Sample records for forest remote sensing

  1. Method of determining forest production from remotely sensed forest parameters

    DOEpatents

    Corey, J.C.; Mackey, H.E. Jr.

    1987-08-31

    A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.

  2. Operational programs in forest management and priority in the utilization of remote sensing

    NASA Technical Reports Server (NTRS)

    Douglass, R. W.

    1978-01-01

    A speech is given on operational remote sensing programs in forest management and the importance of remote sensing in forestry is emphasized. Forest service priorities in using remote sensing are outlined.

  3. Forest mensuration with remote sensing: A retrospective and a vision for the future

    Treesearch

    Randolph H. Wynne

    2004-01-01

    Remote sensing, while occasionally oversold, has clear potential to reduce the overall cost of traditional forest inventories. Perhaps most important, some of the information needed for more intensive, rather than extensive, forest management is available from remote sensing. These new information needs may justify increased use and the increased cost of remote sensing...

  4. A Macroecological Analysis of SERA Derived Forest Heights and Implications for Forest Volume Remote Sensing

    PubMed Central

    Brolly, Matthew; Woodhouse, Iain H.; Niklas, Karl J.; Hammond, Sean T.

    2012-01-01

    Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which account for tree collections in forests. For remote sensing and allometric applications, this height is not entirely understood in terms of its location. Here, a forest growth model (SERA) analyzes forest canopy height relationships with forest wood volume. Maximum height, mean, H100, and Lorey's height are examined for variability under plant number density, resource and species. Our findings, shown to be allometrically consistent with empirical measurements for forested communities world-wide, are analyzed for implications to forest remote sensing techniques such as LiDAR and RADAR. Traditional forestry measures of maximum height, and to a lesser extent H100 and Lorey's, exhibit little consistent correlation with forest volume across modeled conditions. The implication is that using forest height to infer volume or biomass from remote sensing requires species and community behavioral information to infer accurate estimates using height alone. SERA predicts mean height to provide the most consistent relationship with volume of the height classifications studied and overall across forest variations. This prediction agrees with empirical data collected from conifer and angiosperm forests with plant densities ranging between 102–106 plants/hectare and heights 6–49 m. Height classifications investigated are potentially linked to radar scattering centers with implications for allometry. These findings may be used to advance forest biomass estimation accuracy through remote sensing. Furthermore, Lorey's height with its specific relationship to remote sensing physics is recommended as a more universal indicator of volume when using remote sensing than achieved using either maximum height or H100. PMID:22457800

  5. A macroecological analysis of SERA derived forest heights and implications for forest volume remote sensing.

    PubMed

    Brolly, Matthew; Woodhouse, Iain H; Niklas, Karl J; Hammond, Sean T

    2012-01-01

    Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which account for tree collections in forests. For remote sensing and allometric applications, this height is not entirely understood in terms of its location. Here, a forest growth model (SERA) analyzes forest canopy height relationships with forest wood volume. Maximum height, mean, H₁₀₀, and Lorey's height are examined for variability under plant number density, resource and species. Our findings, shown to be allometrically consistent with empirical measurements for forested communities world-wide, are analyzed for implications to forest remote sensing techniques such as LiDAR and RADAR. Traditional forestry measures of maximum height, and to a lesser extent H₁₀₀ and Lorey's, exhibit little consistent correlation with forest volume across modeled conditions. The implication is that using forest height to infer volume or biomass from remote sensing requires species and community behavioral information to infer accurate estimates using height alone. SERA predicts mean height to provide the most consistent relationship with volume of the height classifications studied and overall across forest variations. This prediction agrees with empirical data collected from conifer and angiosperm forests with plant densities ranging between 10²-10⁶ plants/hectare and heights 6-49 m. Height classifications investigated are potentially linked to radar scattering centers with implications for allometry. These findings may be used to advance forest biomass estimation accuracy through remote sensing. Furthermore, Lorey's height with its specific relationship to remote sensing physics is recommended as a more universal indicator of volume when using remote sensing than achieved using either maximum height or H₁₀₀.

  6. Carbon stores, sinks, and sources in forests of northwestern Russia: can we reconcile forest inventories with remote sensing results?

    Treesearch

    Olga N. Krankina; Mark E. Harmon; Warren B. Cohen; Doug R. Oetter; Olga Zyrina; Maureen V. Duane

    2004-01-01

    Forest inventories and remote sensing are the two principal data sources used to estimate carbon (C) stocks and fluxes for large forest regions. National governments have historically relied on forest inventories for assessments but developments in remote sensing technology provide additional opportunities for operational C monitoring. The estimate of total C stock in...

  7. Remote sensing for the sustainable management and conservation of forest environments biodiversity: the conservation managers perspective.

    NASA Astrophysics Data System (ADS)

    Aguilar-Amuchas, N.; Henebry, G. M.; Blanchard, J.; Sutter, R.

    2008-12-01

    The potential use of remote sensing for the design and implementation of sustainable management, conservation, and monitoring of forest biodiversity has been well documented in the scientific literature. However, when we look into how often remote sensing is actually being used in the decision making processes affecting biodiversity conservation and sustainable management, we find that, apart from specific study cases, its use is not as widespread as we know it should. There is an enormous gap between our scientific achievements and their use in the real world towards the preservation of a rapidly vanishing biodiversity. Conservation managers understand the potential remote sensing has. However, logistical constraints and high technical skills requirements render the use of remote sensing data difficult. Sound and easy approaches need to be developed and implemented. We present two study cases that illustrate 1st. How the interaction between tropical forest managers and remote sensing specialist allowed developing a simple method for the identification of priority areas for field surveys of tropical forests management ecological sustainability indicators and, 2nd. How remote sensing is being used by The Nature Conservancy as a first level approach towards the assessment of forest conservation strategies effectiveness in for areas located in 11 states, covering different forest types and a variety of conservation objectives.

  8. Remote Sensing for Tropical Forest Assessment

    Treesearch

    AJR Gillespie

    1994-01-01

    The purpose of this workshop was to allow remote sensing experts from Latin America, the U.S.A., and FAO to discuss state-of-the-art methodology in remote sensing of forest environments, and to develop plans on how to better incorporate this technology into FAO and national forest inventory efforts. The workshop included numerous presentations of ongoing activities, as...

  9. Using a remote sensing-based, percent tree cover map to enhance forest inventory estimation

    Treesearch

    Ronald E. McRoberts; Greg C. Liknes; Grant M. Domke

    2014-01-01

    For most national forest inventories, the variables of primary interest to users are forest area and growing stock volume. The precision of estimates of parameters related to these variables can be increased using remotely sensed auxiliary variables, often in combination with stratified estimators. However, acquisition and processing of large amounts of remotely sensed...

  10. Examining fire-induced forest changes using novel remote sensing technique: a case study in a mixed pine-oak forest

    NASA Astrophysics Data System (ADS)

    Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2017-12-01

    Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.

  11. Factors affecting the remotely sensed response of coniferous forest plantations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danson, F.M.; Curran, P.J.

    1993-01-01

    Remote sensing of forest biophysical properties has concentrated upon forest sites with a wide range of green vegetation amount and thereby leaf area index and canopy cover. However, coniferous forest plantations, an important forest type in Europe, are managed to maintain a large amount of green vegetation with little spatial variation. Therefore, the strength of the remotely sensed signal will, it is hypothesized, be determined more by the structure of this forest than by its cover. Airborne Thematic Mapper (ATM) and SPOT-1 HRV data were used to determine the effects of this structural variation on the remotely sensed response ofmore » a coniferous forest plantation in the United Kingdom. Red and near infrared radiance were strongly and negatively correlated with a range of structural properties and with the age of the stands but weakly correlated with canopy cover. A composite variable, related to the volume of the canopy, accounted for over 75% of the variation in near infrared radiance. A simple model that related forest structural variables to the remotely sensed response was used to understand and explain this response from a coniferous forest plantation.« less

  12. Hyperspectral sensing of forests

    NASA Astrophysics Data System (ADS)

    Goodenough, David G.; Dyk, Andrew; Chen, Hao; Hobart, Geordie; Niemann, K. Olaf; Richardson, Ash

    2007-11-01

    Canada contains 10% of the world's forests covering an area of 418 million hectares. The sustainable management of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of new and improved information products to resource managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory, forest health, foliar biochemistry, biomass, and aboveground carbon than are currently available. This paper surveys recent methods and results in hyperspectral sensing of forests and describes space initiatives for hyperspectral sensing.

  13. Section summary: Remote sensing

    Treesearch

    Belinda Arunarwati Margono

    2013-01-01

    Remote sensing is an important data source for monitoring the change of forest cover, in terms of both total removal of forest cover (deforestation), and change of canopy cover, structure and forest ecosystem services that result in forest degradation. In the context of Intergovernmental Panel on Climate Change (IPCC), forest degradation monitoring requires information...

  14. Temporal Forest Change Detection and Forest Health Assessment using Remote Sensing

    NASA Astrophysics Data System (ADS)

    Ya'acob, Norsuzila; Mohd Azize, Aziean Binti; Anis Mahmon, Nur; Laily Yusof, Azita; Farhana Azmi, Nor; Mustafa, Norfazira

    2014-03-01

    This paper presents the detection of Angsi and Berembun Reserve Forest change for years 1996 and 2013. Forest is an important part of our ecosystem. The main function is to absorb carbon oxide and produce oxygen in their cycle of photosynthesis to maintain a balance and healthy atmosphere. However, forest changes as time changes. Some changes are necessary as to give way for economic growth. Nevertheless, it is important to monitor forest change so that deforestation and development can be planned and the balance of ecosystem is still preserved. It is important because there are number of unfavorable effects of deforestation that include environmental and economic such as erosion of soil, loss of biodiversity and climate change. The forest change detection can be studied with reference of several satellite images using remote sensing application. Forest change detection is best done with remote sensing due to large and remote study area. The objective of this project is to detect forest change over time and to compare forest health indicated by Normalized Difference Vegetation Index (NDVI) using remote sensing and image processing. The forest under study shows depletion of forest area by 12% and 100% increment of deforestation activities. The NDVI value which is associated with the forest health also shows 13% of reduction.

  15. Estimating Aboveground Biomass in Tropical Forests: Field Methods and Error Analysis for the Calibration of Remote Sensing Observations

    DOE PAGES

    Gonçalves, Fabio; Treuhaft, Robert; Law, Beverly; ...

    2017-01-07

    Mapping and monitoring of forest carbon stocks across large areas in the tropics will necessarily rely on remote sensing approaches, which in turn depend on field estimates of biomass for calibration and validation purposes. Here, we used field plot data collected in a tropical moist forest in the central Amazon to gain a better understanding of the uncertainty associated with plot-level biomass estimates obtained specifically for the calibration of remote sensing measurements. In addition to accounting for sources of error that would be normally expected in conventional biomass estimates (e.g., measurement and allometric errors), we examined two sources of uncertaintymore » that are specific to the calibration process and should be taken into account in most remote sensing studies: the error resulting from spatial disagreement between field and remote sensing measurements (i.e., co-location error), and the error introduced when accounting for temporal differences in data acquisition. We found that the overall uncertainty in the field biomass was typically 25% for both secondary and primary forests, but ranged from 16 to 53%. Co-location and temporal errors accounted for a large fraction of the total variance (>65%) and were identified as important targets for reducing uncertainty in studies relating tropical forest biomass to remotely sensed data. Although measurement and allometric errors were relatively unimportant when considered alone, combined they accounted for roughly 30% of the total variance on average and should not be ignored. Lastly, our results suggest that a thorough understanding of the sources of error associated with field-measured plot-level biomass estimates in tropical forests is critical to determine confidence in remote sensing estimates of carbon stocks and fluxes, and to develop strategies for reducing the overall uncertainty of remote sensing approaches.« less

  16. Remote sensing-based estimation of annual soil respiration at two contrasting forest sites

    DOE PAGES

    Gu, Lianhong; Huang, Ni; Black, T. Andrew; ...

    2015-11-23

    Soil respiration (R s), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this article, we proposed a methodology for the remote estimation of annual R s at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest).

  17. Monitoring forests from space: quantifying forest change by using satellite data.

    Treesearch

    Jonathan Thompson

    2006-01-01

    Change is the only constant in forest ecosystems. Quantifying regional-scale forest change is increasingly done with remote sensing, which relies on data sent from digital camera-like sensors mounted to Earth-orbiting satellites. Through remote sensing, changes in forests can be studied comprehensively and uniformly across time and space.

  18. Development of satellite remote sensing techniques as an economic tool for forestry industry

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.; Jadkowski, Mark A.

    1989-01-01

    A cooperative commercial development project designed to focus on cost-effective and practical applications of satellite remote sensing in forest management is discussed. The project, initiated in September, 1988 is being executed in three phases: (1) development of a forest resource inventory and geographic information system (GIS) updating systems; (2) testing and evaluation of remote-sensing products against forest industry specifications; and (3) integration of remote-sensing services and products in an operational setting. An advisory group represented by eleven major forest-product companies will provide direct involvement of the target market. The advisory group will focus on the following questions: Does the technology work for them? How can it be packaged to provide the needed forest-management information? Can the products and information be provided in a cost-effective manner?

  19. Remote sensing of vegetation structure using computer vision

    NASA Astrophysics Data System (ADS)

    Dandois, Jonathan P.

    High-spatial resolution measurements of vegetation structure are needed for improving understanding of ecosystem carbon, water and nutrient dynamics, the response of ecosystems to a changing climate, and for biodiversity mapping and conservation, among many research areas. Our ability to make such measurements has been greatly enhanced by continuing developments in remote sensing technology---allowing researchers the ability to measure numerous forest traits at varying spatial and temporal scales and over large spatial extents with minimal to no field work, which is costly for large spatial areas or logistically difficult in some locations. Despite these advances, there remain several research challenges related to the methods by which three-dimensional (3D) and spectral datasets are joined (remote sensing fusion) and the availability and portability of systems for frequent data collections at small scale sampling locations. Recent advances in the areas of computer vision structure from motion (SFM) and consumer unmanned aerial systems (UAS) offer the potential to address these challenges by enabling repeatable measurements of vegetation structural and spectral traits at the scale of individual trees. However, the potential advances offered by computer vision remote sensing also present unique challenges and questions that need to be addressed before this approach can be used to improve understanding of forest ecosystems. For computer vision remote sensing to be a valuable tool for studying forests, bounding information about the characteristics of the data produced by the system will help researchers understand and interpret results in the context of the forest being studied and of other remote sensing techniques. This research advances understanding of how forest canopy and tree 3D structure and color are accurately measured by a relatively low-cost and portable computer vision personal remote sensing system: 'Ecosynth'. Recommendations are made for optimal conditions under which forest structure measurements should be obtained with UAS-SFM remote sensing. Ultimately remote sensing of vegetation by computer vision offers the potential to provide an 'ecologist's eye view', capturing not only canopy 3D and spectral properties, but also seeing the trees in the forest and the leaves on the trees.

  20. Remote sensing and today's forestry issues

    NASA Technical Reports Server (NTRS)

    Sayn-Wittgenstein, L.

    1977-01-01

    The actual and the desirable roles of remote sensing in dealing with current forestry issues, such as national forest policy, supply and demand for forest products and competing demands for forest land are discussed. Topics covered include wood shortage, regional timber inventories, forests in tropical and temperate zones, Skylab photography, forest management and protection, available biomass studies, and monitoring.

  1. Potential for a remote-sensing-aided forest resource survey for the whole globe

    Treesearch

    E. Tomppo; R. L. Czaplewski

    2002-01-01

    The Global Forest Resources Assessment 2000 (FRA 2000) relied primarily on information provided by countries, but FAO also conducted a remote-sensing study of tropical forests to complement country information and to bolster understanding of land-cover change processes in the tropics, especially deforestation, forest degradation, fragmentation and shifting cultivation...

  2. Imputing forest structure attributes from stand inventory and remotely sensed data in western Oregon, USA

    Treesearch

    Andrew T. Hudak; A. Tod Haren; Nicholas L. Crookston; Robert J. Liebermann; Janet L. Ohmann

    2014-01-01

    Imputation is commonly used to assign reference stand observations to target stands based on covariate relationships to remotely sensed data to assign inventory attributes across the entire landscape. However, most remotely sensed data are collected at higher resolution than the stand inventory data often used by operational foresters. Our primary goal was to compare...

  3. Multi-Sensor Remote Sensing of Forest Dynamics in Central Siberia

    NASA Technical Reports Server (NTRS)

    Ransom, K. J.; Sun, G.; Kharuk, V. I.; Howl, J.

    2011-01-01

    The forested regions of Siberia, Russia are vast and contain about a quarter of the world's forests that have not experienced harvesting. However, many Siberian forests are facing twin pressures of rapidly changing climate and increasing timber harvest activity. Monitoring the dynamics and mapping the structural parameters of the forest is important for understanding the causes and consequences of changes observed in these areas. Because of the inaccessibility and large extent of this forest, remote sensing data can play an important role for observing forest state and change. In Central Siberia, multi-sensor remote sensing data have been used to monitor forest disturbances and to map above-ground biomass from the Sayan Mountains in the south to the taiga-tundra boundaries in the north. Radar images from the Shuttle Imaging Radar-C (SIR-C)/XSAR mission were used for forest biomass estimation in the Sayan Mountains. Radar images from the Japanese Earth Resources Satellite-1 (JERS-1), European Remote Sensing Satellite-1 (ERS-1) and Canada's RADARSAT-1, and data from ETM+ on-board Landsat-7 were used to characterize forest disturbances from logging, fire, and insect damage in Boguchany and Priangare areas.

  4. Characterizing tropical forests with multispectral imagery

    Treesearch

    Eileen Helmer; Nicholas R. Goodwin; Valery Gond; Carlos M. Souza, Jr.; Gregory P. Asner

    2015-01-01

    Multispectral satellite imagery, that is, remotely sensed imagery with discrete bands ranging from visible to shortwave infrared (SWIR) wavelengths, is the timeliest and most accessible remotely sensed data for monitoring tropical forests. Given this relevance, we summarize here how multispectral imagery can help characterize tropical forest attributes of widespread...

  5. High resolution remote sensing for reducing uncertainties in urban forest carbon offset life cycle assessments.

    PubMed

    Tigges, Jan; Lakes, Tobia

    2017-10-04

    Urban forests reduce greenhouse gas emissions by storing and sequestering considerable amounts of carbon. However, few studies have considered the local scale of urban forests to effectively evaluate their potential long-term carbon offset. The lack of precise, consistent and up-to-date forest details is challenging for long-term prognoses. Therefore, this review aims to identify uncertainties in urban forest carbon offset assessment and discuss the extent to which such uncertainties can be reduced by recent progress in high resolution remote sensing. We do this by performing an extensive literature review and a case study combining remote sensing and life cycle assessment of urban forest carbon offset in Berlin, Germany. Recent progress in high resolution remote sensing and methods is adequate for delivering more precise details on the urban tree canopy, individual tree metrics, species, and age structures compared to conventional land use/cover class approaches. These area-wide consistent details can update life cycle inventories for more precise future prognoses. Additional improvements in classification accuracy can be achieved by a higher number of features derived from remote sensing data of increasing resolution, but first studies on this subject indicated that a smart selection of features already provides sufficient data that avoids redundancies and enables more efficient data processing. Our case study from Berlin could use remotely sensed individual tree species as consistent inventory of a life cycle assessment. However, a lack of growth, mortality and planting data forced us to make assumptions, therefore creating uncertainty in the long-term prognoses. Regarding temporal changes and reliable long-term estimates, more attention is required to detect changes of gradual growth, pruning and abrupt changes in tree planting and mortality. As such, precise long-term urban ecological monitoring using high resolution remote sensing should be intensified, especially due to increasing climate change effects. This is important for calibrating and validating recent prognoses of urban forest carbon offset, which have so far scarcely addressed longer timeframes. Additionally, higher resolution remote sensing of urban forest carbon estimates can improve upscaling approaches, which should be extended to reach a more precise global estimate for the first time. Urban forest carbon offset can be made more relevant by making more standardized assessments available for science and professional practitioners, and the increasing availability of high resolution remote sensing data and the progress in data processing allows for precisely that.

  6. Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty

    Treesearch

    Katharine White; Jennifer Pontius; Paul Schaberg

    2014-01-01

    Current remote sensing studies of phenology have been limited to coarse spatial or temporal resolution and often lack a direct link to field measurements. To address this gap, we compared remote sensing methodologies using Landsat Thematic Mapper (TM) imagery to extensive field measurements in a mixed northern hardwood forest. Five vegetation indices, five mathematical...

  7. Using remotely sensed data to construct and assess forest attribute maps and related spatial products

    Treesearch

    Ronald E. McRoberts; Warren B. Cohen; Erik Naesset; Stephen V. Stehman; Erkki O. Tomppo

    2010-01-01

    Tremendous advances in the construction and assessment of forest attribute maps and related spatial products have been realized in recent years, partly as a result of the use of remotely sensed data as an information source. This review focuses on the current state of techniques for the construction and assessment of remote sensing-based maps and addresses five topic...

  8. Accuracy of Remotely Sensed Classifications For Stratification of Forest and Nonforest Lands

    Treesearch

    Raymond L. Czaplewski; Paul L. Patterson

    2001-01-01

    We specify accuracy standards for remotely sensed classifications used by FIA to stratify landscapes into two categories: forest and nonforest. Accuracy must be highest when forest area approaches 100 percent of the landscape. If forest area is rare in a landscape, then accuracy in the nonforest stratum must be very high, even at the expense of accuracy in the forest...

  9. Applications of satellite remote sensing to forested ecosystems

    Treesearch

    Louis R. Iverson; Robin Lambert Graham; Elizabeth A. Cook; Elizabeth A. Cook

    1989-01-01

    Since the launch of the first civilian earth-observing satellite in 1972, satellite remote sensing has provided increasingly sophisticated information on the structure and function of forested ecosystems. Forest classification and mapping, common uses of satellite data, have improved over the years as a result of more discriminating sensors, better classification...

  10. Active remote sensing.

    Treesearch

    Hans-Erik Andersen; Stephen E. Reutebuch; Robert J. McGaughey

    2006-01-01

    The development of remote sensing technologies increases the potential to support more precise, efficient, and ecologically-sensitive approaches to forest resource management. One of the primary requirements of precision forest management is accurate and detailed 3D spatial data relating to the type and condition of forest stands and characteristics of the underlying...

  11. Current and emerging operational uses of remote sensing in Swedish forestry

    Treesearch

    Hakan Olsson; Mikael Egberth; Jonas Engberg; Johan E.S. Fransson; Tina Granqvist Pahlen; < i> et al< /i>

    2007-01-01

    Satellite remote sensing is being used operationally by Swedish authorities in applications involving, for example, change detection of clear felled areas, use of k-Nearest Neighbour estimates of forest parameters, and post-stratification (in combination with National Forest Inventory plots). For forest management planning of estates, aerial...

  12. [Object-oriented segmentation and classification of forest gap based on QuickBird remote sensing image.

    PubMed

    Mao, Xue Gang; Du, Zi Han; Liu, Jia Qian; Chen, Shu Xin; Hou, Ji Yu

    2018-01-01

    Traditional field investigation and artificial interpretation could not satisfy the need of forest gaps extraction at regional scale. High spatial resolution remote sensing image provides the possibility for regional forest gaps extraction. In this study, we used object-oriented classification method to segment and classify forest gaps based on QuickBird high resolution optical remote sensing image in Jiangle National Forestry Farm of Fujian Province. In the process of object-oriented classification, 10 scales (10-100, with a step length of 10) were adopted to segment QuickBird remote sensing image; and the intersection area of reference object (RA or ) and intersection area of segmented object (RA os ) were adopted to evaluate the segmentation result at each scale. For segmentation result at each scale, 16 spectral characteristics and support vector machine classifier (SVM) were further used to classify forest gaps, non-forest gaps and others. The results showed that the optimal segmentation scale was 40 when RA or was equal to RA os . The accuracy difference between the maximum and minimum at different segmentation scales was 22%. At optimal scale, the overall classification accuracy was 88% (Kappa=0.82) based on SVM classifier. Combining high resolution remote sensing image data with object-oriented classification method could replace the traditional field investigation and artificial interpretation method to identify and classify forest gaps at regional scale.

  13. Hyperspectral forest monitoring and imaging implications

    NASA Astrophysics Data System (ADS)

    Goodenough, David G.; Bannon, David

    2014-05-01

    The forest biome is vital to the health of the earth. Canada and the United States have a combined forest area of 4.68 Mkm2. The monitoring of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of improved information products to land managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory (major forest species), forest health, foliar biochemistry, biomass, and aboveground carbon. Operationally there is a requirement for a mix of airborne and satellite approaches. This paper surveys some methods and results in hyperspectral sensing of forests and discusses the implications for space initiatives with hyperspectral sensing

  14. Using multi-level remote sensing and ground data to estimate forest biomass resources in remote regions: a case study in the boreal forests of interior Alaska

    Treesearch

    Hans-Erik Andersen; Strunk Jacob; Hailemariam Temesgen; Donald Atwood; Ken Winterberger

    2012-01-01

    The emergence of a new generation of remote sensing and geopositioning technologies, as well as increased capabilities in image processing, computing, and inferential techniques, have enabled the development and implementation of increasingly efficient and cost-effective multilevel sampling designs for forest inventory. In this paper, we (i) describe the conceptual...

  15. Remote sensing monitoring and driving force analysis to forest and greenbelt in Zhuhai

    NASA Astrophysics Data System (ADS)

    Yuliang Qiao, Pro.

    As an important city in the southern part of Chu Chiang Delta, Zhuhai is one of the four special economic zones which are opening up to the outside at the earliest in China. With pure and fresh air and trees shading the street, Zhuhai is a famous beach port city which is near the mountain and by the sea. On the basis of Garden City, the government of Zhuhai decides to build National Forest City in 2011, which firstly should understand the situation of greenbelt in Zhuhai in short term. Traditional methods of greenbelt investigation adopt the combination of field surveying and statistics, whose efficiency is low and results are not much objective because of artificial influence. With the adventure of the information technology such as remote sensing to earth observation, especially the launch of many remote sensing satellites with high resolution for the past few years, kinds of urban greenbelt information extraction can be carried out by using remote sensing technology; and dynamic monitoring to spatial pattern evolvement of forest and greenbelt in Zhuhai can be achieved by the combination of remote sensing and GIS technology. Taking Landsat5 TM data in 1995, Landsat7 ETM+ data in 2002, CCD and HR data of CBERS-02B in 2009 as main information source, this research firstly makes remote sensing monitoring to dynamic change of forest and greenbelt in Zhuhai by using the combination of vegetation coverage index and three different information extraction methods, then does a driving force analysis to the dynamic change results in 3 months. The results show: the forest area in Zhuhai shows decreasing tendency from 1995 to 2002, increasing tendency from 2002 to 2009; overall, the forest area show a small diminution tendency from 1995 to 2009. Through the comparison to natural and artificial driving force, the artificial driving force is the leading factor to the change of forest and greenbelt in Zhuhai. The research results provide a timely and reliable scientific basis for the Zhuhai Government in building National Forest City. Keywords: forest and greenbelt; remote sensing; dynamic monitoring; driving force; vegetation coverage

  16. VARIABILITY IN NET PRIMARY PRODUCTION AND CARBON STORAGE IN BIOMASS ACROSS OREGON FORESTS - AN ASSESSMENT INTEGRATING DATA FROM FOREST INVENTORIES, INTENSIVE SITES, AND REMOTE SENSING. (R828309)

    EPA Science Inventory

    We used a combination of data from USDA Forest Service inventories, intensive
    chronosequences, extensive sites, and satellite remote sensing, to estimate biomass
    and net primary production (NPP) for the forested region of western Oregon. The
    study area was divided int...

  17. Vegetation structure from quantitative fusion of hyperspectral optical and radar interferometric remote sensing

    NASA Technical Reports Server (NTRS)

    Asner, G. P.; Treuhaft, R. N.; Law, B. E.

    2000-01-01

    One of today's principle objecdtives of remote sensing is carbon accounting in the world's forests via biomass monitoring. Determining carbon sequestration by forest ecosystems requires understanding the carbon budgets of these ecosystems.

  18. Study on identifying deciduous forest by the method of feature space transformation

    NASA Astrophysics Data System (ADS)

    Zhang, Xuexia; Wu, Pengfei

    2009-10-01

    The thematic remotely sensed information extraction is always one of puzzling nuts which the remote sensing science faces, so many remote sensing scientists devotes diligently to this domain research. The methods of thematic information extraction include two kinds of the visual interpretation and the computer interpretation, the developing direction of which is intellectualization and comprehensive modularization. The paper tries to develop the intelligent extraction method of feature space transformation for the deciduous forest thematic information extraction in Changping district of Beijing city. The whole Chinese-Brazil resources satellite images received in 2005 are used to extract the deciduous forest coverage area by feature space transformation method and linear spectral decomposing method, and the result from remote sensing is similar to woodland resource census data by Chinese forestry bureau in 2004.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonçalves, Fabio; Treuhaft, Robert; Law, Beverly

    Mapping and monitoring of forest carbon stocks across large areas in the tropics will necessarily rely on remote sensing approaches, which in turn depend on field estimates of biomass for calibration and validation purposes. Here, we used field plot data collected in a tropical moist forest in the central Amazon to gain a better understanding of the uncertainty associated with plot-level biomass estimates obtained specifically for the calibration of remote sensing measurements. In addition to accounting for sources of error that would be normally expected in conventional biomass estimates (e.g., measurement and allometric errors), we examined two sources of uncertaintymore » that are specific to the calibration process and should be taken into account in most remote sensing studies: the error resulting from spatial disagreement between field and remote sensing measurements (i.e., co-location error), and the error introduced when accounting for temporal differences in data acquisition. We found that the overall uncertainty in the field biomass was typically 25% for both secondary and primary forests, but ranged from 16 to 53%. Co-location and temporal errors accounted for a large fraction of the total variance (>65%) and were identified as important targets for reducing uncertainty in studies relating tropical forest biomass to remotely sensed data. Although measurement and allometric errors were relatively unimportant when considered alone, combined they accounted for roughly 30% of the total variance on average and should not be ignored. Lastly, our results suggest that a thorough understanding of the sources of error associated with field-measured plot-level biomass estimates in tropical forests is critical to determine confidence in remote sensing estimates of carbon stocks and fluxes, and to develop strategies for reducing the overall uncertainty of remote sensing approaches.« less

  20. Remote Sensing Analysis of Forest Disturbances

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P. (Inventor)

    2015-01-01

    The present invention provides systems and methods to automatically analyze Landsat satellite data of forests. The present invention can easily be used to monitor any type of forest disturbance such as from selective logging, agriculture, cattle ranching, natural hazards (fire, wind events, storms), etc. The present invention provides a large-scale, high-resolution, automated remote sensing analysis of such disturbances.

  1. Remote sensing analysis of forest disturbances

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P. (Inventor)

    2012-01-01

    The present invention provides systems and methods to automatically analyze Landsat satellite data of forests. The present invention can easily be used to monitor any type of forest disturbance such as from selective logging, agriculture, cattle ranching, natural hazards (fire, wind events, storms), etc. The present invention provides a large-scale, high-resolution, automated remote sensing analysis of such disturbances.

  2. A Comparison of Two Above-Ground Biomass Estimation Techniques Integrating Satellite-Based Remotely Sensed Data and Ground Data for Tropical and Semiarid Forests in Puerto Rico

    EPA Science Inventory

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA)...

  3. Investigating the relationship between tree heights derived from SIBBORK forest model and remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Osmanoglu, B.; Feliciano, E. A.; Armstrong, A. H.; Sun, G.; Montesano, P.; Ranson, K.

    2017-12-01

    Tree heights are one of the most commonly used remote sensing parameters to measure biomass of a forest. In this project, we investigate the relationship between remotely sensed tree heights (e.g. G-LiHT lidar and commercially available high resolution satellite imagery, HRSI) and the SIBBORK modeled tree heights. G-LiHT is a portable, airborne imaging system that simultaneously maps the composition, structure, and function of terrestrial ecosystems using lidar, imaging spectroscopy and thermal mapping. Ground elevation and canopy height models were generated using the lidar data acquired in 2012. A digital surface model was also generated using the HRSI technique from the commercially available WorldView data in 2016. The HRSI derived height and biomass products are available at the plot (10x10m) level. For this study, we parameterized the SIBBORK individual-based gap model for Howland forest, Maine. The parameterization was calibrated using field data for the study site and results show that the simulated forest reproduces the structural complexity of Howland old growth forest, based on comparisons of key variables including, aboveground biomass, forest height and basal area. Furthermore carbon cycle and ecosystem observational capabilities will be enhanced over the next 6 years via the launch of two LiDAR (NASA's GEDI and ICESAT 2) and two SAR (NASA's ISRO NiSAR and ESA's Biomass) systems. Our aim is to present the comparison of canopy height models obtained with SIBBORK forest model and remote sensing techniques, highlighting the synergy between individual-based forest modeling and high-resolution remote sensing.

  4. Analyzing Forest Inventory Data from Geo-Located Photographs

    NASA Astrophysics Data System (ADS)

    Toivanen, Timo; Tergujeff, Renne; Andersson, Kaj; Molinier, Matthieu; Häme, Tuomas

    2015-04-01

    Forests are widely monitored using a variety of remote sensing data and techniques. Remote sensing offers benefits compared to traditional in-situ forest inventories made by experts. One of the main benefits is that the number of ground reference plots can be significantly reduced. Remote sensing of forests can provide reduced costs and time requirement compared to full forest inventories. The availability of ground reference data has been a bottleneck in remote sensing analysis over wide forested areas, as the acquisition of this data is an expensive and slow process. In this paper we present a tool for estimating forest inventory data from geo-located photographs. The tool can be used to estimate in-situ forest inventory data including estimated biomass, tree species, tree height and diameter. The collected in-situ forest measurements can be utilized as a ground reference material for spaceborne or airborne remote sensing data analysis. The GPS based location information with measured forest data makes it possible to introduce measurements easily as in-situ reference data. The central projection geometry of digital photographs allows the use of the relascope principle [1] to measure the basal area of stems per area unit, a variable very closely associated with tree biomass. Relascope is applied all over the world for forest inventory. Experiments with independent ground reference data have shown that in-situ data analysed from photographs can be utilised as reference data for satellite image analysis. The concept was validated by comparing mobile measurements with 54 independent ground reference plots from the Hyytiälä forest research station in Finland [2]. Citizen scientists could provide the manpower for analysing photographs from forests on a global level and support researchers working on tasks related to forests. This low-cost solution can also increase the coverage of forest management plans, particularly in regions where possibilities to invest on expensive planning work are limited. References [1] Bitterlich, W. (1984) The Relascope Idea: Relative Measurements in Forestry, Commonwealth Agricultural Bureaux, Farnham Royal, 1984. [2] Molinier, M., Hame, T., Toivanen, T., Andersson, K., Mutanen, T., Relasphone -- Mobile phone and interactive applications to collect ground reference biomass data for satellite image analysis, Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International, pp. 836-839, 13-18 July 2014, doi: 10.1109/IGARSS.2014.6946554

  5. Forest inventory with LiDAR and stereo DSM on Washington department of natural resources lands

    Treesearch

    Jacob L. Strunk; Peter J. Gould

    2015-01-01

    DNR’s forest inventory group has completed its first version of a new remote-sensing based forest inventory system covering 1.4 million acres of DNR forest lands. We use a combination of field plots, lidar, NAIP, and a NAIP-derived canopy surface DSM. Given that height drives many key inventory variables (e.g. height, volume, biomass, carbon), remote-sensing derived...

  6. Monitoring Change in Temperate Coniferous Forest Ecosystems

    NASA Technical Reports Server (NTRS)

    Williams, Darrel (Technical Monitor); Woodcock, Curtis E.

    2004-01-01

    The primary goal of this research was to improve monitoring of temperate forest change using remote sensing. In this context, change includes both clearing of forest due to effects such as fire, logging, or land conversion and forest growth and succession. The Landsat 7 ETM+ proved an extremely valuable research tool in this domain. The Landsat 7 program has generated an extremely valuable transformation in the land remote sensing community by making high quality images available for relatively low cost. In addition, the tremendous improvements in the acquisition strategy greatly improved the overall availability of remote sensing images. I believe that from an historical prespective, the Landsat 7 mission will be considered extremely important as the improved image availability will stimulate the use of multitemporal imagery at resolutions useful for local to regional mapping. Also, Landsat 7 has opened the way to global applications of remote sensing at spatial scales where important surface processes and change can be directly monitored. It has been a wonderful experience to have participated on the Landsat 7 Science Team. The research conducted under this project led to contributions in four general domains: I. Improved understanding of the information content of images as a function of spatial resolution; II. Monitoring Forest Change and Succession; III. Development and Integration of Advanced Analysis Methods; and IV. General support of the remote sensing of forests and environmental change. This report is organized according to these topics. This report does not attempt to provide the complete details of the research conducted with support from this grant. That level of detail is provided in the 16 peer reviewed journal articles, 7 book chapters and 5 conference proceedings papers published as part of this grant. This report attempts to explain how the various publications fit together to improve our understanding of how forests are changing and how to monitor forest change with remote sensing. There were no new inventions that resulted from this grant.

  7. Remote Sensing Protocols for Parameterizing an Individual, Tree-Based, Forest Growth and Yield Model

    DTIC Science & Technology

    2014-09-01

    Leaf-Off Tree Crowns in Small Footprint, High Sampling Density LIDAR Data from Eastern Deciduous Forests in North America.” Remote Sensing of...William A. 2003. “Crown-Diameter Prediction Models for 87 Species of Stand- Grown Trees in the Eastern United States.” Southern Journal of Applied...ER D C/ CE RL T R- 14 -1 8 Base Facilities Environmental Quality Remote Sensing Protocols for Parameterizing an Individual, Tree -Based

  8. Forest Attributes from Radar Interferometric Structure and its Fusion with Optical Remote Sensing

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.; Law, Beverly E.; Asner, Gregory P.

    2004-01-01

    The possibility of global, three-dimensional remote sensing of forest structure with interferometric synthetic aperture radar (InSAR) bears on important forest ecological processes, particularly the carbon cycle. InSAR supplements two-dimensional remote sensing with information in the vertical dimension. Its strengths in potential for global coverage complement those of lidar (light detecting and ranging), which has the potential for high-accuracy vertical profiles over small areas. InSAR derives its sensitivity to forest vertical structure from the differences in signals received by two, spatially separate radar receivers. Estimation of parameters describing vertical structure requires multiple-polarization, multiple-frequency, or multiple-baseline InSAR. Combining InSAR with complementary remote sensing techniques, such as hyperspectral optical imaging and lidar, can enhance vertical-structure estimates and consequent biophysical quantities of importance to ecologists, such as biomass. Future InSAR experiments will supplement recent airborne and spaceborne demonstrations, and together with inputs from ecologists regarding structure, they will suggest designs for future spaceborne strategies for measuring global vegetation structure.

  9. Environmental Remote Sensing for Natural Resources Management: A Workshop in Collaboration with Faculdade de Agronomia e Engenharia Florestal, Universidade Eduardo Mondlane

    NASA Astrophysics Data System (ADS)

    Washington-Allen, R. A.; Fatoyinbo, T. E.; Ribeiro, N. S.; Shugart, H. H.; Therrell, M. D.; Vaz, K. T.; von Schill, L.

    2006-12-01

    A workshop titled: Environmental Remote Sensing for Natural Resources Management was held from June 12 23, 2006 at Eduardo Mondlane University in Maputo Mozambique. The workshop was initiated through an invitation and pre-course evaluation form to interested NGOs, universities, and government organizations. The purpose of the workshop was to provide training to interested professionals, graduate students, faculty and researchers at Mozambican institutions on the research and practical uses of remote sensing for natural resource management. The course had 24 participants who were predominantly professionals in remote sensing and GIS from various NGOs, governmental and academic institutions in Mozambique. The course taught remote sensing from an ecological perspective, specifically the course focused on the application of new remote sensing technology [the Shuttle Radar Topography Mission (SRTM) C-band radar data] to carbon accounting research in Miombo woodlands and Mangrove forests. The 2-week course was free to participants and consisted of lectures, laboratories, and a field trip to the mangrove forests of Inhaca Island, Maputo. The field trip consisted of training in the use of forest inventory techniques in support of remote sensing studies. Specifically, the field workshop centered on use of Global Positioning Systems (GPS) and collection of forest inventory data on tree height, structure [leaf area index (LAI)], and productivity. Productivity studies were enhanced with the teaching of introductory dendrochronology including sample collection of tree rings from four different mangrove species. Students were provided with all course materials including a DVD that contained satellite data (e.g., Landsat and SRTM imagery), ancillary data, lectures, exercises, and remote sensing publications used in the course including a CD from the Environmental Protection Agency's Environmental Photographic Interpretation Center's (EPA-EPIC) program to teach remote sensing and data CDs from NASA's SAFARI 2000 field campaign. Nineteen participants evaluated the effectiveness of the course in regards to the course lectures, instructors, and the field trip. Future workshops should focus more on the individual projects that students are engaged with in their jobs, replace the laboratories computers with workstations geared towards computer intensive image processing software, and the purchase of field remote sensing instrumentation for practical exercises.

  10. Remote analysis of biological invasion and biogeochemical change

    PubMed Central

    Asner, Gregory P.; Vitousek, Peter M.

    2005-01-01

    We used airborne imaging spectroscopy and photon transport modeling to determine how biological invasion altered the chemistry of forest canopies across a Hawaiian montane rain forest landscape. The nitrogen-fixing tree Myrica faya doubled canopy nitrogen concentrations and water content as it replaced native forest, whereas the understory herb Hedychium gardnerianum reduced nitrogen concentrations in the forest overstory and substantially increased aboveground water content. This remote sensing approach indicates the geographic extent, intensity, and biogeochemical impacts of two distinct invaders; its wider application could enhance the role of remote sensing in ecosystem analysis and management. PMID:15761055

  11. Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques

    DOE PAGES

    Meng, Ran; Wu, Jin; Zhao, Feng; ...

    2018-06-01

    Understanding post-fire forest recovery is pivotal to the study of forest dynamics and global carbon cycle. Field-based studies indicated a convex response of forest recovery rate to burn severity at the individual tree level, related with fire-induced tree mortality; however, these findings were constrained in spatial/temporal extents, while not detectable by traditional optical remote sensing studies, largely attributing to the contaminated effect from understory recovery. For this work, we examined whether the combined use of multi-sensor remote sensing techniques (i.e., 1m simultaneous airborne imaging spectroscopy and LiDAR and 2m satellite multi-spectral imagery) to separate canopy recovery from understory recovery wouldmore » enable to quantify post-fire forest recovery rate spanning a large gradient in burn severity over large-scales. Our study was conducted in a mixed pine-oak forest in Long Island, NY, three years after a top-killing fire. Our studies remotely detected an initial increase and then decline of forest recovery rate to burn severity across the burned area, with a maximum canopy area-based recovery rate of 10% per year at moderate forest burn severity class. More intriguingly, such remotely detected convex relationships also held at species level, with pine trees being more resilient to high burn severity and having a higher maximum recovery rate (12% per year) than oak trees (4% per year). These results are one of the first quantitative evidences showing the effects of fire adaptive strategies on post-fire forest recovery, derived from relatively large spatial-temporal domains. Our study thus provides the methodological advance to link multi-sensor remote sensing techniques to monitor forest dynamics in a spatially explicit manner over large-scales, with important implications for fire-related forest management, and for constraining/benchmarking fire effect schemes in ecological process models.« less

  12. Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ran; Wu, Jin; Zhao, Feng

    Understanding post-fire forest recovery is pivotal to the study of forest dynamics and global carbon cycle. Field-based studies indicated a convex response of forest recovery rate to burn severity at the individual tree level, related with fire-induced tree mortality; however, these findings were constrained in spatial/temporal extents, while not detectable by traditional optical remote sensing studies, largely attributing to the contaminated effect from understory recovery. For this work, we examined whether the combined use of multi-sensor remote sensing techniques (i.e., 1m simultaneous airborne imaging spectroscopy and LiDAR and 2m satellite multi-spectral imagery) to separate canopy recovery from understory recovery wouldmore » enable to quantify post-fire forest recovery rate spanning a large gradient in burn severity over large-scales. Our study was conducted in a mixed pine-oak forest in Long Island, NY, three years after a top-killing fire. Our studies remotely detected an initial increase and then decline of forest recovery rate to burn severity across the burned area, with a maximum canopy area-based recovery rate of 10% per year at moderate forest burn severity class. More intriguingly, such remotely detected convex relationships also held at species level, with pine trees being more resilient to high burn severity and having a higher maximum recovery rate (12% per year) than oak trees (4% per year). These results are one of the first quantitative evidences showing the effects of fire adaptive strategies on post-fire forest recovery, derived from relatively large spatial-temporal domains. Our study thus provides the methodological advance to link multi-sensor remote sensing techniques to monitor forest dynamics in a spatially explicit manner over large-scales, with important implications for fire-related forest management, and for constraining/benchmarking fire effect schemes in ecological process models.« less

  13. Re-sampling remotely sensed data to improve national and regional mapping of forest conditions with confidential field data

    Treesearch

    Raymond L. Czaplewski

    2005-01-01

    Forest Service Research and Development (R&D) and State and Private Forestry Deputy Areas, in partnership with the National Forest System Remote Sensing Applications Center (RSAC), built a 250-m resolution (6.25-ha pixel) dataset for the entire USA. It assembles multi-seasonal hyperspectral MODIS data and derivatives, Landsat derivatives (i.e., summary statistics...

  14. Remote sensing of the seasonal variation of coniferous forest structure and function

    NASA Technical Reports Server (NTRS)

    Spanner, Michael; Waring, Richard

    1991-01-01

    One of the objectives of the Oregon Transect Ecosystem Research (OTTER) project is the remotely sensed determination of the seasonal variation of leaf area index (LAI) and absorbed photosynthetically active radiation (APAR). These measurements are required for input into a forest ecosystem model which predicts net primary production evapotranspiration, and photosynthesis of coniferous forests. Details of the study are given.

  15. Application of an imputation method for geospatial inventory of forest structural attributes across multiple spatial scales in the Lake States, U.S.A

    NASA Astrophysics Data System (ADS)

    Deo, Ram K.

    Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.

  16. Application of Lidar remote sensing to the estimation of forest canopy and stand structure

    NASA Astrophysics Data System (ADS)

    Lefsky, Michael Andrew

    A new remote sensing instrument, SLICER (Scanning Lidar Imager of Canopies by Echo Recovery), has been applied to the problem of remote sensing the canopy and stand structure of two groups of deciduous forests, Tulip Poplar-Oak stands in the vicinity of Annapolis, MD. and bottomland hardwood stands near Williamston, NC. The ability of the SLICER instrument to remotely sense the vertical distribution of canopy structure (Canopy Height Profile), bulk canopy transmittance, and several indices of canopy height has been successfully validated using twelve stands with coincident field and SLICER estimates of canopy structure. Principal components analysis has been applied to canopy height profiles from both field sites, and three significant factors were identified, each closely related to the amount of foliage in a recognizable layer of the forest, either understory, midstory, or overstory. The distribution of canopy structure to these layers is significantly correlated with the size and number of stems supporting them. The same layered structure was shown to apply to both field and SLICER remotely sensed canopy height profiles, and to apply to SLICER remotely sensed canopy profiles from both the bottomland hardwood stands in the coastal plain of North Carolina, and to mesic Tulip-Poplars stands in the upland coastal plain of Maryland. Linear regressions have demonstrated that canopy and stand structure are correlated to both a statistically significant and useful degree. Stand age and stem density is more highly correlated to stand height, while stand basal area and aboveground biomass are more closely related to a new measure of canopy structure, the quadratic mean canopy height. A geometric model of canopy structure has been shown to explain the differing relationships between canopy structure and stand basal area for stands of Eastern Deciduous Forest and Douglas Fir Forest.

  17. Modeling plant composition as community continua in a forest landscape with LiDAR and hyperspectral remote sensing.

    PubMed

    Hakkenberg, C R; Peet, R K; Urban, D L; Song, C

    2018-01-01

    In light of the need to operationalize the mapping of forest composition at landscape scales, this study uses multi-scale nested vegetation sampling in conjunction with LiDAR-hyperspectral remotely sensed data from the G-LiHT airborne sensor to map vascular plant compositional turnover in a compositionally and structurally complex North Carolina Piedmont forest. Reflecting a shift in emphasis from remotely sensing individual crowns to detecting aggregate optical-structural properties of forest stands, predictive maps reflect the composition of entire vascular plant communities, inclusive of those species smaller than the resolution of the remotely sensed imagery, intertwined with proximate taxa, or otherwise obscured from optical sensors by dense upper canopies. Stand-scale vascular plant composition is modeled as community continua: where discrete community-unit classes at different compositional resolutions provide interpretable context for continuous gradient maps that depict n-dimensional compositional complexity as a single, consistent RGB color combination. In total, derived remotely sensed predictors explain 71%, 54%, and 48% of the variation in the first three components of vascular plant composition, respectively. Among all remotely sensed environmental gradients, topography derived from LiDAR ground returns, forest structure estimated from LiDAR all returns, and morphological-biochemical traits determined from hyperspectral imagery each significantly correspond to the three primary axes of floristic composition in the study site. Results confirm the complementarity of LiDAR and hyperspectral sensors for modeling the environmental gradients constraining landscape turnover in vascular plant composition and hold promise for predictive mapping applications spanning local land management to global ecosystem modeling. © 2017 by the Ecological Society of America.

  18. Remote sensing applications in agriculture and forestry. Applications of aerial photography and ERTS data to agricultural, forest and water resources management

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Remote sensing techniques are being used in Minnesota to study: (1) forest disease detection and control; (2) water quality indicators; (3) forest vegetation classification and management; (4) detection of saline soils in the Red River Valley; (5) corn defoliation; and (6) alfalfa crop productivity. Results of progress, and plans for future work in these areas, are discussed.

  19. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems

    NASA Technical Reports Server (NTRS)

    Wessman, Carol A.; Aber, John D.; Peterson, David L.; Melillo, Jerry M.

    1988-01-01

    The use of images acquired by the Airborne Imaging Spectrometer, an experimental high-spectral resolution imaging sensor developed by NASA, to estimate the lignin concentration of whole forest canopies in Wisconsin is reported. The observed strong relationship between canopy lignin concentration and nitrogen availability in seven undisturbed forest ecosystems on Blackhawk Island, Wisconsin, suggests that canopy lignin may serve as an index for site nitrogen status. This predictive relationship presents the opportunity to estimate nitrogen-cycling rates across forested landscapes through remote sensing.

  20. Quantifying early-seral forest composition with remote sensing

    Treesearch

    Rayma A. Cooley; Peter T. Wolter; Brian R. Sturtevant

    2016-01-01

    Spatially explicit modeling of recovering forest structure within two years following wildfire disturbance has not been attempted, yet such knowledge is critical for determining successional pathways. We used remote sensing and field data, along with digital climate and terrain data, to model and map early-seral aspen structure and vegetation species richness following...

  1. Statistical inference for remote sensing-based estimates of net deforestation

    Treesearch

    Ronald E. McRoberts; Brian F. Walters

    2012-01-01

    Statistical inference requires expression of an estimate in probabilistic terms, usually in the form of a confidence interval. An approach to constructing confidence intervals for remote sensing-based estimates of net deforestation is illustrated. The approach is based on post-classification methods using two independent forest/non-forest classifications because...

  2. Investigation of forestry resources and other remote sensing data. 1: LANDSAT. 2: Remote sensing of volcanic emissions

    NASA Technical Reports Server (NTRS)

    Birnie, R. W.; Stoiber, R. E. (Principal Investigator)

    1983-01-01

    Computer classification of LANDSAT data was used for forest type mapping in New England. The ability to classify areas of hardwood, softwood, and mixed tree types was assessed along with determining clearcut regions and gypsy moth defoliation. Applications of the information to forest management and locating potential deer yards were investigated. The principal activities concerned with remote sensing of volcanic emissions centered around the development of remote sensors for SO2 and HCl gas, and their use at appropriate volcanic sites. Two major areas were investigated (Masaya, Nicaragua, and St. Helens, Washington) along with several minor ones.

  3. Groundwater inventory and monitoring technical guide: Remote sensing of groundwater

    USDA-ARS?s Scientific Manuscript database

    The application of remotely sensed data in conjunction with in situ data greatly enhances the ability of the USDA Forest Service to meet the demands of field staff, customers, and others for groundwater information. Generally, the use of remotely sensed data to inventory and monitor groundwater reso...

  4. Forest Disturbance Analysis with LANDSAT-8 Oli Data Related to a Parametric Wind Field: a Case Study for Typhoon Rammasun (201409)

    NASA Astrophysics Data System (ADS)

    Tan, C.; Fang, W.

    2018-04-01

    Forest disturbance induced by tropical cyclone often has significant and profound effects on the structure and function of forest ecosystem. Detection and analysis of post-disaster forest disturbance based on remote sensing technology has been widely applied. At present, it is necessary to conduct further quantitative analysis of the magnitude of forest disturbance with the intensity of typhoon. In this study, taking the case of super typhoon Rammasun (201409), we analysed the sensitivity of four common used remote sensing indices and explored the relationship between remote sensing index and corresponding wind speeds based on pre-and post- Landsat-8 OLI (Operational Land Imager) images and a parameterized wind field model. The results proved that NBR is the most sensitive index for the detection of forest disturbance induced by Typhoon Rammasun and the variation of NBR has a significant linear dependence relation with the simulated 3-second gust wind speed.

  5. Satellite detection of land-use change and effects on regional forest aboveground biomass estimates

    Treesearch

    Daolan Zheng; Linda S. Heath; Mark J. Ducey

    2008-01-01

    We used remote-sensing-driven models to detect land-cover change effects on forest aboveground biomass (AGB) density (Mg·ha−1, dry weight) and total AGB (Tg) in Minnesota, Wisconsin, and Michigan USA, between the years 1992-2001, and conducted an evaluation of the approach. Inputs included remotely-sensed 1992 reflectance data...

  6. Lidar remote sensing of above-ground biomass in three biomes.

    Treesearch

    Michael A. Lefsky; Warren B. Cohen; David J. Harding; Geoffrey G. Parkers; Steven A. Acker; S. Thomas Gower

    2002-01-01

    Estimation of the amount of carbon stored in forests is a key challenge for understanding the global carbon cycle, one which remote sensing is expected to help address. However, estimation of carbon storage in moderate to high biomass forests is difficult for conventional optical and radar sensors. Lidar (light detection and ranging) instruments measure the vertical...

  7. Remote Sensing: A valuable tool in the Forest Service decision making process. [in Utah

    NASA Technical Reports Server (NTRS)

    Stanton, F. L.

    1975-01-01

    Forest Service studies for integrating remotely sensed data into existing information systems highlight a need to: (1) re-examine present methods of collecting and organizing data, (2) develop an integrated information system for rapidly processing and interpreting data, (3) apply existing technological tools in new ways, and (4) provide accurate and timely information for making right management decisions. The Forest Service developed an integrated information system using remote sensors, microdensitometers, computer hardware and software, and interactive accessories. Their efforts substantially reduce the time it takes for collecting and processing data.

  8. A methodology for mapping forest latent heat flux densities using remote sensing

    NASA Technical Reports Server (NTRS)

    Pierce, Lars L.; Congalton, Russell G.

    1988-01-01

    Surface temperatures and reflectances of an upper elevation Sierran mixed conifer forest were monitored using the Thematic Mapper Simulator sensor during the summer of 1985 in order to explore the possibility of using remote sensing to determine the distribution of solar energy on forested watersheds. The results show that the method is capable of quantifying the relative energy allocation relationships between the two cover types defined in the study. It is noted that the method also has the potential to map forest latent heat flux densities.

  9. Remote sensing of forest insect disturbances: Current state and future directions

    NASA Astrophysics Data System (ADS)

    Senf, Cornelius; Seidl, Rupert; Hostert, Patrick

    2017-08-01

    Insect disturbance are important agents of change in forest ecosystems around the globe, yet their spatial and temporal distribution and dynamics are not well understood. Remote sensing has gained much attention in mapping and understanding insect outbreak dynamics. Consequently, we here review the current literature on the remote sensing of insect disturbances. We suggest to group studies into three insect types: bark beetles, broadleaved defoliators, and coniferous defoliators. By so doing, we systematically compare the sensors and methods used for mapping insect disturbances within and across insect types. Results suggest that there are substantial differences between methods used for mapping bark beetles and defoliators, and between methods used for mapping broadleaved and coniferous defoliators. Following from this, we highlight approaches that are particularly suited for each insect type. Finally, we conclude by highlighting future research directions for remote sensing of insect disturbances. In particular, we suggest to: 1) Separate insect disturbances from other agents; 2) Extend the spatial and temporal domain of analysis; 3) Make use of dense time series; 4) Operationalize near-real time monitoring of insect disturbances; 5) Identify insect disturbances in the context of coupled human-natural systems; and 6) Improve reference data for assessing insect disturbances. Since the remote sensing of insect disturbances has gained much interest beyond the remote sensing community recently, the future developments identified here will help integrating remote sensing products into operational forest management. Furthermore, an improved spatiotemporal quantification of insect disturbances will support an inclusion of these processes into regional to global ecosystem models.

  10. Remote sensing of forest insect disturbances: Current state and future directions.

    PubMed

    Senf, Cornelius; Seidl, Rupert; Hostert, Patrick

    2017-08-01

    Insect disturbance are important agents of change in forest ecosystems around the globe, yet their spatial and temporal distribution and dynamics are not well understood. Remote sensing has gained much attention in mapping and understanding insect outbreak dynamics. Consequently, we here review the current literature on the remote sensing of insect disturbances. We suggest to group studies into three insect types: bark beetles, broadleaved defoliators, and coniferous defoliators. By so doing, we systematically compare the sensors and methods used for mapping insect disturbances within and across insect types. Results suggest that there are substantial differences between methods used for mapping bark beetles and defoliators, and between methods used for mapping broadleaved and coniferous defoliators. Following from this, we highlight approaches that are particularly suited for each insect type. Finally, we conclude by highlighting future research directions for remote sensing of insect disturbances. In particular, we suggest to: 1) Separate insect disturbances from other agents; 2) Extend the spatial and temporal domain of analysis; 3) Make use of dense time series; 4) Operationalize near-real time monitoring of insect disturbances; 5) Identify insect disturbances in the context of coupled human-natural systems; and 6) Improve reference data for assessing insect disturbances. Since the remote sensing of insect disturbances has gained much interest beyond the remote sensing community recently, the future developments identified here will help integrating remote sensing products into operational forest management. Furthermore, an improved spatiotemporal quantification of insect disturbances will support an inclusion of these processes into regional to global ecosystem models.

  11. Seasonality of a boreal forest: a remote sensing perspective

    NASA Astrophysics Data System (ADS)

    Rautiainen, Miina; Heiskanen, Janne; Lukes, Petr; Majasalmi, Titta; Mottus, Matti; Pisek, Jan

    2016-04-01

    Understanding the seasonal dynamics of boreal ecosystems through interpretation of satellite reflectance data is needed for efficient large-scale monitoring of northern vegetation dynamics and productivity trends. Satellite remote sensing enables continuous global monitoring of vegetation status and is not limited to single-date phenological metrics. Using remote sensing also enables gaining a wider perspective to the seasonality of vegetation dynamics. The seasonal reflectance cycles of boreal forests observed in optical satellite images are explained by changes in biochemical properties and geometrical structure of vegetation as well as seasonal variation in solar illumination. This poster provides a synthesis of a research project (2010-2015) dedicated to monitoring the seasonal cycle of boreal forests. It is based on satellite and field data collected from the Hyytiälä Forestry Field Station in Finland. The results highlight the role understory vegetation has in forming the forest reflectance measured by satellite instruments.

  12. Quantifying Forest Ground Flora Biomass Using Close-range Remote Sensing

    Treesearch

    Paul F. Doruska; Robert C. Weih; Matthew D. Lane; Don C. Bragg

    2005-01-01

    Close-range remote sensing was used to estimate biomass of forest ground flora in Arkansas. Digital images of a series of 1-m² plots were taken using Kodak DCS760 and Kodak DCS420CIR digital cameras. ESRI ArcGIS™ and ERDAS Imagine® software was used to calculate the Normalized Difference Vegetation Index (NDVI) and the Average Visible...

  13. Predicting relative species composition within mixed conifer forest pixels using zero‐inflated models and Landsat imagery

    Treesearch

    Shannon L. Savage; Rick L. Lawrence; John R. Squires

    2015-01-01

    Ecological and land management applications would often benefit from maps of relative canopy cover of each species present within a pixel, instead of traditional remote-sensing based maps of either dominant species or percent canopy cover without regard to species composition. Widely used statistical models for remote sensing, such as randomForest (RF),...

  14. Toward a national early warning system for forest disturbances using remotely sensed canopy phenology

    Treesearch

    William W. Hargrove; Joseph P. Spruce; Gerald E. Gasser; Forrest M. Hoffman

    2009-01-01

    Imagine a national system with the ability to quickly identify forested areas under attack from insects or disease. Such an early warning system might minimize surprises such as the explosion of caterpillars referred to in the quotation above. Moderate resolution (ca. 500m) remote sensing repeated at frequent (ca. weekly) intervals could power such a monitoring system...

  15. Status and prospects for LiDAR remote sensing of forested ecosystems

    Treesearch

    M. A. Wulder; N. C. Coops; A. T. Hudak; F. Morsdorf; R. Nelson; G. Newnham; M. Vastaranta

    2013-01-01

    The science associated with the use of airborne and satellite Light Detection and Ranging (LiDAR) to remotely sense forest structure has rapidly progressed over the past decade. LiDAR has evolved from being a poorly understood, potentially useful tool to an operational technology in a little over a decade, and these instruments have become a major success story in...

  16. Hyperspectral Imaging of Forest Resources: The Malaysian Experience

    NASA Astrophysics Data System (ADS)

    Mohd Hasmadi, I.; Kamaruzaman, J.

