76 FR 14372 - New Mexico Collaborative Forest Restoration Program Technical Advisory Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-16
... DEPARTMENT OF AGRICULTURE Forest Service New Mexico Collaborative Forest Restoration Program Technical Advisory Panel AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The New Mexico Collaborative Forest Restoration Program Technical Advisory Panel will meet in Albuquerque, New Mexico. The...
Chris Ringo; Alan A. Ager; Michelle A. Day; Sarah Crim
2016-01-01
Understanding the capacity to reduce wildfire risk and restore dry forests on Western national forests is a key part of prioritizing new accelerated restoration programs initiated by the Forest Service. Although a number of social and biophysical factors influence the ability to implement restoration programs, one key driver is the suite of forest plan land...
Jennifer S. Briggs; Paula J. Fornwalt; Jonas A. Feinstein
2017-01-01
Ecological restoration treatments are being implemented at an increasing rate in ponderosa pine and other dry conifer forests across the western United States, via the USDA Forest Serviceâs Collaborative Forest Landscape Restoration (CFLR) program. In this program, collaborative stakeholder groups work with National Forests (NFs) to adaptively implement and monitor...
Jeffery B. Cannon; Kevin J. Barrett; Benjamin M. Gannon; Robert N. Addington; Mike A. Battaglia; Paula J. Fornwalt; Gregory H. Aplet; Antony S. Cheng; Jeffrey L. Underhill; Jennifer S. Briggs; Peter M. Brown
2018-01-01
In response to large, severe wildfires in historically fire-adapted forests in the western US, policy initiatives, such as the USDA Forest Serviceâs Collaborative Forest Landscape Restoration Program (CFLRP), seek to increase the pace and scale of ecological restoration. One required component of this program is collaborative adaptive management, in which monitoring...
Long, Hexing; Liu, Jinlong; Tu, Chengyue; Fu, Yimin
2018-07-01
Forest landscape restoration is emerging as an effective approach to restore degraded forests for the provision of ecosystem services and to minimize trade-offs between conservation and rural livelihoods. Policy and institutional innovations in China illustrate the governance transformation of forest landscape restoration from state-controlled to polycentric governance. Based on a case study of the Ecological Forest Purchase Program in Yong'an municipality, China's Fujian Province, this paper explores how such forest governance transformation has evolved and how it has shaped the outcomes of forest landscape restoration in terms of multi-dimensionality and actor configurations. Our analysis indicates that accommodating the participation of multiple actors and market-based instruments facilitate a smoother transition from state-centered to polycentric governance in forest landscape restoration. Governance transitions for forest landscape restoration must overcome a number of challenges including ensurance of a formal participation forum, fair participation, and a sustainable legislative and financial system to enhance long-term effectiveness.
7 CFR 625.4 - Program requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... activities that promote the restoration, protection, enhancement, maintenance, and management of forest... of successful restoration, enhancement, and protection of forest ecosystem functions and values when... AGRICULTURE WATER RESOURCES HEALTHY FORESTS RESERVE PROGRAM § 625.4 Program requirements. (a) General. Under...
Desirable forest structures for a restored Front Range
Yvette L. Dickinson; Rob Addington; Greg Aplet; Mike Babler; Mike Battaglia; Peter Brown; Tony Cheng; Casey Cooley; Dick Edwards; Jonas Feinstein; Paula Fornwalt; Hal Gibbs; Megan Matonis; Kristen Pelz; Claudia Regan
2014-01-01
As part of the federal Collaborative Forest Landscape Restoration Program administered by the US Forest Service, the Colorado Front Range Collaborative Forest Landscape Restoration Project (FR-CFLRP, a collaborative effort of the Front Range Roundtable1 and the US Forest Service) is required to define desired conditions for lower montane ponderosa pine (Pinus ponderosa...
[Attributes of forest infrastructure].
Gao, Jun-kai; Jin, Ying-shan
2007-06-01
This paper discussed the origin and evolution of the conception of ecological infrastructure, the understanding of international communities about the functions of forest, the important roles of forest in China' s economic development and ecological security, and the situations and challenges to the ongoing forestry ecological restoration programs. It was suggested that forest should be defined as an essential infrastructure for national economic and social development in a modern society. The critical functions of forest infrastructure played in the transition of forestry ecological development were emphasized. Based on the synthesis of forest ecosystem features, it was considered that the attributes of forest infrastructure are distinctive, due to the fact that it is constructed by living biological material and diversified in ownership. The forestry ecological restoration program should not only follow the basic principles of infrastructural construction, but also take the special characteristics of forests into consideration in studying the managerial system of the programs. Some suggestions for the ongoing programs were put forward: 1) developing a modern concept of ecosystem where man and nature in harmony is the core, 2) formulating long-term stable investments for forestry ecological restoration programs, 3) implementing forestry ecological restoration programs based on infrastructure construction principles, and 4) managing forests according to the principles of infrastructural construction management.
