Sample records for forest production responses

  1. Survey response rates in the forest products literature from 2000 to 2015

    Treesearch

    Matt Bumgardner; Iris Montague; Jan Wiedenbeck

    2017-01-01

    A literature analysis was conducted to synthesize typical response rates from forest-productsindustry- based survey studies published from 2000 to mid-2015. One hundred and ninety-five surveys published in several forest products and forestry journals and proceedings (mostly North American based) were analyzed. Overall, the typical response rate was found to be about...

  2. Rain forest nutrient cycling and productivity in response to large-scale litter manipulation.

    PubMed

    Wood, Tana E; Lawrence, Deborah; Clark, Deborah A; Chazdon, Robin L

    2009-01-01

    Litter-induced pulses of nutrient availability could play an important role in the productivity and nutrient cycling of forested ecosystems, especially tropical forests. Tropical forests experience such pulses as a result of wet-dry seasonality and during major climatic events, such as strong El Niños. We hypothesized that (1) an increase in the quantity and quality of litter inputs would stimulate leaf litter production, woody growth, and leaf litter nutrient cycling, and (2) the timing and magnitude of this response would be influenced by soil fertility and forest age. To test these hypotheses in a Costa Rican wet tropical forest, we established a large-scale litter manipulation experiment in two secondary forest sites and four old-growth forest sites of differing soil fertility. In replicated plots at each site, leaves and twigs (< 2 cm diameter) were removed from a 400-m2 area and added to an adjacent 100-m2 area. This transfer was the equivalent of adding 5-25 kg/ha of organic P to the forest floor. We analyzed leaf litter mass, [N] and [P], and N and P inputs for addition, removal, and control plots over a two-year period. We also evaluated basal area increment of trees in removal and addition plots. There was no response of forest productivity or nutrient cycling to litter removal; however, litter addition significantly increased leaf litter production and N and P inputs 4-5 months following litter application. Litter production increased as much as 92%, and P and N inputs as much as 85% and 156%, respectively. In contrast, litter manipulation had no significant effect on woody growth. The increase in leaf litter production and N and P inputs were significantly positively related to the total P that was applied in litter form. Neither litter treatment nor forest type influenced the temporal pattern of any of the variables measured. Thus, environmental factors such as rainfall drive temporal variability in litter and nutrient inputs, while nutrient release

  3. Wood production response to climate change will depend critically on forest composition and structure.

    PubMed

    Coomes, David A; Flores, Olivier; Holdaway, Robert; Jucker, Tommaso; Lines, Emily R; Vanderwel, Mark C

    2014-12-01

    Established forests currently function as a major carbon sink, sequestering as woody biomass about 26% of global fossil fuel emissions. Whether forests continue to act as a global sink will depend on many factors, including the response of aboveground wood production (AWP; MgC ha(-1 ) yr(-1) ) to climate change. Here, we explore how AWP in New Zealand's natural forests is likely to change. We start by statistically modelling the present-day growth of 97 199 individual trees within 1070 permanently marked inventory plots as a function of tree size, competitive neighbourhood and climate. We then use these growth models to identify the factors that most influence present-day AWP and to predict responses to medium-term climate change under different assumptions. We find that if the composition and structure of New Zealand's forests were to remain unchanged over the next 30 years, then AWP would increase by 6-23%, primarily as a result of physiological responses to warmer temperatures (with no appreciable effect of changing rainfall). However, if warmth-requiring trees were able to migrate into currently cooler areas and if denser canopies were able to form, then a different AWP response is likely: forests growing in the cool mountain environments would show a 30% increase in AWP, while those in the lowland would hardly respond (on average, -3% when mean annual temperature exceeds 8.0 °C). We conclude that response of wood production to anthropogenic climate change is not only dependent on the physiological responses of individual trees, but is highly contingent on whether forests adjust in composition and structure. © 2014 John Wiley & Sons Ltd.

  4. Divergence in Forest-Type Response to Climate and Weather: Evidence for Regional Links Between Forest-Type Evenness and Net Primary Productivity

    USGS Publications Warehouse

    Bradford, J.B.

    2011-01-01

    Climate change is altering long-term climatic conditions and increasing the magnitude of weather fluctuations. Assessing the consequences of these changes for terrestrial ecosystems requires understanding how different vegetation types respond to climate and weather. This study examined 20 years of regional-scale remotely sensed net primary productivity (NPP) in forests of the northern Lake States to identify how the relationship between NPP and climate or weather differ among forest types, and if NPP patterns are influenced by landscape-scale evenness of forest-type abundance. These results underscore the positive relationship between temperature and NPP. Importantly, these results indicate significant differences among broadly defined forest types in response to both climate and weather. Essentially all weather variables that were strongly related to annual NPP displayed significant differences among forest types, suggesting complementarity in response to environmental fluctuations. In addition, this study found that forest-type evenness (within 8 ?? 8 km2 areas) is positively related to long-term NPP mean and negatively related to NPP variability, suggesting that NPP in pixels with greater forest-type evenness is both higher and more stable through time. This is landscape- to subcontinental-scale evidence of a relationship between primary productivity and one measure of biological diversity. These results imply that anthropogenic or natural processes that influence the proportional abundance of forest types within landscapes may influence long-term productivity patterns. ?? 2011 Springer Science+Business Media, LLC (outside the USA).

  5. Accounting for Production and Sale of Forest Products

    DTIC Science & Technology

    1988-01-25

    procedures, and assigns responsibilities for DoD reimbursement and for a State’s entitlement to a share in the net proceeds derived from forest products...appropriations incurring obligations for the production and sale of forest products shall be reimbursed from collections made as a result of the sale of such...mainte- nance (00M) and other procurement accounts. The 0&M and other procurement appropriations incur obligations, which are reimbursable , for the

  6. Response diversity, functional redundancy, and post-logging productivity in northern temperate and boreal forests.

    PubMed

    Correia, David Laginha Pinto; Raulier, Frédéric; Bouchard, Mathieu; Filotas, Élise

    2018-04-19

    The development of efficient ecosystem resilience indicators was identified as one of the key research priorities in the improvement of existing sustainable forest management frameworks. Two indicators of tree diversity associated with ecosystem functioning have recently received particular attention in the literature: functional redundancy (FR) and response diversity (RD). We examined how these indicators could be used to predict post-logging productivity in forests of Québec, Canada. We analysed the relationships between pre-logging FR and RD, as measured with sample plots, and post-logging productivity, measured as seasonal variation in enhanced vegetation index obtained from MODIS satellite imagery. The effects of the deciduous and coniferous tree components in our pre-disturbance diversity assessments were isolated in order to examine the hypothesis that they have different impacts on post-disturbance productivity. We also examined the role of tree species richness and species identity effects. Our analysis revealed the complementary nature of traditional biodiversity indicators and trait-based approaches in the study of biodiversity-ecosystem-functioning relationships in dynamic ecosystems. We report a significant and positive relationship between pre-disturbance deciduous RD and post-disturbance productivity, as well as an unexpected significant negative effect of coniferous RD on productivity. This negative relationship with post-logging productivity likely results from slower coniferous regeneration speeds and from the relatively short temporal scale examined. Negative black-spruce-mediated identity effects were likely associated with increased stand vulnerability to paludification and invasion by ericaceous shrubs that slow down forest regeneration. Response diversity outperformed functional redundancy as a measure of post-disturbance productivity most likely due to the stand-replacing nature of the disturbance considered. To the best of our knowledge

  7. Consumer and purchasing agent response to terms used to describe forest products from southeast Alaska

    Treesearch

    Allen M. Brackley; Valerie Barber

    2007-01-01

    This study surveys 204 consumers and purchasing agents and reports their reaction to terms used to describe forest products from southeast Alaska. Although 67 percent of the respondents would purchase products from old-growth trees, purchasing agents were more likely to refuse to purchase such products (negative response from 12 percent of consumers vs. 29 percent for...

  8. Productivity of Western forests: a forest products focus.

    Treesearch

    Constance A. Harrington; Stephen H. Schoenholtz

    2005-01-01

    In August 20-23, 2004, a conference was held in Kamilche, WA, with the title “Productivity of Western Forests: A Forest Products Focus.” The meeting brought together researchers and practitioners interested in discussing the economic and biological factors influencing wood production and value. One of the underlying assumptions of the meeting organizers was that...

  9. Amazon Forests Response to Droughts: A Perspective from the MAIAC Product

    NASA Technical Reports Server (NTRS)

    Bi, Jian; Myneni, Ranga; Lyapustin, Alexei; Wang, Yujie; Park, Taejin; Chi, Chen; Yan, Kai; Knyazikhin, Yuri

    2016-01-01

    Amazon forests experienced two severe droughts at the beginning of the 21st century: one in 2005 and the other in 2010. How Amazon forests responded to these droughts is critical for the future of the Earth's climate system. It is only possible to assess Amazon forests' response to the droughts in large areal extent through satellite remote sensing. Here, we used the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index (VI) data to assess Amazon forests' response to droughts, and compared the results with those from the standard (Collection 5 and Collection 6) MODIS VI data. Overall, the MAIAC data reveal more realistic Amazon forests inter-annual greenness dynamics than the standard MODIS data. Our results from the MAIAC data suggest that: (1) the droughts decreased the greenness (i.e., photosynthetic activity) of Amazon forests; (2) the Amazon wet season precipitation reduction induced by El Niño events could also lead to reduced photosynthetic activity of Amazon forests; and (3) in the subsequent year after the water stresses, the greenness of Amazon forests recovered from the preceding decreases. However, as previous research shows droughts cause Amazon forests to reduce investment in tissue maintenance and defense, it is not clear whether the photosynthesis of Amazon forests will continue to recover after future water stresses, because of the accumulated damages caused by the droughts.

  10. Responses of plant available water and forest productivity to variably layered coarse textured soils

    NASA Astrophysics Data System (ADS)

    Huang, Mingbin; Barbour, Lee; Elshorbagy, Amin; Si, Bing; Zettl, Julie

    2010-05-01

    Reforestation is a primary end use for reconstructed soils following oil sands mining in northern Alberta, Canada. Limited soil water conditions strongly restrict plant growth. Previous research has shown that layering of sandy soils can produce enhanced water availability for plant growth; however, the effect of gradation on these enhancements is not well defined. The objective of this study was to evaluate the effect of soil texture (gradation and layering) on plant available water and consequently on forest productivity for reclaimed coarse textured soils. A previously validated system dynamics (SD) model of soil moisture dynamics was coupled with ecophysiological and biogeochemical processes model, Biome-BGC-SD, to simulate forest dynamics for different soil profiles. These profiles included contrasting 50 cm textural layers of finer sand overlying coarser sand in which the sand layers had either a well graded or uniform soil texture. These profiles were compared to uniform profiles of the same sands. Three tree species of jack pine (Pinus banksiana Lamb.), white spruce (Picea glauce Voss.), and trembling aspen (Populus tremuloides Michx.) were simulated using a 50 year climatic data base from northern Alberta. Available water holding capacity (AWHC) was used to identify soil moisture regime, and leaf area index (LAI) and net primary production (NPP) were used as indices of forest productivity. Published physiological parameters were used in the Biome-BGC-SD model. Relative productivity was assessed by comparing model predictions to the measured above-ground biomass dynamics for the three tree species, and was then used to study the responses of forest leaf area index and potential productivity to AWHC on different soil profiles. Simulated results indicated soil layering could significantly increase AWHC in the 1-m profile for coarse textured soils. This enhanced AWHC could result in an increase in forest LAI and NPP. The increased extent varied with soil

  11. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    NASA Astrophysics Data System (ADS)

    Reyer, Christopher P. O.; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G.; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P.; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Guerra Hernández, Juan; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J.; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A.; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E.; Hanewinkel, Marc

    2017-03-01

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.

  12. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    PubMed Central

    Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc

    2017-01-01

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures. PMID:28855959

  13. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    PubMed

    Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João Hn; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc

    2017-03-16

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.

  14. Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses

    NASA Astrophysics Data System (ADS)

    Rowland, L.; Harper, A.; Christoffersen, B. O.; Galbraith, D. R.; Imbuzeiro, H. M. A.; Powell, T. L.; Doughty, C.; Levine, N. M.; Malhi, Y.; Saleska, S. R.; Moorcroft, P. R.; Meir, P.; Williams, M.

    2014-11-01

    Accurately predicting the response of Amazonia to climate change is important for predicting changes across the globe. However, changes in multiple climatic factors simultaneously may result in complex non-linear responses, which are difficult to predict using vegetation models. Using leaf and canopy scale observations, this study evaluated the capability of five vegetation models (CLM3.5, ED2, JULES, SiB3, and SPA) to simulate the responses of canopy and leaf scale productivity to changes in temperature and drought in an Amazonian forest. The models did not agree as to whether gross primary productivity (GPP) was more sensitive to changes in temperature or precipitation. There was greater model-data consistency in the response of net ecosystem exchange to changes in temperature, than in the response to temperature of leaf area index (LAI), net photosynthesis (An) and stomatal conductance (gs). Modelled canopy scale fluxes are calculated by scaling leaf scale fluxes to LAI, and therefore in this study similarities in modelled ecosystem scale responses to drought and temperature were the result of inconsistent leaf scale and LAI responses among models. Across the models, the response of An to temperature was more closely linked to stomatal behaviour than biochemical processes. Consequently all the models predicted that GPP would be higher if tropical forests were 5 °C colder, closer to the model optima for gs. There was however no model consistency in the response of the An-gs relationship when temperature changes and drought were introduced simultaneously. The inconsistencies in the An-gs relationships amongst models were caused by to non-linear model responses induced by simultaneous drought and temperature change. To improve the reliability of simulations of the response of Amazonian rainforest to climate change the mechanistic underpinnings of vegetation models need more complete validation to improve accuracy and consistency in the scaling of processes from

  15. Forest products issue.

    Treesearch

    Thornton T. Munger

    1935-01-01

    This issue of Forest Research Notes is devoted to abstracts of projects under way or recently completed by the Section of Forest Products. This section conducts research designed to contribute to better and more economic utilization of the products of the forest. As shown by the variety of subjects presented in these notes, the projects range from the statistics of...

  16. Rapid Increases in Forest Understory Diversity and Productivity following a Mountain Pine Beetle (Dendroctonus ponderosae) Outbreak in Pine Forests

    PubMed Central

    Pec, Gregory J.; Karst, Justine; Sywenky, Alexandra N.; Cigan, Paul W.; Erbilgin, Nadir; Simard, Suzanne W.; Cahill, James F.

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown. PMID:25859663

  17. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests.

    PubMed

    Pec, Gregory J; Karst, Justine; Sywenky, Alexandra N; Cigan, Paul W; Erbilgin, Nadir; Simard, Suzanne W; Cahill, James F

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  18. Contribution of Near Real Time MODIS-Based Forest Disturbance Detection Products to a National Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Hargrove, William; Gasser, Gerald; Smoot, James; Kuper, Philip

    2011-01-01

    U.S. forests occupy approx. 751 million acres (approx. 1/3 of total land). These forests are exposed to multiple biotic and abiotic threats that collectively damage extensive acreages each year. Hazardous forest disturbances can threaten human life and property, bio-diversity and water supplies. Timely regional forest monitoring products are needed to aid forest management and decision making by the US Forest Service and its state and private partners. Daily MODIS data products provide a means to monitor regional forest disturbances on a weekly basis. In response, we began work in 2006 to develop a Near Real Time (NRT) forest monitoring capability, based on MODIS NDVI data, as part of a national forest threat early warning system (EWS)

  19. Disturbance and productivity interactions mediate stability of forest composition and structure.

    PubMed

    O'Connor, Christopher D; Falk, Donald A; Lynch, Ann M; Swetnam, Thomas W; Wilcox, Craig P

    2017-04-01

    Fire is returning to many conifer-dominated forests where species composition and structure have been altered by fire exclusion. Ecological effects of these fires are influenced strongly by the degree of forest change during the fire-free period. Response of fire-adapted species assemblages to extended fire-free intervals is highly variable, even in communities with similar historical fire regimes. This variability in plant community response to fire exclusion is not well understood; however, ecological mechanisms such as individual species' adaptations to disturbance or competition and underlying site characteristics that facilitate or impede establishment and growth have been proposed as potential drivers of assemblage response. We used spatially explicit dendrochronological reconstruction of tree population dynamics and fire regimes to examine the influence of historical disturbance frequency (a proxy for adaptation to disturbance or competition), and potential site productivity (a proxy for underlying site characteristics) on the stability of forest composition and structure along a continuous ecological gradient of pine, dry mixed-conifer, mesic mixed-conifer, and spruce-fir forests following fire exclusion. While average structural density increased in all forests, species composition was relatively stable in the lowest productivity pine-dominated and highest productivity spruce-fir-dominated sites immediately following fire exclusion and for the next 100 years, suggesting site productivity as a primary control on species composition and structure in forests with very different historical fire regimes. Species composition was least stable on intermediate productivity sites dominated by mixed-conifer forests, shifting from primarily fire-adapted species to competition-adapted, fire-sensitive species within 20 years of fire exclusion. Rapid changes to species composition and stand densities have been interpreted by some as evidence of high-severity fire. We

  20. Non-timber forest products and forest stewardship plans

    Treesearch

    Becky Barlow; Tanner Filyaw; Sarah W. Workman

    2015-01-01

    To many woodland owners “harvesting” typically means the removal of timber from forests. In recent years many landowners have become aware of the role non-timber forest products (NTFPs) can play in supplemental management strategies to produce income while preserving other forest qualities. NTFPs are a diverse group of craft, culinary, and medicinal products that have...

  1. Why do forest products become less available?A pan-tropical comparison of drivers of forest-resource degradation

    NASA Astrophysics Data System (ADS)

    Hermans-Neumann, Kathleen; Gerstner, Katharina; Geijzendorffer, Ilse R.; Herold, Martin; Seppelt, Ralf; Wunder, Sven

    2016-12-01

    Forest products provide an important source of income and wellbeing for rural smallholder communities across the tropics. Although tropical forest products frequently become over-exploited, only few studies explicitly address the dynamics of degradation in response to socio-economic drivers. Our study addresses this gap by analyzing the factors driving changes in tropical forest products in the perception of rural smallholder communities. Using the poverty and environment network global dataset, we studied recently perceived trends of forest product availability considering firewood, charcoal, timber, food, medicine, forage and other forest products. We looked at a pan-tropical sample of 233 villages with forest access. Our results show that 90% of the villages experienced declining availability of forest resources over the last five years according to the informants. Timber and fuelwood together with forest foods were featured as the most strongly affected, though with marked differences across continents. In contrast, availability of at least one main forest product was perceived to increase in only 39% of the villages. Furthermore, the growing local use of forest resources is seen as the main culprit for the decline. In villages with both growing forest resource use and immigration—vividly illustrating demographic pressures—the strongest forest resources degradation was observed. Conversely, villages with little or no population growth and a decreased use of forest resources were most likely to see significant forest-resource increases. Further, villages are less likely to perceive resource declines when local communities own a significant share of forest area. Our results thus suggest that perceived resource declines have only exceptionally triggered adaptations in local resource-use and management patterns that would effectively deal with scarcity. Hence, at the margin this supports neo-Malthusian over neo-Boserupian explanations of local resource

  2. Forest Productivity, Leaf Area, and Terrain in Southern Appalachian Deciduous Forests

    Treesearch

    Paul V. Bolstad; James M. Vose; Steven G. McNulty

    2000-01-01

    Leaf area index (LAI) is an important structural characteristic of forest ecosystems which has been shown to be strongly related to forest mass and energy cycles and forest productivity. LAI is more easily measured than forest productivity, and so a strong relationship between LAI and productivity would be a valuable tool in forest management. While a linear...

  3. Using Tree-Rings and Remote Sensing to Investigate Forest Productivity Response to Landscape Fragmentation in Northeastern Algeria

    NASA Astrophysics Data System (ADS)

    Rouini, N.; Lepley, K. S.; Messaoudene, M.

    2017-12-01

    Remote sensing and dendrochronology are valuable tools in the face of climate change and land use change, yet the connection between these resources remains largely unexploited. Research on forest fragmentation is mainly focused on animal groups, while our work focuses on tree communities. We link tree-rings and remotely-sensed Normalized Difference Vegetation Index (NDVI) using seasonal correlation analysis to investigate forest primary productivity response to fragmentation. Tree core samples from Quercus afares have been taken from two sites within the Guerrouche Forest in northeastern Algeria. The first site is located within a very fragmented area while the second site is intact. Fragmentation is estimated to have occurred with the construction of a road in 1930. We find raw tree-ring width chronologies from each site reveal growth release in the disturbed site after 1930. The means of each chronology for the 1930 to 2016 period are statistically different (p < 0.01). Based on these preliminary results we hypothesize that reconstructed primary productivity (NDVI) will be higher in the fragmented site after fragmentation took place.

  4. Climate Change Impacts on Forest Succession and Future Productivity

    NASA Astrophysics Data System (ADS)

    Mohan, J. E.; Melillo, J. M.; Clark, J. S.; Schlesinger, W. H.

    2012-12-01

    Change in ecosystem carbon (C) dynamics with forest succession is a long-studied topic in ecology, and secondary forests currently comprise a significant proportion of the global land base. Although mature forests are generally more important for conserving species and habitats, early successional trees and stands typically have higher rates of productivity, including net ecosystem productivity (NEP), which represents carbon available for sequestration. Secondary forests undergoing successional development are thus major players in the current global carbon cycle, yet how forests will function in the future under warmer conditions with higher atmospheric carbon dioxide (CO2) concentrations is unknown. Future forest C dynamics will depend, in part, on future species composition. Data from "Forests of the Future" research in a number of global change experiments provide insights into how forests may look in terms of dominant species composition, and thus function, in a future world. Studies at Free-Air Carbon Dioxide (FACE) experiments at Duke Forest and other facilities, plus climate warming experiments such as those at the Harvard Forest, suggest a common underlying principle of vegetation responses to environmental manipulation: Namely, that shade-tolerant woody species associating with arbuscular mycorrhizal (AM) fungi show greater growth stimulation than ectomycorrhizal-associating (ECM) trees which are more common in temperate and boreal forests (Fig. 1 of relative growth rates standardized by pre-treatment rates). This may be due in part to the role of AM fungi in obtaining soil phosphorus and inorganic forms of nitrogen for plant associates. In combination, these results suggest a shift in future forest composition towards less-productive tree species that generally acquire atmospheric CO2 at lower annual rates, as well as a competitive advantage extended to woody vines such as poison ivy. Due to higher atmospheric CO2 and warmer temperatures, forests of the

  5. Managing forest products for community benefit

    Treesearch

    Susan Charnley; Jonathan W. Long

    2014-01-01

    Forest products harvesting and use from national forest lands remain important to local residents and communities in some parts of the Sierra Nevada science synthesis area. Managing national forests for the sustainable production of timber, biomass, nontimber forest products, and forage for livestock can help support forestbased livelihoods in parts of the region where...

  6. Non-timber forest products in sustainable forest management

    Treesearch

    James L. Chamberlain; A.L. Hammett; Philip A. Araman

    2001-01-01

    The forests of Southern United States are the source of many non-timber forest products (NTFPs). The collection, trade and use of these products have been important to rural economies since Europeans settled in this country. At the same time the plants from which these products originate are crucial to healthy ecosystems. Over the last decade, the market demand and the...

  7. Sensitivity of tropical forest aboveground productivity to climate anomalies in SW Costa Rica

    NASA Astrophysics Data System (ADS)

    Hofhansl, Florian; Kobler, Johannes; Ofner, Joachim; Drage, Sigrid; Pölz, Eva-Maria; Wanek, Wolfgang

    2014-12-01

    The productivity of tropical forests is driven by climate (precipitation, temperature, and light) and soil fertility (geology and topography). While large-scale drivers of tropical productivity are well established, knowledge on the sensitivity of tropical lowland net primary production to climate anomalies remains scarce. We here analyze seven consecutive years of monthly recorded tropical forest aboveground net primary production (ANPP) in response to a recent El Niño-Southern Oscillation (ENSO) anomaly. The ENSO transition period resulted in increased temperatures and decreased precipitation during the El Niño dry period, causing a decrease in ANPP. However, the subsequent La Niña wet period caused strong increases in ANPP such that drought-induced reductions were overcompensated. Most strikingly, the climatic controls differed between canopy production (CP) and wood production (WP). Whereas CP showed strong seasonal variation but was not affected by ENSO, WP decreased significantly in response to a 3°C increase in annual maximum temperatures during the El Niño period but subsequently recovered to above predrought levels during the La Niña period. Moreover, the climate sensitivity of tropical forest ANPP components was affected by local topography (water availability) and disturbance history (species composition). Our results suggest that projected increases in temperature and dry season length could impact tropical carbon sequestration by shifting ANPP partitioning toward decreased WP, thus decreasing the carbon storage of highly productive lowland forests. We conclude that the impact of climate anomalies on tropical forest productivity is strongly related to local site characteristics and will therefore likely prevent uniform responses of tropical lowland forests to projected global changes.

  8. Non-timber forest products: alternative multiple-uses for sustainable forest management

    Treesearch

    James L. Chamberlain; Mary Predny

    2003-01-01

    Forests of the southern United States are the source of a great diversity of flora, much of which is gathered for non-timber forest products (NTFPs). These products are made from resources that grow under the forest canopy as trees, herbs, shrubs, vines, moss and even lichen. They occur naturally in forests or may be cultivated under the forest canopy or in...

  9. Challenge and Response, Strategies for Survival in a Rapidly Changing Forest Products Industry

    Treesearch

    Al Schuler; Craig Adair; Paul Winistorfer

    2005-01-01

    The U.S. has long been the world's largest market for wood and wood products, fueled by its demand for wood-frame housing. But forest product markets are changing, both in terns of where the products originate (domestically or abroad),and what products are being produced and consumed.

  10. Improving Post-Hurricane Katrina Forest Management with MODIS Time Series Products

    NASA Technical Reports Server (NTRS)

    Lewis, Mark David; Spruce, Joseph; Evans, David; Anderson, Daniel

    2012-01-01

    Hurricane damage to forests can be severe, causing millions of dollars of timber damage and loss. To help mitigate loss, state agencies require information on location, intensity, and extent of damaged forests. NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series data products offers a potential means for state agencies to monitor hurricane-induced forest damage and recovery across a broad region. In response, a project was conducted to produce and assess 250 meter forest disturbance and recovery maps for areas in southern Mississippi impacted by Hurricane Katrina. The products and capabilities from the project were compiled to aid work of the Mississippi Institute for Forest Inventory (MIFI). A series of NDVI change detection products were computed to assess hurricane induced damage and recovery. Hurricane-induced forest damage maps were derived by computing percent change between MODIS MOD13 16-day composited NDVI pre-hurricane "baseline" products (2003 and 2004) and post-hurricane NDVI products (2005). Recovery products were then computed in which post storm 2006, 2007, 2008 and 2009 NDVI data was each singularly compared to the historical baseline NDVI. All percent NDVI change considered the 16-day composite period of August 29 to September 13 for each year in the study. This provided percent change in the maximum NDVI for the 2 week period just after the hurricane event and for each subsequent anniversary through 2009, resulting in forest disturbance products for 2005 and recovery products for the following 4 years. These disturbance and recovery products were produced for the Mississippi Institute for Forest Inventory's (MIFI) Southeast Inventory District and also for the entire hurricane impact zone. MIFI forest inventory products were used as ground truth information for the project. Each NDVI percent change product was classified into 6 categories of forest disturbance intensity. Stand age

  11. Water resource use and management by the United States forest products industry.

    PubMed

    Wiegand, P S; Flinders, C A; Ice, G G; Malmberg, B J; Fisher, R P

    2009-01-01

    The connections between forest products operations and water resources in the United States is considered and, where possible, quantified. Manufacture of wood, pulp, and paper products and the influences of forest management and forest products manufacture on water quality are discussed. Most fresh water in the US originates in forested areas. Responsible harvesting strategies, best management practices, and forest re-growth combine to minimize or eliminate changes in water availability and degradation of water quality due to harvesting. Relative to alternative land uses and large-scale disturbance events, forested areas produce the highest quality of fresh water. Water inputs for the manufacture of forest products total about 5.8 billion m(3) per year, an amount equal about 0.4% of the surface and groundwater yield from timberland. Approximately 88% of water used in manufacturing is treated and returned directly to surface waters, about 11% is converted to water vapor and released during the manufacturing process, and 1% is imparted to products or solid residuals. Extensive study and continued monitoring of treated effluents suggest few or no concerns regarding the compatibility of current effluents with healthy aquatic systems.

  12. Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses

    NASA Astrophysics Data System (ADS)

    Rowland, L.; Harper, A.; Christoffersen, B. O.; Galbraith, D. R.; Imbuzeiro, H. M. A.; Powell, T. L.; Doughty, C.; Levine, N. M.; Malhi, Y.; Saleska, S. R.; Moorcroft, P. R.; Meir, P.; Williams, M.

    2015-04-01

    Accurately predicting the response of Amazonia to climate change is important for predicting climate change across the globe. Changes in multiple climatic factors simultaneously result in complex non-linear ecosystem responses, which are difficult to predict using vegetation models. Using leaf- and canopy-scale observations, this study evaluated the capability of five vegetation models (Community Land Model version 3.5 coupled to the Dynamic Global Vegetation model - CLM3.5-DGVM; Ecosystem Demography model version 2 - ED2; the Joint UK Land Environment Simulator version 2.1 - JULES; Simple Biosphere model version 3 - SiB3; and the soil-plant-atmosphere model - SPA) to simulate the responses of leaf- and canopy-scale productivity to changes in temperature and drought in an Amazonian forest. The models did not agree as to whether gross primary productivity (GPP) was more sensitive to changes in temperature or precipitation, but all the models were consistent with the prediction that GPP would be higher if tropical forests were 5 °C cooler than current ambient temperatures. There was greater model-data consistency in the response of net ecosystem exchange (NEE) to changes in temperature than in the response to temperature by net photosynthesis (An), stomatal conductance (gs) and leaf area index (LAI). Modelled canopy-scale fluxes are calculated by scaling leaf-scale fluxes using LAI. At the leaf-scale, the models did not agree on the temperature or magnitude of the optimum points of An, Vcmax or gs, and model variation in these parameters was compensated for by variations in the absolute magnitude of simulated LAI and how it altered with temperature. Across the models, there was, however, consistency in two leaf-scale responses: (1) change in An with temperature was more closely linked to stomatal behaviour than biochemical processes; and (2) intrinsic water use efficiency (IWUE) increased with temperature, especially when combined with drought. These results suggest

  13. Sustainable production of wood and non-wood forest products

    Treesearch

    Ellen M. Donoghue; Gary L. Benson; James L. Chamberlain

    2003-01-01

    The International Union of Forest Research Organizations (IUFRO) All Divisions 5 Conference in Rotorua, New Zealand, March 11-15, 2003, focused on issues surrounding sustainable foest management and forest products research. As the conference title "Forest Products Research: Providing for Sustainable Choices" suggests, the purpose of the conference was to...

  14. 29 CFR 780.1015 - Other forest products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Other forest products. 780.1015 Section 780.1015 Labor... Provisions Under Section 13(d) Requirements for Exemption § 780.1015 Other forest products. The homeworker may also harvest “other forest products” for use in making wreaths. The term other forest products...

  15. Potential for forest products in interior Alaska.

    Treesearch

    George R. Sampson; Willem W.S. van Hees; Theodore S. Setzer; Richard C. Smith

    1988-01-01

    Future opportunities for producing Alaska forest products were examined from the perspective of timber supply as reported in timber inventory reports and past studies of forest products industry potential. The best prospects for increasing industrial production of forest products in interior Alaska are for softwood lumber. Current softwood lumber production in the...

  16. Forest products research in IUFRO history and potential

    Treesearch

    Robert L. Youngs; John A. Youngquist

    1999-01-01

    When silviculture researchers in central Europe were gathering together to form IUFRO in 1892, forest products researchers were occupied with making useful forest products and conserving the forest resource through wise use. Forest products researchers did not become an active part of IUFRO until 50 years later. Research in forest products was stimulated by World War I...

  17. Method of determining forest production from remotely sensed forest parameters

    DOEpatents

    Corey, J.C.; Mackey, H.E. Jr.

    1987-08-31

    A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.

  18. Management of tropical forests for products and energy

    Treesearch

    John I. Zerbe

    1992-01-01

    Tropical forests have always been sources for prized timbers, rubber, tannin, and other forest products for use worldwide. However, with the recent concern regarding global change, the importance of effective forest products management and utilization has increased significantly. The USDA Forest Service's Forest Products Laboratory at Madison, Wisconsin, has...

  19. National measures of forest productivity for timber

    Treesearch

    Peter J. Ince; H. Edward Dickerhoof; H. Fred Kaiser

    1989-01-01

    This report presents national measures of forest productivity for timber. These measures reveal trends in the relationship between quantity of timber produced by forests and the quantity of forest resources employed in timber production. Timber production is measured by net annual growth of timber and annual timber removals. Measures of timber productivity include...

  20. Forest ecosystem services: Provisioning of non-timber forest products

    Treesearch

    James L. Chamberlain; Gregory E. Frey; C. Denise Ingram; Michael G. Jacobson; Cara Meghan Starbuck Downes

    2017-01-01

    The purpose of this chapter is to describe approaches to calculate a conservative and defensible estimate of the marginal value of forests for non-timber forest products (NTFPs). 'Provisioning" is one of four categories of benefits, or services that ecosystems provide to humans and was described by the Millennium Ecosystem Assessment as 'products...

  1. 29 CFR 780.115 - Forest products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Agricultural Or Horticultural Commodities § 780.115 Forest products. Trees grown in forests and the lumber derived therefrom are not “agricultural or horticultural commodities.” Christmas trees, whether wild or... 29 Labor 3 2012-07-01 2012-07-01 false Forest products. 780.115 Section 780.115 Labor Regulations...

  2. 29 CFR 780.115 - Forest products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Agricultural Or Horticultural Commodities § 780.115 Forest products. Trees grown in forests and the lumber derived therefrom are not “agricultural or horticultural commodities.” Christmas trees, whether wild or... 29 Labor 3 2014-07-01 2014-07-01 false Forest products. 780.115 Section 780.115 Labor Regulations...

  3. 29 CFR 780.115 - Forest products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Agricultural Or Horticultural Commodities § 780.115 Forest products. Trees grown in forests and the lumber derived therefrom are not “agricultural or horticultural commodities.” Christmas trees, whether wild or... 29 Labor 3 2013-07-01 2013-07-01 false Forest products. 780.115 Section 780.115 Labor Regulations...

  4. 36 CFR 223.216 - Special Forest Products definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Special Forest Products definitions. 223.216 Section 223.216 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL...

  5. 36 CFR 223.216 - Special Forest Products definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Special Forest Products definitions. 223.216 Section 223.216 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL...

  6. 36 CFR 223.216 - Special Forest Products definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Special Forest Products definitions. 223.216 Section 223.216 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL...

  7. 36 CFR 223.216 - Special Forest Products definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Special Forest Products definitions. 223.216 Section 223.216 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL...

  8. Contribution of Near Real Time MODIS-Based Forest Disturbance Detection Products to a National Forest Threat Early Warning System

    NASA Astrophysics Data System (ADS)

    Spruce, J.; Hargrove, W. W.; Gasser, J.; Smoot, J.; Kuper, P.

    2011-12-01

    maintained by the National Environmental Modeling and Analysis Center. The FCAV EWS has been used to aid multiple Federal and State agency forest management activities, including aerial disturbance detection surveys, as well as rapid response preliminary assessments of timber loss due to tornadoes, regional drought studies, and fire damage assessments. The FCAV allows end-users to assess the context of apparent forest vegetation change with respect to ancillary data, such as land cover, topography, hydrology, climate variables, and administrative boundaries. Such change products are being evaluated through case studies involving comparison with higher spatial resolution satellite, aerial, and field data. The presentation will include multiple examples in which regionally evident forest disturbances were successfully detected and monitored with the MODIS-based change products, as part of the FCAV. FCAV's MODIS forest change products enable end-users (e.g., resource managers) to view and monitor forest hazards at regional scales throughout the year and across the nation.

  9. International Trade In Forest Products

    Treesearch

    Jeffrey P. Prestemon; Joseph Buongiomo; David N. Wear; Jacek P. Siry

    2003-01-01

    The 21st century continues a trend of rapid growth in both international trade of forest products and a concern for forests. These two trends are connected. Forces causing trade growth are linked to the loss of native forest resources in some countries and the accumulation of nonnative forest resources in other countries. Factors increasing trade...

  10. Contribution of Near Real Time MODIS-Based Forest Disturbance Detection Products to a National Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hargrove, William; Glasser, Jerry; Kuper, Philip D.

    2011-01-01

    FCAV EWS has been used to aid multiple Federal and State agency forest management activities, including aerial disturbance detection surveys, as well as rapid response preliminary assessments of timber loss due to tornadoes, regional drought studies, and fire damage assessments. The FCAV allows end-users to assess the context of apparent forest vegetation change with respect to ancillary data, such as land cover, topography, hydrology, climate variables, and administrative boundaries. Such change products are being evaluated through case studies involving comparison with higher spatial resolution satellite, aerial, and field data. The presentation will include multiple examples in which regionally evident forest disturbances were successfully detected and monitored with the MODIS-based change products, as part of the FCAV. FCAV's MODIS forest change products enable end-users (e.g., resource managers) to monitor forest hazards at regional scales throughout the year and across the nation.

  11. Use of Current 2010 Forest Disturbance Monitoring Products for the Conterminous United States in Aiding a National Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hargrove, William; Gasser, J.; Smoot, J.; Kuper, P.

    2010-01-01

    This presentation discusses contributions of near real time (NRT) MODIS forest disturbance detection products for the conterminous United States to an emerging national forest threat early warning system (EWS). The latter is being developed by the USDA Forest Service s Eastern and Western Environmental Threat Centers with help from NASA Stennis Space Center and the Oak Ridge National Laboratory. Building off work done in 2009, this national and regional forest disturbance detection and viewing capability of the EWS employs NRT MODIS NDVI data from the USGS eMODIS group and historical NDVI data from standard MOD13 products. Disturbance detection products are being computed for 24 day composites that are refreshed every 8 days. Products for 2010 include 42 dates of the 24 day composites. For each compositing date, we computed % change in forest maximum NDVI products for 2010 with respect to each of three historical baselines of 2009, 2007-2009, and 2003-2009,. The three baselines enable one to view potential current, recent, and longer term forest disturbances. A rainbow color table was applied to each forest change product so that potential disturbances (NDVI drops) were identified in hot color tones and growth (NDVI gains) in cold color tones. Example products were provided to end-users responsible for forest health monitoring at the Federal and State levels. Large patches of potential forest disturbances were validated based on comparisons with available reference data, including Landsat and field survey data. Products were posted on two internet mapping systems for US Forest Service internal and collaborator use. MODIS forest disturbance detection products were computed and posted for use in as little as 1 day after the last input date of the compositing period. Such products were useful for aiding aerial disturbance detection surveys and for assessing disturbance persistence on both inter- and intra-annual scales. Multiple 2010 forest disturbance events were

  12. Use of Current 2010 Forest Disturbance Monitoring Products for the Conterminous United States in Aiding a National Forest Threat Early Warning System

    NASA Astrophysics Data System (ADS)

    Spruce, J.; Hargrove, W. W.; Gasser, J.; Smoot, J.; Kuper, P.

    2010-12-01

    This presentation discusses contributions of near real time (NRT) MODIS forest disturbance detection products for the conterminous United States to an emerging national forest threat early warning system (EWS). The latter is being developed by the USDA Forest Service’s Eastern and Western Environmental Threat Centers with help from NASA Stennis Space Center and the Oak Ridge National Laboratory. Building off work done in 2009, this national and regional forest disturbance detection and viewing capability of the EWS employs NRT MODIS NDVI data from the USGS eMODIS group and historical NDVI data from standard MOD13 products. Disturbance detection products are being computed for 24 day composites that are refreshed every 8 days. Products for 2010 include 42 dates of the 24 day composites. For each compositing date, we computed % change in forest maximum NDVI products for 2010 with respect to each of three historical baselines of 2009, 2007-2009, and 2003-2009. The three baselines enable one to view potential current, recent, and longer term forest disturbances. A rainbow color table was applied to each forest change product so that potential disturbances (NDVI drops) were identified in hot color tones and growth (NDVI gains) in cold color tones. Example products were provided to end-users responsible for forest health monitoring at the Federal and State levels. Large patches of potential forest disturbances were validated based on comparisons with available reference data, including Landsat and field survey data. Products were posted on two internet mapping systems for US Forest Service internal and collaborator use. MODIS forest disturbance detection products were computed and posted for use in as little as 1 day after the last input date of the compositing period. Such products were useful for aiding aerial disturbance detection surveys and for assessing disturbance persistence on both inter- and intra-annual scales. Multiple 2010 forest disturbance events were

  13. 25 CFR 163.22 - Payment for forest products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Terms and conditions for payment of forest products under lump sum (predetermined volume) sales shall be... Forest Management and Operations § 163.22 Payment for forest products. (a) The basis of volume determination for forest products sold shall be the Scribner Decimal C log rules, cubic volume, lineal...

  14. Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests

    NASA Astrophysics Data System (ADS)

    Bohn, Friedrich J.; May, Felix; Huth, Andreas

    2018-03-01

    Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP). It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q) and a species distribution index (ΩAWP). ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length). The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a development, one could plant

  15. Non-timber forest products: alternatives for landowners

    Treesearch

    James L. Chamberlain; A.L. Hammett

    2002-01-01

    Recently a great deal of attention has been given to forest products that are plant-based but do not come from timber. These "alternative" products are found growing under the forest canopy as herbs, shrubs, vines, moss and even lichen. Although they have been gathered for generations, non-timber forest products have had less attention than "more...

  16. 36 CFR 223.277 - Forest botanical products definition.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., transplants, tree sap, and wildflowers. Forest botanical products are not animals, animal parts, Christmas... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Forest botanical products definition. 223.277 Section 223.277 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF...

  17. 36 CFR 223.277 - Forest botanical products definition.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., transplants, tree sap, and wildflowers. Forest botanical products are not animals, animal parts, Christmas... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Forest botanical products definition. 223.277 Section 223.277 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF...

  18. 36 CFR 223.277 - Forest botanical products definition.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., transplants, tree sap, and wildflowers. Forest botanical products are not animals, animal parts, Christmas... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Forest botanical products definition. 223.277 Section 223.277 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF...

  19. 25 CFR 163.26 - Forest product harvesting permits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Forest product harvesting permits. 163.26 Section 163.26... Forest Management and Operations § 163.26 Forest product harvesting permits. (a) Except as provided in §§ 163.13 and 163.27 of this part, removal of forest products that are not under formal contract...

  20. Developing New Coastal Forest Restoration Products Based on Landsat, ASTER, and MODIS Data

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Graham, William; Smoot, James

    2009-01-01

    This paper discusses an ongoing effort to develop new geospatial information products for aiding coastal forest restoration and conservation efforts in coastal Louisiana and Mississippi. This project employs Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data in conjunction with airborne elevation data to compute coastal forest cover type maps and change detection products. Improved forest mapping products are needed to aid coastal forest restoration and management efforts of State and Federal agencies in the Northern Gulf of Mexico (NGOM) region. In particular, such products may aid coastal forest land acquisition and conservation easement procurements. This region's forests are often disturbed and subjected to multiple biotic and abiotic threats, including subsidence, salt water intrusion, hurricanes, sea-level rise, insect-induced defoliation and mortality, altered hydrology, wildfire, and conversion to non-forest land use. In some cases, such forest disturbance has led to forest loss or loss of regeneration capacity. In response, a case study was conducted to assess and demonstrate the potential of satellite remote sensing products for improving forest type maps and for assessing forest change over the last 25 years. Change detection products are needed for assessing risks for specific priority coastal forest types, such as live oak and baldcypress-dominated forest. Preliminary results indicate Landsat time series data are capable of generating the needed forest type and change detection products. Useful classifications were obtained using 2 strategies: 1) general forest classification based on use of 3 seasons of Landsat data from the same year; and 2) classification of specific forest types of concern using a single date of Landsat data in which a given targeted type is spectrally distinct compared to adjacent forested cover. When available, ASTER data was

  1. The importance of forest structure to biodiversity–productivity relationships

    PubMed Central

    Huth, Andreas

    2017-01-01

    While various relationships between productivity and biodiversity are found in forests, the processes underlying these relationships remain unclear and theory struggles to coherently explain them. In this work, we analyse diversity–productivity relationships through an examination of forest structure (described by basal area and tree height heterogeneity). We use a new modelling approach, called ‘forest factory’, which generates various forest stands and calculates their annual productivity (above-ground wood increment). Analysing approximately 300 000 forest stands, we find that mean forest productivity does not increase with species diversity. Instead forest structure emerges as the key variable. Similar patterns can be observed by analysing 5054 forest plots of the German National Forest Inventory. Furthermore, we group the forest stands into nine forest structure classes, in which we find increasing, decreasing, invariant and even bell-shaped relationships between productivity and diversity. In addition, we introduce a new index, called optimal species distribution, which describes the ratio of realized to the maximal possible productivity (by shuffling species identities). The optimal species distribution and forest structure indices explain the obtained productivity values quite well (R2 between 0.7 and 0.95), whereby the influence of these attributes varies within the nine forest structure classes. PMID:28280550

  2. Forest production for tropical America

    Treesearch

    F.H. Wadsworth

    1997-01-01

    This book is intended as a reference for those who are to make tropical American forests productive; the students in the forestry schools of the region. There has been a serious lack of a general reference as to what is already known about forest production that might be applicable within the American Tropics. The present book, which is to be translated, is intended...

  3. Nontimber forest product opportunities in Alaska.

    Treesearch

    David Pilz; Susan J. Alexander; Jerry Smith; Robert Schroeder; Jim Freed

    2006-01-01

    Nontimber forest products from southern Alaska (also called special forest products) have been used for millennia as resources vital to the livelihoods and culture of Alaska Natives and, more recently, as subsistence resources for the welfare of all citizens. Many of these products are now being sold, and Alaskans seek additional income opportunities through...

  4. Recreation and nontimber forest products

    Treesearch

    H. Ken Cordell; James L. Chamberlain

    2004-01-01

    Research on forest recreation over the last 60 years has been voluminous. Research on nontimber forest products (NTFP) has been much less voluminous. In this chapter the history of these two tracks of research has been reviewed. Not all studies are mentioned; rather, a representative selection of the subject matter is discussed. Forest recreation research had its...

  5. Managing national forests of the eastern United States for non-timber forest products

    Treesearch

    James L. Chamberlain; Robert J. Bush; A.L. Hammett; Philip A. Araman

    2000-01-01

    Over the last decade, there has been a growing interest in the economic and ecological potential of non-timber forest products. In the United States, much of this increased interest stems from drastic changes in forest practices and policies in the Pacific Northwest region, a region that produces many non-timber forest products. The forests of the eastern United States...

  6. Nontimber forest products management on national forests in the United States.

    Treesearch

    Rebecca J. McLain; Eric T. Jones

    2005-01-01

    This study provides an overview of nontimber forest products (NTFP) programs on national forests in the United States. We conducted an email survey in 2003 to obtain data on NTFP management activities on national forests across the country. Program characteristics examined in the study included important NTFPs managed on national forests, presence of NTFP coordinators...

  7. Implications For the Forest Products Industry

    Treesearch

    Richard A. Kluender

    2001-01-01

    Major changes have occurred in the Arkansas timber economy in the last 25 years.Global and domestic demand for forest products continues to expand,doubling every 42 years. Additionally,the U.S. per capita consumption rate of forest products is over three times the world average. Production continues to expand to meet rising global demand,but timber supplies have not...

  8. Productivity of forest birds at Hakalau Forest NWR

    USGS Publications Warehouse

    Paxton, Eben H.; Cummins, George C; Kendall, Steven J.

    2014-01-01

    Hawai‘i has some of the most endangered avian species in the world, which face numerous threats from habitat loss, disease, climate change, and introduced species. This report details the results of a two-year productivity study of all forest bird species at Hakalau National Wildlife Refuge, Hawai‘i Island. We found and monitored nests from seven native species and three common non-native species of forest birds at three sites across the refuge. In addition to gathering important baseline information on productivity of forest birds, we examined differences in productivity between years, sites, and as a function of nest height. The weather differed greatly between the two years, with much more rain occurring in 2014. The daily survival rate (DSR) of nests was found to have an inverse relationship with the amount of rainfall, and accordingly was much lower in 2014 compared to 2013. Nest success was lower at a regenerating forest site compared with mature rainforest, indicating negative environmental factors affecting nest success may be exacerbated in reforested areas which have lower canopies. Nest success was also impacted by nest height, with a positive relationship in the drier 2013, and a negative relationship in 2014 for the canopy nesting honeycreepers. The large difference in weather and DSR between years illustrates the need for long term demographic studies that can capture the vital rates of this community of birds.

  9. Influence of disturbance on temperate forest productivity

    USGS Publications Warehouse

    Peters, Emily B.; Wythers, Kirk R.; Bradford, John B.; Reich, Peter B.

