics of the boreal forest ecosystem) project integrates forest ecological and palaeoecological approaches to study boreal forest dynamics and disturbances. Using pollen, non-pollen palynomorphs, micro- and macrocharcoal, tree rings and fire scars, we analysed forest dynamics at stand-scale by sampling small forest hollows (small paludified depressions) and the surrounding forest stands in Finland and western Russia. Using charcoal data, we estimated a fire return interval of 320 years for the Russian sites, and, based on the fungi Neurospora that can grow on charred tree bark after a low-intensity fire, we were able to distinguish low- and high-intensity fire-events. In addition to the influence of fire events and/or fire regime changes, we further assessed potential relationships between tree species and herbivore presence and pathogens. As an example of such a relationship, our preliminary findings indicated a negative relationship between Picea and fungi Lasiosphaeria (caudata), which occurred during times of Picea decline.
Ebeling, Johannes; Yasué, Maï
2009-02-01
During the last decade, forest certification has gained momentum as a market-based conservation strategy in tropical forest countries. Certification has been promoted to enhance forest management in countries where governance capacities are insufficient to adequately manage natural resources and enforce pertinent regulations, given that certification relies largely on non-governmental organisations and private businesses. However, at present there are few tropical countries with large areas of certified forests. In this study, we conducted semi-structured stakeholder interviews in Ecuador and Bolivia to identify key framework conditions that influence the costs and benefits for companies to switch from conventional to certified forestry operations. Bolivia has a much greater relative area under certified forest management than Ecuador and also significantly more certified producers. The difference in the success of certification between both countries is particularly notable because Bolivia is a poorer country with more widespread corruption, and is landlocked with less access to export routes. Despite these factors, several characteristics of the Bolivian forest industry contribute to lower additional costs of certified forest management compared to Ecuador. Bolivia has stronger government enforcement of forestry regulations a fact that increases the cost of illegal logging, management units are larger, and vertical integration in the process chain from timber extraction to markets is higher. Moreover, forestry laws in Bolivia are highly compatible with certification requirements, and the government provides significant tax benefits to certified producers. Results from this study suggest that certification can be successful in countries where governments have limited governance capacity. However, the economic incentives for certification do not only arise from favourable market conditions. Certification is likely to be more successful where governments enforce forestry laws, provide financial incentives for certified forestry, and provide land tenure security, and where large-scale and vertically integrated forestry operations are commercially feasible. For this reason, at present, there are few developing countries where forest certification is likely to achieve widespread success.
CO2 flux studies of different hemiboreal forest ecosystems
NASA Astrophysics Data System (ADS)
Krasnova, Alisa; Krasnov, Dmitrii; Noe, Steffen M.; Uri, Veiko; Mander, Ülo; Niinemets, Ülo; Soosaar, Kaido
2017-04-01
Hemiboreal zone is a transition between boreal and temperate zones characterized by the combination of climatic and edaphic conditions inherent in both zones. Hemiboreal forests are typically presented by mixed forests types with different ratios of deciduous and conifer tree species. Dominating tree species composition affects the functioning of forest ecosystem and its influence on biogeochemical cycles. We present the result of ecosystem scale CO2 eddy-covariance fluxes research conducted in 4 ecosystems (3 forests sites and 1 clear-cut area) of hemiboreal zone in Estonia. All 4 sites were developing under similar climatic conditions, but different forest management practices resulted in different composition of dominating tree species: pine forest with spruce trees as a second layer (Soontaga site); spruce/birch forest with single alder trees (Liispõllu site); forest presented by sectors of pine, spruce, birch and clearcut areas (SMEAR Estonia site); 5-years old clearcut area (Kõnnu site).
Lizard activity and abundance greater in burned habitat of a xeric montane forest
Fouts, Kevin L.; Moore, Clinton; Johnson, Kristine D.; Maerz, John C.
2017-01-01
Restoring the natural or historical state of ecosystems is a common objective among resource managers, but determining whether desired system responses to management actions are occurring is often protracted and challenging. For wildlife, the integration of mechanistic habitat modeling with population monitoring may provide expedited measures of management effectiveness and improve understanding of how management actions succeed or fail to recover populations. Southern Appalachia is a region of high biodiversity that has undergone dramatic change as a result of human activities such as historic logging, exotic invasions, and alteration of disturbance regimes—including reduction in application of fire. Contemporary efforts to restore fire-maintained ecosystems within southern Appalachian forests require tools to assess the effects of fire management practices on individual animal fitness and relate them to corresponding influences on species abundance. Using automated sensing equipment, we investigated the effects of burned forests on reptile habitat suitability within the western portion of Great Smoky Mountains National Park, Tennessee. Specifically, we used microclimate measurements to model northern fence lizard Sceloporus undulatus hyacinthinus diurnal activity budgets in unburned and variable burn age (3–27-y) forest stands. We estimated northern fence lizard occurrence and abundance along transects through burned and unburned forests. Burned forest stands had microclimates that resulted in longer modeled daily activity periods under most conditions during summer. S. undulatus abundance was 4.75 times greater on burned stands compared to paired unburned stands, although the relationship between burn age and abundance was not well determined. Results suggest the more open habitat structure of burned areas within these xeric pine–oak forests may benefit S. undulatus.
Soil respiration and carbon responses to logging debris and competing vegetation
Robert A. Slesak; Stephen H. Schoenholtz; Timothy B. Harrington
2010-01-01
Management practices following forest harvesting that modify organic matter (OM) inputs and influence changes in the soil environment have the potential to alter soil C pools, but there is still much uncertainty regarding how these practices influence soil C flux. We examined the influence of varying amounts of logging-debris retention (0, 40, and 80% coverage) and...
Douglas N. Swanston
1980-01-01
Natural events affecting vegetative cover and the hydrology and stability of a stream and its parent watershed are key factors influencing the quality of anadromous fish habitat. High intensity storms, drought, soil mass movement, and fire have the greatest impacts. Wind, stream icing, and the influence of insects and disease are important locally...
M.J. Gavazzi; S.G. McNulty
2014-01-01
Prescribed fire is an important management tool in southern US forests, with more acres burned in the South than any other region of the US. Research from prescribed fire studies shows high temporal and spatial variability in available fuel loads due to physiographic, edaphic, meteorological and biological factors. In an effort to account for parts of this variation...
B.G. Lockaby; R.G. Clawson; K. Flynn; Robert Rummer; S. Meadows; B Stokes; John A. Stanturf
1997-01-01
Floodplain forests contribute to the maintenance of water quality as a result of various biogeochemical transformations which occur within them. In particular, they can serve as sinks for nutrient run-off from adjacent uplands or as nutrient transformers as water moves downstream. However, little is known about the potential that land management activities may have for...
K.A. Mcginley; F.W. Cubbage
2017-01-01
This paper examines laws, policies, organizations and other governance elements and arrangements that influence forest conservation and sustainable resource management in the U.S. through a set of 10 Indicators associated with Criterion Seven of the Montréal Process Criteria and Indicators Framework. The applicability and utility of these indicators as a measure of...
Deborah Page-Dumroese
2005-01-01
Moving equipment and logs over the surface of forest soils causes gouges and ruts in the mineral soil, displaces organic matter, and can cause compaction. Compaction is the component of soil productivity most influenced by forest management, but the degree to which soils may be compacted depends on initial soil bulk density. For example, low bulk density soils (such as...
Dale G. Brockway; Kenneth W. Outcalt
2015-01-01
Although longleaf pine (Pinus palustris Mill.) forests have mostly been managed with even-aged methods, interest has been rising in uneven-aged systems, as a means of achieving a broader range of stewardship objectives. Selection silviculture has been practiced on a limited scale in longleaf pine, but difficulty of using traditional approaches and...
Christopher J. Fettig; Kier D. Klepzig; Ronald f. Billings; A. Steven Munson; T. Evan Nebeker; Jose F. Negron; John T. Nowak
2007-01-01
Insects are major components of forest ecosystems, representing most of the biological diversity and affecting virtually all processes and uses. In the USA, bark beetles (Coleoptera: Curculionidae, Scolytinae) heavily influence the structure and function of these ecosystems by regulating certain aspects of primary production, nutrient cycling, ecological succession and...
Janda, Pavel; Trotsiuk, Volodymyr; Mikoláš, Martin; Bače, Radek; Nagel, Thomas A; Seidl, Rupert; Seedre, Meelis; Morrissey, Robert C; Kucbel, Stanislav; Jaloviar, Peter; Jasík, Marián; Vysoký, Juraj; Šamonil, Pavel; Čada, Vojtěch; Mrhalová, Hana; Lábusová, Jana; Nováková, Markéta H; Rydval, Miloš; Matějů, Lenka; Svoboda, Miroslav
2017-03-15
In order to gauge ongoing and future changes to disturbance regimes, it is necessary to establish a solid baseline of historic disturbance patterns against which to evaluate these changes. Further, understanding how forest structure and composition respond to variation in past disturbances may provide insight into future resilience to climate-driven alterations of disturbance regimes. We established 184 plots (mostly 1000 m 2 ) in 14 primary mountain Norway spruce forests in the Western Carpathians. On each plot we surveyed live and dead trees and regeneration, and cored around 25 canopy trees. Disturbance history was reconstructed by examining individual tree growth trends. The study plots were further aggregated into five groups based on disturbance history (severity and timing) to evaluate and explain its influence on forest structure. These ecosystems are characterized by a mixed severity disturbance regime with high spatiotemporal variability in severity and frequency. However, periods of synchrony in disturbance activity were also found. Specifically, a peak of canopy disturbance was found for the mid-19th century across the region (about 60% of trees established), with the most important periods of disturbance in the 1820s and from the 1840s to the 1870s. Current stand size and age structure were strongly influenced by past disturbance activity. In contrast, past disturbances did not have a significant effect on current tree density, the amount of coarse woody debris, and regeneration. High mean densities of regeneration with height >50 cm (about 1400 individuals per ha) were observed. Extensive high severity disturbances have recently affected Central European forests, spurring a discussion about the causes and consequences. We found some evidence that forests in the Western Carpathians were predisposed to recent severe disturbance events as a result of synchronized past disturbance activity, which partly homogenized size and age structure and made recent stands more vulnerable to bark beetle outbreak. Our data suggest that these events are still part of the range of natural variability. The finding that regeneration density and volume of coarse woody debris were not influenced by past disturbance illustrates that vastly different past disturbance histories are not likely to change the future trajectories of these forests. These ecosystems currently have high ecological resilience to disturbance. In conclusion, we suggest that management should recognize disturbances as a natural part of ecosystem dynamics in the mountain forests of Central Europe, account for their stochastic occurrence in management planning, and mimic their patterns to foster biodiversity in forest landscapes.
How extreme weather events can influence the way of thinking about forest management?
NASA Astrophysics Data System (ADS)
Ziemblińska, Klaudia; Merbold, Lutz; Urbaniak, Marek; Haeni, Matthias; Olejnik, Janusz
2014-05-01
One third of the total area of Poland, which is covered by forests, is currently managed by "The State National Forest Holding" - the biggest organization in Europe managing forests. Common management practice is based on clear-cutting the vegetation to maintaining forests and ensuring regrowth. While sufficient information exists on the quantity of harvested biomass and particularly its economic value, little knowledge exists on the overall environmental impact of such management including the carbon budgets of forests in Poland. At the same time these forests are very vulnerable to extreme events such as wind throws. Large wind throws can be used as an experimental platform to study both, the effects of extreme events itself but also the effects of management such as clear-cuts, due to the fact that after such kind of natural disasters similar steps then following clear-cuts are implemented. These activities include the removal of whole trees, collection of branches and pulling out stems with heavy machinery, causing additional disturbance. In this study, we aim at providing information to fill the current knowledge gap of changing C budget after clear-cuts and wind throws. We hypothesize large C losses after clear-cuts and ask whether one can improve current forest management to "save" C and/or enhance C sequestration? To answer this specific question we used the eddy covariance (EC) method to adequately measure the net ecosystem exchange of carbon dioxide (NEE) between a deforested area and the atmosphere (treatment) and compare it to measurements from an intact forest of the same type (control). Both sites have the same soil type (brunic arenosoil - after FAO classification) which is sandy and relatively not fertile. Moreover, main species and composition were similar. The treatment area was chosen after the occurrence of a 20min-lasting tornado in July 2012 in Western Poland. The storm resulted in the destruction of more than 500 ha of 75-year old pine forest and provided a unique situation to assess the C budget of a pine forest after wind throw leading to the construction of the Trzebciny EC tower (treatment site). Measurements of CO2 and H2O exchange continue since the beginning of 2013. Measurements from both sites were directly compared to an already established monitoring station (65-year old Tuczno forest, control). We observed a huge difference in NEE between an intact middle age coniferous forest (control site, net gain of 463 g(C-CO2) m-2 in 2013) and an area of similar forest that was destroyed by a tornado and cleared thereafter (treatment site, net loss of about 518 g(C-CO2) m-2 in 2013). Our results provide a great opportunity to re-evaluate current forest management in Poland and will provide a first step towards adjusting forestry management and policy to become less susceptible to climate change (especially extreme events).
Heurich, Marco; Brand, Tom T. G.; Kaandorp, Manon Y.; Šustr, Pavel; Müller, Jörg; Reineking, Björn
2015-01-01
The Bohemian Forest Ecosystem encompasses various wildlife management systems. Two large, contiguous national parks (one in Germany and one in the Czech Republic) form the centre of the area, are surrounded by private hunting grounds, and hunting regulations in each country differ. Here we aimed at unravelling the influence of management-related and environmental factors on the distribution of red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in this ecosystem. We used the standing crop method based on counts of pellet groups, with point counts every 100 m along 218 randomly distributed transects. Our analysis, which accounted for overdispersion as well as zero inflation and spatial autocorrelation, corroborated the view that both human management and the physical and biological environment drive ungulate distribution in mountainous areas in Central Europe. In contrast to our expectations, protection by national parks was the least important variable for red deer and the third important out of four variables for roe deer; protection negatively influenced roe deer distribution in both parks and positively influenced red deer distribution in Germany. Country was the most influential variable for both red and roe deer, with higher counts of pellet groups in the Czech Republic than in Germany. Elevation, which indicates increasing environmental harshness, was the second most important variable for both species. Forest cover was the least important variable for roe deer and the third important variable for red deer; the relationship for roe deer was positive and linear, and optimal forest cover for red deer was about 70% within a 500 m radius. Our results have direct implications for the future conservation management of deer in protected areas in Central Europe and show in particular that large non-intervention zones may not cause agglomerations of deer that could lead to conflicts along the border of protected, mountainous areas. PMID:25781942
Heurich, Marco; Brand, Tom T G; Kaandorp, Manon Y; Šustr, Pavel; Müller, Jörg; Reineking, Björn
2015-01-01
The Bohemian Forest Ecosystem encompasses various wildlife management systems. Two large, contiguous national parks (one in Germany and one in the Czech Republic) form the centre of the area, are surrounded by private hunting grounds, and hunting regulations in each country differ. Here we aimed at unravelling the influence of management-related and environmental factors on the distribution of red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in this ecosystem. We used the standing crop method based on counts of pellet groups, with point counts every 100 m along 218 randomly distributed transects. Our analysis, which accounted for overdispersion as well as zero inflation and spatial autocorrelation, corroborated the view that both human management and the physical and biological environment drive ungulate distribution in mountainous areas in Central Europe. In contrast to our expectations, protection by national parks was the least important variable for red deer and the third important out of four variables for roe deer; protection negatively influenced roe deer distribution in both parks and positively influenced red deer distribution in Germany. Country was the most influential variable for both red and roe deer, with higher counts of pellet groups in the Czech Republic than in Germany. Elevation, which indicates increasing environmental harshness, was the second most important variable for both species. Forest cover was the least important variable for roe deer and the third important variable for red deer; the relationship for roe deer was positive and linear, and optimal forest cover for red deer was about 70% within a 500 m radius. Our results have direct implications for the future conservation management of deer in protected areas in Central Europe and show in particular that large non-intervention zones may not cause agglomerations of deer that could lead to conflicts along the border of protected, mountainous areas.
NASA Astrophysics Data System (ADS)
Abdullahi, Sahra; Schardt, Mathias; Pretzsch, Hans
2017-05-01
Forest structure at stand level plays a key role for sustainable forest management, since the biodiversity, productivity, growth and stability of the forest can be positively influenced by managing its structural diversity. In contrast to field-based measurements, remote sensing techniques offer a cost-efficient opportunity to collect area-wide information about forest stand structure with high spatial and temporal resolution. Especially Interferometric Synthetic Aperture Radar (InSAR), which facilitates worldwide acquisition of 3d information independent from weather conditions and illumination, is convenient to capture forest stand structure. This study purposes an unsupervised two-stage clustering approach for forest structure classification based on height information derived from interferometric X-band SAR data which was performed in complex temperate forest stands of Traunstein forest (South Germany). In particular, a four dimensional input data set composed of first-order height statistics was non-linearly projected on a two-dimensional Self-Organizing Map, spatially ordered according to similarity (based on the Euclidean distance) in the first stage and classified using the k-means algorithm in the second stage. The study demonstrated that X-band InSAR data exhibits considerable capabilities for forest structure classification. Moreover, the unsupervised classification approach achieved meaningful and reasonable results by means of comparison to aerial imagery and LiDAR data.
A review of the relationships between drought and forest fire in the United States
Littell, Jeremy; Peterson, David L.; Riley, Karin L.; Yongquiang Liu,; Luce, Charles H.
2016-01-01
The historical and pre-settlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity, severity, extent, and frequency. Fire regime characteristics arise across many individual fires at a variety of spatial and temporal scales, so both weather and climate—including short- and long-term droughts—are important and influence several, but not all, aspects of fire regimes. We review relationships between drought and fire regimes in United States forests, fire-related drought metrics and expected changes in fire risk, and implications for fire management under climate change. Collectively, this points to a conceptual model of fire on real landscapes: fire regimes, and how they change through time, are products of fuels and how other factors affect their availability (abundance, arrangement, continuity) and flammability (moisture, chemical composition). Climate, management, and land use all affect availability, flammability, and probability of ignition differently in different parts of North America. From a fire ecology perspective, the concept of drought varies with scale, application, scientific or management objective, and ecosystem.
Forest management as possible driver in mitigating climate change impacts at northern latitudes
NASA Astrophysics Data System (ADS)
Collalti, Alessio; Trotta, Carlo; Santini, Monia; Matteucci, Giorgio
2017-04-01
Climate change is likely to impact the dynamics of carbon and water cycles in forests over the next century. To date, it is still debated how forests will react. Some key variables may help in understanding the extent at which terrestrial ecosystems will be affected. Carbon Use Efficiency (CUE) and Water Use Efficiency (WUE) represent some of these key aspects. CUE represents the capacity of the forests to transfer carbon from the atmosphere to the terrestrial biomass, WUE the carbon gained for the water lost via canopy transpiration. Hence, both are key variables since they intimately represent the effects of several coupled ecophysiological processes affected by climate change. Here, we analyzed how within the 3D-CMCC-CNR FEM, forced by five general circulation model data and the four representative concentration pathways, the modeled CUE and WUE are affected by, from seasonal to over medium- and long-time period, warming, rising atmospheric [CO2] and management, assessing at which extent each component influences model results in an existing boreal forest in Finland. The 3D-CMCC-CNR FEM model results reveal that CUE tends to decrease with warmer scenarios, and management may greatly dampen the effects but only in the short- to medium-time period. WUE can increase consistently owing to the increasing of the CO2 fertilization if coupled with management. These results confirm also, at stand spatial scale resolution, what found globally in other recent studies and suggesting to consider for long-term period alternative forest management practices to enhance these effects in mitigating climate change.
Public perceptions of risk to forest biodiversity.
McFarlane, Bonita L
2005-06-01
This study examines the perceived risks to forest biodiversity and perceived effectiveness of biodiversity conservation strategies among the general public. It tests the hypotheses that perceived risk to forest biodiversity is influenced by cognitive factors (value orientation and knowledge) and social-cultural factors (such as gender and environmental membership) and that risk perceptions influence other cognitive constructs such as support for natural resource policy and management. Data were collected from a sample of the general public (n= 596) in British Columbia, Canada by mail survey in 2001. Results show that insects and disease were perceived as the greatest risk. Educating the public and industry about biodiversity issues was perceived as a more effective conservation strategy than restricting human uses of the forest. Value orientation was a better predictor of perceptions of risk and perceived effectiveness of conservation strategies than knowledge indicators or social-cultural variables. Examining the indirect effects of social-cultural variables, however, revealed that value orientation may amplify the effect of these variables and suggests that alternative paths of influence should be included. Perceived risk showed an inconsistent association with perceived effectiveness of conservation strategies.
NASA Astrophysics Data System (ADS)
Glenn, N. F.; Uhlmann, Z.; Spaete, L.; Tennant, C.; Hiemstra, C. A.; McNamara, J.
2017-12-01
Predicting changes in forested seasonal snowpacks under altered climate scenarios is one of the most pressing hydrologic challenges facing today's society. Airborne- and satellite-based remote sensing methods hold the potential to transform measurements of terrestrial water stores in snowpack, improve process representations of snowpack accumulation and ablation, and to generate high quality predictions that inform potential strategies to better manage water resources. While the effects of forest on snowpack are well documented, many of the fine-scale processes influenced by the forest-canopy are not directly accounted for because most snow models don't explicitly represent canopy structure and canopy heterogeneity. This study investigates the influence of forest canopy on snowpack distribution at fine scales and quantifies the influence of canopy heterogeneity on snowpack accumulation and ablation processes. We use terrestrial laser scanning (TLS) data collected during the SnowEX campaign to discover how the relationships between canopy and snow distributions change across scales. Our sample scales range from individual trees to patches of trees across the Grand Mesa, CO, SnowEx site.