Implementing watershed investment programs to restore fire-adapted forests for watershed services
NASA Astrophysics Data System (ADS)
Springer, A. E.
2013-12-01
Payments for ecosystems services and watershed investment programs have created new solutions for restoring upland fire-adapted forests to support downstream surface-water and groundwater uses. Water from upland forests supports not only a significant percentage of the public water supplies in the U.S., but also extensive riparian, aquatic, and groundwater dependent ecosystems. Many rare, endemic, threatened, and endangered species are supported by the surface-water and groundwater generated from the forested uplands. In the Ponderosa pine forests of the Southwestern U.S., post Euro-American settlement forest management practices, coupled with climate change, has significantly impacted watershed functionality by increasing vegetation cover and associated evapotranspiration and decreasing runoff and groundwater recharge. A large Collaborative Forest Landscape Restoration Program project known as the Four Forests Restoration Initiative is developing landscape scale processes to make the forests connected to these watersheds more resilient. However, there are challenges in financing the initial forest treatments and subsequent maintenance treatments while garnering supportive public opinion to forest thinning projects. A solution called the Flagstaff Watershed Protection Project is utilizing City tax dollars collected through a public bond to finance forest treatments. Exit polling from the bond election documented the reasons for the 73 % affirmative vote on the bond measure. These forest treatments have included in their actions restoration of associated ephemeral stream channels and spring ecosystems, but resources still need to be identified for these actions. A statewide strategy for developing additional forest restoration resources outside of the federal financing is being explored by state and local business and governmental leaders. Coordination, synthesis, and modeling supported by a NSF Water Sustainability and Climate project has been instrumental in facilitating the forest restoration and watershed health decision making processes.
Tyler Prante; Jennifer A. Thacher; Daniel W. McCollum; Robert P. Berrens
2007-01-01
In part because of its emphasis on building social capital, the Collaborative Forest Restoration Program (CFRP) in New Mexico represents a unique experiment in public lands management. This study uses logit probability modeling to investigate what factors determined CFRP funding, which totaled $26 million between 2001 and 2006. Results reveal program preferences for...
Cassandra Moseley; Yolanda E. Reyes
2008-01-01
Conservation-based development programs have sought to create economic opportunities for people negatively affected by biological diversity protection. The USDA Forest Service, for example, developed policies and programs to create contracting opportunities for local communities to restore public lands to replace jobs lost from reduced timber harvest. This article...
Kevin C. Vogler; Alan A. Ager; Michelle A. Day; Michael Jennings; John D. Bailey
2015-01-01
The implementation of US federal forest restoration programs on national forests is a complex process that requires balancing diverse socioecological goals with project economics. Despite both the large geographic scope and substantial investments in restoration projects, a quantitative decision support framework to locate optimal project areas and examine...
Forest restoration at Redwood National Park: a case study of an emerging program
Jason R. Teraoka
2012-01-01
For more than 30 years, Redwood National Park has been working to establish a Forest Restoration Program to rehabilitate its impaired, second-growth forests. This case study outlines the Parkâs history of using silviculture as a restoration tool, which began in 1978 after the Park's expansion. The most recent effort was the 1,700 acre South Fork of Lost Man Creek...
75 FR 34973 - New Mexico Collaborative Forest Restoration Program Technical Advisory Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-21
... Collaborative Forest Restoration Program Technical Advisory Panel will meet in Albuquerque, New Mexico. The... meeting will be held at the Hyatt Place Albuquerque/ Uptown, 6901 Arvada Avenue, NE., Albuquerque, NM... International Forestry Staff, USDA Forest Service, 333 Broadway SE., Albuquerque, NM 87102. Comments may also be...
Restoration of landscape function: Reserves or active management?
A.B. Carey
2003-01-01
A 20-year program of research suggests that old-growth forests are ecologically unique and highly valued by people, that naturally young forests with legacies from old forests sustain many, if not all, the higher organisms associated with old growth, but that many managed forests are impoverished in species. Thus, restoring landscape function entails restoring function...
R. K. Kolka; C. C. Trettin; E. A. Nelson; C. D. Barton; D. E. Fletcher
2002-01-01
Forested wetland restoration assessment is difficult because of the timeframe necessary for the development of a forest ecosystem. The development of a forested wetland ecosystem includes the recovery of hydrology, soils, vegetation, and faunal communities. To assess forested wetland restoration projects, measures need to be developed that are sensitive to early...
R.K. Kolka; Carl C. Trettin; E.A. Nelson; C.D. Barton; D.E. Fletcher
2002-01-01
Forested wetland restoration assessment is difficult because of the timeframe necessary for the development of a forest ecosystem. The development of a forested wetland ecosystem includes the recovery of hydrology, soils, vegetation, and faunal communities. To assess forested wetland restoration projects, measures need to be developed that are sensitive to early...