    2013-01-01

    Climate, tree species traits, and soil fertility are key controls on forest productivity. However, in most forest ecosystems, natural and human disturbances, such as wind throw, fire, and harvest, can also exert important and lasting direct and indirect influence over productivity. We used an ecosystem model, PnET-CN, to examine how disturbance type, intensity, and frequency influence net primary production (NPP) across a range of forest types from Minnesota and Wisconsin, USA. We assessed the importance of past disturbances on NPP, net N mineralization, foliar N, and leaf area index at 107 forest stands of differing types (aspen, jack pine, northern hardwood, black spruce) and disturbance history (fire, harvest) by comparing model simulations with observations. The model reasonably predicted differences among forest types in productivity, foliar N, leaf area index, and net N mineralization. Model simulations that included past disturbances minimally improved predictions compared to simulations without disturbance, suggesting the legacy of past disturbances played a minor role in influencing current forest productivity rates. Modeled NPP was more sensitive to the intensity of soil removal during a disturbance than the fraction of stand mortality or wood removal. Increasing crown fire frequency resulted in lower NPP, particularly for conifer forest types with longer leaf life spans and longer recovery times. These findings suggest that, over long time periods, moderate frequency disturbances are a relatively less important control on productivity than climate, soil, and species traits.

  10. Minor forest products of the Pacific Northwest.

    Treesearch

    Elmer W. Shaw

    1949-01-01

    The evergreen forests of Washington and Oregon are the source of an interesting variety of so-called "minor products," Many of these forest sidelines are not well known. They are generally underestimated and quite often misunderstood. This is partly because the value and significance of these smaller, incidental products of the forest have long been...

  11. 78 FR 62957 - National Forest Products Week, 2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... National Forest Products Week, 2013 By the President of the United States of America A Proclamation Our.... During National Forest Products Week, we celebrate the sustainable uses of America's forests and the... forests will be vital to our progress in the years ahead. This week, we recommit to collaborating across...

  12. 29 CFR 780.115 - Forest products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Agricultural Or Horticultural Commodities § 780.115 Forest products. Trees grown in forests and the lumber derived therefrom are not “agricultural or horticultural commodities.” Christmas trees, whether wild or..., and harvesting of such trees or timber products is not sufficient to bring an employee within section...

  13. 29 CFR 780.115 - Forest products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Agricultural Or Horticultural Commodities § 780.115 Forest products. Trees grown in forests and the lumber derived therefrom are not “agricultural or horticultural commodities.” Christmas trees, whether wild or..., and harvesting of such trees or timber products is not sufficient to bring an employee within section...

  14. Landscape and plant physiological controls on water dynamics and forest productivity within a watershed

    NASA Astrophysics Data System (ADS)

    Hu, Jia; Jencso, Kelsey; Looker, Nathaniel; Martin, Justin; Hoylman, Zachary

    2015-04-01

    Across the Western U.S., declining snowpacks have resulted in increased water limitation, leading to reduced productivity in high elevation forests. While our current understanding of how forests respond to climate change is typically focused on measuring/modeling the physiological responses and climate feedbacks, our study aims to combine physiology with hydrology to examine how landscape topography modulates the sensitivity of forests to climate. In a forested watershed in Western Montana, we linked climate variability to the physical watershed characteristics and the physiological response of vegetation to examine forest transpiration and productivity rates. Across the entire watershed, we found a strong relationship between productivity and the topographic wetness index, a proxy for soil moisture storage. However, this relationship was highly dependent on the intensity of solar radiation, suggesting that at high elevations productivity was limited by temperature, while at low elevations productivity was limited by moisture. In order to identify the mechanisms responsible for this relationship, we then examined how different coniferous species respond to changing environmental and hydrologic regimes. We first examined transpiration and productivity rates at the hillslope scale at four plots, ranging in elevation and aspect across the watershed. We found trees growing in the hollows had higher transpiration and productivity rates than trees growing in the side slope, but that these differences were more pronounced at lower elevations. We then used oxygen isotope to examine water source use by different species across the watershed. We found that trees growing in the hollows used snowmelt for a longer period. This was most likely due to upslope subsidies of snowmelt water to the hollow areas. However, we found that trees growing at lower elevations used proportionally more snowmelt than trees at the higher elevations. This was most likely due to the trees at lower

  15. Collection of nontimber forest products from state forests in the US south

    Treesearch

    Gregory E. Frey; James Chamberlain

    2016-01-01

    Little is known about the harvest of nontimber forest products (NTFPs) in state forests of the US South. We asked the state forestry agencies in all 13 southern states about the products harvested and the policies regulating harvest, as well as evidence of illegal harvest and the effects of  harvest on biodiversity. Of the 12 southern states that have state forests, 7...

  16. Proceedings of the Alaska forest soil productivity workshop.

    Treesearch

    C.W. Slaughter; T. Gasbarro

    1988-01-01

    The Alaska Forest Soil Productivity Workshop addressed (1) the role of soil information for forest management in Alaska; (2) assessment, monitoring, and enhancement of soil productivity; and (3) Alaska research projects involved in studies of productivity of forests and soils. This proceedings includes 27 papers in five categories: agency objectives in monitoring and...

  17. 75 FR 64617 - National Forest Products Week, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... National Forest Products Week, 2010 By the President of the United States of America A Proclamation Since... settings for contemplation. As we mark the 50th anniversary of National Forest Products Week, we recognize... our daily lives, from the houses we live in to the paper we write on. National Forest Products Week...

  18. Does nitrogen and sulfur deposition affect forest productivity?

    Treesearch

    Brittany A. Johnson; Kathryn B. Piatek; Mary Beth Adams; John R. Brooks

    2010-01-01

    We studied the effects of atmospheric nitrogen and sulfur deposition on forest productivity in a 10-year-old, aggrading forest stand at the Fernow Experimental Forest in Tucker County, WV. Forest productivity was expressed as total aboveground wood biomass, which included stem and branch weight of standing live trees. Ten years after stand regeneration and treatment...

  19. Recommendations for sustainable development of non-timber forest products

    Treesearch

    Gina H. Mohammed

    2001-01-01

    Non-timber forest products--or NTFPs--are considered here to be botanical products harvested or originating from forest-based species, but excluding primary timber products, industrial boards and composites, and paper products. A recent study of non-timber forest products in Ontario, Canada, identified at least 50 types of NTFPs and hundreds of specific products used...

  20. Forest stand structure, productivity, and age mediate climatic effects on aspen decline

    USGS Publications Warehouse

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand-scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing-season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline.

  1. 25 CFR 163.16 - Forest product sales without advertisement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Forest product sales without advertisement. 163.16 Section 163.16 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.16 Forest product sales without advertisement. (a) Sales of forest products may be made without...

  2. The mangement of national forests of eastern United States for non-timber forest products

    Treesearch

    James L. Chamberlain

    2000-01-01

    Many products are harvested fiom the forests of the United States in addition to timber. These non-timber forest products (NTFPs) are plants, parts of plants, or fungi that are harvested from within and on the edges of natural, disturbed or managed forests. Often, NTFPs are harvested from public forests for the socio-economic benefit they provide to rural collectors....

  3. A Bayesian Belief Network approach to assess the potential of non wood forest products for small scale forest owners

    NASA Astrophysics Data System (ADS)

    Vacik, Harald; Huber, Patrick; Hujala, Teppo; Kurtilla, Mikko; Wolfslehner, Bernhard

    2015-04-01

    It is an integral element of the European understanding of sustainable forest management to foster the design and marketing of forest products, non-wood forest products (NWFPs) and services that go beyond the production of timber. Despite the relevance of NWFPs in Europe, forest management and planning methods have been traditionally tailored towards wood and wood products, because most forest management models and silviculture techniques were developed to ensure a sustained production of timber. Although several approaches exist which explicitly consider NWFPs as management objectives in forest planning, specific models are needed for the assessment of their production potential in different environmental contexts and for different management regimes. Empirical data supporting a comprehensive assessment of the potential of NWFPs are rare, thus making development of statistical models particularly problematic. However, the complex causal relationships between the sustained production of NWFPs, the available ecological resources, as well as the organizational and the market potential of forest management regimes are well suited for knowledge-based expert models. Bayesian belief networks (BBNs) are a kind of probabilistic graphical model that have become very popular to practitioners and scientists mainly due to the powerful probability theory involved, which makes BBNs suitable to deal with a wide range of environmental problems. In this contribution we present the development of a Bayesian belief network to assess the potential of NWFPs for small scale forest owners. A three stage iterative process with stakeholder and expert participation was used to develop the Bayesian Network within the frame of the StarTree Project. The group of participants varied in the stages of the modelling process. A core team, consisting of one technical expert and two domain experts was responsible for the entire modelling process as well as for the first prototype of the network

  4. Forest production responses to irrigation and fertilization are not explained by shifts in allocation

    Treesearch

    David R. Coyle; Mark D. Coleman

    2005-01-01

    Production increases in intensively managed forests have been obtained by improving resource availability through water and nutrient amendments. Increased stem production has been attributed to shifts in growth from roots to shoot, and such shifts would have important implications for below ground carbon sequestration. We examined above and below ground growth and...

  5. Non-timber forest products: local livelihoods and integrated forest management

    Treesearch

    Iain Davidson-Hunt; Luc C. Duchesne; John C. Zasada

    2001-01-01

    In October of 1999 a conference was held in Kenora, Ontario, Canada, to explore the non-timber forest products (NTFPs) of boreal and cold temperate forests. Up to this time, the concept of NTFP, was one that had been developed largely for tropical and subtropical forests. An extensive body of literature exists on a wide range of topics for the NTFPs of tropical and...

  6. Does tree diversity increase wood production in pine forests?

    PubMed

    Vilà, Montserrat; Vayreda, Jordi; Gracia, Carles; Ibáñez, Joan Josep

    2003-04-01

    Recent experimental advances on the positive effect of species richness on ecosystem productivity highlight the need to explore this relationship in communities other than grasslands and using non-synthetic experiments. We investigated whether wood production in forests dominated by Aleppo pine (Pinus halepensis) and Pyrenean Scots pine (Pinus sylvestris) differed between monospecific and mixed forests (2-5 species) using the Ecological and Forest Inventory of Catalonia (IEFC) database which contains biotic and environmental characteristics for 10,644 field plots distributed within a 31,944 km(2) area in Catalonia (NE Spain). We found that in Pyrenean Scots pine forests wood production was not significantly different between monospecific and mixed plots. In contrast, in Aleppo pine forests wood production was greater in mixed plots than in monospecific plots. However, when climate, bedrock types, radiation and successional stage per plot were included in the analysis, species richness was no longer a significant factor. Aleppo pine forests had the highest productivity in plots located in humid climates and on marls and sandstone bedrocks. Climate did not influence wood production in Pyrenean Scots pine forests, but it was highest on sandstone and consolidated alluvial materials. For both pine forests wood production was negatively correlated with successional stage. Radiation did not influence wood production. Our analysis emphasizes the influence of macroenvironmental factors and temporal variation on tree productivity at the regional scale. Well-conducted forest surveys are an excellent source of data to test for the association between diversity and productivity driven by large-scale environmental factors.

  7. Reassessment of forest area and its scoring as a permanent production forest

    NASA Astrophysics Data System (ADS)

    Sudarmadji, T.; Hartati, W.

    2018-04-01

    Along with the increasing demand for tropical timber, the need for wood raw materials is not enough just to rely on natural forests, and therefore in the early 1990s began to be developed timber estates concessions. The designation of forest areas can basically be altered using procedures established by the Ministry of and Forestry. PT Permata Borneo Abadi (PBA) as the holder of IUPHHK-HT covering 38.680 ha intends to propose changing of forest function from limited production forest (HPT) and convertible production forest (HPK) into permanent production forest (HP) to be developed as timber estates with fast growing species. Reassessment of forest function is intended to formulate official documents aimed to reevaluate IUPHHK-HT especially HPT and HPK. The assessment is based on established criteria and standard values (scores) covering topographic, soil and vegetation conditions as well as regional rainfall distribution. The assessment results indicate that there is an area with a slope of >40% of 840.18 ha with score >175 which must therefore as protected areas. The area of HPT that scored between 125-174 remains HPT is 12.287,77 ha. The area of HPT that scored <125 is 27.637.80 ha and therefore is possible to be converted into HP. The results can be used as an important basis for intensive forest management synergically with conservation efforts.

  8. Long-term Increases in Flower Production by Growth Forms in Response to Anthropogenic Change in a Tropical Forest

    NASA Astrophysics Data System (ADS)

    Pau, S.; Wright, S. J.

    2016-12-01

    There is mounting evidence that anthropogenic global change is altering the ecology of tropical forests. A limited number of studies have focused on long-term trends in tropical reproductive activity, yet differences in reproductive activity should have consequences for demography and ultimately forest carbon, water, and energy balance. Here we analyze a 28-year record of tropical flower production in response to anthropogenic climate change. We show that a multi-decadal increase in flower production is most strongly driven by rising atmospheric CO2, which had approximately 8x the effect of the Multivariate ENSO Index and approximately 13x the effect of rainfall or solar radiation. Interannual peaks in flower production were associated with greater solar radiation and low rainfall during El Niño years. Observed changes in solar radiation explained flower production better than rainfall (models including solar radiation accounted for 94% of cumulative AICc weight compared to 87% for rainfall). All growth forms (lianas, canopy trees, midstory trees, and shrubs) produced more flowers with increasing CO2 except for understory treelets. The increase in flower production was matched by a lengthening of flowering duration for canopy trees and midstory trees; duration was also longer for understory treelets. Given that anthropogenic CO2 emissions will continue to climb over the next century, the long-term increase in flower production may persist unless offset by increasing cloudiness in the tropics, or until rising CO2 and/or warming temperatures associated with the greenhouse effect pass critical thresholds for plant reproduction.

  9. Proceedings: linking healthy forests and communities through Alaska value-added forest products.

    Treesearch

    Theodore L. Laufenberg; Bridget K. Brady

    2000-01-01

    The Alaska forest products industry is experiencing significant changes in its structure due to economic, ecological, and social pressures. Papers presented at this workshop brought together technical specialists and exhibitors from forest products industry, associations, universities, and private, state, and federal land management agencies. Topics included: policy...

  10. Criterion 2: Maintenance of productive capacity of forest ecosystems

    Treesearch

    Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield

    2012-01-01

    People rely on forests, directly and indirectly, for a wide range of goods and services. Measures of forest productive capacity are indicators of the ability of forests to sustainably supply goods and services over time. An ongoing emphasis on maintaining productive capacity of forests can help ensure that utilization of forest resources does not impair long term...

  11. Eastern national forests: managing for nontimber products

    Treesearch

    James L. Chamberlain; Robert J. Bush; A.L. Hammett; Philip A. Araman

    2002-01-01

    Many products are harvested from the forests of the eastern United States that are not timber-based but originate from plant materials. Over the past decade, concern has grown about the sustainability of the forest resources from which these products originate, and an associated interest in managing for these products has materialized. A content analysis of the...

  12. Non-timber forest products in Hawaii

    Treesearch

    Katie Kamelamela; James B. Friday; Tamara Ticktin; Ashley Lehman

    2015-01-01

    Hawaiian forests provide a wide array of non-timber forest products for both traditional and modern uses. Flowers, vines, and ferns are collected for creating garlands or lei for hula dances and parades. Lei made from materials gathered in the forest are made for personal use and sold, especially during graduation times. Bamboo is harvested for structures and for...

  13. Monitoring Regional Forest Disturbances across the US with Near Real Time MODIS NDVI Products included in the ForWarn Forest Threat Early Warning System

    NASA Astrophysics Data System (ADS)

    Spruce, J.; Hargrove, W. W.; Gasser, J.; Norman, S. P.

    2013-12-01

    Forest threats across the US have become increasingly evident in recent years. These include regionally extensive disturbances (e.g., from drought, bark beetle outbreaks, and wildfires) that can occur across multiyear durations and result in extensive forest mortality. In addition, forests can be subject to ephemeral, sometimes yearly defoliation from various insects and types of storm damage. After prolonged severe disturbance, signs of forest recovery can vary in terms of satellite-based Normalized Difference Vegetation Index (NDVI) values. The increased extent and threat of forest disturbances in part led to the enactment of the 2003 Healthy Forest Restoration Act, which mandated that a national forest threat Early Warning System (EWS) be deployed. In response, the US Forest Service collaborated with NASA, DOE Oak Ridge National Laboratory, and the USGS Eros Data Center to build the near real time ForWarn forest threat EWS for monitoring regionally evident forest disturbances, starting on-line operations in 2010. Given the diversity of disturbance types, severities, and durations, ForWarn employs multiple historical baselines used with current NDVI to derive a suite of six nationwide 'weekly' forest change products. ForWarn uses daily 232 meter MODIS Aqua and Terra satellite NDVI data, including MOD13 products for deriving historical baseline NDVIs and eMODIS products for compiling current NDVI. Separately pre-processing the current and historical NDVIs, the Time Series Product Tool and the Phenological Parameters Estimation Tool are used to temporally reduce noise, fuse, and aggregate MODIS NDVIs into 24 day composites refreshed every 8 days with 46 dates of forest change products per year. The 24 day compositing interval typically enables new disturbances to be detected, while minimizing the frequency of residual atmospheric contamination. ForWarn's three standard forest change products compare current NDVI to that from the previous year, previous 3 years, and

  14. Forest production dynamics along a wood density spectrum in eastern US forests

    Treesearch

    C.W. Woodall; M.B. Russell; B.F. Walters; A.W. D' Amato; K. Zhu; S.S. Saatchi

    2015-01-01

    Emerging plant economics spectrum theories were confirmed across temperate forest systems of the eastern US where the use of a forest stand's mean wood density elucidated forest volume and biomass production dynamics integrating aspects of climate, tree mortality/growth, and rates of site occupancy.

  15. Extreme warm temperatures alter forest phenology and productivity in Europe.

    PubMed

    Crabbe, Richard A; Dash, Jadu; Rodriguez-Galiano, Victor F; Janous, Dalibor; Pavelka, Marian; Marek, Michal V

    2016-09-01

    Recent climate warming has shifted the timing of spring and autumn vegetation phenological events in the temperate and boreal forest ecosystems of Europe. In many areas spring phenological events start earlier and autumn events switch between earlier and later onset. Consequently, the length of growing season in mid and high latitudes of European forest is extended. However, the lagged effects (i.e. the impact of a warm spring or autumn on the subsequent phenological events) on vegetation phenology and productivity are less explored. In this study, we have (1) characterised extreme warm spring and extreme warm autumn events in Europe during 2003-2011, and (2) investigated if direct impact on forest phenology and productivity due to a specific warm event translated to a lagged effect in subsequent phenological events. We found that warmer events in spring occurred extensively in high latitude Europe producing a significant earlier onset of greening (OG) in broadleaf deciduous forest (BLDF) and mixed forest (MF). However, this earlier OG did not show any significant lagged effects on autumnal senescence. Needleleaf evergreen forest (NLEF), BLDF and MF showed a significantly delayed end of senescence (EOS) as a result of extreme warm autumn events; and in the following year's spring phenological events, OG started significantly earlier. Extreme warm spring events directly led to significant (p=0.0189) increases in the productivity of BLDF. In order to have a complete understanding of ecosystems response to warm temperature during key phenological events, particularly autumn events, the lagged effect on the next growing season should be considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Satellite Observation of El Nino Effects on Amazon Forest Phenology and Productivity

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P.; Townsend, Alan R.; Braswell, Bobby H.

    2000-01-01

    Climate variability may affect the functioning of Amazon moist tropical forests, and recent modeling analyses suggest that the carbon dynamics of the region vary interannually in response to precipitation and temperature anomalies. However, due to persistent orbital and atmospheric artifacts in the satellite record, remote sensing observations have not provided quantitative evidence that climate variation affects Amazon forest phenology or productivity, We developed a method to minimize and quantify non-biological artifacts in NOAA AVHRR satellite data, providing a record of estimated forest phenological variation from 1982-1993. The seasonal Normalized Difference Vegetation Index (NDVI) amplitude (a proxy for phenology) increased throughout much of the basin during El Nino periods when rainfall was anomalously low. Wetter La Nina episodes brought consistently smaller NDVI amplitudes. Using radiative transfer and terrestrial biogeochemical models driven by these satellite data, we estimate that canopy-energy absorption and net primary production of Amazon forests varied interannually by as much as 21% and 18%, respectively. These results provide large-scale observational evidence for interannual sensitivity to El Nino of plant phenology and carbon flux in Amazon forests.

  17. Forest productivity in southwestern Europe is controlled by coupled North Atlantic and Atlantic Multidecadal Oscillations.

    PubMed

    Madrigal-González, Jaime; Ballesteros-Cánovas, Juan A; Herrero, Asier; Ruiz-Benito, Paloma; Stoffel, Markus; Lucas-Borja, Manuel E; Andivia, Enrique; Sancho-García, Cesar; Zavala, Miguel A

    2017-12-20

    The North Atlantic Oscillation (NAO) depicts annual and decadal oscillatory modes of variability responsible for dry spells over the European continent. The NAO therefore holds a great potential to evaluate the role, as carbon sinks, of water-limited forests under climate change. However, uncertainties related to inconsistent responses of long-term forest productivity to NAO have so far hampered firm conclusions on its impacts. We hypothesize that, in part, such inconsistencies might have their origin in periodical sea surface temperature anomalies in the Atlantic Ocean (i.e., Atlantic Multidecadal Oscillation, AMO). Here we show strong empirical evidence in support of this hypothesis using 120 years of periodical inventory data from Iberian pine forests. Our results point to AMO + NAO + and AMO - NAO - phases as being critical for forest productivity, likely due to decreased winter water balance and abnormally low winter temperatures, respectively. Our findings could be essential for the evaluation of ecosystem functioning vulnerabilities associated with increased climatic anomalies under unprecedented warming conditions in the Mediterranean.

  18. Forest Management Guidance Package: How to Conduct Forest Product Sales and Handle Forest Management Service Contracts,

    DTIC Science & Technology

    1982-03-01

    state the conditions under which forest products will be sold. They describe the products for sale and the location of the sales area , as well as the...price. Forest products are sold (1) by species or groups of species, ") by designated logging area or areas , or (3) by product, i.e. sawtimber, poles...Lump Sum Sale (Appendix J). Designated trees or entire sale areas may be sold with this method. Individual trees are marked for sale in some manner

  19. U.S. forest products module : a technical document supporting the Forest Service 2010 RPA Assessment

    Treesearch

    Peter J. Ince; Andrew D. Kramp; Kenneth E. Skog; Henry N. Spelter; David N. Wear

    2011-01-01

    The U.S. Forest Products Module (USFPM) is a partial market equilibrium model of the U.S. forest sector that operates within the Global Forest Products Model (GFPM) to provide long-range timber market projections in relation to global economic scenarios. USFPM was designed specifically for the 2010 RPA forest assessment, but it is being used also in other applications...

  20. California's forest products industry and timber harvest, 2012

    Treesearch

    Chelsea P. McIver; Joshua P. Meek; Micah G. Scudder; Colin B. Sorenson; Todd A. Morgan; Glenn A. Christensen

    2015-01-01

    This report traces the flow of California's 2012 timber harvest through the primary wood products industry and provides a description of the structure, condition, and economic impacts of California's forest products sector. Historical forest products industry changes are discussed, as well as trends in harvest, production, mill residue, and sales. Also...

  1. Non-timber forest products enterprises in the south: perceived distribution and implications for sustainable forest management

    Treesearch

    J.L. Chamberlain; M. Predny

    2003-01-01

    Forests of the southern United States are the source of a great diversity of flora, much of which is gathered to produce non-timber forest products (NTFPs). These products are made from resources that grow under the forest canopy as trees, herbs, shrubs, vines, moss and even lichen. They occur naturally in forests or may be cultivated under the forest canopy or in...

  2. Insights into mechanisms governing forest carbon response to nitrogen deposition: a model-data comparison using observed responses to nitrogen addition

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Bonan, G. B.; Goodale, C. L.

    2013-01-01

    In many forest ecosystems, nitrogen (N) deposition enhances plant uptake of carbon dioxide, thus reducing climate warming from fossil fuel emissions. Therefore, accurately modeling how forest carbon (C) sequestration responds to N deposition is critical for understanding how future changes in N availability will influence climate. Here, we use observations of forest C response to N inputs along N deposition gradients and at five temperate forest sites with fertilization experiments to test and improve a~global biogeochemical model (CLM-CN 4.0). We show that the CLM-CN plant C growth response to N deposition was smaller than observed and the modeled response to N fertilization was larger than observed. A set of modifications to the CLM-CN improved the correspondence between model predictions and observational data (1) by increasing the aboveground C storage in response to historical N deposition (1850-2004) from 14 to 34 kg C per additional kg N added through deposition and (2) by decreasing the aboveground net primary productivity response to N fertilization experiments from 91 to 57 g C m-2 yr-1. Modeled growth response to N deposition was most sensitive to altering the processes that control plant N uptake and the pathways of N loss. The response to N deposition also increased with a more closed N cycle (reduced N fixation and N gas loss) and decreased when prioritizing microbial over plant uptake of soil inorganic N. The net effect of all the modifications to the CLM-CN resulted in greater retention of N deposition and a greater role of synergy between N deposition and rising atmospheric CO2 as a mechanism governing increases in temperate forest primary production over the 20th century. Overall, testing models with both the response to gradual increases in N inputs over decades (N deposition) and N pulse additions of N over multiple years (N fertilization) allows for greater understanding of the mechanisms governing C-N coupling.

  3. Insights into mechanisms governing forest carbon response to nitrogen deposition: a model-data comparison using observed responses to nitrogen addition

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Bonan, G. B.; Goodale, C. L.

    2013-06-01

    In many forest ecosystems, nitrogen (N) deposition enhances plant uptake of carbon dioxide, thus reducing climate warming from fossil fuel emissions. Therefore, accurately modeling how forest carbon (C) sequestration responds to N deposition is critical for understanding how future changes in N availability will influence climate. Here, we use observations of forest C response to N inputs along N deposition gradients and at five temperate forest sites with fertilization experiments to test and improve a global biogeochemical model (CLM-CN 4.0). We show that the CLM-CN plant C growth response to N deposition was smaller than observed and the modeled response to N fertilization was larger than observed. A set of modifications to the CLM-CN improved the correspondence between model predictions and observational data (1) by increasing the aboveground C storage in response to historical N deposition (1850-2004) from 14 to 34 kg C per additional kg N added through deposition and (2) by decreasing the aboveground net primary productivity response to N fertilization experiments from 91 to 57 g C m-2 yr-1. Modeled growth response to N deposition was most sensitive to altering the processes that control plant N uptake and the pathways of N loss. The response to N deposition also increased with a more closed N cycle (reduced N fixation and N gas loss) and decreased when prioritizing microbial over plant uptake of soil inorganic N. The net effect of all the modifications to the CLM-CN resulted in greater retention of N deposition and a greater role of synergy between N deposition and rising atmospheric CO2 as a mechanism governing increases in temperate forest primary production over the 20th century. Overall, testing models with both the response to gradual increases in N inputs over decades (N deposition) and N pulse additions of N over multiple years (N fertilization) allows for greater understanding of the mechanisms governing C-N coupling.

  4. Techniques in Experimental Mechanics Applicable to Forest Products Research

    Treesearch

    Leslie H. Groom; Audrey G. Zink

    1994-01-01

    The title of this publication-Techniques in Experimental Mechanics Applicable to Forest Products Research-is the theme of this plenary session from the 1994 Annual Meeting of the Forest Products Society (FPS). Although this session focused on experimental techniques that can be of assistance to researchers in the field of forest products, it is hoped that the...

  5. Climatically induced interannual variability in aboveground production in forest-tundra and northern taiga of central Siberia.

    PubMed

    Knorre, Anastasia A; Kirdyanov, Alexander V; Vaganov, Eugene A

    2006-02-01

    To investigate the variability of primary production of boreal forest ecosystems under the current climatic changes, we compared the dynamics of annual increments and productivity of the main components of plant community (trees, shrubs, mosses) at three sites in the north of Siberia (Russia). Annual radial growth of trees and shrubs was mostly defined by summer temperature regime (positive correlation), but climatic response of woody plants was species specific and depends on local conditions. Dynamics of annual increments of mosses were opposite to tree growth. The difference in climatic response of the different vegetation components of the forest ecosystems indicates that these components seem to be adapted to use climatic conditions during the short and severe northern summer, and decreasing in annual production of one component is usually combined with the increase of other component productivity. Average productivity in the northern forest ecosystems varies from 0.05 to 0.14 t ha(-1) year(-1) for trees, from 0.05 to 0.18 t ha(-1) year(-1) for shrubs and from 0.54 to 0.66 t ha(-1) year(-1) for mosses. Higher values of tree productivity combined with lower annual moss productivity were found in sites in northern taiga in comparison with forest-tundra. Different tendencies in the productivity of the dominant species from each vegetation level (trees, shrubs, mosses) were indicated for the last 10 years studied (1990-1999): while productivity of mosses is increasing, productivity of trees is decreasing, but there is no obvious trend in the productivity of shrubs. Our results show that in the long term, the main contribution to changes in annual biomass productivity in forest-tundra and northern taiga ecosystems under the predicted climatic changes will be determined by living ground cover.

  6. Positive biodiversity-productivity relationship predominant in global forests

    USGS Publications Warehouse

    Liang, Jingjing; Crowther, Thomas W.; Picard, Nicolas; Wiser, Susan; Zhou, Mo; Alberti, Giorgio; Schulze, Ernst-Detlef; McGuire, Anthony David; ,

    2016-01-01

    The relationship between biodiversity and ecosystem productivity has been explored in detail in herbaceous vegetation, but patterns in forests are far less well understood. Liang et al. have amassed a global forest data set from >770,000 sample plots in 44 countries. A positive and consistent relationship can be discerned between tree diversity and ecosystem productivity at landscape, country, and ecoregion scales. On average, a 10% loss in biodiversity leads to a 3% loss in productivity. This means that the economic value of maintaining biodiversity for the sake of global forest productivity is more than fivefold greater than global conservation costs.

  7. Idaho's Forest Products Industry: A Descriptive Analysis

    Treesearch

    Todd A. Morgan; Charles E. Keegan; Timothy P. Spoelma; Thale Dillon; A. Lorin Hearst; Francis G. Wagner; Larry T. DeBlander

    2004-01-01

    This report provides a description of the structure, capacity, and condition of Idaho's primary forest products industry; traces the flow of Idaho's 2001 timber harvest through the primary sectors; and quantifies volumes and uses of wood fiber. The economic contribution of the forest products industry to the State and historical industry changes are discussed...

  8. Mass failures and other processes of sediment production in Pacific northwest forest landscapes

    Treesearch

    Frederick J. Swanson; Lee E. Benda; Stanley H. Duncan; Gordon E. Grant; Walter F. Megahan; Leslie M. Reid; Robert R. Ziemer

    1987-01-01

    Abstract - Accelerated sediment production by mass failures and other erosion processes is an important link between management of forest resources and fish resources. Dominant processes and the rates of sediment production vary greatly throughout the Pacific Northwest in response to geologic and climatic factors. The complex sediment routing systems characteristic...

  9. CTFS/ForestGEO: A global network to monitor forest interactions with a changing climate

    NASA Astrophysics Data System (ADS)

    Anderson-Teixeira, K. J.; Muller-Landau, H.; McMahon, S.; Davies, S. J.

    2013-12-01

    Forests are an influential component of the global carbon cycle and strongly influence Earth's climate. Climate change is altering the dynamics of forests globally, which may result in significant climate feedbacks. Forest responses to climate change entail both short-term ecophysiological responses and longer-term directional shifts in community composition. These short- and long-term responses of forest communities to climate change may be better understood through long-term monitoring of large forest plots globally using standardized methodology. Here, we describe a global network of forest research plots (CTFS/ForestGEO) of utility for understanding forest responses to climate change and consequent feedbacks to the climate system. CTFS/ForestGEO is an international network consisting of 51 sites ranging in size from 2-150 ha (median size: 25 ha) and spanning from 25°S to 52°N latitude. At each site, every individual > 1cm DBH is mapped and identified, and recruitment, growth, and mortality are monitored every 5 years. Additional measurements include aboveground productivity, carbon stocks, soil nutrients, plant functional traits, arthropod and vertebrates monitoring, DNA barcoding, airborne and ground-based LiDAR, micrometeorology, and weather monitoring. Data from this network are useful for understanding how forest ecosystem structure and function respond to spatial and temporal variation in abiotic drivers, parameterizing and evaluating ecosystem and earth system models, aligning airborne and ground-based measurements, and identifying directional changes in forest productivity and composition. For instance, CTFS/ForestGEO data have revealed that solar radiation and night-time temperature are important drivers of aboveground productivity in moist tropical forests; that tropical forests are mixed in terms of productivity and biomass trends over the past couple decades; and that the composition of Panamanian forests has shifted towards more drought

  10. Fire intensity impacts on post-fire temperate coniferous forest net primary productivity

    NASA Astrophysics Data System (ADS)

    Sparks, Aaron M.; Kolden, Crystal A.; Smith, Alistair M. S.; Boschetti, Luigi; Johnson, Daniel M.; Cochrane, Mark A.

    2018-02-01

    Fire is a dynamic ecological process in forests and impacts the carbon (C) cycle through direct combustion emissions, tree mortality, and by impairing the ability of surviving trees to sequester carbon. While studies on young trees have demonstrated that fire intensity is a determinant of post-fire net primary productivity, wildland fires on landscape to regional scales have largely been assumed to either cause tree mortality, or conversely, cause no physiological impact, ignoring the impacted but surviving trees. Our objective was to understand how fire intensity affects post-fire net primary productivity in conifer-dominated forested ecosystems on the spatial scale of large wildland fires. We examined the relationships between fire radiative power (FRP), its temporal integral (fire radiative energy - FRE), and net primary productivity (NPP) using 16 years of data from the MOderate Resolution Imaging Spectrometer (MODIS) for 15 large fires in western United States coniferous forests. The greatest NPP post-fire loss occurred 1 year post-fire and ranged from -67 to -312 g C m-2 yr-1 (-13 to -54 %) across all fires. Forests dominated by fire-resistant species (species that typically survive low-intensity fires) experienced the lowest relative NPP reductions compared to forests with less resistant species. Post-fire NPP in forests that were dominated by fire-susceptible species were not as sensitive to FRP or FRE, indicating that NPP in these forests may be reduced to similar levels regardless of fire intensity. Conversely, post-fire NPP in forests dominated by fire-resistant and mixed species decreased with increasing FRP or FRE. In some cases, this dose-response relationship persisted for more than a decade post-fire, highlighting a legacy effect of fire intensity on post-fire C dynamics in these forests.

  11. Pine straw production: from forest to front yard

    Treesearch

    Janice F. Dyer; Rebecca J. Barlow; John S. Kush; John C. Gilbert

    2012-01-01

    Southern forestry may be undergoing a paradigm shift in which timber production is not necessarily the major reason for owning forested land. However, there remains interest in generating income from the land and landowners are exploring alternatives, including agroforestry practices and production of non-timber forest products (NTFPs). One such alternative more recent...

  12. Biomass removal and its effect on productivity of an artificially regenerated forest stand in the Missouri ozarks

    Treesearch

    Flex Jr. Ponder

    2007-01-01

    Intensive harvesting, which removes a greater proportion of the forest biomass than conventional harvesting and the associated nutrients, may cause a decline in forest productivity. Planted seedling response to three biomass removal levels (1. removal of boles only=OM1, 2. all surface organic matter removed, forest floor not removed=OM2, and 3. removal of all surface...

  13. Ecosystem services: foundations, opportunities, and challenges for the forest products sector

    Treesearch

    Trista M. Patterson; Dana L. Coelho

    2009-01-01

    The ecosystem service concept has been proposed as a meaningful framework for natural resource management. In theory, it holds concomitant benefit and consequence for the forest product sector. However, numerous barriers impede practitioners from developing concrete and enduring responses to emerging ecosystem service markets, policies, and initiatives. Principal among...

  14. 36 CFR 261.6 - Timber and other forest products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...

  15. 36 CFR 261.6 - Timber and other forest products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...

  16. 36 CFR 261.6 - Timber and other forest products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...

  17. 36 CFR 261.6 - Timber and other forest products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...

  18. 36 CFR 261.6 - Timber and other forest products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or otherwise damaging any timber, tree, or other forest product, except as authorized by a special-use authorization, timber sale contract, or Federal law or regulation. (b) Cutting any standing tree... otherwise identifying any tree or other forest product in a manner similar to that employed by forest...

  19. 36 CFR 223.217 - Authority to dispose of special forest products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Authority to dispose of special forest products. 223.217 Section 223.217 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER Special Forest Products § 223...

  20. Earlier Snowmelt Changes the Ratio Between Early and Late Season Forest Productivity

    NASA Astrophysics Data System (ADS)

    Knowles, J. F.; Molotch, N. P.; Trujillo, E.; Litvak, M. E.

    2017-12-01

    Future projections of declining snowpack and increasing potential evaporation associated with climate warming are predicted to advance the timing of snowmelt in mountain ecosystems globally. This scenario has direct implications for snowmelt-driven forest productivity, but the net effect of temporally shifting moisture dynamics is unknown with respect to the annual carbon balance. Accordingly, this study uses both satellite- and tower-based observations to document the forest productivity response to snowpack and potential evaporation variability between 1989 and 2012 throughout the southern Rocky Mountain ecoregion, USA. These results show that a combination of low snow accumulation and record high potential evaporation in 2012 resulted in the 34-year minimum ecosystem productivity that could be indicative of future conditions. Moreover, early and late season productivity were significantly and inversely related, suggesting that future shifts toward earlier or reduced snowmelt could increase late-season moisture stress to vegetation and thus restrict productivity despite a longer growing season. This relationship was further subject to modification by summer precipitation, and the controls on the early/late season productivity ratio are explored within the context of ecosystem carbon storage in the future. Any perturbation to the carbon cycle at this scale represents a potential feedback to climate change since snow-covered forests represent an important global carbon sink.

  1. Atypical forest products, processes, and uses: a developing component of National Forest management

    Treesearch

    Mike Higgs; John Sebelius; Mike Miller

    1995-01-01

    The silvicultural practices prescribed under an ecosystem management regimen will alter the volume and character of National Forests' marketable raw material base. This alteration will affect forest-dependent communities that have traditionally relied upon these resources for their economic and social well being. Community based atypical forest products, processes...

  2. Monitoring Regional Forest Disturbances across the US with near Real Time MODIS NDVI Products Resident to the ForWarn Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hargrove, William W.; Gasser, Gerald

    2013-01-01

    Forest threats across the US have become increasingly evident in recent years. Sometimes these have resulted in regionally evident disturbance progressions (e.g., from drought, bark beetle outbreaks, and wildfires) that can occur across multiyear durations and have resulted in extensive forest overstory mortality. In addition to stand replacement disturbances, other forests are subject to ephemeral, sometimes yearly defoliation from various insects and varying types and intensities of ephemeral damage from storms. Sometimes, after prolonged severe disturbance, signs of recovery in terms of Normalized Difference Vegetation Index (NDVI) can occur. The growing prominence and threat of forest disturbances in part have led to the formation and implementation of the 2003 Healthy Forest Restoration Act which mandated that national forest threat early warning system be developed and deployed. In response, the US Forest Service collaborated with NASA, DOE Oakridge National Laboratory, and the USGS Eros Data Center to build and roll-out the near real time ForWarn early warning system for monitoring regionally evident forest disturbances. Given the diversity of disturbance types, severities, and durations, ForWarn employs multiple historical baselines that are used with current NDVI to derive a suite of six forest change products that are refreshed every 8 days. ForWarn employs daily quarter kilometer MODIS NDVI data from the Aqua and Terra satellites, including MOD13 data for deriving historical baseline NDVIs and eMODIS 7 NDVI for compiling current NDVI. In doing so, the Time Series Product Tool and the Phenological Parameters Estimation Tool are used to temporally de-noise, fuse, and aggregate current and historical MODIS NDVIs into 24 day composites refreshed every 8 days with 46 dates of products per year. The 24 day compositing interval enables disturbances to be detected, while minimizing the frequency of residual atmospheric contamination. Forest change products are

  3. Primary forest products industry and timber use, Iowa, 1972.

    Treesearch

    James E. Blyth; William A. Farris

    1975-01-01

    Discusses recent Iowa forest industry trends, and production of saw logs, veneer logs, pulpwood, and other roundwood products. Comments on outlook for Iowa forest industry and production and use of roundwood and primary wood-using plant wood and bark residue.

  4. Sustainable bioenergy production from Missouri's Ozark forests

    Treesearch

    Henry E. Stelzer; Chris Barnett; Verel W. Bensen

    2008-01-01

    The main source of wood fiber for energy resides in Missouri's forests. Alternative bioenergy systems that can use forest thinning residues are electrical energy, thermal energy, and liquid bio-fuel. By applying a thinning rule and accounting for wood fiber that could go into higher value wood products to all live biomass data extracted from the U.S. Forest...

  5. Forest response and recovery following disturbance in upland forests of the Atlantic Coastal Plain.

    PubMed

    Schäfer, Karina V R; Renninger, Heidi J; Carlo, Nicholas J; Vanderklein, Dirk W

    2014-01-01

    Carbon and water cycling of forests contribute significantly to the Earth's overall biogeochemical cycling and may be affected by disturbance and climate change. As a larger body of research becomes available about leaf-level, ecosystem and regional scale effects of disturbances on forest ecosystems, a more mechanistic understanding is developing which can improve modeling efforts. Here, we summarize some of the major effects of physical and biogenic disturbances, such as drought, prescribed fire, and insect defoliation, on leaf and ecosystem-scale physiological responses as well as impacts on carbon and water cycling in an Atlantic Coastal Plain upland oak/pine and upland pine forest. During drought, stomatal conductance and canopy stomatal conductance were reduced, however, defoliation increased conductance on both leaf-level and canopy scale. Furthermore, after prescribed fire, leaf-level stomatal conductance was unchanged for pines but decreased for oaks, while canopy stomatal conductance decreased temporarily, but then rebounded the following growing season, thus exhibiting transient responses. This study suggests that forest response to disturbance varies from the leaf to ecosystem level as well as species level and thus, these differential responses interplay to determine the fate of forest structure and functioning post disturbance.

  6. Nontimber Output Assessments: Tracking Those Other Forest Products

    Treesearch

    J. Chamberlain; J. Munsell; S. Krugerc

    2014-01-01

    The Forest Service has been assessing timber product output (TPO) for more than 50 years by canvassing primary processors of industrial roundwood in each state on a 3–5 year cycle. TPO studies tracks what species are cut, from where they come, and what products are produced. Nontimber forest products (NTFPs) are important commodities and a valuable segment of the...

  7. Forest thinnings for integrated lumber and paper production

    Treesearch

    J.Y. Zhu; C.T. Scott; R. Gleisner; D. Mann; D.W. Vahey; D.P. Dykstra; G.H. Quinn; L.L. Edwards

    2007-01-01

    Integrated lumber and paper productions using forest thinning materials from U.S. national forests can significantly reduce the cost of prescriptive thinning operations. Many of the trees removed during forest thinnings are in small-diameter classes (diameter at breast height

  8. 25 CFR 163.19 - Contracts for the sale of forest products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Contracts for the sale of forest products. 163.19 Section... REGULATIONS Forest Management and Operations § 163.19 Contracts for the sale of forest products. (a) In sales of forest products with an appraised stumpage value exceeding $15,000, the contract forms approved by...

  9. Field-quantified responses of tropical rainforest aboveground productivity to increasing CO2 and climatic stress, 1997-2009

    NASA Astrophysics Data System (ADS)

    Clark, Deborah A.; Clark, David B.; Oberbauer, Steven F.

    2013-06-01

    A directional change in tropical-forest productivity, a large component in the global carbon budget, would affect the rate of increase in atmospheric carbon dioxide ([CO2]). One current hypothesis is that "CO2 fertilization" has been increasing tropical forest productivity. Some lines of evidence instead suggest climate-driven productivity declines. Relevant direct field observations remain extremely limited for this biome. Using a unique long-term record of annual field measurements, we assessed annual aboveground net primary productivity (ANPP) and its relation to climatic factors and [CO2] in a neotropical rainforest through 1997-2009. Over this 12 year period, annual productivity did not increase, as would be expected with a dominant CO2 fertilization effect. Instead, the negative responses of ANPP components to climatic stress far exceeded the small positive responses associated with increasing [CO2]. Annual aboveground biomass production was well explained (73%) by the independent negative effects of increasing minimum temperatures and greater dry-season water stress. The long-term records enable a first field-based estimate of the [CO2] response of tropical forest ANPP: 5.24 g m-2 yr-1 yr-1 (the summed [CO2]-associated increases in two of the four production components; the largest component, leaf litterfall, showed no [CO2] association). If confirmed by longer data series, such a small response from a fertile tropical rainforest would indicate that current global models overestimate the benefits from CO2 fertilization for this biome, where most forests' poorer nutrient status more strongly constrains productivity responses to increasing [CO2]. Given the rapidly intensifying warming across tropical regions, tropical forest productivity could sharply decline through coming decades.

  10. Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition.

    PubMed

    Clark, Deborah A

    2004-03-29

    How tropical rainforests are responding to the ongoing global changes in atmospheric composition and climate is little studied and poorly understood. Although rising atmospheric carbon dioxide (CO2) could enhance forest productivity, increased temperatures and drought are likely to diminish it. The limited field data have produced conflicting views of the net impacts of these changes so far. One set of studies has seemed to point to enhanced carbon uptake; however, questions have arisen about these findings, and recent experiments with tropical forest trees indicate carbon saturation of canopy leaves and no biomass increase under enhanced CO2. Other field observations indicate decreased forest productivity and increased tree mortality in recent years of peak temperatures and drought (strong El Niño episodes). To determine current climatic responses of forests around the world tropics will require careful annual monitoring of ecosystem performance in representative forests. To develop the necessary process-level understanding of these responses will require intensified experimentation at the whole-tree and stand levels. Finally, a more complete understanding of tropical rainforest carbon cycling is needed for determining whether these ecosystems are carbon sinks or sources now, and how this status might change during the next century.

  11. Monitoring nontimber forest products using forest inventory data: an example with slippery elm bark

    Treesearch

    Jobriath S. Kauffman; Stephen P. Prisley; James L. Chamberlain

    2015-01-01

    The USDA Forest Service Forest Inventory and Analysi (FIA) program collects data on a wealth of variables related to trees in forests. Some of these trees produce nontimber forest products (NTFPs) (e.g., fruit, bark and sap) that are harvested for culinary, decorative, building, and medicinal purposes. At least 11 tree species inventoried by FIA are valued for their...

  12. Synergistic Ecoclimate Teleconnections from Forest Loss in Different Regions Structure Global Ecological Responses

    PubMed Central

    Garcia, Elizabeth S.; Swann, Abigail L. S.; Villegas, Juan C.; Breshears, David D.; Law, Darin J.; Saleska, Scott R.; Stark, Scott C.

    2016-01-01

    Forest loss in hotspots around the world impacts not only local climate where loss occurs, but also influences climate and vegetation in remote parts of the globe through ecoclimate teleconnections. The magnitude and mechanism of remote impacts likely depends on the location and distribution of forest loss hotspots, but the nature of these dependencies has not been investigated. We use global climate model simulations to estimate the distribution of ecologically-relevant climate changes resulting from forest loss in two hotspot regions: western North America (wNA), which is experiencing accelerated dieoff, and the Amazon basin, which is subject to high rates of deforestation. The remote climatic and ecological net effects of simultaneous forest loss in both regions differed from the combined effects of loss from the two regions simulated separately, as evident in three impacted areas. Eastern South American Gross Primary Productivity (GPP) increased due to changes in seasonal rainfall associated with Amazon forest loss and changes in temperature related to wNA forest loss. Eurasia’s GPP declined with wNA forest loss due to cooling temperatures increasing soil ice volume. Southeastern North American productivity increased with simultaneous forest loss, but declined with only wNA forest loss due to changes in VPD. Our results illustrate the need for a new generation of local-to-global scale analyses to identify potential ecoclimate teleconnections, their underlying mechanisms, and most importantly, their synergistic interactions, to predict the responses to increasing forest loss under future land use change and climate change. PMID:27851740

  13. Synergistic Ecoclimate Teleconnections from Forest Loss in Different Regions Structure Global Ecological Responses

    DOE PAGES

    Garcia, Elizabeth S.; Swann, Abigail L. S.; Villegas, Juan C.; ...