The Importance of Maize Management on Dung Beetle Communities in Atlantic Forest Fragments
Campos, Renata Calixto; Hernández, Malva Isabel Medina
2015-01-01
Dung beetle community structures changes due to the effects of destruction, fragmentation, isolation and decrease in tropical forest area, and therefore are considered ecological indicators. In order to assess the influence of type of maize cultivated and associated maize management on dung beetle communities in Atlantic Forest fragments surrounded by conventional and transgenic maize were evaluated 40 Atlantic Forest fragments of different sizes, 20 surrounded by GM maize and 20 surrounded by conventional maize, in February 2013 and 2014 in Southern Brazil. After applying a sampling protocol in each fragment (10 pitfall traps baited with human feces or carrion exposed for 48 h), a total of 3454 individuals from 44 species were captured: 1142 individuals from 38 species in GM maize surrounded fragments, and 2312 from 42 species in conventional maize surrounded fragments. Differences in dung beetle communities were found between GM and conventional maize communities. As expected for fragmented areas, the covariance analysis showed a greater species richness in larger fragments under both conditions; however species richness was greater in fragments surrounded by conventional maize. Dung beetle structure in the forest fragments was explained by environmental variables, fragment area, spatial distance and also type of maize (transgenic or conventional) associated with maize management techniques. In Southern Brazil’s scenario, the use of GM maize combined with associated agricultural management may be accelerating the loss of diversity in Atlantic Forest areas, and consequently, important ecosystem services provided by dung beetles may be lost. PMID:26694874
The Importance of Maize Management on Dung Beetle Communities in Atlantic Forest Fragments.
Campos, Renata Calixto; Hernández, Malva Isabel Medina
2015-01-01
Dung beetle community structures changes due to the effects of destruction, fragmentation, isolation and decrease in tropical forest area, and therefore are considered ecological indicators. In order to assess the influence of type of maize cultivated and associated maize management on dung beetle communities in Atlantic Forest fragments surrounded by conventional and transgenic maize were evaluated 40 Atlantic Forest fragments of different sizes, 20 surrounded by GM maize and 20 surrounded by conventional maize, in February 2013 and 2014 in Southern Brazil. After applying a sampling protocol in each fragment (10 pitfall traps baited with human feces or carrion exposed for 48 h), a total of 3454 individuals from 44 species were captured: 1142 individuals from 38 species in GM maize surrounded fragments, and 2312 from 42 species in conventional maize surrounded fragments. Differences in dung beetle communities were found between GM and conventional maize communities. As expected for fragmented areas, the covariance analysis showed a greater species richness in larger fragments under both conditions; however species richness was greater in fragments surrounded by conventional maize. Dung beetle structure in the forest fragments was explained by environmental variables, fragment area, spatial distance and also type of maize (transgenic or conventional) associated with maize management techniques. In Southern Brazil's scenario, the use of GM maize combined with associated agricultural management may be accelerating the loss of diversity in Atlantic Forest areas, and consequently, important ecosystem services provided by dung beetles may be lost.
Beaver Colony Density Trends on the Chequamegon-Nicolet National Forest, 1987 – 2013
Ribic, Christine A.; Donner, Deahn M.; Beck, Albert J.; Reinecke, Sue; Eklund, Dan
2017-01-01
The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987–2013 (Nicolet, northeast Wisconsin) and 1997–2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs. PMID:28081271
Beaver Colony Density Trends on the Chequamegon-Nicolet National Forest, 1987 - 2013.
Ribic, Christine A; Donner, Deahn M; Beck, Albert J; Rugg, David J; Reinecke, Sue; Eklund, Dan
2017-01-01
The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987-2013 (Nicolet, northeast Wisconsin) and 1997-2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs.
Beaver colony density trends on the Chequamegon-Nicolet National Forest, 1987 – 2013
Ribic, Christine; Donner, Deahn M.; Beck, Albert J.; Rugg, David J.; Reinecke, Sue; Eklund, Dan
2017-01-01
The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987–2013 (Nicolet, northeast Wisconsin) and 1997–2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs.
Itter, Malcolm S; Finley, Andrew O; D'Amato, Anthony W; Foster, Jane R; Bradford, John B
2017-06-01
Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands. © 2017 by the Ecological Society of America.
Itter, Malcolm S.; Finley, Andrew O.; D'Amato, Anthony W.; Foster, Jane R.; Bradford, John B.
2017-01-01
Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics—changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands.
T.A. Weber; J.L. Hart; C. Schweitzer; D.C. Dey
2014-01-01
Quercus-Pinus forests of the eastern USA cover millions of hectares and span a variety of ecoregions. Understanding the influence of natural disturbance on developmental and successional pathways is important for managers that wish to sustain Pinus spp. in these mixtures. Quantifying developmental and successional patterns in this...
Risk perceptions and behavioral context: U.S. Forest Service fire management professionals
Taylor, Jonathan G.; Carpenter, Edwin H.; Cortner, Hanna J.; Cleaves, David A.
1989-01-01
Fire managers from the U.S. Forest Service were surveyed to determine which decision factors most strongly influenced their fire‐risk decisions. Safety, the resources at risk, public opinion, and the reliability of information were important influences on these decisions. This research allowed direct comparison between fire managers’ perceptions of factor importance and how their fire‐risk decisions changed in response to those factors. These risk decisions were highly responsive to changes in context (an escaped wildfire decision versus a prescribed burning decision) as well as to changing factors. The results demonstrate the utility of using scenarios in risk research and the vital importance of context in studying risk‐taking behavior. Research which attempts to remove risk decisions from their real‐world context may well distort the nature of risk‐taking behavior.
Empirical study on voting power in participatory forest planning.
Vainikainen, N; Kangas, A; Kangas, J
2008-07-01
Multicriteria decision support systems are applied in natural resource management in order to clarify the planning process for the stakeholders, to make all available information usable and all objectives manageable. Especially when the public is involved in planning, the decision support system should be easy to comprehend, transparent and fair. Social choice theory has recently been applied to group decision-making in natural resources management to accomplish these objectives. Although voting forms the basis of democracy, and is usually taken as a fair method, the influence of voters over the outcome may vary. It is also possible to vote strategically to improve the results from each stakeholder's point of view. This study examines the use of social choice theory in revealing stakeholders' preferences in participatory forest planning, and the influence of different voters on the outcome. The positional voting rules examined were approval voting and Borda count, but both rules were slightly modified for the purposes of this study. The third rule examined, cumulative rule, resembles utilitarian voting rules. The voting rules were tested in a real participatory forest planning situation in eastern Lapland, Finland. All voting rules resulted in a different joint order of importance of the criteria. Yet, the preference orders produced had also a lot in common and the criteria could be divided into three quite distinct groups according to their importance. The influence of individual voters varied between the voting rules, and in each case different voter was the most influential.
The long-term hydrological effect of forest stands on the stability of slopes
NASA Astrophysics Data System (ADS)
Bogaard, T. A.; Meng, W.; van Beek, L. P. H.
2012-04-01
Forest is widely known to improve slope stability as a result of mechanical and hydrological effects. While the mechanics underlying the stabilizing process of root reinforcement are well understood and quantified, the influence of forest on the occurrence of critical hydrological conditions in terms of suction or pore pressure remains uncertain. Due to seasonal and inter-annual fluctuations, the stabilizing influence of evaporation and transpiration is difficult to isolate from the overall noise of the hydrological signal. More long-term effects of forest stands on soil development are highly variable and thus difficult to observe and quantify. Often these effects are ambivalent, having potentially a stabilizing or destabilizing influence on a slope under particular conditions (e.g., more structured soils leading to both rapid infiltration and drainage). Consequently, it can be postulated that forests will hydrologically influence the magnitude-frequency distribution of landsliding, not only at the stand level but also on a regional scale through the groundwater system. The overall aim of this research is to understand and quantify the stabilizing hydrological effect of forests on potentially unstable slopes. To this end, we focus on the changes in the magnitude-frequency distribution of landsliding that arise as a result of variations in evapotranspiration losses over the life cycle of stands. Temporal variations in evapotranspiration comprise first of all the interception that can account for an important amount of evaporation from a forest, and that changes with seasonal and annual variations in the interception capacity of the canopy and forest floor. Transpiration also represents an important loss that varies over the various growth stages of a forest stand. Based on a literature review of water consumption by tree species and water balance studies of forested catchments we defined the potential transpiration for different growth stages. This information we used in a spatially distributed, physical-based, dynamical model to simulate the hydrology and resulting stability for a catchment on a daily scale. The results can be used to identify end members of the hydrological influence of forests on slope stability and the typical variations in stability associated with the various growth stages. They indicate that the influence of forest stand age on the water consumption can be significant and has clear consequences for the antecedent soil moisture condition within a slope and thus on the potential for slope destabilization. The outcome should help to understand the long-term impact of vegetation on slope hydrology and define sustainable and reliable management strategies at the scale of forest stands. Keywords: slope stability, hydrology, vegetation, long-tem effect
[Effects of climate change on forest soil organic carbon storage: a review].
Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen
2010-07-01
Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.
Winter habitat associations of eastern spotted skunks in Virginia
Thorne, Emily D.; Waggy, Charles; Jachowski, David S.; Kelly, Marcella J.; Ford, W. Mark
2017-01-01
Eastern spotted skunk (Spilogale putorius) populations have declined throughout much of their range in the eastern United States over recent decades. Declines have been attributed to habitat loss or change, increased competition with sympatric mesocarnivore species, or disease. To better understand the extant distribution of spotted skunks in the Appalachian Mountains of western Virginia, USA, we used a detection-non-detection sampling approach using baited camera traps to evaluate the influence of landscape-level environmental covariates on spotted skunk detection probability and site occupancy. We conducted camera trap surveys at 91 sites from January to May in 2014 and 2015. Spotted skunk occupancy was associated with young-aged forest stands at lower elevations and more mature forest stands at higher elevations. Both land cover types in this region can be characterized as having complex forest structure, providing cover that varies with stand age, species composition, elevation, and management regime. Our results provide insight into factors that influence spotted skunk spatial distribution and habitat selection, information that can be used to generate conservation assessments and inform management decisions.
Li, Xiaona; He, Hong S; Wu, Zhiwei; Liang, Yu; Schneiderman, Jeffrey E
2013-01-01
Forest management under a changing climate requires assessing the effects of climate warming and disturbance on the composition, age structure, and spatial patterns of tree species. We investigated these effects on a boreal forest in northeastern China using a factorial experimental design and simulation modeling. We used a spatially explicit forest landscape model (LANDIS) to evaluate the effects of three independent variables: climate (current and expected future), fire regime (current and increased fire), and timber harvesting (no harvest and legal harvest). Simulations indicate that this forested landscape would be significantly impacted under a changing climate. Climate warming would significantly increase the abundance of most trees, especially broadleaf species (aspen, poplar, and willow). However, climate warming would have less impact on the abundance of conifers, diversity of forest age structure, and variation in spatial landscape structure than burning and harvesting. Burning was the predominant influence in the abundance of conifers except larch and the abundance of trees in mid-stage. Harvesting impacts were greatest for the abundance of larch and birch, and the abundance of trees during establishment stage (1-40 years), early stage (41-80 years) and old- growth stage (>180 years). Disturbance by timber harvesting and burning may significantly alter forest ecosystem dynamics by increasing forest fragmentation and decreasing forest diversity. Results from the simulations provide insight into the long term management of this boreal forest.
Some references on watershed management.
W.E. Bullard
1950-01-01
Several of you in the field administrative jobs have asked for a summary of available information from forest influences studies relating to watershed management practices. This paper hits some of the high spots, giving a brief survey of European and American studies and recommendations that may be applicable within our region. Further, it contains a few pertinent...
Eight nonnative plants in western Oregon forests: associations with environment and management.
Andrew. Gray
2005-01-01
Nonnative plants have tremendous ecological and economic impacts on plant communities globally, but comprehensive data on the distribution and ecological relationships of individual species is often scarce or nonexistent. The objective of this study was to assess the influence of vegetation type, climate, topography, and management history on the distribution and...
Ecological Impacts of Revegetation and Management Practices of Ski Slopes in Northern Finland
NASA Astrophysics Data System (ADS)
Kangas, Katja; Tolvanen, Anne; Kälkäjä, Tarja; Siikamäki, Pirkko
2009-09-01
Outdoor recreation and nature-based tourism represent an increasingly intensive form of land use that has considerable impacts on native ecosystems. The aim of this paper is to investigate how revegetation and management of ski runs influence soil nutrients, vegetation characteristics, and the possible invasion of nonnative plant species used in revegetation into native ecosystems. A soil and vegetation survey at ski runs and nearby forests, and a factorial experiment simulating ski run construction and management (factors: soil removal, fertilization, and seed sowing) were conducted at Ruka ski resort, in northern Finland, during 2003-2008. According to the survey, management practices had caused considerable changes in the vegetation structure and increased soil nutrient concentrations, pH, and conductivity on the ski runs relative to nearby forests. Seed mixture species sown during the revegetation of ski runs had not spread to adjacent forests. The experimental study showed that the germination of seed mixture species was favored by treatments simulating the management of ski runs, but none of them could eventually establish in the study forest. As nutrient leaching causes both environmental deterioration and changes in vegetation structure, it may eventually pose a greater environmental risk than the spread of seed mixture species alone. Machine grading and fertilization, which have the most drastic effects on soils and vegetation, should, therefore, be minimized when constructing and managing ski runs.
Ecological impacts of revegetation and management practices of ski slopes in northern Finland.
Kangas, Katja; Tolvanen, Anne; Kälkäjä, Tarja; Siikamäki, Pirkko
2009-09-01
Outdoor recreation and nature-based tourism represent an increasingly intensive form of land use that has considerable impacts on native ecosystems. The aim of this paper is to investigate how revegetation and management of ski runs influence soil nutrients, vegetation characteristics, and the possible invasion of nonnative plant species used in revegetation into native ecosystems. A soil and vegetation survey at ski runs and nearby forests, and a factorial experiment simulating ski run construction and management (factors: soil removal, fertilization, and seed sowing) were conducted at Ruka ski resort, in northern Finland, during 2003-2008. According to the survey, management practices had caused considerable changes in the vegetation structure and increased soil nutrient concentrations, pH, and conductivity on the ski runs relative to nearby forests. Seed mixture species sown during the revegetation of ski runs had not spread to adjacent forests. The experimental study showed that the germination of seed mixture species was favored by treatments simulating the management of ski runs, but none of them could eventually establish in the study forest. As nutrient leaching causes both environmental deterioration and changes in vegetation structure, it may eventually pose a greater environmental risk than the spread of seed mixture species alone. Machine grading and fertilization, which have the most drastic effects on soils and vegetation, should, therefore, be minimized when constructing and managing ski runs.
Robert A. Slesak; Brian J. Palik; Anthony W. D' Amato; Valerie J. Kurth
2017-01-01
Soil functions that control plant resource availability can be altered by management activities such as increased organic matter (OM) removal and soil compaction during forest harvesting. The Long Term Soil Productivity study was established to evaluate how these practices influence soil and site productivity using experimental treatments that span a range of forest...
Old-growth and mature forests near spotted owl nests in western Oregon
NASA Technical Reports Server (NTRS)
Ripple, William J.; Johnson, David H.; Hershey, K. T.; Meslow, E. Charles
1995-01-01
We investigated how the amount of old-growth and mature forest influences the selection of nest sites by northern spotted owls (Strix occidentalis caurina) in the Central Cascade Mountains of Oregon. We used 7 different plot sizes to compare the proportion of mature and old-growth forest between 30 nest sites and 30 random sites. The proportion of old-growth and mature forest was significantly greater at nests sites than at random sites for all plot sizes (P less than or equal to 0.01). Thus, management of the spotted owl might require setting the percentage of old-growth and mature forest retained from harvesting at least 1 standard deviation above the mean for the 30 nest sites we examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranatunga, Kemachandra; Keenan, Rodney J.; Wullschleger, Stan D
2008-01-01
Understanding long-term changes in forest ecosystem carbon stocks under forest management practices such as timber harvesting is important for assessing the contribution of forests to the global carbon cycle. Harvesting effects are complicated by the amount, type, and condition of residue left on-site, the decomposition rate of this residue, the incorporation of residue into soil organic matter and the rate of new detritus input to the forest floor from regrowing vegetation. In an attempt to address these complexities, the forest succession model LINKAGES was used to assess the production of aboveground biomass, detritus, and soil carbon stocks in native Eucalyptusmore » forests as influenced by five harvest management practices in New South Wales, Australia. The original decomposition sub-routines of LINKAGES were modified by adding components of the Rothamsted (RothC) soil organic matter turnover model. Simulation results using the new model were compared to data from long-term forest inventory plots. Good agreement was observed between simulated and measured above-ground biomass, but mixed results were obtained for basal area. Harvesting operations examined included removing trees for quota sawlogs (QSL, DBH >80 cm), integrated sawlogs (ISL, DBH >20 cm) and whole-tree harvesting in integrated sawlogs (WTH). We also examined the impact of different cutting cycles (20, 50 or 80 years) and intensities (removing 20, 50 or 80 m{sup 3}). Generally medium and high intensities of shorter cutting cycles in sawlog harvesting systems produced considerably higher soil carbon values compared to no harvesting. On average, soil carbon was 2-9% lower in whole-tree harvest simulations whereas in sawlog harvest simulations soil carbon was 5-17% higher than in no harvesting.« less
Duchesne, Louis; Houle, Daniel; Ouimet, Rock; Lambert, Marie-Claude; Logan, Travis
2016-01-01
Biological carbon sequestration by forest ecosystems plays an important role in the net balance of greenhouse gases, acting as a carbon sink for anthropogenic CO2 emissions. Nevertheless, relatively little is known about the abiotic environmental factors (including climate) that control carbon storage in temperate and boreal forests and consequently, about their potential response to climate changes. From a set of more than 94,000 forest inventory plots and a large set of spatial data on forest attributes interpreted from aerial photographs, we constructed a fine-resolution map (∼375 m) of the current carbon stock in aboveground live biomass in the 435,000 km(2) of managed forests in Quebec, Canada. Our analysis resulted in an area-weighted average aboveground carbon stock for productive forestland of 37.6 Mg ha(-1), which is lower than commonly reported values for similar environment. Models capable of predicting the influence of mean annual temperature, annual precipitation, and soil physical environment on maximum stand-level aboveground carbon stock (MSAC) were developed. These models were then used to project the future MSAC in response to climate change. Our results indicate that the MSAC was significantly related to both mean annual temperature and precipitation, or to the interaction of these variables, and suggest that Quebec's managed forests MSAC may increase by 20% by 2041-2070 in response to climate change. Along with changes in climate, the natural disturbance regime and forest management practices will nevertheless largely drive future carbon stock at the landscape scale. Overall, our results allow accurate accounting of carbon stock in aboveground live tree biomass of Quebec's forests, and provide a better understanding of possible feedbacks between climate change and carbon storage in temperate and boreal forests.
NASA Astrophysics Data System (ADS)
De Oliveira Bomfim, B.; Silva, L. C. R.; Horwath, W. R.; Hello, J.; Doane, T. A.
2016-12-01
Globally, primary tropical forests are increasingly disturbed by deforestation, urbanization, agriculture, and cattle ranching. It has been recognized that the resulting (secondary) forests now play a key role in global biogeochemical cycles; however, little is known about alterations in forest function caused by the combination of disturbance and land use change. Fire, deforestation, and forest-to-monocrop conversion are all likely to affect biotic N inputs, yet our understanding of how free-living N2 fixation influences ecosystem response after disturbance remains poorly understood. Our research is assessing the role of asymbiotic (free-living) biological nitrogen fixation (BNF), a microbially-mediated process responsible for providing N inputs across terrestrial ecosystems and modulating the effect of fire and land cover in secondary forest succession. Free-living BNF is being quantified through incubations using stable isotope (15N2 labeling experiment) in different substrates (soil and leaf litter) under contrasting land use and management in the Brazilian Atlantic Forest, the most deforested Biome in Brazil with only 7% of its original cover. Soil and litter samples were collected in primary forests, 12-year secondary forests, Eucalyptus spp. plantations and 10-year Brachiaria brizantha pastures. Preliminary results indicate that free-living BNF rates did not vary significantly between either secondary land use (0.02 to 0.46 µg N2 fixed gDW-1 h-1), but rates were significantly higher in the litter layer (0.32 to 3.8 µg N2 fixed gDW-1 h-1) than in the surface soil (0 - 10 cm and 10 - 30 cm). Free-living BNF in this stretch of the Brazilian Atlantic Forest seems not to be significantly affected by contrasting land use and management.
Hydrologic responses to restored wildfire regimes revealed by soil moisture-vegetation relationships
NASA Astrophysics Data System (ADS)
Boisramé, Gabrielle; Thompson, Sally; Stephens, Scott
2018-02-01
Many forested mountain watersheds worldwide evolved with frequent fire, which Twentieth Century fire suppression activities eliminated, resulting in unnaturally dense forests with high water demand. Restoration of pre-suppression forest composition and structure through a variety of management activities could improve forest resilience and water yields. This study explores the potential for "managed wildfire", whereby naturally ignited fires are allowed to burn, to alter the water balance. Interest in this type of managed wildfire is increasing, yet its long-term effects on water balance are uncertain. We use soil moisture as a spatially-distributed hydrologic indicator to assess the influence of vegetation, fire history and landscape position on water availability in the Illilouette Creek Basin in Yosemite National Park. Over 6000 manual surface soil moisture measurements were made over a period of three years, and supplemented with continuous soil moisture measurements over the top 1m of soil in three sites. Random forest and linear mixed effects models showed a dominant effect of vegetation type and history of vegetation change on measured soil moisture. Contemporary and historical vegetation maps were used to upscale the soil moisture observations to the basin and infer soil moisture under fire-suppressed conditions. Little change in basin-averaged soil moisture was inferred due to managed wildfire, but the results indicated that large localized increases in soil moisture had occurred, which could have important impacts on local ecology or downstream flows.
Emma L. Witt; Christopher D. Barton; Jeffrey W. Stringer; Randy Kolka; Mac A. Cherry
2016-01-01
Streamside management zones (SMZs) are a common best management practice (BMP) used to reduce water quality impacts from logging. The objective of this research was to evaluate the impact of varying SMZ configurations on water quality. Treatments (T1, T2, and T3) that varied in SMZ width, canopy retention within the SMZ, and BMP utilization were applied at the...
Determinants of trust for public lands: Fire and fuels management on the Bitterroot National Forest
Adam Liljeblad; William T. Borrie; Alan E. Watson
2009-01-01
Management of public lands occurs today with high levels of scrutiny and controversy. To succeed, managers seek the support, involvement, and endorsement of the public. This study examines trust as an indicator of managerial success and attempts to identify and measure the components that most influence it. A review of trust literature yielded 14 attributes that were...