Highlights of the Forest Health Protection Whitebark Pine Restoration Program
John Schwandt
2011-01-01
In 2005, Forest Health Protection (FHP) initiated a rangewide health assessment for whitebark pine (Pinus albicaulis). This assessment summarized the forest health condition of whitebark pine throughout its range and also documented information needs, potential restoration strategies, and challenges to restoration that need to be addressed (Schwandt 2006). This led to...
Alan A. Ager; Michelle A. Day; Kevin Vogler
2016-01-01
We used spatial optimization to analyze alternative restoration scenarios and quantify tradeoffs for a large, multifaceted restoration program to restore resiliency to forest landscapes in the western US. We specifically examined tradeoffs between provisional ecosystem services, fire protection, and the amelioration of key ecological stressors. The results...
Models for urban forest restoration: Human and environmental values
Paul H. Gobster
2010-01-01
Urban forest restoration programs have been increasing worldwide in recent decades. A mail survey by Borneman and Hostetler (2004) gathered basic information on 33 urban natural areas programs in the United States and Canada and found the programs differed considerably along key variables such as budget, hectares under jurisdiction, and staffing. In terms of their...
Achieving restoration success: myths in bottomland hardwood forests
John A. Stanturf; Stephen H. Schoenholtz; Callie Jo Schweitzer; James P. Shepard
2001-01-01
Restoration of bottomland hardwood forests is the subject of considerable interest in the Southern United States, but restoration success is elusive. Techniques for establishing bottomland tree species are well developed, yet problems have occurred in operational programs. Current plans for restoration on public and private land suggest that as many as 200,000 ha could...
77 FR 18999 - New Mexico Collaborative Forest Restoration Program Technical Advisory Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-29
... Collaborative Forest Restoration Program Technical Advisory Panel will meet in Albuquerque, New Mexico. The... the Hyatt Place Albuquerque/ Uptown, 6901 Arvada Avenue NE., Albuquerque, NM 87110, (505) 872-9000... Service, 333 Broadway SE., Albuquerque, NM 87102. Comments may also be sent via email to [email protected
Darius M. Adams; Gregory S. Latta
2005-01-01
An intertemporal spatial equilibrium model of the eastern Oregon softwood log market was employed to estimate the market and economic welfare impacts of restoration thinning programs established on national forests in the region. Programs treated only lands with sawtimber thinning volume and varied by the extent of public subsidies for costs, the types of costs that...
78 FR 16244 - New Mexico Collaborative Forest Restoration Program Technical Advisory Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-14
... Collaborative Forest Restoration Program Technical Advisory Panel will meet in Albuquerque, New Mexico. The... at the Hyatt Place Albuquerque/ Uptown, 6901 Arvada Avenue NE., Albuquerque, NM 87110, (505) 872-9000... Service, 333 Broadway SE., Albuquerque, NM 87102. Comments may also be sent via email to [email protected
Diane De Steven; Stephen P. Faulkner; Bobby D. Keeland; Michael J. Baldwin; John W. McCoy; Steven C. Hughes
2015-01-01
In the Mississippi River Alluvial Valley (MAV), complete alteration of river-floodplain hydrology allowed for widespread conversion of forested bottomlands to intensive agriculture, resulting in nearly 80% forest loss. Governmental programs have attempted to restore forest habitat and functions within this altered landscape by the methods of tree planting (...
Fire Restoration in the Northern Region, USDA Forest Service
Glenda Scott; Steve Shelly; Jim Olivarez
2005-01-01
Restoring native plant communities is a key objective in the maintenance of healthy ecosystems. Opportunities have increased following recent wildfires. This paper describes the policy and history behind the reforestation and restoration programs in the Northern Region (Region 1) of the USDA Forest Service, which focused primarily on meeting the objectives in the...
William H. Butler; Ashley Monroe; Sarah McCaffrey
2015-01-01
The Collaborative Forest Landscape Restoration Program (CFLRP), established in 2009, encourages collaborative landscape scale ecosystem restoration efforts on United States Forest Service (USFS) lands. Although the USFS employees have experience engaging in collaborative planning, CFLRP requires collaboration in implementation, a domain where little prior experience...
Restoration of bottomland hardwood forest across a treatment intensity gradient.
J.A Stanturf; E.S Gardiner; J.P Shepard; C.J Schweitzer; C.J Portwood; L.C Dorros
2009-01-01
Large-scale restoration of bottomland hardwood forests in the lower Mississippi Alluvial Valley (USA)under federal incentive programs, begun in the 1990s. initially achieved mixed results. We report here on a comparison of four restoration techniques in terms of survival. accretion of vertical structure and woody species diversity. The...
Callie J. Schweitzer; John A. Stanturf; James P. Shepard; Timothy M. Wilkins; C. Jeffery Portwood; Lamar C., Jr. Dorris
1997-01-01
In the Lower Mississippi Alluvial Valley (LMAV), restoring bottomland hardwood forests has attracted heightened interest. The impetus involves not only environmental and aesthetic benefits, but also sound economics. Financial incentives to restore forested wetlands in the LMAV can come from federal cost share programs such as the Conservation Reserve Program and the...