    2008-08-01

    Remote sensing using satellite and aircraft images are well established technology. Remote sensing application of hyperspectral imaging, however, is relatively new to Malaysian forestry. Through a wide range of wavelengths hyperspectral data are precisely capable to capture narrow bands of spectra. Airborne sensors typically offer greatly enhanced spatial and spectral resolution over their satellite counterparts, and able to control experimental design closely during image acquisition. The first study using hyperspectral imaging for forest inventory in Malaysia were conducted by Professor Hj. Kamaruzaman from the Faculty of Forestry, Universiti Putra Malaysia in 2002 using the AISA sensor manufactured by Specim Ltd, Finland. The main objective has been to develop methods that are directly suited for practical tropical forestry application at the high level of accuracy. Forest inventory and tree classification including development of single spectral signatures have been the most important interest at the current practices. Experiences from the studies showed that retrieval of timber volume and tree discrimination using this system is well and some or rather is better than other remote sensing methods. This article reviews the research and application of airborne hyperspectral remote sensing for forest survey and assessment in Malaysia.

  17. Proxies for soil organic carbon derived from remote sensing

    NASA Astrophysics Data System (ADS)

    Rasel, S. M. M.; Groen, T. A.; Hussin, Y. A.; Diti, I. J.

    2017-07-01

    The possibility of carbon storage in soils is of interest because compared to vegetation it contains more carbon. Estimation of soil carbon through remote sensing based techniques can be a cost effective approach, but is limited by available methods. This study aims to develop a model based on remotely sensed variables (elevation, forest type and above ground biomass) to estimate soil carbon stocks. Field observations on soil organic carbon, species composition, and above ground biomass were recorded in the subtropical forest of Chitwan, Nepal. These variables were also estimated using LiDAR data and a WorldView 2 image. Above ground biomass was estimated from the LiDAR image using a novel approach where the image was segmented to identify individual trees, and for these trees estimates of DBH and Height were made. Based on AIC (Akaike Information Criterion) a regression model with above ground biomass derived from LiDAR data, and forest type derived from WorldView 2 imagery was selected to estimate soil organic carbon (SOC) stocks. The selected model had a coefficient of determination (R2) of 0.69. This shows the scope of estimating SOC with remote sensing derived variables in sub-tropical forests.

  18. The Use of a Geographic Information System and Remote Sensing Technology for Monitoring Land Use and Soil Carbon Change in the Subtropical Dry Forest Life Zone of Puerto Rico

    NASA Technical Reports Server (NTRS)

    Velez-Rodriguez, Linda L. (Principal Investigator)

    1996-01-01

    Aerial photography, one of the first form of remote sensing technology, has long been an invaluable means to monitor activities and conditions at the Earth's surface. Geographic Information Systems or GIS is the use of computers in showing and manipulating spatial data. This report will present the use of geographic information systems and remote sensing technology for monitoring land use and soil carbon change in the subtropical dry forest life zone of Puerto Rico. This research included the south of Puerto Rico that belongs to the subtropical dry forest life zone. The Guanica Commonwealth Forest Biosphere Reserve and the Jobos Bay National Estuarine Research Reserve are studied in detail, because of their location in the subtropical dry forest life zone. Aerial photography, digital multispectral imagery, soil samples, soil survey maps, field inspections, and differential global positioning system (DGPS) observations were used.

  19. Remote sensing of wetlands, marshes, and shorelines in Michigan including St. John's Marsh

    NASA Technical Reports Server (NTRS)

    Lowe, D. S.

    1976-01-01

    Remote sensing data are used to show the strategic relationship of the endangered marsh to population centers of SE Michigan. The potential ecological consequences and the impact of past development and changing lake levels are discussed. Applications of remote sensing are presented showing its usefulness for preparing statewide infrared wetland and forest mapping.

  20. A systematic framework for Monte Carlo simulation of remote sensing errors map in carbon assessments

    Treesearch

    S. Healey; P. Patterson; S. Urbanski

    2014-01-01

    Remotely sensed observations can provide unique perspective on how management and natural disturbance affect carbon stocks in forests. However, integration of these observations into formal decision support will rely upon improved uncertainty accounting. Monte Carlo (MC) simulations offer a practical, empirical method of accounting for potential remote sensing errors...

  1. Multistage remote sensing: toward an annual national inventory

    Treesearch

    Raymond L. Czaplewski

    1999-01-01

    Remote sensing can improve efficiency of statistical information. Landsat data can identify and map a few broad categories of forest cover and land use. However, more-detailed information requires a sample of higher-resolution imagery, which costs less than field data but considerably more than Landsat data. A national remote sensing program would be a major...

  2. Road-networks, a practical indicator of human impacts on biodiversity in Tropical forests

    NASA Astrophysics Data System (ADS)

    Hosaka, T.; Yamada, T.; Okuda, T.

    2014-02-01

    Tropical forests sustain the most diverse plants and animals in the world, but are also being lost most rapidly. Rapid assessment and monitoring using remote sensing on biodiversity of tropical forests is needed to predict and evaluate biodiversity loss by human activities. Identification of reliable indicators of forest biodiversity and/or its loss is an urgent issue. In the present paper, we propose the density of road networks in tropical forests can be a good and practical indicator of human impacts on biodiversity in tropical forests through reviewing papers and introducing our preliminary survey in peninsular Malaysia. Many previous studies suggest a strong negative impact of forest roads on biodiversity in tropical rainforests since they changes microclimate, soil properties, drainage patterns, canopy openness and forest accessibility. Moreover, our preliminary survey also showed that even a narrow logging road (6 m wide) significantly lowered abundance of dung beetles (well-known bio-indicator in biodiversity survey in tropical forests) near the road. Since these road networks are readily to be detected with remote sensing approach such as aerial photographs and Lider, regulation and monitoring of the road networks using remote sensing techniques is a key to slow down the rate of biodiversity loss due to forest degradation in tropical forests.

  3. An integrated study of earth resources in the state of California using remote sensing techniques. [water and forest management

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1974-01-01

    Progress and results of an integrated study of California's water resources are discussed. The investigation concerns itself primarily with the usefulness of remote sensing of relation to two categories of problems: (1) water supply; and (2) water demand. Also considered are its applicability to forest management and timber inventory. The cost effectiveness and utility of remote sensors such as the Earth Resources Technology Satellite for water and timber management are presented.

  4. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.

    PubMed

    Hakkenberg, C R; Zhu, K; Peet, R K; Song, C

    2018-02-01

    The central role of floristic diversity in maintaining habitat integrity and ecosystem function has propelled efforts to map and monitor its distribution across forest landscapes. While biodiversity studies have traditionally relied largely on ground-based observations, the immensity of the task of generating accurate, repeatable, and spatially-continuous data on biodiversity patterns at large scales has stimulated the development of remote-sensing methods for scaling up from field plot measurements. One such approach is through integrated LiDAR and hyperspectral remote-sensing. However, despite their efficiencies in cost and effort, LiDAR-hyperspectral sensors are still highly constrained in structurally- and taxonomically-heterogeneous forests - especially when species' cover is smaller than the image resolution, intertwined with neighboring taxa, or otherwise obscured by overlapping canopy strata. In light of these challenges, this study goes beyond the remote characterization of upper canopy diversity to instead model total vascular plant species richness in a continuous-cover North Carolina Piedmont forest landscape. We focus on two related, but parallel, tasks. First, we demonstrate an application of predictive biodiversity mapping, using nonparametric models trained with spatially-nested field plots and aerial LiDAR-hyperspectral data, to predict spatially-explicit landscape patterns in floristic diversity across seven spatial scales between 0.01-900 m 2 . Second, we employ bivariate parametric models to test the significance of individual, remotely-sensed predictors of plant richness to determine how parameter estimates vary with scale. Cross-validated results indicate that predictive models were able to account for 15-70% of variance in plant richness, with LiDAR-derived estimates of topography and forest structural complexity, as well as spectral variance in hyperspectral imagery explaining the largest portion of variance in diversity levels. Importantly, bivariate tests provide evidence of scale-dependence among predictors, such that remotely-sensed variables significantly predict plant richness only at spatial scales that sufficiently subsume geolocational imprecision between remotely-sensed and field data, and best align with stand components including plant size and density, as well as canopy gaps and understory growth patterns. Beyond their insights into the scale-dependent patterns and drivers of plant diversity in Piedmont forests, these results highlight the potential of remotely-sensible essential biodiversity variables for mapping and monitoring landscape floristic diversity from air- and space-borne platforms. © 2017 by the Ecological Society of America.

  5. Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models

    Treesearch

    H. Viana; J. Aranha; D. Lopes; Warren B. Cohen

    2012-01-01

    Spatially crown biomass of Pinus pinaster stands and shrubland above-ground biomass (AGB) estimation was carried-out in a region located in Centre-North Portugal, by means of different approaches including forest inventory data, remotely sensed imagery and spatial prediction models. Two cover types (pine stands and shrubland) were inventoried and...

  6. Reducing uncertainty for estimating forest carbon stocks and dynamics using integrated remote sensing, forest inventory and process-based modeling

    NASA Astrophysics Data System (ADS)

    Poulter, B.; Ciais, P.; Joetzjer, E.; Maignan, F.; Luyssaert, S.; Barichivich, J.

    2015-12-01

    Accurately estimating forest biomass and forest carbon dynamics requires new integrated remote sensing, forest inventory, and carbon cycle modeling approaches. Presently, there is an increasing and urgent need to reduce forest biomass uncertainty in order to meet the requirements of carbon mitigation treaties, such as Reducing Emissions from Deforestation and forest Degradation (REDD+). Here we describe a new parameterization and assimilation methodology used to estimate tropical forest biomass using the ORCHIDEE-CAN dynamic global vegetation model. ORCHIDEE-CAN simulates carbon uptake and allocation to individual trees using a mechanistic representation of photosynthesis, respiration and other first-order processes. The model is first parameterized using forest inventory data to constrain background mortality rates, i.e., self-thinning, and productivity. Satellite remote sensing data for forest structure, i.e., canopy height, is used to constrain simulated forest stand conditions using a look-up table approach to match canopy height distributions. The resulting forest biomass estimates are provided for spatial grids that match REDD+ project boundaries and aim to provide carbon estimates for the criteria described in the IPCC Good Practice Guidelines Tier 3 category. With the increasing availability of forest structure variables derived from high-resolution LIDAR, RADAR, and optical imagery, new methodologies and applications with process-based carbon cycle models are becoming more readily available to inform land management.

  7. Remote sensing-based estimation of annual soil respiration at two contrasting forest sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Ni; Gu, Lianhong; Black, T. Andrew

    Here, soil respiration (R s), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this study, we proposed a methodology for the remote estimation of annual R s at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest). A version of the Akaike's information criterion was used to select the best model from a range of models for annual R s estimation based on the remotely sensed data products from the Moderate Resolution Imaging Spectroradiometer and root-zonemore » soil moisture product derived from assimilation of the NASA Advanced Microwave Scanning Radiometer soil moisture products and a two-layer Palmer water balance model. We found that the Arrhenius-type function based on nighttime land surface temperature (LST-night) was the best model by comprehensively considering the model explanatory power and model complexity at the Missouri Ozark and BC-Campbell River 1949 Douglas-fir sites.« less

  8. Assessment of variations in taxonomic diversity, forest structure, and aboveground biomass using remote sensing along an altitudinal gradient in tropical montane forest of Costa Rica

    NASA Astrophysics Data System (ADS)

    Robinson, C. M.; Saatchi, S. S.; Clark, D.; Fricker, G. A.; Wolf, J.; Gillespie, T. W.; Rovzar, C. M.; Andelman, S.

    2012-12-01

    This research sought to understand how alpha and beta diversity of plants vary and relate to the three-dimensional vegetation structure and aboveground biomass along environmental gradients in the tropical montane forests of Braulio Carrillo National Park in Costa Rica. There is growing evidence that ecosystem structure plays an important role in defining patterns of species diversity and along with abiotic factors (climate and edaphic) control the phenotypic and functional variations across landscapes. It is well documented that strong subdivisions at local and regional scales are found mainly on geologic or climate gradients. These general determinants of biodiversity are best demonstrated in regions with natural gradients such as tropical montane forests. Altitudinal gradients provide a landscape scale changes through variations in topography, climate, and edaphic conditions on which we tested several theoretical and biological hypotheses regarding drivers of biodiversity. The study was performed by using forest inventory and botanical data from nine 1-ha plots ranging from 100 m to 2800 m above sea level and remote sensing data from airborne lidar and radar sensors to quantify variations in forest structure. In this study we report on the effectiveness of relating patterns of tree taxonomic alpha diversity to three-dimensional structure of a tropical montane forest using lidar and radar observations of forest structure and biomass. We assessed alpha and beta diversity at the species, genus, and family levels utilizing datasets provided by the Terrestrial Ecology Assessment and Monitoring (TEAM) Network. Through the comparison to active remote sensing imagery, our results show that there is a strong relationship between forest 3D-structure, and alpha and beta diversity controlled by variations in abiotic factors along the altitudinal gradient. Using spatial analysis with the aid of remote sensing data, we find distinct patterns along the environmental gradients defining species turnover and changes in functional diversity. The study will provide novel approaches to use detailed spatial information from remote sensing data to study relations between functional and taxonomic dimensions of diversity.

  9. Post-classification approaches to estimating change in forest area using remotely sense auxiliary data.

    Treesearch

    Ronald E. McRoberts

    2014-01-01

    Multiple remote sensing-based approaches to estimating gross afforestation, gross deforestation, and net deforestation are possible. However, many of these approaches have severe data requirements in the form of long time series of remotely sensed data and/or large numbers of observations of land cover change to train classifiers and assess the accuracy of...

  10. Earth science research

    NASA Technical Reports Server (NTRS)

    Botkin, Daniel B.

    1987-01-01

    The analysis of ground-truth data from the boreal forest plots in the Superior National Forest, Minnesota, was completed. Development of statistical methods was completed for dimension analysis (equations to estimate the biomass of trees from measurements of diameter and height). The dimension-analysis equations were applied to the data obtained from ground-truth plots, to estimate the biomass. Classification and analyses of remote sensing images of the Superior National Forest were done as a test of the technique to determine forest biomass and ecological state by remote sensing. Data was archived on diskette and tape and transferred to UCSB to be used in subsequent research.

  11. Mapping the spatial pattern of temperate forest above ground biomass by integrating airborne lidar with Radarsat-2 imagery via geostatistical models

    NASA Astrophysics Data System (ADS)

    Li, Wang; Niu, Zheng; Gao, Shuai; Wang, Cheng

    2014-11-01

    Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR) are two competitive active remote sensing techniques in forest above ground biomass estimation, which is important for forest management and global climate change study. This study aims to further explore their capabilities in temperate forest above ground biomass (AGB) estimation by emphasizing the spatial auto-correlation of variables obtained from these two remote sensing tools, which is a usually overlooked aspect in remote sensing applications to vegetation studies. Remote sensing variables including airborne LiDAR metrics, backscattering coefficient for different SAR polarizations and their ratio variables for Radarsat-2 imagery were calculated. First, simple linear regression models (SLR) was established between the field-estimated above ground biomass and the remote sensing variables. Pearson's correlation coefficient (R2) was used to find which LiDAR metric showed the most significant correlation with the regression residuals and could be selected as co-variable in regression co-kriging (RCoKrig). Second, regression co-kriging was conducted by choosing the regression residuals as dependent variable and the LiDAR metric (Hmean) with highest R2 as co-variable. Third, above ground biomass over the study area was estimated using SLR model and RCoKrig model, respectively. The results for these two models were validated using the same ground points. Results showed that both of these two methods achieved satisfactory prediction accuracy, while regression co-kriging showed the lower estimation error. It is proved that regression co-kriging model is feasible and effective in mapping the spatial pattern of AGB in the temperate forest using Radarsat-2 data calibrated by airborne LiDAR metrics.

  12. Measuring deforestation using remote sensing and its implication for conservation in Gunung Palung National Park, West Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Fawzi, N. I.; Husna, V. N.; Helms, J. A.

    2018-05-01

    Gunung Palung National Park (1,080 km2, 1°3’ – 1°22’ S, 109°54’ – 110°28’ E) was first protected in 1937 and is now one of the largest remaining primary lowland mixed dipterocarp forests on Borneo. To help inform conservation efforts, we measured forest cover change in the protected area using 11 multi-temporal Landsat series images with path/row 121/61. Annual deforestation rates have declined since measurement began in 1989, to around 68 hectares per year in 2011 and 112 hectares per year in 2017. Halting deforestation in this protected area requires to tackle its underlying economic and social causes, and find ways for communities to meet their needs without resorting to forest clearing. Community empowerment, forest rehabilitation, and health care incentives as payment for ecosystem services can help reduce deforestation in Gunung Palung National Park. This becomes a positive trend which we must continue to always work in forest conservation. Future forest monitoring will be dependency with remote sensing analysis and open source remote sensing data such as Landsat and Sentinel data remain an important data source for historical forest change monitoring.

  13. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1993-01-01

    Progress report on remote sensing of Earth terrain covering the period from Jan. to June 1993 is presented. Areas of research include: radiative transfer model for active and passive remote sensing of vegetation canopy; polarimetric thermal emission from rough ocean surfaces; polarimetric passive remote sensing of ocean wind vectors; polarimetric thermal emission from periodic water surfaces; layer model with tandom spheriodal scatterers for remote sensing of vegetation canopy; application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated mie scatterers with size distributions and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.

  14. Extracting Forest Canopy Characteristics from Remote Sensing Imagery: Implications for Sentinel-2 Mission

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Asa; Kopaekova, Veronika; Rogass, Christian; Mielke, Christian; Misurec, Jan

    2016-08-01

    Systematic quantification and monitoring of forest biophysical and biochemical variables is required to assess the response of ecosystems to climate change. Remote sensing has been introduced as a time and cost- efficient way to carry out large scale monitoring of vegetation parameters. Red-Edge Position (REP) is a hyperspectrally detectable parameter which is sensitive to vegetation Chl. In the current study, REP was modelled for the Norway spruce forest canopy resampled to HyMap and Sentinel-2 spectral resolution as well as calculated from the real HyMap and Sentinel-2 simulated data. Different REP extraction methods (4PLI, PF, LE, 4PLIH and 4PLIS) were assessed. The study showed the way for effective utilization of the forthcoming hyper and superspectral remote sensing sensors from orbit to monitor vegetation attributes.

  15. Northern Forest Ecosystem Dynamics Using Coupled Models and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Sun, G.; Knox, R. G.; Levine, E. R.; Weishampel, J. F.; Fifer, S. T.

    1999-01-01

    Forest ecosystem dynamics modeling, remote sensing data analysis, and a geographical information system (GIS) were used together to determine the possible growth and development of a northern forest in Maine, USA. Field measurements and airborne synthetic aperture radar (SAR) data were used to produce maps of forest cover type and above ground biomass. These forest attribute maps, along with a conventional soils map, were used to identify the initial conditions for forest ecosystem model simulations. Using this information along with ecosystem model results enabled the development of predictive maps of forest development. The results obtained were consistent with observed forest conditions and expected successional trajectories. The study demonstrated that ecosystem models might be used in a spatial context when parameterized and used with georeferenced data sets.

  16. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, J. A.

    1992-01-01

    Research findings are summarized for projects dealing with the following: application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated Mie scatterers with size distribution and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; theoretical modeling for passive microwave remote sensing of earth terrain; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.

  17. Prediction of forest canopy and surface fuels from lidar and satellite time series data in a bark beetle-affected forest

    Treesearch

    Benjamin C. Bright; Andrew T. Hudak; Arjan J. H. Meddens; Todd J. Hawbaker; Jennifer S. Briggs; Robert E. Kennedy

    2017-01-01

    Wildfire behavior depends on the type, quantity, and condition of fuels, and the effect that bark beetle outbreaks have on fuels is a topic of current research and debate. Remote sensing can provide estimates of fuels across landscapes, although few studies have estimated surface fuels from remote sensing data. Here we predicted and mapped field-measured canopy and...

  18. Application of airborne hyperspectral remote sensing for the retrieval of forest inventory parameters

    NASA Astrophysics Data System (ADS)

    Dmitriev, Yegor V.; Kozoderov, Vladimir V.; Sokolov, Anton A.

    2016-04-01

    Collecting and updating forest inventory data play an important part in the forest management. The data can be obtained directly by using exact enough but low efficient ground based methods as well as from the remote sensing measurements. We present applications of airborne hyperspectral remote sensing for the retrieval of such important inventory parameters as the forest species and age composition. The hyperspectral images of the test region were obtained from the airplane equipped by the produced in Russia light-weight airborne video-spectrometer of visible and near infrared spectral range and high resolution photo-camera on the same gyro-stabilized platform. The quality of the thematic processing depends on many factors such as the atmospheric conditions, characteristics of measuring instruments, corrections and preprocessing methods, etc. An important role plays the construction of the classifier together with methods of the reduction of the feature space. The performance of different spectral classification methods is analyzed for the problem of hyperspectral remote sensing of soil and vegetation. For the reduction of the feature space we used the earlier proposed stable feature selection method. The results of the classification of hyperspectral airborne images by using the Multiclass Support Vector Machine method with Gaussian kernel and the parametric Bayesian classifier based on the Gaussian mixture model and their comparative analysis are demonstrated.

  19. The ten-ecosystem study investigation plan

    NASA Technical Reports Server (NTRS)

    Kan, E. P.

    1976-01-01

    With the continental United States divided into ten forest and grassland ecosystems, the Ten Ecosystem Study (TES) is designed to investigate the feasibility and applicability of state-of-the-art automatic data processing remote sensing technology to inventory forest, grassland, and water resources by using Land Satellite data. The study will serve as a prelude to a possible future nationwide remote sensing application to inventory forest and rangeland renewable resources. This plan describes project design and phases, the ten ecosystem, data utilization and output, personnel organization, resource requirements, and schedules and milestones.

  20. Remote sensing of forest canopy and leaf biochemical contents

    NASA Technical Reports Server (NTRS)

    Peterson, David L.; Matson, Pamela A.; Card, Don H.; Aber, John D.; Wessman, Carol; Swanberg, Nancy; Spanner, Michael

    1988-01-01

    Recent research on the remote sensing of forest leaf and canopy biochemical contents suggests that the shortwave IR region contains this information; laboratory analyses of dry ground leaves have yielded reliable predictive relationships between both leaf nitrogen and lignin with near-IR spectra. Attention is given to the application of these laboratory techniques to a limited set of spectra from fresh, whole leaves of conifer species. The analysis of Airborne Imaging Spectrometer data reveals that total water content variations in deciduous forest canopies appear as overall shifts in the brightness of raw spectra.

  1. Remote sensing of forest dynamics and land use in Amazonia

    NASA Astrophysics Data System (ADS)

    Toomey, Michael Paul

    The rich, vast Amazonian ecosystem is directly and indirectly threatened by human activities; remote sensing serves as an essential tool for monitoring, understanding and mitigating these threats. A multi-faceted body of work is described here, addressing three major issues that employ and advance remote sensing techniques for the study of Amazonia and other tropical rainforest regions. In Chapter 2, canopy reflectance modeling and satellite observations were used to quantify the effect of epiphylls on remote sensing of humid forests. Modeling simulations demonstrated sensitivity of canopy-level near infrared and green reflectance to epiphylls on leaves. Time series of Moderate Resolution Imaging Spectrometer (MODIS) data corroborated the modeling results, suggesting a degree of coupling between epiphyll cover and vegetation indices which must be accounted for when using optical remote sensing in humid forests. In Chapter 4, 11 years (2000--2010) of MODIS land surface temperature (LST) data covering the entire Amazon basin were used to ascertain the role of heat stress during droughts in 2005 and 2010. Preliminary accuracy assessments showed that LST data provided reasonably accurate estimates of daytime air temperatures (RMSE = 1.45°C; Chapter 3). There were moderate to strong correlations between LST-based air temperature estimates and tower measurements (mean r = 0.64), illustrating a sensitivity to temporal variability. During both droughts, MODIS LST data detected anomalously high daytime and nighttime canopy temperatures throughout drought-affected regions. Multivariate linear models of LST and precipitation anomalies explained 65.1% of the variability in forest biomass losses, as determined from a wide network of forest inventory plots. These results suggest that models should incorporate both heat and moisture to predict drought effects on tropical forests. In Chapter 5, I performed high spatial and temporal resolution modeling of carbon stocks and fluxes in the state of Rondonia, Brazil for the period 1985--2009. Based on this analysis, Rondonia contributed ˜4% of pan-tropical humid forest deforestation emissions while carbon uptake by secondary forest was negligible due to limited spatial extent and high turnover rates. Spatial analysis of land cover change demonstrated the necessity for fine resolution carbon monitoring in tropical regions dominated by non-mechanized, smallholder land uses.

  2. Forest Fires and Post - Fire Regeneration in Algeria Analysis with Satellite Data

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    2016-07-01

    The Algerian forests are characterized by a particularly flammable material and fuel. The wind, the relief and the slope facilitates the propagation of fire. The use of remote sensing data multi-­dates, combined with other types of data of various kinds on the environment and forest burned, opens up interesting perspectives for the management of post-­fire regeneration. In this study the use of multi-­temporal remote sensing image Alsat-­1 and Landsat combined with other types of data concerning both background and burned down forest appears to be promising in evaluating and spatial and temporal effects of post fire regeneration. A spatial analysis taking into consideration the characteristics of the burned down site in the North West of Algeria, allowed to better account new factors to explain the regeneration and its temporal and spatial variation. We intended to show the potential use of remote sensing data from satellite ALSAT-­1, of spatial resolution of 32 m. . This approach allows showing the contribution of the data of Algerian satellite ALSAT in the detection and the well attended some forest fires in Algeria.

  3. Focused sunlight factor of forest fire danger assessment using Web-GIS and RS technologies

    NASA Astrophysics Data System (ADS)

    Baranovskiy, Nikolay V.; Sherstnyov, Vladislav S.; Yankovich, Elena P.; Engel, Marina V.; Belov, Vladimir V.

    2016-08-01

    Timiryazevskiy forestry of Tomsk region (Siberia, Russia) is a study area elaborated in current research. Forest fire danger assessment is based on unique technology using probabilistic criterion, statistical data on forest fires, meteorological conditions, forest sites classification and remote sensing data. MODIS products are used for estimating some meteorological conditions and current forest fire situation. Geonformation technologies are used for geospatial analysis of forest fire danger situation on controlled forested territories. GIS-engine provides opportunities to construct electronic maps with different levels of forest fire probability and support raster layer for satellite remote sensing data on current forest fires. Web-interface is used for data loading on specific web-site and for forest fire danger data representation via World Wide Web. Special web-forms provide interface for choosing of relevant input data in order to process the forest fire danger data and assess the forest fire probability.

  4. Timber Resources Inventory and Monitoring Joint Research Project

    NASA Technical Reports Server (NTRS)

    Hill, C. L.

    1985-01-01

    Primary objectives were to develop remote sensing analysis techniques for extracting forest related information from LANDSAT Multispectral Scanner (MMS) and Thematic Mapper data and to determine the extent to which International Paper Company information needs can be addressed with remote sensing information. The company actively manages 8.4 million acres of forest land. Traditionally, their forest inventories, updated on a three year cycle, are conducted through field surveys and aerial photography. The results reside in a digital forest data base containing 240 descriptive parameteres for individual forest stands. The information in the data base is used to develop seasonal and long range management strategies. Forest stand condition assessements (species composition, age, and density stratification) and identification of silvicultural activities (site preparation, planting, thinning, and harvest) are addressed.

  5. Using NASA Remote Sensing Data to Reduce Uncertainty of Land-use Transitions in Global Carbon-Climate Models

    NASA Astrophysics Data System (ADS)

    Chini, L. P.; Hurtt, G. C.; Frolking, S. E.; Sahajpal, R.; Potapov, P.; Hansen, M.; Fisk, J.

    2016-12-01

    For the 5th IPCC Assessment almost all Earth System Models (ESMs) incorporated new gridded products of land-use and land-use change that were harmonized to ensure a continuous transition from historical to future data in a consistent format for all models. However, these Land-Use Harmonization (LUH) data products are estimates, constrained with data where available, and with modeling assumptions, and the remaining challenge is to quantify, and reduce, the uncertainty in these products. At the same time, satellite remote sensing of the terrestrial biosphere has also evolved. Global-scale land cover extent and change monitoring is now possible given systematically acquired earth observation data sets, advanced characterization algorithms and data intensive computing capabilities. Here we consider: how can satellite remote sensing products be used to generate (and reduce uncertainty in) new gridded maps of land-use transitions for use in coupled carbon-climate simulations? As part of the international effort to develop the next generation of land-use datasets (LUH2), new NASA remote-sensing-based maps of global forest extent and change (Hansen et al. 2013) were used as both an added constraint and diagnostic in the LUH process. Harmonizing this remote sensing data with the LUH data was a major computational challenge involving 143 billion 30m Landsat pixels, and the simulation of over 20 billion LUH unknowns. Our approach involved first harmonizing the definitions of forest loss between the observed and simulated data for the years 2000-2012. Next, new spatial patterns of historical wood harvest were calculated to match the observed forest loss transitions while simultaneously meeting all other constraints of the model, and ensuring consistency throughout the historical time-period. After reconciling definitions and developing new wood harvest patterns the LUH2 global forest loss for the period 2000-2012 was reduced from over 8.3 million km2 to 1.78 million km2 (compared with the remote-sensing-based forest loss of 2.03 million km2). Next steps are to evaluate the ability of these land-use transitions to improve the representation of land-use-related climate forcings in ESM experiments, and to then build upon the LUH framework to incorporate additional remote-sensing data constraints.

  6. Mapping Migratory Bird Prevalence Using Remote Sensing Data Fusion

    PubMed Central

    Swatantran, Anu; Dubayah, Ralph; Goetz, Scott; Hofton, Michelle; Betts, Matthew G.; Sun, Mindy; Simard, Marc; Holmes, Richard

    2012-01-01

    Background Improved maps of species distributions are important for effective management of wildlife under increasing anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use in habitat mapping remain largely unexplored. We evaluated the use of lidar, radar and multispectral remote sensing data in predicting multi-year bird detections or prevalence for 8 migratory songbird species in the unfragmented temperate deciduous forests of New Hampshire, USA. Methodology and Principal Findings A set of 104 predictor variables describing vegetation vertical structure and variability from lidar, phenology from multispectral data and backscatter properties from radar data were derived. We tested the accuracies of these variables in predicting prevalence using Random Forests regression models. All data sets showed more than 30% predictive power with radar models having the lowest and multi-sensor synergy (“fusion”) models having highest accuracies. Fusion explained between 54% and 75% variance in prevalence for all the birds considered. Stem density from discrete return lidar and phenology from multispectral data were among the best predictors. Further analysis revealed different relationships between the remote sensing metrics and bird prevalence. Spatial maps of prevalence were consistent with known habitat preferences for the bird species. Conclusion and Significance Our results highlight the potential of integrating multiple remote sensing data sets using machine-learning methods to improve habitat mapping. Multi-dimensional habitat structure maps such as those generated from this study can significantly advance forest management and ecological research by facilitating fine-scale studies at both stand and landscape level. PMID:22235254

  7. Mapping migratory bird prevalence using remote sensing data fusion.

    PubMed

    Swatantran, Anu; Dubayah, Ralph; Goetz, Scott; Hofton, Michelle; Betts, Matthew G; Sun, Mindy; Simard, Marc; Holmes, Richard

    2012-01-01

    Improved maps of species distributions are important for effective management of wildlife under increasing anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use in habitat mapping remain largely unexplored. We evaluated the use of lidar, radar and multispectral remote sensing data in predicting multi-year bird detections or prevalence for 8 migratory songbird species in the unfragmented temperate deciduous forests of New Hampshire, USA. A set of 104 predictor variables describing vegetation vertical structure and variability from lidar, phenology from multispectral data and backscatter properties from radar data were derived. We tested the accuracies of these variables in predicting prevalence using Random Forests regression models. All data sets showed more than 30% predictive power with radar models having the lowest and multi-sensor synergy ("fusion") models having highest accuracies. Fusion explained between 54% and 75% variance in prevalence for all the birds considered. Stem density from discrete return lidar and phenology from multispectral data were among the best predictors. Further analysis revealed different relationships between the remote sensing metrics and bird prevalence. Spatial maps of prevalence were consistent with known habitat preferences for the bird species. Our results highlight the potential of integrating multiple remote sensing data sets using machine-learning methods to improve habitat mapping. Multi-dimensional habitat structure maps such as those generated from this study can significantly advance forest management and ecological research by facilitating fine-scale studies at both stand and landscape level.

  8. An investigation of vegetation and other Earth resource/feature parameters using LANDSAT and other remote sensing data. 1: LANDSAT. 2: Remote sensing of volcanic emissions. [New England forest and emissions from Mt. St. Helens and Central American volcanoes

    NASA Technical Reports Server (NTRS)

    Birnie, R. W.; Stoiber, R. E. (Principal Investigator)

    1981-01-01

    A fanning technique based on a simplistic physical model provided a classification algorithm for mixture landscapes. Results of applications to LANDSAT inventory of 1.5 million acres of forest land in Northern Maine are presented. Signatures for potential deer year habitat in New Hampshire were developed. Volcanic activity was monitored in Nicaragua, El Salvador, and Guatemala along with the Mt. St. Helens eruption. Emphasis in the monitoring was placed on the remote sensing of SO2 concentrations in the plumes of the volcanoes.

  9. Proceedings of the eighth annual forest inventory and analysis symposium

    Treesearch

    Ronald E. McRoberts; Gregory A. Reams; Paul C. Van Deusen; William H., eds. McWilliams

    2009-01-01

    Documents contributions to forest inventory in the areas of sampling, remote sensing, modeling, information management and analysis for the Forest Inventory and Analysis program of the Forest Service.

  10. Proceedings of the fourth annual Forest Inventory and Analysis symposium

    Treesearch

    Ronald E. McRoberts; Gregory A Reams; Paul C. Van Deusen; William H. McWilliams; Chris J. Cieszewski; Chris J., eds. Cieszewski

    2005-01-01

    Documents contributions to forest inventory in the areas of sampling, remote sensing, modeling, information management and analysis for the Forest Inventory and Analysis program of the USDA Forest Service.

  11. Proceedings of the seventh annual forest inventory and analysis symposium

    Treesearch

    Ronald E. McRoberts; Gregory A. Reams; Paul C. Van Deusen; William H., eds. McWilliams

    2007-01-01

    Documents contributions to forest inventory in the areas of sampling, remote sensing, modeling, information management and analysis for the Forest Inventory and Analysis program of the USDA Forest Service.

  12. Proceedings of the sixth annual forest inventory and analysis symposium

    Treesearch

    Ronald E. McRoberts; Gregory A. Reams; Paul C. Van Duesen; William H., eds. McWilliams

    2006-01-01

    Documents contributions to forest inventory in the area of sampling, remote sensing, modeling, information management, and analysis for the Forest Inventory and Analysis program of the USDA Forest Service.

  13. Simple and Multiple Endmember Mixture Analysis in the Boreal Forest

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Gamon, John A.; Qiu, Hong-Lie

    2000-01-01

    A key scientific objective of the original Boreal Ecosystem-Atmospheric Study (BOREAS) field campaign (1993-1996) was to obtain the baseline data required for modeling and predicting fluxes of energy, mass, and trace gases in the boreal forest biome. These data sets are necessary to determine the sensitivity of the boreal forest biome to potential climatic changes and potential biophysical feedbacks on climate. A considerable volume of remotely sensed and supporting field data were acquired by numerous researchers to meet this objective. By design, remote sensing and modeling were considered critical components for scaling efforts, extending point measurements from flux towers and field sites over larger spatial and longer temporal scales. A major focus of the BOREAS Follow-on program was concerned with integrating the diverse remotely sensed and ground-based data sets to address specific questions such as carbon dynamics at local to regional scales.

  14. Uncertainties in mapping forest carbon in urban ecosystems.

    PubMed

    Chen, Gang; Ozelkan, Emre; Singh, Kunwar K; Zhou, Jun; Brown, Marilyn R; Meentemeyer, Ross K

    2017-02-01

    Spatially explicit urban forest carbon estimation provides a baseline map for understanding the variation in forest vertical structure, informing sustainable forest management and urban planning. While high-resolution remote sensing has proven promising for carbon mapping in highly fragmented urban landscapes, data cost and availability are the major obstacle prohibiting accurate, consistent, and repeated measurement of forest carbon pools in cities. This study aims to evaluate the uncertainties of forest carbon estimation in response to the combined impacts of remote sensing data resolution and neighborhood spatial patterns in Charlotte, North Carolina. The remote sensing data for carbon mapping were resampled to a range of resolutions, i.e., LiDAR point cloud density - 5.8, 4.6, 2.3, and 1.2 pt s/m 2 , aerial optical NAIP (National Agricultural Imagery Program) imagery - 1, 5, 10, and 20 m. Urban spatial patterns were extracted to represent area, shape complexity, dispersion/interspersion, diversity, and connectivity of landscape patches across the residential neighborhoods with built-up densities from low, medium-low, medium-high, to high. Through statistical analyses, we found that changing remote sensing data resolution introduced noticeable uncertainties (variation) in forest carbon estimation at the neighborhood level. Higher uncertainties were caused by the change of LiDAR point density (causing 8.7-11.0% of variation) than changing NAIP image resolution (causing 6.2-8.6% of variation). For both LiDAR and NAIP, urban neighborhoods with a higher degree of anthropogenic disturbance unveiled a higher level of uncertainty in carbon mapping. However, LiDAR-based results were more likely to be affected by landscape patch connectivity, and the NAIP-based estimation was found to be significantly influenced by the complexity of patch shape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Combining Multi-Source Remotely Sensed Data and a Process-Based Model for Forest Aboveground Biomass Updating.

    PubMed

    Lu, Xiaoman; Zheng, Guang; Miller, Colton; Alvarado, Ernesto

    2017-09-08

    Monitoring and understanding the spatio-temporal variations of forest aboveground biomass (AGB) is a key basis to quantitatively assess the carbon sequestration capacity of a forest ecosystem. To map and update forest AGB in the Greater Khingan Mountains (GKM) of China, this work proposes a physical-based approach. Based on the baseline forest AGB from Landsat Enhanced Thematic Mapper Plus (ETM+) images in 2008, we dynamically updated the annual forest AGB from 2009 to 2012 by adding the annual AGB increment (ABI) obtained from the simulated daily and annual net primary productivity (NPP) using the Boreal Ecosystem Productivity Simulator (BEPS) model. The 2012 result was validated by both field- and aerial laser scanning (ALS)-based AGBs. The predicted forest AGB for 2012 estimated from the process-based model can explain 31% ( n = 35, p < 0.05, RMSE = 2.20 kg/m²) and 85% ( n = 100, p < 0.01, RMSE = 1.71 kg/m²) of variation in field- and ALS-based forest AGBs, respectively. However, due to the saturation of optical remote sensing-based spectral signals and contribution of understory vegetation, the BEPS-based AGB tended to underestimate/overestimate the AGB for dense/sparse forests. Generally, our results showed that the remotely sensed forest AGB estimates could serve as the initial carbon pool to parameterize the process-based model for NPP simulation, and the combination of the baseline forest AGB and BEPS model could effectively update the spatiotemporal distribution of forest AGB.

  16. Combining Multi-Source Remotely Sensed Data and a Process-Based Model for Forest Aboveground Biomass Updating

    PubMed Central

    Lu, Xiaoman; Zheng, Guang; Miller, Colton

    2017-01-01

    Monitoring and understanding the spatio-temporal variations of forest aboveground biomass (AGB) is a key basis to quantitatively assess the carbon sequestration capacity of a forest ecosystem. To map and update forest AGB in the Greater Khingan Mountains (GKM) of China, this work proposes a physical-based approach. Based on the baseline forest AGB from Landsat Enhanced Thematic Mapper Plus (ETM+) images in 2008, we dynamically updated the annual forest AGB from 2009 to 2012 by adding the annual AGB increment (ABI) obtained from the simulated daily and annual net primary productivity (NPP) using the Boreal Ecosystem Productivity Simulator (BEPS) model. The 2012 result was validated by both field- and aerial laser scanning (ALS)-based AGBs. The predicted forest AGB for 2012 estimated from the process-based model can explain 31% (n = 35, p < 0.05, RMSE = 2.20 kg/m2) and 85% (n = 100, p < 0.01, RMSE = 1.71 kg/m2) of variation in field- and ALS-based forest AGBs, respectively. However, due to the saturation of optical remote sensing-based spectral signals and contribution of understory vegetation, the BEPS-based AGB tended to underestimate/overestimate the AGB for dense/sparse forests. Generally, our results showed that the remotely sensed forest AGB estimates could serve as the initial carbon pool to parameterize the process-based model for NPP simulation, and the combination of the baseline forest AGB and BEPS model could effectively update the spatiotemporal distribution of forest AGB. PMID:28885556

  17. Improving winter leaf area index estimation in coniferous forests and its significance in estimating the land surface albedo

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Chen, Jing M.; Pavlic, Goran; Arain, Altaf

    2016-09-01

    Winter leaf area index (LAI) of evergreen coniferous forests exerts strong control on the interception of snow, snowmelt and energy balance. Simulation of winter LAI and associated winter processes in land surface models is challenging. Retrieving winter LAI from remote sensing data is difficult due to cloud contamination, poor illumination, lower solar elevation and higher radiation reflection by snow background. Underestimated winter LAI in evergreen coniferous forests is one of the major issues limiting the application of current remote sensing LAI products. It has not been fully addressed in past studies in the literature. In this study, we used needle lifespan to correct winter LAI in a remote sensing product developed by the University of Toronto. For the validation purpose, the corrected winter LAI was then used to calculate land surface albedo at five FLUXNET coniferous forests in Canada. The RMSE and bias values for estimated albedo were 0.05 and 0.011, respectively, for all sites. The albedo map over coniferous forests across Canada produced with corrected winter LAI showed much better agreement with the GLASS (Global LAnd Surface Satellites) albedo product than the one produced with uncorrected winter LAI. The results revealed that the corrected winter LAI yielded much greater accuracy in simulating land surface albedo, making the new LAI product an improvement over the original one. Our study will help to increase the usability of remote sensing LAI products in land surface energy budget modeling.

  18. Remote sensing application challenges in the Mekong region

    Treesearch

    Jeffrey Himel

    2013-01-01

    Forest degradation is not just one of the cornerstones of "REDD+", it is a critical element for Lao PDR and other countries where the primary driver of forest carbon loss is selective logging and small-scale conversion of forest for agriculture rather than deforestation. Unless we can reliably and accurately quantify the area of degradation using remote...

  19. Timber Volume and Biomass Estimates in Central Siberia from Satellite Data

    NASA Technical Reports Server (NTRS)

    Ranson, K. Jon; Kimes, Daniel S.; Kharuk, Vyetcheslav I.

    2007-01-01

    Mapping of boreal forest's type, structure parameters and biomass are critical for understanding the boreal forest's significance in the carbon cycle, its response to and impact on global climate change. The biggest deficiency of the existing ground based forest inventories is the uncertainty in the inventory data, particularly in remote areas of Siberia where sampling is sparse, lacking, and often decades old. Remote sensing methods can help overcome these problems. In this joint US and Russian study, we used the moderate resolution imaging spectroradiometer (MODIS) and unique waveform data of the geoscience laser altimeter system (GLAS) and produced a map of timber volume for a 10degx12deg area in Central Siberia. Using these methods, the mean timber volume for the forested area in the total study area was 203 m3/ ha. The new remote sensing methods used in this study provide a truly independent estimate of forest structure, which is not dependent on traditional ground forest inventory methods.

  20. Estimating tropical-forest density profiles from multibaseline interferometric SAR

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert; Chapman, Bruce; dos Santos, Joao Roberto; Dutra, Luciano; Goncalves, Fabio; da Costa Freitas, Corina; Mura, Jose Claudio; de Alencastro Graca, Paulo Mauricio

    2006-01-01

    Vertical profiles of forest density are potentially robust indicators of forest biomass, fire susceptibility and ecosystem function. Tropical forests, which are among the most dense and complicated targets for remote sensing, contain about 45% of the world's biomass. Remote sensing of tropical forest structure is therefore an important component to global biomass and carbon monitoring. This paper shows preliminary results of a multibasline interfereomtric SAR (InSAR) experiment over primary, secondary, and selectively logged forests at La Selva Biological Station in Costa Rica. The profile shown results from inverse Fourier transforming 8 of the 18 baselines acquired. A profile is shown compared to lidar and field measurements. Results are highly preliminary and for qualitative assessment only. Parameter estimation will eventually replace Fourier inversion as the means to producing profiles.

  1. Remote estimation of a managed pine forest evapotranspiration with geospatial technology

    Treesearch

    S. Panda; D.M. Amatya; G Sun; A. Bowman

    2016-01-01

    Remote sensing has increasingly been used to estimate evapotranspiration (ET) and its supporting parameters in a rapid, accurate, and cost-effective manner. The goal of this study was to develop remote sensing-based models for estimating ET and the biophysical parameters canopy conductance (gc), upper-canopy temperature, and soil moisture for a mature loblolly pine...

  2. Effect of metal stress on the thermal infrared emission of soybeans: A greenhouse experiment - Possible utility in remote sensing

    NASA Technical Reports Server (NTRS)

    Suresh, R.; Schwaller, M. R.; Foy, C. D.; Weidner, J. R.; Schnetzler, C. S.

    1989-01-01

    Manganese-sensitive forest and manganese-tolerant lee soybean cultivars were subjected to differential manganese stress in loring soil in a greenhouse experiment. Leaf temperature measurements were made using thermistors for forest and lee. Manganese-stressed plants had higher leaf temperatures than control plants in both forest and lee. Results of this experiment have potential applications in metal stress detection using remote sensing thermal infrared data over large areas of vegetation. This technique can be useful in reconnaissance mineral exploration in densely-vegetated regions where conventional ground-based methods are of little help.

  3. Application of remote sensing to state and regional problems

    NASA Technical Reports Server (NTRS)

    Miller, W. F. (Principal Investigator); Tingle, J.; Wright, L. H.; Tebbs, B.

    1984-01-01

    Progress was made in the hydroclimatology, habitat modeling and inventory, computer analysis, wildlife management, and data comparison programs that utilize LANDSAT and SEASAT data provided to Mississippi researchers through the remote sensing applications program. Specific topics include water runoff in central Mississippi, habitat models for the endangered gopher tortoise, coyote, and turkey Geographic Information Systems (GIS) development, forest inventory along the Mississipppi River, and the merging of LANDSAT and SEASAT data for enhanced forest type discrimination.

  4. Effects of land use/cover change and harvests on forest carbon dynamics in northern states of the United States from remote sensing and inventory data: 1992-2001

    Treesearch

    Daolan Zheng; Linda S. Heath; Mark J. Ducey; James E. Smith

    2011-01-01

    We examined spatial patterns of changes in forest area and nonsoil carbon (C) dynamics affected by land use/cover change (LUC) and harvests in 24 northern states of the United States using an integrated methodology combining remote sensing and ground inventory data between 1992 and 2001. We used the Retrofit Change Product from the Multi-Resolution Land Characteristics...

  5. Biogeochemical cycling in terrestrial ecosystems - Modeling, measurement, and remote sensing

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.; Matson, P. A.; Lawless, J. G.; Aber, J. D.; Vitousek, P. M.

    1985-01-01

    The use of modeling, remote sensing, and measurements to characterize the pathways and to measure the rate of biogeochemical cycling in forest ecosystems is described. The application of the process-level model to predict processes in intact forests and ecosystems response to disturbance is examined. The selection of research areas from contrasting climate regimes and sites having a fertility gradient in that regime is discussed, and the sites studied are listed. The use of remote sensing in determining leaf area index and canopy biochemistry is analyzed. Nitrous oxide emission is investigated by using a gas measurement instrument. Future research projects, which include studying the influence of changes on nutrient cycling in ecosystems and the effect of pollutants on the ecosystems, are discussed.

  6. Remote sensing inputs to landscape models which predict future spatial land use patterns for hydrologic models

    NASA Technical Reports Server (NTRS)

    Miller, L. D.; Tom, C.; Nualchawee, K.

    1977-01-01

    A tropical forest area of Northern Thailand provided a test case of the application of the approach in more natural surroundings. Remote sensing imagery subjected to proper computer analysis has been shown to be a very useful means of collecting spatial data for the science of hydrology. Remote sensing products provide direct input to hydrologic models and practical data bases for planning large and small-scale hydrologic developments. Combining the available remote sensing imagery together with available map information in the landscape model provides a basis for substantial improvements in these applications.

  7. Completing the Picture: Importance of Considering Participatory Mapping for REDD+ Measurement, Reporting and Verification (MRV)

    PubMed Central

    Rafanoharana, Serge; Boissière, Manuel; Wijaya, Arief; Wardhana, Wahyu

    2016-01-01

    Remote sensing has been widely used for mapping land cover and is considered key to monitoring changes in forest areas in the REDD+ Measurement, Reporting and Verification (MRV) system. But Remote Sensing as a desk study cannot capture the whole picture; it also requires ground checking. Therefore, complementing remote sensing analysis using participatory mapping can help provide information for an initial forest cover assessment, gain better understanding of how local land use might affect changes, and provide a way to engage local communities in REDD+. Our study looked at the potential of participatory mapping in providing complementary information for remotely sensed maps. The research sites were located in different ecological and socio-economic contexts in the provinces of Papua, West Kalimantan and Central Java, Indonesia. Twenty-one maps of land cover and land use were drawn with local community participation during focus group discussions in seven villages. These maps, covering a total of 270,000ha, were used to add information to maps developed using remote sensing, adding 39 land covers to the eight from our initial desk assessment. They also provided additional information on drivers of land use and land cover change, resource areas, territory claims and land status, which we were able to correlate to understand changes in forest cover. Incorporating participatory mapping in the REDD+ MRV protocol would help with initial remotely sensed land classifications, stratify an area for ground checks and measurement plots, and add other valuable social data not visible at the RS scale. Ultimately, it would provide a forum for local communities to discuss REDD+ activities and develop a better understanding of REDD+. PMID:27977685

  8. Implications of sampling design and sample size for national carbon accounting systems.

    PubMed

    Köhl, Michael; Lister, Andrew; Scott, Charles T; Baldauf, Thomas; Plugge, Daniel

    2011-11-08

    Countries willing to adopt a REDD regime need to establish a national Measurement, Reporting and Verification (MRV) system that provides information on forest carbon stocks and carbon stock changes. Due to the extensive areas covered by forests the information is generally obtained by sample based surveys. Most operational sampling approaches utilize a combination of earth-observation data and in-situ field assessments as data sources. We compared the cost-efficiency of four different sampling design alternatives (simple random sampling, regression estimators, stratified sampling, 2-phase sampling with regression estimators) that have been proposed in the scope of REDD. Three of the design alternatives provide for a combination of in-situ and earth-observation data. Under different settings of remote sensing coverage, cost per field plot, cost of remote sensing imagery, correlation between attributes quantified in remote sensing and field data, as well as population variability and the percent standard error over total survey cost was calculated. The cost-efficiency of forest carbon stock assessments is driven by the sampling design chosen. Our results indicate that the cost of remote sensing imagery is decisive for the cost-efficiency of a sampling design. The variability of the sample population impairs cost-efficiency, but does not reverse the pattern of cost-efficiency of the individual design alternatives. Our results clearly indicate that it is important to consider cost-efficiency in the development of forest carbon stock assessments and the selection of remote sensing techniques. The development of MRV-systems for REDD need to be based on a sound optimization process that compares different data sources and sampling designs with respect to their cost-efficiency. This helps to reduce the uncertainties related with the quantification of carbon stocks and to increase the financial benefits from adopting a REDD regime.

  9. Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy

    PubMed Central

    Asner, Gregory P.; Nepstad, Daniel; Cardinot, Gina; Ray, David

    2004-01-01

    Amazônia contains vast stores of carbon in high-diversity ecosystems, yet this region undergoes major changes in precipitation affecting land use, carbon dynamics, and climate. The extent and structural complexity of Amazon forests impedes ground studies of ecosystem functions such as net primary production (NPP), water cycling, and carbon sequestration. Traditional modeling and remote-sensing approaches are not well suited to tropical forest studies, because (i) biophysical mechanisms determining drought effects on canopy water and carbon dynamics are poorly known, and (ii) remote-sensing metrics of canopy greenness may be insensitive to small changes in leaf area accompanying drought. New spaceborne imaging spectroscopy may detect drought stress in tropical forests, helping to monitor forest physiology and constrain carbon models. We combined a forest drought experiment in Amazônia with spaceborne imaging spectrometer measurements of this area. With field data on rainfall, soil water, and leaf and canopy responses, we tested whether spaceborne hyperspectral observations quantify differences in canopy water and NPP resulting from drought stress. We found that hyperspectral metrics of canopy water content and light-use efficiency are highly sensitive to drought. Using these observations, forest NPP was estimated with greater sensitivity to drought conditions than with traditional combinations of modeling, remote-sensing, and field measurements. Spaceborne imaging spectroscopy will increase the accuracy of ecological studies in humid tropical forests. PMID:15071182

  10. Evaluating multiple causes of persistent low microwave backscatter from Amazon forests after the 2005 drought

    Treesearch

    Steve Frolking; Stephen Hagen; Bobby Braswell; Tom Milliman; Christina Herrick; Seth Peterson; Dar Roberts; Michael Keller; Michael Palace; Krishna Prasad Vadrevu

    2017-01-01

    Amazonia has experienced large-scale regional droughts that affect forest productivity and biomass stocks. Space-borne remote sensing provides basin-wide data on impacts of meteorological anomalies, an important complement to relatively limited ground observations across the Amazon’s vast and remote humid tropical forests. Morning overpass QuikScat Ku-band microwave...

  11. Sample project: establishing a global forest monitoring capability using multi-resolution and multi-temporal remotely sensed data sets

    USGS Publications Warehouse

    Hansen, Matt; Stehman, Steve; Loveland, Tom; Vogelmann, Jim; Cochrane, Mark

    2009-01-01

    Quantifying rates of forest-cover change is important for improved carbon accounting and climate change modeling, management of forestry and agricultural resources, and biodiversity monitoring. A practical solution to examining trends in forest cover change at global scale is to employ remotely sensed data. Satellite-based monitoring of forest cover can be implemented consistently across large regions at annual and inter-annual intervals. This research extends previous research on global forest-cover dynamics and land-cover change estimation to establish a robust, operational forest monitoring and assessment system. The approach integrates both MODIS and Landsat data to provide timely biome-scale forest change estimation. This is achieved by using annual MODIS change indicator maps to stratify biomes into low, medium and high change categories. Landsat image pairs can then be sampled within these strata and analyzed for estimating area of forest cleared.

  12. Random-Forest Classification of High-Resolution Remote Sensing Images and Ndsm Over Urban Areas

    NASA Astrophysics Data System (ADS)

    Sun, X. F.; Lin, X. G.

    2017-09-01

    As an intermediate step between raw remote sensing data and digital urban maps, remote sensing data classification has been a challenging and long-standing research problem in the community of remote sensing. In this work, an effective classification method is proposed for classifying high-resolution remote sensing data over urban areas. Starting from high resolution multi-spectral images and 3D geometry data, our method proceeds in three main stages: feature extraction, classification, and classified result refinement. First, we extract color, vegetation index and texture features from the multi-spectral image and compute the height, elevation texture and differential morphological profile (DMP) features from the 3D geometry data. Then in the classification stage, multiple random forest (RF) classifiers are trained separately, then combined to form a RF ensemble to estimate each sample's category probabilities. Finally the probabilities along with the feature importance indicator outputted by RF ensemble are used to construct a fully connected conditional random field (FCCRF) graph model, by which the classification results are refined through mean-field based statistical inference. Experiments on the ISPRS Semantic Labeling Contest dataset show that our proposed 3-stage method achieves 86.9% overall accuracy on the test data.

  13. [Study on artificial neural network combined with multispectral remote sensing imagery for forest site evaluation].

    PubMed

    Gong, Yin-Xi; He, Cheng; Yan, Fei; Feng, Zhong-Ke; Cao, Meng-Lei; Gao, Yuan; Miao, Jie; Zhao, Jin-Long

    2013-10-01

    Multispectral remote sensing data containing rich site information are not fully used by the classic site quality evaluation system, as it merely adopts artificial ground survey data. In order to establish a more effective site quality evaluation system, a neural network model which combined remote sensing spectra factors with site factors and site index relations was established and used to study the sublot site quality evaluation in the Wangyedian Forest Farm in Inner Mongolia Province, Chifeng City. Based on the improved back propagation artificial neural network (BPANN), this model combined multispectral remote sensing data with sublot survey data, and took larch as example, Through training data set sensitivity analysis weak or irrelevant factor was excluded, the size of neural network was simplified, and the efficiency of network training was improved. This optimal site index prediction model had an accuracy up to 95.36%, which was 9.83% higher than that of the neural network model based on classic sublot survey data, and this shows that using multi-spectral remote sensing and small class survey data to determine the status of larch index prediction model has the highest predictive accuracy. The results fully indicate the effectiveness and superiority of this method.

  14. Using Tree-Rings and Remote Sensing to Investigate Forest Productivity Response to Landscape Fragmentation in Northeastern Algeria

    NASA Astrophysics Data System (ADS)

    Rouini, N.; Lepley, K. S.; Messaoudene, M.

    2017-12-01

    Remote sensing and dendrochronology are valuable tools in the face of climate change and land use change, yet the connection between these resources remains largely unexploited. Research on forest fragmentation is mainly focused on animal groups, while our work focuses on tree communities. We link tree-rings and remotely-sensed Normalized Difference Vegetation Index (NDVI) using seasonal correlation analysis to investigate forest primary productivity response to fragmentation. Tree core samples from Quercus afares have been taken from two sites within the Guerrouche Forest in northeastern Algeria. The first site is located within a very fragmented area while the second site is intact. Fragmentation is estimated to have occurred with the construction of a road in 1930. We find raw tree-ring width chronologies from each site reveal growth release in the disturbed site after 1930. The means of each chronology for the 1930 to 2016 period are statistically different (p < 0.01). Based on these preliminary results we hypothesize that reconstructed primary productivity (NDVI) will be higher in the fragmented site after fragmentation took place.

  15. Design and Performance of a Multiwavelength Airborne Polarimetric Lidar for Vegetation Remote Sensing

    NASA Astrophysics Data System (ADS)

    Tan, Songxin; Narayanan, Ram M.

    2004-04-01

    The University of Nebraska has developed a multiwavelength airborne polarimetric lidar (MAPL) system to support its Airborne Remote Sensing Program for vegetation remote sensing. The MAPL design and instrumentation are described in detail. Characteristics of the MAPL system include lidar waveform capture and polarimetric measurement capabilities, which provide enhanced opportunities for vegetation remote sensing compared with current sensors. Field tests were conducted to calibrate the range measurement. Polarimetric calibration of the system is also discussed. Backscattered polarimetric returns, as well as the cross-polarization ratios, were obtained from a small forested area to validate the system's ability for vegetation canopy detection. The system has been packaged to fly abroad a Piper Saratoga aircraft for airborne vegetation remote sensing applications.

  16. Remote sensing in support of high-resolution terrestrial carbon monitoring and modeling

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Zhao, M.; Dubayah, R.; Huang, C.; Swatantran, A.; ONeil-Dunne, J.; Johnson, K. D.; Birdsey, R.; Fisk, J.; Flanagan, S.; Sahajpal, R.; Huang, W.; Tang, H.; Armstrong, A. H.

    2014-12-01

    As part of its Phase 1 Carbon Monitoring System (CMS) activities, NASA initiated a Local-Scale Biomass Pilot study. The goals of the pilot study were to develop protocols for fusing high-resolution remotely sensed observations with field data, provide accurate validation test areas for the continental-scale biomass product, and demonstrate efficacy for prognostic terrestrial ecosystem modeling. In Phase 2, this effort was expanded to the state scale. Here, we present results of this activity focusing on the use of remote sensing in high-resolution ecosystem modeling. The Ecosystem Demography (ED) model was implemented at 90 m spatial resolution for the entire state of Maryland. We rasterized soil depth and soil texture data from SSURGO. For hourly meteorological data, we spatially interpolated 32-km 3-hourly NARR into 1-km hourly and further corrected them at monthly level using PRISM data. NLCD data were used to mask sand, seashore, and wetland. High-resolution 1 m forest/non-forest mapping was used to define forest fraction of 90 m cells. Three alternative strategies were evaluated for initialization of forest structure using high-resolution lidar, and the model was used to calculate statewide estimates of forest biomass, carbon sequestration potential, time to reach sequestration potential, and sensitivity to future forest growth and disturbance rates, all at 90 m resolution. To our knowledge, no dynamic ecosystem model has been run at such high spatial resolution over such large areas utilizing remote sensing and validated as extensively. There are over 3 million 90 m land cells in Maryland, greater than 43 times the ~73,000 half-degree cells in a state-of-the-art global land model.

  17. Using MODIS and GLAS Data to Develop Timber Volume Estimates in Central Siberia

    NASA Technical Reports Server (NTRS)

    Ranson, K. Jon; Kimes, Daniel; Sun, Guoqing; Kharuk, Viatcheslav; Hyde, Peter; Nelson, Ross

    2007-01-01

    The boreal forest is the Earth's largest terrestrial biome, covering some 12 million km2 and accounting for about one third of this planet's total forest area. Mapping of boreal forest's type, structure parameters and biomass are critical for understanding the boreal forest's significance in the carbon cycle, its response to and impact on global climate change. Ground based forest inventories, have much uncertainty in the inventory data, particularly in remote areas of Siberia where sampling is sparse and/or lacking. In addition, many of the forest inventories that do exist for Siberia are now a decade or more old. Thus, available forest inventories fail to capture the current conditions. Changes in forest structure in a particular forest-type and region can change significantly due to changing environment conditions, and natural and anthropogenic disturbance. Remote sensing methods can potentially overcome these problems. Multispectral sensors can be used to provide vegetation cover maps that show a timely and accurate geographic distribution of vegetation types rather than decade old ground based maps. Lidar sensors can be used to directly obtain measurements that can be used to derive critical forest structure information (e.g., height, density, and volume). These in turn can used to estimate biomass components using allometric equations without having to use out dated forest inventory. Finally, remote sensing data is ideally suited to provide a sampling basis for a rigorous statistical estimate of the variance and error bound on forest structure measures. In this study, new remote sensing methods were applied to develop estimates timber volume using NASA's MODerate resolution Imaging Spectroradiometer (MODIS) and unique waveform data of the geoscience laser altimeter system (GLAS) for a 10 deg x 10 deg area in central Siberia. Using MODIS and GLAS data, maps were produced for cover type and timber volume for 2003, and a realistic variance (error bound) for timber volume was calculated for the study area. In this 'study we used only GLAS footprints that had a slope value of less than 10 deg. This was done to avoid large errors due to the effect of slope on the GLAS models. The method requires the integration of new remote sensing methods with available ground studies of forest timber volume conducted in Russian forests. The results were compared to traditional ground forest inventory methods reported in the literature and to ground truth collected in the study area.