Watanabe, Mirai; Miura, Shingo; Hasegawa, Shun; Koshikawa, Masami K; Takamatsu, Takejiro; Kohzu, Ayato; Imai, Akio; Hayashi, Seiji
2018-04-28
High concentrations of nitrate have been detected in streams flowing from nitrogen-saturated forests; however, the spatial variations of nitrate leaching within those forests and its causes remain poorly explored. The aim of this study is to evaluate the influences of catchment topography and coniferous coverage on stream nitrate concentrations in a nitrogen-saturated forest. We measured nitrate concentrations in the baseflow of headwater streams at 40 montane forest catchments on Mount Tsukuba in central Japan, at three-month intervals for 1 year, and investigated their relationship with catchment topography and with coniferous coverage. Although stream nitrate concentrations varied from 0.5 to 3.0 mgN L -1 , those in 31 catchments consistently exceeded 1 mgN L -1 , indicating that this forest had experienced nitrogen saturation. A classification and regression tree analysis with multiple environmental factors showed that the mean slope gradient and coniferous coverage were the best and second best, respectively, at explaining inter-catchment variance of stream nitrate concentrations. This analysis suggested that the catchments with steep topography and high coniferous coverage tend to have high nitrate concentrations. Moreover, in the three-year observation period for five adjacent catchments, the two catchments with relatively higher coniferous coverage consistently had higher stream nitrate concentrations. Thus, the spatial variations in stream nitrate concentrations were primarily regulated by catchment steepness and, to a lesser extent, coniferous coverage in this nitrogen-saturated forest. Our results suggest that a decrease in coniferous coverage could potentially contribute to a reduction in nitrate leaching from this nitrogen-saturated forest, and consequently reduce the risk of nitrogen overload for the downstream ecosystems. This information will allow land managers and researchers to develop improved management plans for this and similar forests in Japan and elsewhere. Copyright © 2018 Elsevier B.V. All rights reserved.
Typology of Ohio, USA, Tree Farmers Based Upon Forestry Outreach Needs
NASA Astrophysics Data System (ADS)
Starr, SE; McConnell, TE; Bruskotter, JS; Williams, RA
2015-02-01
This study differentiated groups of Ohio tree farmers through multivariate clustering of their perceived needs for forest management outreach. Tree farmers were surveyed via a mailed questionnaire. Respondents were asked to rate, on a 1-7 scale, their informational needs for 26 outreach topics, which were reduced to six factors. Based on these factors, three clusters were identified—holistic managers, environmental stewards, and pragmatic tree farmers. Cluster assignment of individuals was dependent upon a tree farmer's age, acreage owned, and number of years enrolled in the American Tree Farm System. Holistic managers showed a greater interest in the outreach topics while pragmatic tree farmers displayed an overall lesser interest. Across clusters, print media and in-person workshops were preferred over emails and webinars for receiving forest management information. In-person workshops should be no more than 1 day events, held on a weekday, during the daytime, at a cost not exceeding 35. Programming related to environmental influences, which included managing for forest insects and diseases, was concluded to have the greater potential to impact clientele among all outreach factors due to the information being applicable across demographics and/or management objectives.
Do multiple fires interact to affect vegetation structure in temperate eucalypt forests?
Haslem, Angie; Leonard, Steve W J; Bruce, Matthew J; Christie, Fiona; Holland, Greg J; Kelly, Luke T; MacHunter, Josephine; Bennett, Andrew F; Clarke, Michael F; York, Alan
2016-12-01
Fire plays an important role in structuring vegetation in fire-prone regions worldwide. Progress has been made towards documenting the effects of individual fire events and fire regimes on vegetation structure; less is known of how different fire history attributes (e.g., time since fire, fire frequency) interact to affect vegetation. Using the temperate eucalypt foothill forests of southeastern Australia as a case study system, we examine two hypotheses about such interactions: (1) post-fire vegetation succession (e.g., time-since-fire effects) is influenced by other fire regime attributes and (2) the severity of the most recent fire overrides the effect of preceding fires on vegetation structure. Empirical data on vegetation structure were collected from 540 sites distributed across central and eastern Victoria, Australia. Linear mixed models were used to examine these hypotheses and determine the relative influence of fire and environmental attributes on vegetation structure. Fire history measures, particularly time since fire, affected several vegetation attributes including ground and canopy strata; others such as low and sub-canopy vegetation were more strongly influenced by environmental characteristics like rainfall. There was little support for the hypothesis that post-fire succession is influenced by fire history attributes other than time since fire; only canopy regeneration was influenced by another variable (fire type, representing severity). Our capacity to detect an overriding effect of the severity of the most recent fire was limited by a consistently weak effect of preceding fires on vegetation structure. Overall, results suggest the primary way that fire affects vegetation structure in foothill forests is via attributes of the most recent fire, both its severity and time since its occurrence; other attributes of fire regimes (e.g., fire interval, frequency) have less influence. The strong effect of environmental drivers, such as rainfall and topography, on many structural features show that foothill forest vegetation is also influenced by factors outside human control. While fire is amenable to human management, results suggest that at broad scales, structural attributes of these forests are relatively resilient to the effects of current fire regimes. Nonetheless, the potential for more frequent severe fires at short intervals, associated with a changing climate and/or fire management, warrant further consideration. © 2016 by the Ecological Society of America.
Spatial Pattern of Attacks of the Invasive Woodwasp Sirex noctilio, at Landscape and Stand Scales.
Lantschner, M Victoria; Corley, Juan C
2015-01-01
Invasive insect pests are responsible for important damage to native and plantation forests, when population outbreaks occur. Understanding the spatial pattern of attacks by forest pest populations is essential to improve our understanding of insect population dynamics and for predicting attack risk by invasives or planning pest management strategies. The woodwasp Sirex noctilio is an invasive woodwasp that has become probably the most important pest of pine plantations in the Southern Hemisphere. Our aim was to study the spatial dynamics of S. noctilio populations in Southern Argentina. Specifically we describe: (1) the spatial patterns of S. noctilio outbreaks and their relation with environmental factors at a landscape scale; and (2) characterize the spatial pattern of attacked trees at the stand scale. We surveyed the spatial distribution of S. noctilio outbreaks in three pine plantation landscapes, and we assessed potential associations with topographic variables, habitat characteristics, and distance to other outbreaks. We also looked at the spatial distribution of attacked trees in 20 stands with different levels of infestation, and assessed the relationship of attacks with stand composition and management. We found that the spatial pattern of pine stands with S. noctilio outbreaks at the landscape scale is influenced mainly by the host species present, slope aspect, and distance to other outbreaks. At a stand scale, there is strong aggregation of attacked trees in stands with intermediate infestation levels, and the degree of attacks is influenced by host species and plantation management. We conclude that the pattern of S. noctilio damage at different spatial scales is influenced by a combination of both inherent population dynamics and the underlying patterns of environmental factors. Our results have important implications for the understanding and management of invasive insect outbreaks in forest systems.
Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Kern, Christel C.; Bradford, John B.; Scherer, Sawyer S.
2017-01-01
Prescribed fire is widely used for ecological restoration and fuel reduction in fire-dependent ecosystems, most of which are also prone to drought. Despite the importance of drought in fire-adapted forests, little is known about cumulative effects of repeated prescribed burning on tree growth and related response to drought. Using dendrochronological data in red pine (Pinus resinosa Ait.)-dominated forests in northern Minnesota, USA, we examined growth responses before and after understory prescribed fires between 1960 and 1970, to assess whether repeated burning influences growth responses of overstory trees and vulnerability of overstory tree growth to drought. We found no difference in tree-level growth vulnerability to drought, expressed as growth resistance, resilience, and recovery, between areas receiving prescribed fire treatments and untreated forests. Annual mortality rates during the period of active burning were also low (less than 2%) in all treatments. These findings indicate that prescribed fire can be effectively integrated into management plans and climate change adaptation strategies for red pine forest ecosystems without significant short- or long-term negative consequences for growth or mortality rates of overstory trees.
NASA Astrophysics Data System (ADS)
Munji, Cecilia A.; Bele, Mekou Y.; Idinoba, Monica E.; Sonwa, Denis J.
2014-03-01
Faced with the growing influence of climate change on climate driven perturbations such as flooding and biodiversity loss, managing the relationship between mangroves and their environment has become imperative for their protection. Hampering this is the fact that the full scope of the threats faced by specific mangrove forests is not yet well documented. Amongst some uncertainties is the nature of the relationship/interaction of mangroves with climate driven perturbations prevalent in their habitat such as coastal floods. We investigated the relationship between coastal flooding and mangrove forest stabilization, identify perceptions of flood risk and responses to offset identified effects. Random household surveys were carried out within four communities purposively sampled within the Cap Cameroon. Coastal changes were investigated over a period of 43 years (1965-2008). Seasonal flooding improved access to mangrove forests and hence promoted their exploitation for non-timber forest products (NTFPs) such as fuel wood and mangrove poles. 989 ha of mangrove forests were estimated to be lost over a period of 43 years in Cap Cameroon with implications on forest resources base, ecosystem stability, and livelihoods. Alternative livelihood activities were found to be carried out to moderate interruptions in fishing, with associated implications for mangrove forest dynamics. Respondents were of the opinion that risks associated with floods and mangrove deforestation will pose a major challenge for sustainable management of mangroves. These locally relevant perceptions and responses should however enable the identification of pertinent needs, challenges and opportunities to inform and orient effective decision-making, and to facilitate the development and participation in adaptive management strategies.
Shanin, V N; Mikhaĭlov, A V; Bykhovets, S S; Komarov, A S
2010-01-01
The individually oriented system of the EFIMOD models simulating carbon and nitrogen flows in forest ecosystems has been used for forecasting the response of forest ecosystems to various forest exploitation regimes with climate change. As input data the forest management materials for the Manturovskii forestry of the Kostroma region were used. It has been shown that increase of mid-annual temperatures and rainfall influence the redistribution of carbon and nitrogen supply in organic form: supply increase of these elements in phytomass simultaneously with depletion of them in soil occurred. The most carbon and nitrogen accumulation in forest ecosystems occurs in the scenario without felling. In addition, in this scenario only the ecosystems of the modeling territory function as a carbon drain; in the other two scenarios (with selective and total felling) they function as a source of carbon. Climate changes greatly influence the decomposition rate of organic matter in soil, which leads to increased emission of carbonic acid. The second consequence of the increase in the destruction rate is nitrogen increase in the soil in a form available for plants that entails production increase of plantations.
The Agua Salud Project, Central Panama
NASA Astrophysics Data System (ADS)
Stallard, R. F.; Elsenbeer, H.; Ogden, F. L.; Hall, J. S.
2007-12-01
The Agua Salud Project utilizes the Panama Canal's central role in world commerce to focus global attention on the ecosystem services provided by tropical forests. It will be the largest field experiment of its kind in the tropics aimed at quantifying the environmental services (water, carbon, and biodiversity) provided by tropical forests. The Agua Salud Watershed is our principal field site. This watershed and the headwaters of several adjacent rivers include both protected mature forests and a wide variety of land uses that are typical of rural Panama. Experiments at the scale of entire catchments will permit complete water and carbon inventories and exchanges for different landscape uses. The following questions will be addressed: (1) How do landscape treatments and management approaches affect ecosystem services such as carbon storage, water quality and quantity, dry- season water supply, and biodiversity? (2) Can management techniques be designed to optimize forest production along with ecosystem services during reforestation? (3) Do different tree planting treatments and landscape management approaches influence groundwater storage, which is thought to be critical to maintaining dry-season flow, thus insuring the full operation of the Canal during periods of reduced rainfall and severe climatic events such as El Niño. In addition we anticipate expanding this project to address biodiversity, social, and economic values of these forests.
Cater, Matjaz; Ogrinc, Nives
2011-06-01
Soil respiration rates were studied as a function of soil type, texture and light intensity at five selected natural beech forest stands with contrasting geology: stands on silicate bedrock at Kladje and Bricka in Pohorje, a stand on quartz sandstone at Vrhovo and two stands on a carbonate bedrock in the Karstic-Dinaric area in Kocevski Rog, Snezna jama and Rajhenav, Slovenia, during the growing season in 2005-2006. Soil respiration exhibited pronounced seasonal and spatial variations in the studied forest ecosystem plots. The CO(2) flux rates ranged from minimum averages of 2.3 μmol CO(2) m(-2) s(-1) (winter) to maximum averages of about 7 μmol CO(2) m(-2) s(-1) (summer) at all the investigated locations. An empirical model describing the relationship between soil respiration and soil temperature predicted seasonal variations in soil respiration reasonably well during 2006. Nevertheless, there were also some indications that soil moisture in relation to soil texture could influence the soil CO(2) efflux rates in both sampling seasons. It was shown that spatial variability of mean soil respiration at the investigated sites was high and strongly related to root biomass. Based on the [image omitted] data, it was shown that new photoassimilates could account for a major part of the total soil respiration under canopy conditions in forest ecosystems where no carbonate rocks are present, indicating that microbial respiration could not always dominate bulk soil CO(2) fluxes. At Snezna jama and Rajhenav, the abiotic CO(2) derived from carbonate dissolution had a pronounced influence on CO(2) efflux accounting, on average, to ∼17%. Further spatial heterogeneity of soil respiration was clearly affected by management practice. Higher respiration rates as well as higher variability in respiration rates were observed in the virgin forest (Rajhenav) than in the management forest (Snezna jama) and could be related to a higher amount of detritus and consequently to less pronounced influence of inorganic pool to CO(2) efflux, lower mixing with atmospheric CO(2) and higher sensitivity to environmental changes. Major differences in soil carbon dynamics among these five forest ecosystems can be explained by the influence of bedrock geology (particularly, the presence or absence of carbonate minerals) and soil texture (affecting gas exchange with overlying air and soil moisture).
Biology, ecology, and economics at play: land use and land cover changes in the 21st century.
Sally Duncan
2003-01-01
In making choices about how to manage the countryâs wealth of forest land, stakeholders including U.S. taxpayersâhave many choices, all of them with ripple effects that extend far beyond the immediate stands of trees. In the Pacific Northwest, as elsewhere, biophysical, ecological, and socioeconomic factors combine to influence the areas of forest cover types and their...
Christine Esposito
2006-01-01
Researchers have tried to understand how information about forest management can influence a person's landscape preferences and aesthetic appreciation. These findings are relevant for fuels management projects, since these projects are often characterized by conflicts between aesthetic and ecological objectives. This fact sheet discusses different aspects and ways...
Relative influence of the components of timber harvest strategies on landscape pattern
Eric J. Gustafson
2007-01-01
Forest managers seek to produce healthy landscape patterns by implementing harvest strategies that are composed of multiple management components such as cutblock size, rotation length, even-aged or uneven-aged residual stand structure, conversion to plantations, and the spatial dispersion of harvest units. With use of the HARVEST model and neutral landscapes, a...
Donald G. MacGregor; David N. Seesholtz
2008-01-01
Prior to the existence of the National Environmental Policy Act (NEPA), Forest Service district rangers had considerable latitude to make resource management decisions and execute management plans with relatively little encumbrance by documentation and process requirements. Today there appear to be differences not only in the district ranger population, but in the...
Beguin, Julien; McIntire, Eliot J B; Raulier, Frédéric
2015-11-01
Protected area networks are the dominant conservation approach that is used worldwide for protecting biodiversity. Conservation planning in managed forests, however, presents challenges when endangered species use old-growth forests targeted by the forest industry for timber supply. In many ecosystems, this challenge is further complicated by the occurrence of natural disturbance events that disrupt forest attributes at multiple scales. Using spatially explicit landscape simulation experiments, we gather insights into how these large scale, multifaceted processes (fire risk, timber harvesting and the amount of protected area) influenced both the persistence of the threatened boreal caribou and the level of timber supply in the boreal forest of eastern Canada. Our result showed that failure to account explicitly and a priori for fire risk in the calculation of timber supply led to an overestimation of timber harvest volume, which in turn led to rates of cumulative disturbances that threatened both the long-term persistence of boreal caribou and the sustainability of the timber supply itself. Salvage logging, however, allowed some compensatory cumulative effects. It minimised the reductions of timber supply within a range of ∼10% while reducing the negative impact of cumulative disturbances caused by fire and logging on caribou. With the global increase of the human footprint on forest ecosystems, our approach and results provide useful tools and insights for managers to resolve what often appear as lose-lose situation between the persistence of species at risk and timber harvest in other forest ecosystems. These tools contribute to bridge the gap between conservation and forest management, two disciplines that remain too often disconnected in practice. Copyright © 2015 Elsevier Ltd. All rights reserved.
Positive edge effects on forest-interior cryptogams in clear-cuts.
Caruso, Alexandro; Rudolphi, Jörgen; Rydin, Håkan
2011-01-01
Biological edge effects are often assessed in high quality focal habitats that are negatively influenced by human-modified low quality matrix habitats. A deeper understanding of the possibilities for positive edge effects in matrix habitats bordering focal habitats (e.g. spillover effects) is, however, essential for enhancing landscape-level resilience to human alterations. We surveyed epixylic (dead wood inhabiting) forest-interior cryptogams (lichens, bryophytes, and fungi) associated with mature old-growth forests in 30 young managed Swedish boreal forest stands bordering a mature forest of high conservation value. In each young stand we registered species occurrences on coarse dead wood in transects 0-50 m from the border between stand types. We quantified the effect of distance from the mature forest on the occurrence of forest-interior species in the young stands, while accounting for local environment and propagule sources. For comparison we also surveyed epixylic open-habitat (associated with open forests) and generalist cryptogams. Species composition of epixylic cryptogams in young stands differed with distance from the mature forest: the frequency of occurrence of forest-interior species decreased with increasing distance whereas it increased for open-habitat species. Generalists were unaffected by distance. Epixylic, boreal forest-interior cryptogams do occur in matrix habitats such as clear-cuts. In addition, they are associated with the matrix edge because of a favourable microclimate closer to the mature forest on southern matrix edges. Retention and creation of dead wood in clear-cuts along the edges to focal habitats is a feasible way to enhance the long-term persistence of epixylic habitat specialists in fragmented landscapes. The proposed management measures should be performed in the whole stand as it matures, since microclimatic edge effects diminish as the matrix habitat matures. We argue that management that aims to increase habitat quality in matrix habitats bordering focal habitats should increase the probability of long-term persistence of habitat specialists.
Positive Edge Effects on Forest-Interior Cryptogams in Clear-Cuts
Caruso, Alexandro; Rudolphi, Jörgen; Rydin, Håkan
2011-01-01
Biological edge effects are often assessed in high quality focal habitats that are negatively influenced by human-modified low quality matrix habitats. A deeper understanding of the possibilities for positive edge effects in matrix habitats bordering focal habitats (e.g. spillover effects) is, however, essential for enhancing landscape-level resilience to human alterations. We surveyed epixylic (dead wood inhabiting) forest-interior cryptogams (lichens, bryophytes, and fungi) associated with mature old-growth forests in 30 young managed Swedish boreal forest stands bordering a mature forest of high conservation value. In each young stand we registered species occurrences on coarse dead wood in transects 0–50 m from the border between stand types. We quantified the effect of distance from the mature forest on the occurrence of forest-interior species in the young stands, while accounting for local environment and propagule sources. For comparison we also surveyed epixylic open-habitat (associated with open forests) and generalist cryptogams. Species composition of epixylic cryptogams in young stands differed with distance from the mature forest: the frequency of occurrence of forest-interior species decreased with increasing distance whereas it increased for open-habitat species. Generalists were unaffected by distance. Epixylic, boreal forest-interior cryptogams do occur in matrix habitats such as clear-cuts. In addition, they are associated with the matrix edge because of a favourable microclimate closer to the mature forest on southern matrix edges. Retention and creation of dead wood in clear-cuts along the edges to focal habitats is a feasible way to enhance the long-term persistence of epixylic habitat specialists in fragmented landscapes. The proposed management measures should be performed in the whole stand as it matures, since microclimatic edge effects diminish as the matrix habitat matures. We argue that management that aims to increase habitat quality in matrix habitats bordering focal habitats should increase the probability of long-term persistence of habitat specialists. PMID:22114728
Peck, R.W.; Niwa, C.G.
2005-01-01
Microarthropod densities within late-successional coniferous forests thinned 16-41 yr before sampling were compared with adjacent unthinned stands to identify longer term effects of thinning on this community. Soil and forest floor layers were sampled separately on eight paired sites. Within the forest floor oribatid, mesostigmatid, and to a marginal extent, prostigmatid mites, were reduced in thinned stands compared with unthinned stands. No differences were found for Collembola in the forest floor or for any mite suborder within the soil. Family level examination of mesostigmatid and prostigmatid mites revealed significant differences between stand types for both horizons. At the species level, thinning influenced numerous oribatid mites and Collembola. For oribatid mites, significant or marginally significant differences were found for seven of 15 common species in the forest floor and five of 16 common species in soil. Collembola were affected less, with differences found for one of 11 common species in the forest floor and three of 13 common species in soil. Multivariate analysis of variance and ordination indicated that forest thinning had little influence on the composition of oribatid mite and collembolan communities within either the forest floor or soil. Differences in microclimate or in the accumulation of organic matter on the forest floor were likely most responsible for the observed patterns of abundance. Considering the role that microarthropods play in nutrient cycling, determining the functional response of a wide range of taxa to thinning may be important to effective ecosystem management.
John F. Dwyer; Gina Childs
2004-01-01
The spread of development from cities into surrounding forests and farms continues to receive a great deal of attention from the media and resource managers in the US and other countries. However, suburban sprawl is just one of many interlinked components of the movement of people across the landscape that influence resource management. Substantial changes are taking...
Investigating Forest Soil Disturbance with Different Timber Harvesting Operations in South Korea
NASA Astrophysics Data System (ADS)
Im, Sangjun; Lee, Eunjai; Eu, Song; Han, Sang-Kyun
2017-04-01
Forest operation such as timber harvesting can influence to forest environment by displacing soil particles, compacting surface layers, and destroying soil structures. This results in increased surface runoff and associated soil erosion during rainy season, due to soil disturbance. The extent of soil disturbance depends on the skidding/yarding method, types of machine used, and soil types. In South Korea, cut-to-length (CTL) operation is traditionally used by excavator with grapple in most areas. Recently, whole-tree (WT) harvesting system by swing yarder has gained considerable attention as an alternative traditional extraction method. The objectives of this study were to describe the effects of two different harvesting methods (CTL and WT) on soil disturbance and soil physical properties. After the CTL observation, we found that severe disturbed soils and compacted area were more than WT. Rutting was influenced more than 50% of the deep disturbance classes by the uphill climbing and downhill extraction method, while exposing bare soil was most disturbance in WT operation. Soil physical properties were influenced considerably by the number of excavator passes and slash residual classes in both units. The results from the study would be useful for understanding soil disturbance influence by timber harvesting in Korea. But, more detailed observations are needed to accurately estimate erosion rates and sediment delivery associated with forest management and operation. Acknowledgements. This study was carried out with the support of 'R&D Program for Forestry Technology (Project No. S211316L020110)' provided by Korea Forest Service.