Restoration of bottomland hardwood forests across a treatment intensity gradient
John A. Stanturf; Emile S. Gardiner; James P. Shepard; Callie J. Schweitzer; C. Jeffrey Portwood; Lamar C. Jr. Dorris
2009-01-01
Large-scale restoration of bottomland hardwood forests in the Lower Mississippi Alluvial Valley (USA) under federal incentive programs, begun in the 1990s, initially achieved mixed results. We report here on a comparison of four restoration techniques in terms of survival, accretion of vertical structure, and woody species diversity. The range of treatment intensity...
Jessica M. Western; Antony S. Cheng; Nathaniel M. Anderson; Pamela Motley
2017-01-01
Collaborative efforts have expanded in recent years to reduce fuel loads and restore the resilience of forest landscapes to future fires. The social acceptability of harvesting and using forest biomass associated with these programs are a hot topic, with questions about the extent to which collaboration can generate unified acceptance. We present results from a Q-...
Peter A. Williams; Candace. Karandiuk
2017-01-01
Oakville is an urban municipality with 846 ha of woodland. Management priorities are to maintain forest health, environmental health, and safety; wood production is a minor objective. The town developed a comprehensive strategy to plan for emerald ash borer (EAB; Agrilus planipennis) induced ash mortality and forest restoration. Oakville has begun...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolka, R., K.; Trettin, C., C.; Nelson, E., A.
Kolka, R.K., C.C. Trettin, E.A. Nelson, C.D. Barton, and D.E. Fletcher. 2002. Application of the EPA Wetland Research Program Approach to a floodplain wetland restoration assessment. J. Env. Monitoring & Restoration 1(1):37-51. Forested wetland restoration assessment is difficult because of the timeframe necessary for the development of a forest ecosystem. The development of a forested wetland ecosystem includes the recovery of hydrology, soils, vegetation, and faunal communities. To assess forested wetland restoration projects, measures need to be developed that are sensitive to early changes in community development and are predictive of future conditions. In this study we apply the EPS'smore » Wetland Research Program's (WRP) approach to assess the recovery of two thermally altered riparian wetland systems in South Carolina. In one of the altered wetland systems, approximately 75% of the wetland was planted with bottomland tree seedlings in an effort to hasten recovery. Individual studies addressing hydrology, soils, vegetation, and faunal communities indicate variable recovery responses.« less
Urgenson, Lauren S; Ryan, Clare M; Halpern, Charles B; Bakker, Jonathan D; Belote, R Travis; Franklin, Jerry F; Haugo, Ryan D; Nelson, Cara R; Waltz, Amy E M
2017-02-01
Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.
NASA Astrophysics Data System (ADS)
Urgenson, Lauren S.; Ryan, Clare M.; Halpern, Charles B.; Bakker, Jonathan D.; Belote, R. Travis; Franklin, Jerry F.; Haugo, Ryan D.; Nelson, Cara R.; Waltz, Amy E. M.
2017-02-01
Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.
C. Dana Nelson; W.A. Powell; C.A. Maynard; K.M. Baier; A. Newhouse; S.A. Merkle; C.J. Nairn; L. Kong; J.E. Carlson; C. Addo-Quaye; M.E. Staton; F.V. Hebard; L.L. Georgi; A.G. Abbott; B.A. Olukolu; T. Zhebentyayeva
2013-01-01
The Forest Health Initiative (FHI) was developed and implemented to test the hypothesis that a coordinated effort in biotechnology research could lead to resistant trees capable of restoring a species in a relevant time frame. As a test case, the American chestnut (Castanea dentata) was chosen for study as it is an iconic forest tree species in the eastern United...
Ager, Alan A; Day, Michelle A; Vogler, Kevin
2016-07-01
We used spatial optimization to analyze alternative restoration scenarios and quantify tradeoffs for a large, multifaceted restoration program to restore resiliency to forest landscapes in the western US. We specifically examined tradeoffs between provisional ecosystem services, fire protection, and the amelioration of key ecological stressors. The results revealed that attainment of multiple restoration objectives was constrained due to the joint spatial patterns of ecological conditions and socioeconomic values. We also found that current restoration projects are substantially suboptimal, perhaps the result of compromises in the collaborative planning process used by federal planners, or operational constraints on forest management activities. The juxtaposition of ecological settings with human values generated sharp tradeoffs, especially with respect to community wildfire protection versus generating revenue to support restoration and fire protection activities. The analysis and methods can be leveraged by ongoing restoration programs in many ways including: 1) integrated prioritization of restoration activities at multiple scales on public and adjoining private lands, 2) identification and mapping of conflicts between ecological restoration and socioeconomic objectives, 3) measuring the efficiency of ongoing restoration projects compared to the optimal production possibility frontier, 4) consideration of fire transmission among public and private land parcels as a prioritization metric, and 5) finding socially optimal regions along the production frontier as part of collaborative restoration planning. Copyright © 2016 Elsevier Ltd. All rights reserved.