  18. Monitoring the Extent of Forests on National to Global Scales

    NASA Astrophysics Data System (ADS)

    Townshend, J.; Townshend, J.; Hansen, M.; DeFries, R.; DeFries, R.; Sohlberg, R.; Desch, A.; White, B.

    2001-05-01

    Information on forest extent and change is important for many purposes, including understanding the global carbon cycle and managing natural resources. International statistics on forest extent are generated using many different sources often producing inconsistent results spatially and through time. Results will be presented comparing forest extent derived from the recent global Food and Agricultural Organization's (FAO) FRA 2000 report with products derived using wall-to-wall Landsat, AVHRR and MODIS data sets. The remotely sensed data sets provide consistent results in terms of total area despite considerable differences in spatial resolution. Although the location of change can be satisfactorily detected with all three remotely sensed data sets, reliable measurement of change can only be achieved through use of Landsat-resolution data. Contrary to the FRA 2000 results we find evidence of an increase in deforestation rates in the late 1990s in several countries. Also we have found evidence of considerable changes in some countries for which little or no change is reported by FAO. The results indicate the benefits of globally consistent analyses of forest cover based on multiscale remotely sensed data sets rather than a reliance on statistics generated by individual countries with very different definitions of forest and methods used to derive them.

  19. Remote sensing applications to forest vegetation classification and conifer vigor loss due to dwarf mistletoe

    NASA Technical Reports Server (NTRS)

    Douglass, R. W.; Meyer, M. P.; French, D. W.

    1972-01-01

    Criteria was established for practical remote sensing of vegetation stress and mortality caused by dwarf mistletoe infections in black spruce subboreal forest stands. The project was accomplished in two stages: (1) A fixed tower-tramway site in an infected black spruce stand was used for periodic multispectral photo coverage to establish basic film/filter/scale/season/weather parameters; (2) The photographic combinations suggested by the tower-tramway tests were used in low, medium, and high altitude aerial photography.

  20. Options for monitoring and estimating historical carbon emissions from forest degradation in the context of REDD+

    PubMed Central

    2011-01-01

    Measuring forest degradation and related forest carbon stock changes is more challenging than measuring deforestation since degradation implies changes in the structure of the forest and does not entail a change in land use, making it less easily detectable through remote sensing. Although we anticipate the use of the IPCC guidance under the United Framework Convention on Climate Change (UNFCCC), there is no one single method for monitoring forest degradation for the case of REDD+ policy. In this review paper we highlight that the choice depends upon a number of factors including the type of degradation, available historical data, capacities and resources, and the potentials and limitations of various measurement and monitoring approaches. Current degradation rates can be measured through field data (i.e. multi-date national forest inventories and permanent sample plot data, commercial forestry data sets, proxy data from domestic markets) and/or remote sensing data (i.e. direct mapping of canopy and forest structural changes or indirect mapping through modelling approaches), with the combination of techniques providing the best options. Developing countries frequently lack consistent historical field data for assessing past forest degradation, and so must rely more on remote sensing approaches mixed with current field assessments of carbon stock changes. Historical degradation estimates will have larger uncertainties as it will be difficult to determine their accuracy. However improving monitoring capacities for systematic forest degradation estimates today will help reduce uncertainties even for historical estimates. PMID:22115360

  1. A study of Minnesota forests and lakes using data from Earth Resources Technology Satellites

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Highlights of research and practical benefits are discussed for the following projects which utilized ERTS 1 data to provide municipal, state, federal, and industrial users with environmental resource information for the state of Minnesota: (1) forest disease detection and control; (2) evaluation of water quality by remote sensing techniques; (3) forest vegetation classification and management; (4) detection of saline soils in the Red River Valley; (5) snowmelt flood prediction; (6) remote sensing applications to hydrology; (7) Rice Creek watershed project; (8) water quality in Lake Superior and the Duluth Superior Harbor; and (9) determination of Lake Superior currents from turbidity patterns.

  2. Research in remote sensing of agriculture, earth resources, and man's environment

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A.

    1975-01-01

    Progress is reported for several projects involving the utilization of LANDSAT remote sensing capabilities. Areas under study include crop inventory, crop identification, crop yield prediction, forest resources evaluation, land resources evaluation and soil classification. Numerical methods for image processing are discussed, particularly those for image enhancement and analysis.

  3. Ten year change in forest succession and composition measured by remote sensing

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G.; Botkin, Daniel B.; Strebel, Donald E.; Woods, Kerry K.; Goetz, Scott J.

    1987-01-01

    Vegetation dynamics and changes in ecological patterns were measured by remote sensing over a 10 year period (1973 to 1983) for 148,406 landscape elements, covering more than 500 sq km in a protected forested wilderness. Quantitative measurements were made possible by methods to detect ecologically meaningful landscape units; these allowed measurement of ecological transition frequencies and calculation of expected recurrence times. Measured ecological transition frequencies reveal boreal forest wilderness as spatially heterogeneous and highly dynamic, with one-sixth of the area in clearings and early successional stages, consistent with recent postulates about the spatial and temporal patterns of natural ecosystems. Differences between managed forest areas and a protected wilderness allow assessment of different management regimes.

  4. [NDVI difference rate recognition model of deciduous broad-leaved forest based on HJ-CCD remote sensing data].

    PubMed

    Wang, Yan; Tian, Qing-Jiu; Huang, Yan; Wei, Hong-Wei

    2013-04-01

    The present paper takes Chuzhou in Anhui Province as the research area, and deciduous broad-leaved forest as the research object. Then it constructs the recognition model about deciduous broad-leaved forest was constructed using NDVI difference rate between leaf expansion and flowering and fruit-bearing, and the model was applied to HJ-CCD remote sensing image on April 1, 2012 and May 4, 2012. At last, the spatial distribution map of deciduous broad-leaved forest was extracted effectively, and the results of extraction were verified and evaluated. The result shows the validity of NDVI difference rate extraction method proposed in this paper and also verifies the applicability of using HJ-CCD data for vegetation classification and recognition.

  5. Application of remote sensing to state and regional problems. [Mississippi

    NASA Technical Reports Server (NTRS)

    Miller, W. F.; Carter, B. D.; Solomon, J. L.; Williams, S. G.; Powers, J. S.; Clark, J. R. (Principal Investigator)

    1980-01-01

    Progress is reported in the following areas: remote sensing applications to land use planning Lowndes County, applications of LANDSAT data to strip mine inventory and reclamation, white tailed deer habitat evaluation using LANDSAT data, remote sensing data analysis support system, and discrimination of unique forest habitats in potential lignite areas of Mississippi. Other projects discussed include LANDSAT change discrimination in gravel operations, environmental impact modeling for highway corridors, and discrimination of fresh water wetlands for inventory and monitoring.

  6. Interfacing geographic information systems and remote sensing for rural land-use analysis

    NASA Technical Reports Server (NTRS)

    Nellis, M. Duane; Lulla, Kamlesh; Jensen, John

    1990-01-01

    Recent advances in computer-based geographic information systems (GISs) are briefly reviewed, with an emphasis on the incorporation of remote-sensing data in GISs for rural applications. Topics addressed include sampling procedures for rural land-use analyses; GIS-based mapping of agricultural land use and productivity; remote sensing of land use and agricultural, forest, rangeland, and water resources; monitoring the dynamics of irrigation agriculture; GIS methods for detecting changes in land use over time; and the development of land-use modeling strategies.

  7. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    PubMed

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high-resolution remote sensing can predict a large percentage of variance in species richness and potentially provide a framework to map and predict alpha diversity among trees in diverse tropical forests.

  8. Mapping Plant Diversity and Composition Across North Carolina Piedmont Forest Landscapes Using Lidar-Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Hakkenberg, Christopher R.

    Forest modification, from local stress to global change, has given rise to efforts to model, map, and monitor critical properties of forest communities like structure, composition, and diversity. Predictive models based on data from spatially-nested field plots and LiDAR-hyperspectral remote sensing systems are one particularly effective means towards the otherwise prohibitively resource-intensive task of consistently characterizing forest community dynamics at landscape scales. However, to date, most predictive models fail to account for actual (rather than idealized) species and community distributions, are unsuccessful in predicting understory components in structurally and taxonomically heterogeneous forests, and may suffer from diminished predictive accuracy due to incongruity in scale and precision between field plot samples, remotely-sensed data, and target biota of varying size and density. This three-part study addresses these and other concerns in the modeling and mapping of emergent properties of forest communities by shifting the scope of prediction from the individual or taxon to the whole stand or community. It is, after all, at the stand scale where emergent properties like functional processes, biodiversity, and habitat aggregate and manifest. In the first study, I explore the relationship between forest structure (a proxy for successional demographics and resource competition) and tree species diversity in the North Carolina Piedmont, highlighting the empirical basis and potential for utilizing forest structure from LiDAR in predictive models of tree species diversity. I then extend these conclusions to map landscape pattern in multi-scale vascular plant diversity as well as turnover in community-continua at varying compositional resolutions in a North Carolina Piedmont landscape using remotely-sensed LiDAR-hyperspectral estimates of topography, canopy structure, and foliar biochemistry. Recognizing that the distinction between correlation and causation mirrors that between knowledge and understanding, all three studies distinguish between prediction of pattern and inference of process. Thus, in addition to advancing mapping methodologies relevant to a range of forest ecosystem management and monitoring applications, all three studies are noteworthy for assessing the ecological relationship between environmental predictors and emergent landscape patterns in plant composition and diversity in North Carolina Piedmont forests.

  9. Hyperspectral remote sensing of postfire soil properties

    Treesearch

    Sarah A. Lewis; Peter R. Robichaud; William J. Elliot; Bruce E. Frazier; Joan Q. Wu

    2004-01-01

    Forest fires may induce changes in soil organic properties that often lead to water repellent conditions within the soil profile that decrease soil infiltration capacity. The remote detection of water repellent soils after forest fires would lead to quicker and more accurate assessment of erosion potential. An airborne hyperspectral image was acquired over the Hayman...

  10. Modelisation de l'architecture des forets pour ameliorer la teledetection des attributs forestiers

    NASA Astrophysics Data System (ADS)

    Cote, Jean-Francois

    The quality of indirect measurements of canopy structure, from in situ and satellite remote sensing, is based on knowledge of vegetation canopy architecture. Technological advances in ground-based, airborne or satellite remote sensing can now significantly improve the effectiveness of measurement programs on forest resources. The structure of vegetation canopy describes the position, orientation, size and shape of elements of the canopy. The complexity of the canopy in forest environments greatly limits our ability to characterize forest structural attributes. Architectural models have been developed to help the interpretation of canopy structural measurements by remote sensing. Recently, the terrestrial LiDAR systems, or TLiDAR (Terrestrial Light Detection and Ranging), are used to gather information on the structure of individual trees or forest stands. The TLiDAR allows the extraction of 3D structural information under the canopy at the centimetre scale. The methodology proposed in my Ph.D. thesis is a strategy to overcome the weakness in the structural sampling of vegetation cover. The main objective of the Ph.D. is to develop an architectural model of vegetation canopy, called L-Architect (LiDAR data to vegetation Architecture), and to focus on the ability to document forest sites and to get information on canopy structure from remote sensing tools. Specifically, L-Architect reconstructs the architecture of individual conifer trees from TLiDAR data. Quantitative evaluation of L-Architect consisted to investigate (i) the structural consistency of the reconstructed trees and (ii) the radiative coherence by the inclusion of reconstructed trees in a 3D radiative transfer model. Then, a methodology was developed to quasi-automatically reconstruct the structure of individual trees from an optimization algorithm using TLiDAR data and allometric relationships. L-Architect thus provides an explicit link between the range measurements of TLiDAR and structural attributes of individual trees. L-Architect has finally been applied to model the architecture of forest canopy for better characterization of vertical and horizontal structure with airborne LiDAR data. This project provides a mean to answer requests of detailed canopy architectural data, difficult to obtain, to reproduce a variety of forest covers. Because of the importance of architectural models, L-Architect provides a significant contribution for improving the capacity of parameters' inversion in vegetation cover for optical and lidar remote sensing. Mots-cles: modelisation architecturale, lidar terrestre, couvert forestier, parametres structuraux, teledetection.

  11. Use of remote sensing for land use policy formulation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Progress in studies for using remotely sensed data for assessing crop stress and in crop estimation is reported. The estimation of acreage of small forested areas in the southern lower peninsula of Michigan using LANDSAT data is evaluated. Damage to small grains caused by the cereal leaf beetle was assessed through remote sensing. The remote detection of X-disease of peach and cherry trees and of fire blight of pear and apple trees was investigated. The reliability of improving on standard methods of crop production estimation was demonstrated. Areas of virus infestation in vineyards and blueberry fields in western and southwestern Michigan were identified. The installation and systems integration of a microcomputer system for processing and making available remotely sensed data are described.

  12. Reconciling certification and intact forest landscape conservation.

    PubMed

    Kleinschroth, Fritz; Garcia, Claude; Ghazoul, Jaboury

    2018-05-29

    In 2014, the Forest Stewardship Council (FSC) added a new criterion to its principles that requires protection of intact forest landscapes (IFLs). An IFL is an extensive area of forest that lacks roads and other signs of human activity as detected through remote sensing. In the Congo basin, our analysis of road networks in formally approved concessionary logging areas revealed greater loss of IFL in certified than in noncertified concessions. In areas of informal (i.e., nonregulated) extraction, road networks are known to be less detectable by remote sensing. Under the current definition of IFL, companies certified under FSC standards are likely to be penalized relative to the noncertified as well as the informal logging sector on account of their planned road networks, despite an otherwise better standard of forest management. This could ultimately undermine certification and its wider adoption, with implications for the future of sustainable forest management.

  13. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity.

    PubMed

    Bustamante, Mercedes M C; Roitman, Iris; Aide, T Mitchell; Alencar, Ane; Anderson, Liana O; Aragão, Luiz; Asner, Gregory P; Barlow, Jos; Berenguer, Erika; Chambers, Jeffrey; Costa, Marcos H; Fanin, Thierry; Ferreira, Laerte G; Ferreira, Joice; Keller, Michael; Magnusson, William E; Morales-Barquero, Lucia; Morton, Douglas; Ometto, Jean P H B; Palace, Michael; Peres, Carlos A; Silvério, Divino; Trumbore, Susan; Vieira, Ima C G

    2016-01-01

    Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas: (1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a unified strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The improvement of models and estimates of changes of forest carbon can foster process-oriented monitoring of forest dynamics, including different variables and using spatially explicit algorithms that account for regional and local differences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery pathways, and socioeconomic factors. Generating the data for these models requires affordable large-scale remote-sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots, we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate-change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest governance policies, such as Reducing Emissions from Deforestation and Forest Degradation. © 2015 John Wiley & Sons Ltd.

  14. Real-Time and Post-Processed Georeferencing for Hyperpspectral Drone Remote Sensing

    NASA Astrophysics Data System (ADS)

    Oliveira, R. A.; Khoramshahi, E.; Suomalainen, J.; Hakala, T.; Viljanen, N.; Honkavaara, E.

    2018-05-01

    The use of drones and photogrammetric technologies are increasing rapidly in different applications. Currently, drone processing workflow is in most cases based on sequential image acquisition and post-processing, but there are great interests towards real-time solutions. Fast and reliable real-time drone data processing can benefit, for instance, environmental monitoring tasks in precision agriculture and in forest. Recent developments in miniaturized and low-cost inertial measurement systems and GNSS sensors, and Real-time kinematic (RTK) position data are offering new perspectives for the comprehensive remote sensing applications. The combination of these sensors and light-weight and low-cost multi- or hyperspectral frame sensors in drones provides the opportunity of creating near real-time or real-time remote sensing data of target object. We have developed a system with direct georeferencing onboard drone to be used combined with hyperspectral frame cameras in real-time remote sensing applications. The objective of this study is to evaluate the real-time georeferencing comparing with post-processing solutions. Experimental data sets were captured in agricultural and forested test sites using the system. The accuracy of onboard georeferencing data were better than 0.5 m. The results showed that the real-time remote sensing is promising and feasible in both test sites.

  15. Accounting for ecosystem assets using remote sensing in the Colombian Orinoco River Basin lowlands

    NASA Astrophysics Data System (ADS)

    Vargas, Leonardo; Hein, Lars; Remme, Roy P.

    2017-04-01

    Worldwide, ecosystem change compromises the supply of ecosystem services (ES). Better managing ecosystems requires detailed information on these changes and their implications for ES supply. Ecosystem accounting has been developed as an environmental-economic accounting system using concepts aligned with the System of National Accounts. Ecosystem accounting requires spatial information from a local to national scale. The objective of this paper is to explore how remote sensing can be used to analyze ecosystems using an accounting approach in the Orinoco River Basin. We assessed ecosystem assets in terms of extent, condition, and capacity to supply ES. We focus on four specific ES: grasslands grazed by cattle, timber harvesting, oil palm fresh fruit bunches harvesting, and carbon sequestration. We link ES with six ecosystem assets: savannahs, woody grasslands, mixed agroecosystems, very dense forests, dense forest, and oil palm plantations. We used remote sensing vegetation and productivity indexes to measure ecosystem assets. We found that remote sensing is a powerful tool to estimate ecosystem extent. The enhanced vegetation index can be used to assess ecosystems condition, and net primary productivity can be used for the assessment of ecosystem assets capacity to supply ES. Integrating remote sensing and ecological information facilitates efficient monitoring of ecosystem assets.

  16. Forest land area estimates from vegetation continuous fields

    Treesearch

    Mark D. Nelson; Ronald E. McRoberts; Matthew C. Hansen

    2004-01-01

    The USDA Forest Service's Forest Inventory and Analysis (FIA) program provides data, information, and knowledge about our Nation's forest resources. FIA regional units collect data from field plots and remotely sensed imagery to produce statistical estimates of forest extent (area); volume, growth, and removals; and health and condition. There is increasing...

  17. Mountain pine beetle detection and monitoring: evaluation of airborne imagery

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Bone, C.; Dragicevic, S.; Ettya, A.; Northrup, J.; Reich, R.

    2007-10-01

    The processing and evaluation of digital airborne imagery for detection, monitoring and modeling of mountain pine beetle (MPB) infestations is evaluated. The most efficient and reliable remote sensing strategy for identification and mapping of infestation stages ("current" to "red" to "grey" attack) of MPB in lodgepole pine forests is determined for the most practical and cost effective procedures. This research was planned to specifically enhance knowledge by determining the remote sensing imaging systems and analytical procedures that optimize resource management for this critical forest health problem. Within the context of this study, airborne remote sensing of forest environments for forest health determinations (MPB) is most suitably undertaken using multispectral digitally converted imagery (aerial photography) at scales of 1:8000 for early detection of current MPB attack and 1:16000 for mapping and sequential monitoring of red and grey attack. Digital conversion should be undertaken at 10 to 16 microns for B&W multispectral imagery and 16 to 24 microns for colour and colour infrared imagery. From an "operational" perspective, the use of twin mapping-cameras with colour and B&W or colour infrared film will provide the best approximation of multispectral digital imagery with near comparable performance in a competitive private sector context (open bidding).

  18. A Drone Remote Sensing for Virtual Reality Simulation System for Forest Fires: Semantic Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh

    2016-09-01

    Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.

  19. Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing

    DTIC Science & Technology

    2014-06-12

    interferometry and polarimetry . In the paper, the model was used to simulate SAR data for Mangrove (tropical) and Nezer (temperate) forests for P-band and...Scattering Model Applied to Radiometry, Interferometry, and Polarimetry at P- and L-Band. IEEE Transactions on Geoscience and Remote Sensing 44(4): 849

  20. Hyperspectral remote sensing of canopy biodiversity in Hawaiian lowland rainforests

    Treesearch

    Kimberly M. Carlson; Gregory P. Asner; R. Flint Hughes; Rebecca Ostertag; Roberta E. Martin

    2007-01-01

    Mapping biological diversity is a high priority for conservation research, management and policy development, but few studies have provided diversity data at high spatial resolution from remote sensing. We used airborne imaging spectroscopy to map woody vascular plant species richness in lowland tropical forest ecosystems in Hawaii. Hyperspectral signatures spanning...

  1. An algorithm for retrieving rock-desertification from multispectral remote sensing images

    NASA Astrophysics Data System (ADS)

    Xia, Xueqi; Tian, Qingjiu; Liao, Yan

    2009-06-01

    Rock-desertification is a typical environmental and ecological problem in Southwest China. As remote sensing is an important means of monitoring spatial variation of rock-desertification, a method is developed for measurement and information retrieval of rock-desertification from multi-spectral high-resolution remote sensing images. MNF transform is applied to 4-band IKONOS multi-spectral remotely sensed data to reduce the number of spectral dimensions to three. In the 3-demension endmembers are extracted and analyzed. It is found that various vegetations group into a line defined as "vegetation line", in which "dark vegetations", such as coniferous forest and broadleaf forest, continuously change to "bright vegetations", such as grasses. It is presumed that is caused by deferent proportion of shadow mixed in leaves or branches in various types of vegetation. Normalized distance between the endmember of rocks and the vegetation line is defined as Geometric Rock-desertification Index (GRI), which was used to scale rock-desertification. The case study with ground truth validation in Puding, Guizhou province showed successes and the advantages of this method.

  2. Assimilation of repeated woody biomass observations constrains decadal ecosystem carbon cycle uncertainty in aggrading forests

    NASA Astrophysics Data System (ADS)

    Smallman, T. L.; Exbrayat, J.-F.; Mencuccini, M.; Bloom, A. A.; Williams, M.

    2017-03-01

    Forest carbon sink strengths are governed by plant growth, mineralization of dead organic matter, and disturbance. Across landscapes, remote sensing can provide information about aboveground states of forests and this information can be linked to models to estimate carbon cycling in forests close to steady state. For aggrading forests this approach is more challenging and has not been demonstrated. Here we apply a Bayesian approach, linking a simple model to a range of data, to evaluate their information content, for two aggrading forests. We compare high information content analyses using local observations with retrievals using progressively sparser remotely sensed information (repeated, single, and no woody biomass observations). The net biome productivity of both forests is constrained to be a net sink with <2 Mg C ha-1 yr-1 variation across the range of inputs. However, the sequestration of particular carbon pool(s) varies with assimilated biomass information. Assimilation of repeated biomass observations reduces uncertainty and/or bias in all ecosystem C pools not just wood, compared to analyses using single or no stock information. As verification, our repeated biomass analysis explains 78-86% of variation in litter dynamics at one forest, while at the second forest total dead organic matter estimates are within observational uncertainty. The uncertainty of retrieved ecosystem traits in the repeated biomass analysis is reduced by up to 50% compared to analyses with less biomass information. This study quantifies the importance of repeated woody observations in constraining the dynamics of both wood and dead organic matter, highlighting the benefit of proposed remote sensing missions.

  3. Japanese national forest inventory and its spatial extension by remote sensing

    Treesearch

    Yasumasa Hirata; Mitsuo Matsumoto; Toshiro Iehara

    2009-01-01

    Japan has two independent forest inventory systems. One forest inventory is required by the forest planning system based on the Forest Law, in which forest registers and forest planning maps are prepared. The other system is a forest resource monitoring survey, in which systematic sampling is done at 4-km grid intervals. Here, we present these national forest inventory...

  4. Integrating remote sensing and forest inventory data for assessing forest blowdown in the boundary waters canoe area wilderness

    Treesearch

    Mark D. Nelson; W. Keith Moser

    2007-01-01

    The USDA Forest Service's Forest Inventory and Analysis (FIA) program conducts strategic inventories of our Nation's forest resources. There is increasing need to assess effects of forest disturbance from catastrophic events, often within geographic extents not typically addressed by strategic forest inventories. One such event occurred within the Boundary...

  5. Application of remote sensing and GIS techniques for forest cover monitoring in the southern part of Laos

    NASA Astrophysics Data System (ADS)

    Keonuchan, Ammala; Liu, Yaolin

    2008-12-01

    Forest resource is the important material foundation of national sustainable development. And it need to master the status and change of forest resource timely for reasonable exploitation of forest and its renewal. Laos is located in the heart of the Indochinese peninsular, in southeast Asia, latitude 14° to 23 °north and longitude 100°to 108°east, covered a total 236, 800 square kilometers, and country of nearly 6 million people. The forest of Laos dropped from close to two-third in the 1970's to less than half by the 1990's. This deforestation has been attributed to two human activities : a traditional of shifting cultivation or slash and burn farming, and logging without reforestation. Remote sensing and GIS are the most modern technologies which have been widely used in the field of natural resource management and monitoring. These technologies provide very powerful tools to observe and collect information on natural resources and dynamic phenomenon on the earth surface, and ability to integrate different data and present data in different formats. In this study, using forest cover map and Landsat 7 ETM data, we analyze and compare forest cover change from 1997 to 2002. And the maximum likelihood method of supervised classification was used to classify the remote sensing data, we processed Spectral Enhancement, including Normalized Difference Vegetation Index (NDVI) ,and re-classify data again base on Principle Components Analysis (PCA) and NDVI.

  6. The Role of Remote Sensing in Assessing Forest Biomass in Appalachian South Carolina

    NASA Technical Reports Server (NTRS)

    Shain, W.; Nix, L.

    1982-01-01

    Information is presented on the use of color infrared aerial photographs and ground sampling methods to quantify standing forest biomass in Appalachian South Carolina. Local tree biomass equations are given and subsequent evaluation of stand density and size classes using remote sensing methods is presented. Methods of terrain analysis, environmental hazard rating, and subsequent determination of accessibility of forest biomass are discussed. Computer-based statistical analyses are used to expand individual cover-type specific ground sample data to area-wide cover type inventory figures based on aerial photographic interpretation and area measurement. Forest biomass data are presented for the study area in terms of discriminant size classes, merchantability limits, accessibility (as related to terrain and yield/harvest constraints), and potential environmental impact of harvest.

  7. Neural networks for satellite remote sensing and robotic sensor interpretation

    NASA Astrophysics Data System (ADS)

    Martens, Siegfried

    Remote sensing of forests and robotic sensor fusion can be viewed, in part, as supervised learning problems, mapping from sensory input to perceptual output. This dissertation develops ARTMAP neural networks for real-time category learning, pattern recognition, and prediction tailored to remote sensing and robotics applications. Three studies are presented. The first two use ARTMAP to create maps from remotely sensed data, while the third uses an ARTMAP system for sensor fusion on a mobile robot. The first study uses ARTMAP to predict vegetation mixtures in the Plumas National Forest based on spectral data from the Landsat Thematic Mapper satellite. While most previous ARTMAP systems have predicted discrete output classes, this project develops new capabilities for multi-valued prediction. On the mixture prediction task, the new network is shown to perform better than maximum likelihood and linear mixture models. The second remote sensing study uses an ARTMAP classification system to evaluate the relative importance of spectral and terrain data for map-making. This project has produced a large-scale map of remotely sensed vegetation in the Sierra National Forest. Network predictions are validated with ground truth data, and maps produced using the ARTMAP system are compared to a map produced by human experts. The ARTMAP Sierra map was generated in an afternoon, while the labor intensive expert method required nearly a year to perform the same task. The robotics research uses an ARTMAP system to integrate visual information and ultrasonic sensory information on a B14 mobile robot. The goal is to produce a more accurate measure of distance than is provided by the raw sensors. ARTMAP effectively combines sensory sources both within and between modalities. The improved distance percept is used to produce occupancy grid visualizations of the robot's environment. The maps produced point to specific problems of raw sensory information processing and demonstrate the benefits of using a neural network system for sensor fusion.

  8. Proceedings of the third annual forest inventory and analysis symposium; 2001 October 17-19; Traverse City, Michigan

    Treesearch

    Ronald E. McRoberts; Gregory A. Reams; Paul C. Van Deusen; John W. Moser

    2003-01-01

    Documents contributions to forest inventory in the areas of sampling, remote sensing, modeling, information management, and analysis with emphasis on implementation of the annual inventory system of the Forest Inventory and Analysis program of the USDA Forest Service.

  9. A comparison of airborne evapotranspiration maps and sapflow measurements in oak and beech forest stands

    NASA Astrophysics Data System (ADS)

    Schlerf, M.; Mallick, K.; Hassler, S. K.; Blume, T.; Ronellenfitsch, F.; Gerhards, M.; Udelhoven, T.; Weiler, M.

    2017-12-01

    Accurate estimations of spatially explicit daily Evapotranspiration (ET) may help water managers quantifying the water requirements of agricultural crops or trees. Airborne remote sensing may provide suitable ET maps, but uncertainties need to be better understood. In this study we compared high spatial resolution remotely sensed ET maps for 7 July 2016 with sap flow measurements over 32 forest stands located in the Attert catchment, Luxembourg. Forest stands differed in terms of species (Quercus robur, Fagus sylvatica), geology (schist, marl, sandstone), and geomorphology (slope position, plain, valley). Within each plot, at 1-3 trees the sap flow velocity (cm per hour) was measured between 8 am and 8 pm in 10 min intervals and averaged into a single value per plot and converted into values of volume flux (litres per day). Remotely sensed ET maps were derived by integrating airborne thermal infrared (TIR) images with an analytical surface energy balance model, Surface Temperature Initiated Closure (STIC1.2, Mallick et al. 2016). Airborne TIR images were acquired under clear sky conditions at 9:12, 10:08, 13:56, 14:50, 15:54, and 18:41 local time using a hyperspectral-thermal instrument. Images were geometrically corrected, calibrated, mosaicked, and converted to surface radiometric temperature. Surface temperature maps in conjunction with meteorological measurements recorded in the forest plots (air temperature, global radiation, relative humidity) were used as input to STIC1.2, for simultaneously estimating ET, sensible heat flux as well as surface and aerodynamic conductances. Instantaneous maps of ET were converted into daily ET maps and compared with the sap flow measurements. Results reveal a significant correspondence between remote sensing and field measured ET. The differences in the magnitude of predicted versus observed ET was found to be associated the biophysical conductances, radiometric surface temperature, and ecohydrological characteristics of the underlying landscape. Forest plots reveal differences in ET depending on the underlying geology and the slope position. Airborne remote sensing offers new ways of estimating the diurnal course of plant transpiration over entire landscapes and is an important bridging technology before high resolution TIR sensors will come into space.

  10. Techniques and Considerations for FIA forest fragmentation analysis

    Treesearch

    Andrew J. Lister; Tonya W. Lister; Rachel Riemann; Mike Hoppus

    2002-01-01

    The Forest Inventory and Analysis unit of the Northeastern Research Station (NEFIA) is charged with inventorying and monitoring the Nation's forests. NEFIA has not gathered much information on forest fragmentation, but recent developments in computing and remote sensing technologies now make it possible to assess forest fragmentation on a regional basis. We...

  11. Advances in remote sensing of forest background reflectance with MODIS BRDF data across Europe

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; Alikas, Krista; Lukeš, Petr; Lundin, Lars; Kobler, Johannes; Santos-Reis, Margarida; Chen, Jing

    2017-04-01

    Spatial and temporal patterns of forest background (understory) reflectance are crucial for retrieving biophysical parameters of forest canopies (overstory) and subsequently for ecosystem modeling. However, systematic reflectance data covering different site types are almost missing. This presentation will focus on the validation of background reflectance retrievals using MODIS bidirectional reflectance distribution function (BRDF) data against in-situ understory reflectance measurements covering a diverse set of long-term ecological research (LTER) sites distributed along a wide latitudinal and elevational gradient across Europe: protected coniferous blueberry forest in Sweden, karst forest system in Austria, floodplain broadleaf forest and coniferous forest in the Czech Republic, and Mediterranean agro-sylvo-pastoral woodlands in Portugal. The multi-angle remote sensing data-based methodology was originally developed for the forest background signal retrieval in a boreal region. Here its performance will be tested across diverse forest conditions and moments during the growing season, which is a necessary step before conducting extensive mapping over forested areas. The results can be also used as an input for improved modeling of local carbon and energy fluxes.

  12. Assessing Structure and Condition of Temperate And Tropical Forests: Fusion of Terrestrial Lidar and Airborne Multi-Angle and Lidar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Saenz, Edward J.

    Forests provide vital ecosystem functions and services that maintain the integrity of our natural and human environment. Understanding the structural components of forests (extent, tree density, heights of multi-story canopies, biomass, etc.) provides necessary information to preserve ecosystem services. Increasingly, remote sensing resources have been used to map and monitor forests globally. However, traditional satellite and airborne multi-angle imagery only provide information about the top of the canopy and little about the forest structure and understory. In this research, we investigative the use of rapidly evolving lidar technology, and how the fusion of aerial and terrestrial lidar data can be utilized to better characterize forest stand information. We further apply a novel terrestrial lidar methodology to characterize a Hemlock Woolly Adelgid infestation in Harvard Forest, Massachusetts, and adapt a dynamic terrestrial lidar sampling scheme to identify key structural vegetation profiles of tropical rainforests in La Selva, Costa Rica.

  13. [Retrieval of crown closure of moso bamboo forest using unmanned aerial vehicle (UAV) remotely sensed imagery based on geometric-optical model].

    PubMed

    Wang, Cong; Du, Hua-qiang; Zhou, Guo-mo; Xu, Xiao-jun; Sun, Shao-bo; Gao, Guo-long

    2015-05-01

    This research focused on the application of remotely sensed imagery from unmanned aerial vehicle (UAV) with high spatial resolution for the estimation of crown closure of moso bamboo forest based on the geometric-optical model, and analyzed the influence of unconstrained and fully constrained linear spectral mixture analysis (SMA) on the accuracy of the estimated results. The results demonstrated that the combination of UAV remotely sensed imagery and geometric-optical model could, to some degrees, achieve the estimation of crown closure. However, the different SMA methods led to significant differentiation in the estimation accuracy. Compared with unconstrained SMA, the fully constrained linear SMA method resulted in higher accuracy of the estimated values, with the coefficient of determination (R2) of 0.63 at 0.01 level, against the measured values acquired during the field survey. Root mean square error (RMSE) of approximate 0.04 was low, indicating that the usage of fully constrained linear SMA could bring about better results in crown closure estimation, which was closer to the actual condition in moso bamboo forest.

  14. Combining inventories of land cover and forest resources with prediction models and remotely sensed data

    Treesearch

    Raymond L. Czaplewski

    1989-01-01

    It is difficult to design systems for national and global resource inventory and analysis that efficiently satisfy changing, and increasingly complex objectives. It is proposed that individual inventory, monitoring, modeling, and remote sensing systems be specialized to achieve portions of the objectives. These separate systems can be statistically linked to accomplish...

  15. Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments

    Treesearch

    Jungho Im; John R. Jensen; Mark Coleman; Eric Nelson

    2009-01-01

    Hyperspectral remote sensing research was conducted to document the biophysical and biochemical characteristics of controlled forest plots subjected to various nutrient and irrigation treatments. The experimental plots were located on the Savannah River Site near Aiken, SC. AISA hyperspectral imagery were analysed using three approaches, including: (1) normalized...

  16. Model-based mean square error estimators for k-nearest neighbour predictions and applications using remotely sensed data for forest inventories

    Treesearch

    Steen Magnussen; Ronald E. McRoberts; Erkki O. Tomppo

    2009-01-01

    New model-based estimators of the uncertainty of pixel-level and areal k-nearest neighbour (knn) predictions of attribute Y from remotely-sensed ancillary data X are presented. Non-parametric functions predict Y from scalar 'Single Index Model' transformations of X. Variance functions generated...

  17. The feasibility of remotely sensed data to estimate urban tree dimensions and biomass

    Treesearch

    Jun-Hak Lee; Yekang Ko; E. Gregory McPherson

    2016-01-01

    Accurately measuring the biophysical dimensions of urban trees, such as crown diameter, stem diameter, height, and biomass, is essential for quantifying their collective benefits as an urban forest. However, the cost of directly measuring thousands or millions of individual trees through field surveys can be prohibitive. Supplementing field surveys with remotely sensed...

  18. Remote sensing techniques aid in preattack planning for fire management

    Treesearch

    Lucy Anne Salazar

    1982-01-01

    Remote sensing techniques were investigated as an alternative for documenting selected prettack fire planning information. Locations of fuel models, road systems, and water sources were recorded by Landsat satellite imagery and aerial photography for a portion of the Six Rivers National Forest in northwestern California. The two fuel model groups used were from the...

  19. Remote sensing training needs in professional forest and range resource management curricula

    NASA Technical Reports Server (NTRS)

    Meyer, M. P.

    1981-01-01

    The status of remote sensing training in accredited U.S. forestry schools is reviewed. It is noted that there is a serious lack of emphasis on aerial photography and aerial photointerpretation in the current curricula. This lack of training at the professional school limits entering employee capability and necessitates expensive on-the-job training.

  20. Carbon changes in conterminous US forests associated with growth and major disturbances: 1992-2001

    Treesearch

    Daolan Zheng; Linda S. Heath; Mark J. Ducey; James E. Smith

    2011-01-01

    We estimated forest area and carbon changes in the conterminous United States using a remote sensing based land cover change map, forest fire data from the Monitoring Trends in Burn Severity program, and forest growth and harvest data from the USDA Forest Service, Forest Inventory and Analysis Program. Natural and human-associated disturbances reduced the forest...

  1. Effect of Forest Canopy on Remote Sensing Soil Moisture at L-band

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lang, R. H.; Jackson, T. J.; Haken, M.

    2005-01-01

    Global maps of soil moisture are needed to improve understanding and prediction of the global water and energy cycles. Accuracy requirements imply the use of lower frequencies (L-band) to achieve adequate penetration into the soil and to minimize attenuation by the vegetation canopy and effects of surface roughness. Success has been demonstrated over agricultural areas, but canopies with high biomass (e.g. forests) still present a challenge. Examples from recent measurements over forests with the L-band radiometer, 2D-STAR, and its predecessor, ESTAR, will be presented to illustrate the problem. ESTAR and 2D-STAR are aircraft-based synthetic aperture radiometers developed to help resolve both the engineering and algorithm issues associated with future remote sensing of soil moisture. ESTAR, which does imaging across track, was developed to demonstrate the viability of aperture synthesis for remote sensing. The instrument has participated several soil moisture experiments (e.g. at the Little Washita Watershed in 1992 and the Southern Great Plains experiments in 1997 and 1999). In addition, measurements have been made at a forest site near Waverly, VA which contains conifer forests with a variety of biomass. These data have demonstrated the success of retrieving soil moisture at L-band over agricultural areas and the response of passive observations at L-band to biomass over forests. 2D-STAR is a second generation instrument that does aperture synthesis in two dimensions (along track and cross track) and is dual polarized. This instrument has the potential to provide measurements at L-band that simulate the measurements that will be made by the two L-band sensors currently being developed for future remote sensing of soil moisture from space: Hydros (conical scan and real aperture) and SMOS (multiple incidence angle and synthetic aperture). 2D-STAR participated in the SMEX-03 soil moisture experiment, providing images from the NASA P-3 aircraft. Preliminary results include images of the experiment site area near Huntsville, AL that included a mixture of forest and agriculture. Changes during a rain event further illustrate the issues presented by forests. Work is continuing to reduce the 2D-STAR data and to support the two future remote sensing missions. Among the goals is to process the 2D-STAR data to create multiple looks (at the same pixel) with different incidence angles. Data in this format can be used to test algorithms for retrieving soil moisture and biomass such as are planned for SMOS. Also, the data are being processed to provide images at constant incidence angles such as will be obtained by Hydros. Although Hydros will have only one incidence angle, it will also carry an L-band radar, The goal is to use the radar to improve spatial resolution, an issue for remote sensing from space at the long wavelengths. Simultaneous observations with active and passive sensors also offers interesting prospects for treating areas of high biomass (forests) and irregular terrain and may be the challenge for the future.

  2. Remote Sensing of Forest Cover in Boreal Zones of the Earth

    NASA Astrophysics Data System (ADS)

    Sedykh, V. N.

    2011-12-01

    Ecological tension resulting from human activities generates a need for joint efforts of countries in the boreal zone aimed at sustainable forest development, including: conservation of forests binding carbon and ensuring stability of the atmosphere gas composition; preservation of purity and water content of forest areas as conditions ensuring sustainability of the historically formed structure of forest landscapes; and preservation of all flora and fauna species composition diversity as a condition for sustainable existence and functioning of forest ecosystems. We have to address these problems urgently due to climate warming which can interact with the forest cover. In particular, in the forest zone of Siberia, the climate aridization will inevitably result in periodic drying of shallow bogs and upland forests with thick forest litter. This will bring fires of unprecedented intensity which will lead to catastrophic atmospheric pollution. In this connection, the above problems can be solved only by the united efforts of boreal-zone countries, through establishing a uniform system for remote sensing of forests aimed at obtaining and periodic update of comprehensive information for rational decision-making in prevention of adverse human effect on the forest. A need to join efforts in this field of natural resource management is determined by disparate data which were created expressly for economic accounting units used mainly for the solution of economic timber resource problems. However, ecological tasks outlined above can be solved appropriately only by using uniform technologies that are registered within natural territorial complexes (landscapes) established throughout the entire boreal zone. Knowledge of forest state within natural territorial entities having specific physiographic conditions, with account for current and future anthropogenic load, allow one to define evidence-based forest growth potential at these landscapes to ensure development of historically formed ecological properties of the forest. Constantly updated information will permit the regulation of human pressure on forests to ensure that there is no reduction in their role in the biosphere processes of carbon accumulation and release. Satellite monitoring within identified landscape requires initial quantitative information about forest, about other biotic components of landscapes, and about their abiotic environment determined through both ground-based measurements and remote sensing. Thus, a kind of passport should be kept for each landscape as a starting point for subsequent updating of remote sensing monitoring of forests and their habitats and the assessment of their changes. Implementation of such monitoring across the entire boreal zone of the Earth is possible on the basis of geographical and genetic typology of forest and phyto-geomorphological method of aerospace image interpretation. Both approaches are based on the use of relationships between topography and vegetation, and were successfully applied by the author to aerospace monitoring of the forest cover of West Siberian Plain.

  3. Proceedings of the second annual Forest Inventory and Analysis symposium; Salt Lake City, UT. October 17-18, 2000

    Treesearch

    Gregory A. Reams; Ronald E. McRoberts; Paul C. van Deusen; [Editors

    2001-01-01

    Documents progress in developing techniques in remote sensing, statistics, information management, and analysis required for full implementation of the national Forest Inventory and Analysis program’s annual forest inventory system.

  4. Remote sensing program

    NASA Technical Reports Server (NTRS)

    Whitmore, R. A., Jr. (Principal Investigator)

    1980-01-01

    A syllabus and training materials prepared and used in a series of one-day workshops to introduce modern remote sensing technology to selected groups of professional personnel in Vermont are described. Success in using computer compatible tapes, LANDSAT imagery and aerial photographs is reported for the following applications: (1) mapping defoliation of hardwood forests by tent caterpillar and gypsy moth; (2) differentiating conifer species; (3) mapping ground cover of major lake and pond watersheds; (4) inventorying and locating artificially regenerated conifer forest stands; (5) mapping water quality; (6) ascertaining the boat population to quantify recreational activity on lakes and waterways; and (7) identifying potential aquaculture sites.

  5. Remote sensing in agriculture. [using Earth Resources Technology Satellite photography

    NASA Technical Reports Server (NTRS)

    Downs, S. W., Jr.

    1974-01-01

    Some examples are presented of the use of remote sensing in cultivated crops, forestry, and range management. Areas of concern include: the determination of crop areas and types, prediction of yield, and detection of disease; the determination of forest areas and types, timber volume estimation, detection of insect and disease attack, and forest fires; and the determination of range conditions and inventory, and livestock inventory. Articles in the literature are summarized and specific examples of work being performed at the Marshall Space Flight Center are given. Primarily, aerial photographs and photo-like ERTS images are considered.

  6. Estimation of Carbon Flux of Forest Ecosystem over Qilian Mountains by BIOME-BGC Model

    NASA Astrophysics Data System (ADS)

    Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei

    2014-11-01

    The gross primary production (GPP) and net ecosystem exchange (NEE) are important indicators for carbon fluxes. This study aims at evaluating the forest GPP and NEE over the Qilian Mountains using meteorological, remotely sensed and other ancillary data at large scale. To realize this, the widely used ecological-process-based model, Biome-BGC, and remote-sensing-based model, MODIS GPP algorithm, were selected for the simulation of the forest carbon fluxes. The combination of these two models was based on calibrating the Biome-BGC by the optimized MODIS GPP algorithm. The simulated GPP and NEE values were evaluated against the eddy covariance observed GPPs and NEEs, and the well agreements have been reached, with R2=0.76, 0.67 respectively.

  7. Estimation of Carbon Flux of Forest Ecosystem over Qilian Mountains by BIOME-BGC Model

    NASA Astrophysics Data System (ADS)

    Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei

    2014-11-01

    The gross primary production (GPP) and net ecosystem exchange (NEE) are important indicators for carbon fluxes. This study aims at evaluating the forest GPP and NEE over the Qilian Mountains using meteorological, remotely sensed and other ancillary data at large scale. To realize this, the widely used ecological-process- based model, Biome-BGC, and remote-sensing-based model, MODIS GPP algorithm, were selected for the simulation of the forest carbon fluxes. The combination of these two models was based on calibrating the Biome-BGC by the optimized MODIS GPP algorithm. The simulated GPP and NEE values were evaluated against the eddy covariance observed GPPs and NEEs, and the well agreements have been reached, with R2=0.76, 0.67 respectively.

  8. The use of remote sensing for updating extensive forest inventories

    Treesearch

    John F. Kelly

    1990-01-01

    The Forest Inventory and Analysis unit of the USDA Forest Service Southern Forest Experiment Station (SO-FIA) has the research task of devising an inventory updating system that can be used to provide reliable estimates of forest area, volume, growth, and removals at the State level. These updated inventories must be accomplished within current budgetary restraints....

  9. Evaluation of open source data mining software packages

    Treesearch

    Bonnie Ruefenacht; Greg Liknes; Andrew J. Lister; Haans Fisk; Dan Wendt

    2009-01-01

    Since 2001, the USDA Forest Service (USFS) has used classification and regression-tree technology to map USFS Forest Inventory and Analysis (FIA) biomass, forest type, forest type groups, and National Forest vegetation. This prior work used Cubist/See5 software for the analyses. The objective of this project, sponsored by the Remote Sensing Steering Committee (RSSC),...

  10. Combining forest inventory, satellite remote sensing, and geospatial data for mapping forest attributes of the conterminous United States

    Treesearch

    Mark Nelson; Greg Liknes; Charles H. Perry

    2009-01-01

    Analysis and display of forest composition, structure, and pattern provides information for a variety of assessments and management decision support. The objective of this study was to produce geospatial datasets and maps of conterminous United States forest land ownership, forest site productivity, timberland, and reserved forest land. Satellite image-based maps of...

  11. Hydrological Controls on Floodplain Forest Phenology Assessed using Remotely Sensed Vegetation Indices

    NASA Astrophysics Data System (ADS)

    Lemon, M. G.; Keim, R.

    2017-12-01

    Although specific controls are not well understood, the phenology of temperate forests is generally thought to be controlled by photoperiod and temperature, although recent research suggests that soil moisture may also be important. The phenological controls of forested wetlands have not been thoroughly studied, and may be more controlled by site hydrology than other forests. For this study, remotely sensed vegetation indices were used to investigate hydrological controls on start-of-season timing, growing season length, and end-of-season timing at five floodplains in Louisiana, Arkansas, and Texas. A simple spring green-up model was used to determine the null spring start of season time for each site as a function of land surface temperature and photoperiod, or two remotely sensed indices: MODIS phenology data product and the MODIS Nadir Bidirectional Reflectance Distribution Function-Adjusted Reflectance (NBAR) product. Preliminary results indicate that topographically lower areas within the floodplain with higher flood frequency experience later start-of-season timing. In addition, start-of-season is delayed in wet years relative to predicted timing based solely on temperature and photoperiod. The consequences for these controls unclear, but results suggest hydrological controls on floodplain ecosystem structure and carbon budgets are likely at least partially expressed by variations in growing season length.

  12. Recent advances in radar remote sensing of forest

    NASA Technical Reports Server (NTRS)

    Letoan, Thuy

    1993-01-01

    On a global scale, forests represent most of the terrestrial standing biomass (80 to 90 percent). Thus, natural and anthropogenic change in forest covers can have major impacts not only on local ecosystems but also on global hydrologic, climatic, and biogeochemical cycles that involve exchange of energy, water, carbon, and other elements between the earth and atmosphere. Quantitative information on the state and dynamics of forest ecosystems and their interactions with the global cycles appear necessary to understand how the earth works as a natural system. The information required includes the lateral and vertical distribution of forest cover, the estimates of standing biomass (woody and foliar volume), the phenological and environmental variations and disturbances (clearcutting, fires, flood), and the longer term variations following deforestation (regeneration, successional stages). To this end, seasonal, annual, and decadal information is necessary in order to separate the long term effects in the global ecosystem from short term seasonal and interannual variations. Optical remote sensing has been used until now to study the forest cover at local, regional, and global scales. Radar remote sensing, which provides recent SAR data from space on a regular basis, represents an unique means of consistently monitoring different time scales, at all latitudes and in any atmospheric conditions. Also, SAR data have shown the potential to detect several forest parameters that cannot be inferred from optical data. The differences--and complementarity--lie in the penetration capabilities of SAR data and their sensitivity to dielectric and geometric properties of the canopy volume, whereas optical data are sensitive to the chemical composition of the external foliar layer of the vegetation canopy.

  13. Testing the potential of multi-spectral remote sensing for retrospectively estimating fire severity in African savannahs

    Treesearch

    Alistair M.S. Smith; Martin J. Wooster; Nick A. Drake; Frederick M. Dipotso; Michael J. Falkowski; Andrew T. Hudak

    2005-01-01

    The remote sensing of fire severity is a noted goal in studies of forest and grassland wildfires. Experiments were conducted to discover and evaluate potential relationships between the characteristics of African savannah fires and post-fire surface spectral reflectance in the visible to shortwave infrared spectral region. Nine instrumented experimental fires were...

  14. Estimating urban forest carbon sequestration potential in the southern United States using current remote sensing imagery sources

    Treesearch

    Krista Merry; Pete Bettinger; Jacek Siry; J. Michael Bowker

    2015-01-01

    With an increased interest in reducing carbon dioxide in the atmosphere, tree planting and maintenance in urban areas has become a viable option for increasing carbon sequestration. Methods for assessing the potential for planting trees within an urban area should allow for quick, inexpensive, and accurate estimations of available land using current remote sensing...

  15. Cornell University remote sensing program. [New York State

    NASA Technical Reports Server (NTRS)

    Liang, T.; Philipson, W. R. (Principal Investigator); Stanturf, J. A.

    1980-01-01

    High altitude, color infrared aerial photography as well as imagery from Skylab and LANDSAT were used to inventory timber and assess potential sites for industrial development in New York State. The utility of small scale remotely sensed data for monitoring clearcutting in hardwood forests was also investigated. Consultation was provided regarding the Love Canal Landfill as part of environment protection efforts.

  16. The practical utility of hyperspectral remote sensing for early detection of emerald ash borer

    Treesearch

    Richard Hallett; Jennifer Pontius; Mary Martin; Lucie Plourde

    2008-01-01

    Hyperspectral remote sensing technology has been used in forest ecology research for the last decade to examine landscape scale patterns of foliar chemistry (nitrogen, cellulose, and lignin) (Martin and Aber 1997), stand productivity (Smith et al. 2002), and soil nitrogen dynamics (Ollinger et al. 2002). More recently, techniques have been developed to map the location...

  17. Challenges of assessing fire and burn severity using field measures, remote sensing and modelling

    Treesearch

    Penelope Morgan; Robert E. Keane; Gregory K. Dillon; Theresa B. Jain; Andrew T. Hudak; Eva C. Karau; Pamela G. Sikkink; Zachery A. Holden; Eva K. Strand

    2014-01-01

    Comprehensive assessment of ecological change after fires have burned forests and rangelands is important if we are to understand, predict and measure fire effects. We highlight the challenges in effective assessment of fire and burn severity in the field and using both remote sensing and simulation models. We draw on diverse recent research for guidance on assessing...

  18. Utility of remotely sensed imagery for assessing the impact of salvage logging after forest fires

    Treesearch

    Sarah A. Lewis; Peter R. Robichaud; Andrew T. Hudak; Brian Austin; Robert J. Liebermann

    2012-01-01

    Remotely sensed imagery provides a useful tool for land managers to assess the extent and severity of post-wildfire salvage logging disturbance. This investigation uses high resolution QuickBird and National Agricultural Imagery Program (NAIP) imagery to map soil exposure after ground-based salvage operations. Three wildfires with varying post-fire salvage activities...

  19. Remote Sensing of Forest Health Indicators for Assessing Change in Forest Health

    Treesearch

    Michael K. Crosby; Zhaofei Fan; Martin A. Spetich; Theodor D. Leininger

    2012-01-01

    Oak decline poses a substantial threat to forest health in the Ozark Highlands of northern Arkansas and southern Missouri, where coupled with diseases and insect infestations, it has damaged large tracts of forest lands. Forest Health Monitoring (FHM) crown health indicators (e.g. crown dieback, etc.), collected by the U.S. Forest Service’s Forest Inventory and...

  20. Optical remote sensing for forest area estimation

    Treesearch

    Randolph H. Wynne; Richard G. Oderwald; Gregory A. Reams; John A. Scrivani

    2000-01-01

    The air photo dot-count method is now widely and successfully used for estimating operational forest area in the USDA Forest Inventory and Analysis (FIA) program. Possible alternatives that would provide for more frequent updates, spectral change detection, and maps of forest area include the AVHRR calibration center technique and various Landsat TM classification...

  1. Amazon Forests Maintain Consistent Canopy Structure and Greenness During the Dry Season

    NASA Technical Reports Server (NTRS)

    Morton, Douglas C.; Nagol, Jyoteshwar; Carabajal, Claudia C.; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D.; Vermote, Eric F.; Harding, David J.; North, Peter R. J.

    2014-01-01

    The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data.We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.

  2. Amazon forests maintain consistent canopy structure and greenness during the dry season.

    PubMed

    Morton, Douglas C; Nagol, Jyoteshwar; Carabajal, Claudia C; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D; Vermote, Eric F; Harding, David J; North, Peter R J

    2014-02-13

    The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data. We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.

  3. A proposal for continuation of support for the application of remotely sensed data to state and regional problems. Part 1: Technical proposal

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The objectives, procedures, accomplishments, plans, and ultimate uses of information from current projects at the Mississippi Remote Sensing Center are discussed for the following applications: (1) land use planning; (2) strip mine inventory and reclamation; (3) biological management for white tailed deer; (4) forest habitats in potential lignite areas; (5) change discrimination in gravel operations; (6) discrimination of freshwater wetlands for inventory and monitoring; and (7) remote sensing data analysis support systems. The initiation of a conceptual design for a LANDSAT based, state wide information system is proposed.

  4. Development of a data driven process-based model for remote sensing of terrestrial ecosystem productivity, evapotranspiration, and above-ground biomass

    NASA Astrophysics Data System (ADS)

    El Masri, Bassil

    2011-12-01

    Modeling terrestrial ecosystem functions and structure has been a subject of increasing interest because of the importance of the terrestrial carbon cycle in global carbon budget and climate change. In this study, satellite data were used to estimate gross primary production (GPP), evapotranspiration (ET) for two deciduous forests: Morgan Monroe State forest (MMSF) in Indiana and Harvard forest in Massachusetts. Also, above-ground biomass (AGB) was estimated for the MMSF and the Howland forest (mixed forest) in Maine. Surface reflectance and temperature, vegetation indices, soil moisture, tree height and canopy area derived from the Moderate Resolution Imagining Spectroradiometer (MODIS), the Advanced Microwave Scanning Radiometer (AMRS-E), LIDAR, and aerial imagery respectively, were used for this purpose. These variables along with others derived from remotely sensed data were used as inputs variables to process-based models which estimated GPP and ET and to a regression model which estimated AGB. The process-based models were BIOME-BGC and the Penman-Monteith equation. Measured values for the carbon and water fluxes obtained from the Eddy covariance flux tower were compared to the modeled GPP and ET. The data driven methods produced good estimation of GPP and ET with an average root mean square error (RMSE) of 0.17 molC/m2 and 0.40 mm/day, respectively for the MMSF and the Harvard forest. In addition, allometric data for the MMSF were used to develop the regression model relating AGB with stem volume. The performance of the AGB regression model was compared to site measurements using remotely sensed data for the MMSF and the Howland forest where the model AGB RMSE ranged between 2.92--3.30 Kg C/m2. Sensitivity analysis revealed that improvement in maintenance respiration estimation and remotely sensed maximum photosynthetic activity as well as accurate estimate of canopy resistance will result in improved GPP and ET predictions. Moreover, AGB estimates were found to decrease as large grid size is used in rasterizing LIDAR return points. The analysis suggested that this methodology could be used as an operational procedure for monitoring changes in terrestrial ecosystem functions and structure brought by environmental changes.

  5. Forest and Range Inventory and Mapping

    NASA Technical Reports Server (NTRS)

    Aldrich, R. C.

    1971-01-01

    The state of the art in remote sensing for forest and range inventories and mapping has been discussed. There remains a long way to go before some of these techniques can be used on an operational basis. By the time that the Earth Resources Technology Satellite and Skylab space missions are flown, it should be possible to tell what kind and what quality of information can be extracted from remote sensors and how it can be used for surveys of forest and range resources.

  6. Remote Characterization of Biomass Measurements: Case Study of Mangrove Forests

    NASA Technical Reports Server (NTRS)

    Fatoyinbo, Temilola E.

    2010-01-01

    Accurately quantifying forest biomass is of crucial importance for climate change studies. By quantifying the amount of above and below ground biomass and consequently carbon stored in forest ecosystems, we are able to derive estimates of carbon sequestration, emission and storage and help close the carbon budget. Mangrove forests, in addition to providing habitat and nursery grounds for over 1300 animal species, are also an important sink of biomass. Although they only constitute about 3% of the total forested area globally, their carbon storage capacity -- in forested biomass and soil carbon -- is greater than that of tropical forests (Lucas et al, 2007). In addition, the amount of mangrove carbon -- in the form of litter and leaves exported into offshore areas is immense, resulting in over 10% of the ocean's dissolved organic carbon originating from mangroves (Dittmar et al, 2006) The measurement of forest above ground biomass is carried out on two major scales: on the plot scale, biomass can be measured using field measurements through allometric equation derivation and measurements of forest plots. On the larger scale, the field data are used to calibrate remotely sensed data to obtain stand-wide or even regional estimates of biomass. Currently, biomass can be calculated using average stand biomass values and optical data, such as aerial photography or satellite images (Landsat, Modis, Ikonos, SPOT, etc.). More recent studies have concentrated on deriving forest biomass values using radar (JERS, SIR-C, SRTM, Airsar) and/or lidar (ICEsat/GLAS, LVIS) active remote sensing to retrieve more accurate and detailed measurements of forest biomass. The implementation of a generation of new active sensors (UAVSar, DesdynI, Alos/Palsar, TerraX) has prompted the development of new tecm'liques of biomass estimation that use the combination of multiple sensors and datasets, to quantify past, current and future biomass stocks. Focusing on mangrove forest biomass estimation, this book chapter has 3 main objectives: a) To describe in detail the field methodologies used to derive accurate estimates of biomass in mangrove forests b) To explain how mangrove forest biomass can be measured using several remote sensing techniques and datasets c) To give a detailed explanation of the measurement challenges and errors that arise in each estimate of forest biomass

  7. Exploring diversity in ensemble classification: Applications in large area land cover mapping

    NASA Astrophysics Data System (ADS)

    Mellor, Andrew; Boukir, Samia

    2017-07-01

    Ensemble classifiers, such as random forests, are now commonly applied in the field of remote sensing, and have been shown to perform better than single classifier systems, resulting in reduced generalisation error. Diversity across the members of ensemble classifiers is known to have a strong influence on classification performance - whereby classifier errors are uncorrelated and more uniformly distributed across ensemble members. The relationship between ensemble diversity and classification performance has not yet been fully explored in the fields of information science and machine learning and has never been examined in the field of remote sensing. This study is a novel exploration of ensemble diversity and its link to classification performance, applied to a multi-class canopy cover classification problem using random forests and multisource remote sensing and ancillary GIS data, across seven million hectares of diverse dry-sclerophyll dominated public forests in Victoria Australia. A particular emphasis is placed on analysing the relationship between ensemble diversity and ensemble margin - two key concepts in ensemble learning. The main novelty of our work is on boosting diversity by emphasizing the contribution of lower margin instances used in the learning process. Exploring the influence of tree pruning on diversity is also a new empirical analysis that contributes to a better understanding of ensemble performance. Results reveal insights into the trade-off between ensemble classification accuracy and diversity, and through the ensemble margin, demonstrate how inducing diversity by targeting lower margin training samples is a means of achieving better classifier performance for more difficult or rarer classes and reducing information redundancy in classification problems. Our findings inform strategies for collecting training data and designing and parameterising ensemble classifiers, such as random forests. This is particularly important in large area remote sensing applications, for which training data is costly and resource intensive to collect.

  8. Simulating Canopy-Level Solar Induced Fluorescence with CLM-SIF 4.5 at a Sub-Alpine Conifer Forest in the Colorado Rockies

    NASA Astrophysics Data System (ADS)

    Raczka, B. M.; Bowling, D. R.; Lin, J. C.; Lee, J. E.; Yang, X.; Duarte, H.; Zuromski, L.