Li, Xiaona; He, Hong S.; Wu, Zhiwei; Liang, Yu; Schneiderman, Jeffrey E.
2013-01-01
Forest management under a changing climate requires assessing the effects of climate warming and disturbance on the composition, age structure, and spatial patterns of tree species. We investigated these effects on a boreal forest in northeastern China using a factorial experimental design and simulation modeling. We used a spatially explicit forest landscape model (LANDIS) to evaluate the effects of three independent variables: climate (current and expected future), fire regime (current and increased fire), and timber harvesting (no harvest and legal harvest). Simulations indicate that this forested landscape would be significantly impacted under a changing climate. Climate warming would significantly increase the abundance of most trees, especially broadleaf species (aspen, poplar, and willow). However, climate warming would have less impact on the abundance of conifers, diversity of forest age structure, and variation in spatial landscape structure than burning and harvesting. Burning was the predominant influence in the abundance of conifers except larch and the abundance of trees in mid-stage. Harvesting impacts were greatest for the abundance of larch and birch, and the abundance of trees during establishment stage (1–40 years), early stage (41–80 years) and old- growth stage (>180 years). Disturbance by timber harvesting and burning may significantly alter forest ecosystem dynamics by increasing forest fragmentation and decreasing forest diversity. Results from the simulations provide insight into the long term management of this boreal forest. PMID:23573209
Petrakis, Roy; Villarreal, Miguel; Wu, Zhuoting; Hetzler, Robert; Middleton, Barry R.; Norman, Laura M.
2018-01-01
The practice of fire suppression across the western United States over the past century has led to dense forests, and when coupled with drought has contributed to an increase in large and destructive wildfires. Forest management efforts aimed at reducing flammable fuels through various fuel treatments can help to restore frequent fire regimes and increase forest resilience. Our research examines how different fuel treatments influenced burn severity and post-fire vegetative stand dynamics on the San Carlos Apache Reservation, in east-central Arizona, U.S.A. Our methods included the use of multitemporal remote sensing data and cloud computing to evaluate burn severity and post-fire vegetation conditions as well as statistical analyses. We investigated how forest thinning, commercial harvesting, prescribed burning, and resource benefit burning (managed wildfire) related to satellite measured burn severity (the difference Normalized Burn Ratio – dNBR) following the 2013 Creek Fire and used spectral measures of post-fire stand dynamics to track changes in land surface characteristics (i.e., brightness, greenness and wetness). We found strong negative relationships between dNBR and post-fire greenness and wetness, and a positive non-linear relationship between dNBR and brightness, with greater variability at higher severities. Fire severity and post-fire surface changes also differed by treatment type. Our results showed harvested and thinned sites that were not treated with prescribed fire had the highest severity fire. When harvesting was followed by a prescribed burn, the sites experienced lower burn severity and reduced post-fire changes in vegetation greenness and wetness. Areas that had previously experienced resource benefit burns had the lowest burn severities and the highest post-fire greenness measurements compared to all other treatments, except for where the prescribed burn had occurred. These results suggest that fire treatments may be most effective at reducing the probability of hazardous fire and increasing post-fire recovery. This research demonstrates the utility of remote sensing and spatial data to inform forest management, and how various fuel treatments can influence burn severity and post-fire vegetation response within ponderosa pine forests across the southwestern U.S.
NASA Astrophysics Data System (ADS)
Saksa, P. C.; Bales, R. C.; Ray, R. L.
2011-12-01
Hydro-ecological modeling provides a cost-effective method for evaluating the effects of vegetation change on water cycling within a catchment. In mountain watersheds, change in forest vegetation not only has direct effects on transpiration rates, but also energy exchanges that influence patterns of snow ablation. In this study, treatment scenarios were implemented using the Regional Hydro-Ecological Simulation System (RHESSys) to estimate impacts on key elements of the hydrologic cycle affected by forest harvesting - snowpack accumulation, ablation, transpiration, and streamflow. Twelve headwater catchments (0.5 - 2.6 km2, 1460 - 2450m) in the mixed-conifer zone of the central Sierra Nevada, within the Sierra and Tahoe National Forests, were included for analysis. These research sites are part of the Sierra Nevada Adaptive Management Project (SNAMP), located in the headwaters of the American and Merced Rivers, and the Southern Sierra Critical Zone Observatory (CZO) in the Kings River basin. Two methods of forest harvesting were simulated in the study watersheds: 1) uniform canopy thinning, through reduction of Leaf Area Index (LAI) values and 2) strip-cut treatments, suggested as the best method for retaining snowpack. Results from this study compare the influence of vegetation on water cycle dynamics through the two harvesting treatments, initial vegetation densities, and individual catchment size. Model simulations for pre-treatment snow depth, soil moisture, and streamflow were validated with SNAMP and CZO in-situ measurements. Preliminary results show that a linear reduction of forest canopy reduces transpiration accordingly, but produces a non-linear increase in streamflow. Peak discharges also increased, occurring earlier in the spring and having more pronounced effects in the smaller catchments. Based on these results, harvesting thresholds required for obtaining increases in water yield are evaluated. Investigating the impact of forest management on these elements of the hydrologic cycle is essential in the mountain west, where ecosystem services are provided by the snowpack acting as a natural water reservoir, and streamflow which supplies a significant portion of water for hydropower, agricultural irrigation, and urban areas during the spring melt period.
NASA Astrophysics Data System (ADS)
Morimoto, M.; Juday, G. P.; Huettmann, F.
2016-12-01
Following forest disturbance, the stand initiation stage decisively influences future forest structure. Understanding post-harvest regeneration, especially under climate change, is essential to predicting future carbon stores in this extensive forest biome. We apply IPCC B1, A1B, and A2 climate scenarios to generate plausible future forest conditions under different management. We recorded presence of white spruce, birch, and aspen in 726 plots on 30 state forest white spruce harvest units. We built spatially explicit models and scenarios of species presence/absence using TreeNet (Stochastic Gradient Boosting). Post-harvest tree regeneration predictions in calibration data closely matched the validation set, indicating tree regeneration scenarios are reliable. Early stage post-harvest regeneration is similar to post-fire regeneration and matches the pattern of long-term natural vegetation distribution, confirming that site environmental factors are more important than management practices. Post-harvest natural regeneration of tree species increases under moderate warming scenarios, but fails under strong warming scenarios in landscape positions with high temperatures and low precipitation. Under all warming scenarios, the most successful regenerating species following white spruce harvest is white spruce. Birch experiences about 30% regeneration failure under A2 scenario by 2050. White spruce and aspen are projected to regenerate more successfully when site preparation is applied. Although white spruce has been the major managed species, birch may require more intensive management. Sites likely to experience regeneration failure of current tree species apparently will experience biome shift, although adaptive migration of existing or new species might be an option. Our scenario modeling tool allows resource managers to forecast tree regeneration on productive managed sites that have made a disproportionate contribution to carbon flux in a critical region.
Yegorova, Svetlana; Betts, Matthew G.; Hagar, Joan; Puettmann, Klaus J.
2013-01-01
Quantitative associations between animals and vegetation have long been used as a basis for conservation and management, as well as in formulating predictions about the influence of resource management and climate change on populations. A fundamental assumption embedded in the use of such correlations is that they remain relatively consistent over time. However, this assumption of stationarity has been rarely tested – even for forest birds, which are frequently considered to be 'indicator species' in management operations. We investigated the temporal dynamics of bird-vegetation relationships in young Douglas-fir (Pseudotsuga menziesii) forests over more than a decade following initial anthropogenic disturbance (commercial thinning). We modeled bird occurrence or abundance as a function of vegetation characteristics for eight common bird species for each of six breeding seasons following forest thinning. Generally, vegetation relationships were highly inconsistent in magnitude across years, but remained positive or negative within species. For 3 species, relationships that were initially strong dampened over time. For other species, strength of vegetation association was apparently stochastic. These findings indicate that caution should be used when interpreting weak bird-vegetation relationships found in short-term studies and parameterizing predictive models with data collected over the short term.
NASA Astrophysics Data System (ADS)
Buotte, P.; Law, B. E.; Hicke, J. A.; Hudiburg, T. W.; Levis, S.; Kent, J.
2017-12-01
Fire and beetle outbreaks can have substantial impacts on forest structure, composition, and function and these types of disturbances are expected to increase in the future. Therefore understanding the ecological impacts of these disturbances into the future is important. We used ecosystem process modeling to estimate the future occurrence of fire and beetle outbreaks and their impacts on forest resilience and carbon sequestration. We modified the Community Land Model (CLM4.5) to better represent forest growth and mortality in the western US through multiple avenues: 1) we increased the ecological resolution to recognize 14 forest types common to the region; 2) we improved CLM4.5's ability to handle drought stress by adding forest type-specific controls on stomatal conductance and increased rates of leaf shed during periods of low soil moisture; 3) we developed and implemented a mechanistic model of beetle population growth and subsequent tree mortality; 4) we modified the current fire module to account for more refined forest types; and 5) we developed multiple scenarios of harvest based on past harvest rates and proposed changes in land management policies. We ran CLM4.5 in offline mode with climate forcing data. We compare future forest growth rates and carbon sequestration with historical metrics to estimate the combined influence of future disturbances on forest composition and carbon sequestration in the western US.
Implications of land-use change on forest carbon stocks in the eastern United States
NASA Astrophysics Data System (ADS)
Puhlick, Joshua; Woodall, Christopher; Weiskittel, Aaron
2017-02-01
Given the substantial role that forests play in removing CO2 from the atmosphere, there has been a growing need to evaluate the carbon (C) implications of various forest management and land-use decisions. Although assessment of land-use change is central to national-level greenhouse gas monitoring guidelines, it is rarely incorporated into forest stand-level evaluations of C dynamics and trajectories. To better inform the assessment of forest stand C dynamics in the context of potential land-use change, we used a region-wide repeated forest inventory (n = 71 444 plots) across the eastern United States to assess forest land-use conversion and associated changes in forest C stocks. Specifically, the probability of forest area reduction between 2002-2006 and 2007-2012 on these plots was related to key driving factors such as proportion of the landscape in forest land use, distance to roads, and initial forest C. Additional factors influencing the actual reduction in forest area were then used to assess the risk of forest land-use conversion to agriculture, settlement, and water. Plots in forests along the Great Plains had the highest periodic (approximately 5 years) probability of land-use change (0.160 ± 0.075; mean ± SD) with forest conversion to agricultural uses accounting for 70.5% of the observed land-use change. Aboveground forest C stock change for plots with a reduction in forest area was -4.2 ± 17.7 Mg ha-1 (mean ± SD). The finding that poorly stocked stands and/or those with small diameter trees had the highest probability of conversion to non-forest land uses suggests that forest management strategies can maintain the US terrestrial C sink not only in terms of increased net forest growth but also retention of forest area to avoid conversion. This study highlights the importance of considering land-use change in planning and policy decisions that seek to maintain or enhance regional C sinks.
Evidence of fuels management and fire weather influencing fire severity in an extreme fire event
Jamie M. Lydersen; Brandon M. Collins; Matthew L. Brooks; John R. Matchett; Kristen L. Shive; Nicholas A. Povak; Van R. Kane; Douglas F. Smith
2017-01-01
Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western U.S. Given this increase there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels...
Influence of forest management on headwater stream amphibians at multiple spatial scales
Stoddard, Margo; Hayes, John P.; Erickson, Janet L.
2004-01-01
Background Amphibians are important components of headwater streams in forest ecosystems of the Pacific Northwest (PNW). They comprise the highest vertebrate biomass and density in these systems and are integral to trophic dynamics both as prey and as predators. The most commonly encountered amphibians in PNW headwater streams include the Pacific giant salamander (Dicamptodon tenebrosus), the tailed frog (Ascaphus truei), the southern torrent salamander (Rhyacotriton variegatus), and the Columbia torrent salamander (R. kezeri).
Salam, Md Abdus; Noguchi, Toshikuni; Alim, Md Abdul
2006-07-01
This paper examined the factors that might influence participating farmers' willingness-to-pay for the Tree Farming Fund (TFF) established for sustainable development of participatory forest management (PFM). Information on willingness-to-pay, socioeconomic characteristics, and attitudes of participating farmers toward TFF were obtained from interviews with 581 participating farmers. Logistic regression analysis was used to determine the dominant factors that might influence participating farmers' willingness-to-pay for the TFF. The results showed that participating farmers' willingness-to-pay was significantly affected by (i) family income; (ii) education level; (iii) confidence that his aspired benefits will be received; (iv) agreement with the statement that 'PFM is sustainable under the present state of management'; (v) agreement with the statement that 'PFM is a good strategy for forest conservation'; and (vi) knowledge of PFM strategies. Thus, participating farmers with a higher level of education, higher income and positive attitudes toward TFF tended to express more willingness-to-pay. Establishment of TFF could be an effective strategy in implementing sustainable PFM in Bangladesh. For this strategy to succeed, however, active partnership between the participating farmers and Forest Department is required. Participating farmers' attitudes toward TFF should therefore be taken into consideration as should the results of this study, which are important indicators of participating farmers' positive attitudes toward TFF.
Dahlström, Niklas; Nilsson, Christer
2004-03-01
Anecdotal information suggests that woody debris have had an important channel-forming role in Swedish streams and rivers, but there are few data to support this view. We identified 10 streams within near-natural and 10 streams within managed forest landscapes in central Sweden, and quantified their channel characteristics and content of woody debris. All pieces of woody debris greater than 0.5 m in length and greater than 0.05 m in base diameter were included. The near-natural forests were situated in reserves protected from forest cutting, whereas the managed forests had previously faced intensive logging in the area adjacent to the stream. The two sets of streams did not differ in general abiotic characteristics such as width, slope, or boulder cover, but the number of wood pieces was twice as high and the wood volume almost four times as high in the near-natural streams. This difference resulted in a higher frequency of debris dams in the near-natural streams. Although the total pool area did not differ between the two sets of streams, the wood-formed pools were larger and deeper, and potentially ecologically more important than other pools. In contrast to what has been believed so far, woody debris can be a channel-forming agent also in steeper streams with boulder beds. In a stepwise multiple regression analysis, pool area was positively and most strongly related to the quantity of woody debris, whereas channel gradient and wood volume were negatively related. The frequency of debris dams increased with the number of pieces of woody debris, but was not affected by other variables. The management implications of this study are that the wood quantity in streams in managed forests would need to be increased if management of streams will target more pristine conditions.
Detection of early warning signals of forest mortality in California
NASA Astrophysics Data System (ADS)
Liu, Y.; Kumar, M.; Katul, G. G.; Porporato, A. M.
2017-12-01
Massive forest mortality was observed in California during the most recent drought. Owing to complex interactions of physiological mechanisms under stress, prediction of climate-induced forest mortality using dynamic global vegetation models remains fraught with uncertainty. Given that forest ecosystems approaching mortality tend to exhibit reduction in resilience, we evaluate the time-varying resilience from time series of satellite images to detect early warning signals (EWSs) of mortality. Four metrics of EWSs are used: (1) low greenness, (2) high empirical autocorrelation of greenness, (3) high autocorrelation inferred using a Bayesian dynamic linear model considering the influence of seasonality and climate conditions, and (4) low recovery rate inferred from the drift term in the Langevin equation describing stochastic dynamics. Spatial accuracy and lead-time of these EWSs are evaluated by comparing the EWSs against observed mortality from aerial surveys conducted by the US Forest Service. Our results show that most forested areas in California that underwent mortality exhibit a EWS with a lead time of three months to two years ahead of observed mortality. Notably, EWS is also detected in some areas without mortality, suggesting reduced resilience during drought. Furthermore, the influence of the previous drought (2007-2009) may have propagated into the recent drought (2012-2016) through reduced resilience, hence contributing to the massive forest mortality observed recently. Methodologies developed in this study for detection of EWS will improve the near-term predictability of forest mortality, thus providing crucial information for forest and water resource management.
Management of riparian buffers: upslope thinning with downslope impacts
Kenneth J. Ruzicka; Klaus J. Puettmann; Deanna H. Olson
2014-01-01
We examined the potential of using upslope density management to influence growth and drought tolerance of trees in untreated downslope riparian forests. Increment cores from Douglas-fir trees in three mature stands in western Oregon, USA, were collected and measured. Trees responded to an apparent edge effect up to 15 m downslope of thinned areas but not downslope of...
Reburn severity in managed and unmanaged vegetation in a large wildfire.
J.R. Thompson; T.A. Spies; L.M. Ganio
2007-01-01
Debate over the influence of postwildfire management on future fire severity is occurring in the absence of empirical studies. We used satellite data, government agency records, and aerial photography to examine a forest landscape in southwest Oregon that burned in 1987 and then was subject, in part, to salvage logging and conifer planting before it reburned during the...
James D. Hall; Calvin O. Baker
1982-01-01
The literature and many published documents on rehabilitating and enhancing stream habitat for salmonid fishes are reviewed. The historical development and conceptual basis for habitat management are considered, followed by a review of successful and unsuccessful techniques for manipulation of spawning, rearing, and riparian habitat. Insufficient attention to...
Chadwick P. Lehman; Mark A. Rumble; Michael A. Battaglia; Todd R. Mills; Lance A. Asherin
2016-01-01
Understanding response of ponderosa pine (Pinus ponderosa) forest development following a mountain pine beetle (MPB; Dendroctonus ponderosae) epidemic has important management implications for winter habitat conditions for Merriamâs wild turkeys (Meleagris gallopavo merriami; hereafter, turkeys). Therefore, we quantified habitat changes over time for turkeys...
Assessing REDD+ performance of countries with low monitoring capacities: the matrix approach
NASA Astrophysics Data System (ADS)
Bucki, M.; Cuypers, D.; Mayaux, P.; Achard, F.; Estreguil, C.; Grassi, G.
2012-03-01
Estimating emissions from deforestation and degradation of forests in many developing countries is so uncertain that the effects of changes in forest management could remain within error ranges (i.e. undetectable) for several years. Meanwhile UNFCCC Parties need consistent time series of meaningful performance indicators to set credible benchmarks and allocate REDD+ incentives to the countries, programs and activities that actually reduce emissions, while providing social and environmental benefits. Introducing widespread measuring of carbon in forest land (which would be required to estimate more accurately changes in emissions from degradation and forest management) will take time and considerable resources. To ensure the overall credibility and effectiveness of REDD+, parties must consider the design of cost-effective systems which can provide reliable and comparable data on anthropogenic forest emissions. Remote sensing can provide consistent time series of land cover maps for most non-Annex-I countries, retrospectively. These maps can be analyzed to identify the forests that are intact (i.e. beyond significant human influence), and whose fragmentation could be a proxy for degradation. This binary stratification of forests biomes (intact/non-intact), a transition matrix and the use of default carbon stock change factors can then be used to provide initial estimates of trends in emission changes. A proof-of-concept is provided for one biome of the Democratic Republic of the Congo over a virtual commitment period (2005-2010). This approach could allow assessment of the performance of the five REDD+ activities (deforestation, degradation, conservation, management and enhancement of forest carbon stocks) in a spatially explicit, verifiable manner. Incentives could then be tailored to prioritize activities depending on the national context and objectives.
Grassland Management and Conversion into Grassland: Effects on Soil Carbon
Conant, Richard T. [Natural Resource Ecology Laboratory, Colorada State University, Fort Collins, CO (USA); Paustian, Keith [Natural Resource Ecology Laboratory, Colorada State University, Fort Collins, CO (USA); Elliott, Edward T. [Natural Resource Ecology Laboratory, Colorada State University, Fort Collins, CO (USA)
2003-01-01
Grasslands are heavily relied upon for food and forage production. A key component for sustaining production in grassland ecosystems is the maintenance of soil organic matter (SOM), which can be strongly influenced by management. Many management techniques intended to increase forage production may potentially increase SOM, thus sequestering atmospheric carbon (C). Further, conversion from either cultivation or native vegetation into grassland could also sequester atmospheric carbon. We reviewed studies examining the influence of improved grassland management practices and conversion into grasslands on soil C worldwide to assess the potential for C sequestration. Results from 115 studies containing over 300 data points were analyzed. Management improvements included fertilization (39%), improved grazing management (24%), conversion from cultivation (15%) and native vegetation (15%), sowing of legumes (4%) and grasses (2%), earthworm introduction (1%), and irrigation (1%). Soil C content and concentration increased with improved management in 74% of the studies, and mean soil C increased with all types of improvement. Carbon sequestration rates were highest during the first 40 y after treatments began and tended to be greatest in the top 10 cm of soil. Impacts were greater in woodland and grassland biomes than in forest, desert, rain forest, or shrubland biomes. Conversion from cultivation, the introduction of earthworms, and irrigation resulted in the largest increases. Rates of C sequestration by type of improvement ranged from 0.11 to 3.04 Mg C · ha–1 y–1, with a mean of 0.54 Mg C · ha –1 · y–1, and were highly influenced by biome type and climate. We conclude that grasslands can act as a significant carbon sink with the implementation of improved management.