Briggs, Jenny S.; Fornwalt, Paula J.; Feinstein, Jonas A.
2017-01-01
Ecological restoration treatments are being implemented at an increasing rate in ponderosa pine and other dry conifer forests across the western United States, via the USDA Forest Service’s Collaborative Forest Landscape Restoration (CFLR) program. In this program, collaborative stakeholder groups work with National Forests (NFs) to adaptively implement and monitor ecological restoration treatments intended to offset the effects of many decades of anthropogenic stressors. We initiated a novel study to expand the scope of treatment effectiveness monitoring efforts in one of the first CFLR landscapes, Colorado’s Front Range. We used a Before/After/Control/Impact framework to evaluate the short-term consequences of treatments on numerous ecological properties. We collected pre-treatment and one year post-treatment data on NF and partner agencies’ lands, in 66 plots distributed across seven treatment units and nearby untreated areas. Our results reflected progress toward several treatment objectives: treated areas had lower tree density and basal area, greater openness, no increase in exotic understory plants, no decrease in native understory plants, and no decrease in use by tree squirrels and ungulates. However, some findings suggested the need for adaptive modification of both treatment prescriptions and monitoring protocols: treatments did not promote heterogeneity of stand structure, and monitoring methods may not have been robust enough to detect changes in surface fuels. Our study highlights both the effective aspects of these restoration treatments, and the importance of initiating and continuing collaborative science-based monitoring to improve the outcomes of broad-scale forest restoration efforts.
76 FR 61666 - Collaborative Forest Landscape Restoration Program Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-05
... sent to Lauren Marshall, USDA Forest Service, Forest Management, Mailstop-1103, 1400 Independence Avenue, SW., Washington, DC 20250- 1103. Comments may also be sent via e-mail to Lauren Marshall...
De Steven, Diane; Faulkner, Stephen; Keeland, Bobby D.; Baldwin, Michael; McCoy, John W.; Hughes, Steven C.
2015-01-01
In the Mississippi River Alluvial Valley (MAV), complete alteration of river-floodplain hydrology allowed for widespreadconversion of forested bottomlands to intensive agriculture, resulting in nearly 80% forest loss. Governmental programs haveattempted to restore forest habitat and functions within this altered landscape by the methods of tree planting (afforestation)and local hydrologic enhancement on reclaimed croplands. Early assessments identified factors that influenced whetherplanting plus tree colonization could establish an overstory community similar to natural bottomland forests. The extentto which afforested sites develop typical understory vegetation has not been evaluated, yet understory composition may beindicative of restored site conditions. As part of a broad study quantifying the ecosystem services gained from restorationefforts, understory vegetation was compared between 37 afforested sites and 26 mature forest sites. Differences in vegetationattributes for species growth forms, wetland indicator classes, and native status were tested with univariate analyses;floristic composition data were analyzed by multivariate techniques. Understory vegetation of restoration sites was generallyhydrophytic, but species composition differed from that of mature bottomland forest because of young successional age anddiffering responses of plant growth forms. Attribute and floristic variation among restoration sites was related to variationin canopy development and local wetness conditions, which in turn reflected both intrinsic site features and outcomes ofrestoration practices. Thus, understory vegetation is a useful indicator of functional progress in floodplain forest restoration.
Avian response to shade‐layer restoration in coffee plantations in Puerto Rico
Irizarry, Amarilys D.; Collazo, Jaime A.; Pacifici, Krishna; Reich, Brian J.; Battle, Kathryn E.
2018-01-01
Documenting the evolving processes associated with habitat restoration and how long it takes to detect avian demographic responses is crucial to evaluate the success of restoration initiatives and to identify ways to improve their effectiveness. The importance of this endeavor prompted the U.S. Fish and Wildlife Service and the USDA Natural Resources Conservation Service to evaluate their sun‐to‐shade coffee restoration program in Puerto Rico initiated in 2003. We quantified the responses of 12 resident avian species using estimates of local occupancy and extinction probabilities based on surveys conducted in 2015–2017 at 65 restored farms grouped according to time‐since‐initial‐restoration (TSIR): new (2011–2014), intermediate (2007–2010), and old (2003–2006). We also surveyed 40 forest sites, which served as reference sites. Vegetation complexity increased with TSIR, ranging between 35 and 40% forest cover in farms 6–9 years TSIR. Forest specialists (e.g. Loxigilla portoricencis) exhibited highest average occupancy in farms initially classified as intermediate (6–9 years) and old (>10 years), paralleling occupancy in secondary forests. Occupancy of open‐habitat specialists (e.g. Tiaris olivaceus) was more variable, but higher in recently restored farms. Restoring the shade layer has the potential to heighten ecological services derived from forest specialists (e.g. frugivores) without losing the services of many open‐habitat specialists (e.g. insectivores). Annual local extinction probability for forest specialists decreased with increasing habitat complexity, strengthening the potential value of shade restoration as a tool to enhance habitat for avifauna that evolved in forested landscapes.