    2016-11-16

    Forest loss in hotspots around the world impacts not only local climate where loss occurs, but also influences climate and vegetation in remote parts of the globe through ecoclimate teleconnections. The magnitude and mechanism of remote impacts likely depends on the location and distribution of forest loss hotspots, but the nature of these dependencies has not been investigated. We use global climate model simulations to estimate the distribution of ecologically-relevant climate changes resulting from forest loss in two hotspot regions: western North America (wNA), which is experiencing accelerated dieoff, and the Amazon basin, which is subject to high rates ofmore » deforestation. The remote climatic and ecological net effects of simultaneous forest loss in both regions differed from the combined effects of loss from the two regions simulated separately, as evident in three impacted areas. Eastern South American Gross Primary Productivity (GPP) increased due to changes in seasonal rainfall associated with Amazon forest loss and changes in temperature related to wNA forest loss. Eurasia's GPP declined with wNA forest loss due to cooling temperatures increasing soil ice volume. Southeastern North American productivity increased with simultaneous forest loss, but declined with only wNA forest loss due to changes in VPD. In conclusion, our results illustrate the need for a new generation of local-to-global scale analyses to identify potential ecoclimate teleconnections, their underlying mechanisms, and most importantly, their synergistic interactions, to predict the responses to increasing forest loss under future land use change and climate change.« less

  14. Synergistic Ecoclimate Teleconnections from Forest Loss in Different Regions Structure Global Ecological Responses.

    PubMed

    Garcia, Elizabeth S; Swann, Abigail L S; Villegas, Juan C; Breshears, David D; Law, Darin J; Saleska, Scott R; Stark, Scott C

    2016-01-01

    Forest loss in hotspots around the world impacts not only local climate where loss occurs, but also influences climate and vegetation in remote parts of the globe through ecoclimate teleconnections. The magnitude and mechanism of remote impacts likely depends on the location and distribution of forest loss hotspots, but the nature of these dependencies has not been investigated. We use global climate model simulations to estimate the distribution of ecologically-relevant climate changes resulting from forest loss in two hotspot regions: western North America (wNA), which is experiencing accelerated dieoff, and the Amazon basin, which is subject to high rates of deforestation. The remote climatic and ecological net effects of simultaneous forest loss in both regions differed from the combined effects of loss from the two regions simulated separately, as evident in three impacted areas. Eastern South American Gross Primary Productivity (GPP) increased due to changes in seasonal rainfall associated with Amazon forest loss and changes in temperature related to wNA forest loss. Eurasia's GPP declined with wNA forest loss due to cooling temperatures increasing soil ice volume. Southeastern North American productivity increased with simultaneous forest loss, but declined with only wNA forest loss due to changes in VPD. Our results illustrate the need for a new generation of local-to-global scale analyses to identify potential ecoclimate teleconnections, their underlying mechanisms, and most importantly, their synergistic interactions, to predict the responses to increasing forest loss under future land use change and climate change.

  15. Synergistic Ecoclimate Teleconnections from Forest Loss in Different Regions Structure Global Ecological Responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Elizabeth S.; Swann, Abigail L. S.; Villegas, Juan C.

    Forest loss in hotspots around the world impacts not only local climate where loss occurs, but also influences climate and vegetation in remote parts of the globe through ecoclimate teleconnections. The magnitude and mechanism of remote impacts likely depends on the location and distribution of forest loss hotspots, but the nature of these dependencies has not been investigated. We use global climate model simulations to estimate the distribution of ecologically-relevant climate changes resulting from forest loss in two hotspot regions: western North America (wNA), which is experiencing accelerated dieoff, and the Amazon basin, which is subject to high rates ofmore » deforestation. The remote climatic and ecological net effects of simultaneous forest loss in both regions differed from the combined effects of loss from the two regions simulated separately, as evident in three impacted areas. Eastern South American Gross Primary Productivity (GPP) increased due to changes in seasonal rainfall associated with Amazon forest loss and changes in temperature related to wNA forest loss. Eurasia's GPP declined with wNA forest loss due to cooling temperatures increasing soil ice volume. Southeastern North American productivity increased with simultaneous forest loss, but declined with only wNA forest loss due to changes in VPD. In conclusion, our results illustrate the need for a new generation of local-to-global scale analyses to identify potential ecoclimate teleconnections, their underlying mechanisms, and most importantly, their synergistic interactions, to predict the responses to increasing forest loss under future land use change and climate change.« less

  16. 29 CFR 780.159 - Forest products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Other Unlisted Practices Which May Be within Section 3(f) § 780.159 Forest products. Trees grown in... purpose of the FLSA. (See § 780.205 regarding production of Christmas trees.) It follows that employment in the production, cultivation, growing, and harvesting of such trees or timber products is not...

  17. 29 CFR 780.159 - Forest products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Other Unlisted Practices Which May Be within Section 3(f) § 780.159 Forest products. Trees grown in... purpose of the FLSA. (See § 780.205 regarding production of Christmas trees.) It follows that employment in the production, cultivation, growing, and harvesting of such trees or timber products is not...

  18. 29 CFR 780.159 - Forest products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Other Unlisted Practices Which May Be within Section 3(f) § 780.159 Forest products. Trees grown in... purpose of the FLSA. (See § 780.205 regarding production of Christmas trees.) It follows that employment in the production, cultivation, growing, and harvesting of such trees or timber products is not...

  19. 29 CFR 780.159 - Forest products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Other Unlisted Practices Which May Be within Section 3(f) § 780.159 Forest products. Trees grown in... purpose of the FLSA. (See § 780.205 regarding production of Christmas trees.) It follows that employment in the production, cultivation, growing, and harvesting of such trees or timber products is not...

  20. 29 CFR 780.159 - Forest products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Other Unlisted Practices Which May Be within Section 3(f) § 780.159 Forest products. Trees grown in... purpose of the FLSA. (See § 780.205 regarding production of Christmas trees.) It follows that employment in the production, cultivation, growing, and harvesting of such trees or timber products is not...

  1. Canadian forest products shipped into the north-central region.

    Treesearch

    Eugene M. Carpenter

    1972-01-01

    Documents the imports of Canadian forest products into the north central region and relates import trends to the potential for expanding markets for the region's surplus volume of hardwood growing stock. More than 42% of the $2.1 billion of forest products imported from Canada in 1969 came into the north central region. The value of forest imports has increased...

  2. Relationships between net primary productivity and forest stand age in U.S. forests

    Treesearch

    Liming He; Jing M. Chen; Yude Pan; Richard Birdsey; Jens Kattge

    2012-01-01

    Net primary productivity (NPP) is a key flux in the terrestrial ecosystem carbon balance, as it summarizes the autotrophic input into the system. Forest NPP varies predictably with stand age, and quantitative information on the NPP-age relationship for different regions and forest types is therefore fundamentally important for forest carbon cycle modeling. We used four...

  3. Forest Products Industry Technology Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  4. Forest biogeochemistry in response to drought.

    PubMed

    Schlesinger, William H; Dietze, Michael C; Jackson, Robert B; Phillips, Richard P; Rhoades, Charles C; Rustad, Lindsey E; Vose, James M

    2016-07-01

    Trees alter their use and allocation of nutrients in response to drought, and changes in soil nutrient cycling and trace gas flux (N2 O and CH4 ) are observed when experimental drought is imposed on forests. In extreme droughts, trees are increasingly susceptible to attack by pests and pathogens, which can lead to major changes in nutrient flux to the soil. Extreme droughts often lead to more common and more intense forest fires, causing dramatic changes in the nutrient storage and loss from forest ecosystems. Changes in the future manifestation of drought will affect carbon uptake and storage in forests, leading to feedbacks to the Earth's climate system. We must improve the recognition of drought in nature, our ability to manage our forests in the face of drought, and the parameterization of drought in earth system models for improved predictions of carbon uptake and storage in the world's forests. © 2015 John Wiley & Sons Ltd.

  5. Sediment production from forest roads in western Oregon

    Treesearch

    Charlie Luce; Thomas A. Black

    1999-01-01

    Prevention and estimation of soil erosion from forest roads requires an understanding of how road design and maintenance affect sediment production. Seventy-four plots were installed on forest roads in the Oregon Coast Range to examine the relationship between sediment production and road attributes such as distance between culverts, road slope, soil texture,...

  6. An exploratory assessment of the attitudes of Chinese wood products manufacturers towards forest certification.

    PubMed

    Chen, Juan; Innes, John L; Kozak, Robert A

    2011-11-01

    Interviews with Chinese forest products manufacturers were conducted to explore their attitudes towards forest certification and related issues. Participants comprised owners, CEOs, and managers in 20 Chinese wood products companies, including producers of furniture, doors, flooring, and various engineered wood products. The interviews were used to analyze the extent to which participants were considering adopting forest certification and what might motivate such a decision. This was done by assessing their awareness and knowledge of certification. The results indicated that participants' understanding of forest certification was extremely low, despite major efforts in China to raise awareness of the issue. Potential economic benefits were the most frequently cited reason to adopt certification, including gaining or maintaining competitive advantage over their industry counterparts, improved access to both domestic and export markets, better customer recognition, and enhanced corporate responsibility practices. Some interviewees (3 out of 20) considered that certification would become a mandatory requirement or industry standard, and that this would be the only viable motivation for certification given that the financial benefits were potentially limited. According to the participants, the main differences between certified and uncertified wood products operations related to improved market access and public image. Interviewees felt that cooperation between and support from governments and the forest industry would enable the enhanced awareness of certification amongst manufacturers and the general public. This, in turn, could serve to stimulate demand for certified products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Phylogenetic responses of forest trees to global change.

    PubMed

    Senior, John K; Schweitzer, Jennifer A; O'Reilly-Wapstra, Julianne; Chapman, Samantha K; Steane, Dorothy; Langley, Adam; Bailey, Joseph K

    2013-01-01

    In a rapidly changing biosphere, approaches to understanding the ecology and evolution of forest species will be critical to predict and mitigate the effects of anthropogenic global change on forest ecosystems. Utilizing 26 forest species in a factorial experiment with two levels each of atmospheric CO2 and soil nitrogen, we examined the hypothesis that phylogeny would influence plant performance in response to elevated CO2 and nitrogen fertilization. We found highly idiosyncratic responses at the species level. However, significant, among-genetic lineage responses were present across a molecularly determined phylogeny, indicating that past evolutionary history may have an important role in the response of whole genetic lineages to future global change. These data imply that some genetic lineages will perform well and that others will not, depending upon the environmental context.

  8. Managing for wildlife habitat in Westside production forests.

    Treesearch

    Timothy B. Harrington; Gretchen E. Nicholas

    2007-01-01

    On October 18, 2006, a workshop was held in Vancouver, WA, with the title "Managing for wildlife habitat in Westside production forests." The purpose of the workshop was to provide prescriptions and guidelines for people who manage Westside forests (those west of the Cascade Mountains' crest) primarily for wood production, but because of mandate or...

  9. Estimating forest productivity with Thematic Mapper and biogeographical data

    NASA Technical Reports Server (NTRS)

    Cook, Elizabeth A.; Iverson, Louis R.; Graham, Robin L.

    1989-01-01

    Spectral data from the Landsat Thematic Mapper (TM) on three forest exosystems (the southern Illinois, the Great Smoky Mountains regions in Tennessee and North Carolina, and the central Adirondack Mountains in New York) were used in conjunction with ground-collected measures of forest productivity and such information as the area's slope, aspect, elevation, and soil and vegetation types, to develop models of regional forest productivity. It is shown that the models developed may be used to estimate the productivity of a region with a high degree of confidence, but that the reliability of single-pixel estimates is poor. The characteristics of a given ecosystem determine which spectral values are most closely related to forest productivity. Thus, mid-IR, NIR, and visible bands are most significant in Illinois and New York, while the thermal band is relatively more important in the Smokies.

  10. Alaska forest products: using resources well.

    Treesearch

    Valerie Rapp

    2003-01-01

    Despite abundant forest resources in the state, the Alaska forest products industry declined throughout the 1990s and early 21st century. In a state with lots of trees, mills are going out of business and most finished lumber used in the state is imported from the lower 48 United States and Canada. The Alaska Wood Utilization Research and Development Center (Wood...

  11. Harvesting minor forest products in the Pacific Northwest.

    Treesearch

    Thomas C. Adams

    1960-01-01

    Forests of the Pacific Northwest yield a number of secondary or so-called minor forest products. These include those smaller, side-line items of commercial value that can usually be harvested without intensive management or cultivation. They are generally only incidental to a primary use of the land for sawtimber or pulpwood production. In most cases they can be...

  12. Small mammal responses to Amazonian forest islands are modulated by their forest dependence.

    PubMed

    Palmeirim, Ana Filipa; Benchimol, Maíra; Vieira, Marcus Vinícius; Peres, Carlos A

    2018-05-01

    Hydroelectric dams have induced widespread loss, fragmentation and degradation of terrestrial habitats in lowland tropical forests. Yet their ecological impacts have been widely neglected, particularly in developing countries, which are currently earmarked for exponential hydropower development. Here we assess small mammal assemblage responses to Amazonian forest habitat insularization induced by the 28-year-old Balbina Hydroelectric Dam. We sampled small mammals on 25 forest islands (0.83-1466 ha) and four continuous forest sites in the mainland to assess the overall community structure and species-specific responses to forest insularization. We classified all species according to their degree of forest-dependency using a multi-scale approach, considering landscape, patch and local habitat characteristics. Based on 65,520 trap-nights, we recorded 884 individuals of at least 22 small mammal species. Species richness was best predicted by island area and isolation, with small islands (< 15 ha) harbouring an impoverished nested subset of species (mean ± SD: 2.6 ± 1.3 species), whereas large islands (> 200 ha; 10.8 ± 1.3 species) and continuous forest sites (∞ ha; 12.5 ± 2.5 species) exhibited similarly high species richness. Forest-dependent species showed higher local extinction rates and were often either absent or persisted at low abundances on small islands, where non-forest-dependent species became hyper-abundant. Species capacity to use non-forest habitat matrices appears to dictate small mammal success in small isolated islands. We suggest that ecosystem functioning may be highly disrupted on small islands, which account for 62.7% of all 3546 islands in the Balbina Reservoir.

  13. Forest amount affects soybean productivity in Brazilian agricultural frontier

    NASA Astrophysics Data System (ADS)

    Rattis, L.; Brando, P. M.; Marques, E. Q.; Queiroz, N.; Silverio, D. V.; Macedo, M.; Coe, M. T.

    2017-12-01

    Over the past three decades, large tracts of tropical forests have been converted to crop and pasturelands across southern Amazonia, largely to meet the increasing worldwide demand for protein. As the world's population continue to grow and consume more protein per capita, forest conversion to grow more crops could be a potential solution to meet such demand. However, widespread deforestation is expected to negatively affect crop productivity via multiple pathways (e.g., thermal regulation, rainfall, local moisture, pest control, among others). To quantify how deforestation affects crop productivity, we modeled the relationship between forest amount and enhanced vegetation index (EVI—a proxy for crop productivity) during the soybean planting season across southern Amazonia. Our hypothesis that forest amount causes increased crop productivity received strong support. We found that the maximum MODIS-based EVI in soybean fields increased as a function of forest amount across three spatial-scales, 0.5 km, 1 km, 2 km, 5 km, 10 km, 15 km and 20 km. However, the strength of this relationship varied across years and with precipitation, but only at the local scale (e.g., 500 meters and 1 km radius). Our results highlight the importance of considering forests to design sustainable landscapes.

  14. Nanotechnology for forest products. Part 1

    Treesearch

    Theodore Wegner; Phil Jones

    2005-01-01

    Nano-sized particles may be small, but for our industry they offer huge potential. Nanotechnology represents a major opportunity for the forest products industry to develop new products, substantially reduce processing costs, and open new markets in the coming decades.

  15. Bioenergy production and forest landscape change in the southeastern United States

    USGS Publications Warehouse

    Costanza, Jennifer K.; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime A.

    2016-01-01

    Production of woody biomass for bioenergy, whether wood pellets or liquid biofuels, has the potential to cause substantial landscape change and concomitant effects on forest ecosystems, but the landscape effects of alternative production scenarios have not been fully assessed. We simulated landscape change from 2010 to 2050 under five scenarios of woody biomass production for wood pellets and liquid biofuels in North Carolina, in the southeastern United States, a region that is a substantial producer of wood biomass for bioenergy and contains high biodiversity. Modeled scenarios varied biomass feedstocks, incorporating harvest of ‘conventional’ forests, which include naturally regenerating as well as planted forests that exist on the landscape even without bioenergy production, as well as purpose-grown woody crops grown on marginal lands. Results reveal trade-offs among scenarios in terms of overall forest area and the characteristics of the remaining forest in 2050. Meeting demand for biomass from conventional forests resulted in more total forest land compared with a baseline, business-as-usual scenario. However, the remaining forest was composed of more intensively managed forest and less of the bottomland hardwood and longleaf pine habitats that support biodiversity. Converting marginal forest to purpose-grown crops reduced forest area, but the remaining forest contained more of the critical habitats for biodiversity. Conversion of marginal agricultural lands to purpose-grown crops resulted in smaller differences from the baseline scenario in terms of forest area and the characteristics of remaining forest habitats. Each scenario affected the dominant type of land-use change in some regions, especially in the coastal plain that harbors high levels of biodiversity. Our results demonstrate the complex landscape effects of alternative bioenergy scenarios, highlight that the regions most likely to be affected by bioenergy production are also critical for

  16. A U.S. Forest Service special forest products appraisal system: background, methods, and assessment.

    Treesearch

    Jerry Smith; Lisa K. Crone; Susan J. Alexander

    2010-01-01

    Increasing concern over the management and harvest of special forest products (SFP) from national forest lands has led to the development of new Forest Service policy directives. In this paper, we present a brief history of SFPs in the Western United States, highlighting the issues that necessitated new management direction. The new policy directives that led to the...

  17. Nontimber Forest Products in the Rural Household Economy

    Treesearch

    Erin O. Sills; Sharachchandra Lele; Thomas P. Holmes; Subhrendu K. Pattanayak

    2003-01-01

    Among the multiple outputs of forests, the category labeled nontimber forest products, or NTFPs, has drawn increased policy and research attention during the past 20 years. NTFPs have become recognized for their importance in the livelihoods of the many relatively poor households who live in or near forests, especially in the tropics. Policy concern about NTFPs takes...

  18. Physiology-phenology interactions in a productive semi-arid pine forest.

    PubMed

    Maseyk, Kadmiel S; Lin, Tongbao; Rotenberg, Eyal; Grünzweig, José M; Schwartz, Amnon; Yakir, Dan

    2008-01-01

    This study explored possible advantages conferred by the phase shift between leaf phenology and photosynthesis seasonality in a semi-arid Pinus halepensis forest system, not seen in temperate sites. Leaf-scale measurements of gas exchange, nitrogen and phenology were used on daily, seasonal and annual time-scales. Peak photosynthesis was in late winter, when high soil moisture, mild temperatures and low leaf vapour pressure deficit (D(L)) allowed high rates associated with high water- and nitrogen-use efficiencies. Self-sustained new needle growth through the dry and hot summer maximized photosynthesis in the following wet season, without straining carbon storage. Low rates of water loss were associated with increasing sensitivity of stomatal conductance (g(s)) to soil moisture below a relative extractable water (REW) of 0.4, and decreased g(s )sensitivity to D(L) below REW of approx. 0.2. This response was captured by the modified Ball-Berry (Leuning) model. While most physiological parameters and responses measured were typical of temperate pines, the photosynthesis-phenological phasing contributed to high productivity under warm-dry conditions. This contrasts with reported effects of short-term periodical droughts and could lead to different predictions of the effect of warming and drying climate on pine forest productivity.

  19. Medicinal and dietary supplements: specialty forest products with a long tradition

    Treesearch

    James L. Chamberlain; A.L. Hammett

    1999-01-01

    Over the last five years forest products other than timber-based products have received a great deal of attention. The markets for medicinal plants that are collected from the forests are growing rapidly. Some reports suggest this segment of the non-timber forest products industry is expanding faster than the timber-based industry. Plants used for their therapeutic...

  20. 76 FR 50715 - Information Collection; Forest Products Removal Permits and Contracts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... Bureau of Land Management (for form FS-2400- 1) oversee the approval and use of forest products by the... complete one of the following: FS-2400-1, Forest Products Removal Permit and Cash Receipt, is used to sell... Management identifies as BLM-5450-24 (43 U.S.C. 1201, 43 CFR 5420). FS-2400-4, Forest Products Contract and...

  1. Forest productivity varies with soil moisture more than temperature in a small montane watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Liang; Zhou, Hang; Link, Timothy E

    Mountainous terrain creates variability in microclimate, including nocturnal cold air drainage and resultant temperature inversions. Driven by the elevational temperature gradient, vapor pressure deficit (VPD) also varies with elevation. Soil depth and moisture availability often increase from ridgetop to valley bottom. These variations complicate predictions of forest productivity and other biological responses. We analyzed spatiotemporal air temperature (T) and VPD variations in a forested, 27-km 2 catchment that varied from 1000 to 1650 m in elevation. Temperature inversions occurred on 76% of mornings in the growing season. The inversion had a clear upper boundary at midslope (~1370 m a.s.l.). Vapormore » pressure was relatively constant across elevations, therefore VPD was mainly controlled by T in the watershed. Here, we assessed the impact of microclimate and soil moisture on tree height, forest productivity, and carbon stable isotopes (δ 13C) using a physiological forest growth model (3-PG). Simulated productivity and tree height were tested against observations derived from lidar data. The effects on photosynthetic gas-exchange of dramatic elevational variations in T and VPD largely cancelled as higher temperature (increasing productivity) accompanies higher VPD (reducing productivity). Although it was not measured, the simulations suggested that realistic elevational variations in soil moisture predicted the observed decline in productivity with elevation. Therefore, in this watershed, the model parameterization should have emphasized soil moisture rather than precise descriptions of temperature inversions.« less

  2. Forest productivity varies with soil moisture more than temperature in a small montane watershed

    DOE PAGES

    Wei, Liang; Zhou, Hang; Link, Timothy E; ...

    2018-05-16

    Mountainous terrain creates variability in microclimate, including nocturnal cold air drainage and resultant temperature inversions. Driven by the elevational temperature gradient, vapor pressure deficit (VPD) also varies with elevation. Soil depth and moisture availability often increase from ridgetop to valley bottom. These variations complicate predictions of forest productivity and other biological responses. We analyzed spatiotemporal air temperature (T) and VPD variations in a forested, 27-km 2 catchment that varied from 1000 to 1650 m in elevation. Temperature inversions occurred on 76% of mornings in the growing season. The inversion had a clear upper boundary at midslope (~1370 m a.s.l.). Vapormore » pressure was relatively constant across elevations, therefore VPD was mainly controlled by T in the watershed. Here, we assessed the impact of microclimate and soil moisture on tree height, forest productivity, and carbon stable isotopes (δ 13C) using a physiological forest growth model (3-PG). Simulated productivity and tree height were tested against observations derived from lidar data. The effects on photosynthetic gas-exchange of dramatic elevational variations in T and VPD largely cancelled as higher temperature (increasing productivity) accompanies higher VPD (reducing productivity). Although it was not measured, the simulations suggested that realistic elevational variations in soil moisture predicted the observed decline in productivity with elevation. Therefore, in this watershed, the model parameterization should have emphasized soil moisture rather than precise descriptions of temperature inversions.« less

  3. Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holm, Jennifer A.; Van Bloem, Skip J.; Larocque, Guy R.

    Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model -based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes,more » manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into

  4. Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances

    NASA Astrophysics Data System (ADS)

    Holm, Jennifer A.; Van Bloem, Skip J.; Larocque, Guy R.; Shugart, Herman H.

    2017-02-01

    Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model-based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes, manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into the

  5. Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances

    DOE PAGES

    Holm, Jennifer A.; Van Bloem, Skip J.; Larocque, Guy R.; ...

    2017-02-07

    Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model -based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes,more » manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into

  6. Response of the Fine Root Production, Phenology, and Turnover Rate of Six Shrub Species from a Subtropical Forest to a Soil Moisture Gradient and Shading

    NASA Astrophysics Data System (ADS)

    Fu, X.; Dai, X.; Wang, H.

    2015-12-01

    Knowledge of the fine root dynamics of different life forms in forest ecosystems is critical to understanding how the overall belowground carbon cycling is affected by climate change. However, our current knowledge regarding how endogenous or exogenous factors regulate the root dynamics of understory vegetation is limited. We selected a suite of study sites representing different habitats with gradients of soil moisture and solar radiation (shading or no shading). We assessed the fine root production phenology, the total fine root production, and the turnover among six understory shrub species in a subtropical climate, and examined the responses of the fine root dynamics to gradients in the soil moisture and solar radiation. The shrubs included three evergreen species, Loropetalum chinense, Vaccinium bracteatum, and Adinandra millettii, and three deciduous species, Serissa serissoides, Rubus corchorifolius, and Lespedeza davidii. We observed that variations in the annual fine root production and turnover among species were significant in the deciduous group but not in the evergreen group. Notably, V. bracteatum and S. serissoides presented the greatest responses in terms of root phenology to gradients in the soil moisture and shading: high-moisture habitat led to a decrease and shade led to an increase in fine root production during spring. Species with smaller fine roots of the 1st+2nd-order diameter presented more sensitive responses in terms of fine root phenology to a soil moisture gradient. Species with a higher fine root nitrogen-to -carbon ratio exhibited more sensitive responses in terms of fine root annual production to shading. Soil moisture and shading did not change the annual fine root production as much as the turnover rate. The fine root dynamics of some understory shrubs varied significantly with soil moisture and solar radiation status and may be different from tree species. Our results emphasize the need to study the understory fine root dynamics

  7. Impacts of fire and climate change on long-term nitrogen availability and forest productivity in the New Jersey Pine Barrens

    Treesearch

    Melissa S. Lucash; Robert M. Scheller; Alec M. Kretchun; Kenneth L. Clark; John Hom

    2014-01-01

    Increased wildfires and temperatures due to climate change are expected to have profound effects on forest productivity and nitrogen (N) cycling. Forecasts about how wildfire and climate change will affect forests seldom consider N availability, which may limit forest response to climate change, particularly in fire-prone landscapes. The overall objective of this study...

  8. Factors affecting the remotely sensed response of coniferous forest plantations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danson, F.M.; Curran, P.J.

    1993-01-01

    Remote sensing of forest biophysical properties has concentrated upon forest sites with a wide range of green vegetation amount and thereby leaf area index and canopy cover. However, coniferous forest plantations, an important forest type in Europe, are managed to maintain a large amount of green vegetation with little spatial variation. Therefore, the strength of the remotely sensed signal will, it is hypothesized, be determined more by the structure of this forest than by its cover. Airborne Thematic Mapper (ATM) and SPOT-1 HRV data were used to determine the effects of this structural variation on the remotely sensed response ofmore » a coniferous forest plantation in the United Kingdom. Red and near infrared radiance were strongly and negatively correlated with a range of structural properties and with the age of the stands but weakly correlated with canopy cover. A composite variable, related to the volume of the canopy, accounted for over 75% of the variation in near infrared radiance. A simple model that related forest structural variables to the remotely sensed response was used to understand and explain this response from a coniferous forest plantation.« less

  9. Role of MODIS Vegetation Phenology Products in the U.S. for Warn Early Warning System for Forest Threats

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Hargrove, William; Norman, Steve; Gasser, Gerald; Smoot, James; Kuper, Philip

    2012-01-01

    U.S. forests occupy approx 751 million acres (approx 1/3 of total land). Several abiotic and biotic damage agents disturb, damage, kill, and/or threaten these forests. Regionally extensive forest disturbances can also threaten human life and property, bio-diversity and water supplies. timely regional forest disturbance monitoring products are needed to aid forest health management work at finer scales. daily MODIS data provide a means to monitor regional forest disturbances on a weekly basis, leveraging vegetation phenology. In response, the USFS and NASA began collaborating in 2006 to develop a Near Real Time (NRT) forest monitoring capability, based on MODIS NDVI data, as part of a national forest threat Early Warning System (EWS).

  10. Managing the "other" forest: collecting and protecting nontimber forest products

    Treesearch

    Sally Duncan

    2003-01-01

    Wild harvest of nontimber forest products (NTFP) contributes to an international commercial trade in plant material—thought to be thousands of tons of raw product valued at billions of dollars. From 1991 through 1998, international trade in pharmaceutical plants alone was valued at over $1 billion, with the United States second only to China in value of...

  11. Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?

    PubMed

    Keith, Heather; Lindenmayer, David; Macintosh, Andrew; Mackey, Brendan

    2015-01-01

    Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC's Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize fully the mitigation

  12. Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?

    PubMed Central

    Keith, Heather; Lindenmayer, David; Macintosh, Andrew; Mackey, Brendan

    2015-01-01

    Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC’s Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize fully the mitigation

  13. Varying rotation lengths in northern production forests: Implications for habitats provided by retention and production trees.

    PubMed

    Felton, Adam; Sonesson, Johan; Nilsson, Urban; Lämås, Tomas; Lundmark, Tomas; Nordin, Annika; Ranius, Thomas; Roberge, Jean-Michel

    2017-04-01

    Because of the limited spatial extent and comprehensiveness of protected areas, an increasing emphasis is being placed on conserving habitats which promote biodiversity within production forest. For this reason, alternative silvicultural programs need to be evaluated with respect to their implications for forest biodiversity, especially if these programs are likely to be adopted. Here we simulated the effect of varied rotation length and associated thinning regimes on habitat availability in Scots pine and Norway spruce production forests, with high and low productivity. Shorter rotation lengths reduced the contribution made by production trees (trees grown for industrial use) to the availability of key habitat features, while concurrently increasing the contribution from retention trees. The contribution of production trees to habitat features was larger for high productivity sites, than for low productivity sites. We conclude that shortened rotation lengths result in losses of the availability of habitat features that are key for biodiversity conservation and that increased retention practices may only partially compensate for this. Ensuring that conservation efforts better reflect the inherent variation in stand rotation lengths would help improve the maintenance of key forest habitats in production forests.

  14. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    DOE PAGES

    Wagner, Fabien H.; Hérault, Bruno; Bonal, Damien; ...

    2016-04-28

    Here, the seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter productivity measurements), their associated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonality in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positivelymore » to precipitation when rainfall is < 2000 mm yr -1 (water-limited forests) and to radiation otherwise (light-limited forests). On the other hand, independent of climate limitations, wood productivity and litterfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosynthetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest productivity in a drier climate in water-limited forest, and in current light-limited forest with future rainfall < 2000 mm yr -1.« less

  15. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Fabien H.; Hérault, Bruno; Bonal, Damien

    Here, the seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter productivity measurements), their associated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonality in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positivelymore » to precipitation when rainfall is < 2000 mm yr -1 (water-limited forests) and to radiation otherwise (light-limited forests). On the other hand, independent of climate limitations, wood productivity and litterfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosynthetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest productivity in a drier climate in water-limited forest, and in current light-limited forest with future rainfall < 2000 mm yr -1.« less

  16. Forest responses to increasing aridity and warmth in the southwestern United States.

    PubMed

    Williams, A Park; Allen, Craig D; Millar, Constance I; Swetnam, Thomas W; Michaelsen, Joel; Still, Christopher J; Leavitt, Steven W

    2010-12-14

    In recent decades, intense droughts, insect outbreaks, and wildfires have led to decreasing tree growth and increasing mortality in many temperate forests. We compared annual tree-ring width data from 1,097 populations in the coterminous United States to climate data and evaluated site-specific tree responses to climate variations throughout the 20th century. For each population, we developed a climate-driven growth equation by using climate records to predict annual ring widths. Forests within the southwestern United States appear particularly sensitive to drought and warmth. We input 21st century climate projections to the equations to predict growth responses. Our results suggest that if temperature and aridity rise as they are projected to, southwestern trees will experience substantially reduced growth during this century. As tree growth declines, mortality rates may increase at many sites. Increases in wildfires and bark-beetle outbreaks in the most recent decade are likely related to extreme drought and high temperatures during this period. Using satellite imagery and aerial survey data, we conservatively calculate that ≈ 2.7% of southwestern forest and woodland area experienced substantial mortality due to wildfires from 1984 to 2006, and ≈ 7.6% experienced mortality associated with bark beetles from 1997 to 2008. We estimate that up to ≈ 18% of southwestern forest area (excluding woodlands) experienced mortality due to bark beetles or wildfire during this period. Expected climatic changes will alter future forest productivity, disturbance regimes, and species ranges throughout the Southwest. Emerging knowledge of these impending transitions informs efforts to adaptively manage southwestern forests.

  17. Forest responses to increasing aridity and warmth in the southwestern United States

    USGS Publications Warehouse

    Williams, A.P.; Allen, Craig D.; Millar, C.I.; Swetnam, T.W.; Michaelsen, J.; Still, C.J.; Leavitt, Steven W.

    2010-01-01

    In recent decades, intense droughts, insect outbreaks, and wildfires have led to decreasing tree growth and increasing mortality in many temperate forests. We compared annual tree-ring width data from 1,097 populations in the coterminous United States to climate data and evaluated site-specific tree responses to climate variations throughout the 20th century. For each population, we developed a climate-driven growth equation by using climate records to predict annual ring widths. Forests within the southwestern United States appear particularly sensitive to drought and warmth. We input 21st century climate projections to the equations to predict growth responses. Our results suggest that if temperature and aridity rise as they are projected to, southwestern trees will experience substantially reduced growth during this century. As tree growth declines, mortality rates may increase at many sites. Increases in wildfires and bark-beetle outbreaks in the most recent decade are likely related to extreme drought and high temperatures during this period. Using satellite imagery and aerial survey data, we conservatively calculate that ≈2.7% of southwestern forest and woodland area experienced substantial mortality due to wildfires from 1984 to 2006, and ≈7.6% experienced mortality associated with bark beetles from 1997 to 2008. We estimate that up to ≈18% of southwestern forest area (excluding woodlands) experienced mortality due to bark beetles or wildfire during this period. Expected climatic changes will alter future forest productivity, disturbance regimes, and species ranges throughout the Southwest. Emerging knowledge of these impending transitions informs efforts to adaptively manage southwestern forests.

  18. Assessing socioeconomic impacts of climate change on U.S. forests, wood-product markets, and forest recreation

    Treesearch

    Lloyd C. Irland; Darius Adams; Ralph Alig; Carter J. Betz; Chi-Chung Chen; Mark Hutchins; Bruce A. McCarl; Ken Skog; Brent L. Sohngen

    2001-01-01

    In this paper we discuss the problems of projecting social and economic changes affecting forests and review recent efforts to assess the wood-market impacts of possible climate changes. To illustrate the range of conditions encountered in projecting socioeconomic change linked to forests, we consider two markedly different uses: forest products markets and forest...

  19. Special forest products: biodiversity meets the marketplace.

    Treesearch

    Nan C. Vance; Jane Thomas

    1997-01-01

    Although North American forests traditionally have been viewed as a source of wood and paper,a variety of profitable products are being discovered that come not only from trees, but from nonwoody plants, lichens, fungi, algae, and microorganisms. The northern temperate forests’ abundant biotic resources are being transformed into medicinals, botanicals, decoratives,...

  20. Technical change in forest sector models: the global forest products model approach

    Treesearch

    Joseph Buongiorno; Sushuai Zhu

    2015-01-01

    Technical change is developing rapidly in some parts of the forest sector, especially in the pulp and paper industry where wood fiber is being substituted by waste paper. In forest sector models, the processing of wood and other input into products is frequently represented by activity analysis (input–output). In this context, technical change translates in changes...

  1. Explaining the forest product selling behavior of private woodland owners

    Treesearch

    David N. Larsen; David A. Gansner; David A. Gansner

    1973-01-01

    A multiple-variable screening technique, AID, was used to explain the forest-product-sales behavior of private woodland owners. Results provide a basis for policy-related inferences and suggest an optimal strategy for encouraging sales of forest products.

  2. Positive biodiversity-productivity relationship predominant in global forests.

    PubMed

    Liang, Jingjing; Crowther, Thomas W; Picard, Nicolas; Wiser, Susan; Zhou, Mo; Alberti, Giorgio; Schulze, Ernst-Detlef; McGuire, A David; Bozzato, Fabio; Pretzsch, Hans; de-Miguel, Sergio; Paquette, Alain; Hérault, Bruno; Scherer-Lorenzen, Michael; Barrett, Christopher B; Glick, Henry B; Hengeveld, Geerten M; Nabuurs, Gert-Jan; Pfautsch, Sebastian; Viana, Helder; Vibrans, Alexander C; Ammer, Christian; Schall, Peter; Verbyla, David; Tchebakova, Nadja; Fischer, Markus; Watson, James V; Chen, Han Y H; Lei, Xiangdong; Schelhaas, Mart-Jan; Lu, Huicui; Gianelle, Damiano; Parfenova, Elena I; Salas, Christian; Lee, Eungul; Lee, Boknam; Kim, Hyun Seok; Bruelheide, Helge; Coomes, David A; Piotto, Daniel; Sunderland, Terry; Schmid, Bernhard; Gourlet-Fleury, Sylvie; Sonké, Bonaventure; Tavani, Rebecca; Zhu, Jun; Brandl, Susanne; Vayreda, Jordi; Kitahara, Fumiaki; Searle, Eric B; Neldner, Victor J; Ngugi, Michael R; Baraloto, Christopher; Frizzera, Lorenzo; Bałazy, Radomir; Oleksyn, Jacek; Zawiła-Niedźwiecki, Tomasz; Bouriaud, Olivier; Bussotti, Filippo; Finér, Leena; Jaroszewicz, Bogdan; Jucker, Tommaso; Valladares, Fernando; Jagodzinski, Andrzej M; Peri, Pablo L; Gonmadje, Christelle; Marthy, William; O'Brien, Timothy; Martin, Emanuel H; Marshall, Andrew R; Rovero, Francesco; Bitariho, Robert; Niklaus, Pascal A; Alvarez-Loayza, Patricia; Chamuya, Nurdin; Valencia, Renato; Mortier, Frédéric; Wortel, Verginia; Engone-Obiang, Nestor L; Ferreira, Leandro V; Odeke, David E; Vasquez, Rodolfo M; Lewis, Simon L; Reich, Peter B

    2016-10-14

    The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone-US$166 billion to 490 billion per year according to our estimation-is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities. Copyright © 2016, American Association for the Advancement of Science.

  3. Information system of forest growth and productivity by site quality type and elements of forest

    NASA Astrophysics Data System (ADS)

    Khlyustov, V.

    2012-04-01

    Information system of forest growth and productivity by site quality type and elements of forest V.K. Khlustov Head of the Forestry Department of Russian State Agrarian University named after K.A.Timiryazev doctor of agricultural sciences, professor The efficiency of forest management can be improved substantially by development and introduction of principally new models of forest growth and productivity dynamics based on regionalized site specific parameters. Therefore an innovative information system was developed. It describes the current state and gives a forecast for forest stand parameters: growth, structure, commercial and biological productivity depend on type of site quality. In contrast to existing yield tables, the new system has environmental basis: site quality type. The information system contains set of multivariate statistical models and can work at the level of individual trees or at the stand level. The system provides a graphical visualization, as well as export of the emulation results. The System is able to calculate detailed description of any forest stand based on five initial indicators: site quality type, site index, stocking, composition, and tree age by elements of the forest. The results of the model run are following parameters: average diameter and height, top height, number of trees, basal area, growing stock (total, commercial with distribution by size, firewood and residuals), live biomass (stem, bark, branches, foliage). The system also provides the distribution of mentioned above forest stand parameters by tree diameter classes. To predict the future forest stand dynamics the system require in addition the time slot only. Full set of forest parameters mention above will be provided by the System. The most conservative initial parameters (site quality type and site index) can be kept in the form of geo referenced polygons. In this case the system would need only 3 dynamic initial parameters (stocking, composition and age) to

  4. Nontimber forest products in the United States: an analysis for the 2015 National Sustainable Forest Report

    Treesearch

    James Chamberlain; Aaron Teets; Steve Kruger

    2018-01-01

    Worldwide, forest plants and fungi that are harvested for their nontimber products are critical for the health of the ecosystems and the well-being of people who benefit from the harvest. This document provides an analysis of the volumes and values of nontimber forest products in the United States. It presents...

  5. Responses of dead forest fuel moisture to climate change

    Treesearch

    Yongqiang Liu

    2016-01-01

    Forest fuel moisture is an important factor for wildland fire behavior. Predicting future wildfire trends and controlled burned conditions is essential to effective natural resource management, but the associated effects of forest fuel moisture remain uncertain. This study investigates the responses of dead forest fuel moisture to climate change in the...

  6. Using the Global Forest Products Model (GFPM version 2012)

    Treesearch

    Joseph Buongiorno; Shushuai Zhu

    2012-01-01

    The purpose of this manual is to enable users of the Global Forest Products Model to: • Install and run the GFPM software • Understand the input data • Change the input data to explore different scenarios • Interpret the output The GFPM is an economic model of global production, consumption and trade of forest products (Buongiorno et al. 2003). The GFPM2012 has data...

  7. International trends in forest products consumption: is there convergence?

    Treesearch

    Joseph Buongiorno

    2009-01-01

    International data from 1961 to 2005 showed that the coefficient of variation of consumption per- capita across countries had tended to decrease over time for all forest products except sawnwood.  This convergence of per-capita consumption was confirmed by the trends in Theil's inequality coefficients: the distribution of forest products consumption across...

  8. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests

    DOE PAGES

    Hesse, Cedar N.; Mueller, Rebecca C.; Vuyisich, Momchilo; ...

    2015-04-23

    Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes)more » in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact.« less

  9. Changes in Forest Production, Biomass and Carbon: Results From the 2015 UN FAO Global Forest Resource Assessment

    NASA Astrophysics Data System (ADS)

    Navar, J.

    2015-12-01

    Forests are important sources of livelihoods to millions of people and contribute to national economic development of many countries. In addition, they are vital sources and sinks of carbon and contribute to the rate of climate change. The UN Food and Agriculture Organization has been collecting and presenting data on global forest resources and forest cover since 1948. This paper builds on data from FAO's 2015 Global Forest Resource Assessment (FRA) and presents information on growing stock, biomass, carbon stock, wood removals, and changes of forest area primarily designated for production and multiple use of the world's forests. Between 1990 and 2015, the total growing stock volume has increased in East Asia, Caribbean, Western and Central Asia, North America, Europe (including the Russian Federation), and Oceania with the highest relative increase in East Asia and the Caribbean. In all other subregions the total growing stock volume decreased. North and Central America, Europe and Asia report forest C stock increases while South America and Africa report strong decreases and Oceania reports stable forest C stocks. The annual rate of decrease of forest C stock weakened between 1990 and 2015. The total volume of annual wood removals including wood fuel removals increased between 1990 and 2011, but shows a remarkable decline during the 2008-2009 economic crisis. Forest areas designated for production purposes differ considerably between subregions. The percentage of production area out of total forest area ranges between 16 percent in South America and 53 percent in Europe. Globally about one quarter of the forest area is designated to multiple use forestry. The balance between biomass growth and removals shows considerable sub-regional differences and related implications for the sustainable use of forests.

  10. Quantifying deforestation and forest degradation with thermal response.

    PubMed

    Lin, Hua; Chen, Yajun; Song, Qinghai; Fu, Peili; Cleverly, James; Magliulo, Vincenzo; Law, Beverly E; Gough, Christopher M; Hörtnagl, Lukas; Di Gennaro, Filippo; Matteucci, Giorgio; Montagnani, Leonardo; Duce, Pierpaolo; Shao, Changliang; Kato, Tomomichi; Bonal, Damien; Paul-Limoges, Eugénie; Beringer, Jason; Grace, John; Fan, Zexin

    2017-12-31

    Deforestation and forest degradation cause the deterioration of resources and ecosystem services. However, there are still no operational indicators to measure forest status, especially for forest degradation. In the present study, we analysed the thermal response number (TRN, calculated by daily total net radiation divided by daily temperature range) of 163 sites including mature forest, disturbed forest, planted forest, shrubland, grassland, savanna vegetation and cropland. TRN generally increased with latitude, however the regression of TRN against latitude differed among vegetation types. Mature forests are superior as thermal buffers, and had significantly higher TRN than disturbed and planted forests. There was a clear boundary between TRN of forest and non-forest vegetation (i.e. grassland and savanna) with the exception of shrubland, whose TRN overlapped with that of forest vegetation. We propose to use the TRN of local mature forest as the optimal TRN (TRN opt ). A forest with lower than 75% of TRN opt was identified as subjected to significant disturbance, and forests with 66% of TRN opt was the threshold for deforestation within the absolute latitude from 30° to 55°. Our results emphasized the irreplaceable thermal buffer capacity of mature forest. TRN can be used for early warning of deforestation and degradation risk. It is therefore a valuable tool in the effort to protect forests and prevent deforestation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Integrating forest products with ecosystem services: a global perspective

    Treesearch

    Robert L. Deal; Rachel White

    2012-01-01

    Around the world forests provide a broad range of vital ecosystem services. Sustainable forest management and forest products play an important role in global carbon management, but one of the major forestry concerns worldwide is reducing the loss of forestland from development. Currently, deforestation accounts for approximately 20% of total greenhouse gas emissions....

  12. Forest Productivity and Timber Supply Modeling in the South

    Treesearch

    Frederick Cubbage; Jacek Siry; Robert Abt; David N. Wear; Steverson Moffat

    1998-01-01

    The South can increase forest productivity on industrial and nonindustrial private forest (NIPF) lands. As timber markets have improved and timber prices have increased, returns from intensive management are more profitable. The interaction of timber markets, inventory, and prices are analyzed in new southern timber supply models sponsored by the Southern Forest...

  13. Analysis of the production and transaction costs of forest carbon offset projects in the USA.

    PubMed

    Galik, Christopher S; Cooley, David M; Baker, Justin S

    2012-12-15

    Forest carbon offset project implementation costs, comprised of both production and transaction costs, could present an important barrier to private landowner participation in carbon offset markets. These costs likewise represent a largely undocumented component of forest carbon offset potential. Using a custom spreadsheet model and accounting tool, this study examines the implementation costs of different forest offset project types operating in different forest types under different accounting and sampling methodologies. Sensitivity results are summarized concisely through response surface regression analysis to illustrate the relative effect of project-specific variables on total implementation costs. Results suggest that transaction costs may represent a relatively small percentage of total project implementation costs - generally less than 25% of the total. Results also show that carbon accounting methods, specifically the method used to establish project baseline, may be among the most important factors in driving implementation costs on a per-ton-of-carbon-sequestered basis, dramatically increasing variability in both transaction and production costs. This suggests that accounting could be a large driver in the financial viability of forest offset projects, with transaction costs likely being of largest concern to those projects at the margin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Forest products harvested in Hawaii-1969

    Treesearch

    Robert E. Burgan; Jr. Wesley H.C. Wong

    1971-01-01

    Primary forest products harvested in Hawaii in 1969 were valued at $331,000-a $3,000 drop from the value of the harvest surveyed in 1967. Sawlogs and veneer logs were the most important products. Koa and robusta eucalyptus were the primary sawlog species. Albizia and robusta eucalyptus provided most of the veneer logs.

  15. Amazon Forest Responses to Drought and Fire

    NASA Astrophysics Data System (ADS)

    Morton, D. C.

    2015-12-01

    Deforestation and agricultural land uses provide a consistent source of ignitions along the Amazon frontier during the dry season. The risk of understory fires in Amazon forests is amplified by drought conditions, when fires at the forest edge may spread for weeks before rains begin. Fire activity also impacts the regional response of intact forests to drought through diffuse light effects and nutrient redistribution, highlighting the complexity of feedbacks in this coupled human and natural system. This talk will focus on recent advances in our understanding of fire-climate feedbacks in the Amazon, building on research themes initiated under NASA's Large-scale Biosphere-Atmosphere Experiment in Amazonia (LBA). NASA's LBA program began in the wake of the 1997-1998 El Niño, a strong event that exposed the vulnerability of Amazon forests to drought and fire under current climate and projections of climate change. With forecasts of another strong El Niño event in 2015-2016, this talk will provide a multi-scale synthesis of Amazon forest responses to drought and fire based on field measurements, airborne lidar data, and satellite observations of fires, rainfall, and terrestrial water storage. These studies offer new insights into the mechanisms governing fire season severity in the southern Amazon and regional variability in carbon losses from understory fires. The contributions from remote sensing to our understanding of drought and fire in Amazon forests reflect the legacy of NASA's LBA program and the sustained commitment to interdisciplinary research across the Amazon region.

  16. Forest products cluster development in central Arizona—implications for landscape-scale forest restoration

    Treesearch

    David Nicholls

    2014-01-01

    Since 2004, close to 50,000 ac of hazardous fuels have been mechanically treated in east-central Arizona as part of the USDA Forest Service's first 10-year stewardship project on national forest lands. The need for coordinated wood products and biomass utilization in Arizona is likely to increase as broad-scale restoration treatments across Arizona's national...

  17. Naval stores research at the Forest Products Laboratory, past and present

    Treesearch

    Duane F. Zinkel

    1987-01-01

    As many of you may not be familiar with Forest Products Laboratory, allow me to introduce it to you. The Forest Products Laboratory is a Federal government laboratory of the United States Department of Agriculture and, more specifically, of the Forest Service. The Laboratory was built in Madison, Wisconsin in close cooperation with the University of Wisconsin to serve...

  18. U.S. forest products annual market review and prospects, 2001-2004

    Treesearch

    James L. Howard

    2004-01-01

    This report provides general and statistical information on forests products markets in terms of production, trade, consumption, and prices. The state of the United States economy is described as of the second quarter of 2003. Market developments are described for timber products, paper and paperboard, fuelwood, and forest products prices. Policy initiatives that...

  19. Forests and ozone: productivity, carbon storage, and feedbacks.

    PubMed

    Wang, Bin; Shugart, Herman H; Shuman, Jacquelyn K; Lerdau, Manuel T

    2016-02-22

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution.

  20. Recent Trends in the Asian Forest Products Trade and Their Impact on Alaska

    Treesearch

    Joseph A. Roos; Daisuke Sasatani; Allen M Brackley; Valerie Barber

    2010-01-01

    This paper analyzes patterns of forest products trade between Asia and Alaska. Secondary data were collected and analyzed to identify Alaska forest product trading partners and the species used. Some of the many trends occurring in the Asian forest products industry include the shift from solid wood products to engineered wood products, the evolution of China as “the...