Carlson, Bradley Z; Renaud, Julien; Biron, Pierre Eymard; Choler, Philippe
2014-07-01
Understanding decadal-scale land-cover changes has the potential to inform current conservation policies. European mountain landscapes that include numerous protected areas provide a unique opportunity to weigh the long-term influences of land-use practices and climate on forest-grassland ecotone dynamics. Aerial photographs from four dates (1948, 1978, 1993, and 2009) were used to quantify the extent of forest and grassland cover at 5-m resolution across a 150-km2 area in a protected area of the southwestern French Alps. The study area included a grazed zone and a nongrazed zone that was abandoned during the 1970s. We estimated time series of a forestation index (FI) and analyzed the effects of elevation and grazing on FI using a hierarchical linear mixed effect model. Forest extent (composed primarily of mountain pine, Pinus uncinata) expanded from 50.6 km2 in 1948 to 85.5 km2 in 2009, i.e., a 23% increase in relative cover at the expense of grassland communities. Over the sixty-year period, the treeline rose by 118 m, from 1564 to 1682 m. Rapid forest expansion within the nongrazed zone followed the cessation of logging activities and was likely accelerated by climate warming during the 1980s. Within the grazed zone, the maintained presence of sheep did not fully counteract mountain pine expansion and led to highly contrasting rates of land-cover change based on the location of shepherds' cabins and water sources. Projections of FI for 2030 showed remnant patches of intensively used grasslands interspersed in a densely forested matrix. Our analysis of mountain land-cover dynamics provided strong evidence for forest encroachment into grassland habitat despite consistent grazing pressure. This pattern may be attributed to the disappearance of traditional land-use practices such as shrub burning and removal. Our findings prompt land managers to reconsider their initial conservation priority (i.e., the protection of a renowned mountain pine forest) and to implement proactive management strategies in order to preserve landscape heterogeneity and biological diversity. Projecting historical trends in the forest-grassland ecotone to 2030 provides stakeholders with a policy relevant tool for near-term land management.
NASA Astrophysics Data System (ADS)
Wasser, L. A.; Chasmer, L. E.
2012-12-01
Forested riparian buffers (FRB) perform numerous critical ecosystem services. However, globally, FRB spatial configuration and structure have been modified by anthropogenic development resulting in widespread ecological degradation as seen in the Gulf of Mexico and the Chesapeake Bay. Riparian corridors within developed areas are particularly vulnerable to disturbance given two edges - the naturally occurring stream edge and the matrix edge. Increased edge length predisposes riparian vegetation to "edge effects", characterized by modified physical and environmental conditions at the interface between the forested buffer and the adjacent landuse, or matrix and forest fragment degradation. The magnitude and distance of edge influence may be further influenced by adjacent landuse type and the width of the buffer corridor at any given location. There is a need to quantify riparian buffer spatial configuration and structure over broad geographic extents and within multiple riparian systems in support of ecologically sound management and landuse decisions. This study thus assesses the influence of varying landuse types (agriculture, suburban development and undeveloped) on forested riparian buffer 3-dimensional structure and spatial configuration using high resolution Light Detection and Ranging (LiDAR) data collected within a headwater watershed. Few studies have assessed riparian buffer structure and width contiguously for an entire watershed, an integral component of watershed planning and restoration efforts such as those conducted throughout the Chesapeake Bay. The objectives of the study are to 1) quantify differences in vegetation structure at the stream and matrix influenced riparian buffer edges, compared to the forested interior and 2) assess continuous patterns of changes in vegetation structure throughout the buffer corridor beginning at the matrix edge and ending at the stream within buffers a) of varying width and b) that are adjacent to varying landuse types. Results suggest that 1) the spatial configuration of riparian forests has a strong influence on forest structure compared to a weaker association with adjacent landuse type 2) developed landuse types are often associated with increased understory vegetation density 3) that riparian vegetation canopy cover is dense regardless of corridor width or adjacent landuse type and 4) the degree to which edge effects propagate into the buffer corridor is most influenced by corridor width. The study further demonstrates the utility of automated algorithms that sample lidar data in watershed-wide ecological analysis. Results suggest that landuse regulations should encourage wider buffers which will in turn support a greater range of ecosystem services including improved wildlife habitat, stream shading and detrital inputs.
25 CFR 163.11 - Forest management planning and sustained yield management.
Code of Federal Regulations, 2011 CFR
2011-04-01
... GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.11 Forest management planning and... 25 Indians 1 2011-04-01 2011-04-01 false Forest management planning and sustained yield management... management planning for Indian forest land shall be carried out through participation in the development and...
Singh, Minerva; Tokola, Timo; Hou, Zhengyang; Notarnicola, Claudia
2017-07-01
Avian species persistence in a forest patch is strongly related to the degree of isolation and size of a forest patch and the vegetation structure within a patch and its matrix are important predictors of bird habitat suitability. A combination of space-borne optical (Landsat), ALOS-PALSAR (radar), and airborne Light Detection and Ranging (LiDAR) data was used for assessing variation in forest structure across forest patches that had undergone different levels of forest degradation in a logged forest-agricultural landscape in Southern Laos. The efficacy of different remote sensing (RS) data sources in distinguishing forest patches that had different seizes, configurations, and vegetation structure was examined. These data were found to be sensitive to the varying levels of degradation of the different patch categories. Additionally, the role of local scale forest structure variables (characterized using the different RS data and patch area) and landscape variables (characterized by distance from different forest patches) in influencing habitat preferences of International Union for Conservation of Nature (IUCN) Red listed birds found in the study area was examined. A machine learning algorithm, MaxEnt, was used in conjunction with these data and field collected geographical locations of the avian species to identify the factors influencing habitat preference of the different bird species and their suitable habitats. Results show that distance from different forest patches played a more important role in influencing habitat suitability for the different avian species than local scale factors related to vegetation structure and health. In addition to distance from forest patches, LiDAR-derived forest structure and Landsat-derived spectral variables were important determinants of avian habitat preference. The models derived using MaxEnt were used to create an overall habitat suitability map (HSM) which mapped the most suitable habitat patches for sustaining all the avian species. This work also provides insight that retention of forest patches, including degraded and isolated forest patches in addition to large contiguous forest patches, can facilitate bird species retention within tropical agricultural landscapes. It also demonstrates the effective use of RS data in distinguishing between forests that have undergone varying levels of degradation and identifying the habitat preferences of different bird species. Practical conservation management planning endeavors can use such data for both landscape scale monitoring and habitat mapping.
Simulating forest landscape disturbances as coupled human and natural systems
Wimberly, Michael; Sohl, Terry L.; Liu, Zhihua; Lamsal, Aashis
2015-01-01
Anthropogenic disturbances resulting from human land use affect forest landscapes over a range of spatial and temporal scales, with diverse influences on vegetation patterns and dynamics. These processes fall within the scope of the coupled human and natural systems (CHANS) concept, which has emerged as an important framework for understanding the reciprocal interactions and feedbacks that connect human activities and ecosystem responses. Spatial simulation modeling of forest landscape change is an important technique for exploring the dynamics of CHANS over large areas and long time periods. Landscape models for simulating interactions between human activities and forest landscape dynamics can be grouped into two main categories. Forest landscape models (FLMs) focus on landscapes where forests are the dominant land cover and simulate succession and natural disturbances along with forest management activities. In contrast, land change models (LCMs) simulate mosaics of different land cover and land use classes that include forests in addition to other land uses such as developed areas and agricultural lands. There are also several examples of coupled models that combine elements of FLMs and LCMs. These integrated models are particularly useful for simulating human–natural interactions in landscapes where human settlement and agriculture are expanding into forested areas. Despite important differences in spatial scale and disciplinary scope, FLMs and LCMs have many commonalities in conceptual design and technical implementation that can facilitate continued integration. The ultimate goal will be to implement forest landscape disturbance modeling in a CHANS framework that recognizes the contextual effects of regional land use and other human activities on the forest ecosystem while capturing the reciprocal influences of forests and their disturbances on the broader land use mosaic.
Dayer, Ashley A.; Stedman, Richard C.; Allred, Shorna B.; Rosenberg, Kenneth V.; Fuller, Angela K.
2016-01-01
Early successional forest habitat (ESH) and associated wildlife species in the northeastern United States are in decline. One way to help create early successional forest conditions is engaging private forest landowners in even-aged forest management because their limited participation may have contributed to declines in ESH for wildlife species of high conservation concern. We applied the reasoned action approach from social psychology to predict intentions of landowners in the 13-county Southern Tier of New York State, USA, to conduct patch-cuts, which is a type of even-aged forest management. We tested the predictive ability of the model using data from a mail survey of landowners conducted from November 2010 to January 2011. Landowner intention to conduct patch-cuts was high (55% of respondents), with attitude being the strongest direct predictor of behavioral intention. Our results suggest that patch-cutting intentions are most likely expressed by landowners who think the behavior is good for their land and wildlife, believe in positive outcomes of land and wildlife management, belong to a game wildlife organization, and have conducted patch-cuts in the past. Strategies to engage more landowners in ESH management will have the highest likelihood of success if outreach efforts focus on influencing behavioral beliefs and subsequently attitudes, possibly working with game wildlife organizations to communicate a unified message for habitat conservation, including the importance of maintaining and creating ESH. Our results demonstrate the importance of social science research to increase the likelihood that conservation targets for declining wildlife species are met. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Yang, Z.; Law, B. E.; Jones, M. O.
2015-12-01
Previous projections of the contemporary forest carbon balance in the western US showed uncertainties associated with impacts of climate extremes and a coarse spatio-temporal resolution implemented over heterogeneous mountain regions. We modified the Community Land Model (CLM) 4.5 to produce 4km resolution forest carbon changes with drought, fire and management in the western US. We parameterized the model with species data using local plant trait observations for 30 species. To quantify uncertainty, we evaluated the model with data from flux sites, inventories and ancillary data in the region. Simulated GPP was lower than the measurements at our AmeriFlux sites by 17-22%. Simulated burned area was generally higher than Landsat observations, suggesting the model overestimates fire emissions with the new fire model. Landsat MTBS data show high severity fire represents only a small portion of the total burnt area (12-14%), and no increasing trend from 1984 to 2011. Moderate severity fire increased ~0.23%/year due to fires in the Sierra Nevada (Law & Waring 2014). Oregon, California, and Washington were a net carbon sink, and net ecosystem carbon balance (NECB) declined in California over the past 15 years, partly due to drought impacts. Fire emissions were a small portion of the regional carbon budget compared with the effect of harvest removals. Fossil fuel emissions in CA are more than 3x that of OR and WA combined, but are lower per capita. We also identified forest regions that are most vulnerable to climate-driven transformations and to evaluate the effects of management strategies on forest NECB. Differences in forest NECB among states are strongly influenced by the extent of drought (drier longer in the SW) and management intensity (higher in the PNW).
Brown, Sandra; Swingland, Ian R; Hanbury-Tenison, Robin; Prance, Ghillean T; Myers, Norman
2002-08-15
The global carbon cycle is significantly influenced by changes in the use and management of forests and agriculture. Humans have the potential through changes in land use and management to alter the magnitude of forest-carbon stocks and the direction of forest-carbon fluxes. However, controversy over the use of biological means to absorb or reduce emissions of CO(2) (often referred to as carbon 'sinks') has arisen in the context of the Kyoto Protocol. The controversy is based primarily on two arguments: sinks may allow developed nations to delay or avoid actions to reduce fossil fuel emissions, and the technical and operational difficulties are too threatening to the successful implementation of land use and forestry projects for providing carbon offsets. Here we discuss the importance of including carbon sinks in efforts to address global warming and the consequent additional social, environmental and economic benefits to host countries. Activities in tropical forest lands provide the lowest cost methods both of reducing emissions and reducing atmospheric concentrations of greenhouse gases. We conclude that the various objections raised as to the inclusion of carbon sinks to ameliorate climate change can be addressed by existing techniques and technology. Carbon sinks provide a practical available method of achieving meaningful reductions in atmospheric concentrations of carbon dioxide while at the same time contribute to national sustainable development goals.
Postfire management in forested public lands of the western USA
Beschta, R.L.; Rhodes, J.J.; Kauffman, J.B.; Gresswell, Robert E.; Minshall, G.W.; Frissell, C.A.; Perry, D.A.; Hauer, R.
2004-01-01
Forest ecosystems in the western United States evolved over many millennia in response to disturbances such as wildfires. Land use and management practices have altered these ecosystems, however, including fire regimes in some areas. Forest ecosystems are especially vulnerable to postfire management practices because such practices may influence forest dynamics and aquatic systems for decades to centuries. Thus, there is an increasing need to evaluate the effect of postfire treatments from the perspective of ecosystem recovery. We examined, via the published literature and our collective experience, the ecological effects of some common postfire treatments. Based on this examination, promising postfire restoration measures include retention of large trees, rehabilitation of firelines and roads, and, in some cases, planting of native species. The following practices are generally inconsistent with efforts to restore ecosystem functions after fire: seeding exotic species, livestock grazing, placement of physical structures in and near stream channels, ground-based postfire logging, removal of large trees, and road construction. Practices that adversely affect soil integrity, persistence or recovery of native species, riparian functions, or water quality generally impede ecological recovery after fire. Although research provides a basis for evaluating the efficacy of postfire treatments, there is a continuing need to increase our understanding of the effects of such treatments within the context of societal and ecological goals for forested public lands of the western United States.
Capturing Old-Growth Values for Use in Forest Decision-Making
NASA Astrophysics Data System (ADS)
Owen, Rochelle J.; Duinker, Peter N.; Beckley, Thomas M.
2009-02-01
Old-growth forests have declined significantly across the world. Decisions related to old growth are often mired in challenges of value diversity, conflict, data gaps, and resource pressures. This article describes old-growth values of citizens and groups in Nova Scotia, Canada, for integration in sustainable forest management (SFM) decision-making. The study is based on data from 76 research subjects who participated in nine field trips to forest stands. Research subjects were drawn from Aboriginal groups, environmental organizations, forestry professionals, and rural and urban publics. Diaries, group discussions, and rating sheets were used to elicit information during the field trips. Findings show that different elicitation techniques can influence the articulation of intensity with which some values are held. In addition, certain values are more often associated with old-growth than with other forest-age classes. Some values associated with old-growth are considered more important than others, and some silvicultural treatments are perceived to compromise old-growth values more than others. Demographic characteristics, such as constituency group, gender, and age, are shown to influence value priorities. Ideas on how to incorporate old-growth values into SFM decision-making are highlighted.
Houle, Daniel; Ouimet, Rock; Lambert, Marie-Claude; Logan, Travis
2016-01-01
Biological carbon sequestration by forest ecosystems plays an important role in the net balance of greenhouse gases, acting as a carbon sink for anthropogenic CO2 emissions. Nevertheless, relatively little is known about the abiotic environmental factors (including climate) that control carbon storage in temperate and boreal forests and consequently, about their potential response to climate changes. From a set of more than 94,000 forest inventory plots and a large set of spatial data on forest attributes interpreted from aerial photographs, we constructed a fine-resolution map (∼375 m) of the current carbon stock in aboveground live biomass in the 435,000 km2 of managed forests in Quebec, Canada. Our analysis resulted in an area-weighted average aboveground carbon stock for productive forestland of 37.6 Mg ha−1, which is lower than commonly reported values for similar environment. Models capable of predicting the influence of mean annual temperature, annual precipitation, and soil physical environment on maximum stand-level aboveground carbon stock (MSAC) were developed. These models were then used to project the future MSAC in response to climate change. Our results indicate that the MSAC was significantly related to both mean annual temperature and precipitation, or to the interaction of these variables, and suggest that Quebec’s managed forests MSAC may increase by 20% by 2041–2070 in response to climate change. Along with changes in climate, the natural disturbance regime and forest management practices will nevertheless largely drive future carbon stock at the landscape scale. Overall, our results allow accurate accounting of carbon stock in aboveground live tree biomass of Quebec’s forests, and provide a better understanding of possible feedbacks between climate change and carbon storage in temperate and boreal forests. PMID:26966680
Ferranto, Shasta; Huntsinger, Lynn; Stewart, William; Getz, Christy; Nakamura, Gary; Kelly, Maggi
2012-04-30
Over half of the United States is privately owned. Improving environmental sustainability requires that the scientific and management communities provide effective outreach to the many landowners making decisions about land use and management practices on these lands. We surveyed California forest and rangeland owners in ten counties throughout the state to assess the impact of existing outreach and identify gaps in information distribution and content. Although a number of organizations provide land management advice highly-ranked by landowners, no individual organization currently reaches more than 30% of forest and rangeland owners, and these groups together reach less than 60% of landowners. The lowest ranked advice came from wildlife and land management agencies, whereas the highest ranked advice came from private consultants and advisory organizations. The ecosystem services provided by forests and rangelands are strongly influenced by conservation scale, and this appears to be recognized in current outreach efforts. Owners of large properties (>200 ha) were substantially more likely to have received land management advice than smaller-sized properties, and from a broader group of organizations. As ownerships become increasingly fragmented, outreach focus and methods will need to shift to more effectively target the owners of smaller properties. On the other hand, some major outreach goals, such as conservation of wildlife, ranchland, or agricultural communities, will continue to rely on effective outreach to owners of larger properties. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Burakowski, E. A.; Lutz, D. A.
2014-12-01
Surface albedo provides an important climate regulating ecosystem service, particularly in the mid-latitudes where seasonal snow cover influences surface radiation budgets. In the case of substantial seasonal snow cover, the influence of albedo can equal or surpass the climatic benefits of carbon sequestration from forest growth. Climate mitigation platforms should therefore consider albedo in their framework in order to integrate these two climatic services in an economic context for the effective design and implementation of forest management projects. Over the next century, the influence of surface albedo is projected to diminish under higher emissions scenarios due to an overall decrease in snow depth and duration of snow cover in the mid-latitudes. In this study, we focus on the change in economic value of winter albedo in the northeastern United States projected through 2100 using the Special Report on Emissions Scenarios (SRES) a1 and b1 scenarios. Statistically downscaled temperature and precipitation are used as input to the Variable Infiltration Capacity (VIC) model to provide future daily snow depth fields through 2100. Using VIC projections of future snow depth, projected winter albedo fields over deforested lands were generated using an empirical logarithmic relationship between snow depth and albedo derived from a volunteer network of snow observers in New Hampshire over the period Nov 2011 through 2014. Our results show that greater reductions in snow depth and the number of winter days with snow cover in the a1 compared to the b1 scenario reduce wintertime albedo when forested lands are harvested. This result has implications on future trade-offs among albedo, carbon storage, and timber value that should be investigated in greater detail. The impacts of forest harvest on radiative forcing associated with energy redistribution (e.g., latent heat and surface roughness length) should also be considered in future work.
Strong biotic influences on regional patterns of climate regulation services
NASA Astrophysics Data System (ADS)
Serna-Chavez, H. M.; Swenson, N. G.; Weiser, M. D.; van Loon, E. E.; Bouten, W.; Davidson, M. D.; van Bodegom, P. M.
2017-05-01
Climate regulation services from forests are an important leverage in global-change mitigation treaties. Like most ecosystem services, climate regulation is the product of various ecological phenomena with unique spatial features. Elucidating which abiotic and biotic factors relate to spatial patterns of climate regulation services advances our understanding of what underlies climate-mitigation potential and its variation within and across ecosystems. Here we quantify and contrast the statistical relations between climate regulation services (albedo and evapotranspiration, primary productivity, and soil carbon) and abiotic and biotic factors. We focus on 16,955 forest plots in a regional extent across the eastern United States. We find the statistical effects of forest litter and understory carbon on climate regulation services to be as strong as those of temperature-precipitation interactions. These biotic factors likely influence climate regulation through changes in vegetation and canopy density, radiance scattering, and decomposition rates. We also find a moderate relation between leaf nitrogen traits and primary productivity at this regional scale. The statistical relation between climate regulation and temperature-precipitation ranges, seasonality, and climatic thresholds highlights a strong feedback with global climate change. Our assessment suggests the expression of strong biotic influences on climate regulation services at a regional, temperate extent. Biotic homogenization and management practices manipulating forest structure and succession will likely strongly impact climate-mitigation potential. The identity, strength, and direction of primary influences differed for each process involved in climate regulation. Hence, different abiotic and biotic factors are needed to monitor and quantify the full climate-mitigation potential of temperate forest ecosystems.
T.W. Chamberlin
1982-01-01
The water and land-system processes through which timber harvesting affects anadromous fish habitat in western North America are discussed. The effects of timber harvesting on the water balance that regulates streamflow are evaluated, as are direct influences of harvesting on slope stability, erosion, and the introduction of debris in to stream channels. The effects of...
David P. Turner; William D. Ritts; Robert E. Kennedy; Andrew N. Gray; Zhiqiang Yang
2016-01-01
Variation in climate, disturbance regime, and forest management strongly influence terrestrial carbon sources and sinks. Spatially distributed, process-based, carbon cycle simulation models provide a means to integrate information on these various influences to estimate carbon pools and flux over large domains. Here we apply the Biome-BGC model over the four-state...
Ardelean, Ioana Violeta; Keller, Christine; Scheidegger, Christoph
2015-01-01
Lichens are valuable bio-indicators for evaluating the consequences of human activities that are increasingly changing the earth's ecosystems. Since a major objective of national parks is the preservation of biodiversity, our aim is to analyse how natural resource management, the availability of lichen substrates and environmental parameters influence lichen diversity in Rodnei Mountains National Park situated in the Eastern Carpathians. Three main types of managed vegetation were investigated: the transhumance systems in alpine meadows, timber exploitation in mixed and pure spruce forests, and the corresponding conserved sites. The data were sampled following a replicated design. For the analysis, we considered not only all lichen species, but also species groups from different substrates such as soil, trees and deadwood. The lichen diversity was described according to species richness, red-list status and substrate-specialist species richness. The variation in species composition was related to the environmental variables. Habitat management was found to negatively influence species richness and alter the lichen community composition, particularly for threatened and substrate-specialist species. It reduced the mean level of threatened species richness by 59%, when all lichen species were considered, and by 81%, when only epiphytic lichens were considered. Management-induced disturbance significantly decreased lichen species richness in forest landscapes with long stand continuity. The diversity patterns of the lichens indicate a loss of species richness and change in species composition in areas where natural resources are still exploited inside the borders of the national park. It is thus imperative for protected areas, in particular old-growth forests and alpine meadows, to receive more protection than they have received in the past to ensure populations of the characteristic species remain viable in the future.
A review of the relationships between drought and forest fire in the United States.
Littell, Jeremy S; Peterson, David L; Riley, Karin L; Liu, Yongquiang; Luce, Charles H
2016-07-01
The historical and presettlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity, severity, extent, and frequency. Fire regime characteristics arise across many individual fires at a variety of spatial and temporal scales, so both weather and climate - including short- and long-term droughts - are important and influence several, but not all, aspects of fire regimes. We review relationships between drought and fire regimes in United States forests, fire-related drought metrics and expected changes in fire risk, and implications for fire management under climate change. Collectively, this points to a conceptual model of fire on real landscapes: fire regimes, and how they change through time, are products of fuels and how other factors affect their availability (abundance, arrangement, continuity) and flammability (moisture, chemical composition). Climate, management, and land use all affect availability, flammability, and probability of ignition differently in different parts of North America. From a fire ecology perspective, the concept of drought varies with scale, application, scientific or management objective, and ecosystem. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada
NASA Astrophysics Data System (ADS)
Wotton, B. M.; Flannigan, M. D.; Marshall, G. A.