Conservation and restoration of forested wetlands: new techniques and perspectives
James Johnston; Steve Hartley; Antonio Martucci
2000-01-01
A partnership of state and federal agencies and private organizations is developing advanced spatial analysis techniques applied for conservation and restoration of forested wetlands. The project goal is to develop an application to assist decisionmakers in defining the eligibility of land sites for entry in the Wetland Reserve Program (WRP) of the U.S. Department of...
7 CFR 625.11 - Easement participation requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES HEALTHY FORESTS RESERVE PROGRAM § 625.11... the restoration, protection, enhancement, maintenance, and management of habitat and forest ecosystem...
7 CFR 625.11 - Easement participation requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES HEALTHY FORESTS RESERVE PROGRAM § 625.11... the restoration, protection, enhancement, maintenance, and management of habitat and forest ecosystem...
7 CFR 625.11 - Easement participation requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES HEALTHY FORESTS RESERVE PROGRAM § 625.11... the restoration, protection, enhancement, maintenance, and management of habitat and forest ecosystem...
7 CFR 625.12 - The HFRP restoration plan development.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 6 2010-01-01 2010-01-01 false The HFRP restoration plan development. 625.12 Section... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES HEALTHY FORESTS RESERVE PROGRAM § 625.12 The HFRP restoration plan development. (a) The development of the HFRP restoration plan shall be made...
75 FR 38456 - Collaborative Forest Landscape Restoration Program Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-02
... should be sent to USDA Forest Service, Forest Management, Mailstop-1103, 1400 Independence Avenue, SW., Washington, DC 20250-1103. Comments may also be sent via e-mail to [email protected] or via facsimile to 202...
Wilson, R.R.; Oliver, J.M.; Twedt, D.J.; Uihlein, W.B.; Fredrickson, L.H.; King, S.L.; Kaminski, R.M.
2005-01-01
Planned restoration of bottomland hardwoods is important to adequately address negative consequences resulting from the severe loss and fragmentation of forested wetlands in the Mississippi Alluvial Valley. Reforestation efforts have been promoted through government initiatives of state and federal agencies (e.g. Wetland Reserve Program) and private conservation groups. To clarify discussions of forested wetland restoration, we offer definitions of reforestation and restoration, review historic reforestation practices, identify additional needs, and propose a conceptual framework to assist in future reforestation efforts. Future reforestation efforts should include: (1) comprehensive planning among participating agencies, (2) standardized documentation of methods, and (3) short-term and long-term monitoring protocols that permit refinement of methodologies. Implementation of these concepts will promote cooperative planning among participants and facilitate research to evaluate bottomland hardwood restoration efforts.
The Pen Branch Project: Restoration of a Forested Wetland in South Carolina
Randall K. Kolka; Eric A. Nelson; Ronald E. Bonar; Neil C. Dulohery; David Gartner
1998-01-01
The Pen Branch Project is a program to restore a forested riparian wetland that has been subject to thermal disturbance caused by nuclear reactor operations at the Department of Energy's (DOE) Savannah River Site (SRS), an 80,200-hectare nuclear facility located in South Carolina. Various levels of thermal discharges to streams located across the US. have occurred...
7 CFR 625.9 - 10-year restoration cost-share agreements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 6 2010-01-01 2010-01-01 false 10-year restoration cost-share agreements. 625.9... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES HEALTHY FORESTS RESERVE PROGRAM § 625.9 10-year restoration cost-share agreements. (a) The restoration plan developed under § 625.12 forms the basis for the...
Ian D. Thompson; Kimiko Okabe; John A. Parrotta; David I. Forrester; Eckehard Brockerhoff; Hervé Jactel; Hisatomo Taki
2014-01-01
Planted forests are increasingly contributing wood products and other ecosystem services at a global scale. These forests will be even more important as carbon markets develop and REDD-plus forest programs (forests used specifically to reduce atmospheric emissions of CO2 through deforestation and forest degradation) become common. Restoring degraded and deforested...
RNGR: A national resource for reforestation, restoration, and nursery professionals
Diane L. Haase; Jeremiah R. Pinto; R. Kasten Dumroese; George Hernandez; Bob Karrfalt; Ron Overton
2011-01-01
The Forest Service developed the national Reforestation, Nurseries, and Genetics Resources (RNGR) program to provide expert support to State, industrial, and private forest and conservation nurseries throughout the country. The RNGR program includes technical assistance to nurseries, research projects (to address seedling and field issues), and Internet sites. RNGR...