    2017-12-01

    Forests of the Western United States are prone to drought, temperature extremes, forest fires and insect infestation. These disturbance render carbon stocks and land-atmosphere carbon exchanges highly variable and vulnerable to change. Regional estimates of carbon exchange from terrestrial ecosystem models are challenged, in part, by a lack of net ecosystem exchange observations (e.g. flux towers) due to the complex mountainous terrain. Alternatively, carbon estimates based on light use efficiency models that depend upon remotely-sensed greenness indices are challenged due to a weak relationship with GPP during the winter season. Recent advances in the retrieval of remotely sensed solar induced fluorescence (SIF) have demonstrated a strong seasonal relationship between GPP and SIF for deciduous, grass and, to a lesser extent, conifer species. This provides an important opportunity to use remotely-sensed SIF to calibrate terrestrial ecosystem models providing a more accurate regional representation of biomass and carbon exchange across mountainous terrain. Here we incorporate both leaf-level fluorescence and leaf-to-canopy radiative transfer represented by the SCOPE model into CLM 4.5 (CLM-SIF). We simulate canopy level fluorescence at a sub-alpine forest site (Niwot Ridge, Colorado) and test whether these simulations reproduce remotely-sensed SIF from a satellite (GOME2). We found that the average peak SIF during the growing season (yrs 2007-2013) was similar between the model and satellite observations (within 15%); however, simulated SIF during the winter season was significantly greater than the satellite observations (5x higher). This implies that the fluorescence yield is overestimated by the model during the winter season. It is important that the modeled representation of seasonal fluorescence yield is improved to provide an accurate seasonal representation of SIF across the Western United States.

  9. Post-hurricane forest damage assessment using satellite remote sensing

    Treesearch

    W. Wang; J.J. Qu; X. Hao; Y. Liu; J.A. Stanturf

    2010-01-01

    This study developed a rapid assessment algorithm for post-hurricane forest damage estimation using moderate resolution imaging spectroradiometer (MODIS) measurements. The performance of five commonly used vegetation indices as post-hurricane forest damage indicators was investigated through statistical analysis. The Normalized Difference Infrared Index (NDII) was...

  10. Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques.

    PubMed

    Yadav, Bechu K V; Nandy, S

    2015-05-01

    Mapping forest biomass is fundamental for estimating CO₂ emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m × 31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10-40, 40-70 and >70% of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m(3) ha(-1). The total growing stock of the forest was found to be 2,024,652.88 m(3). The AGWB ranged from 143 to 421 Mgha(-1). Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE) = 42.25 Mgha(-1)) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha(-1) respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha(-1). The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping.

  11. Tasseled cap transformation for HJ multispectral remote sensing data

    NASA Astrophysics Data System (ADS)

    Han, Ling; Han, Xiaoyong

    2015-12-01

    The tasseled cap transformation of remote sensing data has been widely used in environment, agriculture, forest and ecology. Tasseled cap transformation coefficients matrix of HJ multi-spectrum data has been established through Givens rotation matrix to rotate principal component transform vector to whiteness, greenness and blueness direction of ground object basing on 24 scenes year-round HJ multispectral remote sensing data. The whiteness component enhances the brightness difference of ground object, and the greenness component preserves more detailed information of vegetation change while enhances the vegetation characteristic, and the blueness component significantly enhances factory with blue plastic house roof around the town and also can enhance brightness of water. Tasseled cap transformation coefficients matrix of HJ will enhance the application effect of HJ multispectral remote sensing data in their application fields.

  12. Utilizing Forest Inventory and Analysis Data, Remote Sensing, and Ecosystem Models for National Forest System Carbon Assessments

    Treesearch

    Alexa J. Dugan; Richard A. Birdsey; Sean P. Healey; Christopher Woodall; Fangmin Zhang; Jing M. Chen; Alexander Hernandez; James B. McCarter

    2015-01-01

    Forested lands, representing the largest terrestrial carbon sink in the United States, offset 16% of total U.S. carbon dioxide emissions through carbon sequestration. Meanwhile, this carbon sink is threatened by deforestation, climate change and natural disturbances. As a result, U.S. Forest Service policies require that National Forests assess baseline carbon stocks...

  13. Forest inventory and analysis in the United States: remote sensing and geospatial activities

    Treesearch

    Mark Nelson; Gretchen Moisen; Mark Finco

    2007-01-01

    Our Nation's forests provide a wealth of ecological, social, and economic resources. These forest lands cover over 300 million hectares of the United States, or about one third of the total land area. Accurate and timely information about them is essential to their wise management and use. The mission of the Forest Service's Forest Inventory and Analysis (FIA...

  14. Forest Inventory and Analysis in the United States: Remote sensing and geospatial activities

    Treesearch

    Mark Nelson; Gretchen Moisen; Mark Finco

    2007-01-01

    Our Nation's forests provide a wealth of ecological, social, and economic resources. These forest lands cover over 300 million hectares of the United States, or about one third of the total land area. Accurate and timely information about them is essential to their wise management and use. The mission of the Forest Service's Forest Inventory and Analysis (FIA...

  15. Modelling Biophysical Parameters of Maize Using Landsat 8 Time Series

    NASA Astrophysics Data System (ADS)

    Dahms, Thorsten; Seissiger, Sylvia; Conrad, Christopher; Borg, Erik

    2016-06-01

    Open and free access to multi-frequent high-resolution data (e.g. Sentinel - 2) will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR), the leaf area index (LAI) and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD): R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing datasets to model biophysical parameters.

  16. Ecophysiological Remote Sensing of Leaf-Canopy Photosynthetic Characteristics in a Cool-Temperate Deciduous Forest in Japan

    NASA Astrophysics Data System (ADS)

    Noda, H. M.; Muraoka, H.

    2014-12-01

    Satellite remote sensing of structure and function of canopy is crucial to detect temporal and spatial distributions of forest ecosystems dynamics in changing environments. The spectral reflectance of the canopy is determined by optical properties (spectral reflectance and transmittance) of single leaves and their spatial arrangements in the canopy. The optical properties of leaves reflect their pigments contents and anatomical structures. Thus detailed information and understandings of the consequence between ecophysiological traits and optical properties from single leaf to canopy level are essential for remote sensing of canopy ecophysiology. To develop the ecophysiological remote sensing of forest canopy, we have been promoting multiple and cross-scale measurements in "Takayama site" belonging to AsiaFlux and JaLTER networks, located in a cool-temperate deciduous broadleaf forest on a mountainous landscape in Japan. In this forest, in situ measurement of canopy spectral reflectance has been conducted continuously by a spectroradiometer as part of the "Phenological Eyes Network (PEN)" since 2004. To analyze the canopy spectral reflectance from leaf ecophysiological viewpoints, leaf mass per area, nitrogen content, chlorophyll contents, photosynthetic capacities and the optical properties have been measured for dominant canopy tree species Quercus crispla and Betula ermanii throughout the seasons for multiple years.Photosynthetic capacity was largely correlated with chlorophyll contents throughout the growing season in both Q. crispla and B. ermanii. In these leaves, the reflectance at "red edge" (710 nm) changed by corresponding to the changes of chlorophyll contents throughout the seasons. Our canopy-level examination showed that vegetation indices obtained by red edge reflectance have linear relationship with leaf chlorophyll contents and photosynthetic capacity. Finally we apply this knowledge to the Rapid Eye satellite imagery around Takayama site to scale-up the leaf-level findings to canopy and landscape levels on a mountainous landscape.

  17. Collection of in situ forest canopy spectra using a helicopter - A discussion of methodology and preliminary results

    NASA Technical Reports Server (NTRS)

    Williams, D. L.; Walthall, C. L.; Goward, S. N.

    1984-01-01

    An important part of fundamental remote sensing research is based on the measurement and analysis of spectral reflectance from earth surface materials in situ. It has been found that for an effective analysis of the target of interest, different applications of remotely sensed data require spectral measurements from different portions of the electromagnetic spectrum. It is pointed out that the detailed spectral reflectance characteristics of forest vegetation are currently not well understood, particularly in the middle infrared wavelength region. Details regarding the need for in situ forest canopy measurements are examined, taking into account certain difficulties arising in the case of satellite observations. Because of these difficulties, the present paper provides a discussion of methodology and preliminary spectra based on an experiment to use a helicopter as an observing platform for in situ forest canopy spectra measurement.

  18. Early Forest Fire Detection Using Radio-Acoustic Sounding System

    PubMed Central

    Sahin, Yasar Guneri; Ince, Turker

    2009-01-01

    Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967

  19. Remote sensing support for national forest inventories

    Treesearch

    Ronald E. McRoberts; Erkki O. Tomppo

    2007-01-01

    National forest inventory programs are tasked to produce timely and accurate estimates for a wide range of forest resource variables for a variety of users and applications. Time, cost, and precision constraints cause these programs to seek technological innovations that contribute to measurement and estimation efficiencies and that facilitate the production and...

  20. High spectral resolution remote sensing of canopy chemistry

    NASA Technical Reports Server (NTRS)

    Aber, John D.; Martin, Mary E.

    1995-01-01

    Near infrared laboratory spectra have been used for many years to determine nitrogen and lignin concentrations in plant materials. In recent years, similar high spectral resolution visible and infrared data have been available via airborne remote sensing instruments. Using data from NASA's Airborne visible/Infrared Imaging Spectrometer (AVIRIS) we attempt to identify spectral regions correlated with foliar chemistry at the canopy level in temperate forests.

  1. Remote sensing of selective logging in Amazonia Assessing limitations based on detailed field observations, Landsat ETM+, and textural analysis.

    Treesearch

    Gregory P. Asner; Michael Keller; Rodrigo Pereira; Johan C. Zweede

    2002-01-01

    We combined a detailed field study of forest canopy damage with calibrated Landsat 7 Enhanced Thematic Mapper Plus (ETM+) reflectance data and texture analysis to assess the sensitivity of basic broadband optical remote sensing to selective logging in Amazonia. Our field study encompassed measurements of ground damage and canopy gap fractions along a chronosequence of...

  2. Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data

    Treesearch

    Andrew T. Hudak; Nicholas L. Crookston; Jeffrey S. Evans; David E. Hall; Michael J. Falkowski

    2008-01-01

    Meaningful relationships between forest structure attributes measured in representative field plots on the ground and remotely sensed data measured comprehensively across the same forested landscape facilitate the production of maps of forest attributes such as basal area (BA) and tree density (TD). Because imputation methods can efficiently predict multiple response...

  3. Developing New Coastal Forest Restoration Products Based on Landsat, ASTER, and MODIS Data

    DTIC Science & Technology

    2010-06-01

    hydrology, wildfire, and conversion to non-forest land use. In some cases, such forest disturbance has led to forest loss or loss of regeneration capacity...classification of bald cypress and tupelo gum trees in Thematic Mapper imagery,” Photogrammetric Engineering and Remote Sensing, vol. 63, pp. 717–725, 1997. [14

  4. Biomass and health based forest cover delineation using spectral un-mixing

    Treesearch

    Mohan Tiruveedhula; Joseph Fan; Ravi R. Sadasivuni; Surya S. Durbha; David L. Evans

    2009-01-01

    Remote sensing is a well-suited source of information on various forest characteristics such as forest cover type, leaf area, biomass, and health. The use of appropriate layers helps to quantify the variables of interest. For example, normalized difference vegetation index (NDVI) and greenness help explain variability in biomass as well as health of forests....

  5. The role of remote sensing in process‐scaling studies of managed forest ecosystems

    Treesearch

    Jeffrey G. Masek; Daniel J. Hayes; M. Joseph Hughes; Sean P. Healey; David P. Turner

    2015-01-01

    Sustaining forest resources requires a better understanding of forest ecosystem processes, and how management decisions and climate change may affect these processes in the future. While plot and inventory data provide our most detailed information on forest carbon, energy, and water cycling, applying this understanding to broader spatial and temporal domains...

  6. Mapping deforestation and forest degradation using Landsat time series: a case of Sumatra—Indonesia

    Treesearch

    Belinda Arunarwati Margono

    2013-01-01

    Indonesia experiences the second highest rate of deforestation among tropical countries (FAO 2005, 2010). Consequently, timely and accurate forest data are required to combat deforestation and forest degradation in support of climate change mitigation and biodiversity conservation policy initiatives. Remote sensing is considered as a significant data source for forest...

  7. How similar are forest disturbance maps derived from different Landsat time series algorithms?

    Treesearch

    Warren B. Cohen; Sean P. Healey; Zhiqiang Yang; Stephen V. Stehman; C. Kenneth Brewer; Evan B. Brooks; Noel Gorelick; Chengqaun Huang; M. Joseph Hughes; Robert E. Kennedy; Thomas R. Loveland; Gretchen G. Moisen; Todd A. Schroeder; James E. Vogelmann; Curtis E. Woodcock; Limin Yang; Zhe Zhu

    2017-01-01

    Disturbance is a critical ecological process in forested systems, and disturbance maps are important for understanding forest dynamics. Landsat data are a key remote sensing dataset for monitoring forest disturbance and there recently has been major growth in the development of disturbance mapping algorithms. Many of these algorithms take advantage of the high temporal...

  8. USDA/federal user of LANDSAT remote sensing

    NASA Technical Reports Server (NTRS)

    Allen, R.

    1981-01-01

    Developed and potential uses of remote sensing in crop condition and acreage assessment, renewable resources inventories, conservation practices, and water and forest management applications are described. Operational approaches, the adaptation of procedures to needs, and the agency's concern about data continuity and cost are discussed as well as support for future technology development for enhanced sensing capability. The use of improved camera systems for soil mapping and conservation monitoring from space shuttle, and of aerospace radar to improve soil moisture monitoring are mentioned.

  9. Accounting for ecosystem assets using remote sensing in the Colombian Orinoco River basin lowlands

    NASA Astrophysics Data System (ADS)

    Vargas, Leonardo; Hein, Lars; Remme, Roy P.

    2016-10-01

    In many parts of the world, ecosystems change compromises the supply of ecosystem services (ES). Better ecosystem management requires detailed and structured information. Ecosystem accounting has been developed as an information system for ecosystems, using concepts and valuation approaches that are aligned with the System of National Accounts (SNA). The SNA is used to store and analyse economic data, and the alignment of ecosystem accounts with the SNA facilitates the integrated analysis of economic and ecological aspects of ecosystem use. Ecosystem accounting requires detailed spatial information at aggregated scales. The objective of this paper is to explore how remote sensing images can be used to analyse ecosystems using an accounting approach in the Orinoco river basin. We assessed ecosystem assets in terms of extent, condition and capacity to supply ES. We focus on four specific ES: grasslands grazed by cattle, timber and oil palm harvest, and carbon sequestration. We link ES with six ecosystem assets; savannahs, woody grasslands, mixed agro-ecosystems, very dense forests, dense forest and oil palm plantations. We used remote sensing vegetation, surface temperature and productivity indexes to measure ecosystem assets. We found that remote sensing is a powerful tool to estimate ecosystem extent. The enhanced vegetation index can be used to assess ecosystems condition, and net primary productivity can be used for the assessment of ecosystem assets capacity to supply ES. Integrating remote sensing and ecological information facilitates efficient monitoring of ecosystem assets, in particular in data poor contexts.

  10. Preliminary work of mangrove ecosystem carbon stock mapping in small island using remote sensing: above and below ground carbon stock mapping on medium resolution satellite image

    NASA Astrophysics Data System (ADS)

    Wicaksono, Pramaditya; Danoedoro, Projo; Hartono, Hartono; Nehren, Udo; Ribbe, Lars

    2011-11-01

    Mangrove forest is an important ecosystem located in coastal area that provides various important ecological and economical services. One of the services provided by mangrove forest is the ability to act as carbon sink by sequestering CO2 from atmosphere through photosynthesis and carbon burial on the sediment. The carbon buried on mangrove sediment may persist for millennia before return to the atmosphere, and thus act as an effective long-term carbon sink. Therefore, it is important to understand the distribution of carbon stored within mangrove forest in a spatial and temporal context. In this paper, an effort to map carbon stocks in mangrove forest is presented using remote sensing technology to overcome the handicap encountered by field survey. In mangrove carbon stock mapping, the use of medium spatial resolution Landsat 7 ETM+ is emphasized. Landsat 7 ETM+ images are relatively cheap, widely available and have large area coverage, and thus provide a cost and time effective way of mapping mangrove carbon stocks. Using field data, two image processing techniques namely Vegetation Index and Linear Spectral Unmixing (LSU) were evaluated to find the best method to explain the variation in mangrove carbon stocks using remote sensing data. In addition, we also tried to estimate mangrove carbon sequestration rate via multitemporal analysis. Finally, the technique which produces significantly better result was used to produce a map of mangrove forest carbon stocks, which is spatially extensive and temporally repetitive.

  11. Enhancing forest carbon sequestration in China: toward an integration of scientific and socio-economic perspectives.

    PubMed

    Chen, J M; Thomas, S C; Yin, Y; Maclaren, V; Liu, J; Pan, J; Liu, G; Tian, Q; Zhu, Q; Pan, J-J; Shi, X; Xue, J; Kang, E

    2007-11-01

    This article serves as an introduction to this special issue, "China's Forest Carbon Sequestration", representing major results of a project sponsored by the Canadian International Development Agency and the Chinese Academy of Sciences. China occupies a pivotal position globally as a principle emitter of carbon dioxide, as host to some of the world's largest reforestation efforts, and as a key player in international negotiations aimed at reducing global greenhouse gas emission. The goals of this project are to develop remote sensing approaches for quantifying forest carbon balance in China in a transparent manner, and information and tools to support land-use decisions for enhanced carbon sequestration (CS) that are science based and economically and socially viable. The project consists of three components: (i) remote sensing and carbon modeling, (ii) forest and soil assessment, and (iii) integrated assessment of the socio-economic implications of CS via forest management. Articles included in this special issue are highlights of the results of each of these components.

  12. Spatial modelling of evapotranspiration in the Luquillo experimental forest of Puerto Rico using remotely-sensed data.

    Treesearch

    Wei Wu; Charles A.S. Hall; Frederick N. Scatena; Lindi J. Quackenbush

    2006-01-01

    Summary Actual evapotranspiration (aET) and related processes in tropical forests can explain 70% of the lateral global energy transport through latent heat, and therefore are very important in the redistribution of water on the Earth’s surface [Mauser, M., Scha¨dlich, S., 1998. Modelling the spatial distribution of evapotranspiration on different scales using remote...

  13. Applications of Sentinel-2 data for agriculture and forest monitoring using the absolute difference (ZABUD) index derived from the AgroEye software (ESA)

    NASA Astrophysics Data System (ADS)

    de Kok, R.; WeŻyk, P.; PapieŻ, M.; Migo, L.

    2017-10-01

    To convince new users of the advantages of the Sentinel_2 sensor, a simplification of classic remote sensing tools allows to create a platform of communication among domain specialists of agricultural analysis, visual image interpreters and remote sensing programmers. An index value, known in the remote sensing user domain as "Zabud" was selected to represent, in color, the essentials of a time series analysis. The color index used in a color atlas offers a working platform for an agricultural field control. This creates a database of test and training areas that enables rapid anomaly detection in the agricultural domain. The use cases and simplifications now function as an introduction to Sentinel_2 based remote sensing, in an area that before relies on VHR imagery and aerial data, to serve mainly the visual interpretation. The database extension with detected anomalies allows developers of open source software to design solutions for further agricultural control with remote sensing.

  14. Remote sensing-based estimation of annual soil respiration at two contrasting forest sites

    NASA Astrophysics Data System (ADS)

    Huang, Ni; Gu, Lianhong; Black, T. Andrew; Wang, Li; Niu, Zheng

    2015-11-01

    Soil respiration (Rs), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this study, we proposed a methodology for the remote estimation of annual Rs at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest). A version of the Akaike's information criterion was used to select the best model from a range of models for annual Rs estimation based on the remotely sensed data products from the Moderate Resolution Imaging Spectroradiometer and root-zone soil moisture product derived from assimilation of the NASA Advanced Microwave Scanning Radiometer soil moisture products and a two-layer Palmer water balance model. We found that the Arrhenius-type function based on nighttime land surface temperature (LST-night) was the best model by comprehensively considering the model explanatory power and model complexity at the Missouri Ozark and BC-Campbell River 1949 Douglas-fir sites. In addition, a multicollinearity problem among LST-night, root-zone soil moisture, and plant photosynthesis factor was effectively avoided by selecting the LST-night-driven model. Cross validation showed that temporal variation in Rs was captured by the LST-night-driven model with a mean absolute error below 1 µmol CO2 m-2 s-1 at both forest sites. An obvious overestimation that occurred in 2005 and 2007 at the Missouri Ozark site reduced the evaluation accuracy of cross validation because of summer drought. However, no significant difference was found between the Arrhenius-type function driven by LST-night and the function considering LST-night and root-zone soil moisture. This finding indicated that the contribution of soil moisture to Rs was relatively small at our multiyear data set. To predict intersite Rs, maximum leaf area index (LAImax) was used as an upscaling factor to calibrate the site-specific reference respiration rates. Independent validation demonstrated that the model incorporating LST-night and LAImax efficiently predicted the spatial and temporal variabilities of Rs. Based on the Arrhenius-type function using LST-night as an input parameter, the rates of annual C release from Rs were 894-1027 g C m-2 yr-1 at the BC-Campbell River 1949 Douglas-fir site and 818-943 g C m-2 yr-1 at the Missouri Ozark site. The ratio between annual Rs estimates based on remotely sensed data and the total annual ecosystem respiration from eddy covariance measurements fell within the range reported in previous studies. Our results demonstrated that estimating annual Rs based on remote sensing data products was possible at deciduous and evergreen forest sites.

  15. Choice of satellite imagery and attribution of changes to disturbance type strongly affects forest carbon balance estimates.

    PubMed

    Mascorro, Vanessa S; Coops, Nicholas C; Kurz, Werner A; Olguín, Marcela

    2015-12-01

    Remote sensing products can provide regular and consistent observations of the Earth´s surface to monitor and understand the condition and change of forest ecosystems and to inform estimates of terrestrial carbon dynamics. Yet, challenges remain to select the appropriate satellite data source for ecosystem carbon monitoring. In this study we examine the impacts of three attributes of four remote sensing products derived from Landsat, Landsat-SPOT, and MODIS satellite imagery on estimates of greenhouse gas emissions and removals: (1) the spatial resolution (30 vs. 250 m), (2) the temporal resolution (annual vs. multi-year observations), and (3) the attribution of forest cover changes to disturbance types using supplementary data. With a spatially-explicit version of the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), we produced annual estimates of carbon fluxes from 2002 to 2010 over a 3.2 million ha forested region in the Yucatan Peninsula, Mexico. The cumulative carbon balance for the 9-year period differed by 30.7 million MgC (112.5 million Mg CO 2e ) among the four remote sensing products used. The cumulative difference between scenarios with and without attribution of disturbance types was over 5 million Mg C for a single Landsat scene. Uncertainty arising from activity data (rates of land-cover changes) can be reduced by, in order of priority, increasing spatial resolution from 250 to 30 m, obtaining annual observations of forest disturbances, and by attributing land-cover changes by disturbance type. Even missing a single year in the land-cover observations can lead to substantial errors in ecosystems with rapid forest regrowth, such as the Yucatan Peninsula.

  16. Remote analysis of anthropogenic effect on boreal forests using nonlinear multidimensional models

    NASA Astrophysics Data System (ADS)

    Shchemel, Anton; Ivanova, Yuliya; Larko, Alexander

    Nowadays anthropogenic stress of mining and refining oil and gas is becoming significant prob-lem in Eastern Siberia. The task of revealing effect of that industry is not trivial because of complicated access to the sites of mining. Due to that, severe problem of supplying detection of oil and gas complex effect on forest ecosystems arises. That estimation should allow revealing the sites of any negative changes in forest communities in proper time. The intellectual system of analyzing remote sensing data of different resolution and different spectral characteristics with sophisticated nonlinear models is dedicated to solve the problem. The work considers re-mote detection and estimation of forest degradation using analysis of free remote sensing data without total field observations of oil and gas mining territory. To analyze a state of vegetation the following remote sensing data were used as input parameters for our models: albedo, surface temperature and data of about thirty spectral bands in visible and infrared region. The data of MODIS satellite from the year 2000 was used. Chosen data allowed producing complex estima-tion of parameters linked with the quality (set of species, physiological state) and the quantity of vegetation. To verify obtained estimation each index was calculated for a territory in which oil and gas mining is provided along with the same calculations for a sample "clear" territory. Monthly data for vegetation period and annual mean values were analyzed. The work revealed some trends of annual data probably linked with intensification of anthropogenic effect on the ecosystems. The models we managed to build are easy to apply for using by fair personnel of emergency control and oversight institutions. It was found to be helpful to use exactly the full set of values obtained from the satellite for multilateral estimation of anthropogenic effect on forest ecosystems of objects of the oil mining industry for producing generalized estimation indices by the developed models.

  17. Factors influencing spatial pattern in tropical forest clearance and stand age: Implications for carbon storage and species diversity.

    Treesearch

    E. H. Helmer; Thomas J. Brandeis; Ariel E. Lugo; Todd Kennaway

    2008-01-01

    Little is known about the tropical forests that undergo clearing as urban/built-up and other developed lands spread. This study uses remote sensing-based maps of Puerto Rico, multinomial logit models and forest inventory data to explain patterns of forest age and the age of forests cleared for land development and assess their implications for forest carbon storage and...

  18. Clouds, Wind and the Biogeography of Central American Cloud Forests: Remote Sensing, Atmospheric Modeling, and Walking in the Jungle

    NASA Astrophysics Data System (ADS)

    Lawton, R.; Nair, U. S.

    2011-12-01

    Cloud forests stand at the core of the complex of montane ecosystems that provide the backbone to the multinational Mesoamerican Biological Corridor, which seeks to protect a biodiversity conservation "hotspot" of global significance in an area of rapidly changing land use. Although cloud forests are generally defined by frequent and prolonged immersion in cloud, workers differ in their feelings about "frequent" and "prolonged", and quantitative assessments are rare. Here we focus on the dry season, in which the cloud and mist from orographic cloud plays a critical role in forest water relations, and discuss remote sensing of orographic clouds, and regional and atmospheric modeling at several scales to quantitatively examine the distribution of the atmospheric conditions that characterize cloud forests. Remote sensing using data from GOES reveals diurnal and longer scale patterns in the distribution of dry season orographic clouds in Central America at both regional and local scales. Data from MODIS, used to calculate the base height of orographic cloud banks, reveals not only the geographic distributon of cloud forest sites, but also striking regional variation in the frequency of montane immersion in orographic cloud. At a more local scale, wind is known to have striking effects on forest structure and species distribution in tropical montane ecosystems, both as a general mechanical stress and as the major agent of ecological disturbance. High resolution regional atmospheric modeling using CSU RAMS in the Monteverde cloud forests of Costa Rica provides quantitative information on the spatial distribution of canopy level winds, insight into the spatial structure and local dynamics of cloud forest communities. This information will be useful in not only in local conservation planning and the design of the Mesoamerican Biological Corridor, but also in assessments of the sensitivity of cloud forests to global and regional climate changes.

  19. Improved ground-based remote-sensing systems help monitor plant response to climate and other changes

    USGS Publications Warehouse

    Dye, Dennis G.; Bogle, Rian

    2016-05-26

    Scientists at the U.S. Geological Survey are improving and developing new ground-based remote-sensing instruments and techniques to study how Earth’s vegetation responds to changing climates. Do seasonal grasslands and forests “green up” early (or late) and grow more (or less) during unusually warm years? How do changes in temperature and precipitation affect these patterns? Innovations in ground-based remote-sensing instrumentation can help us understand, assess, and mitigate the effects of climate change on vegetation and related land resources.

  20. Spatial distribution of forest aboveground biomass estimated from remote sensing and forest inventory data in New England, USA

    Treesearch

    Daolan Zheng; Linda S. Heath; Mark J. Ducey

    2008-01-01

    We combined satellite (Landsat 7 and Moderate Resolution Imaging Spectrometer) and U.S. Department of Agriculture forest inventory and analysis (FIA) data to estimate forest aboveground biomass (AGB) across New England, USA. This is practical for large-scale carbon studies and may reduce uncertainty of AGB estimates. We estimate that total regional forest AGB was 1,867...

  1. Characterization of Forested Landscapes From Remotely Sensed Data Using Fractals and Spatial Autocorrelation

    NASA Technical Reports Server (NTRS)

    Al-Hamdan, Mohammad Z.; Cruise, James F.; Rickman, Douglas L.; Quattrochi, Dale A.

    2007-01-01

    The characterization of forested areas is frequently required in resource management practice. Passive remotely sensed data, which are much more accessible and cost effective than are active data, have rarely, if ever, been used to characterize forest structure directly, but rather they usually focus on the estimation of indirect measurement of biomass or canopy coverage. In this study, some spatial analysis techniques are presented that might be employed with Landsat TM data to analyze forest structure characteristics. A case study is presented wherein fractal dimensions, along with a simple spatial autocorrelation technique (Moran s I), were related to stand density parameters of the Oakmulgee National Forest located in the southeastern United States (Alabama). The results of the case study presented herein have shown that as the percentage of smaller diameter trees becomes greater, and particularly if it exceeds 50%, then the canopy image obtained from Landsat TM data becomes sufficiently homogeneous so that the spatial indices reach their lower limits and thus are no longer determinative. It also appears, at least for the Oakmulgee forest, that the relationships between the spatial indices and forest class percentages within the boundaries can reasonably be considered linear. The linear relationship is much more pronounced in the sawtimber and saplings cases than in samples dominated by medium sized trees (poletimber). In addition, it also appears that, at least for the Oakmulgee forest, the relationships between the spatial indices and forest species groups (Hardwood and Softwood) percentages can reasonably be considered linear. The linear relationship is more pronounced in the forest species groups cases than in the forest classes cases. These results appear to indicate that both fractal dimensions and spatial autocorrelation indices hold promise as means of estimating forest stand characteristics from remotely sensed images. However, additional work is needed to confirm that the boundaries identified for Oakmulgee forest and the linear nature of the relationship between image complexity indices and forest characteristics are generally evident in other forests. In addition, the effects of other parameters such ,as topographic relief and image distortion due to sun angle and cloud cover, for example, need to be examined.

  2. Retrieval of seasonal dynamics of forest understory reflectance over a set of boreal, sub-boreal and temperate forests using MODIS BRDF data

    NASA Astrophysics Data System (ADS)

    Pisek, J.; Lang, M.; Kuusk, J.; Kobayashi, H.; Suzuki, R.; Rautiainen, M.; Schaepman, M. E.; Nikopensius, M.; Raabe, K.

    2013-12-01

    Since ground vegetation (understory) has an essential contribution to the whole-stand reflectance signal in many boreal, sub-boreal and temperate forests, its reflectance spectra are urgently needed in various forest reflectance modelling efforts. However, systematic reflectance data covering different site types are almost missing. Measurement of understory reflectance is a real challenge because of extremely high variability of irradiance at the forest floor, weak signal in some parts of the spectrum and its variable nature. Understory consists of several sub-layers (tree regeneration, shrub, grasses or dwarf shrub, mosses or lichens, litter, bare soil), it has spatially-temporally variable species composition and ground coverage. Additional problems are introduced by patchiness of ground vegetation, ground surface roughness and understory-overstory relations. Due to this variability, remote sensing might be the only technology to provide consistent data at the required spatially extensive scales. Here we follow on our previous effort at mapping understory reflectance dynamics using multi-angle remote sensing observations (Pisek et al. (2012). Retrieval of seasonal dynamics of forest understory reflectance in a Northern European boreal forest from MODIS BRDF data. Remote Sensing of Environment, 117, 464-468). This presentation will focus on the validation of this approach against an extended collection of different types of forest sites with available in-situ understory reflectance measurements distributed along a wide latitudinal gradient: a sparse black spruce forest in Alaska (Poker range; 65.12 N), a northern European boreal forest (Hyytiala; 61.85 N), hemiboreal needleleaf and deciduous stands in Estonia (Jarvselja; 58.27 N), a temperate deciduous forest in Switzerland (Laegeren; 47.48 N), and a dense black spruce forest in Canada (Sudbury; 47.16 N). Our results are pertinent to the ultimate goal of production of circumpolar maps of seasonal dynamics of forest understory over boreal forests using the MODIS BRDF data, starting from 2000. This will allow us to assess the changes in seasonal dynamics of boreal forest understory over the full decade.

  3. Classification of very high resolution satellite remote sensing data in a pilot phase of the forest cover classification of the Democratic Republic of Congo, Forêts d'Afrique Central Evaluées par Télédetection (FACET) product

    NASA Astrophysics Data System (ADS)

    Singa Monga Lowengo, C.

    2012-12-01

    The Observatoire Satellital des Forêts d'Afrique Centrale (OSFAC) based in Kinshasa, serves as the focal point of the GOFC-GOLD network for Central Africa. OSFAC's long term objective is building regional capacity to use remotely sensed data to map forest cover and forest cover change across Central Africa. OSFAC archives and disseminates satellite data, offers training in geospatial data applications in coordination with the University of Kinshasa, and provides technical support to CARPE partners. Forêts d'Afrique Centrale Évaluées par Télédétection (FACET) is an OSFAC initiative that implements the UMD/SDSU methodology at the national level and quantitatively evaluates the spatiotemporal dynamics of forest cover in Central Africa. The multi-temporal series of FACET data is a useful contribution to many projects, such as biodiversity monitoring, climate modeling, conservation, natural resource management, land use planning, agriculture and REDD+. I am working as Remote Sensing and GIS Officer in various projects of OSFAC. My activities include forest cover and lands dynamics monitoring in Congo Basin. I am familiar with the use of digital mapping software, GIS and RS (Arc GIS, ENVI and PCI Geomatica etc.), classification and spatial Analysis of satellite images, 3D modeling, etc. I started as an intern at OSFAC, Assistant Trainer (Professional Training) and Consultant than permanent employee since October 2009. To assist in the OSFAC activities regarding the monitoring of forest cover and the CARPE program in the context of natural resources management, I participated in the development of the FACET Atlas (Republic of Congo). I received data from Matt Hansen (map.img), WRI and Brazzaville (shapefiles). With all these data I draw maps of the ROC Atlas and statistics of forest cover and forest loss. We organize field work on land to collect data to validate the FACET product. Therefore, to assess forest cover in the region of Kwamouth and Kahuzi-Maiko Biega landscape with very high resolution data and field work for validating FACET product (Remotelly Sensing Product).;

  4. Identification of understory invasive exotic plants with remote sensing in urban forests

    NASA Astrophysics Data System (ADS)

    Shouse, Michael; Liang, Liang; Fei, Songlin

    2013-04-01

    Invasive exotic plants (IEP) pose a significant threat to many ecosystems. To effectively manage IEP, it is important to efficiently detect their presences and determine their distribution patterns. Remote sensing has been a useful tool to map IEP but its application is limited in urban forests, which are often the sources and sinks for IEP. In this study, we examined the feasibility and tradeoffs of species level IEP mapping using multiple remote sensing techniques in a highly complex urban forest setting. Bush honeysuckle (Lonicera maackii), a pervasive IEP in eastern North America, was used as our modeling species. Both medium spatial resolution (MSR) and high spatial resolution (HSR) imagery were employed in bush honeysuckle mapping. The importance of spatial scale was also examined using an up-scaling simulation from the HSR object based classification. Analysis using both MSR and HSR imagery provided viable results for IEP distribution mapping in urban forests. Overall mapping accuracy ranged from 89.8% to 94.9% for HSR techniques and from 74.6% to 79.7% for MSR techniques. As anticipated, classification accuracy reduces as pixel size increases. HSR based techniques produced the most desirable results, therefore is preferred for precise management of IEP in heterogeneous environment. However, the use of MSR techniques should not be ruled out given their wide availability and moderate accuracy.

  5. Modeling of afforestation possibilities on one part of Hungary

    NASA Astrophysics Data System (ADS)

    Bozsik, Éva; Riczu, Péter; Tamás, János; Burriel, Charles; Helilmeier, Hermann

    2015-04-01

    Agroforestry systems are part of the history of the European Union rural landscapes, but the regional increase of size of agricultural parcels had a significant effect on European land use in the 20th century, thereby it has radically reduced the coverage of natural forest. However, this cause conflicts between interest of agricultural and forestry sectors. The agroforestry land uses could be a solution of this conflict management. One real - ecological - problem with the remnant forests and new forest plantation is the partly missing of network function without connecting ecological green corridors, the other problem is verifiability for the agroforestry payment system, monitoring the arable lands and plantations. Remote sensing methods are currently used to supervise European Union payments. Nowadays, next to use satellite imagery the airborne hyperspectral and LiDAR (Light Detection And Ranging) remote sensing technologies are becoming more widespread use for nature, environmental, forest, agriculture protection, conservation and monitoring and it is an effective tool for monitoring biomass production. In this Hungarian case study we made a Spatial Decision Support System (SDSS) to create agroforestry site selection model. The aim of model building was to ensure the continuity of ecological green corridors, maintain the appropriate land use of regional endowments. The investigation tool was the more widely used hyperspectral and airborne LiDAR remote sensing technologies which can provide appropriate data acquisition and data processing tools to build a decision support system

  6. Machine processing of remotely sensed data - quantifying global process: Models, sensor systems, and analytical methods; Proceedings of the Eleventh International Symposium, Purdue University, West Lafayette, IN, June 25-27, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mengel, S.K.; Morrison, D.B.

    1985-01-01

    Consideration is given to global biogeochemical issues, image processing, remote sensing of tropical environments, global processes, geology, landcover hydrology, and ecosystems modeling. Topics discussed include multisensor remote sensing strategies, geographic information systems, radars, and agricultural remote sensing. Papers are presented on fast feature extraction; a computational approach for adjusting TM imagery terrain distortions; the segmentation of a textured image by a maximum likelihood classifier; analysis of MSS Landsat data; sun angle and background effects on spectral response of simulated forest canopies; an integrated approach for vegetation/landcover mapping with digital Landsat images; geological and geomorphological studies using an image processing technique;more » and wavelength intensity indices in relation to tree conditions and leaf-nutrient content.« less

  7. Basic forest cover mapping using digitized remote sensor data and automated data processing techniques

    NASA Technical Reports Server (NTRS)

    Coggeshall, M. E.; Hoffer, R. M.

    1973-01-01

    Remote sensing equipment and automatic data processing techniques were employed as aids in the institution of improved forest resource management methods. On the basis of automatically calculated statistics derived from manually selected training samples, the feature selection processor of LARSYS selected, upon consideration of various groups of the four available spectral regions, a series of channel combinations whose automatic classification performances (for six cover types, including both deciduous and coniferous forest) were tested, analyzed, and further compared with automatic classification results obtained from digitized color infrared photography.

  8. An efficient estimator to monitor rapidly changing forest conditions

    Treesearch

    Raymond L. Czaplewski; Michael T. Thompson; Gretchen G. Moisen

    2012-01-01

    Extensive expanses of forest often change at a slow pace. In this common situation, FIA produces informative estimates of current status with the Moving Average (MA) method and post-stratification with a remotely sensed map of forest-nonforest cover. However, MA "smoothes out" estimates over time, which confounds analyses of temporal trends; and post-...

  9. Models for estimation and simulation of crown and canopy cover

    Treesearch

    John D. Shaw

    2005-01-01

    Crown width measurements collected during Forest Inventory and Analysis and Forest Health Monitoring surveys are being used to develop individual tree crown width models and plot-level canopy cover models for species and forest types in the Intermountain West. Several model applications are considered in the development process, including remote sensing of plot...

  10. Forest carbon dynamics associated with growth and disturbances in Oklahoma and Texas, 1992-2006

    Treesearch

    Daolan Zheng; Linda S. Heath; Mark J. Ducey; James E. Smith

    2013-01-01

    Quantifying forest carbon changes associated with growth and major disturbances is important for management of greenhouse gas emissions related to forests. Regional-level approaches with improved local growth data may refine estimates obtained using coarser resolution information. This study integrates remote-sensing-derived land cover change products, harvest data,...

  11. Introduction to special issue on remote sensing for advanced forest inventory

    Treesearch

    Andrew T. Hudak; E. Louise Loudermilk; Joanne C. White

    2016-01-01

    Information needs associated with sustainable forest management are evolving rapidly as the forest sector works to satisfy an increasingly complex set of economic, environmental, and social policy goals. A barrier to the sustainable management of forests and the provision of ecosystem goods and services under these new pressures is a lack of up-to-date and detailed...

  12. Inventory of oaks on California's national forest lands

    Treesearch

    Thomas Gaman; Kevin Casey

    2002-01-01

    California has 18+ million acres of land owned by the USDA Forest Service. This is almost 20 percent of the area of the state. From 1994-2000 the Region 5 Remote Sensing Lab collected forest, vegetation and fuels inventory data from thousands of permanent monitoring plots established on diverse sites on Forest Service lands throughout the region. The plots are...

  13. Regional forest cover estimation via remote sensing: the calibration center concept

    Treesearch

    Louis R. Iverson; Elizabeth A. Cook; Robin L. Graham; Robin L. Graham

    1994-01-01

    A method for combining Landsat Thematic Mapper (TM), Advanced Very High Resolution Radiometer (AVHRR) imagery, and other biogeographic data to estimate forest cover over large regions is applied and evaluated at two locations. In this method, TM data are used to classify a small area (calibration center) into forest/nonforest; the resulting forest cover map is then...

  14. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+

    Treesearch

    Veronika Leitold; Michael Keller; Douglas C Morton; Bruce D Cook; Yosio E Shimabukuro

    2015-01-01

    Background: Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas...

  15. A comparison of forest canopy models derived from LIDAR and INSAR data in a Pacific Northwest conifer forest.

    Treesearch

    Hans-Erik Andersen; Robert J. McGaughey; Ward W. Carson; Stephen E. Reutebuch; Bryan Mercer; Jeremy Allan

    2004-01-01

    Active remote sensing technologies, including interferometric radar (InSAR) and airborne laser scanning (LIDAR) have the potential to provide accurate information relating to three-dimensional forest canopy structure over extensive areas of the landscape. In order to assess the capabilities of these alternative systems for characterizing the forest canopy dimensions,...

  16. [Remote sensing estimation of urban forest carbon stocks based on QuickBird images].

    PubMed

    Xu, Li-Hua; Zhang, Jie-Cun; Huang, Bo; Wang, Huan-Huan; Yue, Wen-Ze

    2014-10-01

    Urban forest is one of the positive factors that increase urban carbon sequestration, which makes great contribution to the global carbon cycle. Based on the high spatial resolution imagery of QuickBird in the study area within the ring road in Yiwu, Zhejiang, the forests in the area were divided into four types, i. e., park-forest, shelter-forest, company-forest and others. With the carbon stock from sample plot as dependent variable, at the significance level of 0.01, the stepwise linear regression method was used to select independent variables from 50 factors such as band grayscale values, vegetation index, texture information and so on. Finally, the remote sensing based forest carbon stock estimation models for the four types of forest were established. The estimation accuracies for all the models were around 70%, with the total carbon reserve of each forest type in the area being estimated as 3623. 80, 5245.78, 5284.84, 5343.65 t, respectively. From the carbon density map, it was found that the carbon reserves were mainly in the range of 25-35 t · hm(-2). In the future, urban forest planners could further improve the ability of forest carbon sequestration through afforestation and interplanting of trees and low shrubs.

  17. Estimation of Forest Biomass Based on Muliti-Source Remote Sensing Data Set - a Case Study of Shangri-La County

    NASA Astrophysics Data System (ADS)

    Feng, Wanwan; Wang, Leiguang; Xie, Junfeng; Yue, Cairong; Zheng, Yalan; Yu, Longhua

    2018-04-01

    Forest biomass is an important indicator for the structure and function of forest ecosystems, and an accurate assessment of forest biomass is crucial for understanding ecosystem changes. Remote sensing has been widely used for inversion of biomass. However, in mature or over-mature forest areas, spectral saturation is prone to occur. Based on existing research, this paper synthesizes domestic high resolution satellites, ZY3-01 satellites, and GLAS14-level data from space-borne Lidar system, and other data set. Extracting texture and elevation features respectively, for the inversion of forest biomass. This experiment takes Shangri-La as the research area. Firstly, the biomass in the laser spot was calculated based on GLAS data and other auxiliary data, DEM, the second type inventory of forest resources data and the Shangri-La vector boundary data. Then, the regression model was established, that is, the relationship between the texture factors of ZY3-01 and biomass in the laser spot. Finally, by using this model and the forest distribution map in Shangri-La, the biomass of the whole area is obtained, which is 1.3972 × 108t.

  18. Merging IceSAT GLAS and Terra MODIS Data in Order to Derive Forest Type Specific Tree Heights in the Central Siberian Boreal Forest

    NASA Technical Reports Server (NTRS)

    Ranson, K. Jon; Sun, Guoqing; Kimes, Daniel; Kovacs, Katalin; Kharuk, Viatscheslav

    2006-01-01

    Mapping of boreal forest's type, biomass, and other structural parameters are critical for understanding of the boreal forest's significance in the carbon cycle, its response to and impact on global climate change. We believe the nature of the forest structure information available from MISR and GLAS can be used to help identify forest type, age class, and estimate above ground biomass levels beyond that now possible with MODIS alone. The ground measurements will be used to develop relationships between remote sensing observables and forest characteristics and provide new information for understanding forest changes with respect to environmental change. Lidar is a laser altimeter that determines the distance from the instrument to the physical surface by measuring the time elapsed between the pulse emission and the reflected return. Other studies have shown that the returned signal may identify multiple returns originating from trees, building and other objects and permits the calculation of their height. Studies using field data have shown that lidar data can provide estimates of structural parameters such as biomass, stand volume and leaf area index and allows remarkable differentiation between primary and secondary forest. NASA's IceSAT Geoscience Laser Altimeter System (GLAS) was launched in January 2003 and collected data during February and September of that year. This study used data acquired over our study sites in central Siberia to examine the GLAS signal as a source of forest height and other structural characteristics. The purpose of our Siberia project is to improve forest cover maps and produce above-ground biomass maps of the boreal forest in Northern Eurasia from MODIS by incorporating structural information inherent in the Terra MISR and ICESAT Geoscience Laser Altimeter System (GLAS) instruments. A number of forest cover classifications exist for the boreal forest. We believe the limiting factor in these products is the lack of structural information, particularly in the vertical dimension. The emphasis of this project is to improve upon satellite maps of boreal forest structure parameters (i.e. height and biomass) using temporal, multi-angle, and vertical profile information of GLAS data. The existing and near future lidar data is useful for demonstrating these techniques and pursuing current estimates. Future lidar missions may be several years in the future, so we will work other new data sets that may aide in biomass estimates such as ALOS PALSAR We will continue this work to produce an accurate map of current above ground forest phytomass/carbon storage possible for the study area. We plan to develop, test, and integrate remote sensing methods for extracting forest canopy structure measures. We are compiling our field measurements and will compare them with the remote sensing methods where possible. We also be able to produce a realistic error bound on the remotely sensed carbon estimates.

  19. The Use of Thermal Remote Sensing to Study Thermodynamics of Ecosystem Development

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Rickman, Doug L.; Arnold, James E. (Technical Monitor)

    2000-01-01

    Thermal remote sensing can provide environmental measuring tools with capabilities for measuring ecosystem development and integrity. Recent advances in applying principles of nonequilibrium thermodynamics to ecology provide fundamental insights into energy partitioning in ecosystems. Ecosystems are nonequilibrium systems, open to material and energy flows, which grow and develop structures and processes to increase energy degradation. More developed terrestrial ecosystems will be more effective at dissipating the solar gradient (degrading its energy content). This can be measured by the effective surface temperature of the ecosystem on a landscape scale. A series of airborne thermal infrared multispectral scanner data were collected from several forested ecosystems ranging from a western US douglas-fir forest to a tropical rain forest in Costa Rica. These data were used to develop measures of ecosystem development and integrity based on surface temperature.

  20. Thermal Remote Sensing and the Thermodynamics of Ecosystems Development

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Kay, James J.; Fraser, Roydon F.; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    Thermal remote sensing can provide environmental measuring tools with capabilities for measuring ecosystem development and integrity. Recent advances in applying principles of nonequilibrium thermodynamics to ecology provide fundamental insights into energy partitioning in ecosystems. Ecosystems are nonequilibrium systems, open to material and energy flows, which grow and develop structures and processes to increase energy degradation. More developed terrestrial ecosystems will be more effective at dissipating the solar gradient (degrading its energy content). This can be measured by the effective surface temperature of the ecosystem on a landscape scale. A series of airborne thermal infrared multispectral scanner data were collected from several forested ecosystems ranging from a western US douglas-fir forest to a tropical rain forest in Costa Rica. Also measured were agriculture systems. These data were used to develop measures of ecosystem development and integrity based on surface temperature.

  1. Evaluating land use and aboveground biomass dynamics in an oil palm-dominated landscape in Borneo using optical remote sensing

    NASA Astrophysics Data System (ADS)

    Singh, Minerva; Malhi, Yadvinder; Bhagwat, Shonil

    2014-01-01

    The focus of this study is to assess the efficacy of using optical remote sensing (RS) in evaluating disparities in forest composition and aboveground biomass (AGB). The research was carried out in the East Sabah region, Malaysia, which constitutes a disturbance gradient ranging from pristine old growth forests to forests that have experienced varying levels of disturbances. Additionally, a significant proportion of the area consists of oil palm plantations. In accordance with local laws, riparian forest (RF) zones have been retained within oil palm plantations and other forest types. The RS imagery was used to assess forest stand structure and AGB. Band reflectance, vegetation indicators, and gray-level co-occurrence matrix (GLCM) consistency features were used as predictor variables in regression analysis. Results indicate that the spectral variables were limited in their effectiveness in differentiating between forest types and in calculating biomass. However, GLCM based variables illustrated strong correlations with the forest stand structures as well as with the biomass of the various forest types in the study area. The present study provides new insights into the efficacy of texture examination methods in differentiating between various land-use types (including small, isolated forest zones such as RFs) as well as their AGB stocks.

  2. Generating Broad-Scale Forest Ownership Maps: A Closest-Neighbor Approach

    Treesearch

    Brett J. Butler

    2005-01-01

    A closest-neighbor method for producing a forest ownership map using remotely sensed imagery and point-based ownership information is presented for the Northeastern United States. Based on a validation data set, this method had an accuracy rate of 58 percent.

  3. Highlights of satellite-based forest change recognition and tracking using the ForWarn System

    Treesearch

    Steven P. Norman; William W. Hargrove; Joseph P. Spruce; William M. Christie; Sean W. Schroeder

    2013-01-01

    For a higher resolution version of this file, please use the following link: www.geobabble.orgSatellite-based remote sensing can assist forest managers with their need to recognize disturbances and track recovery. Despite the long...

  4. Mapping and spatiotemporal characterization of degraded forests in the Brazilian Amazon through remote sensing

    NASA Astrophysics Data System (ADS)

    de Souza, Carlos Moreira, Jr.

    Large forested areas have recently been impoverished by degradation caused by selective logging, forest fires and fragmentation in the Amazon region, causing partial change of the original forest structure and composition. As opposed to deforestation that has been monitored with Landsat images since the late 70's, degraded forests have not been monitored in the Amazon region. In this dissertation, remote sensing techniques for identifying and mapping unambiguously degraded forests with Landsat images are proposed. The test area was the region of Sinop, located in the state of Mato Grosso, Brazil. This region was selected because a gradient of degraded forest environments exist and a robust time-series of Landsat images and forest transect data were available. First, statistical analyses were applied to identify the best set of spectral information extracted from Landsat images to detect several types of degraded forest environments. Fraction images derived from Spectral Mixture Analysis (SMA) were the best type of information for that purpose. A new spectral index based on fraction images---Normalized Difference Fraction Index (NDFI)---was proposed to enhance the detection of canopy damaged areas in degraded forests. Second, a contextual classification algorithm was implemented to separate unambiguously forest degradation caused by anthropogenic activities from natural forest disturbances. These techniques were validated using forest transects and high resolution aerial videography images and proved to be highly accurate. Next, these techniques were applied to a time-series data set of Landsat images, encompassing 20 years, to evaluate the relationship between forest degradation and deforestation. The most important finding of the forest change detection analysis was that forest degradation and deforestation are independent events in the study area, making worse the current forest impacts in the Amazon region. Finally, the techniques developed and tested in the Sinop region were successfully applied to forty Landsat images covering other regions of the Brazilian Amazon. Standard fractions and NDFI images were computed for these other regions and both physically and spatially consistent results were obtained. An automated decision tree classification using genetic algorithm was implemented successfully to classify land cover types and sub-classes of degraded forests. The remote sensing techniques proposed in this dissertation are fully automated and have the potential to be used in tropical forest monitoring programs.

  5. Book Review: Book review

    NASA Astrophysics Data System (ADS)

    van der Linden, Sebastian

    2016-05-01

    Compiling a good book on urban remote sensing is probably as hard as the research in this disciplinary field itself. Urban areas comprise various environments and show high heterogeneity in many respects, they are highly dynamic in time and space and at the same time of greatest influence on connected and even tele-connected regions due to their great economic importance. Urban remote sensing is therefore of great importance, yet as manifold as its study area: mapping urban areas (or sub-categories thereof) plays an important (and challenging) role in land use and land cover (change) monitoring; the analysis of urban green and forests is by itself a specialization of ecological remote sensing; urban climatology asks for spatially and temporally highly resolved remote sensing products; the detection of artificial objects is not only a common and important remote sensing application but also a typical benchmark for image analysis techniques, etc. Urban analyses are performed with all available spaceborne sensor types and at the same time they are one of the most relevant fields for airborne remote sensing. Several books on urban remote sensing have been published during the past 10 years, each taking a different perspective. The book Global Urban Monitoring and Assessment through Earth Observation is motivated by the objectives of the Global Urban Observation and Information Task (SB-04) in the GEOSS (Global Earth Observation System of Systems) 2012-2015 workplan (compare Chapter 2) and wants to highlight the global aspects of state-of-the-art urban remote sensing.

  6. Agriculture, summary

    NASA Technical Reports Server (NTRS)

    Baldwin, R.

    1975-01-01

    Applications of remotely sensed data in agriculture are enumerated. These include: predictions of forage for range animal consumption, forest management, soil mapping, and crop inventory and management.

  7. Forest fire risk zonation mapping using remote sensing technology

    NASA Astrophysics Data System (ADS)

    Chandra, Sunil; Arora, M. K.

    2006-12-01

    Forest fires cause major losses to forest cover and disturb the ecological balance in our region. Rise in temperature during summer season causing increased dryness, increased activity of human beings in the forest areas, and the type of forest cover in the Garhwal Himalayas are some of the reasons that lead to forest fires. Therefore, generation of forest fire risk maps becomes necessary so that preventive measures can be taken at appropriate time. These risk maps shall indicate the zonation of the areas which are in very high, high, medium and low risk zones with regard to forest fire in the region. In this paper, an attempt has been made to generate the forest fire risk maps based on remote sensing data and other geographical variables responsible for the occurrence of fire. These include altitude, temperature and soil variations. Key thematic data layers pertaining to these variables have been generated using various techniques. A rule-based approach has been used and implemented in GIS environment to estimate fuel load and fuel index leading to the derivation of fire risk zonation index and subsequently to fire risk zonation maps. The fire risk maps thus generated have been validated on the ground for forest types as well as for forest fire risk areas. These maps would help the state forest departments in prioritizing their strategy for combating forest fires particularly during the fire seasons.

  8. Floodplains as an Achilles’ heel of Amazonian forest resilience

    PubMed Central

    Flores, Bernardo M.; Holmgren, Milena; van Nes, Egbert H.; Jakovac, Catarina C.; Mesquita, Rita C. G.; Scheffer, Marten

    2017-01-01

    The massive forests of central Amazonia are often considered relatively resilient against climatic variation, but this view is challenged by the wildfires invoked by recent droughts. The impact of such fires that spread from pervasive sources of ignition may reveal where forests are less likely to persist in a drier future. Here we combine field observations with remotely sensed information for the whole Amazon to show that the annually inundated lowland forests that run through the heart of the system may be trapped relatively easily into a fire-dominated savanna state. This lower forest resilience on floodplains is suggested by patterns of tree cover distribution across the basin, and supported by our field and remote sensing studies showing that floodplain fires have a stronger and longer-lasting impact on forest structure as well as soil fertility. Although floodplains cover only 14% of the Amazon basin, their fires can have substantial cascading effects because forests and peatlands may release large amounts of carbon, and wildfires can spread to adjacent uplands. Floodplains are thus an Achilles’ heel of the Amazon system when it comes to the risk of large-scale climate-driven transitions. PMID:28396440

  9. Evaluating the utility and seasonality of NDVI values for assessing post-disturbance recovery in a subalpine forest.

    PubMed

    Buma, Brian

    2012-06-01

    Forest disturbances around the world have the potential to alter forest type and cover, with impacts on diversity, carbon storage, and landscape composition. These disturbances, especially fire, are common and often large, making ground investigation of forest recovery difficult. Remote sensing offers a means to monitor forest recovery in real time, over the entire landscape. Typically, recovery monitoring via remote sensing consists of measuring vegetation indices (e.g., NDVI) or index-derived metrics, with the assumption that recovery in NDVI (for example) is a meaningful measure of ecosystem recovery. This study tests that assumption using MODIS 16-day imagery from 2000 to 2010 in the area of the Colorado's Routt National Forest Hinman burn (2002) and seedling density counts taken in the same area. Results indicate that NDVI is rarely correlated with forest recovery, and is dominated by annual and perennial forb cover, although topography complicates analysis. Utility of NDVI as a means to delineate areas of recovery or non-recovery are in doubt, as bootstrapped analysis indicates distinguishing power only slightly better than random. NDVI in revegetation analyses should carefully consider the ecology and seasonal patterns of the system in question.

  10. Selecting reconnaissance strategies for floodplain surveys

    NASA Technical Reports Server (NTRS)

    Sollers, S. C.; Rango, A.; Henninger, D. L.

    1977-01-01

    Multispectral aircraft and satellite data over the West Branch of the Susquehanna River were analyzed to evaluate potential contributions of remote sensing to flood-plain surveys. Multispectral digital classifications of land cover features indicative of floodplain areas were used by interpreters to locate various floodprone area boundaries. The digital approach permitted LANDSAT results to be displayed at 1:24,000 scale and aircraft results at even larger scales. Results indicate that remote sensing techniques can delineate floodprone areas more easily in agricultural and limited development areas as opposed to areas covered by a heavy forest canopy. At this time it appears that the remote sensing data would be best used as a form of preliminary planning information or as an internal check on previous or ongoing floodplain studies. In addition, the remote sensing techniques can assist in effectively monitoring floodplain activities after a community enters into the National Flood Insurance Program.

  11. Machine processing of remotely sensed data; Proceedings of the Fifth Annual Symposium, Purdue University, West Lafayette, Ind., June 27-29, 1979

    NASA Technical Reports Server (NTRS)

    Tendam, I. M. (Editor); Morrison, D. B.

    1979-01-01

    Papers are presented on techniques and applications for the machine processing of remotely sensed data. Specific topics include the Landsat-D mission and thematic mapper, data preprocessing to account for atmospheric and solar illumination effects, sampling in crop area estimation, the LACIE program, the assessment of revegetation on surface mine land using color infrared aerial photography, the identification of surface-disturbed features through a nonparametric analysis of Landsat MSS data, the extraction of soil data in vegetated areas, and the transfer of remote sensing computer technology to developing nations. Attention is also given to the classification of multispectral remote sensing data using context, the use of guided clustering techniques for Landsat data analysis in forest land cover mapping, crop classification using an interactive color display, and future trends in image processing software and hardware.

  12. American Society for Photogrammetry and Remote Sensing and ACSM, Fall Convention, Reno, NV, Oct. 4-9, 1987, ASPRS Technical Papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    Recent advances in remote-sensing technology and applications are examined in reviews and reports. Topics addressed include the use of Landsat TM data to assess suspended-sediment dispersion in a coastal lagoon, the use of sun incidence angle and IR reflectance levels in mapping old-growth coniferous forests, information-management systems, Large-Format-Camera soil mapping, and the economic potential of Landsat TM winter-wheat crop-condition assessment. Consideration is given to measurement of ephemeral gully erosion by airborne laser ranging, the creation of a multipurpose cadaster, high-resolution remote sensing and the news media, the role of vegetation in the global carbon cycle, PC applications in analytical photogrammetry,more » multispectral geological remote sensing of a suspected impact crater, fractional calculus in digital terrain modeling, and automated mapping using GP-based survey data.« less

  13. Landsat time series and lidar as predictors of live and dead basal area across five bark beetle-affected forests

    Treesearch

    Benjamin C. Bright; Andrew T. Hudak; Robert E. Kennedy; Arjan J. H. Meddens

    2014-01-01

    Bark beetle-caused tree mortality affects important forest ecosystem processes. Remote sensing methodologies that quantify live and dead basal area (BA) in bark beetle-affected forests can provide valuable information to forest managers and researchers. We compared the utility of light detection and ranging (lidar) and the Landsat-based detection of trends in...

  14. Selection and quality assessment of Landsat data for the North American forest dynamics forest history maps of the US

    Treesearch

    Karen Schleeweis; Samuel N. Goward; Chengquan Huang; John L. Dwyer; Jennifer L. Dungan; Mary A. Lindsey; Andrew Michaelis; Khaldoun Rishmawi; Jeffery G. Masek

    2016-01-01

    Using the NASA Earth Exchange platform, the North American Forest Dynamics (NAFD) project mapped forest history wall-to-wall, annually for the contiguous US (1986-2010) using the Vegetation Change Tracker algorithm. As with any effort to identify real changes in remotely sensed time-series, data gaps, shifts in seasonality, misregistration, inconsistent radiometry and...

  15. Predicting live and dead tree basal area of bark beetle affected forests from discrete-return lidar

    Treesearch

    Benjamin C. Bright; Andrew T. Hudak; Robert McGaughey; Hans-Erik Andersen; Jose Negron

    2013-01-01

    Bark beetle outbreaks have killed large numbers of trees across North America in recent years. Lidar remote sensing can be used to effectively estimate forest biomass, but prediction of both live and dead standing biomass in beetle-affected forests using lidar alone has not been demonstrated. We developed Random Forest (RF) models predicting total, live, dead, and...

  16. Implications of alternative field-sampling designs on Landsat-based mapping of stand age and carbon stocks in Oregon forests

    Treesearch

    Maureen V. Duane; Warren B. Cohen; John L. Campbell; Tara Hudiburg; David P. Turner; Dale Weyermann

    2010-01-01

    Empirical models relating forest attributes to remotely sensed metrics are widespread in the literature and underpin many of our efforts to map forest structure across complex landscapes. In this study we compared empirical models relating Landsat reflectance to forest age across Oregon using two alternate sets of ground data: one from a large (n ~ 1500) systematic...