  1. The role of temperature and temperature-induced drought on forest productivity in the Northern Countries

    NASA Astrophysics Data System (ADS)

    Ruiz Pérez, Guiomar; Vico, Giulia

    2017-04-01

    Forests play an important role in the climate system and the global carbon cycle and is of considerable socioeconomic importance for Northern countries. For example, Sweden has pursued more intensive forest harvesting as a way of fulfilling the requirements of the EU renewable energy directive. Due to ecological and economical role of forests, it is imperative to better understand the physical and biological processes leading to potential changes in productivity. There is no consensus regarding the net effect of raising temperatures on vegetation productivity in this area. There exist the idea that in response to warmer temperatures, forests located in cold regions may benefit from longer growing seasons and, consequently, become more productive. However, radial growth and wood density measurements suggest that in recent decades, there has been a "divergence" between warming and tree growth, with localized shifts to a negative relationship between temperature and growth. This unexpected adverse response of forests in northern areas under warming is consistent with the fact that they are becoming more vulnerable to warm-related disturbances including temperature-induced drought stress. Here we focus on satellite NDVI record as an indicator of greenness vegetation across the Northern Countries for the period 2000 to present and explore corresponding relationships with high-resolution gridded climate data from E-OBS. By focusing on the whole Sweden, we were able to assess whether the role played by each climatic driver (precipitation, temperature and a dryness index) differed in different locations. In particular, a Partial Least Square (PLS) regression analysis was conducted to investigate the model component structure among the potential drivers explaining the annual variations of the mean NDVI observed during the growing season. We observed how forests respond differently to climatic drivers and their extremes when the increasing temperature occurs together with

  2. Oregon's forest products industry: 1976.

    Treesearch

    James O. Howard; Bruce A. Hiserote

    1976-01-01

    This report presents the findings of a 100-percent canvas of the primary forest products industry in Oregon for 1976. Tabular presentation includes characteristics of the industry log consumption and disposition of mill residues. Accompanying the tables is a descriptive analysis of conditions and trends in the industry.

  3. Measuring forest structure along productivity gradients in the Canadian boreal with small-footprint Lidar.

    PubMed

    Bolton, Douglas K; Coops, Nicholas C; Wulder, Michael A

    2013-08-01

    The structure and productivity of boreal forests are key components of the global carbon cycle and impact the resources and habitats available for species. With this research, we characterized the relationship between measurements of forest structure and satellite-derived estimates of gross primary production (GPP) over the Canadian boreal. We acquired stand level indicators of canopy cover, canopy height, and structural complexity from nearly 25,000 km of small-footprint discrete return Light Detection and Ranging (Lidar) data and compared these attributes to GPP estimates derived from the MODerate resolution Imaging Spectroradiometer (MODIS). While limited in our capacity to control for stand age, we removed recently disturbed and managed forests using information on fire history, roads, and anthropogenic change. We found that MODIS GPP was strongly linked to Lidar-derived canopy cover (r = 0.74, p < 0.01), however was only weakly related to Lidar-derived canopy height and structural complexity as these attributes are largely a function of stand age. A relationship was apparent between MODIS GPP and the maximum sampled heights derived from Lidar as growth rates and resource availability likely limit tree height in the prolonged absence of disturbance. The most structurally complex stands, as measured by the coefficient of variation of Lidar return heights, occurred where MODIS GPP was highest as productive boreal stands are expected to contain a wider range of tree heights and transition to uneven-aged structures faster than less productive stands. While MODIS GPP related near-linearly to Lidar-derived canopy cover, the weaker relationships to Lidar-derived canopy height and structural complexity highlight the importance of stand age in determining the structure of boreal forests. We conclude that an improved quantification of how both productivity and disturbance shape stand structure is needed to better understand the current state of boreal forests in

  4. Abiotic and biotic determinants of coarse woody productivity in temperate mixed forests.

    PubMed

    Yuan, Zuoqiang; Ali, Arshad; Wang, Shaopeng; Gazol, Antonio; Freckleton, Robert; Wang, Xugao; Lin, Fei; Ye, Ji; Zhou, Li; Hao, Zhanqing; Loreau, Michel

    2018-07-15

    Forests play an important role in regulating the global carbon cycle. Yet, how abiotic (i.e. soil nutrients) and biotic (i.e. tree diversity, stand structure and initial biomass) factors simultaneously contribute to aboveground biomass (coarse woody) productivity, and how the relative importance of these factors changes over succession remain poorly studied. Coarse woody productivity (CWP) was estimated as the annual aboveground biomass gain of stems using 10-year census data in old growth and secondary forests (25-ha and 4.8-ha, respectively) in northeast China. Boosted regression tree (BRT) model was used to evaluate the relative contribution of multiple metrics of tree diversity (taxonomic, functional and phylogenetic diversity and trait composition as well as stand structure attributes), stand initial biomass and soil nutrients on productivity in the studied forests. Our results showed that community-weighted mean of leaf phosphorus content, initial stand biomass and soil nutrients were the three most important individual predictors for CWP in secondary forest. Instead, initial stand biomass, rather than diversity and functional trait composition (vegetation quality) was the most parsimonious predictor of CWP in old growth forest. By comparing the results from secondary and old growth forest, the summed relative contribution of trait composition and soil nutrients on productivity decreased as those of diversity indices and initial biomass increased, suggesting the stronger effect of diversity and vegetation quantity over time. Vegetation quantity, rather than diversity and soil nutrients, is the main driver of forest productivity in temperate mixed forest. Our results imply that diversity effect for productivity in natural forests may not be so important as often suggested, at least not during the later stage of forest succession. This finding suggests that as a change of the importance of different divers of productivity, the environmentally driven filtering

  5. Scaling Stream Flow Response to Forest Disturbance: the SID Project

    NASA Astrophysics Data System (ADS)

    Buttle, J. M.; Beall, F. D.; Creed, I. F.; Gordon, A. M.; Mackereth, R.; McLaughlin, J. W.; Sibley, P. K.

    2004-05-01

    We do not have a good understanding of the hydrologic implications of forest harvesting in Ontario, either for current or alternative management approaches. Attempts to address these implications face a three-fold problem: data on hydrologic response to forest disturbance in Ontario are lacking; most studies of these responses have been in regions with forest cover and hydrologic conditions that differ from the Ontario context; and these studies have generally been conducted at relatively small scales (<1 km2). It is generally assumed that hydrologic changes induced by forest disturbance should diminish with increasing scale due to the buffering capacity of large drainage basins. Recent modeling exercises and reanalysis of paired-basin results call this widespread applicability of this assumption into question, with important implications for assessing the cumulative impacts of forest disturbance on basin stream flow. The SID (Scalable Indicators of Disturbance) project combines stream flow monitoring across basin scales with the RHESSys modeling framework to identify forest disturbance impacts on stream flow characteristics in Ontario's major forest ecozones. As a precursor to identifying stream flow response to forest disturbance, we are examining the relative control of basin geology, topography, typology and topology on stream flow characteristics under undisturbed conditions. This will assist in identifying the dominant hydrologic processes controlling basin stream flow that must be incorporated into the RHESSys model framework in order to emulate forest disturbance and its hydrologic impacts. We present preliminary results on stream flow characteristics in a low-relief boreal forest landscape, and explore how the dominant processes influencing these characteristics change with basin scale in this landscape under both reference and disturbance conditions.

  6. Some aspects of ecophysiological and biogeochemical responses of tropical forests to atmospheric change.

    PubMed Central

    Chambers, Jeffrey Q; Silver, Whendee L

    2004-01-01

    Atmospheric changes that may affect physiological and biogeochemical processes in old-growth tropical forests include: (i) rising atmospheric CO2 concentration; (ii) an increase in land surface temperature; (iii) changes in precipitation and ecosystem moisture status; and (iv) altered disturbance regimes. Elevated CO2 is likely to directly influence numerous leaf-level physiological processes, but whether these changes are ultimately reflected in altered ecosystem carbon storage is unclear. The net primary productivity (NPP) response of old-growth tropical forests to elevated CO2 is unknown, but unlikely to exceed the maximum experimentally measured 25% increase in NPP with a doubling of atmospheric CO2 from pre-industrial levels. In addition, evolutionary constraints exhibited by tropical plants adapted to low CO2 levels during most of the Late Pleistocene, may result in little response to increased carbon availability. To set a maximum potential response for a Central Amazon forest, using an individual-tree-based carbon cycling model, a modelling experiment was performed constituting a 25% increase in tree growth rate, linked to the known and expected increase in atmospheric CO2. Results demonstrated a maximum carbon sequestration rate of ca. 0.2 Mg C per hectare per year (ha(-1) yr(-1), where 1 ha = 10(4) m2), and a sequestration rate of only 0.05 Mg C ha(-1) yr(-1) for an interval centred on calendar years 1980-2020. This low rate results from slow growing trees and the long residence time of carbon in woody tissues. By contrast, changes in disturbance frequency, precipitation patterns and other environmental factors can cause marked and relatively rapid shifts in ecosystem carbon storage. It is our view that observed changes in tropical forest inventory plots over the past few decades is more probably being driven by changes in disturbance or other environmental factors, than by a response to elevated CO2. Whether these observed changes in tropical forests are

  7. Long-term response of Caribbean palm forests to hurricanes

    Treesearch

    Ariel Lugo; J.L. Frangi

    2016-01-01

    We studied the response of Prestoea montana (Sierra Palm, hereafter Palm) brakes and a Palm floodplain forest to hurricanes in the Luquillo Experimental Forest in Puerto Rico. Over a span of 78 years, 3 hurricanes passed over the study sites for which we have 64 years of measurements for Palm brakes and 20 years for the Palm floodplain forest. For each stand, species...

  8. Proceedings: hidden forest values—the first Alaska-wide nontimber forest products conference and tour.

    Treesearch

    comps Alaska Boreal Forest Council

    2003-01-01

    The Hidden Forest Values Conference brought together a diverse assemblage of local, state, and federal agencies, tribal governments, traditional users, landholders, cottage enterprises and other nontimber forest products (NTFP) related businesses, scientists, and experts. The purpose of this forum was to exchange information, cooperate, and raise awareness of issues on...

  9. Birds in Anthropogenic Landscapes: The Responses of Ecological Groups to Forest Loss in the Brazilian Atlantic Forest.

    PubMed

    Morante-Filho, José Carlos; Faria, Deborah; Mariano-Neto, Eduardo; Rhodes, Jonathan

    2015-01-01

    Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists) and specific food resources (frugivores and insectivores) to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%). At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist.

  10. Birds in Anthropogenic Landscapes: The Responses of Ecological Groups to Forest Loss in the Brazilian Atlantic Forest

    PubMed Central

    Morante-Filho, José Carlos; Rhodes, Jonathan

    2015-01-01

    Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists) and specific food resources (frugivores and insectivores) to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%). At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist. PMID:26083245

  11. Response of vegetation distribution, ecosystem productivity, and fire to climate change scenarios for California

    Treesearch

    James M. Lenihan; Dominique Bachelet; Ronald P. Neilson; Raymond Drapeck

    2008-01-01

    The response of vegetation distribution, carbon, and fire to three scenarios of future climate change was simulated for California using the MC1 Dynamic General Vegetation Model. Under all three scenarios, Alpine/Subalpine Forest cover declined, and increases in the productivity of evergreen hardwoods led to the displacement of Evergreen Conifer Forest by Mixed...

  12. Trends in global shipping and the impact on Alaska’s forest products

    Treesearch

    Joseph A. Roos; Allen M. Brackley; Daisuke Sasatani

    2011-01-01

    Traditionally, there has been a strong forest products trade between Alaska and Asia. This trade relationship has developed owing to Alaska’s proximity to Asia and, in the past, an abundance of high-quality timber. Although forest products markets in North America remain soft, markets in Asia are growing. However, to benefit from Asia’s growing forest products market,...

  13. An outlook for sustainable forest bioenergy production in the Lake States

    Treesearch

    Dennis R. Becker; Kenneth Skog; Allison Hellman; Kathleen E. Halvorsen; Terry Mace

    2009-01-01

    The Lake States region of Minnesota, Wisconsin and Michigan offers significant potential for bioenergy production. We examine the sustainability of regional forest biomass use in the context of existing thermal heating, electricity, and biofuels production, projected resource needs over the next decade including existing forest product market demand, and impacts on...

  14. Modelling the Response of Energy, Water and CO2 Fluxes Over Forests to Climate Variability

    NASA Astrophysics Data System (ADS)

    Ju, W.; Chen, J.; Liu, J.; Chen, B.

    2004-05-01

    Understanding the response of energy, water and CO2 fluxes of terrestrial ecosystems to climate variability at various temporal scales is of interest to climate change research. To simulate carbon (C) and water dynamics and their interactions at the continental scale with high temporal and spatial resolutions, the remote sensing driven BEPS (Boreal Ecosystem Productivity Simulator) model was updated to couple with the soil model of CENTURY and a newly developed biophysical model. This coupled model separates the whole canopy into two layers. For the top layer, the leaf-level conductance is scaled up to canopy level using a sunlit and shaded leaf separation approach. Fluxes of water, and CO{2} are simulated as the sums of those from sunlit and shaded leaves separately. This new approach allows for close coupling in modeling these fluxes. The whole profile of soil under a seasonal snowpack is split into four layers for estimating soil moisture and temperature. Long-term means of the vegetation productivity and climate are employed to initialize the carbon pools for the computation of heterotrophic respiration. Validated against tower data at four forested sites, this model is able to describe these fluxes and their response to climate variability. The model captures over 55% of year-round half/one hourly variances of these fluxes. The highest agreement of model results with tower data was achieved for CO2 flux at Southern Old Aspen (SOA) (R2>0.85 and RMSE<2.37 μ mol C m-2 s-1, N=17520). However, the model slightly overestimates the diurnal amplitude of sensible heat flux in winter and sometimes underestimates that of CO2 flux in the growing season. Model simulations suggest that C uptakes of forests are controlled by climate variability and the response of C cycle to climate depends on forest type. For SOA, the annual NPP (Net Primary Productivity) is more sensitive to temperature than to precipitation. This forest usually has higher NPP in warm years than in cool

  15. Advances of Air Pollution Science: From Forest Decline to Multiple-Stress Effects on Forest Ecosystem Services

    Treesearch

    E. Paoletti; M. Schaub; R. Matyssek; G. Wieser; A. Augustaitis; A. M. Bastrup-Birk; A. Bytnerowicz; M. S. Gunthardt-Goerg; G. Muller-Starck; Y. Serengil

    2010-01-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of...

  16. Sustainable forest management and impacts on forest responses to a changing climate

    NASA Astrophysics Data System (ADS)

    Stover, D. B.; Parker, G.; Riutta, T.; Capretz, R.; Murthy, I.; Haibao, R.; Bebber, D.

    2009-12-01

    Impacts from human activities at varying scales and intensities have a profound influence on forest carbon dynamics in addition to interactions with climate. As such, forest carbon stocks and fluxes are among the least well-defined elements of the global carbon cycle, and great uncertainty remains in predicting the effect of climate change on forest dynamics. In some cases, these management-climate interactions are well known, but often represent a fundamental gap in our understanding of ecosystem responses and are likely to be important in improving modeling of climate change, and in valuing forest carbon. To improve understanding of human induced forest management-climate interactions, a network of permanent study plots has been established in five sites around the world - in the US, UK, Brazil, India and China. The sites are near larger global monitoring (Smithsonian CTFS) plots to facilitate comparisons. At each site, a series of 1-ha plots have been placed in forest stands with differing management regimes and histories. Utilizing citizen scientists from HSBC bank, all trees >5 cm dbh are tagged, mapped, identified to species, and diameter is recorded within each plot. A subset of trees have dendrometer bands attached, to record seasonal growth. Dead wood and litterfall samples are taken, and microclimate is recorded with automatic sensors. Serial measurements will allow correlation of forest dynamics with weather. Although the studies are at an early stage current results indicate above-ground biomass estimates are 102-288 Mg ha-1 for intermediate and mature Liriodendron tulipifera-dominated stands in the US, respectively. In India, mature semi-natural evergreen forests biomass estimates are 192-235 Mg ha-1 while plantation and semi-natural core forests in the UK are estimated at 211-292 Mg ha-1. Successional Atlantic forests in Brazil are estimated to contain 192-235 Mg ha-1. In the US, initial results have demonstrated dramatic differences in microclimate

  17. Projecting biodiversity and wood production in future forest landscapes: 15 key modeling considerations.

    PubMed

    Felton, Adam; Ranius, Thomas; Roberge, Jean-Michel; Öhman, Karin; Lämås, Tomas; Hynynen, Jari; Juutinen, Artti; Mönkkönen, Mikko; Nilsson, Urban; Lundmark, Tomas; Nordin, Annika

    2017-07-15

    A variety of modeling approaches can be used to project the future development of forest systems, and help to assess the implications of different management alternatives for biodiversity and ecosystem services. This diversity of approaches does however present both an opportunity and an obstacle for those trying to decide which modeling technique to apply, and interpreting the management implications of model output. Furthermore, the breadth of issues relevant to addressing key questions related to forest ecology, conservation biology, silviculture, economics, requires insights stemming from a number of distinct scientific disciplines. As forest planners, conservation ecologists, ecological economists and silviculturalists, experienced with modeling trade-offs and synergies between biodiversity and wood biomass production, we identified fifteen key considerations relevant to assessing the pros and cons of alternative modeling approaches. Specifically we identified key considerations linked to study question formulation, modeling forest dynamics, forest processes, study landscapes, spatial and temporal aspects, and the key response metrics - biodiversity and wood biomass production, as well as dealing with trade-offs and uncertainties. We also provide illustrative examples from the modeling literature stemming from the key considerations assessed. We use our findings to reiterate the need for explicitly addressing and conveying the limitations and uncertainties of any modeling approach taken, and the need for interdisciplinary research efforts when addressing the conservation of biodiversity and sustainable use of environmental resources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Forest productivity: producing goods and services for people

    Treesearch

    Thomas R. Crow; Daniel C. Dey; Don Riemenschneider

    2006-01-01

    Presents the progress made by North Central Research Station scientists working in the Forest Productivity Integrated Research and Development Program over the past several years. We discuss policy relevant research on assessing productivity, modeling potential, productivity, and improving productivity within the conceptual framework for research and development in the...

  19. U.S. Forest Products Annual Market Review and Prospects, 2011-2015

    Treesearch

    James L. Howard; David B. McKeever

    2015-01-01

    This paper describes the current state of the United States economy and provides general and statistical information on forest products markets in terms of production, trade, consumption, and prices. Market developments are described for sawn softwood, sawn hardwood, softwood log trade, wood-based panels, paper and paperboard, fuelwood, forest product prices, and...

  20. U.S. Forest products annual market review and prospects, 2000-2003

    Treesearch

    James L. Howard

    2002-01-01

    This report provides general and statistical information on forests products markets in terms of production, trade, con-sumption, and prices. The current state of the United States economy is described. Market developments are described for sawn softwood, sawn hardwood, softwood log trade, wood-based panels, paper and paperboard, fuelwood, and forest product prices....

  1. Mapping and imputing potential productivity of Pacific Northwest forests using climate variables

    Treesearch

    Gregory Latta; Hailemariam Temesgen; Tara Barrett

    2009-01-01

    Regional estimation of potential forest productivity is important to diverse applications, including biofuels supply, carbon sequestration, and projections of forest growth. Using PRISM (Parameter-elevation Regressions on Independent Slopes Model) climate and productivity data measured on a grid of 3356 Forest Inventory and Analysis plots in Oregon and Washington, we...

  2. Soil responses to management, increased precipitation, and added nitrogen in ponderosa pine forests.

    PubMed

    Hungate, Bruce A; Hart, Stephen C; Selmants, Paul C; Boyle, Sarah I; Gehring, Catherine A

    2007-07-01

    Forest management, climatic change, and atmospheric N deposition can affect soil biogeochemistry, but their combined effects are not well understood. We examined the effects of water and N amendments and forest thinning and burning on soil N pools and fluxes in ponderosa pine forests near Flagstaff, Arizona (USA). Using a 15N-depleted fertilizer, we also documented the distribution of added N into soil N pools. Because thinning and burning can increase soil water content and N availability, we hypothesized that these changes would alleviate water and N limitation of soil processes, causing smaller responses to added N and water in the restored stand. We found little support for this hypothesis. Responses of fine root biomass, potential net N mineralization, and the soil microbial N to water and N amendments were mostly unaffected by stand management. Most of the soil processes we examined were limited by N and water, and the increased N and soil water availability caused by forest restoration was insufficient to alleviate these limitations. For example, N addition caused a larger increase in potential net nitrification in the restored stand, and at a given level of soil N availability, N addition had a larger effect on soil microbial N in the restored stand. Possibly, forest restoration increased the availability of some other limiting resource, amplifying responses to added N and water. Tracer N recoveries in roots and in the forest floor were lower in the restored stand. Natural abundance delta15N of labile soil N pools were higher in the restored stand, consistent with a more open N cycle. We conclude that thinning and burning open up the N cycle, at least in the short-term, and that these changes are amplified by enhanced precipitation and N additions. Our results suggest that thinning and burning in ponderosa pine forests will not increase their resistance to changes in soil N dynamics resulting from increased atmospheric N deposition or increased

  3. Consequences of increasing bioenergy demand on wood and forests: An application of the Global Forest Products Model

    USGS Publications Warehouse

    Buongiorno, J.; Raunikar, R.; Zhu, S.

    2011-01-01

    The Global Forest Products Model (GFPM) was applied to project the consequences for the global forest sector of doubling the rate of growth of bioenergy demand relative to a base scenario, other drivers being maintained constant. The results showed that this would lead to the convergence of the price of fuelwood and industrial roundwood, raising the price of industrial roundwood by nearly 30% in 2030. The price of sawnwood and panels would be 15% higher. The price of paper would be 3% higher. Concurrently, the demand for all manufactured wood products would be lower in all countries, but the production would rise in countries with competitive advantage. The global value added in wood processing industries would be 1% lower in 2030. The forest stock would be 2% lower for the world and 4% lower for Asia. These effects varied substantially by country. ?? 2011 Department of Forest Economics, SLU Ume??, Sweden.

  4. Forest productivity: an integrated research and development program

    Treesearch

    Daniel C. Dey; Thomas R. Crow; Don E. Riemenschneider

    2003-01-01

    In 2000, the North Central Research Station initiated the Forest Productivity Integrated Research Program (North Central Research Station 2001). This program combines the efforts of scientists from across the Station's 13 research work units to examine the current condition of the forests in the North Central Region and their prospects for producing wood and fiber...

  5. Special Forest Products: A Southern Strategy for Research & Technology Transfer

    Treesearch

    Rod Sallee; Wayne Owen; Karen Kenna; Gary Kauffman; Marla Emery; Tony Johnson; Phil Araman; Dan Stratton; Ray Sheffield; Vic Rudis; Susan Loeb; David White; Jim Chamberlain

    2004-01-01

    Increasing levels of collection of special forest products (SFPs) have tirggered concerns about the long-term social, ecological, and economic sustainability of the resources from which these products orginate. At this time, there is too little information to assess the current situation and to make informed decisions about managing the forest resources for these...

  6. Responses of Isolated Wetland Herpetofauna to Upland Forest Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, K.R.; Hanlin, H.G.; Wigley, T.B.

    2002-01-02

    Measurement of responses of herpetofauna at isolated wetlands in the Coastal Plain of South Carolina to disturbance of adjacent loblolly pine forest. Many species of isolated wetland herpetofauna in the Southeastern Coastal Plain may tolerate some disturbance in adjacent upland stands. Responses of isolated wetland herpetofauna to upland silviculture and the need for adjacent forested buffers likely depend on the specific landscape context in which the wetlands occur and composition of the resident herpetofaunal community.

  7. U.S forest products annual market review and prospects, 2012-2016

    Treesearch

    James L. Howard; David B. McKeever

    2016-01-01

    This report describes the current state and near-term perspective of the U.S. economy supported by general and statistical information on forest products markets in terms of production, trade, consumption, and prices. Market developments are described for sawn softwood, sawn hardwood, softwood log trade, wood-base panels, paper and paperboard, fuelwood, forest products...

  8. U.S. forest products annual market review and prospects, 2006-2010.

    Treesearch

    James L. Howard; David B. McKeever

    2010-01-01

    This paper describes the current state of the U.S. economy and provides general and statistical information on forest products markets in terms of production, trade, consumption, and prices. Market developments are described for sawn softwood, sawn hardwood, softwood log trade, wood-based panels, paper and paperboard, fuelwood, forest product prices, and housing starts...

  9. U.S. Forest Products Annual Market Review and Prospects 2010-2014

    Treesearch

    James L. Howard; David B. McKeever

    2014-01-01

    This paper describes the current state of the U.S. economy and provides general and statistical information on forest products markets in terms of production, trade, consumption, and prices. Market developments are described for sawn softwood, sawn hardwood, softwood log trade, wood-based panels, paper and paperboard, fuelwood, forest product prices, and housing starts...

  10. U.S. forest products annual market review and prospects, 2007-2011.

    Treesearch

    David B. McKeever; James L. Howard

    2011-01-01

    This paper describes the current state of the U.S. economy and provides general and statistical information on forest products markets in terms of production, trade, consumption, and prices. Market developments are described for sawn softwood, sawn hardwood, softwood log trade, wood-based panels, paper and paperboard, fuelwood, forest product prices, and housing starts...

  11. Forest gradient response in Sierran landscapes: the physical template

    USGS Publications Warehouse

    Urban, Dean L.; Miller, Carol; Halpin, Patrick N.; Stephenson, Nathan L.

    2000-01-01

    Vegetation pattern on landscapes is the manifestation of physical gradients, biotic response to these gradients, and disturbances. Here we focus on the physical template as it governs the distribution of mixed-conifer forests in California's Sierra Nevada. We extended a forest simulation model to examine montane environmental gradients, emphasizing factors affecting the water balance in these summer-dry landscapes. The model simulates the soil moisture regime in terms of the interaction of water supply and demand: supply depends on precipitation and water storage, while evapotranspirational demand varies with solar radiation and temperature. The forest cover itself can affect the water balance via canopy interception and evapotranspiration. We simulated Sierran forests as slope facets, defined as gridded stands of homogeneous topographic exposure, and verified simulated gradient response against sample quadrats distributed across Sequoia National Park. We then performed a modified sensitivity analysis of abiotic factors governing the physical gradient. Importantly, the model's sensitivity to temperature, precipitation, and soil depth varies considerably over the physical template, particularly relative to elevation. The physical drivers of the water balance have characteristic spatial scales that differ by orders of magnitude. Across large spatial extents, temperature and precipitation as defined by elevation primarily govern the location of the mixed conifer zone. If the analysis is constrained to elevations within the mixed-conifer zone, local topography comes into play as it influences drainage. Soil depth varies considerably at all measured scales, and is especially dominant at fine (within-stand) scales. Physical site variables can influence soil moisture deficit either by affecting water supply or water demand; these effects have qualitatively different implications for forest response. These results have clear implications about purely inferential approaches

  12. Tree Size Inequality Reduces Forest Productivity: An Analysis Combining Inventory Data for Ten European Species and a Light Competition Model.

    PubMed

    Bourdier, Thomas; Cordonnier, Thomas; Kunstler, Georges; Piedallu, Christian; Lagarrigues, Guillaume; Courbaud, Benoit

    2016-01-01

    Plant structural diversity is usually considered as beneficial for ecosystem functioning. For instance, numerous studies have reported positive species diversity-productivity relationships in plant communities. However, other aspects of structural diversity such as individual size inequality have been far less investigated. In forests, tree size inequality impacts directly tree growth and asymmetric competition, but consequences on forest productivity are still indeterminate. In addition, the effect of tree size inequality on productivity is likely to vary with species shade-tolerance, a key ecological characteristic controlling asymmetric competition and light resource acquisition. Using plot data from the French National Geographic Agency, we studied the response of stand productivity to size inequality for ten forest species differing in shade tolerance. We fitted a basal area stand production model that included abiotic factors, stand density, stand development stage and a tree size inequality index. Then, using a forest dynamics model we explored whether mechanisms of light interception and light use efficiency could explain the tree size inequality effect observed for three of the ten species studied. Size inequality negatively affected basal area increment for seven out of the ten species investigated. However, this effect was not related to the shade tolerance of these species. According to the model simulations, the negative tree size inequality effect could result both from reduced total stand light interception and reduced light use efficiency. Our results demonstrate that negative relationships between size inequality and productivity may be the rule in tree populations. The lack of effect of shade tolerance indicates compensatory mechanisms between effect on light availability and response to light availability. Such a pattern deserves further investigations for mixed forests where complementarity effects between species are involved. When studying the

  13. California's forest products industry: a descriptive analysis.

    Treesearch

    Todd A. Morgan; Charles E. Keegan; Thale Dillon; Alfred L. Chase; Jeremy S. Fried; Marc N. Weber

    2004-01-01

    This report traces the flow of California’s 2000 timber harvest through the wood-using industries; provides a description of the structure, operations, and condition of California’s primary forest products industry; and briefly summarizes timber inventory and growth. Historical wood products industry changes are discussed, as well as trends in harvest, production, and...

  14. How to Manage Oak Forests for Acorn Production

    Treesearch

    Paul Johnson

    1994-01-01

    Oak forests are life support systems for the many animals that live in them. Acorns, a staple product of oaks forests, are eaten by many species of birds and mammals including deer, bear, squirrels, mice, rabbits, foxes, raccoons, grackles, turkey, grouse, quail, blue jays, woodpeckers, and waterfowl. The population and health of wildlife often rise and fall with the...

  15. Public use and potential impact on Missouri's forest products industry

    Treesearch

    Bruce E. Cutter; William B. Kurtz

    1993-01-01

    Management of public lands impacts Missouri's forest products industry in a significant manner, particularly in rural areas. In 1989, some 1,340 firms were involved in the forest products industry, employing approximately 29,200 workers. Total value-added in 1989 was in excess of $1 billion and the industry's activity generated another $400 million in related...

  16. Special Forest Products on the Green Mountain and Finger Lakes National Forests: a research-based approach to management

    Treesearch

    Marla R. Emery; Clare Ginger

    2014-01-01

    Special forest products (SFPs) are gathered from more than 200 vascular and fungal species on the Green Mountain National Forest (GMNF) and Finger Lakes National Forest (FLNF). This report documents those SFPs and proposes an approach to managing them in the context of legislation directing the U.S. Forest Service to institute a program of active SFP management. Based...

  17. Threshold Responses of Forest Birds to Landscape Changes around Exurban Development

    PubMed Central

    Suarez-Rubio, Marcela; Wilson, Scott; Leimgruber, Peter; Lookingbill, Todd

    2013-01-01

    Low-density residential development (i.e., exurban development) is often embedded within a matrix of protected areas and natural amenities, raising concern about its ecological consequences. Forest-dependent species are particularly susceptible to human settlement even at low housing densities typical of exurban areas. However, few studies have examined the response of forest birds to this increasingly common form of land conversion. The aim of this study was to assess whether, how, and at what scale forest birds respond to changes in habitat due to exurban growth. We evaluated changes in habitat composition (amount) and configuration (arrangement) for forest and forest-edge species around North America Breeding Bird Survey (BBS) stops between 1986 and 2009. We used Threshold Indicator Taxa Analysis to detect change points in species occurrence at two spatial extents (400-m and 1-km radius buffer). Our results show that exurban development reduced forest cover and increased habitat fragmentation around BBS stops. Forest birds responded nonlinearly to most measures of habitat loss and fragmentation at both the local and landscape extents. However, the strength and even direction of the response changed with the extent for several of the metrics. The majority of forest birds’ responses could be predicted by their habitat preferences indicating that management practices in exurban areas might target the maintenance of forested habitats, for example through easements or more focused management for birds within existing or new protected areas. PMID:23826325

  18. Interpreting forest biome productivity and cover utilizing nested scales of image resolution and biogeographical analysis

    NASA Technical Reports Server (NTRS)

    Iverson, Louis R.; Cook, Elizabeth A.; Graham, Robin L.; Olson, Jerry S.; Frank, Thomas D.; Ying, KE

    1988-01-01

    The objective was to relate spectral imagery of varying resolution with ground-based data on forest productivity and cover, and to create models to predict regional estimates of forest productivity and cover with a quantifiable degree of accuracy. A three stage approach was outlined. In the first stage, a model was developed relating forest cover or productivity to TM surface reflectance values (TM/FOREST models). The TM/FOREST models were more accurate when biogeographic information regarding the landscape was either used to stratigy the landscape into more homogeneous units or incorporated directly into the TM/FOREST model. In the second stage, AVHRR/FOREST models that predicted forest cover and productivity on the basis of AVHRR band values were developed. The AVHRR/FOREST models had statistical properties similar to or better than those of the TM/FOREST models. In the third stage, the regional predictions were compared with the independent U.S. Forest Service (USFS) data. To do this regional forest cover and forest productivity maps were created using AVHRR scenes and the AVHRR/FOREST models. From the maps the county values of forest productivity and cover were calculated. It is apparent that the landscape has a strong influence on the success of the approach. An approach of using nested scales of imagery in conjunction with ground-based data can be successful in generating regional estimates of variables that are functionally related to some variable a sensor can detect.

  19. Oregon's forest products industry: 1982.

    Treesearch

    James O. Howard

    1984-01-01

    This report presents the findings of a 100-percent survey of the primary forest products industry in Oregon for 1982. The survey included the following sectors: lumber; veneer and plywood; pulp and board; shake and shingle; export; and post, pole, and piling. Tabular presentations include characteristics of the industry, nature and flow of logs consumed, and...

  20. California's forest products industry: 1982.

    Treesearch

    James O. Howard

    1984-01-01

    This report presents the findings of a 100-percent survey of the primary forest products industry in California for 1982. The survey included the following sectors: lumber; veneer and plywood; pulp and board; shake and shingle; export; and post, pole, and piling. Tabular presentations include characteristics of the industry, nature and flow of logs consumed, and...

  1. California's forest products industry: 1985.

    Treesearch

    James O. Howard; Franklin R. Ward

    1988-01-01

    This report presents the findings of a 100-percent survey of the primary forest products industry in California for 1985. The survey included the following sectors: lumber; veneer and plywood; pulp and board; shake and shingle; export; and post, pole, and piling. Tables, presented by sector and for the industry as a whole, include characteristics of the industry,...

  2. California's forest products industry: 1988.

    Treesearch

    James O. Howard; Franklln R. Ward

    1991-01-01

    This report presents the findings of a survey of all primary forest products industries in California for 1988. The survey included the following sectors: lumber; veneer and plywood; pulp and board; shake and shingle; export; and post, pole, and piling. Tables, presented by sector and for the industry as a whole, include characteristics of the industry, nature and flow...

  3. Oregon's forest products industry: 1985.

    Treesearch

    James O. Howard; Franklin R. Ward

    1988-01-01

    This report presents the findings of a 100-percent survey of the primary forest products industry in Oregon for 1985. The survey included the following sectors: lumber; veneer and plywood; pulp and board; shake and shingle; export; and post, pole, and piling. Tables, presented by sector and for the industry as a whole, include characteristics of the industry, nature...

  4. Oregon's forest products industry: 1992.

    Treesearch

    Franklin R. Ward

    1995-01-01

    This report presents the findings of a survey of primary forest products industries in. Oregon for 1992. The survey included the following sectors: lumber; veneer and plywood; pulp and board; shake and shingle; export; and post, pole, and piling. Tables, presented by sector and for the industry as a whole, include characteristics of the industry, nature and flow of...

  5. California's forest products industry: 1992.

    Treesearch

    Franklin R. Ward

    1995-01-01

    This report presents the findings of a survey of primary forest products industries in California for 1992. The survey included the following sectors: lumber; pulp and board; shake and shingle; export; and post, pole, and piling. Veneer and plywood mills are not included because they could not be presented without disclosing critical details. Tables, presented by...

  6. California's forest products industry: 1994.

    Treesearch

    Franklin R. Ward

    1997-01-01

    This report presents the findings of a survey of primary forest products industries in California for 1994. The survey included the following sectors: lumber; veneer; pulp and board; shake and shingle; export; and post, pole, and piling. Tables, presented by sector and for the industry as a whole, include characteristics of the industry, nature and flow of logs...

  7. Oregon's forest products industry: 1994.

    Treesearch

    Franklin R. Ward

    1997-01-01

    This report presents the findings of a survey of primary forest products industries in Oregon for 1994. The survey included the following sectors: lumber; veneer; pulp and board; shake and shingle; export; and post, pole, and piling. Tables, presented by sector and for the industry as a whole, include characteristics of the industry, nature and flow of logs consumed,...

  8. Forest Products Laboratory natural finish

    Treesearch

    J. M. Black; D. F. Laughnan; E. A. Mraz

    1979-01-01

    A simple and durable exterior natural finish developed at the Forest Products Laboratory is described. The finish is classified as a semi-transparent oil-base penetrating stain that effectively retains much of the natural grain and texture of wood when exposed to the weather. The directions for preparation are included as are the recommendations for application to both...

  9. Changes in forest productivity across Alaska consistent with biome shift.

    PubMed

    Beck, Pieter S A; Juday, Glenn P; Alix, Claire; Barber, Valerie A; Winslow, Stephen E; Sousa, Emily E; Heiser, Patricia; Herriges, James D; Goetz, Scott J

    2011-04-01

    Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal-tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline. © 2011 Blackwell Publishing Ltd/CNRS.

  10. Nut Production in Bertholletia excelsa across a Logged Forest Mosaic: Implications for Multiple Forest Use

    PubMed Central

    Rockwell, Cara A.; Guariguata, Manuel R.; Menton, Mary; Arroyo Quispe, Eriks; Quaedvlieg, Julia; Warren-Thomas, Eleanor; Fernandez Silva, Harol; Jurado Rojas, Edwin Eduardo; Kohagura Arrunátegui, José Andrés Hideki; Meza Vega, Luis Alberto; Revilla Vera, Olivia; Valera Tito, Jonatan Frank; Villarroel Panduro, Betxy Tabita; Yucra Salas, Juan José

    2015-01-01

    Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world’s most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1–2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich

  11. Nut Production in Bertholletia excelsa across a Logged Forest Mosaic: Implications for Multiple Forest Use.

    PubMed

    Rockwell, Cara A; Guariguata, Manuel R; Menton, Mary; Arroyo Quispe, Eriks; Quaedvlieg, Julia; Warren-Thomas, Eleanor; Fernandez Silva, Harol; Jurado Rojas, Edwin Eduardo; Kohagura Arrunátegui, José Andrés Hideki; Meza Vega, Luis Alberto; Revilla Vera, Olivia; Quenta Hancco, Roger; Valera Tito, Jonatan Frank; Villarroel Panduro, Betxy Tabita; Yucra Salas, Juan José

    2015-01-01

    Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world's most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1-2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich

  12. Contrasting Taxonomic and Phylogenetic Diversity Responses to Forest Modifications: Comparisons of Taxa and Successive Plant Life Stages in South African Scarp Forest

    PubMed Central

    Grass, Ingo; Brandl, Roland; Botzat, Alexandra; Neuschulz, Eike Lena; Farwig, Nina

    2015-01-01

    The degradation of natural forests to modified forests threatens subtropical and tropical biodiversity worldwide. Yet, species responses to forest modification vary considerably. Furthermore, effects of forest modification can differ, whether with respect to diversity components (taxonomic or phylogenetic) or to local (α-diversity) and regional (β-diversity) spatial scales. This real-world complexity has so far hampered our understanding of subtropical and tropical biodiversity patterns in human-modified forest landscapes. In a subtropical South African forest landscape, we studied the responses of three successive plant life stages (adult trees, saplings, seedlings) and of birds to five different types of forest modification distinguished by the degree of within-forest disturbance and forest loss. Responses of the two taxa differed markedly. Thus, the taxonomic α-diversity of birds was negatively correlated with the diversity of all plant life stages and, contrary to plant diversity, increased with forest disturbance. Conversely, forest disturbance reduced the phylogenetic α-diversity of all plant life stages but not that of birds. Forest loss neither affected taxonomic nor phylogenetic diversity of any taxon. On the regional scale, taxonomic but not phylogenetic β-diversity of both taxa was well predicted by variation in forest disturbance and forest loss. In contrast to adult trees, the phylogenetic diversity of saplings and seedlings showed signs of contemporary environmental filtering. In conclusion, forest modification in this subtropical landscape strongly shaped both local and regional biodiversity but with contrasting outcomes. Phylogenetic diversity of plants may be more threatened than that of mobile species such as birds. The reduced phylogenetic diversity of saplings and seedlings suggests losses in biodiversity that are not visible in adult trees, potentially indicating time-lags and contemporary shifts in forest regeneration. The different

  13. Alaska's timber harvest and forest products industry, 2005

    Treesearch

    Jeff M. Halbrook; Todd A. Morgan; Jason P. Brandt; Charles E. Keegan; Thale Dillon; Tara M. Barrett

    2009-01-01

    This report traces the flow of timber harvested in Alaska during calendar year 2005, describes the composition and operations of the state's primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as trends in timber harvest, production, and sales of primary wood products....

  14. Fine-Root Production in an Amazon Rain Forest: Deep Roots are an Important Component of Net Primary Productivity

    NASA Astrophysics Data System (ADS)

    Norby, R.; Cordeiro, A. L.; Oblitas, E.; Valverde-Barrantes, O.; Quesada, C. A.

    2017-12-01

    Fine-root production is a significant component of net primary production (NPP), but it is the most difficult of the major components to measure. Data on fine-root production are especially sparse from tropical forests, and therefore the estimates of tropical forest NPP may not be accurate. Many estimates of fine-root production are based on observations in the top 15 or 30 cm of soil, with the implicit assumption that this approach will capture most of the root distribution. We measured fine-root production in a 30-m tall, old-growth, terra firme rain forest near Manaus, Brazil, which is the site for a free-air CO2 enrichment (FACE) experiment. Ten minirhizotrons were installed at a 45 degree angle to a depth of 1.1 meters; the tubes were installed 2 years before any measurements were made to allow the root systems to recover from disturbance. Images were collected biweekly, and measurements of root length per area of minirhizotron window were scaled up to grams of root per unit land area. Scaling up minirhizotron measurments is problematic, but our estimate of fine-root standing crop in the top 15 cm of soil (281 ± 37 g dry matter m-2) compares well with a direct measurement of fine roots in two nearby 15-cm soil cores (290 ± 37 g m-2). Although the largest fraction of the fine-root standing crop was in the upper soil horizons, 44% of the fine-root mass was deeper than 30 cm, and 17% was deeper than 60 cm. Annual fine-root production was 934 ± 234 g dry matter m-2 (453 ± 113 g C m-2), which was 35% of estimated NPP of the forest stand (1281 g C m-2). A previous estimate of NPP of the forest at this site was smaller (1010 g m-2), but that estimate relied on fine-root production measured elsewhere and only in the top 10 or 30 cm of soil; fine roots accounted for 21% of NPP in that analysis. Extending root observations deeper into the soil will improve estimates of the contribution of fine-root production to NPP, which will in turn improve estimates of ecosystem

  15. Production and standing crop of litter and humus in a forest exposed to chronic gamma irradiation for twelve years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armentano, T.V.; Woodwell, G.M.

    Continuous exposure since 1961 of an oak-pine forest at Brookhaven National Laboratory to chronic gamma irradiation has shown: (1) progressive reduction in litter production from the first year through 1965; (2) greater litter production in 1973 compared to 1965 at exposure rates below 9 R/day primarily because of the prolific sprouting of the oaks, especially Quercus alba; (3) further reduction in litter production in intermediate zones (14-49 R/day) from 1965 to 1973 as a result of replacement of the forest by a Carex pensylvanica mat; (4) increased litter production in the high exposure zone (125 R/day) in 1973 as amore » result of colonization by adventive species; (5) reduction in the standing crop of litter by 1973 at the lowest exposure rate studied (3.5 R/day) although in 1965 there was no reduction at exposure rates up to 15 R/day; (6) decline in humus content at 4.6 R/day and above with the standing crop in the Carex zone exceeding that of the shrub and damaged forest zones of lower exposures. Both further losses and partial recovery in the production and storage of organic matter have occurred since 1965. These changes constitute a portion of the long-term response of the forest to chronic disturbance. The pattern of response is the result of ecosystem processes that are still not in equilibrium with the chronic disturbance and which were not predictable from short-term studies, even those spanning as much as 4 yr.« less

  16. Calibrating and Updating the Global Forest Products Model (GFPM version 2014 with BPMPD)

    Treesearch

    Joseph Buongiorno; Shushuai Zhu

    2014-01-01

    The Global Forest Products Model (GFPM) is an economic model of global production, consumption, and trade of forest products. An earlier version of the model is described in Buongiorno et al. (2003). The GFPM 2014 has data and parameters to simulate changes of the forest sector from 2010 to 2030. Buongiorno and Zhu (2014) describe how to use the model for simulation....

  17. Calibrating and updating the Global Forest Products Model (GFPM version 2016 with BPMPD)

    Treesearch

    Joseph Buongiorno; Shushuai  Zhu

    2016-01-01

    The Global Forest Products Model (GFPM) is an economic model of global production, consumption, and trade of forest products. An earlier version of the model is described in Buongiorno et al. (2003). The GFPM 2016 has data and parameters to simulate changes of the forest sector from 2013 to 2030. Buongiorno and Zhu (2015) describe how to use the model for...

  18. Overview of approaches to sustain forest productivity during forest road development and timber harvesting activities

    Treesearch

    Charles R. Blinn; Rick Dahlamn; James A. Mattson; Michael A. Thompson

    1999-01-01

    Various approaches are available to minimize impacts on forest productivity during forest road building and timber harvesting activities. These approaches include a variety of practices and technologies. They include practices such as reducing road and trail development, using designated trails, and leaving slash at the stump on nutrient deficient sites. Technology...

  19. Plant hydraulic diversity buffers forest ecosystem responses to drought

    NASA Astrophysics Data System (ADS)

    Anderegg, W.; Konings, A. G.; Trugman, A. T.; Pacala, S. W.; Yu, K.; Sulman, B. N.; Sperry, J.; Bowling, D. R.

    2017-12-01

    Drought impacts carbon, water, and energy cycles in forests and may pose a fundamental threat to forests in future climates. Plant hydraulic transport of water is central to tree drought responses, including curtailing of water loss and the risk of mortality during drought. The effect of biodiversity on ecosystem function has typically been examined in grasslands, yet the diversity of plant hydraulic strategies may influence forests' response to drought. In a combined analysis of eddy covariance measurements, remote-sensing data of plant water content variation, model simulations, and plant hydraulic trait data, we test the degree to which plant water stress schemes influence the carbon cycle and how hydraulic diversity within and across ecosystems affects large-scale drought responses. We find that current plant functional types are not well-suited to capture hydraulic variation and that higher hydraulic diversity buffers ecosystem variation during drought. Our results demonstrate that tree functional diversity, particularly hydraulic diversity, may be critical to simulate in plant functional types in current land surface model projections of future vegetation's response to climate extremes.

  20. Mississippi's forest products industry: performance and contribution to the State's economy, 1970 to 1980.

    Treesearch

    Con H Schallau; Wilbur R. Maki; Bennett B. Foster; Clair H. Redmond

    1988-01-01

    The forest products industry is one of Mississippi's basic industries, and in 1980, it accounted for about one of six basic jobs. Mississippi was one of the majority of Southern States in which the forest products industry improved its competitive position during the 1970's. Between 1972 and 1977, growth in productivity of Mississippi's forest products...

  1. The distribution of nitrogen and phosphorus in forest floor layers of oak-hickory forests of varying productivity

    Treesearch

    Karyn S. Rodkey; Donald J. Kaczmarek; Phillip E. Pope

    1995-01-01

    The forest floor plays a major role in the storage and recycling of nutrients which, in turn, are important in maintaining the growth and productivity of forest ecosystems. The development of forest floor organic layers as influenced by litter quality and site quality is unclear. Previous studies in this lab have shown that the size and distribution of available...

  2. Forest declines in response to environmental change

    Treesearch

    Philip M. Wargo; Allan N.D. Auclair

    2000-01-01

    Decline diseases are intimately linked to stress and environmental change. There is strong evidence that, as a category, decline diseases have increased significantly in response to the climate, air chemistry, and other changes documented in the northeastern United States over the past century, and particularly the last two decades. No other forest response to...

  3. Using GPS to evaluate productivity and performance of forest machine systems

    Treesearch

    Steven E. Taylor; Timothy P. McDonald; Matthew W. Veal; Ton E. Grift

    2001-01-01

    This paper reviews recent research and operational applications of using GPS as a tool to help monitor the locations, travel patterns, performance, and productivity of forest machines. The accuracy of dynamic GPS data collected on forest machines under different levels of forest canopy is reviewed first. Then, the paper focuses on the use of GPS for monitoring forest...

  4. Nontimber forest products in Daniel Boone National Forest region--economic significance and potential for sustainability

    Treesearch

    Dasharathi Hembram; William L. Hoover

    2008-01-01

    Household members who gather nontimber forest products (NTFP) in and around the Daniel Boone National Forest (DBNF) in eastern Kentucky were interviewed. Participants reported that a wide variety of NTFP were economically and culturally important to them. Forty-three species of plants were sold commercially and 120 were used in households. Ginseng (Panax...

  5. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    USGS Publications Warehouse

    Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime

    2015-01-01

    We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  6. Oregon's forest products industry: 1988.

    Treesearch

    James O. Howard; Franklin R. Ward

    1991-01-01

    This report presents the findings of a survey of all primary forest products industries in Oregon for 1988. The survey included the following sectors: lumber; veneer and plywood; pulp and board; shake and shingle; export; and post, pole, and piling. Tables, presented by sector and for the industry as a whole, include characteristics of the industry, nature and flow of...

  7. Forests on the edge: Microenvironmental drivers of carbon cycle response to edge effects

    NASA Astrophysics Data System (ADS)

    Reinmann, A.; Hutyra, L.; Smith, I. A.; Thompson, J.