2017-09-01
Much research has been carried out on the potential impacts of climate change on forest fire activity in the boreal forest. Indeed, there is a general consensus that, while change will vary regionally across the vast extent of the boreal, in general the fire environment will become more conducive to fire. Land management agencies must consider ways to adapt to these new conditions. This paper examines the impact of that changed fire environment on overall wildfire suppression capability. We use multiple General Circulation Models and carbon emission pathways to generate future fire environment scenarios for Canada’s forested region. We then use these scenarios with the Canadian Forest Fire Behaviour Prediction System and spatial coverages of the current forest fuel composition across the landscape to examine potential variation in key fire behaviour outputs that influence whether fire management resources can effectively suppress fire. Specifically, we evaluate how the potential for crown fire occurrence and active growth of fires changes with the changing climate. We also examine future fire behaviour through the lens of operational fire intensity thresholds used to guide decisions about resources effectiveness. Results indicate that the proportion of days in fire seasons with the potential for unmanageable fire will increase across Canada’s forest, more than doubling in some regions in northern and eastern boreal forest.
Vernon, Michael J.; Sherriff, Rosemary L.; van Mantgem, Phillip; Kane, Jeffrey M.
2018-01-01
Drought is an important stressor in forest ecosystems that can influence tree vigor and survival. In the U.S., forest managers use two primary management techniques to promote resistance and resilience to drought: prescribed fire and mechanical thinning. Generally applied to reduce fuels and fire hazard, treatments may also reduce competition for resources that may improve tree-growth and reduce mortality during drought. A recent severe and prolonged drought in California provided a natural experiment to investigate tree-growth responses to fuel treatments and climatic stress. We assessed tree-growth from 299 ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) in treated and untreated stands during severe drought from 2012 to 2015 in the mixed-conifer forests of Whiskeytown National Recreation Area (WNRA) in northern California. The treatment implemented at WNRA removed 34% of live basal area through mechanical thinning with a subsequent pile burning of residual fuels. Tree-growth was positively associated with crown ratio and negatively associated with competition and a 1-year lag of climate water deficit, an index of drought. Douglas-fir generally had higher annual growth than ponderosa pine, although factors affecting growth were the same for both species. Drought resistance, expressed as the ratio between mean growth during drought and mean growth pre-drought, was higher in treated stands compared to untreated stands during both years of severe drought (2014 and 2015) for ponderosa pine but only one year (2014) for Douglas-fir. Thinning improved drought resistance, but tree size, competition and species influenced this response. On-going thinning treatments focused on fuels and fire hazard reduction are likely to be effective at promoting growth and greater drought resistance in dry mixed-conifer forests. Given the likelihood of future droughts, land managers may choose to implement similar treatments to reduce potential impacts.
Characterization of potential fire regimes: applying landscape ecology to fire management in Mexico
NASA Astrophysics Data System (ADS)
Jardel, E.; Alvarado, E.; Perez-Salicrup, D.; Morfín-Rios, J.
2013-05-01
Knowledge and understanding of fire regimes is fundamental to design sound fire management practices. The high ecosystem diversity of Mexico offers a great challenge to characterize the fire regime variation at the landscape level. A conceptual model was developed considering the main factors controlling fire regimes: climate and vegetation cover. We classified landscape units combining bioclimatic zones from the Holdridge life-zone system and actual vegetation cover. Since bioclimatic conditions control primary productivity and biomass accumulation (potential fuel), each landscape unit was considered as a fuel bed with a particular fire intensity and behavior potential. Climate is also a determinant factor of post-fire recovery rates of fuel beds, and climate seasonality (length of the dry and wet seasons) influences fire probability (available fuel and ignition efficiency). These two factors influence potential fire frequency. Potential fire severity can be inferred from fire frequency, fire intensity and behavior, and vegetation composition and structure. Based in the conceptual model, an exhaustive literature review and expert opinion, we developed rules to assign a potential fire regime (PFR) defined by frequency, intensity and severity (i.e. fire regime) to each bioclimatic-vegetation landscape unit. Three groups and eight types of potential fire regimes were identified. In Group A are fire-prone ecosystems with frequent low severity surface fires in grasslands (PFR type I) or forests with long dry season (II) and infrequent high-severity fires in chaparral (III), wet temperate forests (IV, fire restricted by humidity), and dry temperate forests (V, fire restricted by fuel recovery rate). Group B includes fire-reluctant ecosystems with very infrequent or occasional mixed severity surface fires limited by moisture in tropical rain forests (VI) or fuel availability in seasonally dry tropical forests (VII). Group C and PFR VIII include fire-free environments that correspond to deserts. Application of PFR model to fire management is discussed.
Identifying the location of fire refuges in wet forest ecosystems.
Berry, Laurence E; Driscoll, Don A; Stein, John A; Blanchard, Wade; Banks, Sam C; Bradstock, Ross A; Lindenmayer, David B
2015-12-01
The increasing frequency of large, high-severity fires threatens the survival of old-growth specialist fauna in fire-prone forests. Within topographically diverse montane forests, areas that experience less severe or fewer fires compared with those prevailing in the landscape may present unique resource opportunities enabling old-growth specialist fauna to survive. Statistical landscape models that identify the extent and distribution of potential fire refuges may assist land managers to incorporate these areas into relevant biodiversity conservation strategies. We used a case study in an Australian wet montane forest to establish how predictive fire simulation models can be interpreted as management tools to identify potential fire refuges. We examined the relationship between the probability of fire refuge occurrence as predicted by an existing fire refuge model and fire severity experienced during a large wildfire. We also examined the extent to which local fire severity was influenced by fire severity in the surrounding landscape. We used a combination of statistical approaches, including generalized linear modeling, variogram analysis, and receiver operating characteristics and area under the curve analysis (ROC AUC). We found that the amount of unburned habitat and the factors influencing the retention and location of fire refuges varied with fire conditions. Under extreme fire conditions, the distribution of fire refuges was limited to only extremely sheltered, fire-resistant regions of the landscape. During extreme fire conditions, fire severity patterns were largely determined by stochastic factors that could not be predicted by the model. When fire conditions were moderate, physical landscape properties appeared to mediate fire severity distribution. Our study demonstrates that land managers can employ predictive landscape fire models to identify the broader climatic and spatial domain within which fire refuges are likely to be present. It is essential that within these envelopes, forest is protected from logging, roads, and other developments so that the ecological processes related to the establishment and subsequent use of fire refuges are maintained.
Overton, C.T.; Schmitz, R.A.; Casazza, Michael L.
2006-01-01
Mineral sites are scarce resources of high ion concentration used heavily by the Pacific Coast subpopulation of band-tailed pigeons. Over 20% of all known mineral sites used by band-tailed pigeons in western Oregon, including all hot springs, have been abandoned. Prior investigations have not analyzed stand or landscape level habitat composition in relation to band-tailed pigeon use of mineral sites. We used logistic regression models to evaluate the influence of habitat types, identified from Gap Analysis Program (GAP) products at two spatial scales, on the odds of mineral site use in Oregon (n = 69 currently used and 20 historically used). Our results indicated that the odds of current use were negatively associated with non-forested terrestrial and private land area around mineral sites. Similarly, the odds of current mineral site use were positively associated with forested and special status (GAP stewardship codes 1 and 2) land area. The most important variable associated with the odds of mineral site use was the amount of non-forested land cover at either spatial scale. Our results demonstrate the utility of meso-scale geographic information designed for regional, coarse-filter approaches to conservation in fine-filter investigation of wildlife-habitat relationships. Adjacent landcover and ownership status explain the pattern of use for known mineral sites in western Oregon. In order for conservation and management activities for band-tailed pigeons to be successful, mineral sites need to be addressed as important and vulnerable resources. Management of band-tailed pigeons should incorporate the potential for forest management activities and land ownership patterns to influence the risk of mineral site abandonment.
Hou, Ying; Li, Bo; Müller, Felix; Chen, Weiping
2016-11-01
Watersheds provide multiple ecosystem services. Ecosystem service assessment is a promising approach to investigate human-environment interaction at the watershed scale. The spatial characteristics of ecosystem services are closely related to land use statuses in human-dominated watersheds. This study aims to investigate the effects of land use on the spatial variations of ecosystem services at the Dianchi Lake watershed in Southwest China. We investigated the spatial variations of six ecosystem services-food supply, net primary productivity (NPP), habitat quality, evapotranspiration, water yield, and nitrogen retention. These services were selected based on their significance at the Dianchi Lake watershed and the availability of their data. The quantification of these services was based on modeling, value transference, and spatial analysis in combination with biophysical and socioeconomic data. Furthermore, we calculated the values of ecosystem services provided by different land use types and quantified the correlations between ecosystem service values and land use area proportions. The results show considerable spatial variations in the six ecosystem services associated with land use influences in the Dianchi Lake watershed. The cropland and forest land use types had predominantly positive influences on food productivity and NPP, respectively. The rural residential area and forest land use types reduced and enhanced habitat quality, respectively; these influences were identical to those of evapotranspiration. Urban area and rural residential area exerted significantly positive influences on water yield. In contrast, water yield was negatively correlated with forest area proportion. Finally, cropland and forest had significantly positive and negative influences, respectively, on nitrogen retention. Our study emphasizes the importance of consideration of the influences from land use composition and distribution on ecosystem services for managing the ecosystems of human-dominated watersheds.
Post-fire vegetation and fuel development influences fire severity patterns in reburns.
Coppoletta, Michelle; Merriam, Kyle E; Collins, Brandon M
2016-04-01
In areas where fire regimes and forest structure have been dramatically altered, there is increasing concern that contemporary fires have the potential to set forests on a positive feedback trajectory with successive reburns, one in which extensive stand-replacing fire could promote more stand-replacing fire. Our study utilized an extensive set of field plots established following four fires that occurred between 2000 and 2010 in the northern Sierra Nevada, California, USA that were subsequently reburned in 2012. The information obtained from these field plots allowed for a unique set of analyses investigating the effect of vegetation, fuels, topography, fire weather, and forest management on reburn severity. We also examined the influence of initial fire severity and time since initial fire on influential predictors of reburn severity. Our results suggest that high- to moderate-severity fire in the initial fires led to an increase in standing snags and shrub vegetation, which in combination with severe fire weather promoted high-severity fire effects in the subsequent reburn. Although fire behavior is largely driven by weather, our study demonstrates that post-fire vegetation composition and structure are also important drivers of reburn severity. In the face of changing climatic regimes and increases in extreme fire weather, these results may provide managers with options to create more fire-resilient ecosystems. In areas where frequent high-severity fire is undesirable, management activities such as thinning, prescribed fire, or managed wildland fire can be used to moderate fire behavior not only prior to initial fires, but also before subsequent reburns.
Effects of basal area on survival and growth of longleaf pine when practicing selection silviculture
Ferhat Kara; Edward F. Loewenstein; Dale G. Brockway
2017-01-01
Aim of study: Uneven-aged (UEA) management systems can achieve multiple-use objectives, however, use of UEA techniques to manage longleaf pine (Pinus palustris Mill.) forests are still open to question, because of the speciesâ intolerance of competition. It was our aim to examine the influence of different levels (9.2, 13.8 and...
Ferhat Kara; Edward F. Loewenstein
2015-01-01
Even-aged silvicultural methods have been successfully used to manage longleaf pine (Pinus palustris Mill.) forests for wood production; however, successful use of uneven-aged methods to manage this ecosystem is less well documented. In this study, the effects of varying levels of residual basal area (RBA) (9.2, 13.8, and 18.4 m2...
Missouri Ozark Forest Ecosystem Project: the experiment
Steven L. Sheriff
2002-01-01
Missouri Ozark Forest Ecosystem Project (MOFEP) is a unique experiment to learn about the impacts of management practices on a forest system. Three forest management practices (uneven-aged management, even-aged management, and no-harvest management) as practiced by the Missouri Department of Conservation were randomly assigned to nine forest management sites using a...
Thermal biology of eastern box turtles in a longleaf pine system managed with prescribed fire.
Roe, John H; Wild, Kristoffer H; Hall, Carlisha A
2017-10-01
Fire can influence the microclimate of forest habitats by removing understory vegetation and surface debris. Temperature is often higher in recently burned forests owing to increased light penetration through the open understory. Because physiological processes are sensitive to temperature in ectotherms, we expected fire-maintained forests to improve the suitability of the thermal environment for turtles, and for turtles to seasonally associate with the most thermally-optimal habitats. Using a laboratory thermal gradient, we determined the thermal preference range (T set ) of eastern box turtles, Terrapene carolina, to be 27-31°C. Physical models simulating the body temperatures experienced by turtles in the field revealed that surface environments in a fire-maintained longleaf pine forest were 3°C warmer than adjacent unburned mixed hardwood/pine forests, but the fire-maintained forest was never of superior thermal quality owing to wider T e fluctuations above T set and exposure to extreme and potentially lethal temperatures. Radiotracked turtles using fire-managed longleaf pine forests maintained shell temperatures (T s ) approximately 2°C above those at a nearby unburned forest, but we observed only moderate seasonal changes in habitat use which were inconsistent with thermoregulatory behavior. We conclude that turtles were not responding strongly to the thermal heterogeneity generated by fire in our system, and that other aspects of the environment are likely more important in shaping habitat associations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.
Eric J. Gustafson; Melissa Lucash; Johannes Liem; Helen Jenny; Rob Scheller; Kelly Barrett; Brian R. Sturtevant
2016-01-01
Forest managers are increasingly considering how climate change may alter forests' capacity to provide ecosystem goods and services. But identifying potential climate change effects on forests is difficult because interactions among forest growth and mortality, climate change, management, and disturbances are complex and uncertain. Although forest landscape models...
Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E.; Ellerbrock, Ruth; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas
2015-01-01
Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season. PMID:25875835
Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E; Ellerbrock, Ruth; Bruelheide, Helge; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas
2015-01-01
Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season.
Water, Forests, People: The Swedish Experience in Building Resilient Landscapes.
Eriksson, Mats; Samuelson, Lotta; Jägrud, Linnéa; Mattsson, Eskil; Celander, Thorsten; Malmer, Anders; Bengtsson, Klas; Johansson, Olof; Schaaf, Nicolai; Svending, Ola; Tengberg, Anna
2018-07-01
A growing world population and rapid expansion of cities increase the pressure on basic resources such as water, food and energy. To safeguard the provision of these resources, restoration and sustainable management of landscapes is pivotal, including sustainable forest and water management. Sustainable forest management includes forest conservation, restoration, forestry and agroforestry practices. Interlinkages between forests and water are fundamental to moderate water budgets, stabilize runoff, reduce erosion and improve biodiversity and water quality. Sweden has gained substantial experience in sustainable forest management in the past century. Through significant restoration efforts, a largely depleted Swedish forest has transformed into a well-managed production forest within a century, leading to sustainable economic growth through the provision of forest products. More recently, ecosystem services are also included in management decisions. Such a transformation depends on broad stakeholder dialog, combined with an enabling institutional and policy environment. Based on seminars and workshops with a wide range of key stakeholders managing Sweden's forests and waters, this article draws lessons from the history of forest management in Sweden. These lessons are particularly relevant for countries in the Global South that currently experience similar challenges in forest and landscape management. The authors argue that an integrated landscape approach involving a broad array of sectors and stakeholders is needed to achieve sustainable forest and water management. Sustainable landscape management-integrating water, agriculture and forests-is imperative to achieving resilient socio-economic systems and landscapes.
Doyle, T.W.; Krauss, K.W.; Conner, W.H.; From, A.S.
2010-01-01
Tidal freshwater forests in coastal regions of the southeastern United States are undergoing dieback and retreat from increasing tidal inundation and saltwater intrusion attributed to climate variability and sea-level rise. In many areas, tidal saltwater forests (mangroves) contrastingly are expanding landward in subtropical coastal reaches succeeding freshwater marsh and forest zones. Hydrological characteristics of these low-relief coastal forests in intertidal settings are dictated by the influence of tidal and freshwater forcing. In this paper, we describe the application of the Sea Level Over Proportional Elevation (SLOPE) model to predict coastal forest retreat and migration from projected sea-level rise based on a proxy relationship of saltmarsh/mangrove area and tidal range. The SLOPE model assumes that the sum area of saltmarsh/mangrove habitat along any given coastal reach is determined by the slope of the landform and vertical tide forcing. Model results indicated that saltmarsh and mangrove migration from sea-level rise will vary by county and watershed but greater in western Gulf States than in the eastern Gulf States where millions of hectares of coastal forest will be displaced over the next century with a near meter rise in relative sea level alone. Substantial losses of coastal forests will also occur in the eastern Gulf but mangrove forests in subtropical zones of Florida are expected to replace retreating freshwater forest and affect regional biodiversity. Accelerated global eustacy from climate change will compound the degree of predicted retreat and migration of coastal forests with expected implications for ecosystem management of State and Federal lands in the absence of adaptive coastal management.
Forest Management as an Element of Environment Development
NASA Astrophysics Data System (ADS)
Jaszczak, Roman; Gołojuch, Piotr; Wajchman-Świtalska, Sandra; Miotke, Mariusz
2017-12-01
The implementation of goals of modern forestry requires a simultaneous consideration of sustainable development of forests, protection, needs of the environment development, as well as maintaining a balance between functions of forests. In the current multifunctional forest model, rational forest management assumes all of its tasks as equally important. Moreover, its effects are important factors in the nature and environment protection. The paper presents legal conditions related to the definitions of forest management concepts and sustainable forest management. Authors present a historical outline of human's impact on the forest and its consequences for the environment. The selected aspects of forest management (eg. forest utilization, afforestation, tourism and recreation) and their role in the forest environment have been discussed.
O'Donnell, Frances C; Flatley, William T; Springer, Abraham E; Fulé, Peter Z
2018-06-25
Climate change and wildfire are interacting to drive vegetation change and potentially reduce water quantity and quality in the southwestern United States, Forest restoration is a management approach that could mitigate some of these negative outcomes. However, little information exists on how restoration combined with climate change might influence hydrology across large forest landscapes that incorporate multiple vegetation types and complex fire regimes. We combined spatially explicit vegetation and fire modeling with statistical water and sediment yield models for a large forested landscape (335,000 ha) on the Kaibab Plateau in northern Arizona, USA. Our objective was to assess the impacts of climate change and forest restoration on the future fire regime, forest vegetation, and watershed outputs. Our model results predict that the combination of climate change and high-severity fire will drive forest turnover, biomass declines, and compositional change in future forests. Restoration treatments may reduce the area burned in high-severity fires and reduce conversions from forested to non-forested conditions. Even though mid-elevation forests are the targets of restoration, the treatments are expected to delay the decline of high-elevation spruce-fir, aspen, and mixed conifer forests by reducing the occurrence of high-severity fires that may spread across ecoregions. We estimate that climate-induced vegetation changes will result in annual runoff declines of up to 10%, while restoration reduced or reversed this decline. The hydrologic model suggests that mid-elevation forests, which are the targets of restoration treatments, provide around 80% of runoff in this system and the conservation of mid- to high-elevation forests types provides the greatest benefit in terms of water conservation. We also predict that restoration treatments will conserve water quality by reducing patches of high-severity fire that are associated with high sediment yield. Restoration treatments are a management strategy that may reduce undesirable outcomes for multiple ecosystem services. © 2018 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kooperman, Gabriel J.; Chen, Yang; Hoffman, Forrest M.
Understanding how anthropogenic CO 2 emissions will influence future precipitation is critical for sustainably managing ecosystems, particularly for drought-sensitive tropical forests. Although tropical precipitation change remains uncertain, nearly all models from the Coupled Model Intercomparison Project Phase 5 predict a strengthening zonal precipitation asymmetry by 2100, with relative increases over Asian and African tropical forests and decreases over South American forests. Here we show that the plant physiological response to increasing CO 2 is a primary mechanism responsible for this pattern. Applying a simulation design in the Community Earth System Model in which CO 2 increases are isolated over individualmore » continents, we demonstrate that different circulation, moisture and stability changes arise over each continent due to declines in stomatal conductance and transpiration. The sum of local atmospheric responses over individual continents explains the pan-tropical precipitation asymmetry. Our analysis suggests that South American forests may be more vulnerable to rising CO 2 than Asian or African forests.« less
Delang, Claudio O
2006-04-01
This article discusses the system of classification of forest types used by the Pwo Karen in Thung Yai Naresuan Wildlife Sanctuary in western Thailand and the role of nontimber forest products (NTFPs), focusing on wild food plants, in Karen livelihoods. The article argues that the Pwo Karen have two methods of forest classification, closely related to their swidden farming practices. The first is used for forest land that has been, or can be, swiddened, and classifies forest types according to growth conditions. The second system is used for land that is not suitable for cultivation and looks at soil properties and slope. The article estimates the relative importance of each forest type in what concerns the collection of wild food plants. A total of 134 wild food plant species were recorded in December 2004. They account for some 80-90% of the amount of edible plants consumed by the Pwo Karen, and have a base value of Baht 11,505 per year, comparable to the cash incomes of many households. The article argues that the Pwo Karen reliance on NTFPs has influenced their land-use and forest management practices. However, by restricting the length of the fallow period, the Thai government has caused ecological changes that are challenging the ability of the Karen to remain subsistence oriented. By ignoring shifting cultivators' dependence on such products, the involvement of governments in forest management, especially through restrictions imposed on swidden farming practices, is likely to have a considerable impact on the livelihood strategies of these communities.
Michael J. Dockry
2015-01-01
The United States Department of Agriculture Forest Service (Forest Service) manages 154 national forests and 20 grasslands in 44 states and Puerto Rico. National Forest Land and Resource Management Plans (forest plans) form the basis for land and resource management of national forests in the United States. For more than a decade the Forest Service has been attempting...
W. J. Massman; J. M. Frank
2004-01-01
High soil temperatures associated with fire influence forests and their ability to regenerate after a fire by altering soil properties and soil chemistry and by killing microbes, plant roots, and seeds. Because intense wild fires are an increasingly common component of the landscape (Graham 2003) and because fire is frequently used by land managers to reduce surface...