  17. Quantifying tropical dry forest type and succession: substantial improvement with LiDAR

    Treesearch

    Sebastian Martinuzzi; William A. Gould; Lee A. Vierling; Andrew T. Hudak; Ross F. Nelson; Jeffrey S. Evans

    2012-01-01

    Improved technologies are needed to advance our knowledge of the biophysical and human factors influencing tropical dry forests, one of the world’s most threatened ecosystems. We evaluated the use of light detection and ranging (LiDAR) data to address two major needs in remote sensing of tropical dry forests, i.e., classification of forest types and delineation of...

  18. Remote sensing techniques in monitoring areas affected by forest fire

    NASA Astrophysics Data System (ADS)

    Karagianni, Aikaterini Ch.; Lazaridou, Maria A.

    2017-09-01

    Forest fire is a part of nature playing a key role in shaping ecosystems. However, fire's environmental impacts can be significant, affecting wildlife habitat and timber, human settlements, man-made technical constructions and various networks (road, power networks) and polluting the air with emissions harmful to human health. Furthermore, fire's effect on the landscape may be long-lasting. Monitoring the development of a fire occurs as an important aspect at the management of natural hazards in general. Among the used methods for monitoring, satellite data and remote sensing techniques can be proven of particular importance. Satellite remote sensing offers a useful tool for forest fire detection, monitoring, management and damage assessment. Especially for fire scars detection and monitoring, satellite data derived from Landsat 8 can be a useful research tool. This paper includes critical considerations of the above and concerns in particular an example of the Greek area (Thasos Island). This specific area was hit by fires several times in the past and recently as well (September 2016). Landsat 8 satellite data are being used (pre and post fire imagery) and digital image processing techniques are applied (enhancement techniques, calculation of various indices) for fire scars detection. Visual interpretation of the example area affected by the fires is also being done, contributing to the overall study.

  19. Detecting bugweed (Solanum mauritianum) abundance in plantation forestry using multisource remote sensing

    NASA Astrophysics Data System (ADS)

    Peerbhay, Kabir; Mutanga, Onisimo; Lottering, Romano; Bangamwabo, Victor; Ismail, Riyad

    2016-11-01

    The invasive weed Solanum mauritianum (bugweed) has infested large areas of plantation forests in KwaZulu-Natal, South Africa. Bugweed often forms dense infestations and rapidly capitalises on available natural resources hindering the production of forest resources. Precise assessment of bugweed canopy cover, especially at low abundance cover, is essential to an effective weed management strategy. In this study, the utility of AISA Eagle airborne hyperspectral data (393-994 nm) with the new generation Worldview-2 multispectral sensor (427-908 nm) was compared to detect the abundance of bugweed cover within the Hodgsons Sappi forest plantation. Using sparse partial least squares discriminant analysis (SPLS-DA), the best detection results were obtained when performing discrimination using the remotely sensing images combined with LiDAR. Overall classification accuracies subsequently improved by 10% and 11.67% for AISA and Worldview-2 respectively, with improved detection accuracies for bugweed cover densities as low as 5%. The incorporation of LiDAR worked well within the SPLS-DA framework for detecting the abundance of bugweed cover using remotely sensed data. In addition, the algorithm performed simultaneous dimension reduction and variable selection successfully whereby wavelengths in the visible (393-670 nm) and red-edge regions (725-734 nm) of the spectrum were the most effective.

  20. Terrain and vegetation structural influences on local avian species richness in two mixed-conifer forests

    Treesearch

    Jody C. Vogeler; Andrew T. Hudak; Lee A. Vierling; Jeffrey Evans; Patricia Green; Kerri T. Vierling

    2014-01-01

    Using remotely-sensed metrics to identify regions containing high animal diversity and/or specific animal species or guilds can help prioritize forest management and conservation objectives across actively managed landscapes. We predicted avian species richness in two mixed conifer forests, Moscow Mountain and Slate Creek, containing different management contexts and...

  1. Modeling the height of young forests regenerating from recent disturbances in Mississippi using Landsat and ICESat data

    Treesearch

    Ainong Li; Chengquan Huang; Guoqing Sun; Hua Shi; Chris Toney; Zhiliang Zhu; Matthew G. Rollins; Samuel N. Goward; Jeffrey G. Masek

    2011-01-01

    Many forestry and earth science applications require spatially detailed forest height data sets. Among the various remote sensing technologies, lidar offers the most potential for obtaining reliable height measurement. However, existing and planned spaceborne lidar systems do not have the capability to produce spatially contiguous, fine resolution forest height maps...

  2. Aerial sketchmapping for monitoring forest conditions in Southern Brazil

    Treesearch

    Y. M. Malheiros de Oliveira; M. A. Doetzer Rosot; N. B. da Luz; W. M. Ciesla; E.W. Johnson; R. Rhea; J.F. Jr. Penteado

    2006-01-01

    Aerial sketchmapping is a simple, low cost remote sensing method used for detection and mapping of forest damage caused by biotic agents (insects, pathogens and other pests) and abiotic agents (wind, fire, storms, hurricane, ice storms) in North America. This method was introduced to Brazil in 2001/2002 via a USDA Forest Service/EMBRAPA technical exchange program,...

  3. Optimized endogenous post-stratification in forest inventories

    Treesearch

    Paul L. Patterson

    2012-01-01

    An example of endogenous post-stratification is the use of remote sensing data with a sample of ground data to build a logistic regression model to predict the probability that a plot is forested and using the predicted probabilities to form categories for post-stratification. An optimized endogenous post-stratified estimator of the proportion of forest has been...

  4. Carbon pools and fluxes in small temperate forest landscapes: Variability and implications for sampling design

    Treesearch

    John B. Bradford; Peter Weishampel; Marie-Louise Smith; Randall Kolka; Richard A. Birdsey; Scott V. Ollinger; Michael G. Ryan

    2010-01-01

    Assessing forest carbon storage and cycling over large areas is a growing challenge that is complicated by the inherent heterogeneity of forest systems. Field measurements must be conducted and analyzed appropriately to generate precise estimates at scales large enough for mapping or comparison with remote sensing data. In this study we examined...

  5. Development of a Methodology for Predicting Forest Area for Large-Area Resource Monitoring

    Treesearch

    William H. Cooke

    2001-01-01

    The U.S. Department of Agriculture, Forest Service, Southcm Research Station, appointed a remote-sensing team to develop an image-processing methodology for mapping forest lands over large geographic areds. The team has presented a repeatable methodology, which is based on regression modeling of Advanced Very High Resolution Radiometer (AVHRR) and Landsat Thematic...

  6. Patterns of covariance between forest stand and canopy structure in the Pacific Northwest.

    Treesearch

    Michael A. Lefsky; Andrew T. Hudak; Warren B. Cohen; S.A. Acker

    2005-01-01

    In the past decade, LIDAR (light detection and ranging) has emerged as a powerful tool for remotely sensing forest canopy and stand structure, including the estimation of aboveground biomass and carbon storage. Numerous papers have documented the use of LIDAR measurements to predict important aspects of forest stand structure, including aboveground biomass. Other...

  7. Evaluating the remote sensing and inventory-based estimation of biomass in the western Carpathians

    Treesearch

    Magdalena Main-Knorn; Gretchen G. Moisen; Sean P. Healey; William S. Keeton; Elizabeth A. Freeman; Patrick Hostert

    2011-01-01

    Understanding the potential of forest ecosystems as global carbon sinks requires a thorough knowledge of forest carbon dynamics, including both sequestration and fluxes among multiple pools. The accurate quantification of biomass is important to better understand forest productivity and carbon cycling dynamics. Stand-based inventories (SBIs) are widely used for...

  8. Forest type mapping of the Interior West

    Treesearch

    Bonnie Ruefenacht; Gretchen G. Moisen; Jock A. Blackard

    2004-01-01

    This paper develops techniques for the mapping of forest types in Arizona, New Mexico, and Wyoming. The methods involve regression-tree modeling using a variety of remote sensing and GIS layers along with Forest Inventory Analysis (FIA) point data. Regression-tree modeling is a fast and efficient technique of estimating variables for large data sets with high accuracy...

  9. The utility of the cropland data layer for Forest Inventory and Analysis

    Treesearch

    Greg C. Liknes; Mark D. Nelson; Dale D. Gormanson; Mark Hansen

    2009-01-01

    The Forest Service, U.S. Department of Agriculture's (USDA's) Northern Research Station Forest Inventory and Analysis program (NRS-FIA) uses digital land cover products derived from remotely sensed imagery, such as the National Land Cover Dataset (NLCD), for the purpose of variance reduction via postsampling stratification. The update cycle of the NLCD...

  10. A visual progression of the Fort Valley Restoration Project treatments using remotely sensed imagery (P-53)

    Treesearch

    Joseph E. Crouse; Peter Z. Fule

    2008-01-01

    The landscape surrounding the Fort Valley Experimental Forest in northern Arizona has changed dramatically in the past decade due to the Fort Valley Restoration Project, a collaboration between the Greater Flagstaff Forest Partnership, Coconino National Forest, and Rocky Mountain Research Station. Severe wildfires in 1996 sparked community concern to start restoration...

  11. A method for the selection of relevant pattern indices for monitoring of spatial forest cover pattern at a regional scale

    NASA Astrophysics Data System (ADS)

    De Clercq, Eva M.; Vandemoortele, Femke; De Wulf, Robert R.

    2006-06-01

    When signing Agenda 21, several countries agreed to monitor the status of forests to ensure their sustainable use. For reporting on the change in spatial forest cover pattern on a regional scale, pattern metrics are widely used. These indices are not often thoroughly evaluated as to their sensitivity to remote sensing data characteristics. Hence, one would not know whether the change in the metric values was due to actual landscape pattern changes or to characteristic variation of multitemporal remote sensing data. The objective of this study is to empirically test an array of pattern metrics for the monitoring of spatial forest cover. Different user requirements are used as point of departure. This proved to be a straightforward method for selecting relevant pattern indices. We strongly encourage the systematic screening of these indices prior to use in order to get a deeper understanding of the results obtained by them.

  12. Symmetry in polarimetric remote sensing

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.

    1993-01-01

    Relationships among polarimetric backscattering coefficients are derived from the viewpoint of symmetry groups. For both reciprocal and non-reciprocal media, symmetry encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered. The derived properties are general and valid to all scattering mechanisms, including volume and surface scatterings and their interactions, in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is also discussed. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is then defined to study scattering structures in geophysical media. Observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented. Experimental evidences of the symmetry relationships are shown and their use in polarimetric remote sensing is illustrated. For forests, the coniferous forest in Mt. Shasta area (California) and mixed forest near Presque Isle (Maine) exhibit characteristics of the centrical symmetry at C-band. For sea ice in the Beaufort Sea, multi-year sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. First-year sea ice has e much smaller than e(sub 0) due to the preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering Sea, it is observed that e and e(sub 0) are increasing with incident angle and e is greater than e(sub 0) at L-band because of the directional feature of sea surface waves. Symmetry properties of geophysical media can also be used to calibrate polarimetric radars.

  13. Gulf Coast Disaster Management: Forest Damage Detection and Carbon Flux Estimation

    NASA Astrophysics Data System (ADS)

    Maki, A. E.; Childs, L. M.; Jones, J.; Matthews, C.; Spindel, D.; Batina, M.; Malik, S.; Allain, M.; Brooks, A. O.; Brozen, M.; Chappell, C.; Frey, J. W.

    2008-12-01

    Along the Gulf Coast and Eastern Seaboard, tropical storms and hurricanes annually cause defoliation and deforestation amongst coastal forests. After a severe storm clears, there is an urgent need to assess impacts on timber resources for targeting state and national resources to assist in recovery. It is important to identify damaged areas following the storm, due to their increased probability of fire risk, as well as the effect upon the carbon budget. Better understanding and management of the immediate and future effects on the carbon cycle in the coastal forest ecosystem is especially important. Current methods of detection involve assessment through ground-based field surveys, aerial surveys, computer modeling of meteorological data, space-borne remote sensing, and Forest Inventory and Analysis field plots. Introducing remotely-sensed data from NASA and NASA-partnered Earth Observation Systems (EOS), this project seeks to improve the current methodology and focuses on a need for methods that are more synoptic than field surveys and more closely linked to the phenomenology of tree loss and damage than passive remote sensing methods. The primary concentration is on the utilization of Ice, Cloud, and land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) data products to detect changes in forest canopy height as an indicator of post-hurricane forest disturbances. By analyzing ICESat data over areas affected by Hurricane Katrina, this study shows that ICESsat is a useful method of detecting canopy height change, though further research is needed in mixed forest areas. Other EOS utilized in this study include Landsat, Moderate Resolution Imaging Spectroradiometer (MODIS), and the NASA verified and validated international Advanced Wide Field Sensor (AWiFS) sensor. This study addresses how NASA could apply ICESat data to contribute to an improved method of detecting hurricane-caused forest damage in coastal areas; thus to pinpoint areas more susceptible to fire damage and subsequent loss of carbon sequestration.

  14. Assessing Wetland Hydroperiod and Soil Moisture with Remote Sensing: A Demonstration for the NASA Plum Brook Station Year 2

    NASA Technical Reports Server (NTRS)

    Brooks, Colin; Bourgeau-Chavez, Laura; Endres, Sarah; Battaglia, Michael; Shuchman, Robert

    2015-01-01

    Assist with the evaluation and measuring of wetlands hydroperiod at the Plum Brook Station using multi-source remote sensing data as part of a larger effort on projecting climate change-related impacts on the station's wetland ecosystems. MTRI expanded on the multi-source remote sensing capabilities to help estimate and measure hydroperiod and the relative soil moisture of wetlands at NASA's Plum Brook Station. Multi-source remote sensing capabilities are useful in estimating and measuring hydroperiod and relative soil moisture of wetlands. This is important as a changing regional climate has several potential risks for wetland ecosystem function. The year two analysis built on the first year of the project by acquiring and analyzing remote sensing data for additional dates and types of imagery, combined with focused field work. Five deliverables were planned and completed: (1) Show the relative length of hydroperiod using available remote sensing datasets, (2) Date linked table of wetlands extent over time for all feasible non-forested wetlands, (3) Utilize LIDAR data to measure topographic height above sea level of all wetlands, wetland to catchment area radio, slope of wetlands, and other useful variables (4), A demonstration of how analyzed results from multiple remote sensing data sources can help with wetlands vulnerability assessment; and (5) A MTRI style report summarizing year 2 results.

  15. Coastal High-resolution Observations and Remote Sensing of Ecosystems (C-HORSE)

    NASA Technical Reports Server (NTRS)

    Guild, Liane

    2016-01-01

    Coastal benthic marine ecosystems, such as coral reefs, seagrass beds, and kelp forests are highly productive as well as ecologically and commercially important resources. These systems are vulnerable to degraded water quality due to coastal development, terrestrial run-off, and harmful algal blooms. Measurements of these features are important for understanding linkages with land-based sources of pollution and impacts to coastal ecosystems. Challenges for accurate remote sensing of coastal benthic (shallow water) ecosystems and water quality are complicated by atmospheric scattering/absorption (approximately 80+% of the signal), sun glint from the sea surface, and water column scattering (e.g., turbidity). Further, sensor challenges related to signal to noise (SNR) over optically dark targets as well as insufficient radiometric calibration thwart the value of coastal remotely-sensed data. Atmospheric correction of satellite and airborne remotely-sensed radiance data is crucial for deriving accurate water-leaving radiance in coastal waters. C-HORSE seeks to optimize coastal remote sensing measurements by using a novel airborne instrument suite that will bridge calibration, validation, and research capabilities of bio-optical measurements from the sea to the high altitude remote sensing platform. The primary goal of C-HORSE is to facilitate enhanced optical observations of coastal ecosystems using state of the art portable microradiometers with 19 targeted spectral channels and flight planning to optimize measurements further supporting current and future remote sensing missions.

  16. Modeling bidirectional reflectance of forests and woodlands using Boolean models and geometric optics

    NASA Technical Reports Server (NTRS)

    Strahler, Alan H.; Jupp, David L. B.

    1990-01-01

    Geometric-optical discrete-element mathematical models for forest canopies have been developed using the Boolean logic and models of Serra. The geometric-optical approach is considered to be particularly well suited to describing the bidirectional reflectance of forest woodland canopies, where the concentration of leaf material within crowns and the resulting between-tree gaps make plane-parallel, radiative-transfer models inappropriate. The approach leads to invertible formulations, in which the spatial and directional variance provides the means for remote estimation of tree crown size, shape, and total cover from remotedly sensed imagery.

  17. Comparison of U.S. Forest Land AreaEstimates From Forest Inventory and Analysis, National Resources Inventory, and Four Satellite Image-Derived Land Cover Data Sets

    Treesearch

    Mark D. Nelson; Ronald E. McRoberts; Veronica C. Lessard

    2005-01-01

    Our objective was to test one application of remote sensing technology for complementing forest resource assessments by comparing a variety of existing satellite image-derived land cover maps with national inventory-derived estimates of United States forest land area. National Resources Inventory (NRI) 1997 estimates of non-Federal forest land area differed by 7.5...

  18. (abstract) Characterization of Tree Water Status and Dielectric Constant Changes of North American Boreal Forests in Combination with Synthetic Aperture Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    McDonald, K. C.; Zimmerman, R.; Way, J. B.

    1994-01-01

    The occurrence and magnitude of temporal and spatial tree water status changes in the boreal environment were studied in a floodplain forest in Alaska and in four forest types of Central Canada. Under limited water supply conditions from the rooted soil zone in early spring (freeze/thaw transition) and during summer, trees show declining water potentials. Coincidental change in tree water potential, tree transpiration and tree dielectric constant had been observed in previous studies performed in Mediterranean ecotones. If radar is sensitive to chances in tree water status as reflected through changes in dielectric constant, then radar remote sensing could be used to monitor the water status of forests. The SAR imagery is examined to determine the response of the radar backscatter to the ground based observations of the water status of forest canopies. Comparisons are made between stands and also along the large North-South gradient between sites. Data from SAR are used to examine the radar response to canopy physiological state as related to vegetation freeze/thaw and growing season length.

  19. Operational Remote Sensing Services in North Eastern Region of India for Natural Resources Management, Early Warning for Disaster Risk Reduction and Dissemination of Information and Services

    NASA Astrophysics Data System (ADS)

    Raju, P. L. N.; Sarma, K. K.; Barman, D.; Handique, B. K.; Chutia, D.; Kundu, S. S.; Das, R. Kr.; Chakraborty, K.; Das, R.; Goswami, J.; Das, P.; Devi, H. S.; Nongkynrih, J. M.; Bhusan, K.; Singh, M. S.; Singh, P. S.; Saikhom, V.; Goswami, C.; Pebam, R.; Borgohain, A.; Gogoi, R. B.; Singh, N. R.; Bharali, A.; Sarma, D.; Lyngdoh, R. B.; Mandal, P. P.; Chabukdhara, M.

    2016-06-01

    North Eastern Region (NER) of India comprising of eight states considered to be most unique and one of the most challenging regions to govern due to its unique physiographic condition, rich biodiversity, disaster prone and diverse socio-economic characteristics. Operational Remote Sensing services increased manifolds in the region with the establishment of North Eastern Space Applications Centre (NESAC) in the year 2000. Since inception, NESAC has been providing remote sensing services in generating inventory, planning and developmental activities, and management of natural resources, disasters and dissemination of information and services through geo-web services for NER. The operational remote sensing services provided by NESAC can be broadly divided into three categories viz. natural resource planning and developmental services, disaster risk reduction and early warning services and information dissemination through geo-portal services. As a apart of natural resources planning and developmental services NESAC supports the state forest departments in preparing the forest working plans by providing geospatial inputs covering entire NER, identifying the suitable culturable wastelands for cultivation of silkworm food plants, mapping of natural resources such as land use/land cover, wastelands, land degradation etc. on temporal basis. In the area of disaster risk reduction, NESAC has initiated operational services for early warning and post disaster assessment inputs for flood early warning system (FLEWS) using satellite remote sensing, numerical weather prediction, hydrological modeling etc.; forest fire alert system with actionable attribute information; Japanese Encephalitis Early Warning System (JEWS) based on mosquito vector abundance, pig population and historical disease intensity and agriculture drought monitoring for the region. The large volumes of geo-spatial databases generated as part of operational services are made available to the administrators and local government bodies for better management, preparing prospective planning, and sustainable use of available resources. The knowledge dissemination is being done through online web portals wherever the internet access is available and as well as offline space based information kiosks, where the internet access is not available or having limited bandwidth availability. This paper presents a systematic and comprehensive study on the remote sensing services operational in NER of India for natural resources management, disaster risk reduction and dissemination of information and services, in addition to outlining future areas and direction of space applications for the region.

  20. Modeling Forest Biomass and Growth: Coupling Long-Term Inventory and Lidar Data

    NASA Technical Reports Server (NTRS)

    Babcock, Chad; Finley, Andrew O.; Cook, Bruce D.; Weiskittel, Andrew; Woodall, Christopher W.

    2016-01-01

    Combining spatially-explicit long-term forest inventory and remotely sensed information from Light Detection and Ranging (LiDAR) datasets through statistical models can be a powerful tool for predicting and mapping above-ground biomass (AGB) at a range of geographic scales. We present and examine a novel modeling approach to improve prediction of AGB and estimate AGB growth using LiDAR data. The proposed model accommodates temporal misalignment between field measurements and remotely sensed data-a problem pervasive in such settings-by including multiple time-indexed measurements at plot locations to estimate AGB growth. We pursue a Bayesian modeling framework that allows for appropriately complex parameter associations and uncertainty propagation through to prediction. Specifically, we identify a space-varying coefficients model to predict and map AGB and its associated growth simultaneously. The proposed model is assessed using LiDAR data acquired from NASA Goddard's LiDAR, Hyper-spectral & Thermal imager and field inventory data from the Penobscot Experimental Forest in Bradley, Maine. The proposed model outperformed the time-invariant counterpart models in predictive performance as indicated by a substantial reduction in root mean squared error. The proposed model adequately accounts for temporal misalignment through the estimation of forest AGB growth and accommodates residual spatial dependence. Results from this analysis suggest that future AGB models informed using remotely sensed data, such as LiDAR, may be improved by adapting traditional modeling frameworks to account for temporal misalignment and spatial dependence using random effects.

  1. Do BRDF effects dominate seasonal changes in tower-based remote sensing imagery?

    NASA Astrophysics Data System (ADS)

    Nagol, J. R.; Morton, D. C.; Rubio, J.; Cook, B. D.; Rishmawi, K.

    2014-12-01

    In situ remote sensing complements data from airborne and space-based sensors, in particular for intensive study sites where optical imagery can be paired with detailed ground and tower measurements. The characteristics of tower-mounted imaging systems are quite different from the nadir viewing geometry of other remote sensing platforms. In particular, tower-mounted systems are quite sensitive to artifacts of seasonal and diurnal sun angle variations. Most systems are oriented in a fixed north or south direction (depending on latitude), placing them in the principal plane at solar noon. The strength of the BRDF (Bidirectional Reflectance Distribution Function) effect is strongest for images acquired at that time. Phenological metrics derived from tower based oblique angle imaging systems are particularly prone to BRDF effects, as shadowing within and between tree crowns varies seasonally. For sites in the northern hemisphere, the fraction of sunlit and shaded vegetation declines following the June solstice to leaf senescence in September. Correcting tower-based remote sensing imagery for artifacts of BRDF is critical to isolate real changes in canopy phenology and reflectance. Here, we used airborne lidar data from NASA Goddard's Lidar, Hyperspectral, and Thermal Airborne Imager (G-LiHT) to develop a 3D forest scene for Harvard Forest in the Discrete Anisotrophic Radiative Transfer (DART) model. Our objective was to model the contribution of changes in shadowing and illumination to observations of changes in greenness from the Phenocam image time series at the Harvard Forest site. Diurnal variability in canopy greenness from the Phenocam time series provides an independent evaluation of BRDF effects from changes in illumination and sun-sensor geometries. The overall goal of this work is to develop a look-up table solution to correct major components of BRDF for tower-mounted imaging systems such as Phenocam, based on characteristics of the forest structure (forest height, canopy rugosity, fractional cover, and composition) and viewing geometry of the sensor. Given the sensitivity of tower-based systems to BRDF effects, efforts to correct artifacts of BRDF in phenology time series is critical to isolate seasonal changes in vegetation reflectance.

  2. Remotely-sensed canopy nitrogen correlates with nitrous oxide emissions in a lowland tropical rainforest.

    PubMed

    Soper, Fiona M; Sullivan, Benjamin W; Nasto, Megan K; Osborne, Brooke B; Bru, David; Balzotti, Christopher S; Taylor, Phillip G; Asner, Gregory P; Townsend, Alan R; Philippot, Laurent; Porder, Stephen; Cleveland, Cory C

    2018-06-21

    Tropical forests exhibit significant heterogeneity in plant functional and chemical traits that may contribute to spatial patterns of key soil biogeochemical processes, such as carbon storage and greenhouse gas emissions. Although tropical forests are the largest ecosystem source of nitrous oxide (N 2 O), drivers of spatial patterns within forests are poorly resolved. Here, we show that local variation in canopy foliar N, mapped by remote-sensing image spectroscopy, correlates with patterns of soil N 2 O emission from a lowland tropical rainforest. We identified ten 0.25 ha plots (assemblages of 40-70 individual trees) in which average remotely-sensed canopy N fell above or below the regional mean. The plots were located on a single minimally-dissected terrace (<1 km 2 ) where soil type, vegetation structure and climatic conditions were relatively constant. We measured N 2 O fluxes monthly for one year and found that high canopy N species assemblages had on average three-fold higher total mean N 2 O fluxes than nearby lower canopy N areas. These differences are consistent with strong differences in litter stoichiometry, nitrification rates and soil nitrate concentrations. Canopy N status was also associated with microbial community characteristics: lower canopy N plots had two-fold greater soil fungal to bacterial ratios and a significantly lower abundance of ammonia-oxidizing archaea, although genes associated with denitrification (nirS, nirK, nosZ) showed no relationship with N 2 O flux. Overall, landscape emissions from this ecosystem are at the lowest end of the spectrum reported for tropical forests, consist with multiple metrics indicating that these highly productive forests retain N tightly and have low plant-available losses. These data point to connections between canopy and soil processes that have largely been overlooked as a driver of denitrification. Defining relationships between remotely-sensed plant traits and soil processes offers the chance to map these processes at large scales, potentially increasing our ability to predict N 2 O emissions in heterogeneous landscapes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Remotely sensed predictors of conifer tree mortality during severe drought

    NASA Astrophysics Data System (ADS)

    Brodrick, P. G.; Asner, G. P.

    2017-11-01

    Widespread, drought-induced forest mortality has been documented on every forested continent over the last two decades, yet early pre-mortality indicators of tree death remain poorly understood. Remotely sensed physiological-based measures offer a means for large-scale analysis to understand and predict drought-induced mortality. Here, we use laser-guided imaging spectroscopy from multiple years of aerial surveys to assess the impact of sustained canopy water loss on tree mortality. We analyze both gross canopy mortality in 2016 and the change in mortality between 2015 and 2016 in millions of sampled conifer forest locations throughout the Sierra Nevada mountains in California. On average, sustained water loss and gross mortality are strongly related, and year-to-year water loss within the drought indicates subsequent mortality. Both relationships are consistent after controlling for location and tree community composition, suggesting that these metrics may serve as indicators of mortality during a drought.

  4. Modification of the random forest algorithm to avoid statistical dependence problems when classifying remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Cánovas-García, Fulgencio; Alonso-Sarría, Francisco; Gomariz-Castillo, Francisco; Oñate-Valdivieso, Fernando

    2017-06-01

    Random forest is a classification technique widely used in remote sensing. One of its advantages is that it produces an estimation of classification accuracy based on the so called out-of-bag cross-validation method. It is usually assumed that such estimation is not biased and may be used instead of validation based on an external data-set or a cross-validation external to the algorithm. In this paper we show that this is not necessarily the case when classifying remote sensing imagery using training areas with several pixels or objects. According to our results, out-of-bag cross-validation clearly overestimates accuracy, both overall and per class. The reason is that, in a training patch, pixels or objects are not independent (from a statistical point of view) of each other; however, they are split by bootstrapping into in-bag and out-of-bag as if they were really independent. We believe that putting whole patch, rather than pixels/objects, in one or the other set would produce a less biased out-of-bag cross-validation. To deal with the problem, we propose a modification of the random forest algorithm to split training patches instead of the pixels (or objects) that compose them. This modified algorithm does not overestimate accuracy and has no lower predictive capability than the original. When its results are validated with an external data-set, the accuracy is not different from that obtained with the original algorithm. We analysed three remote sensing images with different classification approaches (pixel and object based); in the three cases reported, the modification we propose produces a less biased accuracy estimation.

  5. Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in northern Minnesota

    USGS Publications Warehouse

    Corcoran, Jennifer M.; Knight, Joseph F.; Gallant, Alisa L.

    2013-01-01

    Wetland mapping at the landscape scale using remotely sensed data requires both affordable data and an efficient accurate classification method. Random forest classification offers several advantages over traditional land cover classification techniques, including a bootstrapping technique to generate robust estimations of outliers in the training data, as well as the capability of measuring classification confidence. Though the random forest classifier can generate complex decision trees with a multitude of input data and still not run a high risk of over fitting, there is a great need to reduce computational and operational costs by including only key input data sets without sacrificing a significant level of accuracy. Our main questions for this study site in Northern Minnesota were: (1) how does classification accuracy and confidence of mapping wetlands compare using different remote sensing platforms and sets of input data; (2) what are the key input variables for accurate differentiation of upland, water, and wetlands, including wetland type; and (3) which datasets and seasonal imagery yield the best accuracy for wetland classification. Our results show the key input variables include terrain (elevation and curvature) and soils descriptors (hydric), along with an assortment of remotely sensed data collected in the spring (satellite visible, near infrared, and thermal bands; satellite normalized vegetation index and Tasseled Cap greenness and wetness; and horizontal-horizontal (HH) and horizontal-vertical (HV) polarization using L-band satellite radar). We undertook this exploratory analysis to inform decisions by natural resource managers charged with monitoring wetland ecosystems and to aid in designing a system for consistent operational mapping of wetlands across landscapes similar to those found in Northern Minnesota.

  6. Using Remote Sensed Imagery to Determine the Impacts from Salvage Logging after the 2015 Tower Fire, Washington (USA)

    NASA Astrophysics Data System (ADS)

    Broers, Anna; Robichaud, Peter; Lewis, Sarah

    2017-04-01

    Wildfires are part of the natural process in most forested landscapes and during subsequent precipitation, the runoff and consequently erosion of the soil increases. Several factors contribute to the increased runoff: loss of runoff storage in the forest floor, the water repellent soil layer and reduced interception by the canopy. Due to climate change, the number of wildfires and their severity is likely to increase, which will lead to increased erosion; this has been investigated by others. Often, land management protocol is to remove the standing dead trees before they decay. In the past years salvage logging has received more attention in research, yet results have been mixed on its effects on increased erosion. The goal of the current research is to determine the change in surface conditions due to salvage logging operations by comparing the pre- and post-fire and post-salvage surface conditions. To determine this change, high resolution WorldView remote sensing imagery was used after 9000-ha 2015 Tower Fire which was located on the border of Idaho and Washington (USA). Ground validation measurements were taken using the forest soil disturbance protocol as well as GPS coordinates and measurements of highly disturbed areas such as skid trails, skyline drag lines and other machinery impacts. Some correlations were found between disturbance classes, bare soil, exposed wheel tracks (rutting) and soil compaction. High resolution WorldView remote sensing images detected changes in the pre- and post-fire environmental conditions and the change due to salvage logging operations. Classifying disturbances using remote sensing imagery is complicated by natural revegetation processes and by the timing of salvage logging operations. Initial results suggest that high resolution imagery can be used to determine onsite impacts of salvage logging operations.

  7. Uncoupling the complexity of forest soil variation: influence of terrain attributes, spectral indices, and spatial variability

    EPA Science Inventory

    Growing concern over climate and management induced changes to soil nutrient status has prompted interest in understanding the spatial distribution of forest soil properties. Recent advancements in remotely sensed geospatial technologies are providing an increasing array of data...

  8. The role of remote sensing in global forest assessment: A remote sensing background paper for Kotka IV expert consultation; 01.07-05.07.2002, Kotka, Finland

    Treesearch

    Erkki Tomppo; Raymond L. Czaplewski; Kai Makisara

    2002-01-01

    The approach of FRA 2000 by FAO was the reliance on the participation of individual countries for both supply and analysis of information. It is hoped that this approach will lead for further capacity building in countries (FRA 2000 -main report). While countries firmly support this approach, it has sometimes been criticised on the basis that country information may be...

  9. Using satellite image-based maps and ground inventory data to estimate the area of the remaining Atlantic forest in the Brazilian state of Santa Catarina

    Treesearch

    Alexander C. Vibrans; Ronald E. McRoberts; Paolo Moser; Adilson L. Nicoletti

    2013-01-01

    Estimation of large area forest attributes, such as area of forest cover, from remote sensing-based maps is challenging because of image processing, logistical, and data acquisition constraints. In addition, techniques for estimating and compensating for misclassification and estimating uncertainty are often unfamiliar. Forest area for the state of Santa Catarina in...

  10. The 2014 tanana inventory pilot: A USFS-NASA partnership to leverage advanced remote sensing technologies for forest inventory

    Treesearch

    Hans-Erik Andersen; Chad Babcock; Robert Pattison; Bruce Cook; Doug Morton; Andrew Finley

    2015-01-01

    Interior Alaska (approx. 112 million forested acres in size) is the last remaining forested area within the United States where the Forest Inventory and Analysis (FIA) program is not currently implemented. A joint NASA-FIA inventory pilot project was carried out in 2014 to increase familiarity with interior Alaska logistics and evaluate the utility of state-of-the-art...

  11. [Measurement model of carbon emission from forest fire: a review].

    PubMed

    Hu, Hai-Qing; Wei, Shu-Jing; Jin, Sen; Sun, Long

    2012-05-01

    Forest fire is the main disturbance factor for forest ecosystem, and an important pathway of the decrease of vegetation- and soil carbon storage. Large amount of carbonaceous gases in forest fire can release into atmosphere, giving remarkable impacts on the atmospheric carbon balance and global climate change. To scientifically and effectively measure the carbonaceous gases emission from forest fire is of importance in understanding the significance of forest fire in the carbon balance and climate change. This paper reviewed the research progress in the measurement model of carbon emission from forest fire, which covered three critical issues, i. e., measurement methods of forest fire-induced total carbon emission and carbonaceous gases emission, affecting factors and measurement parameters of measurement model, and cause analysis of the uncertainty in the measurement of the carbon emissions. Three path selections to improve the quantitative measurement of the carbon emissions were proposed, i. e., using high resolution remote sensing data and improving algorithm and estimation accuracy of burned area in combining with effective fuel measurement model to improve the accuracy of the estimated fuel load, using high resolution remote sensing images combined with indoor controlled environment experiments, field measurements, and field ground surveys to determine the combustion efficiency, and combining indoor controlled environment experiments with field air sampling to determine the emission factors and emission ratio.

  12. Integrating remotely sensed land cover observations and a biogeochemical model for estimating forest ecosystem carbon dynamics

    USGS Publications Warehouse

    Liu, J.; Liu, S.; Loveland, Thomas R.; Tieszen, L.L.

    2008-01-01

    Land cover change is one of the key driving forces for ecosystem carbon (C) dynamics. We present an approach for using sequential remotely sensed land cover observations and a biogeochemical model to estimate contemporary and future ecosystem carbon trends. We applied the General Ensemble Biogeochemical Modelling System (GEMS) for the Laurentian Plains and Hills ecoregion in the northeastern United States for the period of 1975-2025. The land cover changes, especially forest stand-replacing events, were detected on 30 randomly located 10-km by 10-km sample blocks, and were assimilated by GEMS for biogeochemical simulations. In GEMS, each unique combination of major controlling variables (including land cover change history) forms a geo-referenced simulation unit. For a forest simulation unit, a Monte Carlo process is used to determine forest type, forest age, forest biomass, and soil C, based on the Forest Inventory and Analysis (FIA) data and the U.S. General Soil Map (STATSGO) data. Ensemble simulations are performed for each simulation unit to incorporate input data uncertainty. Results show that on average forests of the Laurentian Plains and Hills ecoregion have been sequestrating 4.2 Tg C (1 teragram = 1012 gram) per year, including 1.9 Tg C removed from the ecosystem as the consequences of land cover change. ?? 2008 Elsevier B.V.

  13. Use of models in large-area forest surveys: comparing model-assisted, model-based and hybrid estimation

    Treesearch

    Goran Stahl; Svetlana Saarela; Sebastian Schnell; Soren Holm; Johannes Breidenbach; Sean P. Healey; Paul L. Patterson; Steen Magnussen; Erik Naesset; Ronald E. McRoberts; Timothy G. Gregoire

    2016-01-01

    This paper focuses on the use of models for increasing the precision of estimators in large-area forest surveys. It is motivated by the increasing availability of remotely sensed data, which facilitates the development of models predicting the variables of interest in forest surveys. We present, review and compare three different estimation frameworks where...

  14. Remotely sensed measurements of forest structure and fuel loads in the Pinelands of New Jersey

    Treesearch

    Nicholas Skowronski; Kenneth Clark; Ross Nelson; John Hom; Matt Patterson

    2007-01-01

    We used a single-beam, first return profiling LIDAR (Light Detection and Ranging) measurements of canopy height, intensive biometric measurements in plots, and Forest Inventory and Analysis (FIA) data to quantify forest structure and ladder fuels (defined as vertical fuel continuity between the understory and canopy) in the New Jersey Pinelands. The LIDAR data were...

  15. Assessment of forest quality in southwestern Poland with the use of remotely sensed data

    Treesearch

    Zbigniew Bochenek; Andrzej Ciolkosz; Maria Iracka

    1998-01-01

    A three-stage approach was applied to assess the quality of forests in southwestern Poland, which are heavily affected with air pollution and insect infestations. In the first stage a ground evaluation of spruce stands was done within the selected test areas. Three main characteristics of forest quality were determined as a result of these works: defoliation,...

  16. Variable Selection Strategies for Small-area Estimation Using FIA Plots and Remotely Sensed Data

    Treesearch

    Andrew Lister; Rachel Riemann; James Westfall; Mike Hoppus

    2005-01-01

    The USDA Forest Service's Forest Inventory and Analysis (FIA) unit maintains a network of tens of thousands of georeferenced forest inventory plots distributed across the United States. Data collected on these plots include direct measurements of tree diameter and height and other variables. We present a technique by which FIA plot data and coregistered...

  17. Post-Fire Changes in Forest Biomass Retrieved by Airborne LiDAR in Amazonia

    Treesearch

    Luciane Sato; Vitor Gomes; Yosio Shimabukuro; Michael Keller; Egidio Arai; Maiza dos-Santos; Irving Brown; Luiz Aragão

    2016-01-01

    Fire is one of the main factors directly impacting Amazonian forest biomass and dynamics. Because of Amazonia’s large geographical extent, remote sensing techniques are required for comprehensively assessing forest fire impacts at the landscape level. In this context, Light Detection and Ranging (LiDAR) stands out as a technology capable of retrieving direct...

  18. Statistical uncertainty of eddy flux-based estimates of gross ecosystem carbon exchange at Howland Forest, Maine

    Treesearch

    S.C. Hagen; B.H. Braswell; E. Linder; S. Frolking; A.D. Richardson; David Hollinger. D.Y; Hollinger. D.Y

    2006-01-01

    We present an uncertainty analysis of gross ecosystem carbon exchange (GEE) estimates derived from 7 years of continuous eddy covariance measurements of forest atmosphere CO2 fluxes at Howland Forest, Maine, USA. These data, which have high temporal resolution, can be used to validate process modeling analyses, remote sensing assessments, and field surveys. However,...

  19. Estimating individual tree mid- and understory rank-size distributions from airborne laser scanning in semi-arid forests

    Treesearch

    Tyson L. Swetnam; Donald A. Falk; Ann M. Lynch; Stephen R. Yool

    2014-01-01

    Limitations inherent to airborne laser scanning (ALS) technology and the complex sorting and packing relationships of forests complicate accurate remote sensing of mid- and understory trees, especially in denser forest stands. Self-similarities in rank-sized individual tree distributions (ITD), e.g. bole diameter or height, are a well-understood property of natural,...

  20. Modeling relationships among 217 fires using remote sensing of burn severity in southern pine forests

    Treesearch

    Sparkle L. Malone; Leda N. Kobziar; Christina L. Staudhammer; Amr Abd-Elrahman

    2011-01-01

    Pine flatwoods forests in the southeastern US have experienced severe wildfires over the past few decades, often attributed to fuel load build-up. These forest communities are fire dependent and require regular burning for ecosystem maintenance and health. Although prescribed fire has been used to reduce wildfire risk and maintain ecosystem integrity, managers are...

  1. Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys

    Treesearch

    Andrew T. Hudak; Eva K. Strand; Lee A. Vierling; John C. Byrne; Jan U. H. Eitel; Sebastian Martinuzzi; Michael J. Falkowski

    2012-01-01

    Sound forest policy and management decisions to mitigate rising atmospheric CO2 depend upon accurate methodologies to quantify forest carbon pools and fluxes over large tracts of land. LiDAR remote sensing is a rapidly evolving technology for quantifying aboveground biomass and thereby carbon pools; however, little work has evaluated the efficacy of repeat LiDAR...

  2. Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass

    Treesearch

    Timothy G. Gregoire; Erik Næsset; Ronald E. McRoberts; Göran Ståhl; Hans Andersen; Terje Gobakken; Liviu Ene; Ross Nelson

    2016-01-01

    For many decades remotely sensed data have been used as a source of auxiliary information when conducting regional or national surveys of forest resources. In the past decade, airborne scanning LiDAR (Light Detection and Ranging) has emerged as a promising tool for sample surveys aimed at improving estimation of aboveground forest biomass. This technology is now...

  3. Seeing the forest beyond the trees

    Treesearch

    Sassan Saatchi; Joseph Mascaro; Liang Xu; Michael Keller; Yan Yang; Paul Duffy; Fernando Espirito-Santo; Alessandro Baccini; Jeffery Chambers; David Schimel

    2014-01-01

    In a recent paper (Mitchard et al. 2014, Global Ecology and Biogeography, 23,935-946) a new map of forest biomass based on a geostatistical model of field data for the Amazon (and surrounding forests) was presented and contrasted with two earlier maps based on remote sensing data Saatchi et al. (2011; RS1) and Baccini et al. (2012; RS2). Mitchard et al....

  4. Preliminary results from a method to update timber resource statistics in North Carolina

    Treesearch

    Glenn P. Catts; Noel D. Cost; Raymond L. Czaplewski; Paul W. Snook

    1987-01-01

    Forest Inventory and Analysis units of the USDA Forest Service produce timber resource statistics every 8 to 10 years. Midcycle surveys are often performed to update inventory estimates. This requires timely identification of forest lands. There are several kinds of remotely sensed data that are suitable for this purpose. Medium scale color infrared aerial photography...

  5. Historical harvests reduce neighboring old-growth basal area across a forest landscape

    Treesearch

    David M. Bell; Thomas A. Spies; Robert Pabst

    2017-01-01

    While advances in remote sensing have made stand, landscape, and regional assessments of the direct impacts of disturbance on forests quite common, the edge influence of timber harvesting on the structure of neighboring unharvested forests has not been examined extensively. In this study, we examine the impact of historical timber harvests on basal area patterns of...

  6. Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest

    Treesearch

    Michael A. Lefsky; Andrew T. Hudak; Warren B. Cohen; S. A. Acker

    2005-01-01

    Estimation of the amount of carbon stored in forests is a key challenge for understanding the global carbon cycle, one which remote sensing is expected to help address. However, carbon storage in moderate to high biomass forests is difficult to estimate with conventional optical or radar sensors. Lidar (light detection and ranging) instruments measure the vertical...

  7. Microscale photo interpretation of forest and nonforest land classes

    NASA Technical Reports Server (NTRS)

    Aldrich, R. C.; Greentree, W. J.

    1972-01-01

    Remote sensing of forest and nonforest land classes are discussed, using microscale photointerpretation. Results include: (1.) Microscale IR color photography can be interpreted within reasonable limits of error to estimate forest area. (2.) Forest interpretation is best on winter photography with 97 percent or better accuracy. (3.) Broad forest types can be classified on microscale photography. (4.) Active agricultural land is classified most accurately on early summer photography. (5.) Six percent of all nonforest observations were misclassified as forest.

  8. Long-term monitoring for conservation management: Lessons from a case study integrating remote sensing and field approaches in floodplain forests.

    PubMed

    Rodríguez-González, Patricia María; Albuquerque, António; Martínez-Almarza, Miguel; Díaz-Delgado, Ricardo

    2017-11-01

    Implementing long-term monitoring programs that effectively inform conservation plans is a top priority in environmental management. In floodplain forests, historical pressures interplay with the complex multiscale dynamics of fluvial systems and require integrative approaches to pinpoint drivers for their deterioration and ecosystem services loss. Combining a conceptual framework such as the Driver-Pressure-State-Impact-Response (DPSIR) with the development of valid biological indicators can contribute to the analysis of the driving forces and their effects on the ecosystem in order to formulate coordinated conservation measures. In the present study, we evaluate the initial results of a decade (2004-2014) of floodplain forest monitoring. We adopted the DPSIR framework to summarize the main drivers in land use and environmental change, analyzed the effects on biological indicators of foundation trees and compared the consistency of the main drivers and their effects at two spatial scales. The monitoring program was conducted in one of the largest and best preserved floodplain forests in SW Europe located within Doñana National Park (Spain) which is dominated by Salix atrocinerea and Fraxinus angustifolia. The program combined field (in situ) surveys on a network of permanent plots with several remote sensing sources. The accuracy obtained in spectral classifications allowed shifts in species cover across the whole forest to be detected and assessed. However, remote sensing did not reflect the ecological status of forest populations. The field survey revealed a general decline in Salix populations, especially in the first five years of sampling -a factor probably associated with a lag effect from past human impact on the hydrology of the catchment and recent extreme climatic episodes (drought). In spite of much reduced seed regeneration, a resprouting strategy allows long-lived Salix individuals to persist in complex spatial dynamics. This suggests the beginning of a recovery resulting from recent coordinated societal responses to control excessive water extraction in the catchment, highlighting the need for continuing long-term monitoring. The DPSIR framework proved useful as a conceptual tool in analyzing the entire environmental system, while both field and remote sensing approaches complemented each other in quantifying indicator trends, improving the monitoring design and informing conservation plans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Does Sentinel multi sensor data offer synergy in Improving Accuracy of Aboveground Biomass Estimate of Dense Tropical Forest? - Utility of Decision Tree Based Machine Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Ghosh, S. M.; Behera, M. D.

    2017-12-01

    Forest aboveground biomass (AGB) is an important factor for preparation of global policy making decisions to tackle the impact of climate change. Several previous studies has concluded that remote sensing methods are more suitable for estimating forest biomass on regional scale. Among all available remote sensing data and methods, Synthetic Aperture Radar (SAR) data in combination with decision tree based machine learning algorithms has shown better promise in estimating higher biomass values. There aren't many studies done for biomass estimation of dense Indian tropical forests with high biomass density. In this study aboveground biomass was estimated for two major tree species, Sal (Shorea robusta) and Teak (Tectona grandis), of Katerniaghat Wildlife Sanctuary, a tropical forest situated in northern India. Biomass was estimated by combining C-band SAR data from Sentinel-1A satellite, vegetation indices produced using Sentinel-2A data and ground inventory plots. Along with SAR backscatter value, SAR texture images were also used as input as earlier studies had found that image texture has a correlation with vegetation biomass. Decision tree based nonlinear machine learning algorithms were used in place of parametric regression models for establishing relationship between fields measured values and remotely sensed parameters. Using random forest model with a combination of vegetation indices with SAR backscatter as predictor variables shows best result for Sal forest, with a coefficient of determination value of 0.71 and a RMSE value of 105.027 t/ha. In teak forest also best result can be found in the same combination but for stochastic gradient boosted model with a coefficient of determination value of 0.6 and a RMSE value of 79.45 t/ha. These results are mostly better than the results of other studies done for similar kind of forests. This study shows that Sentinel series satellite data has exceptional capabilities in estimating dense forest AGB and machine learning algorithms are better means to do so than parametric regression models.

  10. Using GIS to integrate FIA and remotely sensed data to estimate the invasibility of major forest types by non-native invasive plants in the Upper Midwest, USA

    Treesearch

    Zhaofei Fan; W. Keith Moser; Michael K. Crosby; Weiming Yu

    2012-01-01

    Non-native invasive plants (NNIP) are rapidly spreading into natural ecosystems such as forests in the Upper Midwest. Using the strategic inventory data from the 2005-2006 U.S. Department of Agriculture, Forest Service’s Forest Inventory and Analysis (FIA) program and forest land cover data, we estimated the regional-invasibility patterns of NNIPs for major...

  11. Detection, Emission Estimation and Risk Prediction of Forest Fires in China Using Satellite Sensors and Simulation Models in the Past Three Decades—An Overview

    PubMed Central

    Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K.

    2011-01-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status. PMID:21909297

  12. Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades--an overview.

    PubMed

    Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K

    2011-08-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status.

  13. Agriculture, forest, and range

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The findings and recommendations of the panel for developing a satellite remote-sensing global information system in the next decade are reported. User requirements were identified in five categories: (1) cultivated crops, (2) land resources, (3)water resources, (4)forest management, and (5) range management. The benefits from the applications of satellite data are discussed.

  14. A Changing Number of Alternative States in the Boreal Biome: Reproducibility Risks of Replacing Remote Sensing Products.

    PubMed

    Xu, Chi; Holmgren, Milena; Van Nes, Egbert H; Hirota, Marina; Chapin, F Stuart; Scheffer, Marten

    2015-01-01

    Publicly available remote sensing products have boosted science in many ways. The openness of these data sources suggests high reproducibility. However, as we show here, results may be specific to versions of the data products that can become unavailable as new versions are posted. We focus on remotely-sensed tree cover. Recent studies have used this public resource to detect multi-modality in tree cover in the tropical and boreal biomes. Such patterns suggest alternative stable states separated by critical tipping points. This has important implications for the potential response of these ecosystems to global climate change. For the boreal region, four distinct ecosystem states (i.e., treeless, sparse and dense woodland, and boreal forest) were previously identified by using the Collection 3 data of MODIS Vegetation Continuous Fields (VCF). Since then, the MODIS VCF product has been updated to Collection 5; and a Landsat VCF product of global tree cover at a fine spatial resolution of 30 meters has been developed. Here we compare these different remote-sensing products of tree cover to show that identification of alternative stable states in the boreal biome partly depends on the data source used. The updated MODIS data and the newer Landsat data consistently demonstrate three distinct modes around similar tree-cover values. Our analysis suggests that the boreal region has three modes: one sparsely vegetated state (treeless), one distinct 'savanna-like' state and one forest state, which could be alternative stable states. Our analysis illustrates that qualitative outcomes of studies may change fundamentally as new versions of remote sensing products are used. Scientific reproducibility thus requires that old versions remain publicly available.

  15. Three Decades of Remote Sensing Based Tropical Forests Phenological Patterns and Trends

    NASA Astrophysics Data System (ADS)

    Didan, K.

    2010-12-01

    The faint climatic seasonality of tropical rain forests is believed to be the reason these biomes lack strong and detectable seasonality. Forest seasonality is a critical element of ecosystem functions. It moderates the echo-hydrology, carbon, and nutrient exchange of the area. While deciduous forests exhibit distinct and strong seasonality, tropical forests do not, yet they play a large role in the cycling of energy and mass. Tropical forests represent a large percentage of vegetated land and their importance to the Earth system stems from their biological diversity, their habitat role, their role in regulating global weather, and the role they play in carbon storage. While Tropical forests are well buffered by their sheer size, their vulnerability to climate change is exacerbated by the human pressure. All of this begs the questions of what are the patterns and characteristic of tropical forests phenology and are there any detectable trends over the last three decades of synoptic remote sensing. These three decades comprise different episodes of droughts and an ever increasing level of human encroachment. In so far understanding the function and dynamic of these biomes, field studies continue to play a major role, but synoptic remote sensing is emerging as a viable tool to addressing the spatial and temporal scale associated with this problem. Recent studies of Brazilian rainforest with synoptic remote sensing point to a sizable seasonal signal coincident with the dry season. However, these studies were not extensive in time or space and did not look at other rainforests. Using data from AVHRR and MODIS, we generated a 30 year record of the 2 bands Enhance Vegetation Index (EVI2), and analyzed the patterns and trends of land surface phenology across all tropical forests using the homogeneous phenology cluster approach. We chose EVI because of its superior performance over these dense forests, and we selected the homogeneous phenology cluster approach to abate the noise associated with single pixel approaches. This approach reasonably assumes that land surface seasonality is homogeneous over areas with similar climate, soil, elevation gradient, aspect, and land cover. Our goal was to establish the patterns and characteristic of the land surface phenology of these biomes and to analyze their spatio-temporal trends. Strong variability was observed across the forests of South America, Central Africa and South East Asia. The South American forest exhibited the faintest seasonal signal with the strongest response to droughts. These forests show a more distinct and ever more evident dry season response. The Tropical forest of central Africa shows a more evident seasonal signal and a trend where the season is breaking into a bimodal growth mode, with two distinct and separate growth periods. The Tropical forest of South East Asia shows a more fragmented seasonality that most likely is the result of human pressure and its impact on land cover. Although we have not looked at the underlying climatic factors, we hypothesize that the seasonality of these forests are mostly shaped by the climatic patterns which would suggest that these trends will become more evident as climate continues to change.

  16. Towards Linking 3D SAR and Lidar Models with a Spatially Explicit Individual Based Forest Model

    NASA Astrophysics Data System (ADS)

    Osmanoglu, B.; Ranson, J.; Sun, G.; Armstrong, A. H.; Fischer, R.; Huth, A.

    2017-12-01

    In this study, we present a parameterization of the FORMIND individual-based gap model (IBGM)for old growth Atlantic lowland rainforest in La Selva, Costa Rica for the purpose of informing multisensor remote sensing techniques for above ground biomass techniques. The model was successfully parameterized and calibrated for the study site; results show that the simulated forest reproduces the structural complexity of Costa Rican rainforest based on comparisons with CARBONO inventory plot data. Though the simulated stem numbers (378) slightly underestimated the plot data (418), particularly for canopy dominant intermediate shade tolerant trees and shade tolerant understory trees, overall there was a 9.7% difference. Aboveground biomass (kg/ha) showed a 0.1% difference between the simulated forest and inventory plot dataset. The Costa Rica FORMIND simulation was then used to parameterize a spatially explicit (3D) SAR and lidar backscatter models. The simulated forest stands were used to generate a Look Up Table as a tractable means to estimate aboveground forest biomass for these complex forests. Various combinations of lidar and radar variables were evaluated in the LUT inversion. To test the capability of future data for estimation of forest height and biomass, we considered data of 1) L- (or P-) band polarimetric data (backscattering coefficients of HH, HV and VV); 2) L-band dual-pol repeat-pass InSAR data (HH/HV backscattering coefficients and coherences, height of scattering phase center at HH and HV using DEM or surface height from lidar data as reference); 3) P-band polarimetric InSAR data (canopy height from inversion of PolInSAR data or use the coherences and height of scattering phase center at HH, HV and VV); 4) various height indices from waveform lidar data); and 5) surface and canopy top height from photon-counting lidar data. The methods for parameterizing the remote sensing models with the IBGM and developing Look Up Tables will be discussed. Results from various remote sensing scenarios will also be presented.

  17. State resource management and role of remote sensing. [California

    NASA Technical Reports Server (NTRS)

    Johnson, H. D.

    1981-01-01

    Remote sensing by satellite can provide valuable information to state officials when making decisions regarding resources management. Portions of California's investment for Prosperity program which seem likely candidates for remote sensing include: (1) surveying vegetation type, age, and density in forests and wildlife habitats; (2) controlling fires through chaparal management; (3) monitoring wetlands and measuring ocean biomass; (4) eliminating ground water overdraught; (5) locating crops in overdraught areas, assessing soil erosion and the areas of poorly drained soils and those affected by salt; (6) monitoring coastal lands and resources; (7) changes in landscapes for recreational purposes; (8) inventorying irrigated lands; (9) classifying ground cover; (10) monitoring farmland conversion; and (11) supplying data for a statewide computerized farmlands data base.

  18. Hi-Tech for Archeology

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Remote sensing is the process of acquiring physical information from a distance, obtaining data on Earth features from a satellite or an airplane. Advanced remote sensing instruments detect radiations not visible to the ordinary camera or the human eye in several bands of the spectrum. These data are computer processed to produce multispectral images that can provide enormous amounts of information about Earth objects or phenomena. Since every object on Earth emits or reflects radiation in its own unique signature, remote sensing data can be interpreted to tell the difference between one type of vegetation and another, between densely populated urban areas and lightly populated farmland, between clear and polluted water or in the archeological application between rain forest and hidden man made structures.

  19. Evaluating multiple causes of persistent low microwave backscatter from Amazon forests after the 2005 drought.

    PubMed

    Frolking, Steve; Hagen, Stephen; Braswell, Bobby; Milliman, Tom; Herrick, Christina; Peterson, Seth; Roberts, Dar; Keller, Michael; Palace, Michael

    2017-01-01

    Amazonia has experienced large-scale regional droughts that affect forest productivity and biomass stocks. Space-borne remote sensing provides basin-wide data on impacts of meteorological anomalies, an important complement to relatively limited ground observations across the Amazon's vast and remote humid tropical forests. Morning overpass QuikScat Ku-band microwave backscatter from the forest canopy was anomalously low during the 2005 drought, relative to the full instrument record of 1999-2009, and low morning backscatter persisted for 2006-2009, after which the instrument failed. The persistent low backscatter has been suggested to be indicative of increased forest vulnerability to future drought. To better ascribe the cause of the low post-drought backscatter, we analyzed multiyear, gridded remote sensing data sets of precipitation, land surface temperature, forest cover and forest cover loss, and microwave backscatter over the 2005 drought region in the southwestern Amazon Basin (4°-12°S, 66°-76°W) and in adjacent 8°x10° regions to the north and east. We found moderate to weak correlations with the spatial distribution of persistent low backscatter for variables related to three groups of forest impacts: the 2005 drought itself, loss of forest cover, and warmer and drier dry seasons in the post-drought vs. the pre-drought years. However, these variables explained only about one quarter of the variability in depressed backscatter across the southwestern drought region. Our findings indicate that drought impact is a complex phenomenon and that better understanding can only come from more extensive ground data and/or analysis of frequent, spatially-comprehensive, high-resolution data or imagery before and after droughts.

  20. Evaluating multiple causes of persistent low microwave backscatter from Amazon forests after the 2005 drought

    PubMed Central

    Hagen, Stephen; Braswell, Bobby; Milliman, Tom; Herrick, Christina; Peterson, Seth; Roberts, Dar; Keller, Michael; Palace, Michael

    2017-01-01

    Amazonia has experienced large-scale regional droughts that affect forest productivity and biomass stocks. Space-borne remote sensing provides basin-wide data on impacts of meteorological anomalies, an important complement to relatively limited ground observations across the Amazon’s vast and remote humid tropical forests. Morning overpass QuikScat Ku-band microwave backscatter from the forest canopy was anomalously low during the 2005 drought, relative to the full instrument record of 1999–2009, and low morning backscatter persisted for 2006–2009, after which the instrument failed. The persistent low backscatter has been suggested to be indicative of increased forest vulnerability to future drought. To better ascribe the cause of the low post-drought backscatter, we analyzed multiyear, gridded remote sensing data sets of precipitation, land surface temperature, forest cover and forest cover loss, and microwave backscatter over the 2005 drought region in the southwestern Amazon Basin (4°-12°S, 66°-76°W) and in adjacent 8°x10° regions to the north and east. We found moderate to weak correlations with the spatial distribution of persistent low backscatter for variables related to three groups of forest impacts: the 2005 drought itself, loss of forest cover, and warmer and drier dry seasons in the post-drought vs. the pre-drought years. However, these variables explained only about one quarter of the variability in depressed backscatter across the southwestern drought region. Our findings indicate that drought impact is a complex phenomenon and that better understanding can only come from more extensive ground data and/or analysis of frequent, spatially-comprehensive, high-resolution data or imagery before and after droughts. PMID:28873422

  1. Recovery of forest structure and spectral properties after selective logging in lowland Bolivia.

    PubMed

    Broadbent, Eben N; Zarin, Daniel J; Asner, Gregory P; Peña-Claros, Marielos; Cooper, Amanda; Littell, Ramon

    2006-06-01

    Effective monitoring of selective logging from remotely sensed data requires an understanding of the spatial and temporal thresholds that constrain the utility of those data, as well as the structural and ecological characteristics of forest disturbances that are responsible for those constraints. Here we assess those thresholds and characteristics within the context of selective logging in the Bolivian Amazon. Our study combined field measurements of the spatial and temporal dynamics of felling gaps and skid trails ranging from <1 to 19 months following reduced-impact logging in a forest in lowland Bolivia with remote-sensing measurements from simultaneous monthly ASTER satellite overpasses. A probabilistic spectral mixture model (AutoMCU) was used to derive per-pixel fractional cover estimates of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), and soil. Results were compared with the normalized difference in vegetation index (NDVI). The forest studied had considerably lower basal area and harvest volumes than logged sites in the Brazilian Amazon where similar remote-sensing analyses have been performed. Nonetheless, individual felling-gap area was positively correlated with canopy openness, percentage liana coverage, rates of vegetation regrowth, and height of remnant NPV. Both liana growth and NPV occurred primarily in the crown zone of the felling gap, whereas exposed soil was limited to the trunk zone of the gap. In felling gaps >400 m2, NDVI, and the PV and NPV fractions, were distinguishable from unlogged forest values for up to six months after logging; felling gaps <400 m2 were distinguishable for up to three months after harvest, but we were entirely unable to distinguish skid trails from our analysis of the spectral data.