    2017-12-01

    Twenty percent of the world's forest is within 100 m of a forest edge, but much of our understanding of forest carbon (C) cycling comes from large, intact ecosystems, which creates an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest is the most heavily fragmented forest biome in the world and its growth and carbon storage responses to forest edge effects appear to be the opposite of those in the tropical and boreal regions. We used field measurements to quantify the drivers of temperate forest C cycling response to edge effects, characterizing vegetative growth, respiration, and forest structure. We find large gradients in air and soil temperature from the forest interior to edge (up to 4 and 10° C, respectively) and the magnitude of this gradient is inversely correlated to the size of the forest edge growth enhancement. Further, leaf area index increases with proximity to the forest edge. While we also find increases in soil respiration between the forest interior and edge, this flux is small relative to aboveground growth enhancement near the edge. These findings represent an important advancement in our understanding of forest C cycle response to edge effects and will greatly improve our capacity to constrain biogenic C fluxes in fragmented and heterogeneous landscapes.

  8. Dendrophenology: Inferring the response of North American eastern deciduous forests to an earlier spring from tree rings

    NASA Astrophysics Data System (ADS)

    Elmore, A. J.; Nelson, D. M.; Craine, J. M.

    2016-12-01

    There is wide agreement that anthropogenic climate warming has influenced the phenology of forests during the late twentieth and early twenty-first centuries. A critical question for predicting the magnitude of future warming under different emissions scenarios is the degree to which forest productivity responds to longer growing seasons in the face of concurrent changes in other drivers of productivity. Longer growing seasons can lead to increased photosynthesis and productivity, which would represent a negative feedback to rising CO2 and consequently warming. Alternatively, increased demand for soil resources due to a longer photosynthetically active period in conjunction with other global change factors might exacerbate resource limitation, restricting forest productivity response to a longer growing season. In this case, increased spring-time productivity has the potential to increase plant N limitation by increasing plant demand for N more than N supplies, or increasing early-season ecosystem N losses. Long-term direct measurements are not yet available to specifically address this question, but advances in remote sensing and dendroecological methods present opportunities to acquire information retrospectively to advance understanding of how phenological changes and resource availability to trees have been affecting forest productivity. Here we show that for 222 trees representing three species in eastern North America over the past 30 years earlier spring phenology has caused declines in N availability to trees by increasing demand for N relative to supply. The observed decline in N availability is not associated with reduced wood production, suggesting that other environmental changes such as increased atmospheric CO2 and water availability have likely overwhelmed reduced N availability. Given current trajectories of environmental changes, N limitation will likely continue to increase for these forests, possibly further limiting C sequestration potential.

  9. Wyoming's forest products industry and timber harvest, 2000

    Treesearch

    Todd A. Morgan; Timothy P. Spoelma; Charles E. Keegan; Alfred L. Chase; Mike T. Thompson

    2005-01-01

    This report traces the flow of Wyoming's 2000 timber harvest through the primary wood-using industries; provides a description of the structure, capacity, and condition of Wyoming's primary forest products industry; and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as changes in harvest, production...

  10. Idaho's forest products industry and timber harvest, 2006

    Treesearch

    Jason P. Brandt; Todd A. Morgan; Charles E. Keegan; Jon M. Songster; Timothy P. Spoelma; Larry T. DeBlander

    2012-01-01

    This report traces the flow of Idaho's 2006 timber harvest through the primary wood-using industries; describes the structure, capacity, and condition of Idaho's primary forest products industry; and quantifies volumes and uses of wood fiber. Wood products industry historical trends and changes in harvest, production, employment, and sales are also examined...

  11. Montana's forest products industry and timber harvest, 2004

    Treesearch

    Timothy P. Spoelma; Todd A. Morgan; Thale Dillon; Alfred L. Chase; Charles E. Keegan; Larry T. DeBlander

    2008-01-01

    This report traces the flow of Montana's 2004 timber harvest through the primary wood-using industries; provides a description of the structure, capacity, and condition of Montana's primary forest products industry; and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as changes in harvest, production...

  12. Primary forest products industry and timber use, Kansas, 1980.

    Treesearch

    James E. Blyth; Leonard K. Gould; W. Brad Smith

    1984-01-01

    Highlights recent Kansas forest industry trends, production and receipts of saw logs in 1980, and production of other timber products in 1980. Reports on wood and bark residue generated at primary mills and the disposition of this residue.

  13. Primary forest products industry and timber use, Nebraska, 1980.

    Treesearch

    James E. Blyth; Tom D. Wardle; W. Brad Smith

    1984-01-01

    Highlights recent Nebraska forest industry trends, production and receipts of saw logs in 1980, and production of other timber products in 1980. Reports on wood and bark residue generated at primary mills and the disposition of this residue.

  14. Differences in net primary production and biogeochemistry between contrasting floodplain forests

    Treesearch

    Erik B. Schilling; B. Graeme Lockaby

    2000-01-01

    A firm understanding of the driving forces controlling variation among wetland forests continues to elude scientists and land managers—specifically the biogeochemical processes controlling vegetation production. Within contrasting wetland forests, insight into the biogeochemical processes driving productivity levels may befound by examining the degree to which nitrogen...

  15. Forest cover change, climate variability, and hydrological responses

    Treesearch

    Xiaohua Wei; Rita Winkler; Ge Sun

    2017-01-01

    Understanding ecohydrological response to environmental change is critical for protecting watershed functions, sustaining clean water supply, and other ecosystem services, safeguarding public safety, floods mitigation, and drought response. Understanding ecohyhdrological processes and their implications to forest and water management has become increasingly important...

  16. Impacts of climate and insect defoliators on productivity and function of trembling aspen (Populus tremuloides) in Alaskan boreal forests

    NASA Astrophysics Data System (ADS)

    Boyd, M. A.; Walker, X. J.; Rogers, B. M.; Goetz, S. J.; Wagner, D.; Mack, M. C.

    2017-12-01

    Climate change has increased tree mortality and growth decline in forested ecosystems worldwide. In response to warming and drying of the boreal forest, trembling aspen (Populus tremuloides) has experienced recent large-scale productivity declines. Although declines in productivity are thought to be primarily a result of moistures stress, infestation is another major driver of aspen decline and may interact strongly with climate. Throughout interior Alaska widespread and consistent foliar damage by the aspen epidermal leaf miner Phyllocnistis populiella has been observed concurrent with some of the warmest and driest growing seasons on record. Here we use tree ring measurements and remote sensing indices of vegetation productivity (NDVI) to study the influence of leaf miner and climate on aspen productivity and physiology in the Alaskan boreal forest, and assess if NDVI reflects variations in these ground-based measurements. We assessed ring width and tree ring stable carbon isotope (d13C) response of aspen to infestation and a climate moisture index (CMI) from 2004 - 2014. We found that when growth was negatively correlated to infestation, then it was no longer positively influenced by moisture availability during the growing season. Regardless of the radial growth response to leaf mining, tree ring d13C decreased with increasing infestation. We also found that NDVI was influenced by leaf mining and showed a positive correlation with tree ring d13C, which suggests that NDVI is reflective of changes in tree characteristics under leaf mining that influence tree ring d13C. This finding also reveals the prospect of using satellite data to monitor fluctuations in tree physiology during leaf miner infestation. Our results indicate that aspen productivity will be severely hindered during leaf miner infestation, and that infestation will inhibit the ability of aspen to respond to favorable climate conditions by increasing growth and potentially photosynthesis. This

  17. Has pellet production affected SE US forests?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Virginia H.; Kline, Keith L.; Parish, Esther S.

    Wood pellet export volumes from the Southeastern United States (SE US) to Europe have been growing since 2009, leading to concerns about potential environmental effects. Biomass pellets are intended to reduce carbon emissions and slow global warming by replacing coal in European power plants. Yet, stakeholders on both sides of the Atlantic Ocean worry that increased pellet production might lead to changes in SE US forests that harm water and soil quality, or endanger sensitive species—such as birds, tortoises, and snakes—and their habitats. Stakeholders have also expressed concern that increasing pellet demand might accelerate a fifty-year trend in which naturallymore » regenerating mixed hardwood and pine forests native to the SE US are being replaced by plantation pine forests.« less

  18. Has pellet production affected SE US forests?

    DOE PAGES

    Dale, Virginia H.; Kline, Keith L.; Parish, Esther S.

    2017-10-01

    Wood pellet export volumes from the Southeastern United States (SE US) to Europe have been growing since 2009, leading to concerns about potential environmental effects. Biomass pellets are intended to reduce carbon emissions and slow global warming by replacing coal in European power plants. Yet, stakeholders on both sides of the Atlantic Ocean worry that increased pellet production might lead to changes in SE US forests that harm water and soil quality, or endanger sensitive species—such as birds, tortoises, and snakes—and their habitats. Stakeholders have also expressed concern that increasing pellet demand might accelerate a fifty-year trend in which naturallymore » regenerating mixed hardwood and pine forests native to the SE US are being replaced by plantation pine forests.« less

  19. Inferring responses to climate dynamics from historical demography in neotropical forest lizards

    PubMed Central

    Xue, Alexander T.; Brown, Jason L.; Alvarado-Serrano, Diego F.; Rodrigues, Miguel T.; Hickerson, Michael J.; Carnaval, Ana C.

    2016-01-01

    We apply a comparative framework to test for concerted demographic changes in response to climate shifts in the neotropical lowland forests, learning from the past to inform projections of the future. Using reduced genomic (SNP) data from three lizard species codistributed in Amazonia and the Atlantic Forest (Anolis punctatus, Anolis ortonii, and Polychrus marmoratus), we first reconstruct former population history and test for assemblage-level responses to cycles of moisture transport recently implicated in changes of forest distribution during the Late Quaternary. We find support for population shifts within the time frame of inferred precipitation fluctuations (the last 250,000 y) but detect idiosyncratic responses across species and uniformity of within-species responses across forest regions. These results are incongruent with expectations of concerted population expansion in response to increased rainfall and fail to detect out-of-phase demographic syndromes (expansions vs. contractions) across forest regions. Using reduced genomic data to infer species-specific demographical parameters, we then model the plausible spatial distribution of genetic diversity in the Atlantic Forest into future climates (2080) under a medium carbon emission trajectory. The models forecast very distinct trajectories for the lizard species, reflecting unique estimated population densities and dispersal abilities. Ecological and demographic constraints seemingly lead to distinct and asynchronous responses to climatic regimes in the tropics, even among similarly distributed taxa. Incorporating such constraints is key to improve modeling of the distribution of biodiversity in the past and future. PMID:27432951

  20. Inferring responses to climate dynamics from historical demography in neotropical forest lizards.

    PubMed

    Prates, Ivan; Xue, Alexander T; Brown, Jason L; Alvarado-Serrano, Diego F; Rodrigues, Miguel T; Hickerson, Michael J; Carnaval, Ana C

    2016-07-19

    We apply a comparative framework to test for concerted demographic changes in response to climate shifts in the neotropical lowland forests, learning from the past to inform projections of the future. Using reduced genomic (SNP) data from three lizard species codistributed in Amazonia and the Atlantic Forest (Anolis punctatus, Anolis ortonii, and Polychrus marmoratus), we first reconstruct former population history and test for assemblage-level responses to cycles of moisture transport recently implicated in changes of forest distribution during the Late Quaternary. We find support for population shifts within the time frame of inferred precipitation fluctuations (the last 250,000 y) but detect idiosyncratic responses across species and uniformity of within-species responses across forest regions. These results are incongruent with expectations of concerted population expansion in response to increased rainfall and fail to detect out-of-phase demographic syndromes (expansions vs. contractions) across forest regions. Using reduced genomic data to infer species-specific demographical parameters, we then model the plausible spatial distribution of genetic diversity in the Atlantic Forest into future climates (2080) under a medium carbon emission trajectory. The models forecast very distinct trajectories for the lizard species, reflecting unique estimated population densities and dispersal abilities. Ecological and demographic constraints seemingly lead to distinct and asynchronous responses to climatic regimes in the tropics, even among similarly distributed taxa. Incorporating such constraints is key to improve modeling of the distribution of biodiversity in the past and future.

  1. Biorefinery opportunities for the forest products industries

    Treesearch

    Alan W. Rudie

    2013-01-01

    Wood residues offer biorefinery opportunities for new products in our industries including fuel and chemicals. But industry must have two capabilities to succeed with biorefineries. Most forest products companies already have the first capability: knowing where the resource is, how to get it, and how much it will cost. They will need to integrate the acquisition of...

  2. U.S. forest products trade policies: what are the options.

    Treesearch

    David R. Darr

    1975-01-01

    Trade and other policies are being considered by the U.S. Forest Service according to the terms of the Forest and Rangeland Renewable Resources Planning Act of 1974 (Public Law 93-378,93d Congress, S.2296). This paper describes the issues involved in the question, "Should we or should we not attempt to reduce net imports of forest products?" In terms of...

  3. Forecasting long-term acorn production with and without oak decline using forest inventory data

    Treesearch

    Cathryn H. Greenberg; Chad E. Keyser; Leah C. Rathburn; Anita K. Rose; Todd M. Fearer; Henry W. McNab

    2013-01-01

    Acorns are important as wildlife food and for oak regeneration, but production is highly variable, posing a challenge to forest managers targeting acorn production levels. Forest managers need tools to predict acorn production capability tailored to individual landscapes and forest management scenarios, adjusting for oak mortality and stand development over time. We...

  4. Impact of biomass harvesting on forest soil productivity in the northern Rocky Mountains

    Treesearch

    Woongsoon Jang; Christopher R. Keyes; Deborah Page-Dumroese

    2015-01-01

    Biomass harvesting extracts an increased amount of organic matter from forest ecosystems over conventional harvesting. Since organic matter plays a critical role in forest productivity, concerns of potential negative long-term impacts of biomass harvesting on forest productivity (i.e., changing nutrient/water cycling, aggravating soil properties, and compaction) have...

  5. Pulpwood production in southern forest survey territory, 1948

    Treesearch

    Alberti L. Tofte; William S. Stover

    1949-01-01

    Pulpwood production in the seven states of Southern Forest survey territory reached another all-time high in the 1948. Total production was 5,025,900 cords, an increase of 14 percent over 1947. Each of the seven states showed an increase (table 1).

  6. Forests of opportunities and mischief: disentangling the interactions between forests, parasites and immune responses.

    PubMed

    Renner, Swen C; Lüdtke, Bruntje; Kaiser, Sonja; Kienle, Julia; Schaefer, H Martin; Segelbacher, Gernot; Tschapka, Marco; Santiago-Alarcon, Diego

    2016-08-01

    Habitat characteristics determine the presence of individuals through resource availability, but at the same time, such features also influence the occurrence of parasites. We analyzed how birds respond to changes in interior forest structures, to forest management regimes, and to the risk of haemosporidian infections. We captured and took blood samples from blackcaps (Sylvia atricapilla) and chaffinches (Fringilla coelebs) in three different forest types (beech, mixed deciduous, spruce). We measured birds' body asymmetries, detected avian haemosporidians, and counted white blood cells as an immune measure of each individual per forest type. We used, to our knowledge for the first time, continuous forest structural parameters to quantify habitat structure, and found significant effects of habitat structure on parasite prevalence that previously have been undetected. We found three times higher prevalence for blackcaps compared with chaffinches. Parasite intensity varied significantly within host species depending on forest type, being lowest in beech forests for both host species. Structurally complex habitats with a high degree of entropy had a positive effect on the likelihood of acquiring an infection, but the effect on prevalence was negative for forest sections with a south facing aspect. For blackcaps, forest gaps also had a positive effect on prevalence, but canopy height had a negative one. Our results suggest that forest types and variations in forest structure influence the likelihood of acquiring an infection, which subsequently has an influence on host health status and body condition; however, responses to some environmental factors are host-specific. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  7. U.S. forest products annual market review and prospects, 2002–2006

    Treesearch

    James L. Howard

    2006-01-01

    This report provides general and statistical information on forests products markets in terms of production, trade, consumption, and prices. The current state of the U.S. economy is described. Market developments are described for sawn softwood, sawn hardwood, softwood log trade, wood- based panels, paper and paperboard, fuelwood, and forest product prices. Policy...

  8. U.S. forest products annual market review and prospects, 2001–2005.

    Treesearch

    James L. Howard

    2005-01-01

    This report provides general and statistical information on forest products markets in terms of production, trade, consumption, and prices. The current state of the United States economy is described. Market developments are described for sawn softwood, sawn hardwood, softwood log trade, wood-based panels, paper and paperboard, fuelwood, and forest products prices....

  9. U.S. forest products annual market review and prospects, 2004–2008

    Treesearch

    James L. Howard; Rebecca Westby

    2007-01-01

    This report provides general and statistical information on forest products markets in terms of production, trade, consumption, and prices. The current state of the U.S. economy is described. Market developments are described for sawn softwood, sawn hardwood, softwood log trade, wood-based panels, paper and paperboard, fuelwood, and forest product prices. Policy...

  10. U.S. Forest products annual market review and prospects, 1999–2002

    Treesearch

    James L. Howard

    2001-01-01

    This report provides general and statistical information on forests products markets in terms of production, trade, consumption, and prices. The current state of the United States economy is described. Market developments are described for sawn softwood, sawn hardwood, softwood log trade, wood-based panels, paper and paperboard, fuelwood, and forest product prices....

  11. Biogeochemical modelling vs. tree-ring data - comparison of forest ecosystem productivity estimates

    NASA Astrophysics Data System (ADS)

    Zorana Ostrogović Sever, Maša; Barcza, Zoltán; Hidy, Dóra; Paladinić, Elvis; Kern, Anikó; Marjanović, Hrvoje

    2017-04-01

    Forest ecosystems are sensitive to environmental changes as well as human-induce disturbances, therefore process-based models with integrated management modules represent valuable tool for estimating and forecasting forest ecosystem productivity under changing conditions. Biogeochemical model Biome-BGC simulates carbon, nitrogen and water fluxes, and it is widely used for different terrestrial ecosystems. It was modified and parameterised by many researchers in the past to meet the specific local conditions. In this research, we used recently published improved version of the model Biome-BGCMuSo (BBGCMuSo), with multilayer soil module and integrated management module. The aim of our research is to validate modelling results of forest ecosystem productivity (NPP) from BBGCMuSo model with observed productivity estimated from an extensive dataset of tree-rings. The research was conducted in two distinct forest complexes of managed Pedunculate oak in SE Europe (Croatia), namely Pokupsko basin and Spačva basin. First, we parameterized BBGCMuSo model at a local level using eddy-covariance (EC) data from Jastrebarsko EC site. Parameterized model was used for the assessment of productivity on a larger scale. Results of NPP assessment with BBGCMuSo are compared with NPP estimated from tree ring data taken from trees on over 100 plots in both forest complexes. Keywords: Biome-BGCMuSo, forest productivity, model parameterization, NPP, Pedunculate oak

  12. Georgia's forest products industry: performance and contribution to the state's economy, 1970 to 1980.

    Treesearch

    Wilbur R. Maki; Con H. Schallau; Bennett B. Foster; Clair H. Redmond

    1985-01-01

    Employment and earnings in Georgia's forest products industry, like those of most Southern States, grew significantly between 1970 and 1980. The forest products industry accounted for nearly the same share of the State's economic base in 1980 as in 1970. Moreover, during this period, the State increased its share of the Nation's forest products industry...

  13. Snowmelt-Driven Trade-Offs Between Early and Late Season Productivity Negatively Impact Forest Carbon Uptake During Drought

    NASA Astrophysics Data System (ADS)

    Knowles, John F.; Molotch, Noah P.; Trujillo, Ernesto; Litvak, Marcy E.

    2018-04-01

    Future projections of declining snowpack and increasing potential evaporation are predicted to advance the timing of snowmelt in mountain ecosystems globally with unknown implications for snowmelt-driven forest productivity. Accordingly, this study combined satellite- and tower-based observations to investigate the forest productivity response to snowpack and potential evaporation variability between 1989 and 2012 throughout the Southern Rocky Mountain ecoregion, United States. Our results show that early and late season productivity were significantly and inversely related and that future shifts toward earlier and/or reduced snowmelt could decrease snowmelt water use efficiency and thus restrict productivity despite a longer growing season. This was explained by increasing snow aridity, which incorporated evaporative demand and snow water supply, and was modified by summer precipitation to determine total annual productivity. The combination of low snow accumulation and record high potential evaporation in 2012 resulted in the 34 year minimum ecosystem productivity that could be indicative of future conditions.

  14. Forest turnover rates follow global and regional patterns of productivity

    USGS Publications Warehouse

    Stephenson, N.L.; van Mantgem, P.J.

    2005-01-01

    Using a global database, we found that forest turnover rates (the average of tree mortality and recruitment rates) parallel broad-scale patterns of net primary productivity. First, forest turnover was higher in tropical than in temperate forests. Second, as recently demonstrated by others, Amazonian forest turnover was higher on fertile than infertile soils. Third, within temperate latitudes, turnover was highest in angiosperm forests, intermediate in mixed forests, and lowest in gymnosperm forests. Finally, within a single forest physiognomic type, turnover declined sharply with elevation (hence with temperature). These patterns of turnover in populations of trees are broadly similar to the patterns of turnover in populations of plant organs (leaves and roots) found in other studies. Our findings suggest a link between forest mass balance and the population dynamics of trees, and have implications for understanding and predicting the effects of environmental changes on forest structure and terrestrial carbon dynamics. ??2005 Blackwell Publishing Ltd/CNRS.

  15. U S Forest Products Annual Market Review and Prospects, 2008–2012

    Treesearch

    James L. Howard; David B. McKeever

    2012-01-01

    This paper describes the current state of the U.S. economy and provides general and statistical information on forest products markets in terms of production, trade, consumption, and prices. Market developments are described for sawn softwood, sawn hardwood, softwood log trade, wood-based panels, paper and paperboard, fuelwood, forest product prices, and housing starts...

  16. U.S. forest products annual market review and prospects, 2013–2017

    Treesearch

    James L. Howard; David B. McKeever; Shaobo Liang

    2017-01-01

    This report describes the current state and near-term prospective of the U.S. economy supported by general and statistical information on forest products markets in terms of production, trade, consumption and prices. Market developments are described for sawn softwood, sawn hardwood, softwood log trade, wood-based panels, paper and paperboard, fuelwood, forest product...

  17. Forest response to heat waves at the dry timberline

    NASA Astrophysics Data System (ADS)

    Yakir, D.; Rotenberg, E.; Tatrinov, F.; Ogee, J.; Maseyk, K.

    2012-04-01

    Predictions of climate change consistently indicate continuous warming and drying for the entire Mediterranean basin and other regions during the next century. Investigating forest functioning at the current dry and hot "timberline" has therefore implications for predicting future forest distribution. In such investigations we should consider the forest adjustments to extreme conditions both at the long-term average climate basis, as at the time-scale of episodic extreme events, such as heat waves and droughts. Investigating both aspects in a 45-yr old semi-arid pine forest at the dry timberline (<300 mm annual rainfall) we observe adjustments that improve carbon-, nitrogen- and water- use efficiencies. An important aspect in the ecosystem sustainability is its ability to rapidly recover from extreme conditions, both at the short-term and the seasonal scale. A remarkable example is provided by the episodes (usually 2-4 days) of Easterly dry and hot air that are common in spring (so-called "Hamsin" events). During these events air temperature increases and relative humidity decreases within hours by 10˚C and 40%, respectively. Net ecosystem CO2 exchange (NEE) and photosynthesis (GPP) sharply decline, predominantly in response to the drastic increase in vapor pressure deficit (up to 6kPa), but then show full recovery to the pre-stress values within 24 h past the event. Similarly, following 5-6 months of seasonal drought, the forest resumes high photosynthetic activity within ~5 days following the first rain episode of about 10 mm in the fall. We show that these transient responses are useful in partitioning between the ecosystem responses to short-term atmosphere-driven stress and longer-term soil moisture stress. An ecosystem model (MuSICA) was used to test our understandings of underlying processes, and our ability to account for such differential responses.

  18. Who, what, and why: the products, their use, and issues about management of non-timber forest products in the United States

    Treesearch

    Susan J. Alexander

    2001-01-01

    Non-timber forest products in the United States include floral greens, Christmas ornamentals, wild edibles, medicinals, crafts, and transplants. Non-timber forest products are important to many people for many reasons. People harvest products from forests for personal use, cultural practices, and sale. The tremendous variety of species harvested for the many markets...

  19. Response of Sierra Nevada forests to projected climate-wildfire interactions.

    PubMed

    Liang, Shuang; Hurteau, Matthew D; Westerling, Anthony LeRoy

    2017-05-01

    Climate influences forests directly and indirectly through disturbance. The interaction of climate change and increasing area burned has the potential to alter forest composition and community assembly. However, the overall forest response is likely to be influenced by species-specific responses to environmental change and the scale of change in overstory species cover. In this study, we sought to quantify how projected changes in climate and large wildfire size would alter forest communities and carbon (C) dynamics, irrespective of competition from nontree species and potential changes in other fire regimes, across the Sierra Nevada, USA. We used a species-specific, spatially explicit forest landscape model (LANDIS-II) to evaluate forest response to climate-wildfire interactions under historical (baseline) climate and climate projections from three climate models (GFDL, CCSM3, and CNRM) forced by a medium-high emission scenario (A2) in combination with corresponding climate-specific large wildfire projections. By late century, we found modest changes in the spatial distribution of dominant species by biomass relative to baseline, but extensive changes in recruitment distribution. Although forest recruitment declined across much of the Sierra, we found that projected climate and wildfire favored the recruitment of more drought-tolerant species over less drought-tolerant species relative to baseline, and this change was greatest at mid-elevations. We also found that projected climate and wildfire decreased tree species richness across a large proportion of the study area and transitioned more area to a C source, which reduced landscape-level C sequestration potential. Our study, although a conservative estimate, suggests that by late century, forest community distributions may not change as intact units as predicted by biome-based modeling, but are likely to trend toward simplified community composition as communities gradually disaggregate and the least tolerant

  20. Impacts of the Jones Act on the Alaska forest products trade.

    Treesearch

    K.C. Jackson; C.W. McKetta

    1986-01-01

    Alaska forest products trade flows for 1982 were studied to determine the effects of the Merchant Marine Act of 1920 (the Jones Act). Information was collected from timber producers, forest product industries, and waterborne shippers in Alaska, British Columbia, and the Pacific Northwest. Trade flows were simulated, using a partial equilibrium model based on resource...

  1. Alabama's forest products industry: performance and contribution to the State's economy, 1970 to 1980.

    Treesearch

    Wilbur R. Maki; Con H Schallau; Bennett B. Foster; Clair H. Redmond

    1986-01-01

    Employment and earnings in Alabama's forest products industry, like those of most Southern States, grew significantly between 1970 and 1980. The forest products industry accounted for a larger share of the State's economic base. in 1980 than in 1970. Of the 13 Southern States, only 5 had more forest products industry employment than Alabama. Moreover, during...

  2. Texas' forest products industry: performance and contribution to the State's economy, 1970 to 1980.

    Treesearch

    Con H Schallau; Wilbur R. Maki; Bennett B. Foster; Clair H. Redmond

    1987-01-01

    Even though Texas consumes more forest products than it produces, its forest products industry has a conspicuous record. Between 1970 and 1980, employment in the forest products industry increased by 12,000. Only one Southern State, North Carolina, showed a larger absolute gain. Texas was also second to North Carolina in improving its comparative advantage during the...

  3. A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (U.S.A.)

    Treesearch

    Louis R. Iverson; Martin E. Dale; Charles T. Scott; Anantha Prasad; Anantha Prasad

    1997-01-01

    A geographic information system (GIS) approach was used in conjunction with forest-plot data to develop an integrated moisture index (IMI), which was then used to predict forest productivity (site index) and species composition for forests in Ohio. In this region, typical of eastern hardwoods across the Midwest and southern Appalachians, topographic aspect and position...

  4. Post-glacial redistribution and shifts in productivity of giant kelp forests

    PubMed Central

    Graham, Michael H.; Kinlan, Brian P.; Grosberg, Richard K.

    2010-01-01

    Quaternary glacial–interglacial cycles create lasting biogeographic, demographic and genetic effects on ecosystems, yet the ecological effects of ice ages on benthic marine communities are unknown. We analysed long-term datasets to develop a niche-based model of southern Californian giant kelp (Macrocystis pyrifera) forest distribution as a function of oceanography and geomorphology, and synthesized palaeo-oceanographic records to show that late Quaternary climate change probably drove high millennial variability in the distribution and productivity of this foundation species. Our predictions suggest that kelp forest biomass increased up to threefold from the glacial maximum to the mid-Holocene, then rapidly declined by 40–70 per cent to present levels. The peak in kelp forest productivity would have coincided with the earliest coastal archaeological sites in the New World. Similar late Quaternary changes in kelp forest distribution and productivity probably occurred in coastal upwelling systems along active continental margins worldwide, which would have resulted in complex shifts in the relative productivity of terrestrial and marine components of coastal ecosystems. PMID:19846450

  5. Decadal-scale ecosystem memory reveals interactive effects of drought and insect defoliation on boreal forest productivity

    NASA Astrophysics Data System (ADS)

    Itter, M.; D'Orangeville, L.; Dawson, A.; Kneeshaw, D.; Finley, A. O.

    2017-12-01

    Drought and insect defoliation have lasting impacts on the dynamics of the boreal forest. Impacts are expected to worsen under global climate change as hotter, drier conditions forecast for much of the boreal increase the frequency and severity of drought and defoliation events. Contemporary ecological theory predicts physiological feedbacks in tree responses to drought and defoliation amplify impacts potentially causing large-scale productivity losses and forest mortality. Quantifying the interactive impacts of drought and insect defoliation on regional forest health is difficult given delayed and persistent responses to disturbance events. We developed a Bayesian hierarchical model to estimate forest growth responses to interactions between drought and insect defoliation by species and size class. Delayed and persistent responses to past drought and defoliation were quantified using empirical memory functions allowing for improved detection of interactions. The model was applied to tree-ring data from stands in Western (Alberta) and Eastern (Québec) regions of the Canadian boreal forest with different species compositions, disturbance regimes, and regional climates. Western stands experience chronic water deficit and forest tent caterpillar (FTC) defoliation; Eastern stands experience irregular water deficit and spruce budworm (SBW) defoliation. Ecosystem memory to past water deficit peaked in the year previous to growth and decayed to zero within 5 (West) to 8 (East) years; memory to past defoliation ranged from 8 (West) to 12 (East) years. The drier regional climate and faster FTC defoliation dynamics (compared to SBW) likely contribute to shorter ecosystem memory in the West. Drought and defoliation had the largest negative impact on large-diameter, host tree growth. Surprisingly, a positive interaction was observed between drought and defoliation for large-diameter, non-host trees likely due to reduced stand-level competition for water. Results highlight the

  6. A Long Term View of Forest Response to Environmental Change: 25 Years of Studying Harvard Forest

    NASA Astrophysics Data System (ADS)

    Munger, J. W.; Wofsy, S. C.; Lindaas, J.; David, F.; David, O.

    2014-12-01

    Forests influence the budgets of greenhouse gases, and understanding how they will respond to environmental change is critical to accurately predicting future GHG trends. The time scale for climate change is long and forest growth is slow, thus very long measurement periods are required to observe meaningful forest response. We established an eddy flux tower within a mixed forest stand dominated by red oak and red maple at the Harvard Forest LTER site in 1989 where CO2, H2O and energy fluxes together with meteorological observations have been measured continuously. An array of plots for biometric measurements was established in 1993. Flux measurement at an adjacent hemlock stand began in 2000. Records of land use and disturbance and vegetation plot data extend back to 1907. The combined suite of measurements merges observations of instantaneous ecosystem responses to environmental forcing with details of vegetation dynamics and forest growth that represent the emergent properties relevant to long-term ecosystem change. Both the deciduous stand and hemlock stand are accumulating biomass. Each has added over 20 Mg-C ha-1 as woody biomass in trees >10cm dbh since 1990, even though the hemlock stand is older. Net carbon exchange shows enhanced uptake in early spring and late fall months in response to warmer temperatures and likely an increase in evergreen foliage at the deciduous site. Net carbon uptake efficiency at the deciduous stand has increased over time as well as indicated by peak NEE under optimum light conditions. The trend is only partly explained by variation in mean leaf area index and cannot be directly attributed to climate response. The combination of longer growing season and increased uptake efficiency yields a general trend of increasing annual NEE (Fig. 1). However, significant excursions in the trend highlight the sensitivity of forest carbon stocks. The pulse of high annual carbon uptake (peak 6 Mg-C ha-1y-1 in 2008) from 2000-2008 is only

  7. A meta-analysis of soil microbial biomass responses to forest disturbances

    PubMed Central

    Holden, Sandra R.; Treseder, Kathleen K.

    2013-01-01

    Climate warming is likely to increase the frequency and severity of forest disturbances, with uncertain consequences for soil microbial communities and their contribution to ecosystem C dynamics. To address this uncertainty, we conducted a meta-analysis of 139 published soil microbial responses to forest disturbances. These disturbances included abiotic (fire, harvesting, storm) and biotic (insect, pathogen) disturbances. We hypothesized that soil microbial biomass would decline following forest disturbances, but that abiotic disturbances would elicit greater reductions in microbial biomass than biotic disturbances. In support of this hypothesis, across all published studies, disturbances reduced soil microbial biomass by an average of 29.4%. However, microbial responses differed between abiotic and biotic disturbances. Microbial responses were significantly negative following fires, harvest, and storms (48.7, 19.1, and 41.7% reductions in microbial biomass, respectively). In contrast, changes in soil microbial biomass following insect infestation and pathogen-induced tree mortality were non-significant, although biotic disturbances were poorly represented in the literature. When measured separately, fungal and bacterial responses to disturbances mirrored the response of the microbial community as a whole. Changes in microbial abundance following disturbance were significantly positively correlated with changes in microbial respiration. We propose that the differential effect of abiotic and biotic disturbances on microbial biomass may be attributable to differences in soil disruption and organic C removal from forests among disturbance types. Altogether, these results suggest that abiotic forest disturbances may significantly decrease soil microbial abundance, with corresponding consequences for microbial respiration. Further studies are needed on the effect of biotic disturbances on forest soil microbial communities and soil C dynamics. PMID:23801985

  8. Short and long-term carbon balance of bioenergy electricity production fueled by forest treatments.

    PubMed

    Kelsey, Katharine C; Barnes, Kallie L; Ryan, Michael G; Neff, Jason C

    2014-01-01

    Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential wildfire behavior in the treated stand. Forest treatment carbon balance is further affected by the fate of this biomass removed from the forest, and the occurrence and intensity of a future wildfire in this stand. In this study we investigate the carbon balance of a forest treatment with varying fates of harvested biomass, including use for bioenergy electricity production, and under varying scenarios of future disturbance and regeneration. Bioenergy is a carbon intensive energy source; in our study we find that carbon emissions from bioenergy electricity production are nearly twice that of coal for the same amount of electricity. However, some emissions from bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefit achieved by using harvested biomass for bioenergy electricity production may be increased through avoided pyrogenic emissions if the forest treatment can effectively reduce severity. Forest treatments with the use of harvested biomass for electricity generation can reduce carbon emissions to the atmosphere by offsetting fossil fuel electricity generation emissions, and potentially by avoided pyrogenic emissions due to reduced intensity and severity of a future wildfire in the treated stand. However, changes in future wildfire and regeneration regimes may affect forest carbon balance and these climate-induced changes may influence forest carbon balance as much, or more, than bioenergy production.

  9. Model-experiment synthesis at two FACE sites in the southeastern US. Forest ecosystem responses to elevated CO[2]. (Invited)

    NASA Astrophysics Data System (ADS)

    Walker, A. P.; Zaehle, S.; De Kauwe, M. G.; Medlyn, B. E.; Dietze, M.; Hickler, T.; Iversen, C. M.; Jain, A. K.; Luo, Y.; McCarthy, H. R.; Parton, W. J.; Prentice, C.; Thornton, P. E.; Wang, S.; Wang, Y.; Warlind, D.; Warren, J.; Weng, E.; Hanson, P. J.; Oren, R.; Norby, R. J.

    2013-12-01

    Ecosystem observations from two long-term Free-Air CO[2] Enrichment (FACE) experiments (Duke forest and Oak Ridge forest) were used to evaluate the assumptions of 11 terrestrial ecosystem models and the consequences of those assumptions for the responses of ecosystem water, carbon (C) and nitrogen (N) fluxes to elevated CO[2] (eCO[2]). Nitrogen dynamics were the main constraint on simulated productivity responses to eCO[2]. At Oak Ridge some models reproduced the declining response of C and N fluxes, while at Duke none of the models were able to maintain the observed sustained responses. C and N cycles are coupled through a number of complex interactions, which causes uncertainty in model simulations in multiple ways. Nonetheless, the major difference between models and experiments was a larger than observed increase in N-use efficiency and lower than observed response of N uptake. The results indicate that at Duke there were mechanisms by which trees accessed additional N in response to eCO[2] that were not represented in the ecosystem models, and which did not operate with the same efficiency at Oak Ridge. Sequestration of the additional productivity under eCO[2] into forest biomass depended largely on C allocation. Allocation assumptions were classified into three main categories--fixed partitioning coefficients, functional relationships and a partial (leaf allocation only) optimisation. The assumption which best constrained model results was a functional relationship between leaf area and sapwood area (pipe-model) and increased root allocation when nitrogen or water were limiting. Both, productivity and allocation responses to eCO[2] determined the ecosystem-level response of LAI, which together with the response of stomatal conductance (and hence water-use efficiency; WUE) determined the ecosystem response of transpiration. Differences in the WUE response across models were related to the representation of the relationship of stomatal conductance to CO[2] and

  10. Future carbon storage in harvested wood products from Ontario's Crown forests

    Treesearch

    Jiaxin Chen; Stephen J. Colombo; Michael T. Ter-Mikaelian; Linda S. Heath

    2008-01-01

    This analysis quantifies projected carbon (C) storage in harvested wood products (HWP) from Ontario's Crown forests. The large-scale forest C budget model, FORCARB-ON, was applied to estimate HWP C stock changes using the production approach defined by the Intergovernmental Panel on Climate Change. Harvested wood volume was converted to C mass and allocated to...

  11. Otsego Forest Products Cooperative Association of Cooperstown, New York: An evaluation

    Treesearch

    James C. Rettie; Frank A. Ineson

    1950-01-01

    The Otsego Forest Products Cooperative Association is one of the most successful of the farmers' cooperatives that have attempted to deal with forest products. Now including about 1,000 members, it serves owners of woodlands in the rolling dairy country in and about Otsego County in central New York. The operations of the Otsego cooperative are centered at...

  12. Special forest products in context: gatherers and gathering in the Eastern United States

    Treesearch

    Marla R. Emery; Clare Ginger; Siri Newman; Michael R.B. Giammusso

    2003-01-01

    This report provides an introduction to the people who gather special forest products (SFPs) in the eastern United States, the role these resources play in their lives, and implications for management on national forest lands, particularly in relation to the Pilot Program on Forest Botanicals (P. L. 106-113, ? 339(a)). SFPs encompass a wide variety of products and...

  13. Improving Lidar-based Aboveground Biomass Estimation with Site Productivity for Central Hardwood Forests, USA

    NASA Astrophysics Data System (ADS)

    Shao, G.; Gallion, J.; Fei, S.

    2016-12-01

    Sound forest aboveground biomass estimation is required to monitor diverse forest ecosystems and their impacts on the changing climate. Lidar-based regression models provided promised biomass estimations in most forest ecosystems. However, considerable uncertainties of biomass estimations have been reported in the temperate hardwood and hardwood-dominated mixed forests. Varied site productivities in temperate hardwood forests largely diversified height and diameter growth rates, which significantly reduced the correlation between tree height and diameter at breast height (DBH) in mature and complex forests. It is, therefore, difficult to utilize height-based lidar metrics to predict DBH-based field-measured biomass through a simple regression model regardless the variation of site productivity. In this study, we established a multi-dimension nonlinear regression model incorporating lidar metrics and site productivity classes derived from soil features. In the regression model, lidar metrics provided horizontal and vertical structural information and productivity classes differentiated good and poor forest sites. The selection and combination of lidar metrics were discussed. Multiple regression models were employed and compared. Uncertainty analysis was applied to the best fit model. The effects of site productivity on the lidar-based biomass model were addressed.

  14. Changes in tree functional composition amplify the response of forest biomass to climate variability

    NASA Astrophysics Data System (ADS)

    Lichstein, Jeremy; Zhang, Tao; Niinemets, Ulo; Sheffield, Justin

    2017-04-01

    The response of forest carbon storage to climate change is highly uncertain, contributing substantially to the divergence among global climate model projections. Numerous studies have documented responses of forest ecosystems to climate change and variability, including drought-induced increases in tree mortality rates. However, the sensitivity of forests to climate variability - in terms of both biomass carbon storage and functional components of tree species composition - has yet to be quantified across a large region using systematically sampled data. Here, we combine systematic forest inventories across the eastern USA with a species-level drought-tolerance index, derived from a meta-analysis of published literature, to quantify changes in forest biomass and community-mean-drought-tolerance in one-degree grid cells from the 1980s to 2000s. We show that forest biomass responds to decadal-scale changes in water deficit and that this biomass response is amplified by concurrent changes in community-mean-drought-tolerance. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards more drought-tolerant but lower-biomass species. Multiple plant functional traits are correlated with the above species-level drought-tolerance index, and likely contribute to the decrease in biomass with increasing drought-tolerance. These traits include wood density and P50 (the xylem water potential at which a plant loses 50% of its hydraulic conductivity). Simulations with a trait- and competition-based dynamic global vegetation model suggest that species differences in plant carbon allocation to wood, leaves, and fine roots also likely contribute to the observed decrease in biomass with increasing drought-tolerance, because competition drives plants to over-invest in fine roots when water is limiting. Thus, the most competitive species under dry conditions have greater root allocation but

  15. Monitoring Regional Forest Disturbances across the US with Near Real Time MODIS NDVI Products included in the ForWarn Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Hargrove, William W.; Gasser, Gerald; Norman, Steve

    2013-01-01

    U.S. forests occupy approx.1/3 of total land area (approx. 304 million ha). Since 2000, a growing number of regionally evident forest disturbances have occurred due to abiotic and biotic agents. Regional forest disturbances can threaten human life and property, bio-diversity and water supplies. Timely regional forest disturbance monitoring products are needed to aid forest health management work. Near Real Time (NRT) twice daily MODIS NDVI data provide a means to monitor U.S. regional forest disturbances every 8 days. Since 2010, these NRT forest change products have been produced and posted on the US Forest Service ForWarn Early Warning System for Forest Threats.

  16. From deficit to surplus: An econometric analysis of US trade balance in forest products

    Treesearch

    Daowei Zhang; Ying Lin; Jeffrey P. Prestemon

    2017-01-01

    Although the US trade deficit has persisted since 1975, the country changed in 2009 from a net importer to a net exporter of forest products, emerging as the world's largest exporter of forest products. Drawing on recent data, we model the real dollar value of US exports, imports, and the trade balance in forest products to identify factors likely to explain this...

  17. Plant responses to fertilization experiments in lowland, species-rich, tropical forests.

    PubMed

    Wright, S Joseph; Turner, Benjamin L; Yavitt, Joseph B; Harms, Kyle E; Kaspari, Michael; Tanner, Edmund V J; Bujan, Jelena; Griffin, Eric A; Mayor, Jordan R; Pasquini, Sarah C; Sheldrake, Merlin; Garcia, Milton N

    2018-05-01

    We present a meta-analysis of plant responses to fertilization experiments conducted in lowland, species-rich, tropical forests. We also update a key result and present the first species-level analyses of tree growth rates for a 15-yr factorial nitrogen (N), phosphorus (P), and potassium (K) experiment conducted in central Panama. The update concerns community-level tree growth rates, which responded significantly to the addition of N and K together after 10 yr of fertilization but not after 15 yr. Our experimental soils are infertile for the region, and species whose regional distributions are strongly associated with low soil P availability dominate the local tree flora. Under these circumstances, we expect muted responses to fertilization, and we predicted species associated with low-P soils would respond most slowly. The data did not support this prediction, species-level tree growth responses to P addition were unrelated to species-level soil P associations. The meta-analysis demonstrated that nutrient limitation is widespread in lowland tropical forests and evaluated two directional hypotheses concerning plant responses to N addition and to P addition. The meta-analysis supported the hypothesis that tree (or biomass) growth rate responses to fertilization are weaker in old growth forests and stronger in secondary forests, where rapid biomass accumulation provides a nutrient sink. The meta-analysis found no support for the long-standing hypothesis that plant responses are stronger for P addition and weaker for N addition. We do not advocate discarding the latter hypothesis. There are only 14 fertilization experiments from lowland, species-rich, tropical forests, 13 of the 14 experiments added nutrients for five or fewer years, and responses vary widely among experiments. Potential fertilization responses should be muted when the species present are well adapted to nutrient-poor soils, as is the case in our experiment, and when pest pressure increases with

  18. Status of Forest Certification

    Treesearch

    Omar Espinoza; Urs Buehlmann; Michael Dockry

    2013-01-01

    Forest certification systems are voluntary, market-based initiatives to promote the sustainable use of forests. These standards assume that consumers prefer products made from materials grown in an environmentally sustainable fashion, and this in turn creates incentives for companies to adopt responsible environmental practices. One of the major reasons for the...

  19. Forest product use at an upper elevation village in Nepal

    NASA Astrophysics Data System (ADS)

    Metz, John J.

    1994-05-01

    This paper describes forest product use at Chimkhola, an upper elevation village of west central Nepal. Villagers have large herds of livestock that they use to fertilize agricultural fields by holding the animals on cropland for one to several weeks prior to planting. Herds are moved sequentially from one group of fields to another until all are planted, and then families take animals into the forests. Herders, therefore, live in temporary shelters away from the homestead throughout the year, and for much of the year feed their livestock fodder cut from forest trees. By combining repeated interviews of sample households, one-time interviews with a large sample of village families, and direct measurements of forest products being used, I found that livestock maintenance consumes 74% of the hand-harvested wild biomass: 26.4% for green fodder, 32.3% for fuelwood at the herder's hut, and 13.8% for construction of the herder's hut. Fuelwood burned at the homestead is the next largest consumer, 17.6%. Villagers also use small amounts of forest materials for house construction, charcoal, agricultural implements, and bamboo for baskets and mats. The large amounts used by herders and livestock at Chimkhola mean that wild vegetation use there far exceeds the measurements made by previous reliable studies at other communities. This system of forest use is, however, degrading Chimkhola's forests and gradually converting them to shrublands.

  20. Nanotechnology for forest products. Part 2

    Treesearch

    Theodore Wegner; Phil Jones

    2005-01-01

    In planning for the Nanotechnology for the Forest products Industry Workshop, we considered many different options for organizing technical focus areas for breakout discussion sessions. We felt the fallowing R&D focus areas provide the best path forward for a nanotechnology roadmap by identifying the underlying science and technology needed: also, they foster...

  1. Primary forest products industry and timber use, Minnesota, 1973.

    Treesearch

    James E. Blyth; Steven Wilhelm; Jerold T. Hahn

    1979-01-01

    Discusses recent Minnesota forest industry trends; timber removals for industrial roundwood in 1973; production and receipts in 1973 of pulpwood, saw logs, and other industrial roundwood products. Shows trends in pulpwood and veneer log production and compares saw log production in 1960 and 1973. Discusses primary wood-using mill residue and its disposition.

  2. Wyoming's forest products industry and timber harvest, 2010

    Treesearch

    Chelsea P. McIver; Colin B. Sorenson; Charles E. Keegan; Todd A. Morgan; Mike T. Thompson

    2014-01-01

    This report traces the flow of Wyoming’s 2010 timber harvest through the primary wood-using industries; provides a description of the structure, capacity, and condition of Wyoming’s primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as changes in harvest, production,...

  3. Montana's forest products industry and timber harvest, 2009

    Treesearch

    Chelsea P. McIver; Colin B. Sorenson; Charles E. Keegan; Todd A. Morgan; Jim Menlove

    2013-01-01

    This report traces the flow of Montana’s 2009 timber harvest through the primary wood-using industries; provides a description of the structure, capacity, and condition of Montana’s primary forest products industry; and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as changes in harvest, production,...