25 CFR 163.25 - Forest management deductions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Forest management deductions. 163.25 Section 163.25... Forest Management and Operations § 163.25 Forest management deductions. (a) Pursuant to the provisions of 25 U.S.C. 413 and 25 U.S.C. 3105, a forest management deduction shall be withheld from the gross...
25 CFR 163.25 - Forest management deductions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Forest management deductions. 163.25 Section 163.25... Forest Management and Operations § 163.25 Forest management deductions. (a) Pursuant to the provisions of 25 U.S.C. 413 and 25 U.S.C. 3105, a forest management deduction shall be withheld from the gross...
Lutz, David A; Burakowski, Elizabeth A; Murphy, Mackenzie B; Borsuk, Mark E; Niemiec, Rebecca M; Howarth, Richard B
2016-01-01
Forests are more frequently being managed to store and sequester carbon for the purposes of climate change mitigation. Generally, this practice involves long-term conservation of intact mature forests and/or reductions in the frequency and intensity of timber harvests. However, incorporating the influence of forest surface albedo often suggests that long rotation lengths may not always be optimal in mitigating climate change in forests characterized by frequent snowfall. To address this, we investigated trade-offs between three ecosystem services: carbon storage, albedo-related radiative forcing, and timber provisioning. We calculated optimal rotation length at 498 diverse Forest Inventory and Analysis forest sites in the state of New Hampshire, USA. We found that the mean optimal rotation lengths across all sites was 94 yr (standard deviation of sample means = 44 yr), with a large cluster of short optimal rotation lengths that were calculated at high elevations in the White Mountain National Forest. Using a regression tree approach, we found that timber growth, annual storage of carbon, and the difference between annual albedo in mature forest vs. a post-harvest landscape were the most important variables that influenced optimal rotation. Additionally, we found that the choice of a baseline albedo value for each site significantly altered the optimal rotation lengths across all sites, lowering the mean rotation to 59 yr with a high albedo baseline, and increasing the mean rotation to 112 yr given a low albedo baseline. Given these results, we suggest that utilizing temperate forests in New Hampshire for climate mitigation purposes through carbon storage and the cessation of harvest is appropriate at a site-dependent level that varies significantly across the state.
Interactions among invasive plants: Lessons from Hawai‘i
D'Antonio, Carla M.; Ostertag, Rebecca; Cordell, Susan; Yelenik, Stephanie G.
2017-01-01
Most ecosystems have multiple-plant invaders rather than single-plant invaders, yet ecological studies and management actions focus largely on single invader species. There is a need for general principles regarding invader interactions across varying environmental conditions, so that secondary invasions can be anticipated and managers can allocate resources toward pretreatment or postremoval actions. By reviewing removal experiments conducted in three Hawaiian ecosystems (a dry tropical forest, a seasonally dry mesic forest, and a lowland wet forest), we evaluate the roles environmental harshness, priority effects, productivity potential, and species interactions have in influencing secondary invasions, defined here as invasions that are influenced either positively (facilitation) or negatively (inhibition/priority effects) by existing invaders. We generate a conceptual model with a surprise index to describe whether long-term plant invader composition and dominance is predictable or stochastic after a system perturbation such as a removal experiment. Under extremely low resource availability, the surprise index is low, whereas under intermediate-level resource environments, invader dominance is more stochastic and the surprise index is high. At high resource levels, the surprise index is intermediate: Invaders are likely abundant in the environment but their response to a perturbation is more predictable than at intermediate resource levels. We suggest further testing across environmental gradients to determine key variables that dictate the predictability of postremoval invader composition.
Ordóñez Barona, Camilo
2015-12-01
Urban trees are a dominant natural element in cities; they provide important ecosystem services to urban citizens and help urban areas adapt to climate change. Many rationales have been proposed to provide a purpose for urban forest management, some of which have been ineffective in addressing important ecological and social management themes. Among these rationales we find a values-based perspective, which sees management as a process where the desires of urban dwellers are met. Another perspective is climate change adaptation, which sees management as a process where urban forest vulnerability to climate change is reduced and resilience enhanced. Both these rationales have the advantage of complementing, enhancing, and broadening urban forest management objectives. A critical analysis of the literature on public values related to urban forests and climate change adaptation in the context of urban forests is undertaken to discuss what it means to adopt these two issues in urban forest management. The analysis suggests that by seeing urban forest management as a process by which public values are satisfied and urban-forest vulnerabilities to climate change are reduced, we can place issues such as naturalization, adaptive management, and engaging people in management at the centre of urban forest management. Focusing urban forest management on these issues may help ensure the success of programs focused on planting more trees and increasing citizen participation in urban forest management. Copyright © 2015 Elsevier Ltd. All rights reserved.
Impacts of forest and land management on biodiversity and carbon
Valerie Kapos; Werner A. Kurz; Toby Gardner; Joice Ferreira; Manuel Guariguata; Lian Pin Koh; Stephanie Mansourian; John A. Parrotta; Nokea Sasaki; Christine B. Schmitt; Jos Barlow; Markku Kanninen; Kimiko Okabe; Yude Pan; Ian D. Thompson; Nathalie van Vliet
2012-01-01
Changes in the management of forest and non-forest land can contribute significantly to reducing emissions from deforestation and forest degradation. Such changes can include both forest management actions - such as improving the protection and restoration of existing forests, introducing ecologically responsible logging practices and regenerating forest on degraded...
Forest response to rising CO 2 drives zonally asymmetric rainfall change over tropical land
Kooperman, Gabriel J.; Chen, Yang; Hoffman, Forrest M.; ...
2018-04-27
Understanding how anthropogenic CO 2 emissions will influence future precipitation is critical for sustainably managing ecosystems, particularly for drought-sensitive tropical forests. Although tropical precipitation change remains uncertain, nearly all models from the Coupled Model Intercomparison Project Phase 5 predict a strengthening zonal precipitation asymmetry by 2100, with relative increases over Asian and African tropical forests and decreases over South American forests. Here we show that the plant physiological response to increasing CO 2 is a primary mechanism responsible for this pattern. Applying a simulation design in the Community Earth System Model in which CO 2 increases are isolated over individualmore » continents, we demonstrate that different circulation, moisture and stability changes arise over each continent due to declines in stomatal conductance and transpiration. The sum of local atmospheric responses over individual continents explains the pan-tropical precipitation asymmetry. Our analysis suggests that South American forests may be more vulnerable to rising CO 2 than Asian or African forests.« less
Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land
NASA Astrophysics Data System (ADS)
Kooperman, Gabriel J.; Chen, Yang; Hoffman, Forrest M.; Koven, Charles D.; Lindsay, Keith; Pritchard, Michael S.; Swann, Abigail L. S.; Randerson, James T.
2018-05-01
Understanding how anthropogenic CO2 emissions will influence future precipitation is critical for sustainably managing ecosystems, particularly for drought-sensitive tropical forests. Although tropical precipitation change remains uncertain, nearly all models from the Coupled Model Intercomparison Project Phase 5 predict a strengthening zonal precipitation asymmetry by 2100, with relative increases over Asian and African tropical forests and decreases over South American forests. Here we show that the plant physiological response to increasing CO2 is a primary mechanism responsible for this pattern. Applying a simulation design in the Community Earth System Model in which CO2 increases are isolated over individual continents, we demonstrate that different circulation, moisture and stability changes arise over each continent due to declines in stomatal conductance and transpiration. The sum of local atmospheric responses over individual continents explains the pan-tropical precipitation asymmetry. Our analysis suggests that South American forests may be more vulnerable to rising CO2 than Asian or African forests.
Berg, Kevan J; Icyeh, Lahuy; Lin, Yih-Ren; Janz, Arnold; Newmaster, Steven G
2016-12-01
Human actions drive landscape heterogeneity, yet most ecosystem classifications omit the role of human influence. This study explores land use history to inform a classification of forestland of the Tayal Mrqwang indigenous people of Taiwan. Our objectives were to determine the extent to which human action drives landscape heterogeneity. We used interviews, field sampling, and multivariate analysis to relate vegetation patterns to environmental gradients and human modification across 76 sites. We identified eleven forest classes. In total, around 70 % of plots were at lower elevations and had a history of shifting cultivation, terrace farming, and settlement that resulted in alder, laurel, oak, pine, and bamboo stands. Higher elevation mixed conifer forests were least disturbed. Arboriculture and selective harvesting were drivers of other conspicuous forest patterns. The findings show that past land uses play a key role in shaping forests, which is important to consider when setting targets to guide forest management.
[A review on fundamental studies of secondary forest management].
Zhu, Jiaojun
2002-12-01
Secondary forest is also called as natural secondary forest, which regenerates on native forest that has been disturbed by severe natural or anthropogenic disturbances. The structural and dynamic organizations, growth, productivity and stand environment of secondary forests are significantly different from those of natural and artificial forests. Such significant differences make secondary forests have their own special characteristics in forestry. Secondary forests are the main body of forests in China. Therefore, their management plays a very important role in the projects of natural forest conservation and the construction of ecological environment in China or in the world. Based on a wide range of literature collection on secondary forest research, the fundamental studies of secondary forest management were discussed. The major topics are as follows: 1) basic characteristics of secondary forest, 2) principles of secondary forest management, 3) types of secondary forest, 4) community structure and succession dynamics of secondary forest, including niches, biodiversity, succession and so on, 5) main ecological processes of secondary forest, including regeneration, forest soil and forest environment. Additionally, the research needs and tendency related to secondary forest in the future were also given, based on the analyses of the main results and the problems in current management of secondary forest. The review may be helpful to the research of secondary forest management, and to the projects of natural forest conservation in China.
Repeated wildfires alter forest recovery of mixed-conifer ecosystems.
Stevens-Rumann, Camille; Morgan, Penelope
2016-09-01
Most models project warmer and drier climates that will contribute to larger and more frequent wildfires. However, it remains unknown how repeated wildfires alter post-fire successional patterns and forest structure. Here, we test the hypothesis that the number of wildfires, as well as the order and severity of wildfire events interact to alter forest structure and vegetation recovery and implications for vegetation management. In 2014, we examined forest structure, composition, and tree regeneration in stands that burned 1-18 yr before a subsequent 2007 wildfire. Three important findings emerged: (1) Repeatedly burned forests had 15% less woody surface fuels and 31% lower tree seedling densities compared with forests that only experienced one recent wildfire. These repeatedly burned areas are recovering differently than sites burned once, which may lead to alternative ecosystem structure. (2) Order of burn severity (high followed by low severity compared with low followed by high severity) did influence forest characteristics. When low burn severity followed high, forests had 60% lower canopy closure and total basal area with 92% fewer tree seedlings than when high burn severity followed low. (3) Time between fires had no effect on most variables measured following the second fire except large woody fuels, canopy closure and tree seedling density. We conclude that repeatedly burned areas meet many vegetation management objectives of reduced fuel loads and moderate tree seedling densities. These differences in forest structure, composition, and tree regeneration have implications not only for the trajectories of these forests, but may reduce fire intensity and burn severity of subsequent wildfires and may be used in conjunction with future fire suppression tactics. © 2016 by the Ecological Society of America.
Simulating post-wildfire forest trajectories under alternative climate and management scenarios
Alicia Azpeleta Tarancon; Peter Z. Fule; Kristen L. Shive; Carolyn H. Sieg; Andrew Sanchez Meador; Barbara Strom
2014-01-01
Post-fire predictions of forest recovery under future climate change and management actions are necessary for forest managers to make decisions about treatments. We applied the Climate-Forest Vegetation Simulator (Climate-FVS), a new version of a widely used forest management model, to compare alternative climate and management scenarios in a severely burned...
Using soil quality indicators for monitoring sustainable forest management
James A. Burger; Garland Gray; D. Andrew Scott
2010-01-01
Most private and public forest land owners and managers are compelled to manage their forests sustainably, which means management that is economically viable,environmentally sound, and socially acceptable. To meet this mandate, the USDA Forest Service protects the productivity of our nationâs forest soils by monitoring and evaluating management activities to ensure...
Small mammals in managed, naturally young, and old-growth forests.
A.B. Carey; M.L. Johnson
1995-01-01
Forest managers in the Pacific Northwest are faced with new challenges of providing for all wildlife in managed forests. Our objective was to elucidate the factors governing the composition and biomass of forest floor mammal communities that are amenable to management. We sampled small mammal communities in forests of various management histories on the Olympic...
Woody debris in north Iberian streams: influence of geomorphology, vegetation, and management.
Diez, J R; Elosegi, A; Pozo, J
2001-11-01
The effect of stream geomorphology, maturity, and management of riparian forests on abundance, role, and mobility of wood was evaluated in 20 contrasting reaches in the Agüera stream catchment (northern Iberian Peninsula). During 1 year the volume of woody debris exceeding 1 cm in diameter was measured in all reaches. All large woody debris (phi > 5 cm) pieces were tagged, their positions mapped, and their subsequent changes noted. Volume of woody debris was in general low and ranged from 40 to 22,000 cm3 m-2; the abundance of debris dams ranged from 0 to 5.5 per 100 m of channel. Wood was especially rare and unstable in downstream reaches, or under harvested forests (both natural or plantations). Results stress that woody debris in north Iberian streams has been severely reduced by forestry and log removal. Because of the important influence of woody debris on structure and function of stream systems, this reduction has likely impacted stream communities. Therefore, efforts to restore north Iberian streams should include in-channel and riparian management practices that promote greater abundance and stability of large woody debris whenever possible.
Forest management in Northeast China: history, problems, and challenges.
Yu, Dapao; Zhou, Li; Zhou, Wangming; Ding, Hong; Wang, Qingwei; Wang, Yue; Wu, Xiaoqing; Dai, Limin
2011-12-01
Studies of the history and current status of forest resources in Northeast China have become important in discussions of sustainable forest management in the region. Prior to 1998, excessive logging and neglected cultivation led to a series of problems that left exploitable forest reserves in the region almost exhausted. A substantial decrease in the area of natural forests was accompanied by severe disruption of stand structure and serious degradation of overall forest quality and function. In 1998, China shifted the primary focus of forest management in the country from wood production to ecological sustainability, adopting ecological restoration and protection as key foci of management. In the process, China launched the Natural Forest Conversion Program and implemented a new system of Classification-based Forest Management. Since then, timber harvesting levels in Northeast China have decreased, and forest area and stocking levels have slowly increased. At present, the large area of low quality secondary forest lands, along with high levels of timber production, present researchers and government agencies in China with major challenges in deciding on management models and strategies that will best protect, restore and manage so large an area of secondary forest lands. This paper synthesizes information from a number of sources on forest area, stand characteristics and stocking levels, and forest policy changes in Northeastern China. Following a brief historical overview of forest harvesting and ecological research in Northeast China, the paper discusses the current state of forest resources and related problems in forest management in the region, concluding with key challenges in need of attention in order to meet the demands for multi-purpose forest sustainability and management in the future.
Safeguarding saproxylic fungal biodiversity in Apennine beech forest priority habitats
NASA Astrophysics Data System (ADS)
Maggi, Oriana; Lunghini, Dario; Pecoraro, Lorenzo; Sabatini, Francesco Maria; Persiani, Anna Maria
2015-04-01
The FAGUS LIFE Project (LIFE11/NAT/IT/135) targets two European priority habitats, i.e. Habitat 9210* Apennine beech forests with Taxus and Ilex, and Habitat 9220* Apennine beech forests with Abies alba, within two National Parks: Cilento, Vallo di Diano and Alburni; Gran Sasso and Monti della Laga. The current limited distribution of the target habitats is also due to the impact of human activities on forest systems, such as harvesting and grazing. The FAGUS project aims at developing and testing management strategies able to integrate the conservation of priority forest habitats (9210* and 9220*) and the sustainable use of forest resources. In order to assess the responses to different management treatments the BACI monitoring design (Before-After, Control-Intervention) has been applied on forest structure and diversity of focus taxa before and after experimental harvesting treatments. Conventional management of Apennine beech forests impacts a wealth of taxonomic groups, such as saproxylic beetles and fungi, which are threatened throughout Europe by the lack of deadwood and of senescing trees, and by the homogeneous structure of managed forests. Deadwood has been denoted as the most important manageable habitat for biodiversity in forests not only for supporting a wide diversity of organisms, but also for playing a prominent role in several ecological processes, creating the basis for the cycling of photosynthetic energy, carbon, and nutrients stored in woody material. Especially fungi can be regarded as key group for understanding and managing biodiversity associated with decaying wood. The before-intervention field sampling was carried out in Autumn 2013 in 33 monitoring plots across the two national Parks. The occurrence at plot level of both Ascomycota and Basidiomycota sporocarps was surveyed. All standing and downed deadwood with a minimum diameter of 10 cm was sampled for sporocarps larger than 1 mm, and information on decay class and fungal morphogroups was recorded. Our results confirm Apennine beech forests as important repositories of saproxylic fungal diversity. We identified species of high scientific concern, in both National Parks. The most represented genus is Mycena with six and five species in the sampling units of "Gran Sasso and Monti della Laga" and "Cilento,Vallo di Diano and Alburni" national Parks respectively. Within the "Gran Sasso and Monti della Laga National Park" the area of Incodara is of special interest due to the occurrence of the species Ossicaulis lignatilis, which is among the 21 identified indicator species for assessing conservation value of beech forests in Europe. A consistent group of Ascomycota species, including Biscogniauxia nummularia, Bisporella citrina, Diatrype disciformis, Kretzschmaria deusta, Nemania serpens, and Xylaria hypoxylon, was tightly associated with coarse woody debris in "Gran Sasso and Monti della Laga National Park" plots. The decay stage seemed to exert a major influence on both species richness and their spatial patterns, with coarse woody debris in the intermediate to late stages of decay being the richest in species. (471 words)
S. Hummel; K. L. O' Hara
2008-01-01
Global variation in forests and in human cultures means that a single method for managing forests is not possible. However, forest management everywhere shares some common principles because it is rooted in physical and biological sciences like chemistry and genetics. Ecological forest management is an approach that combines an understanding of universal processes with...
García-Orenes, Fuensanta; Morugán-Coronado, Alicia; Zornoza, Raul; Cerdà, Artemi; Scow, Kate
2013-01-01
Agricultural practices have proven to be unsuitable in many cases, causing considerable reductions in soil quality. Land management practices can provide solutions to this problem and contribute to get a sustainable agriculture model. The main objective of this work was to assess the effect of different agricultural management practices on soil microbial community structure (evaluated as abundance of phospholipid fatty acids, PLFA). Five different treatments were selected, based on the most common practices used by farmers in the study area (eastern Spain): residual herbicides, tillage, tillage with oats and oats straw mulching; these agricultural practices were evaluated against an abandoned land after farming and an adjacent long term wild forest coverage. The results showed a substantial level of differentiation in the microbial community structure, in terms of management practices, which was highly associated with soil organic matter content. Addition of oats straw led to a microbial community structure closer to wild forest coverage soil, associated with increases in organic carbon, microbial biomass and fungal abundances. The microbial community composition of the abandoned agricultural soil was characterised by increases in both fungal abundances and the metabolic quotient (soil respiration per unit of microbial biomass), suggesting an increase in the stability of organic carbon. The ratio of bacteria:fungi was higher in wild forest coverage and land abandoned systems, as well as in the soil treated with oat straw. The most intensively managed soils showed higher abundances of bacteria and actinobacteria. Thus, the application of organic matter, such as oats straw, appears to be a sustainable management practice that enhances organic carbon, microbial biomass and activity and fungal abundances, thereby changing the microbial community structure to one more similar to those observed in soils under wild forest coverage.
Habitat area requirements of breeding forest birds of the middle Atlantic states
Robbins, Chandler S.; Dawson, Deanna K.; Dowell, Barbara A.
1989-01-01
Conservation of birds requires an understanding of their nesting requirements, including area as well as structural characteristics of the habitat. Previous studies have shown that many neotropical migrant bird species seem to depend on extensive forested areas, but the specific area requirements of individual species have not been clarified sufficiently to aid in design and management of effective preserves. For this 5-year study, bird and vegetation data were obtained at 469 points in forests ranging in area from 0.1 ha to more than 3,000 ha in Maryland and adjacent states. Data were analyzed first by stepwise regression to identify habitat factors that had the greatest influence on relative abundance of each bird species. In the relatively undisturbed mature forests studied, degree of isolation and area were significant predictors of relative abundance for more bird species than were any habitat variables. For species for which forest area was a significant predictor of abundance, we used logistic regression to examine the relationship between forest area and the probability of detecting the species. In managing forest lands for wildlife, top priority should go toward providing for the needs of area-sensitive or rare species rather than increasing species diversity per se. Avian species that occur in small and disturbed forests are generalists that are adapted to survival under edge conditions and need no special assistance from man. Forest reserves with thousands of hectares are required to have the highest probability of providing for the least common species of forest birds in a region. However, if preservation of large contiguous forest tracts is not a realistic option, results of this study suggest 2 alternative approaches. First, if other habitat attributes also are considered, smaller forests may provide suitable breeding sites for relatively rare species. Second, smaller tracts in close proximity to other forests may serve to attract or retain area-sensitive species.
Bedward, Michael; Penman, Trent D.; Doherty, Michael D.; Weber, Rodney O.; Gill, A. Malcolm; Cary, Geoffrey J.
2016-01-01
The influence of plant traits on forest fire behaviour has evolutionary, ecological and management implications, but is poorly understood and frequently discounted. We use a process model to quantify that influence and provide validation in a diverse range of eucalypt forests burnt under varying conditions. Measured height of consumption was compared to heights predicted using a surface fuel fire behaviour model, then key aspects of our model were sequentially added to this with and without species-specific information. Our fully specified model had a mean absolute error 3.8 times smaller than the otherwise identical surface fuel model (p < 0.01), and correctly predicted the height of larger (≥1 m) flames 12 times more often (p < 0.001). We conclude that the primary endogenous drivers of fire severity are the species of plants present rather than the surface fuel load, and demonstrate the accuracy and versatility of the model for quantifying this. PMID:27529789
Zylstra, Philip; Bradstock, Ross A; Bedward, Michael; Penman, Trent D; Doherty, Michael D; Weber, Rodney O; Gill, A Malcolm; Cary, Geoffrey J
2016-01-01
The influence of plant traits on forest fire behaviour has evolutionary, ecological and management implications, but is poorly understood and frequently discounted. We use a process model to quantify that influence and provide validation in a diverse range of eucalypt forests burnt under varying conditions. Measured height of consumption was compared to heights predicted using a surface fuel fire behaviour model, then key aspects of our model were sequentially added to this with and without species-specific information. Our fully specified model had a mean absolute error 3.8 times smaller than the otherwise identical surface fuel model (p < 0.01), and correctly predicted the height of larger (≥1 m) flames 12 times more often (p < 0.001). We conclude that the primary endogenous drivers of fire severity are the species of plants present rather than the surface fuel load, and demonstrate the accuracy and versatility of the model for quantifying this.