  2. NASA 1990 Multisensor Airborne Campaigns (MACs) for ecosystem and watershed studies

    NASA Technical Reports Server (NTRS)

    Wickland, Diane E.; Asrar, Ghassem; Murphy, Robert E.

    1991-01-01

    The Multisensor Airborne Campaign (MAC) focus within NASA's former Land Processes research program was conceived to achieve the following objectives: to acquire relatively complete, multisensor data sets for well-studied field sites, to add a strong remote sensing science component to ecology-, hydrology-, and geology-oriented field projects, to create a research environment that promotes strong interactions among scientists within the program, and to more efficiently utilize and compete for the NASA fleet of remote sensing aircraft. Four new MAC's were conducted in 1990: the Oregon Transect Ecosystem Research (OTTER) project along an east-west transect through central Oregon, the Forest Ecosystem Dynamics (FED) project at the Northern Experimental Forest in Howland, Maine, the MACHYDRO project in the Mahantango Creek watershed in central Pennsylvania, and the Walnut Gulch project near Tombstone, Arizona. The OTTER project is testing a model that estimates the major fluxes of carbon, nitrogen, and water through temperate coniferous forest ecosystems. The focus in the project is on short time-scale (days-year) variations in ecosystem function. The FED project is concerned with modeling vegetation changes of forest ecosystems using remotely sensed observations to extract biophysical properties of forest canopies. The focus in this project is on long time-scale (decades to millenia) changes in ecosystem structure. The MACHYDRO project is studying the role of soil moisture and its regulating effects on hydrologic processes. The focus of the study is to delineate soil moisture differences within a basin and their changes with respect to evapotranspiration, rainfall, and streamflow. The Walnut Gulch project is focused on the effects of soil moisture in the energy and water balance of arid and semiarid ecosystems and their feedbacks to the atmosphere via thermal forcing.

  3. Effects of seasonality and land-use change on carbon and water fluxes across the Amazon basin: synthesizing results from satellite-based remote sensing, towers, and models

    NASA Astrophysics Data System (ADS)

    Saleska, S.; Goncalves, L. G.; Baker, I.; Costa, M.; Poulter, B.; Christoffersen, B.; Da Rocha, H. R.; Didan, K.; Huete, A.; Imbuziero, H.; Kruijt, B.; Manzi, A.; von Randow, C.; Restrepo-Coupe, N.; Silva, R.; Tota, J.; Denning, S.; Gulden, L.; Rosero, E.; Zeng, X.

    2008-12-01

    Amazon forests play an important and complex role in the global carbon cycle, and important advances have been made in understanding Amazon processes in recent years. However, reconciling modeled mechanisms of carbon cycling with observations across scales remains a challenge. To better address this challenge, we initiated a Model intercomparison Project for the 'Large-Scale Biosphere Atmosphere Experiment in Amazonia' (LBA-MIP) to integrate modeling and observational studies for improved understanding of Amazon basin carbon cycling. Here, we report on the initial results of this project, which used the network of meteorological and climate data (sunlight, radiation, precipitation) from Amazon tower sites in forest and converted lands to drive a suite of 20 ecosystem models that simulate energy, water and CO2 fluxes. We compared model mechanisms to each other and to the relevant flux observations from those towers, as well as from satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS). Remote sensing and flux tower observations tend to show higher primary forest photosynthetic activity in the dry season than in the wet season in central Amazon, a broad pattern that is now captured in many models, but for different reasons. A reversal from the primary forest pattern was observed in areas converted to pasture, agriculture, or secondary forests, likely a consequence of the elimination of deep root access to deep soil waters which often persist through the dry season. Testing the models with observed fluxes under different land use patterns, and across different spatial scales with remote sensing, is enabling us to distinguish correct vs. incorrect model mechanisms and improve understanding of Amazon processes.

  4. The role of satellite remote sensing in REDD/MRV

    NASA Astrophysics Data System (ADS)

    Jonckheere, Inge; Sandoval, Alberto

    2010-05-01

    REDD, which stands for 'Reducing Emissions from Deforestation and Forest Degradation in Developing Countries' - is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. The UN-REDD Programme, a collaborative partnership between FAO, UNDP and UNEP launched in September 2008, supports countries to develop capacity to REDD and to implement a future REDD mechanism in a post- 2012 climate regime. The programme works at both the national and global scale, through support mechanisms for country-driven REDD strategies and international consensus-building on REDD processes. The UN-REDD Programme gathers technical teams from around the world to develop common approaches, analyses and guidelines on issues such as measurement, reporting and verification (MRV) of carbon emissions and flows, remote sensing, and greenhouse gas inventories. Within the partnership, FAO supports countries on technical issues related to forestry and the development of cost effective and credible MRV processes for emission reductions. While at the international level, it fosters improved guidance on MRV approaches, including consensus on principles and guidelines for MRV and training programmes.It provides guidance on how best to design and implement REDD, to ensure that forests continue to provide multiple benefits for livelihoods and biodiversity to societies while storing carbon at the same time. Other areas of work include national forest assessments and monitoring of in-country policy and institutional change. The outcomes about the role of satellite remote sensing technologies as a tool for monitoring, assessment, reporting and verification of carbon credits and co-benefits under the REDD mechanism are here presented.

  5. Can we reliably estimate managed forest carbon dynamics using remotely sensed data?

    NASA Astrophysics Data System (ADS)

    Smallman, Thomas Luke; Exbrayat, Jean-Francois; Bloom, A. Anthony; Williams, Mathew

    2015-04-01

    Forests are an important part of the global carbon cycle, serving as both a large store of carbon and currently as a net sink of CO2. Forest biomass varies significantly in time and space, linked to climate, soils, natural disturbance and human impacts. This variation means that the global distribution of forest biomass and their dynamics are poorly quantified. Terrestrial ecosystem models (TEMs) are rarely evaluated for their predictions of forest carbon stocks and dynamics, due to a lack of knowledge on site specific factors such as disturbance dates and / or managed interventions. In this regard, managed forests present a valuable opportunity for model calibration and improvement. Spatially explicit datasets of planting dates, species and yield classification, in combination with remote sensing data and an appropriate data assimilation (DA) framework can reduce prediction uncertainty and error. We use a Baysian approach to calibrate the data assimilation linked ecosystem carbon (DALEC) model using a Metropolis Hastings-Markov Chain Monte Carlo (MH-MCMC) framework. Forest management information is incorporated into the data assimilation framework as part of ecological and dynamic constraints (EDCs). The key advantage here is that DALEC simulates a full carbon balance, not just the living biomass, and that both parameter and prediction uncertainties are estimated as part of the DA analysis. DALEC has been calibrated at two managed forests, in the USA (Pinus taeda; Duke Forest) and UK (Picea sitchensis; Griffin Forest). At each site DALEC is calibrated twice (exp1 & exp2). Both calibrations (exp1 & exp2) assimilated MODIS LAI and HWSD estimates of soil carbon stored in soil organic matter, in addition to common management information and prior knowledge included in parameter priors and the EDCs. Calibration exp1 also utilises multiple site level estimates of carbon storage in multiple pools. By comparing simulations we determine the impact of site-level observations on uncertainty and error on predictions, and which observations are key to constraining ecosystem processes. Preliminary simulations indicate that DALEC calibration exp1 accurately simulated the assimilated observations for forest and soil carbon stock estimates including, critically for forestry, standing wood stocks (R2 = 0.92, bias = -4.46 MgC ha-1, RMSE = 5.80 MgC ha-1). The results from exp1 indicate the model is able to find parameters that are both consistent with EDC and observations. In the absence of site-level stock observations (exp2) DALEC accurately estimates foliage and fine root pools, while the median estimate of above ground litter and wood stocks (R2 = 0.92, bias = -48.30 MgC ha-1, RMSE = 50.30 MgC ha-1) are over- and underestimated respectively, site-level observations are within model uncertainty. These results indicate that we can estimate managed forests dynamics using remotely sensed data, particularly as remotely sensed above ground biomass maps become available to provide constraint to correct biases in woody accumulation.

  6. Modeling Forest Structure and Vascular Plant Diversity in Piedmont Forests

    NASA Astrophysics Data System (ADS)

    Hakkenberg, C.

    2014-12-01

    When the interacting stressors of climate change and land cover/land use change (LCLUC) overwhelm ecosystem resilience to environmental and climatic variability, forest ecosystems are at increased risk of regime shifts and hyperdynamism in process rates. To meet the growing range of novel biotic and environmental stressors on human-impacted ecosystems, the maintenance of taxonomic diversity and functional redundancy in metacommunities has been proposed as a risk spreading measure ensuring that species critical to landscape ecosystem functioning are available for recruitment as local systems respond to novel conditions. This research is the first in a multi-part study to establish a dynamic, predictive model of the spatio-temporal dynamics of vascular plant diversity in North Carolina Piedmont mixed forests using remotely sensed data inputs. While remote sensing technologies are optimally suited to monitor LCLUC over large areas, direct approaches to the remote measurement of plant diversity remain a challenge. This study tests the efficacy of predicting indices of vascular plant diversity using remotely derived measures of forest structural heterogeneity from aerial LiDAR and high spatial resolution broadband optical imagery in addition to derived topo-environmental variables. Diversity distribution modelling of this sort is predicated upon the idea that environmental filtering of dispersing species help define fine-scale (permeable) environmental envelopes within which biotic structural and compositional factors drive competitive interactions that, in addition to background stochasticity, determine fine-scale alpha diversity. Results reveal that over a range of Piedmont forest communities, increasing structural complexity is positively correlated with measures of plant diversity, though the nature of this relationship varies by environmental conditions and community type. The diversity distribution model is parameterized and cross-validated using three high quality vegetation survey datasets, including Duke Forest Korstian permanent plots, Forest Inventory Analysis (FIA), and the scale transgressive, nested module Carolina Vegetation Survey (CVS).

  7. Scaling forest phenology from trees to the landscape using an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Klosterman, S.; Melaas, E. K.; Martinez, A.; Richardson, A. D.

    2013-12-01

    Vegetation phenology monitoring has yielded a decades-long archive documenting the impacts of global change on the biosphere. However, the coarse spatial resolution of remote sensing obscures the organismic level processes driving phenology, while point measurements on the ground limit the extent of observation. Unmanned aerial vehicles (UAVs) enable low altitude remote sensing at higher spatial and temporal resolution than available from space borne platforms, and have the potential to elucidate the links between organism scale processes and landscape scale analyses of terrestrial phenology. This project demonstrates the use of a low cost multirotor UAV, equipped with a consumer grade digital camera, for observation of deciduous forest phenology and comparison to ground- and tower-based data as well as remote sensing. The UAV was flown approximately every five days during the spring green-up period in 2013, to obtain aerial photography over an area encompassing a 250m resolution MODIS (Moderate Resolution Imaging Spectroradiometer) pixel at Harvard Forest in central Massachusetts, USA. The imagery was georeferenced and tree crowns were identified using a detailed species map of the study area. Image processing routines were used to extract canopy 'greenness' time series, which were used to calculate phenology transition dates corresponding to early, middle, and late stages of spring green-up for the dominant canopy trees. Aggregated species level phenology estimates from the UAV data, including the mean and variance of phenology transition dates within species in the study area, were compared to model predictions based on visual assessment of a smaller sample size of individual trees, indicating the extent to which limited ground observations represent the larger landscape. At an intermediate scale, the UAV data was compared to data from repeat digital photography, integrating over larger portions of canopy within and near the study area, as a validation step and to see how well tower-based approaches characterize the surrounding landscape. Finally, UAV data was compared to MODIS data to determine how tree crowns within a remote sensing pixel combine to create the aggregate landscape phenology measured by remote sensing, using an area weighted average of the phenology of all dominant crowns.

  8. Using indigenous knowledge to link hyper-temporal land cover mapping with land use in the Venezuelan Amazon: "The Forest Pulse".

    PubMed

    Olivero, Jesús; Ferri, Francisco; Acevedo, Pelayo; Lobo, Jorge M; Fa, John E; Farfán, Miguel Á; Romero, David; Real, Raimundo

    2016-12-01

    Remote sensing and traditional ecological knowledge (TEK) can be combined to advance conservation of remote tropical regions, e.g. Amazonia, where intensive in situ surveys are often not possible. Integrating TEK into monitoring and management of these areas allows for community participation, as well as for offering novel insights into sustainable resource use. In this study, we developed a 250 m resolution land-cover map of the Western Guyana Shield (Venezuela) based on remote sensing, and used TEK to validate its relevance for indigenous livelihoods and land uses. We first employed a hyper-temporal remotely sensed vegetation index to derive a land classification system. During a 1 300 km, eight day fluvial expedition in roadless areas in the Amazonas State (Venezuela), we visited six indigenous communities who provided geo-referenced data on hunting, fishing and farming activities. We overlaid these TEK data onto the land classification map, to link land classes with indigenous use. We characterized land classes using patterns of greenness temporal change and topo-hydrological information, and proposed 12 land-cover types, grouped into five main landscapes: 1) water bodies; 2) open lands/forest edges; 3) evergreen forests; 4) submontane semideciduous forests, and 5) cloud forests. Each land cover class was identified with a pulsating profile describing temporal changes in greenness, hence we labelled our map as "The Forest Pulse". These greenness profiles showed a slightly increasing trend, for the period 2000 to 2009, in the land classes representing grassland and scrubland, and a slightly decreasing trend in the classes representing forests. This finding is consistent with a gain in carbon in grassland as a consequence of climate warming, and also with some loss of vegetation in the forests. Thus, our classification shows potential to assess future effects of climate change on landscape. Several classes were significantly connected with agriculture, fishing, overall hunting, and more specifically the hunting of primates, Mazama americana, Dasyprocta fuliginosa, and Tayassu pecari. Our results showed that TEK-based approaches can serve as a basis for validating the livelihood relevance of landscapes in high-value conservation areas, which can form the basis for furthering the management of natural resources in these regions.

  9. An integrated remote sensing and GIS approach for monitoring areas affected by selective logging: A case study in northern Mato Grosso, Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Grecchi, Rosana Cristina; Beuchle, René; Shimabukuro, Yosio Edemir; Aragão, Luiz E. O. C.; Arai, Egidio; Simonetti, Dario; Achard, Frédéric

    2017-09-01

    Forest cover disturbances due to processes such as logging and forest fires are a widespread issue especially in the tropics, and have heavily affected forest biomass and functioning in the Brazilian Amazon in the past decades. Satellite remote sensing has played a key role for assessing logging activities in this region; however, there are still remaining challenges regarding the quantification and monitoring of these processes affecting forested lands. In this study, we propose a new method for monitoring areas affected by selective logging in one of the hotspots of Mato Grosso state in the Brazilian Amazon, based on a combination of object-based and pixel-based classification approaches applied on remote sensing data. Logging intensity and changes over time are assessed within grid cells of 300 m × 300 m spatial resolution. Our method encompassed three main steps: (1) mapping forest/non-forest areas through an object-based classification approach applied to a temporal series of Landsat images during the period 2000-2015, (2) mapping yearly logging activities from soil fraction images on the same Landsat data series, and (3) integrating information from previous steps within a regular grid-cell of 300 m × 300 m in order to monitor disturbance intensities over this 15-years period. The overall accuracy of the baseline forest/non-forest mask (year 2000) and of the undisturbed vs disturbed forest (for selected years) were 93% and 84% respectively. Our results indicate that annual forest disturbance rates, mainly due to logging activities, were higher than annual deforestation rates during the whole period of study. The deforested areas correspond to circa 25% of the areas affected by forest disturbances. Deforestation rates were highest from 2001 to 2005 and then decreased considerably after 2006. In contrast, the annual forest disturbance rates show high temporal variability with a slow decrease over the 15-year period, resulting in a significant increase of the ratio between disturbed and deforested areas. Although the majority of the areas, which have been affected by selective logging during the period 2000-2014, were not deforested by 2015, more than 70% of the deforested areas in 2015 had been at least once identified as disturbed forest during that period.

  10. An integrated remote sensing and GIS approach for monitoring areas affected by selective logging: A case study in northern Mato Grosso, Brazilian Amazon.

    PubMed

    Grecchi, Rosana Cristina; Beuchle, René; Shimabukuro, Yosio Edemir; Aragão, Luiz E O C; Arai, Egidio; Simonetti, Dario; Achard, Frédéric

    2017-09-01

    Forest cover disturbances due to processes such as logging and forest fires are a widespread issue especially in the tropics, and have heavily affected forest biomass and functioning in the Brazilian Amazon in the past decades. Satellite remote sensing has played a key role for assessing logging activities in this region; however, there are still remaining challenges regarding the quantification and monitoring of these processes affecting forested lands. In this study, we propose a new method for monitoring areas affected by selective logging in one of the hotspots of Mato Grosso state in the Brazilian Amazon, based on a combination of object-based and pixel-based classification approaches applied on remote sensing data. Logging intensity and changes over time are assessed within grid cells of 300 m × 300 m spatial resolution. Our method encompassed three main steps: (1) mapping forest/non-forest areas through an object-based classification approach applied to a temporal series of Landsat images during the period 2000-2015, (2) mapping yearly logging activities from soil fraction images on the same Landsat data series, and (3) integrating information from previous steps within a regular grid-cell of 300 m × 300 m in order to monitor disturbance intensities over this 15-years period. The overall accuracy of the baseline forest/non-forest mask (year 2000) and of the undisturbed vs disturbed forest (for selected years) were 93% and 84% respectively. Our results indicate that annual forest disturbance rates, mainly due to logging activities, were higher than annual deforestation rates during the whole period of study. The deforested areas correspond to circa 25% of the areas affected by forest disturbances. Deforestation rates were highest from 2001 to 2005 and then decreased considerably after 2006. In contrast, the annual forest disturbance rates show high temporal variability with a slow decrease over the 15-year period, resulting in a significant increase of the ratio between disturbed and deforested areas. Although the majority of the areas, which have been affected by selective logging during the period 2000-2014, were not deforested by 2015, more than 70% of the deforested areas in 2015 had been at least once identified as disturbed forest during that period.

  11. Tracking forest cover change of Margalla Hills over a period of two decades (1992-2011): A remote sensing perspective

    NASA Astrophysics Data System (ADS)

    Khalid, Noora; Ullah, Saleem

    2016-07-01

    Forests play a critical role in balancing the ecological soundness of a region and in the facilitation of essential forest resources. Depletion of forest cover is a serious environmental problem throughout the world including Pakistan where a striking degradation of forest reserves has been an ecological concern for quite some time. Remote sensing techniques have been used to monitor land use and forest cover changes. The present study aims at exploring the potential impacts of climate change in the decline of forest reserves on Margalla Hills National Park (MHNP), since it remains the primary culprit behind this depletion. Landsat images for 1992, 2000 and 2011 were manipulated for the spatial and temporal analysis, interpretation and computation of the change and shift that has occurred over the past two decades. The analysis revealed a great increase in the built-up area, barren soil and agricultural land. Though other classes such as water body, lower vegetation, scrub and conifer forest showed a diminishing trend. The rise in temperature and relative humidity, the depletion in annual precipitation, frequent wild fires and the boost in urbanization and agricultural practices are the climatic conditions and causative agents chiefly responsible for the decline shown by the vegetation of the area. The degrading condition of the forest is below par and requires conservation practices to be carried out in order to avoid ecological disturbances.

  12. NASA LCLUC Program: An Integrated Forest Monitoring System for Central Africa

    NASA Technical Reports Server (NTRS)

    Laporte, Nadine; LeMoigne, Jacqueline; Elkan, Paul; Desmet, Olivier; Paget, Dominique; Pumptre, Andrew; Gouala, Patrice; Honzack, Miro; Maisels, Fiona

    2004-01-01

    Central Africa has the second largest unfragmented block of tropical rain forest in the world; it is also one of the largest carbon and biodiversity reservoirs. With nearly one-third of the forest currently allocated for logging, the region is poised to undergo extensive land-use change. Through the mapping of the forests, our Integrated Forest Monitoring System for Central Africa (INFORMS) project aims to monitor habitat alteration, support biodiversity conservation, and promote better land-use planning and forest management. Designed as an interdisciplinary project, its goal is to integrate data acquired from satellites with field observations from forest inventories, wildlife surveys, and socio-economic studies to map and monitor forest resources. This project also emphasizes on collaboration and coordination with international, regional, national, and local partners-including non-profit, governmental, and commercial sectors. This project has been focused on developing remote sensing products for the needs of forest conservation and management, insuring that research findings are incorporated in forest management plans at the national level. The societal impact of INFORMS can be also appreciated through the development of a regional remote sensing network in central Africa. With a regional office in Kinshasa, (www.OSFAC.org), the contribution to the development of forest management plans for 1.5 million hectares of forests in northern Republic of Congo (www.tt-timber.com), and the monitoring of park encroachments in the Albertine region (Uganda and DRC) (www.albertinerift.org).

  13. Airborne remote sensing of forest biomes

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  14. Remote Sensing Techniques for Rapid Assessment of Forest Damage Caused by Catastrophic Climatic Events, NA-TP-01-01

    Treesearch

    William Ciesla; William Frament; Margaret Miller-Weeks

    2001-01-01

    Catastrophic climatic events such as hurricanes, tornadoes, and ice storms can cause billions of dollars in damage to infrastructure and personal property, loss of lives, and damage to natural resources. Forests are especially susceptible to these events. The following is a list of recent climatic events in North America that have had devastating effects on forest...

  15. Predicting stem total and assortment volumes in an industrial Pinus taeda L. forest plantation using airborne laser scanning data and random forest

    Treesearch

    Carlos Alberto Silva; Carine Klauberg; Andrew Thomas Hudak; Lee Alexander Vierling; Wan Shafrina Wan Mohd Jaafar; Midhun Mohan; Mariano Garcia; Antonio Ferraz; Adrian Cardil; Sassan Saatchi

    2017-01-01

    Improvements in the management of pine plantations result in multiple industrial and environmental benefits. Remote sensing techniques can dramatically increase the efficiency of plantation management by reducing or replacing time-consuming field sampling. We tested the utility and accuracy of combining field and airborne lidar data with Random Forest, a supervised...

  16. Fire evolution in the radioactive forests of Ukraine and Belarus: future risks for the population and the environment

    Treesearch

    N. Evangeliou; Y. Balkanski; A. Cozic; WeiMin Hao; F. Mouillot; K. Thonicke; R. Paugam; S. Zibtsev; T. A. Mousseau; R. Wang; B. Poulter; A. Petkov; C. Yue; P. Cadule; B. Koffi; J. W. Kaiser; A. P. Moller

    2015-01-01

    In this paper, we analyze the current and future status of forests in Ukraine and Belarus that were contaminated after the nuclear disaster in 1986. Using several models, together with remote-sensing data and observations, we studied how climate change in these forests may affect fire regimes. We investigated the possibility of 137Cs displacement over Europe...

  17. Monitoring oak-hickory forest change during an unprecedented red oak borer outbreak in the Ozark Mountains: 1990 to 2006

    Treesearch

    Joshua S. Jones; Jason A. Tullis; Laurel J. Haavik; James M. Guldin; Fred M. Stephen

    2014-01-01

    Upland oak-hickory forests in Arkansas, Missouri, and Oklahoma experienced oak decline in the late 1990s and early 2000s during an unprecedented outbreak of a native beetle, the red oak borer (ROB), Enaphalodes rufulus (Haldeman). Although remote sensing supports frequent monitoring of continuously changing forests, comparable in situ observations are critical for...

  18. Estimating aboveground carbon stocks of a forest affected by mountain pine beetle in Idaho using lidar and multispectral imagery

    Treesearch

    Benjamin C. Bright; Jeffrey A. Hicke; Andrew T. Hudak

    2012-01-01

    Mountain pine beetle outbreaks have caused widespread tree mortality in North American forests in recent decades, yet few studies have documented impacts on carbon cycling. In particular, landscape scales intermediate between stands and regions have not been well studied. Remote sensing is an effective tool for quantifying impacts of insect outbreaks on forest...

  19. A comparison of accuracy and cost of LiDAR versus stand exam data for landscape management on the Malheur National Forest

    Treesearch

    Susan Hummel; A. T. Hudak; E. H. Uebler; M. J. Falkowski; K. A. Megown

    2011-01-01

    Foresters are increasingly interested in remote sensing data because they provide an overview of landscape conditions, which is impractical with field sample data alone. Light Detection and Ranging (LiDAR) provides exceptional spatial detail of forest structure, but difficulties in processing LiDAR data have limited their application beyond the research community....

  20. Assessing the influence of flight parameters, interferometric processing, slope and canopy density on the accuracy of X-band IFSAR-derived forest canopy height models.

    Treesearch

    H.-E. Andersen; R.J. McGaughey; S.E. Reutebuch

    2008-01-01

    High resolution, active remote sensing technologies, such as interferometric synthetic aperture radar (IFSAR) and airborne laser scanning (LIDAR) have the capability to provide forest managers with direct measurements of 3-dimensional forest canopy surface structure. Although LIDAR systems can provide highly accurate measurements of canopy and terrain surfaces, high-...

  1. Remote sensing science for the Nineties; Proceedings of IGARSS '90 - 10th Annual International Geoscience and Remote Sensing Symposium, University of Maryland, College Park, May 20-24, 1990. Vols. 1, 2, & 3

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Various papers on remote sensing (RS) for the nineties are presented. The general topics addressed include: subsurface methods, radar scattering, oceanography, microwave models, atmospheric correction, passive microwave systems, RS in tropical forests, moderate resolution land analysis, SAR geometry and SNR improvement, image analysis, inversion and signal processing for geoscience, surface scattering, rain measurements, sensor calibration, wind measurements, terrestrial ecology, agriculture, geometric registration, subsurface sediment geology, radar modulation mechanisms, radar ocean scattering, SAR calibration, airborne radar systems, water vapor retrieval, forest ecosystem dynamics, land analysis, multisensor data fusion. Also considered are: geologic RS, RS sensor optical measurements, RS of snow, temperature retrieval, vegetation structure, global change, artificial intelligence, SAR processing techniques, geologic RS field experiment, stochastic modeling, topography and Digital Elevation model, SAR ocean waves, spaceborne lidar and optical, sea ice field measurements, millimeter waves, advanced spectroscopy, spatial analysis and data compression, SAR polarimetry techniques. Also discussed are: plant canopy modeling, optical RS techniques, optical and IR oceanography, soil moisture, sea ice back scattering, lightning cloud measurements, spatial textural analysis, SAR systems and techniques, active microwave sensing, lidar and optical, radar scatterometry, RS of estuaries, vegetation modeling, RS systems, EOS/SAR Alaska, applications for developing countries, SAR speckle and texture.

  2. Using LiDAR data to measure the 3D green biomass of Beijing urban forest in China.

    PubMed

    He, Cheng; Convertino, Matteo; Feng, Zhongke; Zhang, Siyu

    2013-01-01

    The purpose of the paper is to find a new approach to measure 3D green biomass of urban forest and to testify its precision. In this study, the 3D green biomass could be acquired on basis of a remote sensing inversion model in which each standing wood was first scanned by Terrestrial Laser Scanner to catch its point cloud data, then the point cloud picture was opened in a digital mapping data acquisition system to get the elevation in an independent coordinate, and at last the individual volume captured was associated with the remote sensing image in SPOT5(System Probatoired'Observation dela Tarre)by means of such tools as SPSS (Statistical Product and Service Solutions), GIS (Geographic Information System), RS (Remote Sensing) and spatial analysis software (FARO SCENE and Geomagic studio11). The results showed that the 3D green biomass of Beijing urban forest was 399.1295 million m(3), of which coniferous was 28.7871 million m(3) and broad-leaf was 370.3424 million m(3). The accuracy of 3D green biomass was over 85%, comparison with the values from 235 field sample data in a typical sampling way. This suggested that the precision done by the 3D forest green biomass based on the image in SPOT5 could meet requirements. This represents an improvement over the conventional method because it not only provides a basis to evalue indices of Beijing urban greenings, but also introduces a new technique to assess 3D green biomass in other cities.

  3. Using LiDAR Data to Measure the 3D Green Biomass of Beijing Urban Forest in China

    PubMed Central

    He, Cheng; Convertino, Matteo; Feng, Zhongke; Zhang, Siyu

    2013-01-01

    The purpose of the paper is to find a new approach to measure 3D green biomass of urban forest and to testify its precision. In this study, the 3D green biomass could be acquired on basis of a remote sensing inversion model in which each standing wood was first scanned by Terrestrial Laser Scanner to catch its point cloud data, then the point cloud picture was opened in a digital mapping data acquisition system to get the elevation in an independent coordinate, and at last the individual volume captured was associated with the remote sensing image in SPOT5(System Probatoired'Observation dela Tarre)by means of such tools as SPSS (Statistical Product and Service Solutions), GIS (Geographic Information System), RS (Remote Sensing) and spatial analysis software (FARO SCENE and Geomagic studio11). The results showed that the 3D green biomass of Beijing urban forest was 399.1295 million m3, of which coniferous was 28.7871 million m3 and broad-leaf was 370.3424 million m3. The accuracy of 3D green biomass was over 85%, comparison with the values from 235 field sample data in a typical sampling way. This suggested that the precision done by the 3D forest green biomass based on the image in SPOT5 could meet requirements. This represents an improvement over the conventional method because it not only provides a basis to evalue indices of Beijing urban greenings, but also introduces a new technique to assess 3D green biomass in other cities. PMID:24146792

  4. Mapping of government land encroachment in Cameron Highlands using multiple remote sensing datasets

    NASA Astrophysics Data System (ADS)

    Zin, M. H. M.; Ahmad, B.

    2014-02-01

    The cold and refreshing highland weather is one of the factors that give impact to socio-economic growth in Cameron Highlands. This unique weather of the highland surrounded by tropical rain forest can only be found in a few places in Malaysia. It makes this place a famous tourism attraction and also provides a very suitable temperature for agriculture activities. Thus it makes agriculture such as tea plantation, vegetable, fruits and flowers one of the biggest economic activities in Cameron Highlands. However unauthorized agriculture activities are rampant. The government land, mostly forest area have been encroached by farmers, in many cases indiscriminately cutting down trees and hill slopes. This study is meant to detect and assess this encroachment using multiple remote sensing datasets. The datasets were used together with cadastral parcel data where survey lines describe property boundary, pieces of land are subdivided into lots of government and private. The general maximum likelihood classification method was used on remote sensing image to classify the land-cover in the study area. Ground truth data from field observation were used to assess the accuracy of the classification. Cadastral parcel data was overlaid on the classification map in order to detect the encroachment area. The result of this study shows that there is a land cover change of 93.535 ha in the government land of the study area between years 2001 to 2010, nevertheless almost no encroachment took place in the studied forest reserve area. The result of this study will be useful for the authority in monitoring and managing the forest.

  5. Remote sensing information for fire management and fire effects assessment

    NASA Astrophysics Data System (ADS)

    Chuvieco, Emilio; Kasischke, Eric S.

    2007-03-01

    Over the past decade, much research has been carried out on the utilization of advanced geospatial technologies (remote sensing and geographic information systems) in the fire science and fire management disciplines. Recent advances in these technologies were the focus of a workshop sponsored by the EARSEL special interest group (SIG) on forest fires (FF-SIG) and the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) fire implementation team. Here we summarize the framework and the key findings of papers submitted from this meeting and presented in this special section. These papers focus on the latest advances for near real-time monitoring of active fires, prediction of fire hazards and danger, monitoring of fuel moisture, mapping of fuel types, and postfire assessment of the impacts from fires.

  6. [Detecting the moisture content of forest surface soil based on the microwave remote sensing technology.

    PubMed

    Li, Ming Ze; Gao, Yuan Ke; Di, Xue Ying; Fan, Wen Yi

    2016-03-01

    The moisture content of forest surface soil is an important parameter in forest ecosystems. It is practically significant for forest ecosystem related research to use microwave remote sensing technology for rapid and accurate estimation of the moisture content of forest surface soil. With the aid of TDR-300 soil moisture content measuring instrument, the moisture contents of forest surface soils of 120 sample plots at Tahe Forestry Bureau of Daxing'anling region in Heilongjiang Province were measured. Taking the moisture content of forest surface soil as the dependent variable and the polarization decomposition parameters of C band Quad-pol SAR data as independent variables, two types of quantitative estimation models (multilinear regression model and BP-neural network model) for predicting moisture content of forest surface soils were developed. The spatial distribution of moisture content of forest surface soil on the regional scale was then derived with model inversion. Results showed that the model precision was 86.0% and 89.4% with RMSE of 3.0% and 2.7% for the multilinear regression model and the BP-neural network model, respectively. It indicated that the BP-neural network model had a better performance than the multilinear regression model in quantitative estimation of the moisture content of forest surface soil. The spatial distribution of forest surface soil moisture content in the study area was then obtained by using the BP neural network model simulation with the Quad-pol SAR data.

  7. Monitoring and Modeling Carbon Dynamics at a Network of Intensive Sites in the USA and Mexico

    NASA Astrophysics Data System (ADS)

    Birdsey, R.; Wayson, C.; Johnson, K. D.; Pan, Y.; Angeles, G.; De Jong, B. H.; Andrade, J. L.; Dai, Z.

    2013-05-01

    The Forest Services of the USA and Mexico, supported by NASA and USAID, have begun to establish a network of intensive forest carbon monitoring sites. These sites are used for research and teaching, developing forest management practices, and forging links to the needs of communities. Several of the sites have installed eddy flux towers to basic meteorology data and daily estimates of forest carbon uptake and release, the processes that determine forest growth. Field sampling locations at each site provide estimates of forest biomass and carbon stocks, and monitor forest dynamic processes such as growth and mortality rates. Remote sensing facilitates scaling up to the surrounding landscapes. The sites support information requirements for implementing programs such as Reducing Emissions from Deforestation and Forest Degradation (REDD+), enabling communities to receive payments for ecosystem services such as reduced carbon emissions or improved forest management. In addition to providing benchmark data for REDD+ projects, the sites are valuable for validating state and national estimates from satellite remote sensing and the national forest inventory. Data from the sites provide parameters for forest models that support strategic management analysis, and support student training and graduate projects. The intensive monitoring sites may be a model for other countries in Latin America. Coordination among sites in the USA, Mexico and other Latin American countries can ensure harmonization of approaches and data, and share experiences and knowledge among countries with emerging opportunities for implementing REDD+ and other conservation programs.

  8. Satellite passive microwave remote sensing for estimating diurnal variation of leaf water content, as a proxy of evapotranspiration, in the Dry Chaco Forest, Argentina

    NASA Astrophysics Data System (ADS)

    Barraza Bernadas, V.; Grings, F.; Ferrazzoli, P.; Carbajo, A.; Fernandez, R.; Karszenbaum, H.

    2012-12-01

    Evapotranspiration (ET) is a key component of water cycle, which is strongly linked with environmental condition and vegetation functioning. Since it is very difficult to robustly estimate it from remote sensing data at regional scale it is usually inferred from other proxies using water balance. This work describes a procedure to estimate ET in a dry forest by monitoring diurnal variation of leaf water content (LWC), using multitemporal passive microwave remote sensing observations. Hourly observations provide the opportunity to monitor repetitive diurnal variations of passive microwave observations, which can only be accounted by changes in LWC (which is itself related to water vapor that enters to the atmosphere from land surface). To this end, we calculated the vegetation frequency index (FI) as FI= 2*(TBKa-TBX)/ ((TBKa +TBX)), where TBKa and TBX indicate brightness temperatures at 37 and 10.6 GHz respectively. There is both theoretical and experimental evidence that link this index to microwave to LWC. The index was computed for vertical polarization, because it presents higher correlation with vegetation state. At diurnal temporal scale, changes in LWC are commonly very small. Nevertheless, it was previously shown that passive remote sensing data (FI computed using Ku and Ka bands) acquired at different hours can be used to estimate the seasonal changes in ET. In this work, we present a procedure based on the hourly changes of FI, which are interpreted as changes in LWC. In order to present a quantitative estimation, the discrete forest model described in (Ferrazzoli and Guerriero, 1996) has been used to simulate the variations of FI with LWC. To illustrate the procedure, AMSR-E and WINDSAT data from 2007-2009 at X and Ka bands were used, and up to four observations per day at four different local times (2.30 am, 7.00 am, 2.30 pm and 7.00 pm) were analyzed. The region addressed is the area of the Dry Chaco forest located in Bermejo River Basin in Argentina (22-27°S, and 58-66°W).This area is characterized for being an open dry forest (20% of tree crown cover), with mean annual temperatures between 20 and 22 °C, mean summer temperatures between 24 and 27 °C and minimal annual rainfall (500 mm). The annual behavior of diurnal LWC shows a range increase in summer and a decrease in winter, being correlated with vegetation annual growing season (foliation/defoliation). For summertime, our results show a decrease of FI values from 7.00 am to 2.30 pm and an increase between 2.30 pm to 7.00 pm. According to the interaction model, these observed changes of FI corresponded to an increase in LWC from ~0.4 g/g to 0.5 g/g in six hours (7.00 am - 2.30 pm) and then a similar decrease for the 2.30 pm to 7.00 pm period. We hypothesize that this daily variations (an increase of LWC during the sunny hours) could be related to more water being available at the leaves, to cope with evaporation needs in order to achieve positive diurnal water balance during the hot diurnal hours. This could be a specific adaptation to high temperature and drought environmental conditions, like the ones present in Chaco. Ferrazzoli P., Guerriero L.,(1996)"Passive microwave remote sensing of forests: a model investigation", IEEE Transactions on Geoscience and Remote Sensing, vol.34, n. 2, pp.433-443.

  9. Aerial detection surveys in the United States

    Treesearch

    E. W. Johnson; D. Wittwer

    2006-01-01

    Aerial detection surveys, also known as aerial sketchmapping, is a remote sensing technique of observing forest change events from an aircraft and documenting them manually onto a map. Data from aerial surveys have become an important component of the Forest Health Monitoring, a national program designed to determine the status, changes, and trends in indicators of...

  10. Simulating vegetation controls on hurricane-induced shallow landslides with a distributed ecohydrological model

    Treesearch

    Taehee Hwang; Lawrence E. Band; T. C. Hales; Chelcy F. Miniat; James M. Vose; Paul V. Bolstad; Brian Miles; Katie Price

    2015-01-01

    The spatial distribution of shallow landslides in steep forested mountains is strongly controlled by aboveground and belowground biomass, including the distribution of root cohesion. While remote sensing of aboveground canopy properties is relatively advanced, estimating the spatial distribution of root cohesion at the forest landscape scale remains challenging. We...

  11. Integrating remote sensing, GIS and dynamic models for landscape-level simulation of forest insect disturbance

    USDA-ARS?s Scientific Manuscript database

    Cellular automata (CA) is a powerful tool in modeling the evolution of macroscopic scale phenomena as it couples time, space, and variable together while remaining in a simplified form. However, such application has remained challenging in landscape-level chronic forest insect epidemics due to the h...

  12. Simulating spatial and temporal context of forest management using hypothetical landscapes

    Treesearch

    Eric J. Gustafson; Thomas R. Crow

    1998-01-01

    Spatially explicit models that combine remote sensing with geographic information systems (GIS) offer great promise to land managers because they consider the arrangement of landscape elements in time and space. Their visual and geographic nature facilitate the comparison of alternative landscape designs. Among various activities associated with forest management,...

  13. Characterizing forest fragments in boreal, temperate, and tropical ecosystems

    Treesearch

    Arjan J. H. Meddens; Andrew T. Hudak; Jeffrey S. Evans; William A. Gould; Grizelle Gonzalez

    2008-01-01

    An increased ability to analyze landscapes in a spatial manner through the use of remote sensing leads to improved capabilities for quantifying human-induced forest fragmentation. Developments of spatially explicit methods in landscape analyses are emerging. In this paper, the image delineation software program eCognition and the spatial pattern analysis program...

  14. Predicting Post-Fire Severity Effects in Coast Redwood Forests Using FARSITE

    Treesearch

    Hugh Scanlon; Yana Valachovic

    2006-01-01

    Assessing post-fire impacts in coast redwood (Sequoia sempervirens) forests can be difficult due to rough terrain, limited roads, and dense canopies. Remote sensing techniques can identify overstory damage, locating high intensity damage areas, although this can underestimate the effects on the understory vegetation and soils. To accurately assess...

  15. Sensitivity of FIA Volume Estimates to Changes in Stratum Weights and Number of Strata

    Treesearch

    James A. Westfall; Michael Hoppus

    2005-01-01

    In the Northeast region, the USDA Forest Service Forest Inventory and Analysis (FIA) program utilizes stratified sampling techniques to improve the precision of population estimates. Recently, interpretation of aerial photographs was replaced with classified remotely sensed imagery to determine stratum weights and plot stratum assignments. However, stratum weights...

  16. Estimating leaf area and above-ground biomass of forest regeneration areas using a corrected normalized difference vegetation index

    Treesearch

    Tommy L. Coleman; James H. Miller; Bruce R. Zutter

    1992-01-01

    The objective of this study was to investigate the regression relations between vegetation indices derived from remotely-sensed data of single and mixed forest regeneration plots. Loblolly pine (Pinus taeda L.) seedlings, sweelgum (Liquidambar styraciflua L.) seedlings and broomsedge (Andropogon virginicus L.)...

  17. Analyzing Red and Gray Stages of Bark Beetle Attack in the San Bernardino National Forest Using Remote Sensing

    NASA Astrophysics Data System (ADS)

    Morgan, Andy J.

    The San Bernardino National Forest (SBNF) has experienced periods of high, concentrated bark beetle epidemics in the late 1990's and into the 2000's. This increased activity has caused huge amounts of forest loss, resulting from disease introduced by bark beetles. Using remote sensing techniques and Landsat Thematic Mapper 5 (TM5) imagery, the spread of bark beetle diseased trees is mapped over a period from 1998 to 2008. Acreage of two attack stages (red and gray) were calculated from a level sliced classification method developed on data training sites. In each image using Normalized Difference Vegetation Index (NDVI) is the driver of forest health classifications. The results of the analysis are classification maps for each year, red acreage estimated for each study year, and gray attack acreage estimated for each study year. Additionally, for the period of 2001-2004, acreage was compared to those reported by the USDA with a thirteen percent lower mortality total in comparison to USDA federal land and a thirty-two percent lower total mortality (federal and non-federal) land in the SBNF.

  18. Forest to agriculture conversion in southern Belize: Implications for migrant land birds

    USGS Publications Warehouse

    Spruce, J.P.; Dowell, B.A.; Robbins, C.S.; Sader, S.A.; Doyle, Jamie K.; Schelhas, John

    1993-01-01

    Central America offers a suite of neotropical habitats vital to overwintering migrant land birds. The recent decline of many forest dwelling avian migrants is believed to be related in part to neotropical deforestation and land use change. However, spatio-temporal trends in neotropical habitat availability and avian migrant habitat use are largely unknown. Such information is needed to assess the impact of agriculture conversion on migrant land birds. In response, the USDI Fish and Wildlife Service and the University of Maine began a cooperative study in 1988 which applies remote sensing and field surveys to determine current habitat availability and avian migrant habitat use. Study sites include areas in Belize, Costa Rica, Guatemala and southern Mexico. Visual assessment of Landsat TM imagery indicates southern Belize forests are fragmented by various agricultural systems. Shifting agriculture is predominant in some areas, while permanent agriculture (citrus and mixed animal crops) is the primary system in others. This poster focuses on efforts to monitor forest to agriculture conversion in southern Belize using remote sensing, field surveys and GIS techniques. Procedures and avian migrant use of habitat are summarized.

  19. [The progress in retrieving land surface temperature based on thermal infrared and microwave remote sensing technologies].

    PubMed

    Zhang, Jia-Hua; Li, Xin; Yao, Feng-Mei; Li, Xian-Hua

    2009-08-01

    Land surface temperature (LST) is an important parameter in the study on the exchange of substance and energy between land surface and air for the land surface physics process at regional and global scales. Many applications of satellites remotely sensed data must provide exact and quantificational LST, such as drought, high temperature, forest fire, earthquake, hydrology and the vegetation monitor, and the models of global circulation and regional climate also need LST as input parameter. Therefore, the retrieval of LST using remote sensing technology becomes one of the key tasks in quantificational remote sensing study. Normally, in the spectrum bands, the thermal infrared (TIR, 3-15 microm) and microwave bands (1 mm-1 m) are important for retrieval of the LST. In the present paper, firstly, several methods for estimating the LST on the basis of thermal infrared (TIR) remote sensing were synthetically reviewed, i. e., the LST measured with an ground-base infrared thermometer, the LST retrieval from mono-window algorithm (MWA), single-channel algorithm (SCA), split-window techniques (SWT) and multi-channels algorithm(MCA), single-channel & multi-angle algorithm and multi-channels algorithm & multi-angle algorithm, and retrieval method of land surface component temperature using thermal infrared remotely sensed satellite observation. Secondly, the study status of land surface emissivity (epsilon) was presented. Thirdly, in order to retrieve LST for all weather conditions, microwave remotely sensed data, instead of thermal infrared data, have been developed recently, and the LST retrieval method from passive microwave remotely sensed data was also introduced. Finally, the main merits and shortcomings of different kinds of LST retrieval methods were discussed, respectively.

  20. Remote sensing assessment of carbon storage by urban forest

    NASA Astrophysics Data System (ADS)

    Kanniah, K. D.; Muhamad, N.; Kang, C. S.

    2014-02-01

    Urban forests play a crucial role in mitigating global warming by absorbing excessive CO2 emissions due to transportation, industry and house hold activities in the urban environment. In this study we have assessed the role of trees in an urban forest, (Mutiara Rini) located within the Iskandar Development region in south Johor, Malaysia. We first estimated the above ground biomass/carbon stock of the trees using allometric equations and biometric data (diameter at breast height of trees) collected in the field. We used remotely sensed vegetation indices (VI) to develop an empirical relationship between VI and carbon stock. We used five different VIs derived from a very high resolution World View-2 satellite data. Results show that model by [1] and Normalized Difference Vegetation Index are correlated well (R2 = 0.72) via a power model. We applied the model to the entire study area to obtain carbon stock of urban forest. The average carbon stock in the urban forest (mostly consisting of Dipterocarp species) is ~70 t C ha-1. Results of this study can be used by the Iskandar Regional Development Authority to better manage vegetation in the urban environment to establish a low carbon city in this region.

  1. Spatial conservation planning framework for assessing conservation opportunities in the Atlantic Forest of Brazil

    PubMed Central

    Giorgi, Ana Paula; Rovzar, Corey; Davis, Kelsey S.; Fuller, Trevon; Buermann, Wolfgang; Saatchi, Sassan; Smith, Thomas B.; Silveira, Luis Fabio; Gillespie, Thomas W.

    2017-01-01

    Historic rates of habitat change and growing exploitation of natural resources threaten avian biodiversity in the Brazilian Atlantic Forest, a global biodiversity hotspot. We implemented a twostage framework for conservation planning in the Atlantic Forest. First, we used ecological niche modeling to predict the distributions of 23 endemic bird species using 19 climatic metrics and 12 spectral and radar remote sensing metrics. Second, we utilized the principle of complementarity to prioritize new sites to augment the Atlantic Forest's existing reserves. The best predictors of bird distributions were precipitation metrics (the seasonality of rainfall) and radar remote sensing metrics (QSCAT). The existing protected areas do not include 10% of the habitat of each of the 23 endemic species. We propose a more economical set of protected areas by reducing the extent to which new sites duplicate the biodiversity content of existing protected areas. There is a high concordance between the proposed conservation areas that we designed using computerized algorithms and Important Bird Areas prioritized by BirdLife International. Insofar as deforestation in the Atlantic Forest is similar to land conversion in other biodiversity hotspots, our methodology is applicable to conservation efforts elsewhere in the world. PMID:28210009

  2. Mapping and monitoring carbon stocks with satellite observations: a comparison of methods.

    PubMed

    Goetz, Scott J; Baccini, Alessandro; Laporte, Nadine T; Johns, Tracy; Walker, Wayne; Kellndorfer, Josef; Houghton, Richard A; Sun, Mindy

    2009-03-25

    Mapping and monitoring carbon stocks in forested regions of the world, particularly the tropics, has attracted a great deal of attention in recent years as deforestation and forest degradation account for up to 30% of anthropogenic carbon emissions, and are now included in climate change negotiations. We review the potential for satellites to measure carbon stocks, specifically aboveground biomass (AGB), and provide an overview of a range of approaches that have been developed and used to map AGB across a diverse set of conditions and geographic areas. We provide a summary of types of remote sensing measurements relevant to mapping AGB, and assess the relative merits and limitations of each. We then provide an overview of traditional techniques of mapping AGB based on ascribing field measurements to vegetation or land cover type classes, and describe the merits and limitations of those relative to recent data mining algorithms used in the context of an approach based on direct utilization of remote sensing measurements, whether optical or lidar reflectance, or radar backscatter. We conclude that while satellite remote sensing has often been discounted as inadequate for the task, attempts to map AGB without satellite imagery are insufficient. Moreover, the direct remote sensing approach provided more coherent maps of AGB relative to traditional approaches. We demonstrate this with a case study focused on continental Africa and discuss the work in the context of reducing uncertainty for carbon monitoring and markets.

  3. Remote sensing study of the impact of vegetation on thermal environment in different contexts

    NASA Astrophysics Data System (ADS)

    Xie, Qijiao; Wu, Yingjiao; Zhou, Zhixiang; Wang, Zhengxiang

    2018-02-01

    Satellite remote sensing technology provides informative data for detecting the land surface temperature (LST) distribution and urban heat island (UHI) effect remotely and regionally. In this study, two Landsat Thematic Mapper (TM) images acquired on September 26, 1987 and September 17, 2013 were used to derive LST and the normalized difference vegetation index (NDVI) values in Wuhan, China. The relationships between NDVI and LST were examined in different contexts, namely built-up area, farmland, grassland and forest. Results showed that negative correlations between the mean NDVI and LST were detected in all observed land covers, which meant that vegetation was efficient in decreasing surface temperatures and mitigating UHI effect. The cooling efficiency of vegetation on thermal environment varied with different contexts. As mean NDVI increased at each 0.1, the decreased LST values in built-up area, farmland, grassland and forest were 1.4 °C, 1.4 °C, 1.1 °C, 1.9 °C in 1987 and 1.4 °C, 1.7 °C, 1.3 °C, 1.8 °C in 2013, respectively. This finding encourages urban planners and greening designers to devote more efforts in protecting urban forests.

  4. Estimation of Snow Particle Model Suitable for a Complex and Forested Terrain: Lessons from SnowEx

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Li, W.; Stamnes, K. H.; Poudyal, R.; Fan, Y.; Chen, N.

    2017-12-01

    SnowEx 2017 obtained consistent and coordinated ground and airborne remote sensing measurements over Grand Mesa in Colorado, which feature sufficient forested stands to have a range of density and height (and other forest conditions); a range of snow depth/snow water equivalent (SWE) conditions; sufficiently flat snow-covered terrain of a size comparable to airborne instrument swath widths. The Cloud Absorption Radiometer (CAR) data from SnowEx are unique and can be used to assess the accuracy of Bidirectional Reflectance-Distribution Functions (BRDFs) calculated by different snow models. These measurements provide multiple angle and multiple wavelength data needed for accurate surface BRDF characterization. Such data cannot easily be obtained by current satellite remote sensors. Compared to ground-based snow field measurements, CAR measurements minimize the effect of self-shading, and are adaptable to a wide variety of field conditions. We plan to use the CAR measurements as the validation data source for our snow modeling effort. By comparing calculated BRDF results from different snow models to CAR measurements, we can determine which model best explains the snow BRDFs, and is therefore most suitable for application to satellite remote sensing of snow parameters and surface energy budget calculations.

  5. "A remote sensing approach to determining susceptibility of national park forest areas to forecasted changes in precipitation and temperature"

    NASA Astrophysics Data System (ADS)

    Finley, T.; Griffin, R.

    2016-12-01

    The United States designates 59 protected areas around the country as national parks, totaling around 51.9 million acres. With the exception of a few, the majority of these parks feature forested areas of biological and/or historical importance. Depending on their location, these forested areas are threatened by climate change in the form of decreasing precipitation and/or increasing temperatures, which can result in significant drying resulting in increased susceptibility to threats and resultant tree mortality. This study aims to survey the forested areas of America's national parks and determine their susceptibility to climate-induced drying. Land cover derived from remotely sensed multispectral data was used to characterize forested areas within national parks. Multiple climate change scenarios to end of century were taken from the NASA Earth Exchange Downscaled Climate Projections (DEX _DCP30) dataset and were compared with the forested areas. Forests projected to experience both an increase in temperature and decrease in precipitation were considered most at risk. A susceptibility analysis was performed to develop an index that would identify these areas most prone to negative effects from climate change in low (B1), medium (A1B), and high (A2) emissions scenarios. With this information, park officials can better focus efforts to monitor and preserve their forested areas.

  6. Bringing Together Users and Developers of Forest Biomass Maps

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Macauley, Molly

    2011-01-01

    Forests store carbon and thus represent important sinks for atmospheric carbon dioxide. Reducing uncertainty in current estimates of the amount of carbon in standing forests will improve precision of estimates of anthropogenic contributions to carbon dioxide in the atmosphere due to deforestation. Although satellite remote sensing has long been an important tool for mapping land cover, until recently aboveground forest biomass estimates have relied mostly on systematic ground sampling of forests. In alignment with fiscal year 2010 congressional direction, NASA has initiated work toward a carbon monitoring system (CMS) that includes both maps of forest biomass and total carbon flux estimates. A goal of the project is to ensure that the products are useful to a wide community of scientists, managers, and policy makers, as well as to carbon cycle scientists. Understanding the needs and requirements of these data users is helpful not just to the NASA CMS program but also to the entire community working on carbon-related activities. To that end, this meeting brought together a small group of natural resource managers and policy makers who use information on forests in their work with NASA scientists who are working to create aboveground forest biomass maps. These maps, derived from combining remote sensing and ground plots, aim to be more accurate than current inventory approaches when applied at local and regional scales.

  7. An Integrated Use of Experimental, Modeling and Remote Sensing Techniques to Investigate Carbon and Phosphorus Dynamics in the Humid Tropics

    NASA Technical Reports Server (NTRS)

    Townsend, Alan R.; Asner, Gregory P.; Bustamante, Mercedes M. C.

    2001-01-01

    Moist tropical forests comprise one of the world's largest and most diverse biomes, and exchange more carbon, water, and energy with the atmosphere than any other ecosystem. In recent decades, tropical forests have also become one of the globe's most threatened biomes, subjected to exceptionally high rates of deforestation and land degradation. Thus, the importance of and threats to tropical forests are undeniable, yet our understanding of basic ecosystem processes in both intact and disturbed portions of the moist tropics remains poorer than for almost any other major biome. Our approach in this project was to take a multi-scale, multi-tool approach to address two different problems. First, we wanted to test if land-use driven changes in the cycles of probable limiting nutrients in forest systems were a key driver in the frequently observed pattern of declining pasture productivity and carbon stocks. Given the enormous complexity of land use change in the tropics, in which one finds a myriad of different land use types and intensities overlain on varying climates and soil types, we also wanted to see if new remote sensing techniques would allow some novel links between parameters which could be sensed remotely, and key biogeochemical variables which cannot. Second, we addressed to general questions about the role of tropical forests in the global carbon cycle. First, we used a new approach for quantifying and minimizing non-biological artifacts in the NOAA/NASA AVHRR Pathfinder time series of surface reflectance data so that we could address potential links between Amazonian forest dynamics and ENSO cycles. Second, we showed that the disequilibrium in C-13 exchanged between land and atmosphere following tropical deforestation probably has a significant impact on the use of 13-CO2 data to predict regional fluxes in the global carbon cycle.

  8. Simultaneous comparison and assessment of eight remotely sensed maps of Philippine forests

    NASA Astrophysics Data System (ADS)

    Estoque, Ronald C.; Pontius, Robert G.; Murayama, Yuji; Hou, Hao; Thapa, Rajesh B.; Lasco, Rodel D.; Villar, Merlito A.

    2018-05-01

    This article compares and assesses eight remotely sensed maps of Philippine forest cover in the year 2010. We examined eight Forest versus Non-Forest maps reclassified from eight land cover products: the Philippine Land Cover, the Climate Change Initiative (CCI) Land Cover, the Landsat Vegetation Continuous Fields (VCF), the MODIS VCF, the MODIS Land Cover Type product (MCD12Q1), the Global Tree Canopy Cover, the ALOS-PALSAR Forest/Non-Forest Map, and the GlobeLand30. The reference data consisted of 9852 randomly distributed sample points interpreted from Google Earth. We created methods to assess the maps and their combinations. Results show that the percentage of the Philippines covered by forest ranges among the maps from a low of 23% for the Philippine Land Cover to a high of 67% for GlobeLand30. Landsat VCF estimates 36% forest cover, which is closest to the 37% estimate based on the reference data. The eight maps plus the reference data agree unanimously on 30% of the sample points, of which 11% are attributable to forest and 19% to non-forest. The overall disagreement between the reference data and Philippine Land Cover is 21%, which is the least among the eight Forest versus Non-Forest maps. About half of the 9852 points have a nested structure such that the forest in a given dataset is a subset of the forest in the datasets that have more forest than the given dataset. The variation among the maps regarding forest quantity and allocation relates to the combined effects of the various definitions of forest and classification errors. Scientists and policy makers must consider these insights when producing future forest cover maps and when establishing benchmarks for forest cover monitoring.

  9. Interannual variation of the surface temperature of tropical forests from satellite observations

    DOE PAGES

    Gao, Huilin; Zhang, Shuai; Fu, Rong; ...

    2016-01-01

    Land surface temperatures (LSTs) within tropical forests contribute to climate variations. However, observational data are very limited in such regions. This study used passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS), providing observations under all weather conditions, to investigate the LST over the Amazon and Congo rainforests. The SSM/I and SSMIS data were collected from 1996 to 2012. The morning and afternoon observations from passive microwave remote sensing facilitate the investigation of the interannual changes of LST anomalies on a diurnal basis. As a result of the variability ofmore » cloud cover and the corresponding reduction of solar radiation, the afternoon LST anomalies tend to vary more than the morning LST anomalies. The dominant spatial and temporal patterns for interseasonal variations of the LST anomalies over the tropical rainforest were analyzed. The impacts of droughts and El Niños on this LST were also investigated. Lastly, the differences between early morning and late afternoon LST anomalies were identified by the remote sensing product, with the morning LST anomalies controlled by humidity (according to comparisons with the National Centers for Environmental Prediction (NCEP) reanalysis data).« less

  10. Analysis of polarization characteristics of plant canopies using land-based remote sensing measurements for development of ground truth methods

    NASA Astrophysics Data System (ADS)

    Sidko, Aleksandr; Pisman, Tamara; Botvich, Irina; Shevyrnogov, Anatoly

    In order to develop satellite technology for monitoring of terrestrial plant canopies and land-based optical remote sensing techniques, one should employ new approaches to identifying farmlands and determining the plant species composition. The results present a study on polarized characteristics of spectral reflection factor of plant canopies (forests and farm crop canopies) under field conditions, using optical remote sensing techniques. The polarized components of the reflectance factor and the degree of polarization were calculated. Measurements were performed using a spectrophotometer with a polarized light filter attachment. Measurements were done within the spectral range from 400 to 840 nm. The viewing angle was no greater than 200 with respect to the nadir. Measurements of the polarization characteristics of the vegetation on the test ranges were conducted during June-July month when the height of the sun was at its zenith. Different wavelength dependences of the spectral reflection factor polarized component (Rq) and degree of polarization (P) were found both for the coniferous and broadleaf forests (pine and birch) and for farm crops (wheat and corn) and grass canopies. These differences can be used to determine species composition of plant canopies.

  11. Inter-annual variation of the surface temperature of tropical forests from SSM/I observations

    NASA Astrophysics Data System (ADS)

    Gao, H.; Fu, R.; Li, W.; Zhang, S.; Dickinson, R. E.

    2014-12-01

    Land surface temperatures (LST) within tropical rain forests contribute to climate variation, but observational data are very limited in these regions. In this study, all weather canopy sky temperatures were retrieved using the passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager/Sounder (SSMIS) over the Amazon and Congo rainforests. The remote sensing data used were collected from 1996 to 2012 using two separate satellites—F13 (1996-2009) and F17 (2007-2012). An inter-sensor calibration between the brightness temperatures collected by the two satellites was conducted in order to ensure consistency amongst the instruments. The interannual changes of LST associated with the dry and wet anomalies were investigated in both regions. The dominant spatial and temporal patterns for inter-seasonal variations of the LST over the tropical rainforest were analyzed, and the impacts of droughts and El Niños (on LST) were also investigated. The remote sensing results suggest that the morning LST is mainly controlled by atmospheric humidity (which controls longwave radiation) whereas the late afternoon LST is controlled by solar radiation.

  12. Land cover change detection of Hatiya Island, Bangladesh, using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit; Ghosh, Manoj Kumer

    2012-01-01

    Land cover change is a significant issue for environmental managers for sustainable management. Remote sensing techniques have been shown to have a high probability of recognizing land cover patterns and change detection due to periodic coverage, data integrity, and provision of data in a broad range of the electromagnetic spectrum. We evaluate the applicability of remote sensing techniques for land cover pattern recognition, as well as land cover change detection of the Hatiya Island, Bangladesh, and quantify land cover changes from 1977 to 1999. A supervised classification approach was used to classify Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM), and Multispectral Scanner (MSS) images into eight major land cover categories. We detected major land cover changes over the 22-year study period. During this period, marshy land, mud, mud with small grass, and bare soil had decreased by 85%, 46%, 44%, and 24%, respectively, while agricultural land, medium forest, forest, and settlement had positive changes of 26%, 45%, 363%, and 59%, respectively. The primary drivers of such landscape change were erosion and accretion processes, human pressure, and the reforestation and land reclamation programs of the Bangladesh Government.

  13. Impacts of Hurricane Katrina on floodplain forests of the Pearl River: Chapter 6A in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Faulkner, Stephen; Barrow, Wylie; Couvillion, Brady R.; Conner, William; Randall, Lori; Baldwin, Michael

    2007-01-01

    Floodplain forests are an important habitat for Neotropical migratory birds. Hurricane Katrina passed through the Pearl River flood plain shortly after making landfall. Field measurements on historical plots and remotely sensed data were used to assess the impact of Hurricane Katrina on the structure of floodplain forests of the Pearl River.