  4. Response of a tropical tree to non-timber forest products harvest and reduction in habitat size

    PubMed Central

    Kouagou, M’Mouyohoun; Natta, Armand K.; Gado, Choukouratou

    2017-01-01

    Non-timber forest products (NTFPs) are widely harvested by local people for their livelihood. Harvest often takes place in human disturbed ecosystems. However, our understanding of NTFPs harvesting impacts in fragmented habitats is limited. We assessed the impacts of fruit harvest, and reduction in habitat size on the population structures of Pentadesma butyracea Sabine (Clusiaceae) across two contrasting ecological regions (dry vs. moist) in Benin. In each region, we selected three populations for each of the three fruit harvesting intensities (low, medium and high). Harvesting intensities were estimated as the proportion of fruits harvested per population. Pentadesma butyracea is found in gallery forests along rivers and streams. We used the width of gallery forests as a measure of habitat size. We found negative effects of fruit harvest on seedling and adult density but no significant effect on population size class distribution in both ecological regions. The lack of significant effect of fruit harvest on population structure may be explained by the ability of P. butyracea to compensate for the negative effect of fruit harvesting by increasing clonal reproduction. Our results suggest that using tree density and population structure to assess the ecological impacts of harvesting clonal plants should be done with caution. PMID:28850624

  5. Response of a tropical tree to non-timber forest products harvest and reduction in habitat size.

    PubMed

    Gaoue, Orou G; Kouagou, M'Mouyohoun; Natta, Armand K; Gado, Choukouratou

    2017-01-01

    Non-timber forest products (NTFPs) are widely harvested by local people for their livelihood. Harvest often takes place in human disturbed ecosystems. However, our understanding of NTFPs harvesting impacts in fragmented habitats is limited. We assessed the impacts of fruit harvest, and reduction in habitat size on the population structures of Pentadesma butyracea Sabine (Clusiaceae) across two contrasting ecological regions (dry vs. moist) in Benin. In each region, we selected three populations for each of the three fruit harvesting intensities (low, medium and high). Harvesting intensities were estimated as the proportion of fruits harvested per population. Pentadesma butyracea is found in gallery forests along rivers and streams. We used the width of gallery forests as a measure of habitat size. We found negative effects of fruit harvest on seedling and adult density but no significant effect on population size class distribution in both ecological regions. The lack of significant effect of fruit harvest on population structure may be explained by the ability of P. butyracea to compensate for the negative effect of fruit harvesting by increasing clonal reproduction. Our results suggest that using tree density and population structure to assess the ecological impacts of harvesting clonal plants should be done with caution.

  6. Community occupancy responses of small mammals to restoration treatments in ponderosa pine forests, northern Arizona, USA.

    PubMed

    Kalies, E L; Dickson, B G; Chambers, C L; Covington, W W

    2012-01-01

    In western North American conifer forests, wildfires are increasing in frequency and severity due to heavy fuel loads that have accumulated after a century of fire suppression. Forest restoration treatments (e.g., thinning and/or burning) are being designed and implemented at large spatial and temporal scales in an effort to reduce fire risk and restore forest structure and function. In ponderosa pine (Pinus ponderosa) forests, predominantly open forest structure and a frequent, low-severity fire regime constituted the evolutionary environment for wildlife that persisted for thousands of years. Small mammals are important in forest ecosystems as prey and in affecting primary production and decomposition. During 2006-2009, we trapped eight species of small mammals at 294 sites in northern Arizona and used occupancy modeling to determine community responses to thinning and habitat features. The most important covariates in predicting small mammal occupancy were understory vegetation cover, large snags, and treatment. Our analysis identified two generalist species found at relatively high occupancy rates across all sites, four open-forest species that responded positively to treatment, and two dense-forest species that responded negatively to treatment unless specific habitat features were retained. Our results indicate that all eight small mammal species can benefit from restoration treatments, particularly if aspects of their evolutionary environment (e.g., large trees, snags, woody debris) are restored. The occupancy modeling approach we used resulted in precise species-level estimates of occupancy in response to habitat attributes for a greater number of small mammal species than in other comparable studies. We recommend our approach for other studies faced with high variability and broad spatial and temporal scales in assessing impacts of treatments or habitat alteration on wildlife species. Moreover, since forest planning efforts are increasingly focusing on

  7. Interactions between atmospheric circulation, nutrient deposition, and tropical forest primary production (Invited)

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Chen, Y.; Rogers, B. M.; Morton, D. C.; van der Werf, G.; Mahowald, N. M.

    2010-12-01

    Tropical forests influence regional and global climate by means of several pathways, including by modifying surface energy exchange and by forming clouds. High levels of precipitation, leaching, and soil weathering limit nutrient availability in these ecosystems. Phosphorus (P) is a key element limiting net primary production, and in some areas, including forests recovering from prior disturbance, nitrogen (N) also may limit some components of production. Here we quantified atmospheric P and N inputs to these forests from fires using satellite-derived estimates of emissions and atmospheric models. In Africa and South America, cross-biome transport of fire-emitted aerosols and reactive N gases from savannas and areas near the deforestation frontier increased deposition of P and N in interior forests. Equatorward atmospheric transport during the dry (fire) season in one hemisphere was linked with surface winds moving toward the inter-tropical convergence zone (ITCZ) in the other hemisphere. Deposition levels were higher in tropical forests in Africa than in South America because of large savanna areas with high levels of fire emissions in both southern and northern Africa. We conclude by describing a potential feedback loop by which equatorward transport of fire emissions, dust, and spores sustains the productivity of tropical forests. We specifically assessed evidence that savanna-to-forest atmospheric transport of nutrients increases forest productivity, height, and rates of evapotranspiration (ET). In parallel, we examined the degree to which increases in ET and surface roughness in tropical forests have the potential to strengthen several components of the Hadley circulation, including deep convection, equatorward return flow (near the surface), and the intensity of seasonal drought in the subtropics (thereby increasing fires). These interactions are important for understanding biogeochemical - climate interactions on millennial timescales and for quantifying how

  8. 36 CFR 223.277 - Forest botanical products definition.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., pine straw, roots, sedges, seeds, shrubs, transplants, tree sap, and wildflowers. Forest botanical products are not animals, animal parts, Christmas trees, fence material, firewood, insects, mine props...

  9. Primary forest products industry and timber use, Iowa, 1980.

    Treesearch

    James E. Blyth; John Tibben; W. Brad Smith

    1984-01-01

    Discusses recent Iowa forest industry trends, timber removals for industrial roundwood in 1980, production and receipts of saw logs in 1980, and production of other industrial roundwood products in 1980. Reports on wood and bark residue generated at primary mills and the disposition of this residue.

  10. An assessment of educational needs in the Alaskan forest products industry.

    Treesearch

    Jon Thomas; Eric Hansen; Allen M. Brackley

    2005-01-01

    Major changes in federal forest policy in Alaska have resulted in a dramatic downsizing of the state's forest industry. These changes have driven efforts for economic restructuring and improved support for Alaskan communities. The University of Alaska Sitka Forest Products program at the University of Alaska Southeast is one example of efforts to better support...

  11. An assessment of educational needs in the Alaskan forest products industry

    Treesearch

    J. Thomas; E. Hansen; A. Brackley

    2005-01-01

    Major changes in federal forest policy in Alaska have resulted in a dramatic downsizing of the state's forest industry. These changes have driven efforts for economic restructuring and improved support for Alaskan communities. The University of Alaska Sitka Forest Products program at the University of Alaska Southeast is one example of efforts to better support...

  12. Development and status of Arkansas' primary forest products industry

    Treesearch

    Dennis M. May

    1990-01-01

    The development of Arkansas' primary forest products industry is presented by following the changes in numbers and types of mills operating through time as well as the State's production of roundwood to supply the changing industry.

  13. The Impact of Charcoal Production on Forest Degradation: a Case Study in Tete, Mozambique

    NASA Technical Reports Server (NTRS)

    Sedano, F.; Silva. J. A.; Machoco, R.; Meque, C. H.; Sitoe, A.; Ribeiro, N.; Anderson, K.; Ombe, Z. A.; Baule, S. H.; Tucker, C. J.

    2016-01-01

    Charcoal production for urban energy consumption is a main driver of forest degradation in sub-Saharan Africa. Urban growth projections for the continent suggest that the relevance of this process will increase in the coming decades. Forest degradation associated to charcoal production is difficult to monitor and commonly overlooked and underrepresented in forest cover change and carbon emission estimates. We use a multi-temporal dataset of very high-resolution remote sensing images to map kiln locations in a representative study area of tropical woodlands in central Mozambique. The resulting maps provided a characterization of the spatial extent and temporal dynamics of charcoal production. Using an indirect approach we combine kiln maps and field information on charcoal making to describe the magnitude and intensity of forest degradation linked to charcoal production, including aboveground biomass and carbon emissions. Our findings reveal that forest degradation associated to charcoal production in the study area is largely independent from deforestation driven by agricultural expansion and that its impact on forest cover change is in the same order of magnitude as deforestation. Our work illustrates the feasibility of using estimates of urban charcoal consumption to establish a link between urban energy demands and forest degradation. This kind of approach has potential to reduce uncertainties in forest cover change and carbon emission assessments in sub-Saharan Africa.

  14. Managing forests because carbon matters: integrating energy, products, and land management policy

    Treesearch

    Robert W. Malmsheimer; James L. Bowyer; Jeremy S. Fried; Edmund Gee; Robert Izlar; Reid A. Miner; Ian A. Munn; Elaine Oneil; William C. Stewart

    2011-01-01

    The United States needs many different types of forests: some managed for wood products plus other benefits, and some managed for nonconsumptive uses and benefits. The objective of reducing global greenhouse gases (GHG) requires increasing carbon storage in pools other than the atmosphere. Growing more forests and keeping forests as forests are only part of the...

  15. 36 CFR 223.277 - Forest botanical products definition.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., transplants, tree sap, and wildflowers. Forest botanical products are not animals, animal parts, Christmas trees, fence material, firewood, insects, mine props, minerals, posts and poles, rails, rocks, shingle...

  16. Primary forest products industry and timber use, Wisconsin, 1973.

    Treesearch

    James E. Blyth; Eugene F. Landt; James W. Whipple; Jerold T. Hahn

    1976-01-01

    Discusses recent Wisconsin forest industry trends; timber removals for industrial roundwood in 1973; production and receipts in 1973 of pulpwood, saw logs, veneer logs, and other industrial roundwood products. Shows trends in pulpwood and veneer log production and compares saw log production in 1967 and 1973. Discusses primary wood-using plant residue and its...

  17. Primary forest products industry and timber use, Michigan, 1972.

    Treesearch

    James E. Blyth; Allan H. Boelter; Carl W. Danielson

    1975-01-01

    Discusses recent Michigan forest industry trends; timber removals for industrial roundwood in 1972; production and receipts in 1972 of pulpwood, saw logs, veneer logs ,and other roundwood products. Shows trends in pulpwood and veneer-log production, and compares saw log production in 1969 and 1972. Discusses primary wood-using plant residue and its disposition.

  18. Forest products harvested in Hawaii - 1967

    Treesearch

    Herbert L. Wick

    1968-01-01

    A survey of the primary forest products harvested in Hawaii in 1967 showed a total value of $334,000, a 24 percent increase over the value in the 1958 survey. Compared with the earlier survey, the volume of sawlogs and treefern harvested has gone up while the volume of fuelwood and posts harvested has declined.

  19. The Northern Forest Futures Project: A forward look at forest conditions in the northern United States

    Treesearch

    W. Keith Moser; Stephen R. Shifley

    2012-01-01

    Forests and forest ecosystems provide a critical array of benefits, from clean air and water to commercial products to open space. The forests and their ability to provide desired benefi ts constantly change in response to natural forces, human decisions, and human needs. The complexity and rate of change demand a rigorous evaluation of existing and emerging natural...

  20. Tree species' responses to throughfall removal experiments superimposed on a natural drought event in two contrasting humid temperate forests in New Hampshire, USA

    NASA Astrophysics Data System (ADS)

    Jennings, Katie; McIntire, Cameron; Coble, Adam; Vandeboncoeur, Matthew; Rustad, Lindsay; Templer, Pamela; Absbjornsen, Heidi

    2017-04-01

    Climate change is likely to affect Northeastern U.S. forests through the increased frequency and severity of drought events. However, our understanding of how these humid temperate forests will respond to moderate to extreme droughts is limited. Given the important role that these forests play in providing ecosystem services and in supplying forest products, enhancing our knowledge about the impacts of drought is critical to guiding forest management and climate change adaptation efforts. We conducted 50% throughfall removal experiments at two contrasting sites in the Northeastern US (Hubbard Brook Experimental Forest and Thompson Farm, NH, USA), which were superimposed on the severe natural drought occurring in August-September 2016. Preliminary analysis suggests that the two sites respond differently to simulated drought. Pinus strobus trees at Thompson Farm reduced their transpiration rates in response to both the natural and experimental drought, particularly evident during a 5-day period at the height of the drought were transpiration nearly ceased. Both P. strobus and Quercus rubra trees increased their water use efficiency in response to reduced soil water availability, with Q. rubra allowing its midday water potential to reach more negative values, consistent with its more drought tolerant strategy compared to P. strobus. In contrast, we did not detect any significant differences in tree transpiration rates or growth in the dominant tree species, Acer rubrum, in response to the experimental drought treatment at Hubbard Brook. However, both soil respiration and fine root biomass production were lower in the drought treatment plots relative to the control plots at Hubbard Brook. We plan to continue these throughfall removal experiments for at least two more years to better understand the implications of future drought in these humid temperate forests and identify differences in species' physiological adaptations and threshold responses.

  1. Alaska’s timber harvest and forest products industry, 2011

    Treesearch

    Erik C. Berg; Charles B. Gale; Todd A. Morgan; Allen M. Brackley; Charles E. Keegan; Susan J. Alexander; Glenn A. Christensen; Chelsea P. McIver; Micah G. Scudder

    2014-01-01

    This report traces the flow of timber harvested in Alaska during calendar year 2011, describes the composition and operations of the state’s primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as trends in timber harvest, production, export, sales of primary wood products,...

  2. Informing the improvement of forest products durability using small angle neutron scattering

    Treesearch

    Nayomi Plaza Rodriguez; Sai Venkatesh Pingali; Shuo Qian; William T. Heller; Joseph E. Jakes

    2016-01-01

    A better understanding of how wood nanostructure swells with moisture is needed to accelerate the development of forest products with enhanced moisture durability. Despite its suitability to study nanostructures, small angle neutron scattering (SANS) remains an underutilized tool in forest products research. Nanoscale moisture-induced structural changes in intact and...

  3. The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests.

    PubMed

    Malhi, Yadvinder; Doughty, Christopher E; Goldsmith, Gregory R; Metcalfe, Daniel B; Girardin, Cécile A J; Marthews, Toby R; Del Aguila-Pasquel, Jhon; Aragão, Luiz E O C; Araujo-Murakami, Alejandro; Brando, Paulo; da Costa, Antonio C L; Silva-Espejo, Javier E; Farfán Amézquita, Filio; Galbraith, David R; Quesada, Carlos A; Rocha, Wanderley; Salinas-Revilla, Norma; Silvério, Divino; Meir, Patrick; Phillips, Oliver L

    2015-06-01

    Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling. © 2015 John Wiley & Sons Ltd.

  4. South Carolina's forest products industry: performance and contribution to the state's economy, 1970 to 1980.

    Treesearch

    Wilbur R. Maki; Con H. Schallau; Bennett B. Foster; Clair H. Redmond

    1986-01-01

    Employment and earnings in South Carolina's forest products industry, like those of most Southern States, grew significantly between 1970 and 1980. The forest products industry accounted for a larger share of the State's economic base in 1980 than in 1970. Moreover, during this period, the State increased its share of the Nation's forest products...

  5. Xylaria at the Forest Products Laboratory : past, present, and future

    Treesearch

    Regis B. Miller

    1999-01-01

    This report describes the history and current status of wood collections housed in the Center for Wood Anatomy Research at the Forest Products Laboratory, USDA Forest Service. The collections include the original Madison collection (MADw.) and the collection formerly housed at the Yale School of Forestry, Yale University (...

  6. Managing forest disturbances and community responses: lessons from the Kenai Peninsula, Alaska.

    Treesearch

    Courtney G. Flint; Richard Haynes

    2006-01-01

    Managing forest disturbances can be complicated by diverse human community responses. Interview and quantitative analysis of mail surveys were used to assess risk perceptions and community actions in response to forest disturbance by spruce bark beetles. Despite high risk perception of immediate threats to personal safety and property, risk perceptions of broader...

  7. Forest product trade impacts of an invasive species: modeling structure and intervention trade-offs

    Treesearch

    Jeffrey Prestemon; Shushuai Zhu; James A. Turner; Joseph Buongiorno; Ruhong Li

    2006-01-01

    Asian gypsy and nun moth introductions into the United States, possibly arriving on imported Siberian coniferous logs, threaten domestic forests and product markers and could have global market consequences. We simulate, using the Global Forest Products Model (a spatial equilibrium model of the world forest sector), the consequences under current policies of a...

  8. Forest edge disturbance increases rattan abundance in tropical rain forest fragments.

    PubMed

    Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Laurance, Susan G; Alamgir, Mohammed; Porolak, Gabriel; Laurance, William F

    2017-07-20

    Human-induced forest fragmentation poses one of the largest threats to global diversity yet its impact on rattans (climbing palms) has remained virtually unexplored. Rattan is arguably the world's most valuable non-timber forest product though current levels of harvesting and land-use change place wild populations at risk. To assess rattan response to fragmentation exclusive of harvesting impacts we examined rattan abundance, demography and ecology within the forests of northeastern, Australia. We assessed the community abundance of rattans, and component adult (>3 m) and juvenile (≤3 m) abundance in five intact forests and five fragments (23-58 ha) to determine their response to a range of environmental and ecological parameters. Fragmented forests supported higher abundances of rattans than intact forests. Fragment size and edge degradation significantly increased adult rattan abundance, with more in smaller fragments and near edges. Our findings suggest that rattan increase within fragments is due to canopy disturbance of forest edges resulting in preferential, high-light habitat. However, adult and juvenile rattans may respond inconsistently to fragmentation. In managed forest fragments, a rattan abundance increase may provide economic benefits through sustainable harvesting practices. However, rattan increases in protected area forest fragments could negatively impact conservation outcomes.

  9. Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services.

    PubMed

    Paoletti, E; Schaub, M; Matyssek, R; Wieser, G; Augustaitis, A; Bastrup-Birk, A M; Bytnerowicz, A; Günthardt-Goerg, M S; Müller-Starck, G; Serengil, Y

    2010-06-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Primary forest products industry and timber use, Michigan, 1977.

    Treesearch

    James E. Blyth; Jack Zollner; W. Brad Smith

    1981-01-01

    Discusses recent Michigan forest industry trends, timber removals for industrial roundwood in 1977, and production and receipts of pulpwood, saw logs, and other industrial roundwood products. Reports on associated logging and primary mill residues and the disposition of mill residue.

  11. North Carolina's forest products industry: performance and contribution to the state's economy, 1970 to 1980.

    Treesearch

    Con H. Schallau; Wilbur R. Maki; Bennett B. Foster; Clair H. Redmond

    1985-01-01

    Employment and earnings in North Carolina's forest products industry, like those of most Southern States, grew significantly between 1970 and 1980. The forest products industry accounted for a larger share of the State's economic base in 1980 than in 1970. North Carolina had more forest products industry employment than any other State in the South. Moreover...

  12. Quantifying the missing link between forest albedo and productivity in the boreal zone

    NASA Astrophysics Data System (ADS)

    Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina

    2016-11-01

    Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Currently, the physical link between forest albedo and productivity is poorly understood, yet it is crucial for designing optimal forest management strategies for mitigating climate change. We investigated the relationships between boreal forest structure, albedo and FAPAR using a radiative transfer model called Forest Reflectance and Transmittance model FRT and extensive forest inventory data sets ranging from southern boreal forests to the northern tree line in Finland and Alaska (N = 1086 plots). The forests in the study areas vary widely in structure, species composition, and human interference, from intensively managed in Finland to natural growth in Alaska. We show that FAPAR of tree canopies (FAPARCAN) and albedo are tightly linked in boreal coniferous forests, but the relationship is weaker if the forest has broadleaved admixture, or if canopies have low leaf area and the composition of forest floor varies. Furthermore, the functional shape of the relationship between albedo and FAPARCAN depends on the angular distribution of incoming solar irradiance. We also show that forest floor can contribute to over 50 % of albedo or total ecosystem FAPAR. Based on our simulations, forest albedos can vary notably across the biome. Because of larger proportions of broadleaved trees, the studied plots in Alaska had higher albedo (0.141-0.184) than those in Finland (0.136-0.171) even though the albedo of pure coniferous forests was lower in Alaska. Our results reveal that variation in solar angle will need to be accounted for when evaluating climate effects of forest management in different latitudes. Furthermore, increasing the proportion of broadleaved trees in coniferous forests is the most important means of maximizing albedo without compromising productivity: based on our findings the potential of controlling forest

  13. 77 FR 65095 - National Forest Products Week, 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-24

    ... National Forest Products Week, 2012 By the President of the United States of America A Proclamation Since... Products Week, we celebrate sustainable uses of the lands we share and recommit to protecting them for... making our Nation what it is today, and they remain vital to our progress in the years ahead. This week...

  14. Carbon debt and carbon sequestration parity in forest bioenergy production

    Treesearch

    S.R. Mitchell; M.E. Harmon; K.B. O' Connell

    2012-01-01

    The capacity for forests to aid in climate change mitigation efforts is substantial but will ultimately depend on their management. If forests remain unharvested, they can further mitigate the increases in atmospheric CO2 that result from fossil fuel combustion and deforestation. Alternatively, they can be harvested for bioenergy production and...

  15. Expanding site productivity research to sustain non-timber forest functions

    Treesearch

    D. Andrew Scott; James A. Burger; Barbara Crane

    2006-01-01

    Southern forests produce multiple products and services including timber, wildlife habitat, species bio- and genetic divenity, water quality and control, waste remediation, recreation, and carbon sequestration. All of these benefits must be produced in a sustainable manner to meet today's societal needs without compromising future needs. A forest site is...

  16. New insights into mechanisms driving carbon allocation in tropical forests.

    PubMed

    Hofhansl, Florian; Schnecker, Jörg; Singer, Gabriel; Wanek, Wolfgang

    2015-01-01

    The proportion of carbon allocated to wood production is an important determinant of the carbon sink strength of global forest ecosystems. Understanding the mechanisms controlling wood production and its responses to environmental drivers is essential for parameterization of global vegetation models and to accurately predict future responses of tropical forests in terms of carbon sequestration. Here, we synthesize data from 105 pantropical old-growth rainforests to investigate environmental controls on the partitioning of net primary production to wood production (%WP) using structural equation modeling. Our results reveal that %WP is governed by two independent pathways of direct and indirect environmental controls. While temperature and soil phosphorus availability indirectly affected %WP via increasing productivity, precipitation and dry season length both directly increased %WP via tradeoffs along the plant economics spectrum. We provide new insights into the mechanisms driving %WP, allowing us to conclude that projected climate change could enhance %WP in less productive tropical forests, thus increasing carbon sequestration in montane forests, but adversely affecting lowland forests. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  17. Forest biogeochemistry in response to drought

    Treesearch

    William H. Schlesinger; Michael C. Dietze; Robert B. Jackson; Richard P. Phillips; Charles C. Rhoades; Lindsey E. Rustad; James M. Vose

    2015-01-01

    Trees alter their use and allocation of nutrients in response to drought, and changes in soil nutrient cycling and trace gas flux (N2O and CH4) are observed when experimental drought is imposed on forests. In extreme droughts, trees are increasingly susceptible to attack by pests and pathogens, which can lead to major changes in nutrient flux to the soil....

  18. Sediment Production in Forests of the Coastal Plain, Piedmont, and Interior Highlands

    Treesearch

    Daniel A. Marion; S.J. Ursic

    1993-01-01

    A primary environmental concern related to forestry in the South is the effects of forests and forestry practices on sediment production. Sediment is the most significant pollutant of southern waters. A liability in itself, sediment also accounts for most nutrients removed by water. This paper discusses sediment production from small catchments of undisturbed forests...

  19. Ash cap influences on site productivity and fertilizer response in forests of the Inland Northwest

    Treesearch

    Mariann T. Garrison-Johnston; Peter G. Mika; Dan L. Miller; Phil Cannon; Leonard R. Johnson

    2007-01-01

    Data from 139 research sites throughout the Inland Northwest were analyzed for effects of ash cap on site productivity, nutrient availability and fertilization response. Stand productivity and nitrogen (N) fertilizer response were greater on sites with ash cap than on sites without. Where ash was present, depth of ash had no effect on site productivity or N fertilizer...

  20. Primary forest products industry and timber use, Indiana, 1980.

    Treesearch

    James E. Blyth; Donald H. McGuire; W. Brad Smith

    1982-01-01

    Discusses recent Indiana forest industry trends; timber removals for industrial roundwood in 1980; and production and receipts of saw logs, pulpwood, veneer logs, and other industrial roundwood products. Reports on associated primary mill wood and bark residue and the disposition of mill residue.

  1. Response of birds to thinning young Douglas-fir forests

    USGS Publications Warehouse

    Hayes, John P.; Weikel, Jennifer M.; Huso, Manuela M. P.; Erickson, Janet L.

    2003-01-01

    As a result of recent fire history and decades of even-aged forest management, many coniferous forests in western Oregon are composed of young (20-50 yrs), densely stocked Douglas-fir stands. Often these stands are structurally simple - a single canopy layer with one or two overstory tree species - and have a relatively sparse understory. The lack of structural complexity in these stands may limit the availability of key habitat components for several species of vertebrates, including birds. Thinning may increase structural diversity by reducing competition among overstory trees and increasing the amount of sunlight reaching the forest floor, thereby increasing development of understory vegetation. Existing old-growth forests may have developed under lower densities than is typical of contemporary plantations. Thus, thinning also may be a tool for accelerating the development of late-successional forest conditions in some circumstances. In addition to the potential increases in structural and biological diversity, thinning frequently is used to optimize wood fiber production and to generate timber revenue.

  2. Louisiana's forest products industry: performance and contribution to the State's economy, 1970 to 1980.

    Treesearch

    Wilbur R. Maki; Con H Schallau; Bennett B. Foster; Clair H. Redmond

    1986-01-01

    Employment in Louisiana's forest products industry, unlike employment in the other 12 Southern States, decreased significantly between 1970 and 1980. Despite this decrease, the value added by the industry increased. The productivity of Louisiana's forest products industry ranked second among the 13 States in the South. In 1980, lumber and wood products...

  3. Modeling belowground biomass of black cohosh, a medicinal forest product.

    Treesearch

    James Chamberlain; Gabrielle Ness; Christine Small; Simon Bonner; Elizabeth Hiebert

    2014-01-01

    Tens of thousands of kilograms of rhizomes and roots of Actaea racemosa L., a native Appalachian forest perennial, are harvested every year and used for the treatment of menopausal conditions. Sustainable management of this and other wild-harvested non-timber forest products requires the ability to effectively and reliably inventory marketable plant...

  4. Response of a reptile guild to forest harvesting.

    PubMed

    Todd, Brian D; Andrews, Kimberly M

    2008-06-01

    Despite the growing concern over reptile population declines, the effects of modern industrial silviculture on reptiles have been understudied, particularly for diminutive and often overlooked species such as small-bodied snakes. We created 4 replicated forest-management landscapes to determine the response of small snakes to forest harvesting in the Coastal Plain of the southeastern United States. We divided the replicated landscapes into 4 treatments that represented a range of disturbed habitats: clearcut with coarse woody debris removed; clearcut with coarse woody debris retained; thinned pine stand; and control (unharvested second-growth planted pines). Canopy cover and ground litter were significantly reduced in clearcuts, intermediate in thinned forests, and highest in unharvested controls. Bare soil, maximum air temperatures, and understory vegetation all increased with increasing habitat disturbance. Concomitantly, we observed significantly reduced relative abundance of all 6 study species (scarletsnake[Cemophora coccinea], ring-neck snake[Diadophis punctatus], scarlet kingsnake[Lampropeltis triangulum], red-bellied snake[Storeria occipitomaculata], southeastern crowned snake[Tantilla coronata], and smooth earthsnake[Virginia valeriae]) in clearcuts compared with unharvested or thinned pine stands. In contrast, the greatest relative snake abundance occurred in thinned forest stands. Our results demonstrate that at least one form of forest harvesting is compatible with maintaining snake populations. Our results also highlight the importance of open-canopy structure and ground litter to small snakes in southeastern forests and the negative consequences of forest clearcutting for small snakes.

  5. Carpathian mountain forest vegetation and its responses to climate stressors

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.; Dida, Adrian I.

    2017-10-01

    Due to anthropogenic and climatic changes, Carpathian Mountains forests in Romania experience environmental degradation. As a result of global climate change, there is growing evidence that some of the most severe weather events could become more frequent in Romania over the next 50 to 100 years. In the case of Carpathian mountain forests, winter storms and heat waves are considered key climate risks, particularly in prealpine and alpine areas. Effects of climate extremes on forests can have both short-term and long-term implications for standing biomass, tree health and species composition. The preservation and enhancement of mountain forest vegetation cover in natural, semi-natural forestry ecosystems is an essential factor in sustaining environmental health and averting natural hazards. This paper aims to: (i) describe observed trends and scenarios for summer heat waves, windstorms and heavy precipitation, based on results from satellite time series NOAA AVHRR, MODIS Terra/Aqua and Landsat TM/ETM+/OLI NDVI and LAI data recorded during 2000-2016 period correlated with meteorological parameters, regional climate models, and other downscaling procedures, and (ii) discuss potential impacts of climate changes and extreme events on Carpathian mountain forest system in Romania. The response of forest land cover vegetation in Carpathian Mountains, Romania to climatic factors varies in different seasons of the years, the diverse vegetation feedbacks to climate changes being related to different vegetation characteristics and meteorological conditions. Based on integrated analysis of satellite and field data was concluded that forest ecosystem functions are responsible of the relationships between mountain specific vegetation and climate.

  6. Historic resource production from USDA Forest Service northern and intermountain region lands.

    Treesearch

    David Calkin

    1999-01-01

    This paper presents long-term resource production from National Forests in the Northern and Intermountain Regions, Regions 1 and 4, respectively. A historical data series of timber harvest and grazing levels on National Forests and lumber production and prices for these regions is developed. Significant trends within the data set are examined. A simple model based on...

  7. Forest biomass, productivity and carbon cycling along a rainfall gradient in West Africa.

    PubMed

    Moore, Sam; Adu-Bredu, Stephen; Duah-Gyamfi, Akwasi; Addo-Danso, Shalom D; Ibrahim, Forzia; Mbou, Armel T; de Grandcourt, Agnès; Valentini, Riccardo; Nicolini, Giacomo; Djagbletey, Gloria; Owusu-Afriyie, Kennedy; Gvozdevaite, Agne; Oliveras, Imma; Ruiz-Jaen, Maria C; Malhi, Yadvinder

    2018-02-01

    Net Primary Productivity (NPP) is one of the most important parameters in describing the functioning of any ecosystem and yet it arguably remains a poorly quantified and understood component of carbon cycling in tropical forests, especially outside of the Americas. We provide the first comprehensive analysis of NPP and its carbon allocation to woody, canopy and root growth components at contrasting lowland West African forests spanning a rainfall gradient. Using a standardized methodology to study evergreen (EF), semi-deciduous (SDF), dry forests (DF) and woody savanna (WS), we find that (i) climate is more closely related with above and belowground C stocks than with NPP (ii) total NPP is highest in the SDF site, then the EF followed by the DF and WS and that (iii) different forest types have distinct carbon allocation patterns whereby SDF allocate in excess of 50% to canopy production and the DF and WS sites allocate 40%-50% to woody production. Furthermore, we find that (iv) compared with canopy and root growth rates the woody growth rate of these forests is a poor proxy for their overall productivity and that (v) residence time is the primary driver in the productivity-allocation-turnover chain for the observed spatial differences in woody, leaf and root biomass across the rainfall gradient. Through a systematic assessment of forest productivity we demonstrate the importance of directly measuring the main components of above and belowground NPP and encourage the establishment of more permanent carbon intensive monitoring plots across the tropics. © 2017 John Wiley & Sons Ltd.

  8. When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback

    PubMed Central

    Štursová, Martina; Šnajdr, Jaroslav; Cajthaml, Tomáš; Bárta, Jiří; Šantrůčková, Hana; Baldrian, Petr

    2014-01-01

    Coniferous forests cover extensive areas of the boreal and temperate zones. Owing to their primary production and C storage, they have an important role in the global carbon balance. Forest disturbances such as forest fires, windthrows or insect pest outbreaks have a substantial effect on the functioning of these ecosystems. Recent decades have seen an increase in the areas affected by disturbances in both North America and Europe, with indications that this increase is due to both local human activity and global climate change. Here we examine the structural and functional response of the litter and soil microbial community in a Picea abies forest to tree dieback following an invasion of the bark beetle Ips typographus, with a specific focus on the fungal community. The insect-induced disturbance rapidly and profoundly changed vegetation and nutrient availability by killing spruce trees so that the readily available root exudates were replaced by more recalcitrant, polymeric plant biomass components. Owing to the dramatic decrease in photosynthesis, the rate of decomposition processes in the ecosystem decreased as soon as the one-time litter input had been processed. The fungal community showed profound changes, including a decrease in biomass (2.5-fold in the litter and 12-fold in the soil) together with the disappearance of fungi symbiotic with tree roots and a relative increase in saprotrophic taxa. Within the latter group, successive changes reflected the changing availability of needle litter and woody debris. Bacterial biomass appeared to be either unaffected or increased after the disturbance, resulting in a substantial increase in the bacterial/fungal biomass ratio. PMID:24671082

  9. Alpine forest-tundra ecotone response to temperature change,Sayan Mountains, Siberia

    NASA Technical Reports Server (NTRS)

    Ranson, K Jon; Kharuk, Vyetcheslav I.

    2007-01-01

    Models of climate change predict shifts of vegetation zones. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. There is evidence of vegetation change on the northern treeline However, observations on alpine tree line response are controversial. In this NEESPI related study we show that during the past three decades in the forest-tundra ecotone of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure, regeneration propagation into the alpine tundra, and transformation of prostrate Siberian pine and fir into arboreal forms. We found that these changes occurred since the mid 1980s, and strongly correlates with positive temperature (and to a lesser extent, precipitation) trends. Improving climate for forest growth( i.e., warmer temperatures and increased precipitation) provides competitive advantages to Siberian pine in the alpine forest-tundra ecotone, as well as in areas typically dominated by larch, where it has been found to be forming a secondary canopy layer. Substitution of deciduous conifer, larch, for evergreen conifers, decreases albedo and provides positive feedback for temperature increase.

  10. Primary forest products industry and timber use, Missouri, 1980.

    Treesearch

    James E. Blyth; Shelby Jones; W. Brad Smith

    1983-01-01

    Discusses recent Missouri forest industry trends; timber removals for industrial roundwood in 1980; and production and receipts of saw logs, pulpwood, cooperage logs, charcoal wood, and other industrial roundwood products. Reports on associated primary mill wood and bark residue and the disposition of mill residue.

  11. Regulating riparian forests for aquatic productivity in the Pacific Northwest, USA: addressing a paradox.

    PubMed

    Newton, Michael; Ice, George

    2016-01-01

    Forested riparian buffers isolate streams from the influence of harvesting operations that can lead to water temperature increases. Only forest cover between the sun and stream limits stream warming, but that cover also reduces in-stream photosynthesis, aquatic insect production, and fish productivity. Water temperature increases that occur as streams flow through canopy openings decrease rapidly downstream, in as little as 150 m. Limiting management options in riparian forests restricts maintenance and optimization of various buffer contributions to beneficial uses, including forest products, fish, and their food supply. Some riparian disturbance, especially along cold streams, appears to benefit fish productivity. Options for enhancing environmental investments in buffers should include flexibility in application of water quality standards to address the general biological needs of fish and temporary nature of clearing induced warming. Local prescriptions for optimizing riparian buffers and practices that address long-term habitat needs deserve attention. Options and incentives are needed to entice landowners to actively manage for desirable riparian forest conditions.

  12. Greenhouse Gas and Carbon Profile of the U.S. Forest Products Industry Value Chain

    PubMed Central

    2010-01-01

    A greenhouse gas and carbon accounting profile was developed for the U.S. forest products industry value chain for 1990 and 2004−2005 by examining net atmospheric fluxes of CO2 and other greenhouse gases (GHGs) using a variety of methods and data sources. Major GHG emission sources include direct and indirect (from purchased electricity generation) emissions from manufacturing and methane emissions from landfilled products. Forest carbon stocks in forests supplying wood to the industry were found to be stable or increasing. Increases in the annual amounts of carbon removed from the atmosphere and stored in forest products offset about half of the total value chain emissions. Overall net transfers to the atmosphere totaled 91.8 and 103.5 TgCO2-eq. in 1990 and 2005, respectively, although the difference between these net transfers may not be statistically significant. Net transfers were higher in 2005 primarily because additions to carbon stored in forest products were less in 2005. Over this same period, energy-related manufacturing emissions decreased by almost 9% even though forest products output increased by approximately 15%. Several types of avoided emissions were considered separately and were collectively found to be notable relative to net emissions. PMID:20355695

  13. Assessing soil quality: practicable standards for sustainable forest productivity in the United States

    Treesearch

    Robert F. Powers; Allan E. Tiarks; James R. Boyle

    1998-01-01

    Productive soils form the foundation for productive forests. But unfortunately, the significance of soil seems lost to modem society. Most of us are too far removed from the natural factors of production to appreciate the multiple roles of soil. Nor is its worth recognized well by many forest managers who too often see soil only in its capacity for logging roads and...

  14. Sustainable forest management of tropical forests can reduce carbon emissions and stabilize timber production

    Treesearch

    N. Sasaki; G.P. Asner; Yude Pan; W. Knorr; P.B. Durst; H.O. Ma; I. Abe; A.J. Lowe; L.P. Koh

    2016-01-01

    The REDD+ scheme of the United Nations Framework Conventionon Climate Change has provided opportunities to manage tropical forests for timber production and carbon emission reductions. To determine the appropriate loggingtechniques, we analyzed potential timber production and carbon emission reductions under two logging techniques over a 40-year period of selective...

  15. Research strategies for increasing productivity of intensively managed forest plantations

    Treesearch

    Eric D. Vance; Douglas A. Maguire; Ronald S. Jr. Zalesny

    2010-01-01

    Intensive management practices increase productivity of forest plantations by reducing site, stand, and biological limitations to dry matter production and by maximizing the allocation of production to harvestable tree components. The resulting increase allows greater fiber production from a smaller land base and provides market incentives to keep these lands under...

  16. Functional diversity response to hardwood forest management varies across taxa and spatial scales.

    PubMed

    Murray, Bryan D; Holland, Jeffrey D; Summerville, Keith S; Dunning, John B; Saunders, Michael R; Jenkins, Michael A

    2017-06-01

    Contemporary forest management offers a trade-off between the potential positive effects of habitat heterogeneity on biodiversity, and the potential harm to mature forest communities caused by habitat loss and perforation of the forest canopy. While the response of taxonomic diversity to forest management has received a great deal of scrutiny, the response of functional diversity is largely unexplored. However, functional diversity may represent a more direct link between biodiversity and ecosystem function. To examine how forest management affects diversity at multiple spatial scales, we analyzed a long-term data set that captured changes in taxonomic and functional diversity of moths (Lepidoptera), longhorned beetles (Coleoptera: Cerambycidae), and breeding birds in response to contemporary silvicultural systems in oak-hickory hardwood forests. We used these data sets to address the following questions: how do even- and uneven-aged silvicultural systems affect taxonomic and functional diversity at the scale of managed landscapes compared to the individual harvested and unharvested forest patches that comprise the landscapes, and how do these silvicultural systems affect the functional similarity of assemblages at the scale of managed landscapes and patches? Due to increased heterogeneity within landscapes, we expected even-aged silviculture to increase and uneven-aged silviculture to decrease functional diversity at the landscape level regardless of impacts at the patch level. Functional diversity responses were taxon-specific with respect to the direction of change and time since harvest. Responses were also consistent across patch and landscape levels within each taxon. Moth assemblage species richness, functional richness, and functional divergence were negatively affected by harvesting, with stronger effects resulting from uneven-aged than even-aged management. Longhorned beetle assemblages exhibited a peak in species richness two years after harvesting

  17. Tennessee's forest products industry: performance and contribution to the State's economy, 1970 to 1980.

    Treesearch

    Wilbur R. Maki; Con H Schallau; Bennett B. Foster; Clair H. Redmond

    1987-01-01

    The forest products industry is one of Tennessee's basic industries; in 1980, for example, it accounted for about 1 of every 12 basic jobs. Furthermore, Tennessee was one of the majority of Southern States in which the forest products industry improved its competitive position during the 1970's. In 1977, productivity growth of the paper and allied products...

  18. Forest communities in the third millennium: linking research, business, and policy toward a sustainable non-timber forest product sector.

    Treesearch

    Iain Davidson-Hunt; Luc C. Duchesne; John C., eds. Zasada

    2001-01-01

    Contains a wide variety of papers given at the first international conference on non-timber forest products (NTFP) in cold temperate and boreal forests. Focuses on many facets of NTFPs: economics, society, biology, resource management, business development, and others.

  19. Consequences of increasing bioenergy demand on wood and forests: an application of the global forest products model

    Treesearch

    Joseph Buongiorno; Ronald Raunikar; Shushuai Zhu

    2011-01-01

    The Global Forest Products Model (GFPM) was applied to project the consequences for the global forest sector of doubling the rate of growth of bioenergy demand relative to a base scenario, other drivers being maintained constant. The results showed that this would lead to the convergence of the price of fuelwood and industrial roundwood, raising the price of industrial...

  20. Setulang forest conservation strategy in safeguarding the conservation of non-timber forest products in Malinau District

    NASA Astrophysics Data System (ADS)

    Hutauruk, T. R.; Lahjie, A. M.; Simarangkir, B. D. A. S.; Aipassa, M. I.; Ruslim, Y.

    2018-04-01

    Some research on human relationships with forests shows that human activities for the forests are sufficient to meet demand or to meet demand. Both will directly or indirectly change the perceptions of the people who exploit them against the forests being utilized. Setulang community one of the community groups that intensively utilize NTFP as one of the source of fulfillment and fulfill the demand of handicraft product. For needs and demand of livelihood the people of Setulang choose to make the existing forest in the Tane Olen area into. The analysis method used in this research with Stength Weakness Opportunity and Threat (SWOT). The results of this study show the extent to which the commitment of Setulang community and the conservation efforts of Setulang community both self-help and donor assistance and the local government, as well as what strategic steps can be taken by the stakeholders to conserve so that the village forest can provide benefits in the short or long term. Strategic measures need to be set up save Setulang State Forest from degradation and deforestation occurring around the village.

  1. Non-timber forest products and livelihoods in Michigan's Upper Peninsula

    Treesearch

    Marla R. Emery

    2001-01-01

    Non-timber forest products (NTFPs) are increasingly looked to as potential income sources for forest communities. Yet little is known about the existing livelihood uses of NTFPs. Drawing on a case study in Michigan's Upper Peninsula, this paper describes the contemporary contributions of NTFPs to the livelihoods of people who gather them. First-hand use of...

  2. Seed production on the Voight Creek Experimental Forest, 1950-1953.

    Treesearch

    Elmer W. Shaw

    1954-01-01

    Information on seed production is vitally important in obtaining good forest regeneration. This is true of young-growth as well as virgin stands of Douglas-fir, but thus far most seed studies have been confined to old growth. Now, with the transition to management and harvest of young stands, we need seed information from these forests, also.

  3. Gathering in Thoreau's backyard: nontimber forest product harvesting as practice

    Treesearch

    Paul Robbins; Marla Emery; Jennifer L. Rice

    2008-01-01

    Understanding of the gathering of nontimber forest products (NTFPs) in woodlands has focused heavily on politics surrounding public lands and harvester communities. Yet forest gathering may be far more universal. This paper reports the results of a survey of residents in New England, querying whether people gather wild things and for what purposes. The results suggest...

  4. Recent changes in costs of shipping forest products by rail.

    Treesearch

    Kristine C. Jackson

    1988-01-01

    Costs for shipping lumber, plywood, and paper by rail are used by the USDA Forest Service in periodic timber assessments to measure the average cost of transporting forest products from producing locations to the point of final consumption. The Staggers Rail Act of 1980 authorized deregulation of the Nation's railroads. The purposes of this study were to determine...

  5. Special forest products: integrating social, economic, and biological considerations into ecosystem management.

    Treesearch

    R. Molina; N. Vance; J.F. Weigand; D. Pilz; M.P. Amaranthus

    1997-01-01

    Throughout history, forests have provided a wealth of beneficial and essential products ranging from foods and medicines to building materials. Ancient pharmacopoeias list myriad forest plants and fungi for treating various ailments. Many of these ancient remedies have evolved and continue to evolve into the important drugs of modern medicine. Use of diverse forest...

  6. The role of nutrients, productivity and climate in determining tree fruit production in European forests.

    PubMed

    Fernández-Martínez, Marcos; Vicca, Sara; Janssens, Ivan A; Espelta, Josep Maria; Peñuelas, Josep

    2017-01-01

    Fruit production (NPP f ), the amount of photosynthates allocated to reproduction (%GPP f ) and their controls for spatial and species-specific variability (e.g. nutrient availability, climate) have been poorly studied in forest ecosystems. We characterized fruit production and its temporal behaviour for several tree species and resolved the effects of gross primary production (GPP), climate and foliar nutrient concentrations. We used data for litterfall and foliar nutrient concentration from 126 European forests and related them to climatic data. GPP was estimated for each forest using a regression model. Mean NPP f ranged from c. 10 to 40 g C m -2  yr -1 and accounted for 0.5-3% of GPP. Forests with higher GPPs produced larger fruit crops. Foliar zinc (Zn) and phosphorus (P) concentrations were associated positively with NPP f , whereas foliar Zn and potassium (K) were negatively related to its temporal variability. Maximum NPP f and interannual variability of NPP f were higher in Fagaceae than in Pinaceae species. NPP f and %GPP f were similar amongst the studied species despite the different reproductive temporal behaviour of Fagaceae and Pinaceae species. We report that foliar concentrations of P and Zn are associated with %GPP f , NPP f and its temporal behaviour. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. Production of high-resolution forest-ecosite maps based on model predictions of soil moisture and nutrient regimes over a large forested area.

    PubMed

    Yang, Qi; Meng, Fan-Rui; Bourque, Charles P-A; Zhao, Zhengyong

    2017-09-08

    Forest ecosite reflects the local site conditions that are meaningful to forest productivity as well as basic ecological functions. Field assessments of vegetation and soil types are often used to identify forest ecosites. However, the production of high-resolution ecosite maps for large areas from interpolating field data is difficult because of high spatial variation and associated costs and time requirements. Indices of soil moisture and nutrient regimes (i.e., SMR and SNR) introduced in this study reflect the combined effects of biogeochemical and topographic factors on forest growth. The objective of this research is to present a method for creating high-resolution forest ecosite maps based on computer-generated predictions of SMR and SNR for an area in Atlantic Canada covering about 4.3 × 10 6 hectares (ha) of forestland. Field data from 1,507 forest ecosystem classification plots were used to assess the accuracy of the ecosite maps produced. Using model predictions of SMR and SNR alone, ecosite maps were 61 and 59% correct in identifying 10 Acadian- and Maritime-Boreal-region ecosite types, respectively. This method provides an operational framework for the production of high-resolution maps of forest ecosites over large areas without the need for data from expensive, supplementary field surveys.

  8. Diverse growth trends and climate responses across Eurasia’s boreal forest

    NASA Astrophysics Data System (ADS)

    Hellmann, Lena; Agafonov, Leonid; Charpentier Ljungqvist, Fredrik; Churakova (Sidorova, Olga; Düthorn, Elisabeth; Esper, Jan; Hülsmann, Lisa; Kirdyanov, Alexander V.; Moiseev, Pavel; Myglan, Vladimir S.; Nikolaev, Anatoly N.; Reinig, Frederick; Schweingruber, Fritz H.; Solomina, Olga; Tegel, Willy; Büntgen, Ulf

    2016-07-01

    The area covered by boreal forests accounts for ˜16% of the global and 22% of the Northern Hemisphere landmass. Changes in the productivity and functioning of this circumpolar biome not only have strong effects on species composition and diversity at regional to larger scales, but also on the Earth’s carbon cycle. Although temporal inconsistency in the response of tree growth to temperature has been reported from some locations at the higher northern latitudes, a systematic dendroecological network assessment is still missing for most of the boreal zone. Here, we analyze the geographical patterns of changes in summer temperature and precipitation across northern Eurasia >60 °N since 1951 AD, as well as the growth trends and climate responses of 445 Pinus, Larix and Picea ring width chronologies in the same area and period. In contrast to widespread summer warming, fluctuations in precipitation and tree growth are spatially more diverse and overall less distinct. Although the influence of summer temperature on ring formation is increasing with latitude and distinct moisture effects are restricted to a few southern locations, growth sensitivity to June-July temperature variability is only significant at 16.6% of all sites (p ≤ 0.01). By revealing complex climate constraints on the productivity of Eurasia’s northern forests, our results question the a priori suitability of boreal tree-ring width chronologies for reconstructing summer temperatures. This study further emphasizes regional climate differences and their role on the dynamics of boreal ecosystems, and also underlines the importance of free data access to facilitate the compilation and evaluation of massively replicated and updated dendroecological networks.

  9. Oklahoma's forest products industry: performance and contribution to the State's economy, 1970 to 1980.

    Treesearch

    Wilbur R. Maki; Con H Schallau; Bennett B. Foster; Clair H. Redmond

    1986-01-01

    Employment and earnings in Oklahoma's forest products industry, like those of most Southern States, grew significantly between 1970 and 1980. In fact, Oklahoma's share of the Nation's forest products employment and earnings increased during this period. In 1980, lumber and wood products accounted for the largest share of the industry's employment,...

  10. Kentucky's forest products industry: performance and contribution to the state's economy, 1970 to 1980.

    Treesearch

    Con H. Schallau; Wilbur R. Maki; Bennett B. Foster; Clair H. Redmond

    1986-01-01

    Employment and earnings in Kentucky's forest products industry, like those of most Southern States, grew significantly between 1970 and 1980. In fact, Kentucky's share of the Nation's forest products employment and earnings increased during this period. In 1980, lumber and wood products accounted for the largest share of the industry's employment,...