7 CFR 625.13 - Modification of the HFRP restoration plan.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 6 2010-01-01 2010-01-01 false Modification of the HFRP restoration plan. 625.13... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES HEALTHY FORESTS RESERVE PROGRAM § 625.13 Modification of the HFRP restoration plan. Consistent with the easement and applicable law, the State...
7 CFR 625.4 - Program requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF... ecosystem functions and values. Specific restoration, protection, enhancement, maintenance, and management... restoration, enhancement, and protection of forest ecosystem functions and values when considering the cost of...
7 CFR 625.4 - Program requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF... ecosystem functions and values. Specific restoration, protection, enhancement, maintenance, and management... restoration, enhancement, and protection of forest ecosystem functions and values when considering the cost of...
7 CFR 625.4 - Program requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF... ecosystem functions and values. Specific restoration, protection, enhancement, maintenance, and management... restoration, enhancement, and protection of forest ecosystem functions and values when considering the cost of...
Code of Federal Regulations, 2014 CFR
2014-01-01
... AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION PROGRAM, EMERGENCY FOREST RESTORATION PROGRAM, AND CERTAIN RELATED PROGRAMS PREVIOUSLY ADMINISTERED UNDER THIS PART Emergency Conservation Program § 701.151... irrigation system. Barn means a structure used for the housing of animals or farm equipment. Commercial...
Code of Federal Regulations, 2013 CFR
2013-01-01
... AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION PROGRAM, EMERGENCY FOREST RESTORATION PROGRAM, AND CERTAIN RELATED PROGRAMS PREVIOUSLY ADMINISTERED UNDER THIS PART Emergency Conservation Program § 701.151... irrigation system. Barn means a structure used for the housing of animals or farm equipment. Commercial...
Code of Federal Regulations, 2012 CFR
2012-01-01
... AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION PROGRAM, EMERGENCY FOREST RESTORATION PROGRAM, AND CERTAIN RELATED PROGRAMS PREVIOUSLY ADMINISTERED UNDER THIS PART Emergency Conservation Program § 701.151... irrigation system. Barn means a structure used for the housing of animals or farm equipment. Commercial...
Code of Federal Regulations, 2011 CFR
2011-01-01
... AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION PROGRAM, EMERGENCY FOREST RESTORATION PROGRAM, AND CERTAIN RELATED PROGRAMS PREVIOUSLY ADMINISTERED UNDER THIS PART Emergency Conservation Program § 701.151... irrigation system. Barn means a structure used for the housing of animals or farm equipment. Commercial...
Riparian Restoration and Watershed Management: Some Examples from the California Coast
Laurel Marcus
1989-01-01
Managing and restoring watersheds often involves recreation of riparian habitats. The natural functions of riparian forest natural to slow flood water, stabilize stream banks and trap sediments can be used in restoring disturbed creek systems. The State Coastal Conservancy's wetland enhancement program is preserving wetlands on the California coast through repair...
7 CFR 625.11 - Easement participation requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... area as specified in the conservation easement deed; and (5) The right to perform restoration... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES HEALTHY FORESTS RESERVE PROGRAM § 625.11... the easement, including the restoration, protection, enhancement, maintenance, and management of...
John Stanturf; Brian J. Palik; Mary I. Williams; R. Kasten Dumroese
2014-01-01
An estimated 2 billion ha of forests are degraded globally and global change suggests even greater need for forest restoration. Four forest restoration paradigms are identified and discussed: revegetation, ecological restoration, functional restoration, and forest landscape restoration. Restoration is examined in terms of a degraded starting point and an ending point...
76 FR 3605 - Collaborative Forest Landscape Restoration Program Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... 3847973. Written comments should be sent to USDA Forest Service, Forest Management, Mailstop- 1103, 1400 Independence Avenue, SW., Washington, DC 20250-1103. Comments may also be sent via e-mail to Megan Roessing..., Washington, DC 20024-1103. Visitors are encouraged to call ahead to 202-205-1688 to facilitate entry into the...
Native plant development and restoration program for the Great Basin, USA
N. L. Shaw; M. Pellant; P. Olweli; S. L. Jensen; E. D. McArthur
2008-01-01
The Great Basin Native Plant Selection and Increase Project, organized by the USDA Bureau of Land Management, Great Basin Restoration Initiative and the USDA Forest Service, Rocky Mountain Research Station in 2000 as a multi-agency collaborative program (http://www.fs.fed.us/rm/boise/research/shrub/greatbasin.shtml), has the objective of improving the availability of...
Metric Selection for Ecosystem Restoration
2013-06-01
focus on wetlands, submerged aquatic vegetation, oyster reefs, riparian forest, and wet prairie (Miner 2005). The objective of these Corps...of coastal habitats, Volume Two: Tools for monitoring coastal habitats. NOAA Coastal Ocean Program Decision Analysis Series No. 23. Silver Spring, MD...NOAA National Centers for Coastal Ocean Science. Thom, R. M., and K. F. Wellman. 1996. Planning aquatic ecosystem restoration monitoring programs
Riparian valley oak (Quercus lobata) forest restoration on the middle Sacramento River, California
F. Thomas Griggs; Gregory H. Golet
2002-01-01
In 1989 The Nature Conservancy initiated a riparian horticultural restoration program on the floodplain of the middle Sacramento River, California. At nearly all restoration sites Valley oak (Quercus lobata Nee) comprised a major component of the planting design. Valley oaks are a keystone tree species of lowland floodplain habitats in California...