  14. Maintaining the confidentiality of plot locations by exploiting the low sensitivity of forest structure models to different spectral extraction kernels

    Treesearch

    Sean P. Healey; Elizabeth Lapoint; Gretchen G. Moisen; Scott L. Powell

    2011-01-01

    The United States Forest Service Forest Inventory and Analysis (FIA) unit maintains a large national network of inventory plots.While the consistency and extent of this network make FIA data attractive for ecological modelling, the FIA is charged by statute not to publicly reveal inventory plot locations. However, use of FIA plot data by the remote sensing community...

  15. Evaluating Site-Specific and Generic Spatial Models of Aboveground Forest Biomass Based on Landsat Time-Series and LiDAR Strip Samples in the Eastern USA

    Treesearch

    Ram Deo; Matthew Russell; Grant Domke; Hans-Erik Andersen; Warren Cohen; Christopher Woodall

    2017-01-01

    Large-area assessment of aboveground tree biomass (AGB) to inform regional or national forest monitoring programs can be efficiently carried out by combining remotely sensed data and field sample measurements through a generic statistical model, in contrast to site-specific models. We integrated forest inventory plot data with spatial predictors from Landsat time-...

  16. AgRISTARS: Renewable resources inventory. Land information support system implementation plan and schedule. [San Juan National Forest pilot test

    NASA Technical Reports Server (NTRS)

    Yao, S. S. (Principal Investigator)

    1981-01-01

    The planning and scheduling of the use of remote sensing and computer technology to support the land management planning effort at the national forests level are outlined. The task planning and system capability development were reviewed. A user evaluation is presented along with technological transfer methodology. A land management planning pilot test of the San Juan National Forest is discussed.

  17. High-resolution (30 m), annual (1986 - 2010) carbon stocks and fluxes for southeastern US forests derived from remote sensing, inventory data, and a carbon cycle model

    NASA Astrophysics Data System (ADS)

    Gu, H.; Zhou, Y.; Williams, C. A.

    2016-12-01

    Disturbance events are highly heterogeneous in space and time, impacting forest carbon dynamics and challenging the quantification and reporting of carbon stocks and flux. This study documents annual carbon stocks and fluxes from 1986 and 2010 mapped at 30-m resolution across southeastern US forests, characterizing how they respond to disturbances and ensuing regrowth. Forest inventory data (FIA) are used to parameterize a carbon cycle model (CASA) to represent post-disturbance carbon trajectories of carbon pools and fluxes for harvest, fire and bark beetle disturbances of varying severity and across forest types and site productivity settings. Time since disturbance at 30 meters is inferred from two remote-sensing data sources: disturbance year (NAFD, MTBS and ADS) and biomass (NBCD 2000) intersected with inventory-derived curves of biomass accumulation with stand age. All of these elements are combined to map carbon stocks and fluxes at a 30-m resolution for the year 2010, and to march backward in time for continuous, annual reporting. Results include maps of annual carbon stocks and fluxes for forests of the southeastern US, and analysis of spatio-temporal patterns of carbon sources/sinks at local and regional scales.

  18. Exploring multi-scale forest above ground biomass estimation with optical remote sensing imageries

    NASA Astrophysics Data System (ADS)

    Koju, U.; Zhang, J.; Gilani, H.

    2017-02-01

    Forest shares 80% of total exchange of carbon between the atmosphere and the terrestrial ecosystem. Due to this monitoring of forest above ground biomass (as carbon can be calculated as 0.47 part of total biomass) has become very important. Forest above ground biomass as being the major portion of total forest biomass should be given a very careful consideration in its estimation. It is hoped to be useful in addressing the ongoing problems of deforestation and degradation and to gain carbon mitigation benefits through mechanisms like Reducing Emissions from Deforestation and Forest Degradation (REDD+). Many methods of above ground biomass estimation are in used ranging from use of optical remote sensing imageries of very high to very low resolution to SAR data and LIDAR. This paper describes a multi-scale approach for assessing forest above ground biomass, and ultimately carbon stocks, using very high imageries, open source medium resolution and medium resolution satellite datasets with a very limited number of field plots. We found this method is one of the most promising method for forest above ground biomass estimation with higher accuracy and low cost budget. Pilot study was conducted in Chitwan district of Nepal on the estimation of biomass using this technique. The GeoEye-1 (0.5m), Landsat (30m) and Google Earth (GE) images were used remote sensing imageries. Object-based image analysis (OBIA) classification technique was done on Geo-eye imagery for the tree crown delineation at the watershed level. After then, crown projection area (CPA) vs. biomass model was developed and validated at the watershed level. Open source GE imageries were used to calculate the CPA and biomass from virtual plots at district level. Using data mining technique, different parameters from Landsat imageries along with the virtual sample biomass were used for upscaling biomass estimation at district level. We found, this approach can considerably reduce field data requirements for estimation of biomass and carbon in comparison with inventory methods based on enumeration of all trees in a plot. The proposed methodology is very cost effective and can be replicated with limited resources and time.

  19. Real time forest fire warning and forest fire risk zoning: a Vietnamese case study

    NASA Astrophysics Data System (ADS)

    Chu, T.; Pham, D.; Phung, T.; Ha, A.; Paschke, M.

    2016-12-01

    Forest fire occurs seriously in Vietnam and has been considered as one of the major causes of forest lost and degradation. Several studies of forest fire risk warning were conducted using Modified Nesterov Index (MNI) but remaining shortcomings and inaccurate predictions that needs to be urgently improved. In our study, several important topographic and social factors such as aspect, slope, elevation, distance to residential areas and road system were considered as "permanent" factors while meteorological data were updated hourly using near-real-time (NRT) remotely sensed data (i.e. MODIS Terra/Aqua and TRMM) for the prediction and warning of fire. Due to the limited number of weather stations in Vietnam, data from all active stations (i.e. 178) were used with the satellite data to calibrate and upscale meteorological variables. These data with finer resolution were then used to generate MNI. The only significant "permanent" factors were selected as input variables based on the correlation coefficients that computed from multi-variable regression among true fire-burning (collected from 1/2007) and its spatial characteristics. These coefficients also used to suggest appropriate weight for computing forest fire risk (FR) model. Forest fire risk model was calculated from the MNI and the selected factors using fuzzy regression models (FRMs) and GIS based multi-criteria analysis. By this approach, the FR was slightly modified from MNI by the integrated use of various factors in our fire warning and prediction model. Multifactor-based maps of forest fire risk zone were generated from classifying FR into three potential danger levels. Fire risk maps were displayed using webgis technology that is easy for managing data and extracting reports. Reported fire-burnings thereafter have been used as true values for validating the forest fire risk. Fire probability has strong relationship with potential danger levels (varied from 5.3% to 53.8%) indicating that the higher potential risk, the more chance of fire happen. By adding spatial factors to continuous daily updated remote sensing based meteo-data, results are valuable for both mapping forest fire risk zones in short and long-term and real time fire warning in Vietnam. Key words: Near-real-time, forest fire warning, fuzzy regression model, remote sensing.

  20. Estimating forest and woodland aboveground biomass using active and passive remote sensing

    USGS Publications Warehouse

    Wu, Zhuoting; Dye, Dennis G.; Vogel, John M.; Middleton, Barry R.

    2016-01-01

    Aboveground biomass was estimated from active and passive remote sensing sources, including airborne lidar and Landsat-8 satellites, in an eastern Arizona (USA) study area comprised of forest and woodland ecosystems. Compared to field measurements, airborne lidar enabled direct estimation of individual tree height with a slope of 0.98 (R2 = 0.98). At the plot-level, lidar-derived height and intensity metrics provided the most robust estimate for aboveground biomass, producing dominant species-based aboveground models with errors ranging from 4 to 14Mg ha –1 across all woodland and forest species. Landsat-8 imagery produced dominant species-based aboveground biomass models with errors ranging from 10 to 28 Mg ha –1. Thus, airborne lidar allowed for estimates for fine-scale aboveground biomass mapping with low uncertainty, while Landsat-8 seems best suited for broader spatial scale products such as a national biomass essential climate variable (ECV) based on land cover types for the United States.

  1. Remote sensing applied to forest resources

    NASA Technical Reports Server (NTRS)

    Hernandezfilho, P. (Principal Investigator)

    1984-01-01

    The development of methodologies to classify reforested areas using remotely sensed data is discussed. A preliminary study was carried out in northeast of the Sao Paulo State in 1978. The reforested areas of Pinus spp and Eucalyptus spp were based on the spectral, spatial and temporal characteristics fo LANDSAT imagery. Afterwards, a more detailed study was carried out in the Mato Grosso do Sul State. The reforested areas were mapped in functions of the age (from: 0 to 1 year, 1 to 2 years, 2 to 3 years, 3 to 4 years, 4 to 5 years and 5 to 6 years) and of the heterogeneity stand (from: 0 to 20%, 20 to 40%, 40 to 60%, 60 to 80% and 80 to 100%). The relative differences between the artificial forest areas, estimated from LANDSAT data and ground information, varied from -8.72 to +9.49%. The estimation of forest volume through a multistage sampling technique, with probability proportional to size, is also discussed.

  2. Tracking forest canopy dynamics from an automated proximal hyperspectral monitoring system: linking remote sensing observations to leaf level photosynthetic processes

    NASA Astrophysics Data System (ADS)

    Woodgate, W.; van Gorsel, E.; Hughes, D.; Suarez, L.; Cabello-Leblic, A.; Held, A. A.; Norton, A.; Dempsey, R.

    2017-12-01

    To better understand the vegetation response to climate extremes we have developed a fully automated hyperspectral and thermal monitoring system installed on a flux tower at a mature Eucalypt forest site - Tumbarumba, Australia. The automated system bridges spatial, spectral and temporal scales between satellite and in situ observations. Here, we have been acquiring high resolution panoramic hyperspectral and thermal images of the forest canopy three times per day since mid-2014.A specific focus of the work to date has been linking light use efficiency (LUE) as measured by the flux tower to remote sensing observations from the leaf, to crown, to canopy scale. Specifically, targeted field campaigns were conducted in 2016 to establish the interrelationship between structure, function, and spectra. At the leaf level destructive sampling to quantify photosynthetic pigments was conducted to pick apart the mechanisms contributing to photosynthetic processes of non-photochemical quenching and the resultant changes in observed leaf spectra. At the crown level, Terrestrial Laser Scanning data was used to derive canopy structural information, enabling distance to crown and crown foliage density to be calculated to a fine degree of detail. This information is critical for correcting attenuation of the thermal signal from atmospheric transmission, and to distinguish the relative foliage-to-soil contribution to the thermal and hyperspectral imagery. Ancillary data streams from sap flow and dendrometer devices serve to link leaf, crown and canopy observations.Preliminary results of the leaf and crown level relationships between function and spectra will be discussed. We will demonstrate that operating in a tall canopy (40m) forest can lead to additional complexities. We have found the relationship strength between traditional remote sensing LUE proxies and photosynthetic proxies derived from pigments varies strongly with canopy height and pigment pool size. Additionally, the significance of the relationship between some leaf pigments and spectra hinged upon the inclusion of juvenile or unhealthy leaf samples, which were not representative of the canopy. This has implications for temporal scaling of remote sensing proxies from diurnal to seasonal time frames.

  3. Linking local knowledge and satellite-derived land-use/land-cover change information in Krabi province, Thailand

    NASA Astrophysics Data System (ADS)

    Peneva-Reed, Elitsa I.

    This study was designed to gain an understanding of the linkage between development and sustainability of mangrove forest conversion in three coastal communities in Thailand. It presents a methodology that could potentially aid coastal communities in determining sustainable land use conversion approaches by considering the viewpoint of villagers. A remote sensing analysis of Landsat satellite images from 1989, 2001 and 2007 showed the results of a moderate, but sustained shrimp farming industry that only partially exploited mangrove forests. The three villages experienced a range of changes in mangrove forest area. The villagers' perceptions (collected through field surveys) did not match the results from the remote sensing analysis and varied significantly. A logit multiple regression model was utilized to study the factors influencing whether villagers' estimates agreed or disagreed with the remote sensing analysis. Results showed that the only variables statistically significant at the 0.10 level were age, occupation, and proximity to the mangrove resource. There is a widespread belief that one of the main negative effects of the development of shrimp farms is the pollution of water and, as a consequence, the reduction of wild catch. In this study, a majority of fishing households reported a reduction in wild catch, with nearly all attributing it to shrimp farms. A relatively small number of households noted positive effects from shrimp farming and listed these as an increase of income as a result of working at shrimp farms. The most common negative effects identified by the locals were water pollution, followed by a decrease in wild catch, and an increase in the number of mosquitoes. Although shrimp farm developers promised many benefits from this enterprise, very few were realized by the villagers. Integrating information from household surveys with data on land-cover change derived from remote sensing improves our understanding of the causes and processes of land cover change, and the perceptions of such changes. Integrating these two data sources illustrated that while shrimp farms did not have very many positive effects on the villagers, they were not as directly harmful to the mangrove forests as many believed.

  4. Estimation and modeling of forest attributes across large spatial scales using BiomeBGC, high-resolution imagery, LiDAR data, and inventory data

    NASA Astrophysics Data System (ADS)

    Golinkoff, Jordan Seth

    The accurate estimation of forest attributes at many different spatial scales is a critical problem. Forest landowners may be interested in estimating timber volume, forest biomass, and forest structure to determine their forest's condition and value. Counties and states may be interested to learn about their forests to develop sustainable management plans and policies related to forests, wildlife, and climate change. Countries and consortiums of countries need information about their forests to set global and national targets to deal with issues of climate change and deforestation as well as to set national targets and understand the state of their forest at a given point in time. This dissertation approaches these questions from two perspectives. The first perspective uses the process model Biome-BGC paired with inventory and remote sensing data to make inferences about a current forest state given known climate and site variables. Using a model of this type, future climate data can be used to make predictions about future forest states as well. An example of this work applied to a forest in northern California is presented. The second perspective of estimating forest attributes uses high resolution aerial imagery paired with light detection and ranging (LiDAR) remote sensing data to develop statistical estimates of forest structure. Two approaches within this perspective are presented: a pixel based approach and an object based approach. Both approaches can serve as the platform on which models (either empirical growth and yield models or process models) can be run to generate inferences about future forest state and current forest biogeochemical cycling.

  5. Remote sensing for prediction of 1-year post-fire ecosystem condition

    Treesearch

    Leigh B. Lentile; Alistair M. S. Smith; Andrew T. Hudak; Penelope Morgan; Michael J. Bobbitt; Sarah A. Lewis; Peter R. Robichaud

    2009-01-01

    Appropriate use of satellite data in predicting >1 year post-fire effects requires remote measurement of surface properties that can be mechanistically related to ground measures of post-fire condition. The present study of burned ponderosa pine (Pinus ponderosa) forests in the Black Hills of South Dakota evaluates whether immediate fractional cover estimates of...

  6. Remote measurement of energy and carbon flux from wildfires in Brazil

    Treesearch

    P.J. Riggan; R.G. Tissell; R.N. Lockwood; J.A. Brass; J.A.R. Pereira; H.S. Miranda; A.C. Miranda; T. Campos; R. Higgins

    2004-01-01

    Temperature, intensity, spread, and dimensions of fires burning in tropical savanna and slashed tropical forest in central Brazil were measured for the first time by remote sensing with an infrared imaging spectrometer that was designed to accommodate the high radiances of wildland fires. Furthermore, the first in situ airborne measurements of sensible heat and carbon...

  7. Overview of SnowEx Year 1 Activities

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Gatebe, Charles; Hall, Dorothy; Newlin, Jerry; Misakonis, Amy; Elder, Kelly; Marshall, Hans Peter; Heimstra, Chris; Brucker, Ludovic; De Marco, Eugenia; hide

    2017-01-01

    SnowEx is a multi-year airborne snow campaign with the primary goal of addressing the question: How much water is stored in Earths terrestrial snow-covered regions? Year 1 (2016-17) focused on the distribution of snow-water equivalent (SWE) and the snow energy balance in a forested environment. The year 1 primary site was Grand Mesa and the secondary site was the Senator Beck Basin, both in western, Colorado, USA. Nine sensors on five aircraft made observations using a broad range of sensing techniques, active and passive microwave, and active and passive optical infrared to determine the sensitivity and accuracy of these potential satellite remote sensing techniques, along with models, to measure snow under a range of forest conditions. SnowEx also included an extensive range of ground truth measurements in-situ manual samples, snow pits, ground based remote sensing measurements, and sophisticated new techniques. A detailed description of the data collected will be given and some preliminary results will be presented.

  8. The least-squares mixing models to generate fraction images derived from remote sensing multispectral data

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Yosio Edemir; Smith, James A.

    1991-01-01

    Constrained-least-squares and weighted-least-squares mixing models for generating fraction images derived from remote sensing multispectral data are presented. An experiment considering three components within the pixels-eucalyptus, soil (understory), and shade-was performed. The generated fraction images for shade (shade image) derived from these two methods were compared by considering the performance and computer time. The derived shade images are related to the observed variation in forest structure, i.e., the fraction of inferred shade in the pixel is related to different eucalyptus ages.

  9. Assessing fire emissions from tropical savanna and forests of central Brazil

    Treesearch

    Philip J. Riggan; James A. Brass; Robert N. Lockwood

    1993-01-01

    Wildfires in tropical forest and savanna are a strong source of trace gas and particulate emissions to the atmosphere, but estimates of the continental-scale impacts are limited by large uncertainties in the rates of fire occurrence and biomass combustion. Satellite-based remote sensing offers promise for characterizing fire physical properties and impacts on the...

  10. The significance of spatial resolution: Identifying forest cover from satellite data

    Treesearch

    Dumitru Salajanu; Charles E. Olson

    2001-01-01

    Twenty-five years ago, a National Academy of Sciences report identified species identification as a requirement if satellite data are to reach their full potential in forest inventory and monitoring; the report suggested that improving spatial resolution to 10 meters would probably be required (Committee on Remote Sensing Programs for Earth Resource Surveys [CORSPERS]...

  11. Monitoring land/forest cover using the Kalman filter: A proposal

    Treesearch

    Raymond L. Czaplewski; Ralph J. Alig; Noel D. Cost

    1988-01-01

    Although growth and yield models have been used to update forest inventories for large regions, such models poorly predict cover changes from land use conversions, regeneration, and harvest. These changes could be monitored directly for large areas using remote sensing, which can be expensive, or estimates made by agricultural agencies, which are not detailed for...

  12. Discrete return lidar-based prediction of leaf area index in two conifer forests

    Treesearch

    Jennifer L. R. Jensen; Karen S. Humes; Lee A. Vierling; Andrew T. Hudak

    2008-01-01

    Leaf area index (LAI) is a key forest structural characteristic that serves as a primary control for exchanges of mass and energy within a vegetated ecosystem. Most previous attempts to estimate LAI from remotely sensed data have relied on empirical relationships between field-measured observations and various spectral vegetation indices (SVIs) derived from optical...

  13. A guide to LIDAR data acquisition and processing for the forests of the Pacific Northwest.

    Treesearch

    Demetrios Gatziolis; Hans-Erik Andersen

    2008-01-01

    Light detection and ranging (LIDAR) is an emerging remote-sensing technology with promising potential to assist in mapping, monitoring, and assessment of forest resources. Continuous technological advancement and substantial reductions in data acquisition cost have enabled acquisition of laser data over entire states and regions. These developments have triggered an...

  14. Assessment of forest fragmentation in southern New England using remote sensing and geographic information systems technology

    USGS Publications Warehouse

    Vogelmann, James E.

    1995-01-01

    Spatial patterns and rates of forest fragmentation were assessed using digital remote sensing data for a region in southern New England that included 157 townships in southern New Hampshire and northeastern Massachusetts. The study area has undergone marked population increases over the last several decades. Following classification of 1973 and 1988 Landsat Multispectral Scanner data into forest and nonforest classes, data were incorporated into a geographic information system. The natural logarithms of forest area to perimeter ratios, referred to as the forest continuity index, were used to assess patterns and trends of forest fragmentation across the region Forest continuity index values were extracted from each township for both data sets and compared with population data. Forest continuity index values were found to decrease with increasing population density until about 200 persons per square kilometer, after which the relationship stabilized. With slight population increases at low densities forest continuity index values declined sharply, implying abrupt increases in forest fragmentation. Results from the study indicated good negative correlations (r2 values of 0.81 and 0.77) between the Multispectral Scanner-derived forest continuity index and natural logs of township population density. Socioeconomic indicators such as affluence and commuting patterns did not appear to correlate well with forest fragmentation estimates. Decreases in forest continuity index values occurred throughout much of the study region between 1973 and 1988, suggesting that forest fragmentation is occurring over large regions within the eastern United States. It is technologically feasible to assess patterns and rates of forest fragmentation across much larger areas than analyzed in this study; such analyses would provide useful overviews enabling objective assessment of the magnitude of forest fragmentation.

  15. Forest Structure Retrieval From EcoSAR P-Band Single-Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Osmanoglu, Batuhan; Rincon, Rafael; Lee, Seung Kuk; Fatoyinbo, Temilola; Bollian, Tobias

    2017-01-01

    EcoSAR is a single-pass (dual antenna) digital beamforming, P-band radar system that is designed for remote sensing of dense forest structure. Forest structure retrievals require the measurement related to the vertical dimension, for which several techniques have been developed over the years. These techniques use polarimetric and interferometric aspects of the SAR data, which can be collected using EcoSAR. In this paper we describe EcoSAR system in light of its interferometric capabilities and investigate forest structure retrieval techniques.

  16. Impacts of disturbance history on annual carbon stocks and fluxes in southeastern US forests during 1986-2010 using remote sensing, forest inventory data, and a carbon cycle model

    NASA Astrophysics Data System (ADS)

    Gu, H.; Zhou, Y.; Williams, C. A.

    2017-12-01

    Accurate assessment of forest carbon storage and uptake is central to policymaking aimed at mitigating climate change and understanding the role forests play in the global carbon cycle. Disturbance events are highly heterogeneous in space and time, impacting forest carbon dynamics and challenging the quantification and reporting of carbon stocks and fluxes. This study documents annual carbon stocks and fluxes from 1986 and 2010 mapped at 30-m resolution across southeastern US forests, characterizing how they respond to disturbances and ensuing regrowth. Forest inventory data (FIA) are used to parameterize a carbon cycle model (CASA) to represent post-disturbance carbon trajectories of carbon pools and fluxes with time following harvest, fire and bark beetle disturbances of varying severity and across forest types and site productivity settings. Time since disturbance at 30 meters is inferred from two remote-sensing data sources: disturbance year (NAFD, MTBS and ADS) and biomass (NBCD 2000) intersected with FIA-derived curves of biomass accumulation with stand age. All of these elements are combined to map carbon stocks and fluxes at a 30-m resolution for the year 2010, and to march backward in time for continuous, annual reporting. Results include maps of annual carbon stocks and fluxes for forests of the southeastern US, and analysis of spatio-temporal patterns of carbon sources/sinks at local and regional scales.

  17. Using remote sensing data to predict road fill areas and areas affected by fill erosion with planned forest road construction: a case study in Kastamonu Regional Forest Directorate (Turkey).

    PubMed

    Aricak, Burak

    2015-07-01

    Forest roads are essential for transport in managed forests, yet road construction causes environmental disturbance, both in the surface area the road covers and in erosion and downslope deposition of road fill material. The factors affecting the deposition distance of eroded road fill are the slope gradient and the density of plant cover. Thus, it is important to take these factors into consideration during road planning to minimize their disturbance. The aim of this study was to use remote sensing and field surveying to predict the locations that would be affected by downslope deposition of eroding road fill and to compile the data into a geographic information system (GIS) database. The construction of 99,500 m of forest roads is proposed for the Kastamonu Regional Forest Directorate in Turkey. Using GeoEye satellite images and a digital elevation model (DEM) for the region, the location and extent of downslope deposition of road fill were determined for the roads as planned. It was found that if the proposed roads were constructed by excavators, the fill material would cover 910,621 m(2) and the affected surface area would be 1,302,740 m(2). Application of the method used here can minimize the adverse effects of forest roads.

  18. Potentially efficient forest and range applications of remote sensing using earth orbital space craft, circa 1980

    NASA Technical Reports Server (NTRS)

    Wilson, R. C.

    1970-01-01

    Sixteen remote sensing applications or groups of related applications judged to be most important of any in the forestry and range disciplines were evaluated. In one application, major land classification, large amounts of useful data are anticipated to be contributed by space sensors in 1980. In four applications moderate amounts are anticipated to be so contributed. These are timber inventory, range inventory, fire weather forecasting, and monitoring snowfields. In the following seven applications small but significant amounts of data are anticipated to be contributed by space sensors: (1) detailed land classification; (2) inventory of wildlife habitat; (3) recreation resource inventory; (4) detecting stresses on the vegetation (5) monitoring air pollution caused by wildfires and prescribed burning; (6) monitoring water cycle, (7) pollution and erosion; and (8) evaluating damage to forests and ranges.

  19. Assessing fire emissions from tropical savanna and forests of central Brazil

    NASA Technical Reports Server (NTRS)

    Riggan, Philip J.; Brass, James A.; Lockwood, Robert N.

    1993-01-01

    Wildfires in tropical forest and savanna are a strong source of trace gas and particulate emissions to the atmosphere, but estimates of the continental-scale impacts are limited by large uncertainties in the rates of fire occurrence and biomass combustion. Satellite-based remote sensing offers promise for characterizing fire physical properties and impacts on the environment, but currently available sensors saturate over high-radiance targets and provide only indications of regions and times at which fires are extensive and their areal rate of growing as recorded in ash layers. Here we describe an approach combining satellite- and aircraft-based remote sensing with in situ measurements of smoke to estimate emissions from central Brazil. These estimates will improve global accounting of radiation-absorbing gases and particulates that may be contributing to climate change and will provide strategic data for fire management.

  20. Overview of Ground Air Quality Measurements and Their Links to Airborne, Remote Sensing and Model Studies during the KORUS-AQ Campaign

    NASA Astrophysics Data System (ADS)

    Lee, G.; Ahn, J. Y.; Chang, L. S.; Kim, J.; Park, R.

    2017-12-01

    During the KORUS-AQ, extensive sets of chemical measurements for reactive gases and aerosol species were made at 3 major sites on upwind island (Baengyeong Island), urban (Olympic Park in Seoul) and downwind rural forest location (Taewha Forest). Also, intensive aerosol size and composition observations from 5 NIER super sites, 3 NIMR monitoring sites, and 5 other university sites were currently facilitated in the KORUS-AQ data set. In addition, air quality criteria species data from 264 nation-wide ground monitoring sites with 5 minute temporal resolution during the whole campaign period were supplemented to cover mostly in densely populated urban areas, but sparsely in rural areas. The specific objectives of these ground sites were to provide highly comprehensive data set to coordinate the close collaborations among other research platforms including airborne measurements, remote sensing, and model studies. The continuous measurements at ground sites were well compared with repetitive low-level aircraft observations of NASA's DC-8 over Olympic Park and Taewha Forest site. Similarly, many ground measurements enabled the validation of chemical transport models and the remote sensing observations from ground and NASA's King Air. The observed results from inter-comparison studies in many reactive gases and aerosol compositions between different measurement methods and platforms will be presented. Compiling data sets from ground sites, source-wise analysis for ozone and aerosol, their in-situ formations, and transport characteristics by local/regional circulation will be discussed, too.

  1. Optimization of spectral bands for hyperspectral remote sensing of forest vegetation

    NASA Astrophysics Data System (ADS)

    Dmitriev, Egor V.; Kozoderov, Vladimir V.

    2013-10-01

    Optimization principles of accounting for the most informative spectral channels in hyperspectral remote sensing data processing serve to enhance the efficiency of the employed high-productive computers. The problem of pattern recognition of the remotely sensed land surface objects with the accent on the forests is outlined from the point of view of the spectral channels optimization on the processed hyperspectral images. The relevant computational procedures are tested using the images obtained by the produced in Russia hyperspectral camera that was installed on a gyro-stabilized platform to conduct the airborne flight campaigns. The Bayesian classifier is used for the pattern recognition of the forests with different tree species and age. The probabilistically optimal algorithm constructed on the basis of the maximum likelihood principle is described to minimize the probability of misclassification given by this classifier. The classification error is the major category to estimate the accuracy of the applied algorithm by the known holdout cross-validation method. Details of the related techniques are presented. Results are shown of selecting the spectral channels of the camera while processing the images having in mind radiometric distortions that diminish the classification accuracy. The spectral channels are selected of the obtained subclasses extracted from the proposed validation techniques and the confusion matrices are constructed that characterize the age composition of the classified pine species as well as the broad age-class recognition for the pine and birch species with the fully illuminated parts of their crowns.

  2. Gap formation and carbon cycling in the Brazilian Amazon: measurement using high-resolution optical remote sensing and studies in large forest plots

    Treesearch

    F. D. B. Espirito-Santo; M. M. Keller; E. Linder; R. C. Oliveira Junior; C. Pereira; C. G. Oliveira

    2013-01-01

    Background: The dynamics of gaps plays a role in the regimes of tree mortality, production of coarse woody debris (CWD) and the variability of light in the forest understory. Aims: To quantify the area affected by, and the carbon fluxes associated with, natural gap-phase disturbances in a tropical lowland evergreen rain forest by use of ground measurements and high-...

  3. Applicability of the Design Tool for Inventory and Monitoring (DTIM) and the Explore Sample Data Tool for the Assessment of Caribbean Forest Dynamics

    Treesearch

    Humfredo Marcano-Vega; Andrew Lister; Kevin Megown; Charles Scott

    2016-01-01

    There is a growing need within the insular Caribbean for technical assistance in planning forest-monitoring projects and data analysis. This paper gives an overview of software tools developed by the USDA Forest Service’s National Inventory and Monitoring Applications Center and the Remote Sensing Applications Center. We discuss their applicability in the efficient...

  4. Use of remote sensing for land use policy formulation

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The overall objectives and strategies of the Center for Remote Sensing remain to provide a center for excellence for multidisciplinary scientific expertise to address land-related global habitability and earth observing systems scientific issues. Specific research projects that were underway during the final contract period include: digital classification of coniferous forest types in Michigan's northern lower peninsula; a physiographic ecosystem approach to remote classification and mapping; land surface change detection and inventory; analysis of radiant temperature data; and development of methodologies to assess possible impacts of man's changes of land surface on meteorological parameters. Significant progress in each of the five project areas has occurred. Summaries on each of the projects are provided.

  5. Advances in Remote Sensing for Vegetation Dynamics and Agricultural Management

    NASA Technical Reports Server (NTRS)

    Tucker, Compton; Puma, Michael

    2015-01-01

    Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.

  6. Reduction of Topographic Effect for Curve Number Estimated from Remotely Sensed Imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Yan; Lin, Chao-Yuan

    2016-04-01

    The Soil Conservation Service Curve Number (SCS-CN) method is commonly used in hydrology to estimate direct runoff volume. The CN is the empirical parameter which corresponding to land use/land cover, hydrologic soil group and antecedent soil moisture condition. In large watersheds with complex topography, satellite remote sensing is the appropriate approach to acquire the land use change information. However, the topographic effect have been usually found in the remotely sensed imageries and resulted in land use classification. This research selected summer and winter scenes of Landsat-5 TM during 2008 to classified land use in Chen-You-Lan Watershed, Taiwan. The b-correction, the empirical topographic correction method, was applied to Landsat-5 TM data. Land use were categorized using K-mean classification into 4 groups i.e. forest, grassland, agriculture and river. Accuracy assessment of image classification was performed with national land use map. The results showed that after topographic correction, the overall accuracy of classification was increased from 68.0% to 74.5%. The average CN estimated from remotely sensed imagery decreased from 48.69 to 45.35 where the average CN estimated from national LULC map was 44.11. Therefore, the topographic correction method was recommended to normalize the topographic effect from the satellite remote sensing data before estimating the CN.

  7. Evaluating and monitoring forest fuel treatments using remote sensing applications in Arizona, U.S.A.

    USGS Publications Warehouse

    Petrakis, Roy; Villarreal, Miguel; Wu, Zhuoting; Hetzler, Robert; Middleton, Barry R.; Norman, Laura M.

    2018-01-01

    The practice of fire suppression across the western United States over the past century has led to dense forests, and when coupled with drought has contributed to an increase in large and destructive wildfires. Forest management efforts aimed at reducing flammable fuels through various fuel treatments can help to restore frequent fire regimes and increase forest resilience. Our research examines how different fuel treatments influenced burn severity and post-fire vegetative stand dynamics on the San Carlos Apache Reservation, in east-central Arizona, U.S.A. Our methods included the use of multitemporal remote sensing data and cloud computing to evaluate burn severity and post-fire vegetation conditions as well as statistical analyses. We investigated how forest thinning, commercial harvesting, prescribed burning, and resource benefit burning (managed wildfire) related to satellite measured burn severity (the difference Normalized Burn Ratio – dNBR) following the 2013 Creek Fire and used spectral measures of post-fire stand dynamics to track changes in land surface characteristics (i.e., brightness, greenness and wetness). We found strong negative relationships between dNBR and post-fire greenness and wetness, and a positive non-linear relationship between dNBR and brightness, with greater variability at higher severities. Fire severity and post-fire surface changes also differed by treatment type. Our results showed harvested and thinned sites that were not treated with prescribed fire had the highest severity fire. When harvesting was followed by a prescribed burn, the sites experienced lower burn severity and reduced post-fire changes in vegetation greenness and wetness. Areas that had previously experienced resource benefit burns had the lowest burn severities and the highest post-fire greenness measurements compared to all other treatments, except for where the prescribed burn had occurred. These results suggest that fire treatments may be most effective at reducing the probability of hazardous fire and increasing post-fire recovery. This research demonstrates the utility of remote sensing and spatial data to inform forest management, and how various fuel treatments can influence burn severity and post-fire vegetation response within ponderosa pine forests across the southwestern U.S.

  8. Integration of Remote Sensing Products with Ground-Based Measurements to Understand the Dynamics of Nepal's Forests and Plantation Sites

    NASA Astrophysics Data System (ADS)

    Gilani, H.; Jain, A. K.

    2016-12-01

    This study assembles information from three sources - remote sensing, terrestrial photography and ground-based inventory data, to understand the dynamics of Nepal's tropical and sub-tropical forests and plantation sites for the period 1990-2015. Our study focuses on following three specific district areas, which have conserved forests through social and agroforestry management practices: 1. Dolakha district: This site has been selected to study the impact of community-based forest management on land cover change using repeat photography and satellite imagery, in combination with interviews with community members. The study time period is during the period 1990-2010. We determined that satellite data with ground photographs can provide transparency for long term monitoring. The initial results also suggests that community-based forest management program in the mid-hills of Nepal was successful. 2. Chitwan district: Here we use high resolution remote sensing data and optimized community field inventories to evaluate potential application and operational feasibility of community level REDD+ measuring, reporting and verification (MRV) systems. The study uses temporal dynamics of land cover transitions, tree canopy size classes and biomass over a Kayar khola watershed REDD+ study area with community forest to evaluate satellite Image segmentation for land cover, linear regression model for above ground biomass (AGB), and estimation and monitoring field data for tree crowns and AGB. We study three specific years 2002, 2009, 2012. Using integration of WorldView-2 and airborne LiDAR data for tree species level. 3. Nuwakot district: This district was selected to study the impact of establishment of tree plantation on total barren/fallow. Over the last 40 year, this area has went through a drastic changes, from barren land to forest area with tree species consisting of Dalbergia sissoo, Leucaena leucocephala, Michelia champaca, etc. In 1994, this district area was registered and established to grow and process high quality trees shaded of Arabica coffee beans. Here we use temporal satellite images and repeat terrestrial and aerial photographs, along with plot level biomass to show impact of this positive transformation of the landscape on above and below ground carbon masses. The study time period is 1990-2015.

  9. An application of remote sensing data in mapping landscape-level forest biomass for monitoring the effectiveness of forest policies in northeastern China.

    PubMed

    Wang, Xinchuang; Shao, Guofan; Chen, Hua; Lewis, Bernard J; Qi, Guang; Yu, Dapao; Zhou, Li; Dai, Limin

    2013-09-01

    Monitoring the dynamics of forest biomass at various spatial scales is important for better understanding the terrestrial carbon cycle as well as improving the effectiveness of forest policies and forest management activities. In this article, field data and Landsat image data acquired in 1999 and 2007 were utilized to quantify spatiotemporal changes of forest biomass for Dongsheng Forestry Farm in Changbai Mountain region of northeastern China. We found that Landsat TM band 4 and Difference Vegetation Index with a 3 × 3 window size were the best predictors associated with forest biomass estimations in the study area. The inverse regression model with Landsat TM band 4 predictor was found to be the best model. The total forest biomass in the study area decreased slightly from 2.77 × 10(6) Mg in 1999 to 2.73 × 10(6) Mg in 2007, which agreed closely with field-based model estimates. The area of forested land increased from 17.9 × 10(3) ha in 1999 to 18.1 × 10(3) ha in 2007. The stabilization of forest biomass and the slight increase of forested land occurred in the period following implementations of national forest policies in China in 1999. The pattern of changes in both forest biomass and biomass density was altered due to different management regimes adopted in light of those policies. This study reveals the usefulness of the remote sensing-based approach for detecting and monitoring quantitative changes in forest biomass at a landscape scale.

  10. Quantification of forest carbon degradation in Nicaragua using RapidEye remote sensing data: El Cuá and Wiwili case studies

    NASA Astrophysics Data System (ADS)

    Argoty, F. N.; Cifuentes, M.; Imbach, P. A.; Vilchez, S.; Casanoves, F.; Ibrahim, M.; Vierling, L. A.

    2012-12-01

    Forest degradation and deforestation affect ecosystem function and climate regulation services such as carbon storage. Historically, Central America has been a deforestation and forest degradation hotspot. Wiwili and El Cuá municipalities in northern Nicaragua are no exception, where subsistence agriculture and cattle ranch expansion have driven deforestation and other wood extraction activities, leading to various levels of forest degradation. Reduction of Emissions from forest Degradation and Deforestation (REDD) projects are proposed as a tool to slow the degradation and loss of carbon stocks by restoring carbon to its natural levels in order to mitigate carbon dioxide emissions that cause global warming. REDD projects require baseline estimations of current carbon stocks and forest degradation status. We estimated carbon stocks across a forest degradation gradient based on common biophysical variables and commercially available (RapidEye) remote sensing data. We measured 80 temporary forest plots (50x20m) for aboveground biomass to sample a gradient of forest degradation at two municipalities (El Cuá and Wiwili) in northern Nicaragua. We measured biomass in trees (≥10 cm DBH), saplings (5-9.9 cm DBH), other growth forms (ferns, palms and woody vines), and large detritus (snags and downed wood). Biomass was estimated by a range of allometric models and a constant conversion factor (0.47) was applied to calculate aboveground carbon stocks. Remote sensing data from a RapidEye scene for 02/2010 provided data for 5 spectral bands and 19 vegetation indexes at 6 m spatial resolution. Precipitation, temperature, altitude, slope, canopy cover, and aspect were also used as input variables for carbon modeling. We tested linear mixed models, generalized additive mixed models and regression tree approaches to explain carbon stocks based on vegetation indexes and biophysical variables. Additionally, we grouped plots into low (17-168 Mg C ha-1), medium (168-302 Mg C ha-1) and high (302-418 Mg C ha-1) carbon stocks (with conglomerate analysis) to test for a categorical classification approach based on discriminant analysis. Results show a gradient of total aboveground carbon between 17.78 - 379.2 Mg C ha-1. Models predicting carbon stock had an R2 that ranged between 0.32-0.52 (p<0.0001) across the three methods evaluated. Linear mixed models using the MCARI-MTVI2 vegetation index, based on the red-edge band (690-730 nm), showed the best performance. Categorical classification showed improved performance, with a 17% mean classification error, using 20 predictors (MCARI-MTVI2 was the most important). Our results show the importance of the red-edge band and the potential of multi-spectral high-resolution imagery to quantify tropical forest degradation. Although model performance for prediction of continuous biomass values is somewhat constrained, there is potential for coarser applications in the context of developing REDD baselines and monitoring using categorical mapping of forest degradation (with a trade-off in inference power) by means of relatively low-cost remote sensing and ancillary data.

  11. Hyperspectral Remote Sensing of Foliar Nitrogen Content

    NASA Technical Reports Server (NTRS)

    Knyazikhin, Yuri; Schull, Mitchell A.; Stenberg, Pauline; Moettus, Matti; Rautiainen, Miina; Yang, Yan; Marshak, Alexander; Carmona, Pedro Latorre; Kaufmann, Robert K.; Lewis, Philip; hide

    2013-01-01

    A strong positive correlation between vegetation canopy bidirectional reflectance factor (BRF) in the near infrared (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional role for nitrogen in the climate system via its influence on surface albedo and may offer a simple approach for monitoring foliar nitrogen using satellite data. We report, however, that the previously reported correlation is an artifact - it is a consequence of variations in canopy structure, rather than of %N. The data underlying this relationship were collected at sites with varying proportions of foliar nitrogen-poor needleleaf and nitrogen-rich broadleaf species, whose canopy structure differs considerably. When the BRF data are corrected for canopy-structure effects, the residual reflectance variations are negatively related to %N at all wavelengths in the interval 423-855 nm. This suggests that the observed positive correlation between BRF and %N conveys no information about %N. We find that to infer leaf biochemical constituents, e.g., N content, from remotely sensed data, BRF spectra in the interval 710-790 nm provide critical information for correction of structural influences. Our analysis also suggests that surface characteristics of leaves impact remote sensing of its internal constituents. This further decreases the ability to remotely sense canopy foliar nitrogen. Finally, the analysis presented here is generic to the problem of remote sensing of leaf-tissue constituents and is therefore not a specific critique of articles espousing remote sensing of foliar %N.

  12. Using remote sensing and machine learning for the spatial modelling of a bluetongue virus vector

    NASA Astrophysics Data System (ADS)

    Van doninck, J.; Peters, J.; De Baets, B.; Ducheyne, E.; Verhoest, N. E. C.

    2012-04-01

    Bluetongue is a viral vector-borne disease transmitted between hosts, mostly cattle and small ruminants, by some species of Culicoides midges. Within the Mediterranean basin, C. imicola is the main vector of the bluetongue virus. The spatial distribution of this species is limited by a number of environmental factors, including temperature, soil properties and land cover. The identification of zones at risk of bluetongue outbreaks thus requires detailed information on these environmental factors, as well as appropriate epidemiological modelling techniques. We here give an overview of the environmental factors assumed to be constraining the spatial distribution of C. imicola, as identified in different studies. Subsequently, remote sensing products that can be used as proxies for these environmental constraints are presented. Remote sensing data are then used together with species occurrence data from the Spanish Bluetongue National Surveillance Programme to calibrate a supervised learning model, based on Random Forests, to model the probability of occurrence of the C. imicola midge. The model will then be applied for a pixel-based prediction over the Iberian peninsula using remote sensing products for habitat characterization.

  13. 75 FR 72781 - Buckhorn Exploration Project 2010, Okanogan-Wenatchee National Forest, Okanogan County, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... prevent unnecessary and undue degradation of public lands and surface resources by initially using remote sensing and other non-surface disturbing prospecting techniques to identify target areas. Exploration...

  14. Estimating tropical forest structure using LIDAR AND X-BAND INSAR

    NASA Astrophysics Data System (ADS)

    Palace, M. W.; Treuhaft, R. N.; Keller, M. M.; Sullivan, F.; Roberto dos Santos, J.; Goncalves, F. G.; Shimbo, J.; Neumann, M.; Madsen, S. N.; Hensley, S.

    2013-12-01

    Tropical forests are considered the most structurally complex of all forests and are experiencing rapid change due to anthropogenic and climatic factors. The high carbon stocks and fluxes make understanding tropical forests highly important to both regional and global studies involving ecosystems and climate. Large and remote areas in the tropics are prime targets for the use of remotely sensed data. Radar and lidar have previously been used to estimate forest structure, with an emphasis on biomass. These two remote sensing methods have the potential to yield much more information about forest structure, specifically through the use of X-band radar and waveform lidar data. We examined forest structure using both field-based and remotely sensed data in the Tapajos National Forest, Para, Brazil. We measured multiple structural parameters for about 70 plots in the field within a 25 x 15 km area that have TanDEM-X single-pass horizontally and vertically polarized radar interferometric data. High resolution airborne lidar were collected over a 22 sq km portion of the same area, within which 33 plots were co-located. Preliminary analyses suggest that X-band interferometric coherence decreases by about a factor of 2 (from 0.95 to 0.45) with increasing field-measured vertical extent (average heights of 7-25 m) and biomass (10-430 Mg/ha) for a vertical wavelength of 39 m, further suggesting, as has been observed at C-band, that interferometric synthetic aperture radar (InSAR) is substantially more sensitive to forest structure/biomass than SAR. Unlike InSAR coherence versus biomass, SAR power at X-band versus biomass shows no trend. Moreover, airborne lidar coherence at the same vertical wavenumbers as InSAR is also shown to decrease as a function of biomass, as well. Although the lidar coherence decrease is about 15% more than the InSAR, implying that lidar penetrates more than InSAR, these preliminary results suggest that X-band InSAR may be useful for structure and biomass estimation over large spatial scales not attainable with airborne lidar. In this study, we employed a set of less commonly used lidar metrics that we consider analogous to field-based measurements, such as the number of canopy maxima, measures of canopy vegetation distribution diversity and evenness (entropy), and estimates of gap fraction. We incorporated these metrics, as well as lidar coherence metrics pulled from discrete Fourier transforms of pseudowaveforms, and hypothetical stand characteristics of best-fit synthetic vegetation profiles into multiple regression analysis of forest biometric properties. Among simple and complex measures of forest structure, ranging from tree density, diameter at breast height, and various canopy geometry parameters, we found strong relationships with lidar canopy vegetation profile parameters. We suggest that the sole use of lidar height is limited in understanding biomass in a forest with little variation across the landscape and that there are many parameters that may be gleaned by lidar data that inform on forest biometric properties.

  15. Floating Forests: Validation of a Citizen Science Effort to Answer Global Ecological Questions

    NASA Astrophysics Data System (ADS)

    Rosenthal, I.; Byrnes, J.; Cavanaugh, K. C.; Haupt, A. J.; Trouille, L.; Bell, T. W.; Rassweiler, A.; Pérez-Matus, A.; Assis, J.

    2017-12-01

    Researchers undertaking long term, large-scale ecological analyses face significant challenges for data collection and processing. Crowdsourcing via citizen science can provide an efficient method for analyzing large data sets. However, many scientists have raised questions about the quality of data collected by citizen scientists. Here we use Floating-Forests (http://floatingforests.org), a citizen science platform for creating a global time series of giant kelp abundance, to show that ensemble classifications of satellite data can ensure data quality. Citizen scientists view satellite images of coastlines and classify kelp forests by tracing all visible patches of kelp. Each image is classified by fifteen citizen scientists before being retired. To validate citizen science results, all fifteen classifications are converted to a raster and overlaid on a calibration dataset generated from previous studies. Results show that ensemble classifications from citizen scientists are consistently accurate when compared to calibration data. Given that all source images were acquired by Landsat satellites, we expect this consistency to hold across all regions. At present, we have over 6000 web-based citizen scientists' classifications of almost 2.5 million images of kelp forests in California and Tasmania. These results are not only useful for remote sensing of kelp forests, but also for a wide array of applications that combine citizen science with remote sensing.

  16. Amazonian landscapes and the bias in field studies of forest structure and biomass.

    PubMed

    Marvin, David C; Asner, Gregory P; Knapp, David E; Anderson, Christopher B; Martin, Roberta E; Sinca, Felipe; Tupayachi, Raul

    2014-12-02

    Tropical forests convert more atmospheric carbon into biomass each year than any terrestrial ecosystem on Earth, underscoring the importance of accurate tropical forest structure and biomass maps for the understanding and management of the global carbon cycle. Ecologists have long used field inventory plots as the main tool for understanding forest structure and biomass at landscape-to-regional scales, under the implicit assumption that these plots accurately represent their surrounding landscape. However, no study has used continuous, high-spatial-resolution data to test whether field plots meet this assumption in tropical forests. Using airborne LiDAR (light detection and ranging) acquired over three regions in Peru, we assessed how representative a typical set of field plots are relative to their surrounding host landscapes. We uncovered substantial mean biases (9-98%) in forest canopy structure (height, gaps, and layers) and aboveground biomass in both lowland Amazonian and montane Andean landscapes. Moreover, simulations reveal that an impractical number of 1-ha field plots (from 10 to more than 100 per landscape) are needed to develop accurate estimates of aboveground biomass at landscape scales. These biases should temper the use of plots for extrapolations of forest dynamics to larger scales, and they demonstrate the need for a fundamental shift to high-resolution active remote sensing techniques as a primary sampling tool in tropical forest biomass studies. The potential decrease in the bias and uncertainty of remotely sensed estimates of forest structure and biomass is a vital step toward successful tropical forest conservation and climate-change mitigation policy.

  17. Long-term change of protective forest during the past four decades at Dongshan Island, southeastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Caiyun; Yan, Jing; Shang, Shaoling

    2017-02-01

    The Dongshan Island is a typical protective forest area of the southeastern coastal region of China. In this work, we extract the variation of the Dongshan Island’s protective forest area since the 1970s from the remote sensing data of the LandSAT and the Chinese HJ 1A/B satellites, and we examined the possible reasons for the variation. The results showed that the maximum likelihood classification of the extracted remote sensing data of the Dongshan Island coastal protective forest had a total accuracy of 92.6%. In the last 40 years, the area of the Dongshan Island coastal protective forest experienced a waving variation of decrease (1973-1984), increase (1984-1999) and decrease (1999-2008), in which human activity was the predominant impact factor for this fluctuation pattern. Since the early 1960s to the 1980s, due to the Cultural Revolution and the later deforestation and land reclamation activities, the protective forest of Dongshan Island was severely damaged. The total area declined sharply from 2134.4 ha in 1964 to 1515.74 ha in 1984, and the northern area of the island had the most significant decrease. After 1988, the Fujian Province began to aggressively establish the coastal protective forest system, and the protective forest acreage increased significantly to 3370.22 ha in 1999, an increase of nearly 1.2 times based on the figure of 1984. In the past five years, the area of protective forest declined slightly again, mainly because of the natural aging of the protective forest ecosystem, tourism development and the booming aquaculture industry.

  18. A new climatic classification of afforestation in Three-North regions of China with multi-source remote sensing data

    NASA Astrophysics Data System (ADS)

    Zheng, Xiao; Zhu, Jiaojun

    2017-01-01

    Afforestation and reforestation activities achieve high attention at the policy agenda as measures for carbon sequestration in order to mitigate climate change. The Three-North Shelter Forest Program, the largest ecological afforestation program worldwide, was launched in 1978 and will last until 2050 in the Three-North regions (accounting for 42.4 % of China's territory). Shelter forests of the Three-North Shelter Forest Program have exhibited severe decline after planting in 1978 due to lack of detailed climatic classification. Besides, a comprehensive assessment of climate adaptation for the current shelter forests was lacking. In this study, the aridity index determined by precipitation and reference evapotranspiration was employed to classify climatic zones for the afforestation program. The precipitation and reference evapotranspiration with 1-km resolution were estimated based on data from the tropical rainfall measuring mission and moderate resolution imaging spectroradiometer, respectively. Then, the detailed climatic classification for the afforestation program was obtained based on the relationship between the different vegetation types and the aridity index. The shelter forests in 2008 were derived from Landsat TM in the Three-North regions. In addition, climatic zones and shelter forests were corrected by comparing with natural vegetation map and field surveys. By overlaying the shelter forests on the climatic zones, we found that 16.30 % coniferous forests, 8.21 % broadleaved forests, 2.03 % mixed conifer-broadleaved forests, and 10.86 % shrubs were not in strict accordance with the climate conditions. These results open new perspectives for potential use of remote sensing techniques for afforestation management.

  19. [Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].

    PubMed

    Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong

    2015-11-01

    With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.

  20. Investigation into the role of canopy structure traits and plant functional types in modulating the correlation between canopy nitrogen and reflectance in a temperate forest in northeast China

    NASA Astrophysics Data System (ADS)

    Yu, Quanzhou; Wang, Shaoqiang; Zhou, Lei

    2017-10-01

    A precise estimate of canopy leaf nitrogen concentration (CNC, based on dry mass) is important for researching the carbon assimilation capability of forest ecosystems. Hyperspectral remote sensing technology has been applied to estimate regional CNC, which can adjust forest photosynthetic capacity and carbon uptake. However, the relationship between forest CNC and canopy spectral reflectance as well as its mechanism is still poorly understood. Using measured CNC, canopy structure and species composition data, four vegetation indices (VIs), and near-infrared reflectance (NIR) derived from EO-1 Hyperion imagery, we investigated the role of canopy structure traits and plant functional types (PFTs) in modulating the correlation between CNC and canopy reflectance in a temperate forest in northeast China. A plot-scale forest structure indicator, named broad foliar dominance index (BFDI), was introduced to provide forest canopy structure and coniferous and broadleaf species composition. Then, we revealed the response of forest canopy reflectance spectrum to BFDI and CNC. Our results showed that leaf area index had no significant effect on NIR (P>0.05) but indicated that there was a significant correlation (R2=0.76, P<0.0001) between CNC and BFDI. NIR had a more significant correlation with BFDI than with CNC for all PFTs, but it had no obvious correlation with CNC for single PFT. Partial correlation analysis showed that four VIs had better correlations with BFDI than with CNC. When the effect of BFDI was removed, the partial correlation between CNC and NIR was insignificant (R=0.273, P>0.05). On the contrary, removing the CNC effect, the partial correlation between BFDI and NIR was positively significant (R=0.69, P<0.0001). These findings proved that canopy structure and coniferous and broadleaf species composition had a greater influence on the remote sensing signal than canopy nitrogen concentration. The functional convergence of plant traits resulted in the relation of CNC and canopy structure and determined the positive correlation between CNC and NIR. We maintain that the repeatable relationship between CNC and NIR can be used in the remote sensing retrieval of CNC during various forest types. Nevertheless, the relationship cannot be considered as a feasible approach of CNC estimation for a single PFT.

  1. Comparison between remote sensing and a dynamic vegetation model for estimating terrestrial primary production of Africa.

    PubMed

    Ardö, Jonas

    2015-12-01

    Africa is an important part of the global carbon cycle. It is also a continent facing potential problems due to increasing resource demand in combination with climate change-induced changes in resource supply. Quantifying the pools and fluxes constituting the terrestrial African carbon cycle is a challenge, because of uncertainties in meteorological driver data, lack of validation data, and potentially uncertain representation of important processes in major ecosystems. In this paper, terrestrial primary production estimates derived from remote sensing and a dynamic vegetation model are compared and quantified for major African land cover types. Continental gross primary production estimates derived from remote sensing were higher than corresponding estimates derived from a dynamic vegetation model. However, estimates of continental net primary production from remote sensing were lower than corresponding estimates from the dynamic vegetation model. Variation was found among land cover classes, and the largest differences in gross primary production were found in the evergreen broadleaf forest. Average carbon use efficiency (NPP/GPP) was 0.58 for the vegetation model and 0.46 for the remote sensing method. Validation versus in situ data of aboveground net primary production revealed significant positive relationships for both methods. A combination of the remote sensing method with the dynamic vegetation model did not strongly affect this relationship. Observed significant differences in estimated vegetation productivity may have several causes, including model design and temperature sensitivity. Differences in carbon use efficiency reflect underlying model assumptions. Integrating the realistic process representation of dynamic vegetation models with the high resolution observational strength of remote sensing may support realistic estimation of components of the carbon cycle and enhance resource monitoring, providing suitable validation data is available.

  2. Evaluating methods to detect bark beetle-caused tree mortality using single-date and multi-date Landsat imagery

    Treesearch

    Arjan J. H. Meddens; Jeffrey A. Hicke; Lee A. Vierling; Andrew T. Hudak

    2013-01-01

    Bark beetles cause significant tree mortality in coniferous forests across North America. Mapping beetle-caused tree mortality is therefore important for gauging impacts to forest ecosystems and assessing trends. Remote sensing offers the potential for accurate, repeatable estimates of tree mortality in outbreak areas. With the advancement of multi-temporal disturbance...

  3. Using landsat time-series and lidar to inform aboveground carbon baseline estimation in Minnesota

    Treesearch

    Ram K. Deo; Grant M. Domke; Matthew B. Russell; Christopher W. Woodall; Michael J. Falkowski

    2015-01-01

    Landsat data has long been used to support forest monitoring and management decisions despite the limited success of passive optical remote sensing for accurate estimation of structural attributes such as aboveground biomass. The archive of publicly available Landsat images dating back to the 1970s can be used to predict historic forest biomass dynamics. In addition,...

  4. Assessing alternative measures of tree canopy cover: Photo-interpreted NAIP and ground-based estimates

    Treesearch

    Chris Toney; Greg Liknes; Andy Lister; Dacia Meneguzzo

    2012-01-01

    In preparation for the development of the National Land Cover Database (NLCD) 2011 tree canopy cover layer, a pilot project for research and method development was completed in 2010 by the USDA Forest Service Forest Inventory and Analysis (FIA) program and Remote Sensing Applications Center (RSAC).This paper explores one of several topics investigated during the NLCD...

  5. Modeling forest biomass and growth: Coupling long-term inventory and LiDAR data

    Treesearch

    Chad Babcock; Andrew O. Finley; Bruce D. Cook; Aaron Weiskittel; Christopher W. Woodall

    2016-01-01

    Combining spatially-explicit long-term forest inventory and remotely sensed information from Light Detection and Ranging (LiDAR) datasets through statistical models can be a powerful tool for predicting and mapping above-ground biomass (AGB) at a range of geographic scales. We present and examine a novel modeling approach to improve prediction of AGB and estimate AGB...

  6. Relating forest attributes with area- and tree-based light detection and ranging metrics for western Oregon

    Treesearch

    Michael E. Goerndt; Vincente J. Monleon; Hailemariam. Temesgen

    2010-01-01

    Three sets of linear models were developed to predict several forest attributes, using stand-level and single-tree remote sensing (STRS) light detection and ranging (LiDAR) metrics as predictor variables. The first used only area-level metrics (ALM) associated with first-return height distribution, percentage of cover, and canopy transparency. The second alternative...

  7. State-of-the-art technologies of forest inventory and monitoring in Taiwan

    Treesearch

    Fong-Long Feng

    2000-01-01

    Ground surveys, remote sensing (RS), global positioning systems (GPS), geographic information systems (GIS), and permanent sampling plots (PSP) were used to inventory and monitor forests in the development of an ecosystem management plan for the island of Taiwan. While the entire island has been surveyed, this study concentrates on the Hui-Sun and Hsin-Hua Experimental...

  8. Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland

    Treesearch

    Jan U.H. Eitel; Lee A. Vierling; Marcy E. Litvak; Dan S. Long; Urs Schulthess; Alan A. Ager; Dan J. Krofcheck; Leo Stoscheck

    2011-01-01

    Multiple plant stresses can affect the health, esthetic condition, and timber harvest value of conifer forests. To monitor spatial and temporal dynamic forest stress conditions, timely, accurate, and cost-effective information is needed that could be provided by remote sensing. Recently, satellite imagery has become available via the RapidEye satellite constellation to...

  9. A 30-meter spatial database for the nation's forests

    Treesearch

    Raymond L. Czaplewski

    2002-01-01

    The FIA vision for remote sensing originated in 1992 with the Blue Ribbon Panel on FIA, and it has since evolved into an ambitious performance target for 2003. FIA is joining a consortium of Federal agencies to map the Nation's land cover. FIA field data will help produce a seamless, standardized, national geospatial database for forests at the scale of 30-m...

  10. Changes in landscape patterns and associated forest succession on the western slope of the Rocky Mountains, Colorado

    Treesearch

    Daniel J. Manier; Richard D. Laven

    2001-01-01

    Using repeat photography, we conducted a qualitative and quantitative analysis of changes in forest cover on the western slope of the Rocky Mountains in Colorado. For the quantitative analysis, both images in a pair were classified using remote sensing and geographic information system (GIS) technologies. Comparisons were made using three landscape metrics: total...

  11. A temporal analysis of urban forest carbon storage using remote sensing

    Treesearch

    Soojeong Myeong; David J. Nowak; Michael J. Duggin

    2006-01-01

    Quantifying the carbon storage, distribution, and change of urban trees is vital to understanding the role of vegetation in the urban environment. At present, this is mostly achieved through ground study. This paper presents a method based on the satellite image time series, which can save time and money and greatly speed the process of urban forest carbon storage...

  12. Combining LIDAR estimates of aboveground biomass and Landsat estimates of stand age for spatially extensive validation of modeled forest productivity.

    Treesearch

    M.A. Lefsky; D.P. Turner; M. Guzy; W.B. Cohen

    2005-01-01

    Extensive estimates of forest productivity are required to understand the relationships between shifting land use, changing climate and carbon storage and fluxes. Aboveground net primary production of wood (NPPAw) is a major component of total NPP and of net ecosystem production (NEP). Remote sensing of NPP and NPPAw is...

  13. Landsat TM as a Tool for Locating Habitat for Cerulean Warblers

    NASA Technical Reports Server (NTRS)

    Kellner, Chris

    2000-01-01

    I believe that I made significant strides in three areas between fall of 1997 and fall of 2000 when I concluded my participation in the JOVE program. First, I acquired skill in digital remote sensing. This was significant to me because it had been 20 years since I had done any work utilizing remote sensing. I used my new skills in two classroom settings (forest ecology and GIS). In addition, I will participate as an instructor of digital remote sensing in a workshop for secondary educators this coming spring. Second, I received funding from the Arkansas Game and Fish Commission and the U.S. Forest Service to supplement JOVE funds. Third, and most importantly, a students and I developed a technique using LandSAT TM for identifying habitat for cerulean warblers. We developed a habitat model using logistic regression to discriminate between pixels that had a high probability of representing good cerulean warbler habitat and pixels that had a low probability of representing cerulean warbler habitat. Using this model, we located five significant populations of cerulean warblers in the Ozark National Forest of Arkansas. These populations were unknown before the initiation of this research and further represent a significant proportion of the known cerulean warblers in Arkansas. Preliminary findings were presented at the Ornithological Societies of America meeting in August of 1999. I also presented findings at the Arkansas Game and Fish Commission Research Symposium held in June of 2000. Finally, one paper is in press: James, D. A., C.J. Kellner, J. Self, and J. Davis., 'Breeding season distribution of cerulean warblers in Arkansas in the 1990's'. In addition, one paper is under construction: 'Population fluctuation and habitat selection by cerulean warblers in upland forests of Arkansas,' and one paper is under consideration: 'LandSAT TM and Logistic regression for identification of cerulean warbler habitat in upland forests of Arkansas.'