  11. Litterfall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forests in Guangdong, China

    USGS Publications Warehouse

    Zhou, G.; Guan, L.; Wei, X.; Zhang, Dongxiao; Zhang, Q.; Yan, J.; Wen, D.; Liu, J.; Liu, S.; Huang, Z.; Kong, G.; Mo, J.; Yu, Q.

    2007-01-01

    Evaluation of litterfall production is important for understanding nutrient cycling, forest growth, successional pathways, and interactions with environmental variables in forest ecosystems. Litterfall was intensively studied during the period of 1982-2001 in two subtropical monsoon vegetation gradients in the Dinghushan Biosphere Reserve, Guangdong Province, China. The two gradients include: (1) a successional gradient composed of pine forest (PF), mixed pine and broadleaved forest (MF) and monsoon evergreen broadleaved forest (BF), and (2) an altitudinal gradient composed of Baiyunci ravine rain forest (BRF), Qingyunci ravine rain forest (QRF), BF and mountainous evergreen broadleaved forest (MMF). Mean annual litterfall production was 356, 861 and 849 g m-2 for PF, MF and BF of the successional gradient, and 1016, 1061, 849 and 489 g m-2 for BRF, QRF, BF and MMF of the altitudinal gradient, respectively. As expected, mean annual litterfall of the pioneer forest PF was the lowest, but rapidly increased over the observation period while those in other forests were relatively stable, confirming that forest litterfall production is closely related to successional stages and growth patterns. Leaf proportions of total litterfall in PF, MF, BF, BRF, QRF and MMF were 76.4%, 68.4%, 56.8%, 55.7%, 57.6% and 69.2%, respectively, which were consistent with the results from studies in other evergreen broadleaved forests. Our analysis on litterfall monthly distributions indicated that litterfall production was much higher during the period of April to September compared to other months for all studied forest types. Although there were significant impacts of some climate variables (maximum and effective temperatures) on litterfall production in some of the studied forests, the mechanisms of how climate factors (temperature and rainfall) interactively affect litterfall await further study. ?? 2006 Springer Science+Business Media B.V.

  12. Growth response in Allegheny hardwood forests after diameter-limit pulpwood cuttings

    Treesearch

    A. F. Hough

    1954-01-01

    Valuable second-growth Allegheny hardwood-hemlock forests are found in the High Plateau section of the northern Allegheny Plateau. These forests are valuable as a habitat for wildlife, for regulating streamflow and protecting against erosion, for recreation, and as a source of timber products for industry.

  13. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics.

    PubMed

    Itter, Malcolm S; Finley, Andrew O; D'Amato, Anthony W; Foster, Jane R; Bradford, John B

    2017-06-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly

  14. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics

    USGS Publications Warehouse

    Itter, Malcolm S.; Finley, Andrew O.; D'Amato, Anthony W.; Foster, Jane R.; Bradford, John B.

    2017-01-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics—changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly

  15. Economic and environmental effects of accelerated tariff liberalization in the forest products sector.

    Treesearch

    D.J. Brooks; J.A. Ferrante; J. Haverkamp; I. Bowles; W. Lange; D. Darr

    2001-01-01

    This study assesses the incremental economic and environmental impacts resulting from changes in the timing and scope of forest products tariff reductions as proposed in the Accelerated Tariff Liberalization (ATL) initiative in forest products. This initiative was proposed for agreement among member countries of the World Trade Organization. The analysis of...

  16. Forest sector and primary forest products industry contributions to the economies of the southern states: 2011 update

    Treesearch

    Consuelo Brandeis; Donald G. Hodges

    2015-01-01

    The analysis in this article provides an update on the southern forest sector economic activity after the downturn experienced in 2008–2009. The analysis was conducted using Impact Analysis for Planning (IMPLAN) software and data sets for 2009 and 2011 and results from the USDA Forest Service Timber Products Output latest survey of primary wood processing mills....

  17. [Response of forest bird communities to forest gap in winter in southwestern China].

    PubMed

    Zhao, Dong-Dong; Wu, Ying-Huan; Lu, Zhou; Jiang, Guang-Wei; Zhou, Fang

    2013-06-01

    Although forest gap ecology is an important field of study, research remains limited. By plot setting and point counted observation, the response of birds to forest gaps in winter as well as bird distribution patterns in forest gaps and intact canopies were studied in a north tropical monsoon forest of southwestern China from November 2011 to February 2012 in the Fangcheng Golden Camellia National Nature Reserve, Guangxi. The regression equation of bird species diversity to habitat factor was Y1=0.611+0.002 X13+0.043 X2+0.002 X5-0.003 X8+0.006 X10+0.008 X1 and the regression equation of bird species dominance index to habitat factor was Y3=0.533+0.001 X13+0.019 X2+0.002 X3-0.017 X4+0.002 X1. There were 45 bird species (2 orders and 13 families) recorded in the forest gap, accounting for 84.9% of all birds (n=45), with an average of 9.6 species (range: 2-22). Thirty-nine bird species (5 orders and 14 families) were recorded in non-gap areas, accounting for 73.6% of all birds (n=39), with an average of 5.3 species (range: 1-12). These results suggested that gap size, arbor average height (10 m from gap margin), arbor quantity (10 m from gap margin), shrub quantity (10 m from gap margin), herbal average coverage (1 m from gap margin) and bare land ratio were the key forest gap factors that influenced bird diversities. On the whole, bird diversity in the forest gap was greater than in the intact canopy. Spatial distributions in the forest gaps were also observed in the bird community. Most birds foraged in the "middle" and "canopy" layers in the vertical stratification. In addition, "nearly from" and "close from" contained more birds in relation to horizontal stratification. Feeding niche differentiation was suggested as the main reason for these distribution patterns.

  18. Responses of endoparasites in red-backed voles (Myodes gapperi) to natural forest fires.

    PubMed

    Hwang, Y T; Gardner, S L; Millar, J S

    2010-01-01

    We investigated the responses of endoparasites in red-backed voles (Myodes gapperi) to fire in a boreal forest ecosystem. Because fire affects the environmental conditions and biodiversity of the forest ecosystem, the life cycle of parasites may also be affected because of the absence of intermediate hosts in the environment. We hypothesized that the prevalence of endoparasites would be influenced by the parasites' life cycle and habitat characteristics (forest vs. burned). We found that prevalence of endoparasites was different between forested and burned habitats (chi(2)=37.49, P<0.001). Cestodes, nematodes, and coccidia showed different responses to habitat alteration (chi(2)=37.43, P<0.001). There was a higher prevalence of cestodes in forested (53.5%) than burned habitats (35.0%). However, there was higher prevalence of coccidia in burned (55.0%) than forested (42.9%) habitats. Furthermore, although prevalence of cestode infection was lower in burned than forested habitat, individuals in both habitats had similar intensities of cestodes. Our study showed that habitat can significantly affect the parasite communities, depending on specific parasite life cycles.

  19. Carbon and nitrogen distribution in oak-hickory forests distributed along a productivity gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reber, R.T.; Kaczmarek, D.J.; Pope, P.E.

    1993-12-31

    Biomass, carbon and nitrogen pools were determined for oak-hickory forests of varying productivity. Little information of this type is available for the central hardwood region. Six oak-hickory dominated forests were chosen to represent a range in potential site productivity as influenced by soil type, amount of recyclable nutrients and available water. Biomass, carbon and nitrogen storage were determined for the following components: above ground standing biomass, fine root biomass, forest floor organic layers and litterfall. As site sequestered at each site was dependent more on the amount of living biomass at each site Litterfall, to some extent, increased with increasingmore » site productivity. As potential site productivity decreased, total fine root biomass increased. The data suggest that as site quality decreased fine root production and turnover may become as important in nutrient cycling as annual litterfall.« less

  20. 77 FR 17524 - Roseburg Forest Products, Composite Panels Division, Missoula, MT; Notice of Affirmative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-80,459] Roseburg Forest Products, Composite Panels Division, Missoula, MT; Notice of Affirmative Determination Regarding Application for... Assistance (TAA) applicable to workers and former workers of Roseburg Forest Products, Composite Panels...

  1. Opportunities for conservation-based development of nontimber forest products in the Pacific Northwest.

    Treesearch

    Bettina von Hagen; Roger D. Fight

    1999-01-01

    Declines in timber harvests on public lands and new market opportunities have rekindled an interest in nontimber forest products. Such products as edible mushrooms, medicinal plants, and floral and holiday greens provide alternative sources of revenue and employment for rural communities. This paper describes and analyzes the contribution of the nontimber forest...

  2. Non-timber forest products in Central Appalachia: market opportunities for rural development (poster abstract)

    Treesearch

    A.L. Hammett; J.L. Chamberlain

    1999-01-01

    The gathering of forest products has supplemented the incomes of Central Appalachia residents for many generations. Non-timber forest products (NTFPs) can be grouped within four general categories: edibles such as mushrooms; medicinal and dietary supplements, including ginseng, gingko, and St. John?s wort; floral products such as moss, grape vines, and ferns; and...

  3. Linking climate, gross primary productivity, and site index across forests of the western United States

    Treesearch

    Aaron R. Weiskittel; Nicholas L. Crookston; Philip J. Radtke

    2011-01-01

    Assessing forest productivity is important for developing effective management regimes and predicting future growth. Despite some important limitations, the most common means for quantifying forest stand-level potential productivity is site index (SI). Another measure of productivity is gross primary production (GPP). In this paper, SI is compared with GPP estimates...

  4. Detection of photosynthetic responses of cool-temperate forests following extreme climate events using Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Toda, M.; Knohl, A.; Herbst, M.; Keenan, T. F.; Yokozawa, M.

    2016-12-01

    The increase in extreme climate events associated with ongoing global warming may create severe damage to terrestrial ecosystems, changing plant structure and the eco-physiological functions that regulate ecosystem carbon exchange. However, most damage is usually due to moderate, rather than catastrophic, disturbances. The nature of plant functional responses to such disturbances, and the resulting effects on the terrestrial carbon cycle, remain poorly understood. To unravel the scientific question, tower-based eddy covariance data in the cool-temperate forests were used to constrain plant eco-physiological parameters in a persimoneous ecosystem model that may have affected carbon dynamics following extreme climate events using the statistic Bayesian inversion approach. In the present study, we raised two types of extreme events relevant for cool-temperate regions, i.e. a typhoon with mechanistic foliage destraction and a heat wave with severe drought. With appropriate evaluation of parameter and predictive uncertainties, the inversion analysis shows annual trajectory of activated photosynthetic responses following climate extremes compared the pre-disturbance state in each forest. We address that forests with moderate disturbance show substantial and rapid photosynthetic recovery, enhanced productivity, and, thus, ecosystem carbon exchange, although the effect of extreme climatic events varies depending on the stand successional phase and the type, intensity, timing and legacy of the disturbance.

  5. New Interest in Wild Forest Products in Europe as an Expression of Biocultural Dynamics.

    PubMed

    Wiersum, K F

    2017-01-01

    In Europe, interest in wild forest products is increasing. Such products may be interpreted in a biological sense as deriving from autonomously growing forest species or in a biocultural sense as reflecting dynamics in human living with biodiversity through re-wilding of earlier domesticated species. In this article I elaborate the idea that the new interests reflect biocultural dynamics. First, I identify these dynamics as involving both domestication and re-wilding and characterize these processes as involving biological, environmental, and cultural dimensions. Next, I present a comparative review of two approaches to re-wilding forest production in the Netherlands: meat production from new types of natural grazing systems, and food production from plants re-introduced to the wild. The first approach is based on the stimulation of naturally occurring ecological processes and the second on the stimulation of new forms of experiencing bio-cultural heritage. The examples demonstrate that the new interests in wild forest products involve both a return to earlier stages of domestication in an ecological sense and a new phase of acculturation to evolving socio-cultural conditions.

  6. Ecological and biological considerations for sustainable management of non-timber forest products in northern forests

    Treesearch

    Luc C. Duchesne; John C. Zasada; Iain Davidson-Hunt

    2001-01-01

    With a current output of over $241 million per year, non-timber forest products (NTFPs) contribute significantly to the welfare of rural and First Nations communities in Canada. Maple sap products, wild mushrooms, and wild fruits are the most important NTFPs for consumption both in Canada and abroad. However, because of increased access to international markets by...

  7. National workshop on forest productivity & technology: cooperative research to support a sustainable & competitive future - progress and strategy

    Treesearch

    Eric D. Vance

    2010-01-01

    The Agenda 2020 Program is a partnership among government agencies, the forest products industry, and academia to develop technology capable of enhancing forest productivity, sustaining environmental values, increasing energy efficiency, and improving the economic competitiveness of the United States forest sector. In November 2006, the USDA Forest Service, in...

  8. Predicting hydrological response to forest changes by simple statistical models: the selection of the best indicator of forest changes with a hydrological perspective

    NASA Astrophysics Data System (ADS)

    Ning, D.; Zhang, M.; Ren, S.; Hou, Y.; Yu, L.; Meng, Z.

    2017-01-01

    Forest plays an important role in hydrological cycle, and forest changes will inevitably affect runoff across multiple spatial scales. The selection of a suitable indicator for forest changes is essential for predicting forest-related hydrological response. This study used the Meijiang River, one of the headwaters of the Poyang Lake as an example to identify the best indicator of forest changes for predicting forest change-induced hydrological responses. Correlation analysis was conducted first to detect the relationships between monthly runoff and its predictive variables including antecedent monthly precipitation and indicators for forest changes (forest coverage, vegetation indices including EVI, NDVI, and NDWI), and by use of the identified predictive variables that were most correlated with monthly runoff, multiple linear regression models were then developed. The model with best performance identified in this study included two independent variables -antecedent monthly precipitation and NDWI. It indicates that NDWI is the best indicator of forest change in hydrological prediction while forest coverage, the most commonly used indicator of forest change is insignificantly related to monthly runoff. This highlights the use of vegetation index such as NDWI to indicate forest changes in hydrological studies. This study will provide us with an efficient way to quantify the hydrological impact of large-scale forest changes in the Meijiang River watershed, which is crucial for downstream water resource management and ecological protection in the Poyang Lake basin.

  9. 77 FR 35061 - Roseburg Forest Products Composite Panels Division Missoula, Montana; Notice of Negative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-80,459] Roseburg Forest Products Composite Panels Division Missoula, Montana; Notice of Negative Determination on Reconsideration On March 14... for Reconsideration for the workers and former workers of Roseburg Forest Products, Composite Panels...

  10. New estimates of temperature response of leaf photosynthesis in Amazon forest trees, its acclimation to mean temperature change and consequences for modelling climate response to rain forests.

    NASA Astrophysics Data System (ADS)

    Kruijt, B.; Jans, W.; Vasconcelos, S.; Tribuzy, E. S.; Felsemburgh, C.; Eliane, M.; Rowland, L.; da Costa, A. C. L.; Meir, P.

    2014-12-01

    In many dynamic vegetation models, degradation of the tropical forests is induced because they assume that productivity falls rapidly when temperatures rise in the region of 30-40°C. Apart plant respiration, this is due to the assumptions on the temperature optima of photosynthetic capacity, which are low and can differ widely between models, where in fact hardly any empirical information is available for tropical forests. Even less is known about the possibility that photosynthesis will acclimate to changing temperatures. The objective of this study to is to provide better estimates for optima, as well as to determine whether any acclimation to temperature change is to be expected. We present both new and hitherto unpublished data on the temperature response of photosynthesis of Amazon rainforest trees, encompassing three sites, several species and five field campaigns. Leaf photosynthesis and its parameters were determined at a range of temperatures. To study the long-term (seasonal) acclimation of this response, this was combined with an artificial, in situ, multi-season leaf heating experiment. The data show that, on average for all non-heated cases, the photosynthetic parameter Vcmax weakly peaks between 35 and 40 ˚C, while heating does not have a clearly significant effect. Results for Jmax are slightly different, with sharper peaks. Scatter was relatively high, which could indicate weak overall temperature dependence. The combined results were used to fit new parameters to the various temperature response curve functions in a range of DGVMs. The figure shows a typical example: while the default Jules model assumes a temperature optimum for Vcmax at around 33 ˚C, the data suggest that Vcmax keeps rising up to at least 40 ˚C. Of course, calculated photosynthesis, obtained by applying this Vcmax in the Farquhar model, peaks at lower temperature. Finally, the implication of these new model parameters for modelled climate change impact on modelled Amazon

  11. Disturbance, complexity, and succession of net ecosystem production in North America’s temperate deciduous forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gough, Christopher; Curtis, Peter; Hardiman, Brady

    Century-old forests in the U.S. upper Midwest and Northeast power much of North Amer- ica’s terrestrial carbon (C) sink, but these forests’ production and C sequestration capacity are expected to soon decline as fast-growing early successional species die and are replaced by slower growing late successional species. But will this really happen? Here we marshal empirical data and ecological theory to argue that substantial declines in net ecosystem production (NEP) owing to reduced forest growth, or net primary production (NPP), are not imminent in regrown temperate deciduous forests over the next several decades. Forest age and production data for temperatemore » deciduous forests, synthesized from published literature, suggest slight declines in NEP and increasing or stable NPP during middle successional stages. We revisit long-held hypotheses by EP Odum and others that suggest low-severity, high-frequency disturbances occurring in the region’s aging forests will, against intuition, maintain NEP at higher-than- expected rates by increasing ecosystem complexity, sustaining or enhancing NPP to a level that largely o sets rising C losses as heterotrophic respiration increases. This theoretical model is also supported by biological evidence and observations from the Forest Accelerated Succession Experiment in Michigan, USA. Ecosystems that experience high-severity disturbances that simplify ecosystem complexity can exhibit substantial declines in production during middle stages of succession. However, observations from these ecosystems have exerted a disproportionate in uence on assumptions regarding the trajectory and magnitude of age-related declines in forest production. We conclude that there is a wide ecological space for forests to maintain NPP and, in doing so, lessens the declines in NEP, with signi cant implications for the future of the North American carbon sink. Our intellectual frameworks for understanding forest C cycle dynamics and resilience

  12. Assessment of carbon pools in production forest, Pahang, Malaysia

    NASA Astrophysics Data System (ADS)

    Azian, M.; Nizam, M. S.; Samsudin, M.; Ismail, P.

    2016-11-01

    Forest is one of the main sources of carbon stock. Forest plays a key role in sustainable management by providing different aspects of forest ecosystem such as source of timber products, provide of clean water, food sources, etc. A study was conducted to assess carbon pools in selected production forest of Pahang, Malaysia. There are five main types of carbon pools that are recognized available in the forest, i.e. aboveground biomass (AGB), belowground biomass (BGB), deadwood, litter and soil; that these components of carbon pools can accumulate and release carbon into the atmosphere. Five sites with different years of logging period representing status of the forest were selected (i.e. before logging (PU), immediate after logging (P0), after 10 (P10), 20 (P20) and 30 (P30) years of logging). Twenty plots of 0.25 ha (50 m × 50 m) each were established with a total sampling area of 1.0 ha at each site. All trees with ≥10 cm diameter at breast height (dbh) were tagged, identified and measured. Soil at 0-30 cm, litter and dead wood were sampled and collected in every each of sub-plots to determine and assess carbon stocks within sites. The results indicated that AGB carbon had highest portion of carbon compared to soil, BGB, deadwood and litter, which comprised about 63% of the total carbon pools. It was followed by soil and BGB that comprised about 22% and 13%, respectively. Deadwood and litter contributes the same percentage which is about 1%. In terms of status of the forest, AGB contained the highest carbon which is range from 110.49 tC ha-1 to 164.49 tC ha-1 compared with soil (33.72 tC ha-1 to 68.51 tC ha-1), BGB tC ha-1 to 34 tC ha-1), deadwood (1.57 tC ha-1 to 5.55 tC ha-1) and litter (1.42 tC ha-1 to 2.19 tC ha-1). Results from this study will be very helpful as baseline of carbon storage in different status of forest from before harvesting to logged-over forest and the impact of harvesting on the carbon stock in Pahang and Peninsular Malaysia as a whole.

  13. Decreases in net primary production and net ecosystem production along a repeated-fires induced forest/grassland gradient

    NASA Astrophysics Data System (ADS)

    Cheng, C. H.; Huang, Y. H.; Chung-Yu, L.; Menyailo, O.

    2016-12-01

    Fire is one of the most important disturbances in ecosystems. Fire rapidly releases stored carbon into atmosphere and also plays critical roles on soil properties, light and moisture regimes, and plant structures and communities. With the interventions of climate change and human activities, fire regimes become more severe and frequent. In many parts of world, forest fire regimes can be further altered by grass invasion because the invasive grasses create a positive feedback cycle through their rapid recovery after fires and their high flammability during dry periods and allow forests to be burned repeatedly in a relatively short time. For such invasive grass-fire cycle, a great change of native vegetation community can occur. In this study, we examined a C4 invasive grass () fire-induced forest/grassland gradient to quantify the changes of net primary production (NPP) and net ecosystem production (NEP) from an unburned forest to repeated fire grassland. Our results demonstrated negative effects of repeated fires on NPP and NEP. Within 4 years of the onset of repeated fires on the unburned forest, NPP declined by 14%, mainly due to the reduction in aboveground NPP but offset by increase of belowground NPP. Subsequent fires cumulatively caused reductions in both aboveground and belowground NPP. A total of 40% reduction in the long-term repeated fire induced grassland was found. Soil respiration rate were not significantly different along the forest/grassland gradient. Thus, a great reduction in NEP were shown in grassland, which shifted from 4.6 Mg C ha-1 yr-1 in unburnt forest to -2.6 Mg C ha-1 yr-1. Such great losses are critical within the context of forest carbon cycling and long-term sustainability. Forest management practices that can effectively reduce the likelihood of repeated fires and consequent likelihood of establishment of the grass fire cycle are essential for protecting the forest.

  14. Forest response to rising CO 2 drives zonally asymmetric rainfall change over tropical land

    DOE PAGES

    Kooperman, Gabriel J.; Chen, Yang; Hoffman, Forrest M.; ...

    2018-04-27

    Understanding how anthropogenic CO 2 emissions will influence future precipitation is critical for sustainably managing ecosystems, particularly for drought-sensitive tropical forests. Although tropical precipitation change remains uncertain, nearly all models from the Coupled Model Intercomparison Project Phase 5 predict a strengthening zonal precipitation asymmetry by 2100, with relative increases over Asian and African tropical forests and decreases over South American forests. Here we show that the plant physiological response to increasing CO 2 is a primary mechanism responsible for this pattern. Applying a simulation design in the Community Earth System Model in which CO 2 increases are isolated over individualmore » continents, we demonstrate that different circulation, moisture and stability changes arise over each continent due to declines in stomatal conductance and transpiration. The sum of local atmospheric responses over individual continents explains the pan-tropical precipitation asymmetry. Our analysis suggests that South American forests may be more vulnerable to rising CO 2 than Asian or African forests.« less

  15. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land

    NASA Astrophysics Data System (ADS)

    Kooperman, Gabriel J.; Chen, Yang; Hoffman, Forrest M.; Koven, Charles D.; Lindsay, Keith; Pritchard, Michael S.; Swann, Abigail L. S.; Randerson, James T.

    2018-05-01

    Understanding how anthropogenic CO2 emissions will influence future precipitation is critical for sustainably managing ecosystems, particularly for drought-sensitive tropical forests. Although tropical precipitation change remains uncertain, nearly all models from the Coupled Model Intercomparison Project Phase 5 predict a strengthening zonal precipitation asymmetry by 2100, with relative increases over Asian and African tropical forests and decreases over South American forests. Here we show that the plant physiological response to increasing CO2 is a primary mechanism responsible for this pattern. Applying a simulation design in the Community Earth System Model in which CO2 increases are isolated over individual continents, we demonstrate that different circulation, moisture and stability changes arise over each continent due to declines in stomatal conductance and transpiration. The sum of local atmospheric responses over individual continents explains the pan-tropical precipitation asymmetry. Our analysis suggests that South American forests may be more vulnerable to rising CO2 than Asian or African forests.

  16. Characterizing Drought and Vegetation Response at the Forest Line in Hawai`i

    NASA Astrophysics Data System (ADS)

    Frazier, A. G.; Crausbay, S.; Brewington, L.; Giambelluca, T. W.

    2016-12-01

    Globally, montane treelines are thought to be controlled by low-temperature limitations. The upper limit of cloud forest on Haleakalā, Maui, however, is hypothesized to be controlled by moisture limitations, particularly drought events. Drought in Hawai`i is largely driven by El Niño and future projections show an increased frequency of extreme El Niño events, which may ultimately lower the forest line and threaten biodiversity in Hawai`i. This study aims to characterize the drought regime at the forest line ecotone in Hawai`i since 1920, investigate the role of the El Niño-Southern Oscillation (ENSO), and examine the landscape-scale vegetation responses to drought around the forest line. Drought events were characterized from 1920 to 2014 using the Standardized Precipitation Index (SPI). Two remotely-sensed vegetation indices (VI) were analyzed from the moderate resolution imaging spectroradiometer (MODIS) satellite measurements from 2000 to 2014 to determine vegetation responses to drought events identified using the SPI. The forest line area experienced 28 drought events from 1920 to 2014. A multi-year drought from 2008 to 2014 was the most extreme on record, persisting for 70 consecutive months and resulting in browning both above and below the forest line while the other three drought events since 2000 resulted in overall greening. No clear pattern was found between El Niño event strength and drought severity, and surprisingly almost half of the droughts were associated with La Niña events. This work highlights for the first time the importance of La Niña events for Hawaiian drought and contributes to our understanding of ecological response to drought at the forest line ecotone.

  17. Special forest products: an east-side perspective.

    Treesearch

    William E. Schlosser; Keith A. Blatner

    1997-01-01

    The special forest products industry has gained increasing attention, as timber harvest levels in the Pacific Northwest have declined, and has been heralded, at least by some, as a partial solution to the employment problems common throughout the rural areas of Washington, Oregon, Idaho, and Montana To date, relatively little work has been published on those portions...

  18. Humus layer is the main locus of secondary SO4 production in boreal forests

    NASA Astrophysics Data System (ADS)

    Houle, Daniel; Marty, Charles; Duchesne, Louis; Gagnon, Christian

    2014-02-01

    Identifying the sources of S exported from catchments and the reactivity of the large soil organic S pool is crucial to understand the mid- or long-term response of forested catchments to decreasing atmospheric S deposition and global warming. Sulfur fluxes as well as S and O isotopes of SO4 were measured in precipitation, throughfall, soil solutions and streams at two boreal forest catchments respectively dominated by black spruce (BS) and balsam fir (BF) in Quebec, Canada. Overall, δ34S-SO4 signature showed relatively small variations among various solution types. However, at both sites, δ18O-SO4 in precipitation (averages of 10.5-11.1‰) was decreased by 3.5-3.6‰ in throughfall because of the production of secondary SO4 through oxidation of SO2 deposited on the canopy. Throughfall δ18O-SO4 was decreased by a further 5.4-6.6‰ in the solution leaving the humus layer which was attributed to the production of secondary SO4 under the action of soil microorganisms through the oxidation of organic S during which the S atom acquired O from water and gaseous O2 present in the soil. A mixing equation based on known isotopic signature of each source suggested that ˜67-81% of the S-SO4 leaving the catchments had interacted with the canopy and the humus layer. The stability of δ18O-SO4 in the mineral soil solution and in the stream of both sites, suggests that SO4 does not undergo reduction-oxidation cycles after its passage through the humus layer. Despite its huge size, the organic S reservoir within the mineral soil would be largely inert. Given the chemical nature of SO4 transformation in the canopy, the humus layer would be responsible for nearly 100% of the biological production of secondary SO4 in the whole watershed at both sites. Taking into account the substantial production of dissolved organic S in the humus layer further emphasizes the crucial importance of the latter in the S cycling of boreal forests.

  19. Modeling Forest Timber Productivity in the South: Where Are We Today?

    Treesearch

    V. Clark Baldwin; Quang V. Cao

    1999-01-01

    The current southern species growth and yield prediction capability, new techniques utilized, and modeling trends over the last 17 years, were examined. Changing forest management objectives that emphasize more non-timber resources may have contributed to the continuing genetii lack of emphasis in modeling the timber productivity of the South's largest forest...

  20. Wood Products by Species and Quality in Upland Forests

    Treesearch

    David W. Patterson

    2004-01-01

    Products that can be produced from an upland forest depend on the species and quality of the trees present. Quality depends on growth rate and tree form. These variables are discussed as well as the products that can be produced such as veneer and plywood, grade lumber, handle stock, pallet stock, cross ties, and industrial lumber.

  1. Forest management planning for timber production: a sequential approach

    Treesearch

    Krishna P. Rustagi

    1978-01-01

    Explicit forest management planning for timber production beyond the first few years at any time necessitates use of information which can best be described as suspect. The two-step approach outlined here concentrates on the planning strategy over the next few years without losing sight of the long-run productivity. Frequent updating of the long-range and short-range...

  2. Impacts of climate change on the global forest sector

    USGS Publications Warehouse

    Perez-Garcia, J.; Joyce, L.A.; McGuire, A.D.; Xiao, X.

    2002-01-01

    The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors

  3. Production, respiration, and overall carbon balance in an old-growth Pseudotsuga-Tsuga forest ecosystem

    Treesearch

    Mark E. Harmon; Ken Bible; Michael G. Ryan; David C. Shaw; H. Chen; Jeffrey Klopatek; Xia Li

    2004-01-01

    Ground-based measurements of stores, growth, mortality, litterfall, respiration, and decomposition were conducted in an old-growth forest at Wind River Experimental Forest, Washington. These measurements were used to estimate: Gross (GPP) and Net Primary Production (NPP); autotrophic (Ra) and heterotrophic (Rh) respiration; and Net Ecosystem Production (NEP). Monte...

  4. FORAST Database: Forest Responses to Anthropogenic Stress (FORAST)

    DOE Data Explorer

    McLaughlin, S. B. [ESD, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Downing, D. J. [ESD, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Blasing, T. J. [ESD, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Jackson, B. L. [ESD, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Pack, D. J. [ESD, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Duvick, D. N. [ESD, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Mann, L. K. [ESD, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Doyle, T. W. [ESD, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA)

    1995-01-01

    The Forest Responses to Anthropogenic Stress (FORAST) project was designed to determine whether evidence of alterations of long-term growth patterns of several species of eastern forest trees was apparent in tree-ring chronologies from within the region and to identify environmental variables that were temporally or spatially correlated with any observed changes. The project was supported principally by the U.S. Environmental Protection Agency (EPA) with additional support from the National Park Service. The FORAST project was initiated in 1982 as exploratory research to document patterns of radial growth of forest trees during the previous 50 or more years within 15 states in the northeastern United States. Radial growth measurements from more than 7,000 trees are provided along with data on a variety of measured and calculated indices of stand characteristics (basal area, density, and competitive indices); climate (temperature, precipitation, and drought); and anthropogenic pollutants (state and regional emissions of SO2 and NOX, ozone monitoring data, and frequency of atmospheric-stagnation episodes and atmospheric haze). These data were compiled into a single database to facilitate exploratory analysis of tree growth patterns and responses to local and regional environmental conditions. The project objectives, experimental design, and documentation of procedures for assessing data collected in the 3-year research project are reported in McLaughlin et al. (1986).

  5. Carbon in U.S. forests and wood products, 1987-1997: state-by-state estimates

    Treesearch

    R.A. Birdsey; G.M. Lewis

    2003-01-01

    Estimated changes in carbon stocks are reported for the forests and wood products of the 50 U.S. States. Carbon stocks on forest land and in harvested wood products increased between 1987 and 1997 at an annual rate of 190 million metric tons. Most of this increase was in biomass, followed closely by wood products and landfills. Changes in land use since 1987 caused a...

  6. A Market-oriented Approach To Maximizing Product Benefits: Cases in U.S. Forest Products Industries

    Treesearch

    Vijay S. Reddy; Robert J. Bush; Ronen Roudik

    1996-01-01

    Conjoint analysis, a decompositional customer preference modelling technique, has seen little application to forest products. However, the technique provides useful information for marketing decisions by quantifying consumer preference functions for multiattribute product alternatives. The results of a conjoint analysis include the contribution of each attribute and...

  7. Reptile and amphibian response to oak regeneration treatments in productive southern Appalachian hardwood forest

    Treesearch

    Cathryn H. Greenberg; Christopher E. Moorman; Amy L. Raybuck; Chad Sundol; Tara L. Keyser; Janis Bush; Dean M. Simon; Gordon S. Warburton

    2016-01-01

    Forest restoration efforts commonly employ silvicultural methods that alter light and competition to influence species composition. Changes to forest structure and microclimate may adversely affect some taxa (e.g., terrestrial salamanders), but positively affect others (e.g., early successional birds). Salamanders are cited as indicators of ecosystem health because of...

  8. Does species richness affect fine root biomass and production in young forest plantations?

    PubMed

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-02-01

    Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined species composition from fine root biomass samples with the near-infrared reflectance spectroscopy method. We did not observe higher biomass or production in mixed stands compared to monocultures. Neither did we observe any differences in tree root length or fine root turnover. One reason for this could be that these stands were still young, and canopy closure had not always taken place, i.e. a situation where above- or below-ground competition did not yet exist. Another reason could be that the rooting traits of the tree species did not differ sufficiently to support niche differentiation. Our results suggested that functional group identity (i.e. conifers vs. broadleaved species) can be more important for below-ground biomass and production than the species richness itself, as conifers seemed to be more competitive in colonising the soil volume, compared to broadleaved species.

  9. Responses of soil buffering capacity to acid treatment in three typical subtropical forests.

    PubMed

    Jiang, Jun; Wang, Ying-Ping; Yu, Mengxiao; Li, Kun; Shao, Yijing; Yan, Junhua

    2016-09-01

    Elevated anthropogenic acid deposition can significantly affect forest ecosystem functioning by changing soil pH, nutrient balance, and chemical leaching and so on. These effects generally differ among different forests, and the dominant mechanisms for those observed responses often vary, depending on climate, soil conditions and vegetation types. Using soil monoliths (0-40cm) from pine forest (pioneer), coniferous and broadleaved mixed forest (transitional) and broadleaved forest (mature) in southern China, we conducted a leaching experiment with acid treatments at different pH levels (control: pH≈4.5; pH=3.5; pH=2.5). We found that pH3.5 treatment significantly reduced dissolved organic carbon (DOC) concentrations in leachate from the pioneer forest soil. pH2.5 treatment significantly increased concentrations of NO3(-), SO4(2-), Ca(2+), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the pioneer forest soil, and also concentrations of NO3(-), SO4(2-), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the transitional forest soil. All acid treatments had no significant effects on concentrations of these chemicals in leachate from the mature forest soil. The responses can be explained by the changes in soil pH, acid neutralizing capacity (ANC) and concentrations of Al and Fe. Our results showed that acid buffering capacity of the pioneer or transitional forest soil was lower than that of the mature forest soil. Therefore preserving mature forests in southern China is important for reducing the adverse impacts of high acid deposition on stream water quality at present and into the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Ecosystem Disturbance Effects on Land Surface Temperature, Forest Carbon Stocks, and Primary Productivity in the Western United States

    NASA Astrophysics Data System (ADS)

    Cooper, L. A.; Ballantyne, A.; Holden, Z. A.; Landguth, E.

    2015-12-01

    Disturbance plays an important role in the structure, composition, and nutrient cycling of forest ecosystems. Climate change is resulting in an increase in disturbance frequency and intensity, making it critical that we quantify the physical and chemical impacts of disturbances on forests. The impacts of disturbance are thought to vary widely depending on disturbance type, location, and climate. More specifically, fires, insect infestations, and other types of disturbances differ in their timing, extent, and intensity making it difficult to assess the true impact of disturbances on local energy budgets and carbon cycling. Here, we provide a regional analysis of the impacts of fire, insect attack, and other disturbances on land surface temperature (LST), carbon stocks, and gross primary productivity (GPP). Using disturbances detected with MODIS Enhanced Vegetation Index (EVI) time series between 2002 and 2012, we find that the impacts of disturbance on LST, carbon stocks, and GPP vary widely according to local climate, vegetation, and disturbance type and intensity. Fires resulted in the most distinct impacts on all response variables. Forest responses to insect epidemics were more varied in their magnitude and timing. The results of this study provide an important estimation of the variability of climate and ecosystem responses to disturbance across a large and heterogeneous landscape. With disturbance projected to increase in both frequency and intensity around the globe in the coming years, this information is vitally important to effectively manage forests into the future.

  11. Response to comment on "High-resolution global maps of 21st-century forest cover change".

    PubMed

    Hansen, M; Potapov, P; Margono, B; Stehman, S; Turubanova, S; Tyukavina, A

    2014-05-30

    Tropek et al. critique the Hansen et al. global forest loss paper in terms of its utility and accuracy. Both criticisms suffer from a miscomprehension of the definition of forest employed as well as the requirements of product validation. Utility of the product is enhanced through its integration with forest type, carbon stock, protected area status, and other ancillary data. Copyright © 2014, American Association for the Advancement of Science.

  12. Disturbance and net ecosystem production across three climatically distinct forest landscapes

    Treesearch

    John L. Campbell; O.J. Sun; B.E. Law

    2004-01-01

    Biometric techniques were used to measure net ecosystem production (NEP) across three climatically distinct forest chronosequences in Oregon. NEP was highly negative immediately following stand-replacing disturbance in all forests and recovered to positive values by 10, 20, and 30 years of age for the mild mesic Coast Range, mesic West Cascades, and semi-arid East...

  13. Interpreting forest and grassland biome productivity utilizing nested scales of image resolution and biogeographical analysis

    NASA Technical Reports Server (NTRS)

    Iverson, Louis R.; Cook, Elizabeth A.; Graham, Robin L.; Olson, Jerry S.; Frank, Thomas; Ke, Ying; Treworgy, Colin; Risser, Paul G.

    1987-01-01

    This report summarizes progress made in our investigation of forest productivity assessment using TM and other biogeographical data during the third six-month period of the grant. Data acquisition and methodology hurdles are largely complete. Four study areas for which the appropriate TM and ancillary data were available are currently being intensively analyzed. Significant relationships have been found on a site by site basis to suggest that forest productivity can be qualitatively assessed using TM band values and site characteristics. Perhaps the most promising results relate TM unsupervised classes to forest productivity, with enhancement from elevation data. During the final phases of the research, multi-temporal and regional comparisons of results will be addressed, as well as the predictability of forest productivity patterns over a large region using TM data and/or TM nested within AVHRR data.

  14. Forest Soil Productivity on the Southern Long-Term Soil Productivity Sites at Age 5

    Treesearch

    D. Andrew Scott; Allan E. Tiarks; Felipe G. Sanchez; Michael Elliott-Smith; Rick Stagg

    2004-01-01

    Forest management operations have the potential to reduce soil productivity through organic matter and nutrient removal and soil compaction. We measured pine volume, bulk density, and soil and foliar nitrogen and phosphorus at age 5 on the 13 southern Long-Term Soil Productivity study sites. The treatments were organic matter removal [bole only (BO), whole tree (WT),...

  15. Database Overlap vs. Complementary Coverage in Forestry and Forest Products: Factors in Database Acquisition.

    ERIC Educational Resources Information Center

    Hoover, Ryan E.

    This study examines (1) subject content, (2) file size, (3) types of documents indexed, (4) range of years spanned, and (5) level of indexing and abstracting in five databases which collectively provide extensive coverage of the forestry and forest products industries: AGRICOLA, CAB ABSTRACTS, FOREST PRODUCTS (AIDS), PAPERCHEM, and PIRA. The…

  16. Virgina's forest products industry: performance and contribution to the State's economy, 1970 to 1980.

    Treesearch

    Con H Schallau; Wilbur R. Maki; Bennett B. Foster; Clair H. Redmond

    1986-01-01

    Employment and earnings in Virginia's forest products industry, like those of most Southern States, increased between 1970 and 1980. Furthermore, Virginia's share of the Nation's forest products employment and earnings increased during this period. In 1980, the wood furniture segment accounted for the largest share of the industry's employment, but...

  17. Disturbance and productivity interactions mediate stability of forest composition and structure

    Treesearch

    Christopher D. O' Connor; Donald A. Falk; Ann M. Lynch; Thomas W. Swetnam; Craig P. Wilcox

    2017-01-01

    Fire is returning to many conifer-dominated forests where species composition and structure have been altered by fire exclusion. Ecological effects of these fires are influenced strongly by the degree of forest change during the fire-free period. Response of fire-adapted species assemblages to extended fire-free intervals is highly variable, even in communities with...

  18. The effects of processing non-timber forest products and trade partnerships on people's well-being and forest conservation in Amazonian societies.

    PubMed

    Morsello, Carla; Ruiz-Mallén, Isabel; Diaz, Maria Dolores Montoya; Reyes-García, Victoria

    2012-01-01

    This study evaluated whether processing non-timber forest products (NTFPs) and establishing trade partnerships between forest communities and companies enhance the outcomes of NTFP commercialization. In particular, we evaluated whether product processing, partnerships, or their combination was associated with a number of outcomes related to the well-being of forest inhabitants and forest conservation. We based our analyses on ethnographic and quantitative data (i.e., survey and systematic observations) gathered at seven communities from five societies of the Brazilian and Bolivian Amazon. Our results indicated that product processing and partnerships do not represent a silver bullet able to improve the results of NTFP commercialization in terms of well-being and conservation indicators. Compared with cases without interventions, households adopting partnerships but not product processing were most often associated with improved economic proxies of well-being (total income, NTFP income, food consumption and gender equality in income). In comparison, the combination of product processing and partnerships was associated with similar outcomes. Unexpectedly, product processing alone was associated with negative outcomes in the economic indicators of well-being. All of the investigated strategies were associated with less time spent in social and cultural activities. With respect to forest conservation, the strategies that included a partnership with or without processing produced similar results: while household deforestation tended to decrease, the hunting impact increased. Processing alone was also associated with higher levels of hunting, though it did not reduce deforestation. Our results indicate that establishing partnerships may enhance the outcomes of NTFP trade in terms of the financial outcomes of local communities, but practitioners need to use caution when adopting the processing strategy and they need to evaluate potential negative results for indicators of

  19. The Effects of Processing Non-Timber Forest Products and Trade Partnerships on People's Well-Being and Forest Conservation in Amazonian Societies

    PubMed Central

    Morsello, Carla; Ruiz-Mallén, Isabel; Diaz, Maria Dolores Montoya; Reyes-García, Victoria

    2012-01-01

    This study evaluated whether processing non-timber forest products (NTFPs) and establishing trade partnerships between forest communities and companies enhance the outcomes of NTFP commercialization. In particular, we evaluated whether product processing, partnerships, or their combination was associated with a number of outcomes related to the well-being of forest inhabitants and forest conservation. We based our analyses on ethnographic and quantitative data (i.e., survey and systematic observations) gathered at seven communities from five societies of the Brazilian and Bolivian Amazon. Our results indicated that product processing and partnerships do not represent a silver bullet able to improve the results of NTFP commercialization in terms of well-being and conservation indicators. Compared with cases without interventions, households adopting partnerships but not product processing were most often associated with improved economic proxies of well-being (total income, NTFP income, food consumption and gender equality in income). In comparison, the combination of product processing and partnerships was associated with similar outcomes. Unexpectedly, product processing alone was associated with negative outcomes in the economic indicators of well-being. All of the investigated strategies were associated with less time spent in social and cultural activities. With respect to forest conservation, the strategies that included a partnership with or without processing produced similar results: while household deforestation tended to decrease, the hunting impact increased. Processing alone was also associated with higher levels of hunting, though it did not reduce deforestation. Our results indicate that establishing partnerships may enhance the outcomes of NTFP trade in terms of the financial outcomes of local communities, but practitioners need to use caution when adopting the processing strategy and they need to evaluate potential negative results for indicators of

  20. Lemur responses to edge effects in the Vohibola III classified forest, Madagascar.

    PubMed

    Lehman, Shawn M; Rajaonson, Andry; Day, Sabine

    2006-03-01

    Forest edges are dynamic zones characterized by the penetration (to varying depths and intensities) of conditions from the surrounding environment (matrix) into the forest interior. Although edge effects influence many tropical organisms, they have not been studied directly in primates. Edge effects are particularly relevant to lemurs because of the highly fragmented forest landscapes found in Madagascar. In this study, data are presented regarding how the densities of six lemur species (Avahi laniger, Cheirogaleus major, Eulemur rubriventer, Hapalemur griseus griseus, Microcebus rufus, and Propithecus diadema edwardsi) varied between six 500-m interior transects and six 500-m edge transects in the Vohibola III Classified Forest in SE Madagascar. Diurnal (n = 433) and nocturnal (n = 128) lemur surveys were conducted during June-October 2003 and May-November 2004. A. laniger, E. rubriventer, and H. g. griseus exhibited a neutral edge response (no differences in densities between habitats). M. rufus and P. d. edwardsi had a positive edge response (higher densities in edge habitats), which may be related to edge-related variations in food abundance and quality. Positive edge responses by M. rufus and P. d. edwardsi may ultimately be detrimental due to edge-related anthropogenic factors (e.g., hunting by local people). The negative edge response exhibited by C. major (lower densities in edge habitats) may result from heightened ambient temperatures that inhibit torpor in edge habitats.

  1. Drought Stress Response of Dry Forest Trees of the Brazilian Caatinga

    NASA Astrophysics Data System (ADS)

    Menezes, R.; Worbes, M.

    2015-12-01

    Martin Worbes and Romulo Menezes In the frame of the "Tropi-Dry" network we studied drought response strategies of six tree species in a Caatinga forest at the Fazenda Tamandua near Patos in Paraiba, NE Brazil. We selected the tree species as representatives of the different phenological ecotypes: evergreen, deciduous and stem succulent. The deciduous group comprised N-fixing as well as non N-fixing Leguminosae. Over an entire vegetation period (dry and wet-season) we monitored their phenological behaviour, photosynthesis rates, stomata conductance and water potential, measured if leaves were present and we estimated seasonal variations in stable carbon and N15 content of the leaves. The major results are: Evergreen species (e.g. Capparis) may compensate low carbon-fixing rates in the wet season with a much longer vegetation period as the deciduous species. Stem succulents (Jatropha) do not fulfill the expectations of being high productive species under drought stress conditions, while the N-fixing Mimosa performed in particular at the end and the beginning of the dry period better than the rest of the investigated species. In general the results may help to understand different strategies of tree species in respect to extended dry periods of at least six months as in our study area and their role in carbon sequestration of tropical dry forests. The variety of observed strategies may contribute to the resilience of the ecosystem tropical dry forests.

  2. Assessing bioenergy harvest risks: Geospatially explicit tools for maintaining soil productivity in western US forests

    Treesearch

    Mark Kimsey; Deborah Page-Dumroese; Mark Coleman

    2011-01-01

    Biomass harvesting for energy production and forest health can impact the soil resource by altering inherent chemical, physical and biological properties. These impacts raise concern about damaging sensitive forest soils, even with the prospect of maintaining vigorous forest growth through biomass harvesting operations. Current forest biomass harvesting research...

  3. Interactions among forest age, valley and channel morphology, and log jams regulate animal production in mountain streams

    NASA Astrophysics Data System (ADS)

    Walters, D. M.; Venarsky, M. P.; Hall, R. O., Jr.; Herdrich, A.; Livers, B.; Winkelman, D.; Wohl, E.

    2014-12-01

    Forest age and local valley morphometry strongly influence the form and function of mountain streams in Colorado. Streams in valleys with old growth forest (>350 years) have extensive log jam complexes that create multi-thread channel reaches with extensive pool habitat and large depositional areas. Streams in younger unmanaged forests (e.g., 120 years old) and intensively managed forests have much fewer log jams and lower wood loads. These are single-thread streams dominated by riffles and with little depositional habitat. We hypothesized that log jam streams would retain more organic matter and have higher metabolism, leading to greater production of stream macroinvertebrates and trout. Log jam reaches should also have greater emergence of adult aquatic insects, and consequently have higher densities of riparian spiders taking advantage of these prey. Surficial organic matter was 3-fold higher in old-growth streams, and these streams had much higher ecosystem respiration. Insect production (g m2 y-1) was similar among forest types, but fish density was four times higher in old-growth streams with copious log jams. However, at the valley scale, insect production (g m-1 valley-1) and trout density (number m-1 valley-1) was 2-fold and 10-fold higher, respectively, in old growth streams. This finding is because multi-thread reaches created by log jams have much greater stream area and stream length per meter of valley than single-thread channels. The more limited response of macroinvertebrates may be related to fish predation. Trout in old growth streams had similar growth rates and higher fat content than fish in other streams in spite of occurring at higher densities and higher elevation/colder temperatures. This suggests that the positive fish effect observed in old growth streams is related to greater availability of invertebrate prey, which is consistent with our original hypothesis. Preliminary analyses suggest that spider densities do not respond strongly to

  4. Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests.