A synthesis of current knowledge on forests and carbon storage in the United States.
McKinley, Duncan C; Ryan, Michael G; Birdsey, Richard A; Giardina, Christian P; Harmon, Mark E; Heath, Linda S; Houghton, Richard A; Jackson, Robert B; Morrison, James F; Murray, Brian C; Patakl, Diane E; Skog, Kenneth E
2011-09-01
Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because approximately 60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding deforestation and promoting regeneration after disturbance should receive high priority as policy considerations. Policies to encourage programs or projects that influence forest carbon sequestration and offset fossil fuel emissions should also consider major items such as leakage, the cyclical nature of forest growth and regrowth, and the extensive demand for and movement of forest products globally, and other greenhouse gas effects, such as methane and nitrous oxide emissions, and recognize other environmental benefits of forests, such as biodiversity, nutrient management, and watershed protection. Activities that contribute to helping forests adapt to the effects of climate change, and which also complement forest carbon storage strategies, would be prudent.
Chapter 3: Climate change at multiple scales
Constance Millar; Ron Neilson; Dominique Bachelet; Ray Drapek; Jim Lenihan
2006-01-01
Concepts about the natural world influence approaches to forest management. In the popular press, climate change inevitably refers to global warming, greenhouse gas impacts, novel anthropogenic (human-induced) threats, and international politics. There is, however, a larger context that informs our understanding of changes that are occurring - that is, Earth’...
J.M. Vose; B.D. Clinton; W.T. Swank
1993-01-01
Establishment and maintenance of pitch pine/hardwood ecosystems in the southern Appalachians depends on intense wildfire. These ecosystems typically have a substantial evergreen shrub component (Kalmia latifolia) which limits regeneration of future overstory species. Wildfires provide microsite conditions conducive to pine regeneration and reduce...
An Organization Development Approach to Technology Transfer in the National Forest Service.
1981-09-01
environmental influences such as governmental intervention. Meyer [Ref. 23: pp. 56-57] illustrates this point by presenting an analogy involving the automobile ...Command Washington, D.C. 20370 23. Director for HRM Plans and Policy (OP-150) 1 Human Resource Management Division Deputy Chief of Naval Operations
The Influence of Soil Scarification on Oak Reproduction: Review and Management Considerations
John M. Lhotka; James J. Zaczek; Russell T. Graham
2004-01-01
Changes in historic disturbance regimes and the resulting changes in forest composition and structure have contributed to oak (Quercus spp.) regeneration difficulties across much of its geographic range. One important component of oak regeneration is the establishment and development of advance oak reproduction. Another is reducing competing...
50 CFR 35.8 - Forest management.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Forest management. 35.8 Section 35.8... NATIONAL WILDLIFE REFUGE SYSTEM WILDERNESS PRESERVATION AND MANAGEMENT General Rules § 35.8 Forest management. Forest management activities in a wilderness unit will be directed toward allowing natural...
50 CFR 35.8 - Forest management.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Forest management. 35.8 Section 35.8... NATIONAL WILDLIFE REFUGE SYSTEM WILDERNESS PRESERVATION AND MANAGEMENT General Rules § 35.8 Forest management. Forest management activities in a wilderness unit will be directed toward allowing natural...
50 CFR 35.8 - Forest management.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Forest management. 35.8 Section 35.8... NATIONAL WILDLIFE REFUGE SYSTEM WILDERNESS PRESERVATION AND MANAGEMENT General Rules § 35.8 Forest management. Forest management activities in a wilderness unit will be directed toward allowing natural...
50 CFR 35.8 - Forest management.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Forest management. 35.8 Section 35.8... NATIONAL WILDLIFE REFUGE SYSTEM WILDERNESS PRESERVATION AND MANAGEMENT General Rules § 35.8 Forest management. Forest management activities in a wilderness unit will be directed toward allowing natural...
50 CFR 35.8 - Forest management.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Forest management. 35.8 Section 35.8... NATIONAL WILDLIFE REFUGE SYSTEM WILDERNESS PRESERVATION AND MANAGEMENT General Rules § 35.8 Forest management. Forest management activities in a wilderness unit will be directed toward allowing natural...
Fry, Danny L.; Stephens, Scott L.; Collins, Brandon M.; North, Malcolm P.; Franco-Vizcaíno, Ernesto; Gill, Samantha J.
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha−1, and occupied 27–46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11–20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥56%) in large patches (≥10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types. PMID:24586472
Project risk and appeals in U.S. Forest Service planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, Marc J., E-mail: mjstern@vt.edu; Predmore, S. Andrew, E-mail: spred2@uis.edu; Morse, Wayde C., E-mail: morsewc@auburn.edu
2013-09-15
The National Environmental Policy Act (NEPA) requires U.S. Forest Service planning processes to be conducted by interdisciplinary teams of resource specialists to analyze and disclose the likely environmental impacts of proposed natural resource management actions on Forest Service lands. Multiple challenges associated with these processes have been a source of frustration for the agency. One of these challenges involves administrative appeals through which public entities can challenge a Forest Service decision following a NEPA process. These appeals instigate an internal review process and can result in an affirmation of the Forest Service decision, a reversal of that decision, or additionalmore » work that re-initiates all or part of the NEPA process. We examine the best predictors of appeals and their outcomes on a representative sample of 489 Forest Service NEPA processes that were decided between 2007 and 2009. While certain factors associated with pre-existing social contexts (such as a history of controversy) or pre-determined elements of a proposed action (such as the extraction of forest products) predispose certain processes to a higher risk of appeals, other practices and process-related strategies within the control of the agency also appear to bear meaningful influence on the occurrence of appeals and their outcomes. Appeals and their outcomes were most strongly related to programmatic, structural (turnover of personnel in particular), and relationship risks (both internal and external) within the processes, suggesting the need for greater focus within the agency on cultivating positive internal and external relationships to manage the risk of appeals. -- Highlights: ► We examined appeals and their outcomes on 489 U.S. Forest Service NEPA processes. ► Project type, context, team turnover, and personal relationships predicted appeals. ► External relationship management and staff turnover best predicted appeal outcomes. ► Positive internal and external relationships appear to reduce appeal risks.« less
Post-fire land management: Comparative effects of different strategies on hillslope sediment yield
NASA Astrophysics Data System (ADS)
Cole, R.; Bladon, K. D.; Wagenbrenner, J.; Coe, D. B. R.
2017-12-01
High-severity wildfire can increase erosion on burned, forested hillslopes. Salvage logging is a post-fire land management practice to extract economic value from burned landscapes, reduce fuel loads, and improve forest safety. Few studies assess the impact of post-fire salvage logging or alternative land management approaches on erosion in forested landscapes, especially in California. In September 2015, the Valley Fire burned approximately 31,366 ha of forested land and wildland-urban interface in the California's Northern Coast Range, including most of Boggs Mountain Demonstration State Forest. The primary objective of our study is to quantify erosion rates at the plot scale ( 75 m2) for different post-fire land management practices, including mechanical logging and subsoiling (or ripping) after logging. We measured sediment yields using sediment fences in four sets of replicated plots. We also estimated ground cover in each plot using three randomly positioned 1-meter quadrats. We are also measuring rainfall near each plot to understand hydrologic factors that influence erosion. Preliminary results indicate that burned, unlogged reference plots yielded the most sediment over the winter rainy season (3.3 kg m-2). Sediment yields of burned and logged (0.9 kg m-2), and burned, logged, and ripped (0.7 kg m-2), were substantially lower. Burned and unlogged reference plots had the least ground cover (49%), while ground cover was higher and more similar between logged (65%) and logged and ripped (72%) plots. These initial results contrast with previous studies in which the effect of post-fire salvage logging ranged from no measured impact to increased sediment yield related to salvage logging.
David E. Kretschmann
2008-01-01
Forest products from improved trees grown on managed plantations and harvested in short rotations will contain higher proportions of juvenile wood than in current harvests. More information is needed on the influence of juvenile wood on lumber properties. Most information developed to date has concentrated on ultimate tensile stress, modulus of rupture, and modulus of...
Ecological modeling for forest management in the Shawnee National Forest
Richard G. Thurau; J.F. Fralish; S. Hupe; B. Fitch; A.D. Carver
2008-01-01
Land managers of the Shawnee National Forest in southern Illinois are challenged to meet the needs of a diverse populace of stakeholders. By classifying National Forest holdings into management units, U.S. Forest Service personnel can spatially allocate resources and services to meet local management objectives. Ecological Classification Systems predict ecological site...
Michael J. Dockry; Serra J. Hoagland
2017-01-01
Native American forests and tribal forest management practices have sustained indigenous communities, economies, and resources for millennia. These systems provide a wealth of knowledge and successful applications of long-term environmental stewardship and integrated, sustainable forest management. Tribal forestry has received an increasing amount of attention from...
ERIC Educational Resources Information Center
Weicherding, Patrick J.; And Others
This bulletin deals with forest management and provides an overview of forestry for the non-professional. The bulletin is divided into six sections: (1) What Is Forestry Management?; (2) How Is the Forest Measured?; (3) What Is Forest Protection?; (4) How Is the Forest Harvested?; (5) What Is Forest Regeneration?; and (6) What Is Forest…
75 FR 8645 - Public Meetings on the Development of the Forest Service Land Management Planning Rule
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-25
... DEPARTMENT OF AGRICULTURE Forest Service Public Meetings on the Development of the Forest Service Land Management Planning Rule AGENCY: Forest Service, USDA. ACTION: Notice of meetings. SUMMARY: The USDA Forest Service is committed to developing a new Forest Service Land Management Planning Rule...
Forest Fuels Management in Europe
Gavriil Xanthopoulos; David Caballero; Miguel Galante; Daniel Alexandrian; Eric Rigolot; Raffaella Marzano
2006-01-01
Current fuel management practices vary considerably between European countries. Topography, forest and forest fuel characteristics, size and compartmentalization of forests, forest management practices, land uses, land ownership, size of properties, legislation, and, of course, tradition, are reasons for these differences.Firebreak construction,...
OverView of Space Applications for Environment (SAFE) initiative
NASA Astrophysics Data System (ADS)
Hamamoto, Ko; Fukuda, Toru; Tajima, Yoshimitsu; Takeuchi, Wataru; Sobue, Shinichi; Nukui, Tomoyuki
2014-06-01
Climate change and human activities have a direc or indirect influence on the acceleration of environmental problems and natural hazards such as forest fires, draughts and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these disasters and related phenomenon. However, there are still gaps between science and application of satellite technology in real-world usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of satellite technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of satellite technology. This paper describes the overview of SAFE initiative and outcomes of two selected prototypes; agricultural drought monitoring in Indonesia and coastal management in Sri Lanka, as well as the current status of on-going prototypes.
NASA Astrophysics Data System (ADS)
Reed, Michelle L.; Pinckney, James L.; Keppler, Charles J.; Brock, Larissa M.; Hogan, Sarah B.; Greenfield, Dianne I.
2016-08-01
Human population density, and related urbanization, is predicted to increase along coastlines worldwide. Varied land uses will likely influence nutrient delivery, mainly nitrogen (N) and phosphorus (P), to the coast and thereby phytoplankton assemblages. This study examined spatial and seasonal variability in phytoplankton community composition and growth responses to N (ammonium, nitrate, or urea) and/or P (orthophosphate) using in situ bioassays during 2011-2013. Study sites were in four southeastern US (South Carolina) coastal systems with distinct land uses: a forested tidal creek, a forested/agricultural tidal creek, an urbanized tidal creek, and a stormwater detention pond. Results showed that sites were primarily N-limited and diatoms typically contributed most to phytoplankton biomass (chlorophyll a). Phytoplankton communities at the more developed sites (urbanized creek and stormwater detention pond) not only exhibited higher biomass and growth rates with N, particularly urea, additions compared to the less-developed sites (forested and forested/agricultural tidal creeks), they often included harmful algal bloom species, particularly cyanobacteria, dinoflagellates, and raphidophytes. These findings suggest that phytoplankton community responses to N-form are site specific, influenced by surrounding land cover, and N inputs (e.g. fertilizers) may cause algal blooms. Results both underscore the role of development as a driver of coastal production and can be informative for water quality management.
Effects of national forest-management regimes on unprotected forests of the Himalaya.
Brandt, Jodi S; Allendorf, Teri; Radeloff, Volker; Brooks, Jeremy
2017-12-01
Globally, deforestation continues, and although protected areas effectively protect forests, the majority of forests are not in protected areas. Thus, how effective are different management regimes to avoid deforestation in non-protected forests? We sought to assess the effectiveness of different national forest-management regimes to safeguard forests outside protected areas. We compared 2000-2014 deforestation rates across the temperate forests of 5 countries in the Himalaya (Bhutan, Nepal, China, India, and Myanmar) of which 13% are protected. We reviewed the literature to characterize forest management regimes in each country and conducted a quasi-experimental analysis to measure differences in deforestation of unprotected forests among countries and states in India. Countries varied in both overarching forest-management goals and specific tenure arrangements and policies for unprotected forests, from policies emphasizing economic development to those focused on forest conservation. Deforestation rates differed up to 1.4% between countries, even after accounting for local determinants of deforestation, such as human population density, market access, and topography. The highest deforestation rates were associated with forest policies aimed at maximizing profits and unstable tenure regimes. Deforestation in national forest-management regimes that emphasized conservation and community management were relatively low. In India results were consistent with the national-level results. We interpreted our results in the context of the broader literature on decentralized, community-based natural resource management, and our findings emphasize that the type and quality of community-based forestry programs and the degree to which they are oriented toward sustainable use rather than economic development are important for forest protection. Our cross-national results are consistent with results from site- and regional-scale studies that show forest-management regimes that ensure stable land tenure and integrate local-livelihood benefits with forest conservation result in the best forest outcomes. © 2017 Society for Conservation Biology.
A tool to analyze environmental impacts of roads on forest watersheds
Ajay Prasad
2007-01-01
The construction and use of forest roads can have impacts on geomorphic processes and erosion patterns in forested basins. Analyzing these impacts will help forest managers to effectively manage road and road drainage system and hence minimize the negative impacts of forest roads. To manage forest roads effectively the USDA Forest Service (USFS) has developed a road...
Kathleen McGinleya; Bryan Fineganb
2003-01-01
From a conceptual point of view, national forest management standards in Latin American countries have progressed significantly in recent years.Examples include the Costa Rican Standards and Procedures for Sustainable Forest Management and Certification, developed by the National Commission for Forest Certification and in Nicaragua, the National Institute of Forestry...
Traits influencing range contraction in New Zealand's endemic forest birds.
Parlato, Elizabeth H; Armstrong, Doug P; Innes, John G
2015-10-01
Understanding vulnerability of endemic taxa to predation is clearly important for conservation management. In New Zealand, predation by introduced mammals such as rats and mustelids is widely recognized as the primary factor responsible for declines of indigenous fauna. The aim of our study was to evaluate the vulnerability of New Zealand's surviving endemic forest bird species to impacts of introduced mammalian predators, and identify key life history attributes underlying this vulnerability. We measured range contraction following the introduction of exotic mammalian predators for 23 endemic forest bird species using information on both pre-human and current distributions. We used Bayesian modeling techniques to analyze whether variation in range contraction was associated with life history traits potentially influencing species' predation vulnerability, while accounting for phylogenetic relatedness. Our results showed that the extent of range contraction varied greatly among species, with some species remaining in available forest habitat throughout most of their pre-human range, and others having disappeared completely from the main islands. Cavity nesting was the key trait associated with more extensive range decline, suggesting that cavity-nesting species are more vulnerable to predation than species that nest in more open sites.
The status of forest management research in the United States.
Donald G. Hodges; Pamela J. Jakes; Frederick W. Cubbage
1988-01-01
In 1985, the USDA Forest Service invested nearly $30 million in forest management research, forest industry invested $19 million, and universities invested at least $17 million. Investments in this research have been declining since then. Forest Service data indicate that the public sector is the largest beneficiary of forest management research.
36 CFR 221.3 - Disposal of national forest timber according to management plans.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Disposal of national forest timber according to management plans. 221.3 Section 221.3 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE TIMBER MANAGEMENT PLANNING § 221.3 Disposal of national forest timber...
Forest structure and development: implications for forest management
Kevin L. O' Hara
2004-01-01
A general premise of forest managers is that modern silviculture should be based, in large part, on natural disturbance patterns and species' adaptations to these disturbances. An understanding of forest stand dynamics is therefore a prerequisite to sound forest management. This paper provides a brief overview of forest stand development, stand structures, and...
Status and prospects for renewable energy using wood pellets from the southeastern United States
Dale, Virginia H.; Kline, Keith L.; Parish, Esther S.; ...
2017-04-20
The ongoing debate about costs and benefits of wood-pellet based bioenergy production in the southeastern United States (SE USA) requires an understanding of the science and context influencing market decisions associated with its sustainability. Production of pellets has garnered much attention as US exports have grown from negligible amounts in the early 2000s to 4.6 million metric tonnes in 2015. Currently, 98% of these pellet exports are shipped to Europe to displace coal in power plants. We ask, 'How is the production of wood pellets in the SE USA affecting forest systems and the ecosystem services they provide?' To addressmore » this question, we review current forest conditions and the status of the wood products industry, how pellet production affects ecosystem services and biodiversity, and what methods are in place to monitor changes and protect vulnerable systems. Scientific studies provide evidence that wood pellets in the SE USA are a fraction of total forestry operations and can be produced while maintaining or improving forest ecosystem services. Ecosystem services are protected by the requirement to utilize loggers trained to apply scientifically based best management practices in planning and implementing harvest for the export market. Bioenergy markets supplement incomes to private rural landholders and provide an incentive for forest management practices that simultaneously benefit water quality and wildlife and reduce risk of fire and insect outbreaks. Bioenergy also increases the value of forest land to landowners, thereby decreasing likelihood of conversion to nonforest uses. Monitoring and evaluation are essential to verify that regulations and good practices are achieving goals and to enable timely responses if problems arise. Conducting rigorous research to understand how conditions change in response to management choices requires baseline data, monitoring, and appropriate reference scenarios. Furthermore, long-term monitoring data on forest conditions should be publicly accessible and utilized to inform adaptive management.« less
Status and prospects for renewable energy using wood pellets from the southeastern United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, Virginia H.; Kline, Keith L.; Parish, Esther S.
The ongoing debate about costs and benefits of wood-pellet based bioenergy production in the southeastern United States (SE USA) requires an understanding of the science and context influencing market decisions associated with its sustainability. Production of pellets has garnered much attention as US exports have grown from negligible amounts in the early 2000s to 4.6 million metric tonnes in 2015. Currently, 98% of these pellet exports are shipped to Europe to displace coal in power plants. We ask, 'How is the production of wood pellets in the SE USA affecting forest systems and the ecosystem services they provide?' To addressmore » this question, we review current forest conditions and the status of the wood products industry, how pellet production affects ecosystem services and biodiversity, and what methods are in place to monitor changes and protect vulnerable systems. Scientific studies provide evidence that wood pellets in the SE USA are a fraction of total forestry operations and can be produced while maintaining or improving forest ecosystem services. Ecosystem services are protected by the requirement to utilize loggers trained to apply scientifically based best management practices in planning and implementing harvest for the export market. Bioenergy markets supplement incomes to private rural landholders and provide an incentive for forest management practices that simultaneously benefit water quality and wildlife and reduce risk of fire and insect outbreaks. Bioenergy also increases the value of forest land to landowners, thereby decreasing likelihood of conversion to nonforest uses. Monitoring and evaluation are essential to verify that regulations and good practices are achieving goals and to enable timely responses if problems arise. Conducting rigorous research to understand how conditions change in response to management choices requires baseline data, monitoring, and appropriate reference scenarios. Furthermore, long-term monitoring data on forest conditions should be publicly accessible and utilized to inform adaptive management.« less
Rockwell, Cara A.; Guariguata, Manuel R.; Menton, Mary; Arroyo Quispe, Eriks; Quaedvlieg, Julia; Warren-Thomas, Eleanor; Fernandez Silva, Harol; Jurado Rojas, Edwin Eduardo; Kohagura Arrunátegui, José Andrés Hideki; Meza Vega, Luis Alberto; Revilla Vera, Olivia; Valera Tito, Jonatan Frank; Villarroel Panduro, Betxy Tabita; Yucra Salas, Juan José
2015-01-01
Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world’s most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1–2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich forests, when a buffer zone cannot be observed, low logging intensities should be implemented. The sustainability of this integrated management system will ultimately depend on a complex series of socioeconomic and ecological interactions. Yet we submit that our study provides an important initial step in understanding the compatibility of timber harvesting with a high value NTFP, potentially allowing for diversification of forest use strategies in Amazonian Perù. PMID:26271042
Rockwell, Cara A; Guariguata, Manuel R; Menton, Mary; Arroyo Quispe, Eriks; Quaedvlieg, Julia; Warren-Thomas, Eleanor; Fernandez Silva, Harol; Jurado Rojas, Edwin Eduardo; Kohagura Arrunátegui, José Andrés Hideki; Meza Vega, Luis Alberto; Revilla Vera, Olivia; Quenta Hancco, Roger; Valera Tito, Jonatan Frank; Villarroel Panduro, Betxy Tabita; Yucra Salas, Juan José
2015-01-01
Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world's most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1-2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich forests, when a buffer zone cannot be observed, low logging intensities should be implemented. The sustainability of this integrated management system will ultimately depend on a complex series of socioeconomic and ecological interactions. Yet we submit that our study provides an important initial step in understanding the compatibility of timber harvesting with a high value NTFP, potentially allowing for diversification of forest use strategies in Amazonian Perù.
76 FR 75860 - National Forest System Invasive Species Management Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-05
..., scope, roles, principles, and responsibilities associated with NFS invasive species management for... threatening the National Forest System. Final Policy or Principles The management of aquatic and terrestrial...-AC77 National Forest System Invasive Species Management Policy AGENCY: Forest Service, USDA. ACTION...