  14. Fire Impacts on Mixed Pine-oak Forests Assessed with High Spatial Resolution Imagery, Imaging Spectroscopy, and LiDAR

    NASA Astrophysics Data System (ADS)

    Meng, R.; Wu, J.; Zhao, F. R.; Kathy, S. L.; Dennison, P. E.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2016-12-01

    As a primary disturbance agent, fire significantly influences forest ecosystems, including the modification or resetting of vegetation composition and structure, which can then significantly impact landscape-scale plant function and carbon stocks. Most ecological processes associated with fire effects (e.g. tree damage, mortality, and vegetation recovery) display fine-scale, species specific responses but can also vary spatially within the boundary of the perturbation. For example, both oak and pine species are fire-adapted, but fire can still induce changes in composition, structure, and dominance in a mixed pine-oak forest, mainly because of their varying degrees of fire adaption. Evidence of post-fire shifts in dominance between oak and pine species has been documented in mixed pine-oak forests, but these processes have been poorly investigated in a spatially explicit manner. In addition, traditional field-based means of quantifying the response of partially damaged trees across space and time is logistically challenging. Here we show how combining high resolution satellite imagery (i.e. Worldview-2,WV-2) and airborne imaging spectroscopy and LiDAR (i.e. NASA Goddard's Lidar, Hyperspectral and Thermal airborne imager, G-LiHT) can be effectively used to remotely quantify spatial and temporal patterns of vegetation recovery following a top-killing fire that occurred in 2012 within mixed pine-oak forests in the Long Island Central Pine Barrens Region, New York. We explore the following questions: 1) what are the impacts of fire on species composition, dominance, plant health, and vertical structure; 2) what are the recovery trajectories of forest biomass, structure, and spectral properties for three years following the fire; and 3) to what extent can fire impacts be captured and characterized by multi-sensor remote sensing techniques from active and passive optical remote sensing.

  15. An assessment of commonly employed satellite-based remote sensors for mapping mangrove species in Mexico using an NDVI-based classification scheme.

    PubMed

    Valderrama-Landeros, L; Flores-de-Santiago, F; Kovacs, J M; Flores-Verdugo, F

    2017-12-14

    Optimizing the classification accuracy of a mangrove forest is of utmost importance for conservation practitioners. Mangrove forest mapping using satellite-based remote sensing techniques is by far the most common method of classification currently used given the logistical difficulties of field endeavors in these forested wetlands. However, there is now an abundance of options from which to choose in regards to satellite sensors, which has led to substantially different estimations of mangrove forest location and extent with particular concern for degraded systems. The objective of this study was to assess the accuracy of mangrove forest classification using different remotely sensed data sources (i.e., Landsat-8, SPOT-5, Sentinel-2, and WorldView-2) for a system located along the Pacific coast of Mexico. Specifically, we examined a stressed semiarid mangrove forest which offers a variety of conditions such as dead areas, degraded stands, healthy mangroves, and very dense mangrove island formations. The results indicated that Landsat-8 (30 m per pixel) had  the lowest overall accuracy at 64% and that WorldView-2 (1.6 m per pixel) had the highest at 93%. Moreover, the SPOT-5 and the Sentinel-2 classifications (10 m per pixel) were very similar having accuracies of 75 and 78%, respectively. In comparison to WorldView-2, the other sensors overestimated the extent of Laguncularia racemosa and underestimated the extent of Rhizophora mangle. When considering such type of sensors, the higher spatial resolution can be particularly important in mapping small mangrove islands that often occur in degraded mangrove systems.

  16. Application of remote sensing in tropical forests

    NASA Technical Reports Server (NTRS)

    Joyce, Armond T.; Luvall, J. C.; Sever, T.

    1990-01-01

    Cloud cover in tropical humid forests can pose serious operational constraints on Landsat TM and SPOT HRV instrumentation, given their respective orbital frequencies of 16 and 26 days. SAR data intrinsically precludes such problems; the increase of data acquisition frequency to daily rates, as with the NOAA AVHRR instrument, also bears consideration. It is deemed essential that SAR data-related research be expedited, in order to ascertain inherent SAR information for tropical forests in a timely and cost-effective manner.

  17. Anthropogenic Land-use Change and the Dynamics of Amazon Forest Biomass

    NASA Technical Reports Server (NTRS)

    Laurance, William F.

    2004-01-01

    This project was focused on assessing the effects of prevailing land uses, such as habitat fragmentation, selective logging, and fire, on biomass and carbon storage in Amazonian forests, and on the dynamics of carbon sequestration in regenerating forests. Ancillary goals included developing GIs models to help predict the future condition of Amazonian forests, and assessing the effects of anthropogenic climate change and ENS0 droughts on intact and fragmented forests. Ground-based studies using networks of permanent plots were linked with remote-sensing data (including Landsat TM and AVHRR) at regional scales, and higher-resolution techniques (IKONOS imagery, videography, LIDAR, aerial photographs) at landscape and local scales. The project s specific goals were quite eclectic and included: Determining the effects of habitat fragmentation on forest dynamics, floristic composition, and the various components of above- and below-ground biomass. Assessing historical and physical factors that affect trajectories of forest regeneration and carbon sequestration on abandoned lands. Extrapolating results from local studies of biomass dynamics in fragmented and regenerating forests to landscape and regional scales in Amazonia, using remote sensing and GIS. Testing the hypothesis that intact Amazonian forests are functioning as a significant carbon sink. Examining destructive synergisms between forest fragmentation and fire. Assessing the short-term impacts of selective logging on aboveground biomass. Developing GIS models that integrate current spatial data on forest cover, deforestation, logging, mining, highway and roads, navigable rivers, vulnerability to wild fires, protected areas, and existing and planned infrastructure projects, in an effort to predict the future condition of Brazilian Amazonian forests over the next 20-25 years. Devising predictive spatial models to assess the influence of varied biophysical and anthropogenic predictors on Amazonian deforestation.

  18. Global Operational Remotely Sensed Evapotranspiration System for Water Resources Management: Case Study for the State of New Mexico

    NASA Astrophysics Data System (ADS)

    Halverson, G. H.; Fisher, J.; Magnuson, M.; John, L.

    2017-12-01

    An operational system to produce and disseminate remotely sensed evapotranspiration using the PT-JPL model and support its analysis and use in water resources decision making is being integrated into the New Mexico state government. A partnership between the NASA Western Water Applications Office (WWAO), the Jet Propulsion Laboratory (JPL), and the New Mexico Office of the State Engineer (NMOSE) has enabled collaboration with a variety of state agencies to inform decision making processes for agriculture, rangeland, and forest management. This system improves drought understanding and mobilization, litigation support, and economic, municipal, and ground-water planning through interactive mapping of daily rates of evapotranspiration at 1 km spatial resolution with near real-time latency. This is facilitated by daily remote sensing acquisitions of land-surface temperature and near-surface air temperature and humidity from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument on the Terra satellite as well as the short-term composites of Normalized Difference Vegetation Index (NDVI) and albedo provided by MODIS. Incorporating evapotranspiration data into agricultural water management better characterizes imbalances between water requirements and supplies. Monitoring evapotranspiration over rangeland areas improves remediation and prevention of aridification. Monitoring forest evapotranspiration improves wildlife management and response to wildfire risk. Continued implementation of this decision support system should enhance water and food security.

  19. Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing.

    PubMed

    Richardson, Andrew D; Hufkens, Koen; Milliman, Tom; Frolking, Steve

    2018-04-09

    Phenology is a valuable diagnostic of ecosystem health, and has applications to environmental monitoring and management. Here, we conduct an intercomparison analysis using phenological transition dates derived from near-surface PhenoCam imagery and MODIS satellite remote sensing. We used approximately 600 site-years of data, from 128 camera sites covering a wide range of vegetation types and climate zones. During both "greenness rising" and "greenness falling" transition phases, we found generally good agreement between PhenoCam and MODIS transition dates for agricultural, deciduous forest, and grassland sites, provided that the vegetation in the camera field of view was representative of the broader landscape. The correlation between PhenoCam and MODIS transition dates was poor for evergreen forest sites. We discuss potential reasons (including sub-pixel spatial heterogeneity, flexibility of the transition date extraction method, vegetation index sensitivity in evergreen systems, and PhenoCam geolocation uncertainty) for varying agreement between time series of vegetation indices derived from PhenoCam and MODIS imagery. This analysis increases our confidence in the ability of satellite remote sensing to accurately characterize seasonal dynamics in a range of ecosystems, and provides a basis for interpreting those dynamics in the context of tangible phenological changes occurring on the ground.

  20. Application of remote sensing to state and regional problems. [mississippi

    NASA Technical Reports Server (NTRS)

    Miller, W. F.; Powers, J. S.; Clark, J. R.; Solomon, J. L.; Williams, S. G. (Principal Investigator)

    1981-01-01

    The methods and procedures used, accomplishments, current status, and future plans are discussed for each of the following applications of LANDSAT in Mississippi: (1) land use planning in Lowndes County; (2) strip mine inventory and reclamation; (3) white-tailed deer habitat evaluation; (4) remote sensing data analysis support systems; (5) discrimination of unique forest habitats in potential lignite areas; (6) changes in gravel operations; and (7) determining freshwater wetlands for inventory and monitoring. The documentation of all existing software and the integration of the image analysis and data base software into a single package are now considered very high priority items.

  1. Research in remote sensing of agriculture, earth resources, and man's environment

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A.

    1974-01-01

    Research performed on NASA and USDA remote sensing projects are reviewed and include: (1) the 1971 Corn Blight Watch Experiment; (2) crop identification; (3) soil mapping; (4) land use inventories; (5) geologic mapping; and (6) forest and water resources data collection. The extent to which ERTS images and airborne data were used is indicated along with computer implementation. A field and laboratory spectroradiometer system is described together with the LARSYS software system, both of which were widely used during the research. Abstracts are included of 160 technical reports published as a result of the work.

  2. Testing the sensitivity of terrestrial carbon models using remotely sensed biomass estimates

    NASA Astrophysics Data System (ADS)

    Hashimoto, H.; Saatchi, S. S.; Meyer, V.; Milesi, C.; Wang, W.; Ganguly, S.; Zhang, G.; Nemani, R. R.

    2010-12-01

    There is a large uncertainty in carbon allocation and biomass accumulation in forest ecosystems. With the recent availability of remotely sensed biomass estimates, we now can test some of the hypotheses commonly implemented in various ecosystem models. We used biomass estimates derived by integrating MODIS, GLAS and PALSAR data to verify above-ground biomass estimates simulated by a number of ecosystem models (CASA, BIOME-BGC, BEAMS, LPJ). This study extends the hierarchical framework (Wang et al., 2010) for diagnosing ecosystem models by incorporating independent estimates of biomass for testing and calibrating respiration, carbon allocation, turn-over algorithms or parameters.

  3. PREFACE: 35th International Symposium on Remote Sensing of Environment (ISRSE35)

    NASA Astrophysics Data System (ADS)

    2014-03-01

    35th International Symposium on Remote Sensing of Environment (ISRSE35) 22-26 April, 2013, Beijing, China The 35th International Symposium on Remote Sensing of Environment (ISRSE35) was successfully convened in Beijing, China, from April 22nd to 26th, 2013. This was the first event in the ISRSE series being held in China. The symposium was hosted by the Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, and co-organized by the International Center for Remote Sensing of Environment (ICRSE), the International Society for Photogrammetry and Remote Sensing (ISPRS), the Group on Earth Observations (GEO), the International Society for Digital Earth (ISDE) and the Chinese Academy of Sciences (CAS). The theme of the symposium was ''Earth Observation and Global Environmental Change''. Back in 1962, the first ISRSE was convened at the University of Michigan, USA. Over the past 50 years, Earth observation has advanced significantly, and remote sensing has become a mature technology for observing the Earth and monitoring global environmental change. At present, remote sensing has already entered an era of integrated, coordinated and sustainable global Earth observation and rapid development of spatial information services. It is very exciting to see that remote sensing technologies have become indispensable tools in numerous fields of Earth systems science, and are playing more and more important roles in areas such as land resources surveying and mapping, crop and forest monitoring, mineral exploration, urban development, ocean and coastlines resources surveillance, and in the monitoring and assessment of floods, droughts, forest fires, landslides and earthquakes. Thus, remote sensing has made great contributions to the socio-economic development of the world and it is anticipated that it will provide more powerful support in advancing the fields of Earth systems science and global change research. The 35th ISRSE was a platform for scientists and young scholars to exchange their research results from the cutting-edge frontiers of spatial information sciences, to review the history of remote sensing development and to consider the prospects for the future development of geospatial information. Therefore, this symposium was dedicated to marking the 50th anniversary of remote sensing especially focused on earth observation and global environmental change. The 35th ISRSE attracted over a thousand scientists and researchers from 56 countries and regions. The Technical Program Committee selected 346 oral presentations and 376 poster presentations, out of 1249 submitted abstracts. In order that the papers from this symposium could be published on a well-recognized platform, the organizers decided to produce refereed papers in IOP EES and invited all presenters to contribute to these proceedings. Each submitted paper was refereed by two anonymous reviewers, following the guidelines of the IOP's Peer Review Policy. The final collection of 279 papers covers a broad range of topics under 14 headings, which not only reflects the diversity of the presentations prompted by the current research hotspots related to remote sensing of the environment, but also witnesses to the increasingly mature development of the discipline. We would like to take this opportunity of the publication of the ISRSE35 Proceedings to express our gratitude to all the participants, especially those who contributed with presentations and manuscripts, for making ISRSE35 such a successful conference. Our thanks also go to our colleagues for their support and encouragement, particularly to the reviewers who worked very hard in reviewing the papers and provided thoughtful comments on the manuscripts. Finally, we sincerely hope that 35th ISRSE will prove to be a significant step forward in Earth observation technologies as applied to addressing the persistent challenges related to global sustainable development. Thank you for your interest and please enjoy the Proceedings. Editor-in-Chief: GUO Huadong Executive Editors: WANG Changlin, JING Linhai, WANG Lizhe, and CHEN Fang Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences The organizing structure of the 35th International Symposium on Remote Sensing of Environment can be found in the PDF.

  4. San Juan National Forest Land Management Planning Support System (LMPSS) requirements definition

    NASA Technical Reports Server (NTRS)

    Werth, L. F. (Principal Investigator)

    1981-01-01

    The role of remote sensing data as it relates to a three-component land management planning system (geographic information, data base management, and planning model) can be understood only when user requirements are known. Personnel at the San Juan National Forest in southwestern Colorado were interviewed to determine data needs for managing and monitoring timber, rangelands, wildlife, fisheries, soils, water, geology and recreation facilities. While all the information required for land management planning cannot be obtained using remote sensing techniques, valuable information can be provided for the geographic information system. A wide range of sensors such as small and large format cameras, synthetic aperture radar, and LANDSAT data should be utilized. Because of the detail and accuracy required, high altitude color infrared photography should serve as the baseline data base and be supplemented and updated with data from the other sensors.

  5. Traditional Livelihoods, Conservation and Meadow Ecology in Jiuzhaigou National Park, Sichuan, China

    PubMed Central

    Urgenson, Lauren; Schmidt, Amanda H.; Combs, Julie; Harrell, Stevan; Hinckley, Thomas; Yang, Qingxia; Ma, Ziyu; Yongxian, Li; Hongliang, Lü; MacIver, Andrew

    2015-01-01

    Jiuzhaigou National Park (JNP) is a site of global conservation significance. Conservation policies in JNP include the implementation of two national reforestation programs to increase forest cover and the exclusion of local land-use. We use archaeological excavation, ethnographic interviews, remote sensing and vegetation surveys to examine the implications of these policies for non-forest, montane meadows. We find that Amdo Tibetan people cultivated the valley for >2,000 years, creating and maintaining meadows through land clearing, burning and grazing. Meadows served as sites for gathering plants and mushrooms and over 40 % of contemporary species are ethnobotanically useful. Remote sensing analyses indicate a substantial (69.6 %) decline in meadow area between 1974 and 2004. Respondents report a loss of their “true history” and connections to the past associated with loss of meadows. Conservation policies intended to preserve biodiversity are unintentionally contributing to the loss of these ecologically and culturally significant meadow habitats. PMID:26097267

  6. The use of satellite data for monitoring temporal and spatial patterns of fire: a comprehensive review

    NASA Astrophysics Data System (ADS)

    Lasaponara, R.

    2009-04-01

    Remotely sensed (RS) data can fruitfully support both research activities and operative monitoring of fire at different temporal and spatial scales with a synoptic view and cost effective technologies. "The contribution of remote sensing (RS) to forest fires may be grouped in three categories, according to the three phases of fire management: (i) risk estimation (before fire), (ii) detection (during fire) and (iii) assessment (after fire)" Chuvieco (2006). Relating each phase, wide research activities have been conducted over the years. (i) Risk estimation (before fire) has been mainly based on the use of RS data for (i) monitoring vegetation stress and assessing variations in vegetation moisture content, (ii) fuel type mapping, at different temporal and spatial scales from global, regional down to a local scale (using AVHRR, MODIS, TM, ASTER, Quickbird images and airborne hyperspectral and LIDAR data). Danger estimation has been mainly based on the use of AVHRR (onborad NOAA), MODIS (onboard TERRA and AQUA), VEGETATION (onboard SPOT) due to the technical characteristics (i.e. spectral, spatial and temporal resolution). Nevertheless microwave data have been also used for vegetation monitoring. (ii) Detection: identification of active fires, estimation of fire radiative energy and fire emission. AVHRR was one of the first satellite sensors used for setting up fire detection algorithms. The availbility of MODIS allowed us to obtain global fire products free downloaded from NASA web site. Sensors onboard geostationary satellite platforms, such as GOES, SEVIRI, have been used for fire detection, to obtain a high temporal resolution (at around 15 minutes) monitoring of active fires. (iii) Post fire damage assessment includes: burnt area mapping, fire emission, fire severity, vegetation recovery, fire resilience estimation, and, more recently, fire regime characterization. Chuvieco E. L. Giglio, C. Justice, 2008 Global charactrerization of fire activity: toward defining fire regimes from Earth observation data Global Change Biology vo. 14. doi: 10.1111/j.1365-2486.2008.01585.x 1-15, Chuvieco E., P. Englefield, Alexander P. Trishchenko, Yi Luo Generation of long time series of burn area maps of the boreal forest from NOAA-AVHRR composite data. Remote Sensing of Environment, Volume 112, Issue 5, 15 May 2008, Pages 2381-2396 Chuvieco Emilio 2006, Remote Sensing of Forest Fires: Current limitations and future prospects in Observing Land from Space: Science, Customers and Technology, Advances in Global Change Research Vol. 4 pp 47-51 De Santis A., E. Chuvieco Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models, Remote Sensing of Environment, Volume 108, Issue 4, 29 June 2007, Pages 422-435. De Santis A., E. Chuvieco, Patrick J. Vaughan, Short-term assessment of burn severity using the inversion of PROSPECT and GeoSail models, Remote Sensing of Environment, Volume 113, Issue 1, 15 January 2009, Pages 126-136 García M., E. Chuvieco, H. Nieto, I. Aguado Combining AVHRR and meteorological data for estimating live fuel moisture content Remote Sensing of Environment, Volume 112, Issue 9, 15 September 2008, Pages 3618-3627 Ichoku C., L. Giglio, M. J. Wooster, L. A. Remer Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2950-2962. Lasaponara R. and Lanorte, On the capability of satellite VHR QuickBird data for fuel type characterization in fragmented landscape Ecological Modelling Volume 204, Issues 1-2, 24 May 2007, Pages 79-84 Lasaponara R., A. Lanorte, S. Pignatti,2006 Multiscale fuel type mapping in fragmented ecosystems: preliminary results from Hyperspectral MIVIS and Multispectral Landsat TM data, Int. J. Remote Sens., vol. 27 (3) pp. 587-593. Lasaponara R., V. Cuomo, M. F. Macchiato, and T. Simoniello, 2003 .A self-adaptive algorithm based on AVHRR multitemporal data analysis for small active fire detection.n International Journal of Remote Sensing, vol. 24, No 8, 1723-1749. Minchella A., F. Del Frate, F. Capogna, S. Anselmi, F. Manes Use of multitemporal SAR data for monitoring vegetation recovery of Mediterranean burned areas Remote Sensing of Environment, In Press Næsset E., T. Gobakken Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 3079-3090 Peterson S. H, Dar A. Roberts, Philip E. Dennison Mapping live fuel moisture with MODIS data: A multiple regression approach, Remote Sensing of Environment, Volume 112, Issue 12, 15 December 2008, Pages 4272-4284. Schroeder Wilfrid, Elaine Prins, Louis Giglio, Ivan Csiszar, Christopher Schmidt, Jeffrey Morisette, Douglas Morton Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data Remote Sensing of Environment, Volume 112, Issue 5, 15 May 2008, Pages 2711-2726 Shi J., T. Jackson, J. Tao, J. Du, R. Bindlish, L. Lu, K.S. Chen Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E Remote Sensing of Environment, Volume 112, Issue 12, 15 December 2008, Pages 4285-4300 Tansey, K., Grégoire, J-M., Defourny, P., Leigh, R., Pekel, J-F., van Bogaert, E. and Bartholomé, E., 2008 A New, Global, Multi-Annual (2000-2007) Burnt Area Product at 1 km Resolution and Daily Intervals Geophysical Research Letters, VOL. 35, L01401, doi:10.1029/2007GL031567, 2008. Telesca L. and Lasaponara R., 2006; "Pre-and Post- fire Behaviural trends revealed in satellite NDVI time series" Geophysical Research Letters,., 33, L14401, doi:10.1029/2006GL026630 Telesca L. and Lasaponara R 2005 Discriminating Dynamical Patterns in Burned and Unburned Vegetational Covers by Using SPOT-VGT NDVI Data. Geophysical Research Letters,, 32, L21401, doi:10.1029/2005GL024391. Telesca L. and Lasaponara R. Investigating fire-induced behavioural trends in vegetation covers , Communications in Nonlinear Science and Numerical Simulation, 13, 2018-2023, 2008 Telesca L., A. Lanorte and R. Lasaponara, 2007. Investigating dynamical trends in burned and unburned vegetation covers by using SPOT-VGT NDVI data. Journal of Geophysics and Engineering, Vol. 4, pp. 128-138, 2007 Telesca L., R. Lasaponara, and A. Lanorte, Intra-annual dynamical persistent mechanisms in Mediterranean ecosystems revealed SPOT-VEGETATION Time Series, Ecological Complexity, 5, 151-156, 2008 Verbesselt, J., Somers, B., Lhermitte, S., Jonckheere, I., van Aardt, J., and Coppin, P. (2007) Monitoring herbaceous fuel moisture content with SPOT VEGETATION time-series for fire risk prediction in savanna ecosystems. Remote Sensing of Environment 108: 357-368. Zhang X., S. Kondragunta Temporal and spatial variability in biomass burned areas across the USA derived from the GOES fire product Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2886-2897 Zhang X., Shobha Kondragunta Temporal and spatial variability in biomass burned areas across the USA derived from the GOES fire product Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2886-2897

  7. Ten Years of Forest Cover Change in the Sierra Nevada Detected Using Landsat Satellite Image Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher S.

    2014-01-01

    A detailed geographic record of recent vegetation regrowth and disturbance patterns in forests of the Sierra Nevada remains a gap that can be filled with remote sensing data. Landsat (TM) imagery was analyzed to detect 10 years of recent changes (between 2000 and 2009) in forest vegetation cover for areas burned by wildfires between years of 1995 to 1999 in the region. Results confirmed the prevalence of regrowing forest vegetation during the period 2000 and 2009 over 17% of the combined burned areas.

  8. Application of ERTS-1 imagery to land use, forest density and soil investigations

    NASA Technical Reports Server (NTRS)

    Yassoglou, N. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Photographic and digital imagery obtained by ERTS-1 was analyzed and assigned to land features related to agricultural and forest resources. Land use and forest site evaluation maps were prepared by comparing remote sensing and ground truth data. Relationships found in this investigation between spectral signatures recorded by ERTS-1 and land features can be used for the assessment and development of agricultural and forest resources. The results are applicable to areas with ecological and geological conditions similar to those of Greece.

  9. Classification of forest land attributes using multi-source remotely sensed data

    NASA Astrophysics Data System (ADS)

    Pippuri, Inka; Suvanto, Aki; Maltamo, Matti; Korhonen, Kari T.; Pitkänen, Juho; Packalen, Petteri

    2016-02-01

    The aim of the study was to (1) examine the classification of forest land using airborne laser scanning (ALS) data, satellite images and sample plots of the Finnish National Forest Inventory (NFI) as training data and to (2) identify best performing metrics for classifying forest land attributes. Six different schemes of forest land classification were studied: land use/land cover (LU/LC) classification using both national classes and FAO (Food and Agricultural Organization of the United Nations) classes, main type, site type, peat land type and drainage status. Special interest was to test different ALS-based surface metrics in classification of forest land attributes. Field data consisted of 828 NFI plots collected in 2008-2012 in southern Finland and remotely sensed data was from summer 2010. Multinomial logistic regression was used as the classification method. Classification of LU/LC classes were highly accurate (kappa-values 0.90 and 0.91) but also the classification of site type, peat land type and drainage status succeeded moderately well (kappa-values 0.51, 0.69 and 0.52). ALS-based surface metrics were found to be the most important predictor variables in classification of LU/LC class, main type and drainage status. In best classification models of forest site types both spectral metrics from satellite data and point cloud metrics from ALS were used. In turn, in the classification of peat land types ALS point cloud metrics played the most important role. Results indicated that the prediction of site type and forest land category could be incorporated into stand level forest management inventory system in Finland.

  10. Quantitative retrieving forest ecological parameters based on remote sensing in Liping County of China

    NASA Astrophysics Data System (ADS)

    Tian, Qingjiu; Chen, Jing M.; Zheng, Guang; Xia, Xueqi; Chen, Junying

    2006-09-01

    Forest ecosystem is an important component of terrestrial ecosystem and plays an important role in global changes. Aboveground biomass (AGB) of forest ecosystem is an important factor in global carbon cycle studies. The purpose of this study was to retrieve the yearly Net Primary Productivity (NPP) of forest from the 8-days-interval MODIS-LAI images of a year and produce a yearly NPP distribution map. The LAI, DBH (diameter at breast height), tree height, and tree age field were measured in different 80 plots for Chinese fir, Masson pine, bamboo, broadleaf, mix forest in Liping County. Based on the DEM image and Landsat TM images acquired on May 14th, 2000, the geometric correction and terrain correction were taken. In addition, the "6S"model was used to gain the surface reflectance image. Then the correlation between Leaf Area Index (LAI) and Reduced Simple Ratio (RSR) was built. Combined with the Landcover map, forest stand map, the LAI, aboveground biomass, tree age map were produced respectively. After that, the 8-days- interval LAI images of a year, meteorology data, soil data, forest stand image and Landcover image were inputted into the BEPS model to get the NPP spatial distribution. At last, the yearly NPP spatial distribution map with 30m spatial resolution was produced. The values in those forest ecological parameters distribution maps were quite consistent with those of field measurements. So it's possible, feasible and time-saving to estimate forest ecological parameters at a large scale by using remote sensing.

  11. Application of remote sensing to estimating soil erosion potential

    NASA Technical Reports Server (NTRS)

    Morris-Jones, D. R.; Kiefer, R. W.

    1980-01-01

    A variety of remote sensing data sources and interpretation techniques has been tested in a 6136 hectare watershed with agricultural, forest and urban land cover to determine the relative utility of alternative aerial photographic data sources for gathering the desired land use/land cover data. The principal photographic data sources are high altitude 9 x 9 inch color infrared photos at 1:120,000 and 1:60,000 and multi-date medium altitude color and color infrared photos at 1:60,000. Principal data for estimating soil erosion potential include precipitation, soil, slope, crop, crop practice, and land use/land cover data derived from topographic maps, soil maps, and remote sensing. A computer-based geographic information system organized on a one-hectare grid cell basis is used to store and quantify the information collected using different data sources and interpretation techniques. Research results are compared with traditional Universal Soil Loss Equation field survey methods.

  12. Initial results of the spatial distribution of rubber trees in Peninsular Malaysia using remotely sensed data for biomass estimate

    NASA Astrophysics Data System (ADS)

    Shidiq, I. P. A.; Ismail, M. H.; Kamarudin, N.

    2014-02-01

    The preservation and sustainable management of forest and other land cover ecosystems such as rubber trees will help addressing two major recent issues: climate change and bio-resource energy. The rubber trees are dominantly distributed in the Negeri Sembilan and Kedah on the west coast side of Peninsular Malaysia. This study is aimed to analyse the spatial distribution and biomass of rubber trees in Peninsular Malaysia with special emphasis in Negeri Sembilan State. Geospatial data from remote sensors are used to tackle the time and labour consuming problem due to the large spatial coverage and the need of continuous temporal data. Remote sensing imagery used in this study is a Landsat 5 TM. The image from optical sensor was used to sense the rubber trees and further classified rubber tree by different age.

  13. American Society of Photogrammetry and American Congress on Surveying and Mapping, Fall Technical Meeting, ASP Technical Papers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    Various topics in the field of photogrammetry are addressed. Among the subjects discussed are: remote sensing of Gulf Stream dynamics using VHRR satellite imagery an interactive rectification system for remote sensing imagery use of a single photo and digital terrain matrix for point positioning crop type analysis using Landsat digital data use of a fisheye lens in solar energy assessment remote sensing inventory of Rocky Mountain elk habitat Washington state's large scale ortho program educational image processing. Also discussed are: operational advantages of on-line photogrammetric triangulation analysis of fracturation field photogrammetry as a tool for measuring glacier movement double modelmore » orthophotos used for forest inventory mapping map revisioning module for the Kern PG2 stereoplotter assessing accuracy of digital land-use and terrain data accuracy of earthwork calculations from digital elevation data.« less

  14. Effects of rapid urban sprawl on urban forest carbon stocks: integrating remotely sensed, GIS and forest inventory data.

    PubMed

    Ren, Yin; Yan, Jing; Wei, Xiaohua; Wang, Yajun; Yang, Yusheng; Hua, Lizhong; Xiong, Yongzhu; Niu, Xiang; Song, Xiaodong

    2012-12-30

    Research on the effects of urban sprawl on carbon stocks within urban forests can help support policy for sustainable urban design. This is particularly important given climate change and environmental deterioration as a result of rapid urbanization. The purpose of this study was to quantify the effects of urban sprawl on dynamics of forest carbon stock and density in Xiamen, a typical city experiencing rapid urbanization in China. Forest resource inventory data collected from 32,898 patches in 4 years (1972, 1988, 1996 and 2006), together with remotely sensed data (from 1988, 1996 and 2006), were used to investigate vegetation carbon densities and stocks in Xiamen, China. We classified the forests into four groups: (1) forest patches connected to construction land; (2) forest patches connected to farmland; (3) forest patches connected to both construction land and farmland and (4) close forest patches. Carbon stocks and densities of four different types of forest patches during different urbanization periods in three zones (urban core, suburb and exurb) were compared to assess the impact of human disturbance on forest carbon. In the urban core, the carbon stock and carbon density in all four forest patch types declined over the study period. In the suburbs, different urbanization processes influenced forest carbon density and carbon stock in all four forest patch types. Urban sprawl negatively affected the surrounding forests. In the exurbs, the carbon stock and carbon density in all four forest patch types tended to increase over the study period. The results revealed that human disturbance played the dominant role in influencing the carbon stock and density of forest patches close to the locations of human activities. In forest patches far away from the locations of human activities, natural forest regrowth was the dominant factor affecting carbon stock and density. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Fifty years dynamics of Russian forests: Impacts on the earth system

    NASA Astrophysics Data System (ADS)

    Shvidenko, Anatoly; Schepaschenko, Dmitry; Kraxner, Florian

    2015-04-01

    The paper presents a succinct history of Russian forests during the time period of 1960-2010 and reanalysis of their impacts on global carbon and nitrogen cycles. We present dynamics of land cover change (including major categories of forest land) and biometric characteristics of forests (species composition, age structure, growing stock volume etc.) based on reconciling all relevant information (data of forest and land inventories, official forest management statistics, multi-sensor remote sensing products, data of forest pathological monitoring etc.). Completeness and reliability of background information was different during the period of the study. Forest inventory data and official statistics were partially modified based on relevant auxiliary information and used for 1960-2000. The analysis for 2001-2010 was provided with a crucial use of multi-sensor remote sensing data. For this last period a hybrid forest mask was developed at resolution of 230m by integration of 8 remote sensing products and using geographical weighted regression and data of crowdsourcing. During the considered 50 years forested areas of Russia substantially increased by middle of 1990s and slightly declined (at about 5%) after. Indicators needed for assessment of carbon and nitrogen cycles of forest ecosystems were defined for the entire period (aggregated estimates by decades for 1960-2000 and yearly for 2001-2010) based on unified methodology with some peculiarities following from availability of information. Major results were obtained by landscape-ecosystem method that uses as comprehensive as possible empirical and semi-empirical information on ecosystems and landscapes in form of an Integrated Land Information System and complimentary combines pool- and flux-based methods. We discuss and quantify major drivers of forest cover change (socio-economic, environmental and climatic) including forest management (harvest, reforestation and afforestation), impacts of seasonal weather on carbon fluxes (Net Primary Production, Heterotrophic Respiration), disturbances (fire, outbreaks of insects and diseases), and industrial pressure (land change, air pollution, water and soil contamination). During the entire period Russian forests provided the net carbon sink in range from 350-700 Tg C yr-1 with inter-annual variability in limits of 10-15% for the entire country. The overall sink is a result of superposition of trends of major carbon fluxes (caused by removal of harvested wood and use of forest products; land cover change; impact of climatic trends; change of disturbance regimes) and inter-annual variation of seasonal weather. Major indicators of the nitrogen cycle are assessed and discussed in connection with the carbon cycle. We provide comparative analysis of other results published for the considered period taken into account successive improvements of information and methodology used for studying the major biogeochemical cycles.

  16. Estimation and Mapping of Coastal Mangrove Biomass Using Both Passive and Active Remote Sensing Method

    NASA Astrophysics Data System (ADS)

    Yiqiong, L.; Lu, W.; Zhou, J.; Gan, W.; Cui, X.; Lin, G., Sr.

    2015-12-01

    Mangrove forests play an important role in global carbon cycle, but carbon stocks in different mangrove forests are not easily measured at large scale. In this research, both active and passive remote sensing methods were used to estimate the aboveground biomass of dominant mangrove communities in Zhanjiang National Mangrove Nature Reserve in Guangdong, China. We set up a decision tree including spectral, texture, position and geometry indexes to achieve mangrove inter-species classification among 5 main species named Aegiceras corniculatum, Aricennia marina, Bruguiera gymnorrhiza, Kandelia candel, Sonneratia apetala by using 5.8m multispectral ZY-3 images. In addition, Lidar data were collected and used to obtain the canopy height of different mangrove species. Then, regression equations between the field measured aboveground biomass and the canopy height deduced from Lidar data were established for these mangrove species. By combining these results, we were able to establish a relatively accurate method for differentiating mangrove species and mapping their aboveground biomass distribution at the estuary scale, which could be applied to mangrove forests in other regions.

  17. Evolving forest fire burn severity classification algorithms for multispectral imagery

    NASA Astrophysics Data System (ADS)

    Brumby, Steven P.; Harvey, Neal R.; Bloch, Jeffrey J.; Theiler, James P.; Perkins, Simon J.; Young, Aaron C.; Szymanski, John J.

    2001-08-01

    Between May 6 and May 18, 2000, the Cerro Grande/Los Alamos wildfire burned approximately 43,000 acres (17,500 ha) and 235 residences in the town of Los Alamos, NM. Initial estimates of forest damage included 17,000 acres (6,900 ha) of 70-100% tree mortality. Restoration efforts following the fire were complicated by the large scale of the fire, and by the presence of extensive natural and man-made hazards. These conditions forced a reliance on remote sensing techniques for mapping and classifying the burn region. During and after the fire, remote-sensing data was acquired from a variety of aircraft-based and satellite-based sensors, including Landsat 7. We now report on the application of a machine learning technique, implemented in a software package called GENIE, to the classification of forest fire burn severity using Landsat 7 ETM+ multispectral imagery. The details of this automatic classification are compared to the manually produced burn classification, which was derived from field observations and manual interpretation of high-resolution aerial color/infrared photography.

  18. Measuring carbon in forests: current status and future challenges.

    PubMed

    Brown, Sandra

    2002-01-01

    To accurately and precisely measure the carbon in forests is gaining global attention as countries seek to comply with agreements under the UN Framework Convention on Climate Change. Established methods for measuring carbon in forests exist, and are best based on permanent sample plots laid out in a statistically sound design. Measurements on trees in these plots can be readily converted to aboveground biomass using either biomass expansion factors or allometric regression equations. A compilation of existing root biomass data for upland forests of the world generated a significant regression equation that can be used to predict root biomass based on aboveground biomass only. Methods for measuring coarse dead wood have been tested in many forest types, but the methods could be improved if a non-destructive tool for measuring the density of dead wood was developed. Future measurements of carbon storage in forests may rely more on remote sensing data, and new remote data collection technologies are in development.

  19. No growth stimulation of Canada's boreal forest under half-century of combined warming and CO2 fertilization.

    PubMed

    Girardin, Martin P; Bouriaud, Olivier; Hogg, Edward H; Kurz, Werner; Zimmermann, Niklaus E; Metsaranta, Juha M; de Jong, Rogier; Frank, David C; Esper, Jan; Büntgen, Ulf; Guo, Xiao Jing; Bhatti, Jagtar

    2016-12-27

    Considerable evidence exists that current global temperatures are higher than at any time during the past millennium. However, the long-term impacts of rising temperatures and associated shifts in the hydrological cycle on the productivity of ecosystems remain poorly understood for mid to high northern latitudes. Here, we quantify species-specific spatiotemporal variability in terrestrial aboveground biomass stem growth across Canada's boreal forests from 1950 to the present. We use 873 newly developed tree-ring chronologies from Canada's National Forest Inventory, representing an unprecedented degree of sampling standardization for a large-scale dendrochronological study. We find significant regional- and species-related trends in growth, but the positive and negative trends compensate each other to yield no strong overall trend in forest growth when averaged across the Canadian boreal forest. The spatial patterns of growth trends identified in our analysis were to some extent coherent with trends estimated by remote sensing, but there are wide areas where remote-sensing information did not match the forest growth trends. Quantifications of tree growth variability as a function of climate factors and atmospheric CO 2 concentration reveal strong negative temperature and positive moisture controls on spatial patterns of tree growth rates, emphasizing the ecological sensitivity to regime shifts in the hydrological cycle. An enhanced dependence of forest growth on soil moisture during the late-20th century coincides with a rapid rise in summer temperatures and occurs despite potential compensating effects from increased atmospheric CO 2 concentration.

  20. Observing and modeling dynamics in terrestrial gross primary productivity and phenology from remote sensing: An assessment using in-situ measurements

    NASA Astrophysics Data System (ADS)

    Verma, Manish K.

    Terrestrial gross primary productivity (GPP) is the largest and most variable component of the carbon cycle and is strongly influenced by phenology. Realistic characterization of spatio-temporal variation in GPP and phenology is therefore crucial for understanding dynamics in the global carbon cycle. In the last two decades, remote sensing has become a widely-used tool for this purpose. However, no study has comprehensively examined how well remote sensing models capture spatiotemporal patterns in GPP, and validation of remote sensing-based phenology models is limited. Using in-situ data from 144 eddy covariance towers located in all major biomes, I assessed the ability of 10 remote sensing-based methods to capture spatio-temporal variation in GPP at annual and seasonal scales. The models are based on different hypotheses regarding ecophysiological controls on GPP and span a range of structural and computational complexity. The results lead to four main conclusions: (i) at annual time scale, models were more successful capturing spatial variability than temporal variability; (ii) at seasonal scale, models were more successful in capturing average seasonal variability than interannual variability; (iii) simpler models performed as well or better than complex models; and (iv) models that were best at explaining seasonal variability in GPP were different from those that were best able to explain variability in annual scale GPP. Seasonal phenology of vegetation follows bounded growth and decay, and is widely modeled using growth functions. However, the specific form of the growth function affects how phenological dynamics are represented in ecosystem and remote sensing-base models. To examine this, four different growth functions (the logistic, Gompertz, Mirror-Gompertz and Richards function) were assessed using remotely sensed and in-situ data collected at several deciduous forest sites. All of the growth functions provided good statistical representation of in-situ and remote sensing time series. However, the Richards function captured observed asymmetric dynamics that were not captured by the other functions. The timing of key phenophase transitions derived using the Richards function therefore agreed best with observations. This suggests that ecosystem models and remote-sensing algorithms would benefit from using the Richards function to represent phenological dynamics.

  1. Pan-Tropical Forest Mapping by Exploiting Textures of Multi-Temporal High Resolution SAR Data

    NASA Astrophysics Data System (ADS)

    Knuth, R.; Eckardt, R.; Richter, N.; Schmullius, C.

    2012-12-01

    Even though the first commitment period of the Kyoto Protocol is in the offing, there is still a strong demand for profound, reliable, and up to date information in order to bridge the gap of knowledge of the land cover conversion. Despite the fact that land use change is one of the largest carbon contribution factors, it is still poorly quantified. This is particularly true for many tropical forest areas worldwide. Here, preservation of such pristine forest areas is critically endangered. Enormous population growth, the increasing global demand for various resources, and the ongoing unsustainable management practices put the remaining tropical forests under a huge pressure. Yet, only the United Nations Food and Agriculture Organization's (FAO) global Forest Resources Assessment (FRA) report provides the crucial quantitative information every 5 years on a regional scale. Nonetheless, the assembled information of the FRA reports bear the burden of ambiguity and vagueness, because they were compiled based on autonomously gathered statistics, which are usually driven by the individual country needs. There is a broad consensus among the different scientific disciplines, that only the remote sensing technology allows for a large scale robust monitoring of these widespread, and remote forest areas. Consequently, the FAO decided to supplementary analyze remote sensing data for the present (2010) and upcoming FRAs. However, it is also widely accepted that currently only microwave remote sensing techniques allow for an all-day, weather independent monitoring of the frequently cloud-covered tropics. In this context, high resolution Synthetic Aperture Radar (SAR) images of the German satellites TerraSAR-X and TanDEM-X have been investigated within the pan-tropics to support the latest FRA 2010 report. Data of more than 304 predominantly cloud-covered sites in Latin America (188), Central Africa (45) and Southeast Asia (71) have been acquired. Upon delivery, the corresponding radar images were processed using an operational processing chain that includes radiometric transformation, noise reduction, and georeferencing of the SAR data. In places with pronounced topography both satellites were used as single pass interferometer to derive a digital surface model in order to perform an orthorectification followed by a topographic normalization of the SAR backscatter values. As prescribed by the FAO, the final segment-based classification algorithm was fed by multi-temporal backscatter information, a set of textural features, and information on the degree of coherence between the multi-temporal acquisitions. Validation with available high resolution optical imagery suggests that the produced forest maps possess an overall accuracy of 75 percent or higher.

  2. Analysis And Assessment Of Forest Cover Change For The State Of Wisconsin

    NASA Astrophysics Data System (ADS)

    Perry, C. H.; Nelson, M. D.; Stueve, K.; Gormanson, D.

    2010-12-01

    The Forest Inventory and Analysis (FIA) program of the USDA Forest Service is charged with documenting the status and trends of forest resources of the United States. Since the 1930s, FIA has implemented an intensive field campaign that collects measurements on plots distributed across all ownerships, historically completing analyses which include estimates of forest area, volume, mortality, growth, removals, and timber products output in various ways, such as by ownership, region, or State. Originally a periodic inventory, FIA has been measuring plots on an annual basis since the passage of the Agriculture Research, Extension and Education Reform Act of 1998 (Farm Bill). The resulting change in sampling design and intensity presents challenges to establishing baseline and measuring changes in forest area and biomass. A project jointly sponsored by the Forest Service and the National Aeronautics and Space Agency (NASA) titled “Integrating Landscape-scale Forest Measurements with Remote Sensing and Ecosystem Models to Improve Carbon Management Decisions” seeks to improve estimates of landscape- and continental-scale carbon dynamics and causes of change for North American forest land, and to use this information to support land management decisions. Specifically, we are developing and applying methods to scale up intensive biomass and carbon measurements from the field campaign to larger land management areas while simultaneously estimating change in the above-ground forest carbon stocks; the State of Wisconsin is being used as the testbed for this large-scale integration remote sensing with field measurements. Once defined, the temporal and spatial patterns of forest resources by watershed for Lake Superior and Lake Michigan outputs are being integrated into water quality assessments for the Great Lakes.

  3. Using remote sensing data to assess salmon habitat status in rivers and floodplains of Puget Sound, USA

    NASA Astrophysics Data System (ADS)

    Beechie, T. J.; Pess, G. R.; Hall, J.; Timpane-Padgham, B.; Stefankiv, O.; Liermann, M. C.; Fresh, K.; Rowse, M.

    2015-12-01

    Natural processes create dynamic habitat features in large rivers and floodplains, and past land uses that restrict fluvial processes have altered habitat conditions in those environments in Puget Sound, USA. As a result, Chinook salmon and steelhead are listed as threatened species under the US Endangered Species Act (ESA). To help restore these salmon populations, restoration actions often focus on removing constraints on natural processes to restore fluvial dynamics and ultimately restore critical salmon habitats on floodplains. An important aspect of this restoration effort is monitoring whether habitat conditions are improving as anticipated, yet there are currently few protocols available for monitoring trends in large river and floodplain habitats. We identified several remote-sensing metrics that are indicators of salmon habitat condition, and developed repeatable protocols for measuring those metrics. We then tested their sensitivity to land use change by comparing habitat conditions among land cover classes (developed, agriculture, forested, and mixed). As expected, metrics of habitat complexity or condition such as side-channel length, node density, wood jam area, or riparian buffer widths were highest in forested sites and lowest in agriculture and urban sites. By contrast, percent disconnected floodplain and percent armored banks were highest in developed sites and lowest in forested sites. Our results indicate that remote sensing metrics are sensitive enough to detect differences in habitat status among land cover classes, and therefore help us understand the impact of various land uses on habitat conditions. However, detecting trends in habitat condition through time may be difficult because magnitudes of change through time are very small.

  4. Comparison of regression and geostatistical methods for mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest.

    Treesearch

    Mercedes Berterretche; Andrew T. Hudak; Warren B. Cohen; Thomas K. Maiersperger; Stith T. Gower; Jennifer Dungan

    2005-01-01

    This study compared aspatial and spatial methods of using remote sensing and field data to predict maximum growing season leaf area index (LAI) maps in a boreal forest in Manitoba, Canada. The methods tested were orthogonal regression analysis (reduced major axis, RMA) and two geostatistical techniques: kriging with an external drift (KED) and sequential Gaussian...

  5. Monitoring Canopy Moisture Using an Inversion Algorithm Applied to SAR Data from Boreas

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.; Saatchi, S.

    1995-01-01

    During several intensive field campaigns in 1993 & 1994, the JPL airborne synthetic aperture radar obtained multifrequency polarimetric radar data over various areas in the Canadian boreal forest designated as primary BOREAS study sites. These were part of a major remote sensing effort geared toward studying the interaction of the forest biome and the atmosphere to identify their role in global change.

  6. Methodological approach for assessing the economic impact of forest fires using MODIS remote sensing images

    Treesearch

    Francisco Rodríguez y Silva; Juan Ramón Molina Martínez; Miguel Castillo Soto

    2013-01-01

    Assessing areas affected by forest fires requires comprehensive studies covering a wide range of analyzes. From an economic standpoint, assessing the affected area in monetary terms is crucial. Determining the degree of loss in the value of natural resources, both those of a tangible and intangible nature, enables knowing the residual value remaining after a fire, i.e...

  7. Effects of harvest, fire, and pest/pathogen disturbances on the West Cascades ecoregion carbon balance

    Treesearch

    David P Turner; William D Ritts; Robert E Kennedy; Andrew N Gray; Zhiqiang Yang

    2015-01-01

    Background: Disturbance is a key influence on forest carbon dynamics, but the complexity of spatial and temporal patterns in forest disturbance makes it difficult to quantify their impacts on carbon flux over broad spatial domains. Here we used a time series of Landsat remote sensing images and a climate-driven carbon cycle process model to evaluate carbon fluxes at...

  8. Comparison of LiDAR-derived data and high resolution true color imagery for extracting urban forest cover

    Treesearch

    Aaron E. Maxwell; Adam C. Riley; Paul Kinder

    2013-01-01

    Remote sensing has many applications in forestry. Light detection and ranging (LiDAR) and high resolution aerial photography have been investigated as means to extract forest data, such as biomass, timber volume, stand dynamics, and gap characteristics. LiDAR return intensity data are often overlooked as a source of input raster data for thematic map creation. We...

  9. A new FIA-Type strategic inventory (NFI)

    Treesearch

    Richard A. Grotefendt; Hans T. Schreuder

    2006-01-01

    New remote sensing technologies are now available to lower the cost of doing strategic surveys. A new sampling approach for the Forest Inventory and Analysis program (FIA) of the U.S.D.A. Forest Service is discussed involving a bi-sampling unit (BSU) that is composed of a field sample unit (FSU) centered within a large scale (1:1,000 to 1:3,000) photo sample unit (PSU...

  10. The role of remote sensing in U.S. forest inventories: Past, present and future

    Treesearch

    G. Moisen; K. Brewer; R. Czaplewski; S. Healey; K. Megown; M. Finco

    2014-01-01

    In the current budget climate, the U.S. Forest Inventory and Analysis program is under increased pressure to do more with less. While reliance solely on field data under the current annual inventory system is a suitable solution when funding is adequate and stable, decreasing budgets and increasing need for timely information may necessitate solutions that can augment...

  11. Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests

    Treesearch

    Gregory P. Asner; Roberta E. Martin; Raul Tupayachi; Ruth Emerson; Paola Martinez; Felipe Sinca; George V.N. Powell; S. Joseph Wright; Ariel E. Lugo

    2011-01-01

    Leaf mass per area (LMA) is a trait of central importance to plant physiology and ecosystem function, but LMA patterns in the upper canopies of humid tropical forests have proved elusive due to tall species and high diversity. We collected top-of-canopy leaf samples from 2873 individuals in 57 sites spread across the Neotropics, Australasia, and Caribbean and Pacific...

  12. Relating fire-caused change in forest structure to remotely sensed estimates of fire severity

    Treesearch

    Jamie M. Lydersen; Brandon M. Collins; Jay D. Miller; Danny L. Fry; Scott L. Stephens

    2016-01-01

    Fire severity maps are an important tool for understanding fire effects on a landscape. The relative differenced normalized burn ratio (RdNBR) is a commonly used severity index in California forests, and is typically divided into four categories: unchanged, low, moderate, and high. RdNBR is often calculated twice--from images collected the year of the fire (initial...

  13. Carbon stock and carbon turnover in boreal and temperate forests - Integration of remote sensing data and global vegetation models

    NASA Astrophysics Data System (ADS)

    Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Tito Rademacher, Tim; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane

    2016-04-01

    Long-term vegetation dynamics are one of the key uncertainties of the carbon cycle. There are large differences in simulated vegetation carbon stocks and fluxes including productivity, respiration and carbon turnover between global vegetation models. Especially the implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current models and their importance at global scale is highly uncertain. These shortcomings have been due to the lack of spatially extensive information on vegetation carbon stocks, which cannot be provided by inventory data alone. Instead, we recently have been able to estimate northern boreal and temperate forest carbon stocks based on radar remote sensing data. Our spatially explicit product (0.01° resolution) shows strong agreement to inventory-based estimates at a regional scale and allows for a spatial evaluation of carbon stocks and dynamics simulated by global vegetation models. By combining this state-of-the-art biomass product and NPP datasets originating from remote sensing, we are able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests along spatial gradients. We observe an increasing turnover rate with colder winter temperatures and longer winters in boreal forests, suggesting frost damage and the trade-off between frost adaptation and growth being important mortality processes in this ecosystem. In contrast, turnover rate increases with climatic conditions favouring drought and insect outbreaks in temperate forests. Investigated global vegetation models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce observation-based spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well in terms of NPP, simulated vegetation carbon stocks are severely biased compared to our biomass dataset. Current limitations lead to considerable uncertainties in the estimated vegetation carbon turnover, contributing substantially to the forest feedback to climate change. Our results are the basis for improving mortality concepts in models and estimating their impact on the land carbon balance.

  14. An analysis of tree mortality using high resolution remotely-sensed data for mixed-conifer forests in San Diego county

    NASA Astrophysics Data System (ADS)

    Freeman, Mary Pyott

    ABSTRACT An Analysis of Tree Mortality Using High Resolution Remotely-Sensed Data for Mixed-Conifer Forests in San Diego County by Mary Pyott Freeman The montane mixed-conifer forests of San Diego County are currently experiencing extensive tree mortality, which is defined as dieback where whole stands are affected. This mortality is likely the result of the complex interaction of many variables, such as altered fire regimes, climatic conditions such as drought, as well as forest pathogens and past management strategies. Conifer tree mortality and its spatial pattern and change over time were examined in three components. In component 1, two remote sensing approaches were compared for their effectiveness in delineating dead trees, a spatial contextual approach and an OBIA (object based image analysis) approach, utilizing various dates and spatial resolutions of airborne image data. For each approach transforms and masking techniques were explored, which were found to improve classifications, and an object-based assessment approach was tested. In component 2, dead tree maps produced by the most effective techniques derived from component 1 were utilized for point pattern and vector analyses to further understand spatio-temporal changes in tree mortality for the years 1997, 2000, 2002, and 2005 for three study areas: Palomar, Volcan and Laguna mountains. Plot-based fieldwork was conducted to further assess mortality patterns. Results indicate that conifer mortality was significantly clustered, increased substantially between 2002 and 2005, and was non-random with respect to tree species and diameter class sizes. In component 3, multiple environmental variables were used in Generalized Linear Model (GLM-logistic regression) and decision tree classifier model development, revealing the importance of climate and topographic factors such as precipitation and elevation, in being able to predict areas of high risk for tree mortality. The results from this study highlight the importance of multi-scale spatial as well as temporal analyses, in order to understand mixed-conifer forest structure, dynamics, and processes of decline, which can lead to more sustainable management of forests with continued natural and anthropogenic disturbance.

  15. Analysis of Pooled FIA and Remote Sensing Data for Fiber Supply Assessment at the Warnell School of Forest Resources at the University of Georgia - Other Studies and Effective Information Dissemination

    Treesearch

    Chris J. Cieszewski; Michael Zasada; Tripp Lowe; Bruce Borders; Mike Clutter; Richard F. Daniels; Robert I. Elle; Robert Izlar; Jarek Zawadzki

    2005-01-01

    We provide here a short description of the origin, current work, and future outlook of the Fiber Supply Assessment program at the D.B. Warnell School of Forest Resources, University of Georgia, whose work includes various analyses of FIA data. Since 1997, the program has intended to assist the implementation of the new Southern Annual Forest Inventory System through...

  16. Taiga forest stands and SAR: Monitoring for subarctic global change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Way, J.; Kwok, R.; Viereck, L.

    1992-03-01

    In preparation for the first European Earth Remote Sensing (ERS-1) mission, a series of multitemporal, multifrequency, multipolarization aircraft synthetic aperture radar (SAR) data sets were acquired over the Bonanza Creek Experimental Forest near Fairbanks, Alaska in March 1988. Significant change in radar backscatter was observed over the two-week experimental period due to changing environmental conditions. These preliminary results are presented to illustrate the opportunity afforded by the ERS-1 SAR to monitor temporal change in forest ecosystems.

  17. Use of remote sensing for monitoring deforestation in tropical and subtropical latitudes

    USGS Publications Warehouse

    Talbot, J. J.; Pettinger, Lawrence R.

    1981-01-01

    Factors limiting the application of Landsat data—including relatively low spatial resolution, persistent cloud cover in tropical regions, inadequate coverage of certain areas due to data-acquisition restraints and lack of local Landsat data receiving stations for real-time data recording—must be considered in any proposed study. Future improvements in Landsat capabilities might extend present applications beyond distinction of forest vs. non-forest cover, determination of gross vegetation or forest type, and generalized land use mapping.

  18. Remote sensing of Essential Biodiversity Variables: new measurements linking ecosystem structure, function and composition

    NASA Astrophysics Data System (ADS)

    Schimel, D.; Pavlick, R.; Stavros, E. N.; Townsend, P. A.; Ustin, S.; Thompson, D. R.

    2017-12-01

    Remote sensing can inform a wide variety of essential biodiversity variables, including measurements that define primary productivity, forest structure, biome distribution, plant communities, land use-land cover change and climate drivers of change. Emerging remote sensing technologies can add significantly to remote sensing of EBVs, providing new, large scale insights on plant and habitat diversity itself, as well as causes and consequences of biodiversity change. All current biodiversity assessments identify major data gaps, with insufficient coverage in critical regions, limited observations to monitor change over time, with very limited revisit of sample locations, as well as taxon-specific biased biases. Remote sensing cannot fill many of the gaps in global biodiversity observations, but spectroscopic measurements in terrestrial and marine environments can aid in assessing plant/phytoplankton functional diversity and efficiently reveal patterns in space, as well as changes over time, and, by making use of chlorophyll fluorescence, reveal associated patterns in photosynthesis. LIDAR and RADAR measurements quantify ecosystem structure, and can precisely define changes due to growth, disturbance and land use. Current satellite-based EBVs have taken advantage of the extraordinary time series from LANDSAT and MODIS, but new measurements more directly reveal ecosystem structure, function and composition. We will present results from pre-space airborne studies showing the synergistic ability of a suite of new remote observation techniques to quantify biodiversity and ecosystem function and show how it changes during major disturbance events.

  19. Carbon fluxes in ecosystems of Yellowstone National Park predicted from remote sensing data and simulation modeling

    PubMed Central

    2011-01-01

    Background A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP). The CASA (Carnegie Ames Stanford Approach) model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP) and soil respiration components. Predicted net ecosystem production (NEP) flux of CO2 is estimated from the model for carbon sinks and sources over multi-year periods that varied in climate and (wildfire) disturbance histories. Monthly Enhanced Vegetation Index (EVI) image coverages from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instrument (from 2000 to 2006) were direct inputs to the model. New map products have been added to CASA from airborne remote sensing of coarse woody debris (CWD) in areas burned by wildfires over the past two decades. Results Model results indicated that relatively cooler and wetter summer growing seasons were the most favorable for annual plant production and net ecosystem carbon gains in representative landscapes of YNP. When summed across vegetation class areas, the predominance of evergreen forest and shrubland (sagebrush) cover was evident, with these two classes together accounting for 88% of the total annual NPP flux of 2.5 Tg C yr-1 (1 Tg = 1012 g) for the entire Yellowstone study area from 2000-2006. Most vegetation classes were estimated as net ecosystem sinks of atmospheric CO2 on annual basis, making the entire study area a moderate net sink of about +0.13 Tg C yr-1. This average sink value for forested lands nonetheless masks the contribution of areas burned during the 1988 wildfires, which were estimated as net sources of CO2 to the atmosphere, totaling to a NEP flux of -0.04 Tg C yr-1 for the entire burned area. Several areas burned in the 1988 wildfires were estimated to be among the lowest in overall yearly NPP, namely the Hellroaring Fire, Mink Fire, and Falls Fire areas. Conclusions Rates of recovery for burned forest areas to pre-1988 biomass levels were estimated from a unique combination of remote sensing and CASA model predictions. Ecosystem production and carbon fluxes in the Greater Yellowstone Ecosystem (GYE) result from complex interactions between climate, forest age structure, and disturbance-recovery patterns of the landscape. PMID:21835025

  20. The use of remote sensing for monitoring environmental indicators: The case of the Incomati estuary, Mozambique

    NASA Astrophysics Data System (ADS)

    LeMarie, Margarita; van der Zaag, Pieter; Menting, Geert; Baquete, Evaristo; Schotanus, Daniel

    The Incomati river basin is a transboundary basin shared by three countries: South Africa, Mozambique and Swaziland. To assess the water requirements of the environment, as stated in the Tripartite Interim Agreement (TIA) signed by the three riparian countries in Johannesburg in 2002, Mozambique needs to monitor the ecological state of the river, including the estuary. A monitoring system has to be established that can evaluate the environmental fresh water requirements based on appropriate indicators that reflect the health of the Incomati estuary. The estuary of the Incomati has important ecological functions but it also is an important socio-economic resource. Local communities depend on the estuary’s natural resources. Modifications of the river flow regime by upstream developments impact on the productivity of the estuary, diminishing fish and shrimp production, reducing biomass of natural vegetation such as grasses, reeds and mangroves and increasing salt intrusion. A decrease in estuary productivity consequently affects the incomes and living conditions of these communities. Based on an understanding of the effects of different pressures on the estuary ecosystem some indicators for monitoring the environmental state of the estuary are suggested, including the extent and vitality of mangrove forests. This latter indicator is further elaborated in the paper. Remote sensing techniques were used to identify and quantify mangrove forests in two selected areas of the estuary (Xefina Pequeña Island and Benguelene Island). Five satellite images covering a period of 20 years (1984-2003) showed that the area covered by non-degraded mangroves significantly decreased on both islands, by 25% in Xefina Pequeña Island and 40% in Benguelene Island. Moreover, the study of biomass reflection using NDVI also showed a significant decline in biomass densities over the last 20 years. Possible causes of these changes are reviewed: natural rainfall trends, modifications of the river flow regime, and increasing harvesting levels of mangrove woods. The findings presented in this paper show that mangrove forests are relevant indicators of the state of the estuary, which can be assessed by means of remote sensing techniques. Follow-up research is required that will establish the relative importance of the causal factors on the vitality of the estuarine mangrove forests. It is concluded that remotely sensed images may provide important data for an environmental monitoring system.

Top