    PubMed

    Riutta, Terhi; Malhi, Yadvinder; Kho, Lip Khoon; Marthews, Toby R; Huaraca Huasco, Walter; Khoo, MinSheng; Tan, Sylvester; Turner, Edgar; Reynolds, Glen; Both, Sabine; Burslem, David F R P; Teh, Yit Arn; Vairappan, Charles S; Majalap, Noreen; Ewers, Robert M

    2018-01-24

    Tropical forests play a major role in the carbon cycle of the terrestrial biosphere. Recent field studies have provided detailed descriptions of the carbon cycle of mature tropical forests, but logged or secondary forests have received much less attention. Here, we report the first measures of total net primary productivity (NPP) and its allocation along a disturbance gradient from old-growth forests to moderately and heavily logged forests in Malaysian Borneo. We measured the main NPP components (woody, fine root and canopy NPP) in old-growth (n = 6) and logged (n = 5) 1 ha forest plots. Overall, the total NPP did not differ between old-growth and logged forest (13.5 ± 0.5 and 15.7 ± 1.5 Mg C ha -1  year -1 respectively). However, logged forests allocated significantly higher fraction into woody NPP at the expense of the canopy NPP (42% and 48% into woody and canopy NPP, respectively, in old-growth forest vs 66% and 23% in logged forest). When controlling for local stand structure, NPP in logged forest stands was 41% higher, and woody NPP was 150% higher than in old-growth stands with similar basal area, but this was offset by structure effects (higher gap frequency and absence of large trees in logged forest). This pattern was not driven by species turnover: the average woody NPP of all species groups within logged forest (pioneers, nonpioneers, species unique to logged plots and species shared with old-growth plots) was similar. Hence, below a threshold of very heavy disturbance, logged forests can exhibit higher NPP and higher allocation to wood; such shifts in carbon cycling persist for decades after the logging event. Given that the majority of tropical forest biome has experienced some degree of logging, our results demonstrate that logging can cause substantial shifts in carbon production and allocation in tropical forests. © 2018 John Wiley & Sons Ltd.

  5. The ambiguity of drought events, a bottleneck for Amazon forest drought response modelling

    NASA Astrophysics Data System (ADS)

    De Deurwaerder, Hannes; Verbeeck, Hans; Baker, Timothy; Christoffersen, Bradley; Ciais, Philippe; Galbraith, David; Guimberteau, Matthieu; Kruijt, Bart; Langerwisch, Fanny; Meir, Patrick; Rammig, Anja; Thonicke, Kirsten; Von Randow, Celso; Zhang, Ke

    2016-04-01

    Considering the important role of the Amazon forest in the global water and carbon cycle, the prognosis of altered hydrological patterns resulting from climate change provides strong incentive for apprehending the direct implications of drought on the vegetation of this ecosystem. Dynamic global vegetation models have the potential of providing a useful tool to study drought impacts on various spatial and temporal scales. This however assumes the models being able to properly represent drought impact mechanisms. But how well do the models succeed in meeting this assumption? Within this study meteorological driver data and model output data of 4 different DGVMs, i.e. ORCHIDEE, JULES, INLAND and LPGmL, are studied. Using the palmer drought severity index (PDSI) and the mean cumulative water deficit (MWD), temporal and spatial representation of drought events are studied in the driver data and are referenced to historical extreme drought events in the Amazon. Subsequently, within the resulting temporal and spatial frame, we studied the drought impact on the above ground biomass (AGB) and gross primary production (GPP) fluxes. Flux tower data, field inventory data and the JUNG data-driven GPP product for the Amazon region are used for validation. Our findings not only suggest that the current state of the studied DGVMs is inadequate in representing Amazon droughts in general, but also highlights strong inter-model differences in drought responses. Using scatterplot-studies and input-output correlations, we provide insight in the origin of these encountered inter-model differences. In addition, we present directives of model development and improvement in scope of Amazon forest drought response modelling.

  6. The world wide web: an emerging technology for marketing special forest products (poster abstract)

    Treesearch

    A.L. Hammett; Shelby Jones; Philip A. Araman

    1999-01-01

    Interest by forest landowners and agriculturist in Special Forest Products (SFPs) is increasing rapidly. At present there are numerous efforts to increase awareness of these products and the market potential. However, there is a shortage of information available and there are few means effective in disseminating the information necessary for the sustainable management...

  7. Shifts in tree functional composition amplify the response of forest biomass to climate

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W.

    2018-04-01

    Forests have a key role in global ecosystems, hosting much of the world’s terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.

  8. Shifts in tree functional composition amplify the response of forest biomass to climate.

    PubMed

    Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W

    2018-04-05

    Forests have a key role in global ecosystems, hosting much of the world's terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.

  9. Asynchronous response of tropical forest leaf phenology to seasonal and el Niño-driven drought.

    PubMed

    Pau, Stephanie; Okin, Gregory S; Gillespie, Thomas W

    2010-06-25

    The Hawaiian Islands are an ideal location to study the response of tropical forests to climate variability because of their extreme isolation in the middle of the Pacific, which makes them especially sensitive to El Niño-Southern Oscillation (ENSO). Most research examining the response of tropical forests to drought or El Niño have focused on rainforests, however, tropical dry forests cover a large area of the tropics and may respond very differently than rainforests. We use satellite-derived Normalized Difference Vegetation Index (NDVI) from February 2000-February 2009 to show that rainforests and dry forests in the Hawaiian Islands exhibit asynchronous responses in leaf phenology to seasonal and El Niño-driven drought. Dry forest NDVI was more tightly coupled with precipitation compared to rainforest NDVI. Rainforest cloud frequency was negatively correlated with the degree of asynchronicity (Delta(NDVI)) between forest types, most strongly at a 1-month lag. Rainforest green-up and dry forest brown-down was particularly apparent during the 2002-003 El Niño. The spatial pattern of NDVI response to the NINO 3.4 Sea Surface Temperature (SST) index during 2002-2003 showed that the leeward side exhibited significant negative correlations to increased SSTs, whereas the windward side exhibited significant positive correlations to increased SSTs, most evident at an 8 to 9-month lag. This study demonstrates that different tropical forest types exhibit asynchronous responses to seasonal and El Niño-driven drought, and suggests that mechanisms controlling dry forest leaf phenology are related to water-limitation, whereas rainforests are more light-limited.

  10. Asynchronous Response of Tropical Forest Leaf Phenology to Seasonal and El Niño-Driven Drought

    PubMed Central

    Pau, Stephanie; Okin, Gregory S.; Gillespie, Thomas W.

    2010-01-01

    The Hawaiian Islands are an ideal location to study the response of tropical forests to climate variability because of their extreme isolation in the middle of the Pacific, which makes them especially sensitive to El Niño-Southern Oscillation (ENSO). Most research examining the response of tropical forests to drought or El Niño have focused on rainforests, however, tropical dry forests cover a large area of the tropics and may respond very differently than rainforests. We use satellite-derived Normalized Difference Vegetation Index (NDVI) from February 2000-February 2009 to show that rainforests and dry forests in the Hawaiian Islands exhibit asynchronous responses in leaf phenology to seasonal and El Niño-driven drought. Dry forest NDVI was more tightly coupled with precipitation compared to rainforest NDVI. Rainforest cloud frequency was negatively correlated with the degree of asynchronicity (ΔNDVI) between forest types, most strongly at a 1-month lag. Rainforest green-up and dry forest brown-down was particularly apparent during the 2002–003 El Niño. The spatial pattern of NDVI response to the NINO 3.4 Sea Surface Temperature (SST) index during 2002–2003 showed that the leeward side exhibited significant negative correlations to increased SSTs, whereas the windward side exhibited significant positive correlations to increased SSTs, most evident at an 8 to 9-month lag. This study demonstrates that different tropical forest types exhibit asynchronous responses to seasonal and El Niño-driven drought, and suggests that mechanisms controlling dry forest leaf phenology are related to water-limitation, whereas rainforests are more light-limited. PMID:20593034

  11. Regional and forest-level estimates of carbon stored in harvested wood products from the United States Forest Service Northern Region, 1906-2010

    Treesearch

    N. Anderson; J. Young; K. Stockmann; K. Skog; S. Healey; D. Loeffler; J.G. Jones; J. Morrison

    2013-01-01

    Global forests capture and store significant amounts of CO2 through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  12. Herbaceious layer and soil response to experimental acidification in a central Appalachian hardwood forest

    Treesearch

    Frank S. Gilliam; Nicole L. Turrill; Staci D. Aulick; Dan K. Evans; Mary Beth Adams

    1994-01-01

    The herbaceous layer (vascular plants ≤1 m in height) is an important component of forest ecosystems and a potentially sensitive vegetation stratum in response to acid deposition. This study tested several hypotheses concerning soil and herbaceous layer response to experimental acidification at the Fernow Experimental Forest in north-central West Virginia. Fifteen...

  13. How might FIA deliver more information on status and trends of non-timber forest products?

    Treesearch

    Stephen P. Prisley

    2015-01-01

    Data from the Forest Inventory and Analysis program (including the Timber Products Output portion) are critical for assessing the sustainability of US timber production. Private sector users of this information rely on it for strategic planning, and their strong support of the FIA program has helped to ensure funding and program viability. Non-timber forest products...

  14. Functional response of ungulate browsers in disturbed eastern hemlock forests

    USGS Publications Warehouse

    DeStefano, Stephen

    2015-01-01

    Ungulate browsing in predator depleted North American landscapes is believed to be causing widespread tree recruitment failures. However, canopy disturbances and variations in ungulate densities are sources of heterogeneity that can buffer ecosystems against herbivory. Relatively little is known about the functional response (the rate of consumption in relation to food availability) of ungulates in eastern temperate forests, and therefore how “top down” control of vegetation may vary with disturbance type, intensity, and timing. This knowledge gap is relevant in the Northeastern United States today with the recent arrival of hemlock woolly adelgid (HWA; Adelges tsugae) that is killing eastern hemlocks (Tsuga canadensis) and initiating salvage logging as a management response. We used an existing experiment in central New England begun in 2005, which simulated severe adelgid infestation and intensive logging of intact hemlock forest, to examine the functional response of combined moose (Alces americanus) and white-tailed deer (Odocoileus virginianus) foraging in two different time periods after disturbance (3 and 7 years). We predicted that browsing impacts would be linear or accelerating (Type I or Type III response) in year 3 when regenerating stem densities were relatively low and decelerating (Type II response) in year 7 when stem densities increased. We sampled and compared woody regeneration and browsing among logged and simulated insect attack treatments and two intact controls (hemlock and hardwood forest) in 2008 and again in 2012. We then used AIC model selection to compare the three major functional response models (Types I, II, and III) of ungulate browsing in relation to forage density. We also examined relative use of the different stand types by comparing pellet group density and remote camera images. In 2008, total and proportional browse consumption increased with stem density, and peaked in logged plots, revealing a Type I response. In 2012

  15. Carbon budget of Ontario's managed forests and harvested wood products, 2001–2100

    Treesearch

    Jiaxin Chen; Stephen J. Colombo; Michael T. Ter-Mikaelian; Linda S. Heath

    2010-01-01

    Forest and harvested wood products (HWP) carbon (C) stocks between 2001 and 2100 for Ontario's managed forests were projected using FORCARB-ON, an adaptation of the U.S. national forest C budget model known as FORCARB2. A fire disturbance module was introduced to FORCARB-ON to simulate the effects of wildfire on C, and some of the model's C pools were re-...

  16. Water-centric nexus for response to climate change on agriculture and forest sector: The case of the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Lim, C. H.; Choi, Y.; Jeon, S. W.; Lee, W. K.

    2017-12-01

    Given their complexity and the number of stakeholders involved, it is difficult to solve social issues or problems based on an analysis that focuses on a single dimension. In particular, research surrounding climate change is inherently multidisciplinary and there is a need for highly pluralistic nexuses that can be used as a framework for policy decisions. Here, we suggest to water-centric nexus on agriculture and forest sector to improve response to climate change. The nexus is composed agricultural water demand and forest water supply to enhancing water-related adaptation to climate change in the Korean Peninsula. Agricultural productivity and water use related variables was estimating by EPIC crop model, and InVEST model applied for estimation of forest water supply. Results under two climate change scenarios (RCP4.5 and 8.5) and time period (2050s and 2070s), the forest water supply for the all future climate scenarios will increase significantly. In case of agriculture, irrigated crops experienced only the benefits of climate change, but rainfed crops were negatively impacted. It was also found that crop irrigation demand in the future is expected to be around twice as high as baseline levels, thus making irrigation more difficult to successfully implement. These hydrological threats have the potential to greatly reduce food security. In the nexus perspectives, the drop in the productivity of rainfed crops and the increase in irrigation demand in the agriculture sector can be resolved through interconnections with the forest sector. Appropriate management of the water supply in future climatic conditions characterized by increasing precipitation can maintain and expand agricultural areas through irrigation. To achieve this, a time-series water supply versus demand analysis must be performed so that an accurate balance between supply and demand can be established. Water-centric interactions of the agriculture and forest are the basis of nexus-based adaptation

  17. The volumes and value of non-timber forest products harvested in the United States

    Treesearch

    James L. Chamberlain

    2015-01-01

    Non-timber forest products [NTFPs] originate from plants and fungi that are harvested from natural, manipulated or disturbed forests. NTFPs may include fungi, moss, lichen, herbs, vines, shrubs, or trees. People harvest the products for many reasons, including personal, recreational and spiritual uses, as well as commercial gain. The assessment of volumes and values is...

  18. Diverse responses of different structured forest to drought in Southwest China through remotely sensed data

    NASA Astrophysics Data System (ADS)

    Xu, Peipei; Zhou, Tao; Zhao, Xiang; Luo, Hui; Gao, Shan; Li, Zheng; Cao, Leyao

    2018-07-01

    Global climate change leads to gradual increases in the frequency, intensity, and duration of extreme drought events. Human activities such as afforestation and deforestation have led to spatial variation in forest structure, causing forests to exhibit an age-spatial structure relationship. Thus, it is of great importance to accurately evaluate the effects of drought stress on forest ecosystems with different forest age structures. Because the spatial heterogeneity varies with drought stress intensity, forest age, there are still a lot of uncertainties in current studies. In this study, based on the field measurement, and the proxy index of stand age (based on forest canopy height from LiDAR and stock volume from inventory) at the regional scale, we analyzed the different drought responses of forest ecosystems with various forest ages across different scales in Yunnan province, southwest China from 2001 to 2014. At the local scale, significant differences in the effects of drought stress were found among forests with various ages, suggesting that older forests suffer more under drought stress than younger forests. At the regional scale, the investigation statistics of forest damage indicated a maximum damage ratio in the forest with tall trees (>32 m), whereas damage was minimal in the forest with short trees (<25 m). The stock volume of the forest exhibited the same pattern, that is, the forest damage ratio increased as the stock volume increased. These data demonstrate that the responses of forest drought could be affected by forest age. Under drought stress, older forests show greater vulnerability and risk of damage, which will require special attention for forest managers, as well as improved risk assessments, in the context of future climate change.

  19. Short-term response of breeding birds to oak regeneration treatments in upland hardwood forest.

    Treesearch

    Katie Greenberg; Kathleen Franzreb; Tara Keyser; Stan Zarnoch; Dean Simon; Gordon Warburton

    2015-01-01

    Population declines of several successional-scrub bird species are partly associated with deceased habitat availability as abandoned farmlands return to forest and recently harvested forests regrow. Restoration of mixed-oak (Quercus spp.) forest is also a concern because of widespread oak regeneration failure, especially on moist, productive sites where competition...

  20. Hercules Inc Hattiesburg, Mississippi Forest County NOV Response Follow-up

    EPA Pesticide Factsheets

    Letter dated June 9, 2009 from Ashland Water Technologies to Mississippi Department of Environmental Quality about a notice of violation Hercules, Inc Hattiesburg Forest County NOV response follow-up.

  1. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany.

    PubMed

    Dănescu, Adrian; Albrecht, Axel T; Bauhus, Jürgen

    2016-10-01

    Forest diversity-productivity relationships have been intensively investigated in recent decades. However, few studies have considered the interplay between species and structural diversity in driving productivity. We analyzed these factors using data from 52 permanent plots in southwestern Germany with more than 53,000 repeated tree measurements. We used basal area increment as a proxy for productivity and hypothesized that: (1) structural diversity would increase tree and stand productivity, (2) diversity-productivity relationships would be weaker for species diversity than for structural diversity, and (3) species diversity would also indirectly impact stand productivity via changes in size structure. We measured diversity using distance-independent indices. We fitted separate linear mixed-effects models for fir, spruce and beech at the tree level, whereas at the stand level we pooled all available data. We tested our third hypothesis using structural equation modeling. Structural and species diversity acted as direct and independent drivers of stand productivity, with structural diversity being a slightly better predictor. Structural diversity, but not species diversity, had a significant, albeit asymmetric, effect on tree productivity. The functioning of structurally diverse, mixed forests is influenced by both structural and species diversity. These sources of trait diversity contribute to increased vertical stratification and crown plasticity, which in turn diminish competitive interferences and lead to more densely packed canopies per unit area. Our research highlights the positive effects of species diversity and structural diversity on forest productivity and ecosystem dynamics.

  2. Impact of in-woods product merchandizing on profitable logging opportunities in southern upland hardwood forests

    Treesearch

    Dennis M. May; Chris B. LeDoux; John B. Tansey; Richard Widmann

    1994-01-01

    Procedures developed to assess available timber supplies from upland hardwood forest statistics reported by the U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) units, were modified to demonstrate the impact of three in-woods product-merchandizing options on profitable logging opportunities in upland hardwood forests in 14 Southern...

  3. Initial responses of forest understories to varying levels and patterns of green-tree retention.

    Treesearch

    Charles B. Halpern; Donald McKenzie; Shelley A. Evans; Douglas A. Maguire

    2005-01-01

    Timber harvest with "green-tree" retention has been adopted in many temperate and boreal forest ecosystems, reflecting growing appreciation for the ecological values of managed forests. On federal forest lands in the Pacific Northwest, standards and guidelines for green-tree retention have been adopted, but systematic assessments of ecosystem response have...

  4. Opposing Responses of Bird Functional Diversity to Vegetation Structural Diversity in Wet and Dry Forest.

    PubMed

    Sitters, Holly; York, Alan; Swan, Matthew; Christie, Fiona; Di Stefano, Julian

    2016-01-01

    Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD) provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape sampling approach to examine relationships between bird FD, vegetation diversity and time since fire. We surveyed birds and measured vegetation at 36 landscape sampling units in dry and wet forest in southeast Australia during 2010 and 2011. Four uncorrelated indices of bird FD (richness, evenness, divergence and dispersion) were derived from six bird traits, and we investigated responses of these indices and species richness to both vertical and horizontal vegetation diversity using linear mixed models. We also considered the extent to which the mean and diversity of time since fire were related to vegetation diversity. Results showed opposing responses of FD to vegetation diversity in dry and wet forest. In dry forest, where fire is frequent, species richness and two FD indices (richness and dispersion) were positively related to vertical vegetation diversity, consistent with theory relating to environmental variation and coexistence. However, in wet forest subject to infrequent fire, the same three response variables were negatively associated with vertical diversity. We suggest that competitive dominance by species results in lower FD as vegetation diversity increases in wet forest. The responses of functional evenness were opposite to those of species richness, functional richness and dispersion in both forest types, highlighting the value of examining multiple FD metrics at management-relevant scales. The mean and diversity of time since fire were uncorrelated with vegetation

  5. Opposing Responses of Bird Functional Diversity to Vegetation Structural Diversity in Wet and Dry Forest

    PubMed Central

    York, Alan; Swan, Matthew; Christie, Fiona; Di Stefano, Julian

    2016-01-01

    Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD) provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape sampling approach to examine relationships between bird FD, vegetation diversity and time since fire. We surveyed birds and measured vegetation at 36 landscape sampling units in dry and wet forest in southeast Australia during 2010 and 2011. Four uncorrelated indices of bird FD (richness, evenness, divergence and dispersion) were derived from six bird traits, and we investigated responses of these indices and species richness to both vertical and horizontal vegetation diversity using linear mixed models. We also considered the extent to which the mean and diversity of time since fire were related to vegetation diversity. Results showed opposing responses of FD to vegetation diversity in dry and wet forest. In dry forest, where fire is frequent, species richness and two FD indices (richness and dispersion) were positively related to vertical vegetation diversity, consistent with theory relating to environmental variation and coexistence. However, in wet forest subject to infrequent fire, the same three response variables were negatively associated with vertical diversity. We suggest that competitive dominance by species results in lower FD as vegetation diversity increases in wet forest. The responses of functional evenness were opposite to those of species richness, functional richness and dispersion in both forest types, highlighting the value of examining multiple FD metrics at management-relevant scales. The mean and diversity of time since fire were uncorrelated with vegetation

  6. Marketing of specialty forest products in the southeast: opportunities for research, education and outreach (poster abstract)

    Treesearch

    A.L. Hammett; J.L. Chamberlain

    1999-01-01

    The specialty forest products sector in the Southeast is growing rapidly - perhaps faster than in other sections of the country. In 1993, the state of Virginia exported almost 10 percent of the national total of wild harvested ginseng. On a yearly basis, the value of the specialty forest products extracted from Virginia?s forests has been estimated at $35 million. The...

  7. Accuracy Assessment of Satellite Derived Forest Cover Products in South and Southeast Asia

    NASA Astrophysics Data System (ADS)

    Gilani, H.; Xu, X.; Jain, A. K.

    2017-12-01

    South and Southeast Asia (SSEA) region occupies 16 % of worlds land area. It is home to over 50% of the world's population. The SSEA's countries are experiencing significant land-use and land-cover changes (LULCCs), primarily in agriculture, forest, and urban land. For this study, we compiled four existing global forest cover maps for year 2010 by Gong et al.(2015), Hansen et al. (2013), Sexton et al.(2013) and Shimada et al. (2014), which were all medium resolution (≤30 m) products based on Landsat and/or PALSAR satellite images. To evaluate the accuracy of these forest products, we used three types of information: (1) ground measurements, (2) high resolution satellite images and (3) forest cover maps produced at the national scale. The stratified random sampling technique was used to select a set of validation data points from the ground and high-resolution satellite images. Then the confusion matrix method was used to assess and rank the accuracy of the forest cover products for the entire SSEA region. We analyzed the spatial consistency of different forest cover maps, and further evaluated the consistency with terrain characteristics. Our study suggests that global forest cover mapping algorithms are trained and tested using limited ground measurement data. We found significant uncertainties in mountainous areas due to the topographical shadow effect and the dense tree canopies effects. The findings of this study will facilitate to improve our understanding of the forest cover dynamics and their impacts on the quantities and pathways of terrestrial carbon and nitrogen fluxes. Gong, P., et al. (2012). "Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data." International Journal of Remote Sensing 34(7): 2607-2654. Hansen, M. C., et al. (2013). "High-Resolution Global Maps of 21st-Century Forest Cover Change." Science 342(6160): 850-853. Sexton, J. O., et al. (2013). "Global, 30-m resolution

  8. Response of soil respiration to acid rain in forests of different maturity in southern China.

    PubMed

    Liang, Guohua; Liu, Xingzhao; Chen, Xiaomei; Qiu, Qingyan; Zhang, Deqiang; Chu, Guowei; Liu, Juxiu; Liu, Shizhong; Zhou, Guoyi

    2013-01-01

    The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF), a transitional mixed conifer and broadleaf forest (MF) and an old-growth broadleaved forest (BF)] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR) treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0). Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types.

  9. Response of Soil Respiration to Acid Rain in Forests of Different Maturity in Southern China

    PubMed Central

    Chen, Xiaomei; Qiu, Qingyan; Zhang, Deqiang; Chu, Guowei; Liu, Juxiu; Liu, Shizhong; Zhou, Guoyi

    2013-01-01

    The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF), a transitional mixed conifer and broadleaf forest (MF) and an old-growth broadleaved forest (BF)] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR) treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0). Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types. PMID:23626790

  10. 36 CFR 223.219 - Sustainable harvest of special forest products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... scale, and scientific data available prior to making their sustainability determination and establishing... on the sustainability of special forest products. Such monitoring may include, but is not limited to...

  11. 36 CFR 223.219 - Sustainable harvest of special forest products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... scale, and scientific data available prior to making their sustainability determination and establishing... on the sustainability of special forest products. Such monitoring may include, but is not limited to...

  12. 36 CFR 223.219 - Sustainable harvest of special forest products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... scale, and scientific data available prior to making their sustainability determination and establishing... on the sustainability of special forest products. Such monitoring may include, but is not limited to...

  13. 36 CFR 223.219 - Sustainable harvest of special forest products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... scale, and scientific data available prior to making their sustainability determination and establishing... on the sustainability of special forest products. Such monitoring may include, but is not limited to...

  14. Florida's forest products industry: performance and contribution to the State's economy, 1970 to 1980.

    Treesearch

    Wilbur R. Maki; Con H Schallau; Bennett B. Foster; Clair H. Redmond

    1988-01-01

    Although tourism and retirement-related activities dominate the economy in Florida, the forest products industry is a basic industry in northern Florida. Growth in employment was above the national average during the 1970's, and value added by the forest products industry increased between 1972 and 1977. Florida was one of the majority of Southern States in which...

  15. Innovation in the forest products industry: an analysis of companies in Alaska and Oregon.

    Treesearch

    Abra Hovgaard; Eric Hansen; Joseph Roos

    2005-01-01

    Because there is a lack of innovation research in the forest products industry and innovative activities in the industry are not well documented, this study attempted to fill that void. The objectives of this study were to understand the process and definition of innovation in the forest products industry, identify the constraints on innovative activities, identify...

  16. Recent activities in flame retardancy of wood-plastic composites at the Forest Products Laboratory

    Treesearch

    Robert H. White; Nicole M. Stark; Nadir Ayrilmis

    2011-01-01

    For a variety of reasons, wood-plastic composite (WPC) products are widely available for some building applications. In applications such as outdoor decking, WPCs have gained a significant share of the market. As an option to improve the efficient use of wood fiber, the USDA Forest Service, Forest Products Laboratory (FPL), has an extensive research program on WPCs....

  17. Normalizing Landsat and ASTER Data Using MODIS Data Products for Forest Change Detection

    NASA Technical Reports Server (NTRS)

    Gao, Feng; Masek, Jeffrey G.; Wolfe, Robert E.; Tan, Bin

    2010-01-01

    Monitoring forest cover and its changes are a major application for optical remote sensing. In this paper, we present an approach to integrate Landsat, ASTER and MODIS data for forest change detection. Moderate resolution (10-100m) images (e.g. Landsat and ASTER) acquired from different seasons and times are normalized to one "standard" date using MODIS data products as reference. The normalized data are then used to compute forest disturbance index for forest change detection. Comparing to the results from original data, forest disturbance index from the normalized images is more consistent spatially and temporally. This work demonstrates an effective approach for mapping forest change over a large area from multiple moderate resolution sensors on various acquisition dates.

  18. Fine Root Productivity and Dynamics on a Forested Floodplain in South Carolina

    Treesearch

    Terrell T. Baker; William Conner; H. B. Graeme Lockaby; John A. Stanturf

    2001-01-01

    The highly dynamic, fine root component of forested wetland ecosystems fine root dynamics is a challenging endeavor in any system, but the difficulties are particularly evident in forested floodplains where frequent hydrologic fluctuations directly influence fine root dynamics. Fine root (53 mm) biomass, production, and turnover were estimated for three soils...

  19. Production and reduction of nitrous oxide in agricultural and forest soils.

    PubMed

    Yu, K; Chen, G; Struwe, S; Kjøller, A

    2000-06-01

    A soil-water slurry experiment was conducted to study the potentials of N2O production and reduction in denitrification of agricultural and beech forest soils in Denmark. The effects of nitrate and ammonium additions on denitrification were also investigated. The forest soil showed a higher denitrification potential than the agricultural soil. However, N2O reduction potential of the agricultural soil was higher than the beech forest soil, shown by the ratio of N2O/N2 approximately 0.11 and 3.65 in the agricultural and the beech forest soils, respectively. Both nitrate and ammonium additions stimulated the N2O production in the two soils, but reduced the N2O reduction rates in the agricultural soil slurries. In contrast to the effect on the agricultural soil, nitrate reduced the N2O reduction rate in the beech forest soil, while ammonium showed a stimulating effect on the N2O reduction activity. After one week incubation, all of the N2O produced was reduced to N2 in the agricultural soil when nitrate was still present. Nitrous oxide reduction in the beech forest soil occurred only when nitrate almost disappeared. The different nitrate inhibitory effect on the N2O reduction activity in the two soils was due to the difference in soil pH. Inhibition of nitrate on N2O reduction was significant under acidic condition. Consequently, soil could serve as a sink of atmospheric N2O under the conditions of anaerobic, pH near neutral and low nitrate content.

  20. Wyoming's forest products industry and timber harvest, 2005

    Treesearch

    Jason P. Brandt; Todd A. Morgan; Mike T. Thompson

    2009-01-01

    This report traces the flow of Wyoming's 2005 timber harvest through the primary timber-processing industry to the wholesale market and residue-using sectors. The structure, capacity, operations, and conditions of Wyoming's primary forest products industry are described; and volumes and uses of wood fiber are quantified. Historical and recent changes in...

  1. [Early responses of soil fauna in three typical forests of south subtropical China to simulated N deposition addition].

    PubMed

    Xu, Guolian; Mo, Jiangming; Zhou, Guoyi

    2005-07-01

    In this paper, simulated N deposition addition (0, 50, 100 and 150 kg x hm(-2) x yr(-1)) by spreading water or NH4NO3 was conducted to study the early responses of soil fauna in three typical native forests (monsoon evergreen broadleaf forest, pine forest, and broadleaf-pine mixed forest) of subtropical China. The results showed that in monsoon evergreen broadleaf forest, N deposition addition had an obviously negative effect on the three indexes for soil fauna, but in pine forest, the positive effect was significant (P < 0. 05), and the soil fauna community could reach the level in mixed forest, even that in monsoon evergreen broadleaf forest at sometime. The responses in mixed forest were not obvious. In monsoon evergreen broadleaf forest, the negative effects were significant (P < 0.05) under medium N deposition, but not under low N deposition. In pine forest, the positive effect was significant (P < 0.05) under high N deposition, especially for the number of soil fauna groups. The results obtained might imply the N saturation-response mechanisms of forest ecosystems in subtropical China, and the conclusions from this study were also consisted with some related researches.

  2. PROJECTION OF RESPONSE OF TREES AND FORESTS TO ACIDIC DEPOSITION AND ASSOCIATED POLLUTANTS

    EPA Science Inventory

    In 1986 the National, Acid Precipitation Assessment Program (NAPAP) established the Forest Response Program (FRP) to assess the effects of acidic deposition and associated pollutants on forests. Modeling studies were developed in parallel with both field studies on the pattern an...

  3. The Four Corners timber harvest and forest products industry, 2007

    Treesearch

    Steven W. Hayes; Todd A. Morgan; Erik C. Berg; Jean M. Daniels; Mike Thompson

    2012-01-01

    This report traces the flow of timber harvested in the "Four Corners" States (Arizona, Colorado, New Mexico, and Utah) during calendar year 2007, describes the composition and operations of the region's primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as...

  4. The Four Corners timber harvest and forest products industry, 2002

    Treesearch

    Todd A. Morgan; Thale Dillon; Charles E. Keegan; Alfred L. Chase; Mike T. Thompson

    2006-01-01

    This report traces the flow of timber harvested in the "Four Corners" States (Arizona, Colorado, New Mexico, and Utah) during calendar year 2002, describes the composition and operations of the region's primary forest products industry, and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as...

  5. Water availability limits tree productivity, carbon stocks, and carbon residence time in mature forests across the western US

    NASA Astrophysics Data System (ADS)

    Berner, Logan T.; Law, Beverly E.; Hudiburg, Tara W.

    2017-01-01

    Water availability constrains the structure and function of terrestrial ecosystems and is projected to change in many parts of the world over the coming century. We quantified the response of tree net primary productivity (NPP), live biomass (BIO), and mean carbon residence time (CRT = BIO / NPP) to spatial variation in water availability in the western US. We used forest inventory measurements from 1953 mature stands (> 100 years) in Washington, Oregon, and California (WAORCA) along with satellite and climate data sets covering the western US. We summarized forest structure and function in both domains along a 400 cm yr-1 hydrologic gradient, quantified with a climate moisture index (CMI) based on the difference between precipitation and reference evapotranspiration summed over the water year (October-September) and then averaged annually from 1985 to 2014 (CMIwy). Median NPP, BIO, and CRT computed at 10 cm yr-1 intervals along the CMIwy gradient increased monotonically with increasing CMIwy across both WAORCA (rs = 0.93-0.96, p < 0.001) and the western US (rs = 0.93-0.99, p < 0.001). Field measurements from WAORCA showed that median NPP increased from 2.2 to 5.6 Mg C ha-1 yr-1 between the driest and wettest 5 % of sites, while BIO increased from 26 to 281 Mg C ha-1 and CRT increased from 11 to 49 years. The satellite data sets revealed similar changes over the western US, though these data sets tended to plateau in the wettest areas, suggesting that additional efforts are needed to better quantify NPP and BIO from satellites in high-productivity, high-biomass forests. Our results illustrate that long-term average water availability is a key environmental constraint on tree productivity, carbon storage, and carbon residence time in mature forests across the western US, underscoring the need to assess potential ecosystem response to projected

  6. Enhancement of understory productivity by asynchronous phenology with overstory competitors in a temperate deciduous forest.

    PubMed

    Jolly, William M; Nemani, Ramakrishna; Running, Steven W

    2004-09-01

    Some saplings and shrubs growing in the understory of temperate deciduous forests extend their periods of leaf display beyond that of the overstory, resulting in periods when understory radiation, and hence productivity, are not limited by the overstory canopy. To assess the importance of the duration of leaf display on the productivity of understory and overstory trees of deciduous forests in the north eastern United States, we applied the simulation model, BIOME-BGC with climate data for Hubbard Brook Experimental Forest, New Hampshire, USA and mean ecophysiological data for species of deciduous, temperate forests. Extension of the overstory leaf display period increased overstory leaf area index (LAI) by only 3 to 4% and productivity by only 2 to 4%. In contrast, extending the growing season of the understory relative to the overstory by one week in both spring and fall, increased understory LAI by 35% and productivity by 32%. A 2-week extension of the growing period in both spring and fall increased understory LAI by 53% and productivity by 55%.

  7. Response of photosynthetic carbon gain to ecosystem retrogression of vascular plants and mosses in the boreal forest.

    PubMed

    Bansal, Sheel; Nilsson, Marie-Charlotte; Wardle, David A

    2012-07-01

    In the long-term absence of rejuvenating disturbances, forest succession frequently proceeds from a maximal biomass phase to a retrogressive phase characterized by reduced nutrient availability [notably nitrogen (N) and phosphorus (P)] and net primary productivity. Few studies have considered how retrogression induces changes in ecophysiological responses associated with photosynthetic carbon (C) gain, and only for trees. We tested the hypothesis that retrogression would negatively impact photosynthetic C gain of four contrasting species, and that this impact would be greater for vascular plants (i.e., trees and shrubs) than for non-vascular plants (i.e., mosses). We used a 5,000-year-old chronosequence of forested islands in Sweden, where retrogression occurs in the long-term absence of lightning-ignited wildfires. Despite fundamental differences in plant form and ecological niche among species, vascular plants and mosses showed similar ecophysiological responses to retrogression. The most common effects of retrogression were reductions in photosynthesis and respiration per unit foliar N, increases in foliar N, δ(13)C and δ(15)N, and decreases in specific leaf areas. In contrast, photosynthesis per unit mass or area generally did not change along the chronosequence, but did vary many-fold between vascular plants and mosses. The consistent increases in foliar N without corresponding increases in mass- or area-based photosynthesis suggest that other factor(s), such as P co-limitation, light conditions or water availability, may co-regulate C gain in retrogressive boreal forests. Against our predictions, traits of mosses associated with C and N were generally highly responsive to retrogression, which has implications for how mosses influence ecosystem processes in boreal forests.

  8. Understanding Tropical Forest Abiotic Responses to Canopy Loss and Biomass Deposition from an Experimental Hurricane Manipulation

    NASA Astrophysics Data System (ADS)

    Van Beusekom, A.; González, G.; Stankavitch, S.; Zimmerman, J. K.

    2017-12-01

    Understanding the nature and duration of the response of tropical forests to the extreme weather events of hurricanes is critical to understanding future forest regimes, as hurricanes are expected to increase in frequency with climate change. Here we present results from a manipulative experiment on hurricane disturbance effects in the Luquillo Experimental Forest (LEF) in Puerto Rico. The LEF is an example of a forest that would be in a frequent-hurricane region in Earth System Models (ESMs). Thus, the Canopy Trimming Experiment (CTE) was designed to study the key mechanisms behind such a forest's response after a major hurricane (category 4), and guide how repeated hurricanes might be expected to alter such ecosystems using these key mechanisms. Furthermore, with explicit forest manipulation instead of natural occurrence, it is possible to separate out which aspects of hurricane disturbance are most important to be accurately included in ESMs. Phase one of the experiments ran from 2005-2012, where it was found that short-term biotic responses of the forests were driven by canopy openness rather than by debris deposition. In phase two, running from 2014 through the present, we focus here on the abiotic changes forcing the overall response of the ecosystem. The manner in which these abiotic characteristics are disturbed and the speed at which they recover will be key to the continued existence of tropical forests under a climate with more frequent hurricane activity.

  9. [Annual production of moss layer in dark coniferous forests of Ket-Chulym Forest District (by the example of Moss Hylocomium splendens)].

    PubMed

    Koshurnikova, N N

    2007-01-01

    The biological production of the moss layer was analyzed in dark coniferous stands in progressive succession in the southern taiga in West Siberia. The rate of organic matter production by mosses changed from 15-22.2 g/(m2 y) in 50-90-year-old fir forests to 51.6 g/(m2 y) in 170-year-old mixed Siberian pine-spruce-fir stands. In forest phytocenosis that were formed with species replacement (after cuttings with understory clearing), the annual moss production (net primary production) ranged from 2.8 to 20.6 g/(m2 y). The annual moss cover production amounted to 35-36% of the moss photosynthetic biomass irrespective of the type of native stand progressive succession and the stand age.

  10. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    Treesearch

    Fabien H. Wagner; Bruno Herault; Damien Bonal; Clement Stahl; Liana O. Anderson; Timothy R. Baker; Gabriel Sebastian Becker; Hans Beeckman; Danilo Boanerges Souza; Paulo Cesar Botosso; David M. J. S. Bowman; Achim Brauning; Benjamin Brede; Foster Irving Brown; Jesus Julio Camarero; Plinio Barbosa Camargo; Fernanda C. G. Cardoso; Fabricio Alvim Carvalho; Wendeson Castro; Rubens Koloski Chagas; Jerome Chave; Emmanuel N. Chidumayo; Deborah A. Clark; Flavia Regina Capellotto Costa; Camille Couralet; Paulo Henrique da Silva Mauricio; Helmut Dalitz; Vinicius Resende de Castro; Jacanan Eloisa de Freitas Milani; Edilson Consuelo de Oliveira; Luciano de Souza Arruda; Jean-Louis Devineau; David M. Drew; Oliver Dunisch; Giselda Durigan; Elisha Elifuraha; Marcio Fedele; Ligia Ferreira Fedele; Afonso Figueiredo Filho; Cesar Augusto Guimaraes Finger; Augusto Cesar Franco; Joao Lima Freitas Junior; Franklin Galvao; Aster Gebrekirstos; Robert Gliniars; Paulo Mauricio Lima de Alencastro Graca; Anthony D. Griffiths; James Grogan; Kaiyu Guan; Jurgen Homeier; Maria Raquel Kanieski; Lip Khoon Kho; Jennifer Koenig; Sintia Valerio Kohler; Julia Krepkowski; Jose Pires Lemos-Filho; Diana Lieberman; Milton Eugene Lieberman; Claudio Sergio Lisi; Tomaz Longhi Santos; Jose Luis Lopez Ayala; Eduardo Eijji Maeda; Yadvinder Malhi; Vivian R. B. Maria; Marcia C. M. Marques; Renato Marques; Hector Maza Chamba; Lawrence Mbwambo; Karina Liana Lisboa Melgaco; Hooz Angela Mendivelso; Brett P. Murphy; Joseph O' Brien; Steven F. Oberbauer; Naoki Okada; Raphael Pelissier; Lynda D. Prior; Fidel Alejandro Roig; Michael Ross; Davi Rodrigo Rossatto; Vivien Rossi; Lucy Rowland; Ervan Rutishauser; Hellen Santana; Mark Schulze; Diogo Selhorst; Williamar Rodrigues Silva; Marcos Silveira; Susanne Spannl; Michael D. Swaine; Jose Julio Toledo; Marcos Miranda Toledo; Marisol Toledo; Takeshi Toma; Mario Tomazello Filho; Juan Ignacio Valdez Hernandez; Jan Verbesselt; Simone Aparecida Vieira; Gregoire Vincent; Carolina Volkmer de Castilho; Franziska Volland; Martin Worbes; Magda Lea Bolzan Zanon; Luiz E. O. C. Aragao

    2016-01-01

    The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter...

  11. Use of Multi-Year MODIS Phenological Data Products to Detect and Monitor Forest Disturbances at Regional and National Scales

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Hargrove, William W.; Gasser, Jerry; Smoot, James; Ross, Kenton

    2010-01-01

    This presentation discusses an effort to use select MODIS phenological products for forest disturbance monitoring at the regional and CONUS scales. Forests occur on 1/3 of the U.S. land base and include regionally prevalent forest disturbances that can threaten forest sustainability. Regional and CONUS forest disturbance monitoring is needed for a national forest threat early warning system being developed by the USDA Forest Service with help from NASA, ORNL, and USGS. MODIS NDVI phenology products are being used to develop forest disturbance monitoring capabilities of this EWS.

  12. Cellulose factories: advancing bioenergy production from forest trees.

    PubMed

    Mizrachi, Eshchar; Mansfield, Shawn D; Myburg, Alexander A

    2012-04-01

    Fast-growing, short-rotation forest trees, such as Populus and Eucalyptus, produce large amounts of cellulose-rich biomass that could be utilized for bioenergy and biopolymer production. Major obstacles need to be overcome before the deployment of these genera as energy crops, including the effective removal of lignin and the subsequent liberation of carbohydrate constituents from wood cell walls. However, significant opportunities exist to both select for and engineer the structure and interaction of cell wall biopolymers, which could afford a means to improve processing and product development. The molecular underpinnings and regulation of cell wall carbohydrate biosynthesis are rapidly being elucidated, and are providing tools to strategically develop and guide the targeted modification required to adapt forest trees for the emerging bioeconomy. Much insight has already been gained from the perturbation of individual genes and pathways, but it is not known to what extent the natural variation in the sequence and expression of these same genes underlies the inherent variation in wood properties of field-grown trees. The integration of data from next-generation genomic technologies applied in natural and experimental populations will enable a systems genetics approach to study cell wall carbohydrate production in trees, and should advance the development of future woody bioenergy and biopolymer crops.

  13. 25 CFR 163.26 - Forest product harvesting permits.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Forest product harvesting permits. 163.26 Section 163.26 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS... be used by the Secretary in his or her discretion for planting or other work to offset damage to the...

  14. Competition-interaction landscapes for the joint response of forests to climate change.

    PubMed

    Clark, James S; Bell, David M; Kwit, Matthew C; Zhu, Kai

    2014-06-01

    The recent global increase in forest mortality episodes could not have been predicted from current vegetation models that are calibrated to regional climate data. Physiological studies show that mortality results from interactions between climate and competition at the individual scale. Models of forest response to climate do not include interactions because they are hard to estimate and require long-term observations on individual trees obtained at frequent (annual) intervals. Interactions involve multiple tree responses that can only be quantified if these responses are estimated as a joint distribution. A new approach provides estimates of climate–competition interactions in two critical ways, (i) among individuals, as a joint distribution of responses to combinations of inputs, such as resources and climate, and (ii) within individuals, due to allocation requirements that control outputs, such as demographic rates. Application to 20 years of data from climate and competition gradients shows that interactions control forest responses, and their omission from models leads to inaccurate predictions. Species most vulnerable to increasing aridity are not those that show the largest growth response to precipitation, but rather depend on interactions with the local resource environment. This first assessment of regional species vulnerability that is based on the scale at which climate operates, individual trees competing for carbon and water, supports predictions of potential savannification in the southeastern US.

  15. Mapping Forest Inventory and Analysis forest land use: timberland, reserved forest land, and other forest land

    Treesearch

    Mark D. Nelson; John Vissage

    2007-01-01

    The Forest Inventory and Analysis (FIA) program produces area estimates of forest land use within three subcategories: timberland, reserved forest land, and other forest land. Mapping these subcategories of forest land requires the ability to spatially distinguish productive from unproductive land, and reserved from nonreserved land. FIA field data were spatially...

  16. Acorn Production on the Missouri Ozark Forest Ecosystem Project Study Sites: Pre-treatment Data

    Treesearch

    Larry D. Vangilder

    1997-01-01

    In the pre-treatment phase of a study to determine if even- and uneven-aged forest management affects the production of acorns on the Missourt Forest Ecosystem Project (MOFEP) study sites, acorn production was measured on the nine study sites by randomly placing from 2 to 6 plots in each of four ecological land type (ELT) groupings (N=130 plots). A split-plot...

  17. Modeling forest site productivity using mapped geospatial attributes within a South Carolina landscape, USA

    Treesearch

    B.R. Parresol; D.A. Scott; S.J. Zarnoch; L.A. Edwards; J.I. Blake

    2017-01-01

    Spatially explicit mapping of forest productivity is important to assess many forest management alternatives. We assessed the relationship between mapped variables and site index of forests ranging from southern pine plantations to natural hardwoods on a 74,000-ha landscape in South Carolina, USA. Mapped features used in the analysis were soil association, land use...

  18. Season-modulated responses of Neotropical bats to forest fragmentation.

    PubMed

    Ferreira, Diogo F; Rocha, Ricardo; López-Baucells, Adrià; Farneda, Fábio Z; Carreiras, João M B; Palmeirim, Jorge M; Meyer, Christoph F J

    2017-06-01

    Seasonality causes fluctuations in resource availability, affecting the presence and abundance of animal species. The impacts of these oscillations on wildlife populations can be exacerbated by habitat fragmentation. We assessed differences in bat species abundance between the wet and dry season in a fragmented landscape in the Central Amazon characterized by primary forest fragments embedded in a secondary forest matrix. We also evaluated whether the relative importance of local vegetation structure versus landscape characteristics (composition and configuration) in shaping bat abundance patterns varied between seasons. Our working hypotheses were that abundance responses are species as well as season specific, and that in the wet season, local vegetation structure is a stronger determinant of bat abundance than landscape-scale attributes. Generalized linear mixed-effects models in combination with hierarchical partitioning revealed that relationships between species abundances and local vegetation structure and landscape characteristics were both season specific and scale dependent. Overall, landscape characteristics were more important than local vegetation characteristics, suggesting that landscape structure is likely to play an even more important role in landscapes with higher fragment-matrix contrast. Responses varied between frugivores and animalivores. In the dry season, frugivores responded more to compositional metrics, whereas during the wet season, local and configurational metrics were more important. Animalivores showed similar patterns in both seasons, responding to the same group of metrics in both seasons. Differences in responses likely reflect seasonal differences in the phenology of flowering and fruiting between primary and secondary forests, which affected the foraging behavior and habitat use of bats. Management actions should encompass multiscale approaches to account for the idiosyncratic responses of species to seasonal variation in

  19. Belowground Response to Drought in a Tropical Forest Soil. I. Changes in Microbial Functional Potential and Metabolism

    DOE PAGES

    Bouskill, Nicholas J.; Wood, Tana E.; Baran, Richard; ...

    2016-04-20

    We report that global climate models predict a future of increased severity of drought in many tropical forests. Soil microbes are central to the balance of these systems as sources or sinks of atmospheric carbon (C), yet how they respond metabolically to drought is not well-understood. We simulated drought in the typically aseasonal Luquillo Experimental Forest, Puerto Rico, by intercepting precipitation falling through the forest canopy. This approach reduced soil moisture by 13% and water potential by 0.14 MPa (from -0.2 to -0.34). Previous results from this experiment have demonstrated that the diversity and composition of these soil microbial communitiesmore » are sensitive to even small changes in soil water. Here, we show prolonged drought significantly alters the functional potential of the community and provokes a clear osmotic stress response, including the production of compatible solutes that increase intracellular C demand. Subsequently, a microbial population emerges with a greater capacity for extracellular enzyme production targeting macromolecular carbon. Significantly, some of these drought-induced functional shifts in the soil microbiota are attenuated by prior exposure to a short-term drought suggesting that acclimation may occur despite a lack of longer-term drought history.« less

  20. Belowground Response to Drought in a Tropical Forest Soil. I. Changes in Microbial Functional Potential and Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouskill, Nicholas J.; Wood, Tana E.; Baran, Richard

    We report that global climate models predict a future of increased severity of drought in many tropical forests. Soil microbes are central to the balance of these systems as sources or sinks of atmospheric carbon (C), yet how they respond metabolically to drought is not well-understood. We simulated drought in the typically aseasonal Luquillo Experimental Forest, Puerto Rico, by intercepting precipitation falling through the forest canopy. This approach reduced soil moisture by 13% and water potential by 0.14 MPa (from -0.2 to -0.34). Previous results from this experiment have demonstrated that the diversity and composition of these soil microbial communitiesmore » are sensitive to even small changes in soil water. Here, we show prolonged drought significantly alters the functional potential of the community and provokes a clear osmotic stress response, including the production of compatible solutes that increase intracellular C demand. Subsequently, a microbial population emerges with a greater capacity for extracellular enzyme production targeting macromolecular carbon. Significantly, some of these drought-induced functional shifts in the soil microbiota are attenuated by prior exposure to a short-term drought suggesting that acclimation may occur despite a lack of longer-term drought history.« less