Code of Federal Regulations, 2014 CFR
2014-01-01
... AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION PROGRAM, EMERGENCY FOREST RESTORATION PROGRAM, AND...; fish or other animals raised by aquaculture; other livestock or fowl) for commercial production. Producers of animals raised for recreational uses only are not considered agricultural producers. Annual...
Code of Federal Regulations, 2012 CFR
2012-01-01
... AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION PROGRAM, EMERGENCY FOREST RESTORATION PROGRAM, AND...; fish or other animals raised by aquaculture; other livestock or fowl) for commercial production. Producers of animals raised for recreational uses only are not considered agricultural producers. Annual...
Code of Federal Regulations, 2011 CFR
2011-01-01
... AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION PROGRAM, EMERGENCY FOREST RESTORATION PROGRAM, AND...; fish or other animals raised by aquaculture; other livestock or fowl) for commercial production. Producers of animals raised for recreational uses only are not considered agricultural producers. Annual...
Code of Federal Regulations, 2013 CFR
2013-01-01
... AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION PROGRAM, EMERGENCY FOREST RESTORATION PROGRAM, AND...; fish or other animals raised by aquaculture; other livestock or fowl) for commercial production. Producers of animals raised for recreational uses only are not considered agricultural producers. Annual...
King, Sammy L.; Twedt, Daniel J.; Wilson, R. Randy
2006-01-01
The Mississippi River Alluvial Valley includes the floodplain of the Mississippi River from Cairo, Illinois, USA, to the Gulf of Mexico. Originally this region supported about 10 million ha of bottomland hardwood forests, but only about 2.8 million ha remain today. Furthermore, most of the remaining bottomland forest is highly fragmented with altered hydrologic processes. During the 1990s landscape-scale conservation planning efforts were initiated for migratory birds and the threatened Louisiana black bear (Ursus americanus luteolus). These plans call for large-scale reforestation and restoration efforts in the region, particularly on private lands. In 1990 the Food, Agriculture, Conservation and Trade Act authorized the Wetlands Reserve Program (WRP). The WRP is a voluntary program administered by the United States Department of Agriculture that provides eligible landowners with financial incentives to restore wetlands and retire marginal farmlands from agricultural production. As of 30 September 2005, over 275,700 ha have been enrolled in the program in the Mississippi River Alluvial Valley, with the greatest concentration in Louisiana, Arkansas, and Mississippi, USA. Hydrologic restoration is common on most sites, with open-water wetlands, such as moist-soil units and sloughs, constituting up to 30% of a given tract. Over 33,200 ha of open-water wetlands have been created, potentially providing over 115,000,000 duck-use days. Twenty-three of 87 forest-bird conservation areas have met or exceed core habitat goals for migratory songbirds and another 24 have met minimum area requirements. The WRP played an integral role in the fulfillment of these goals. Although some landscape goals have been attained, the young age of the program and forest stands, and the lack of monitoring, has limited evaluations of the program's impact on wildlife populations.
Defining an economics research program to describe and evaluate ecosystem services.
Jeffrey D. Kline
2007-01-01
Balancing societyâs multiple and sometimes competing objectives regarding forests calls for information describing the direct and indirect benefits resulting from forest policy and management, whether to address wildfire, loss of open space, unmanaged recreation, ecosystem restoration, or other objectives. The USDA Forest Service recently has proposed the concept of...
Conner, William H.; Krauss, Ken W.; Shaffer, Gary P.; Stanturf, John A.; Madsen, Palle; Lamb, David
2012-01-01
Freshwater forested wetlands commonly occur in the lower Coastal Plain of the southeastern US with baldcypress (Taxodium distichum [L.] L.C. Rich.) and water tupelo (Nyssa aquatica L.) often being the dominant trees. Extensive anthropogenic activities combined with eustatic sea-level rise and land subsidence have caused widespread hydrological changes in many of these forests. In addition, hurricanes (a common, although aperiodic occurrence) cause wide-spread damage from wind and storm surge events, with impacts exacerbated by human-mediated coastal modifications (e.g., dredging, navigation channels, etc.). Restoration of forested wetlands in coastal areas is important because emergent canopies can greatly diminish wind penetration, thereby reducing the wind stress available to generate surface waves and storm surge that are the major cause of damage to coastal ecosystems and their surrounding communities. While there is an overall paucity of large-scale restoration efforts within coastal forested wetlands of the southeastern US, we have determined important characteristics that should drive future efforts. Restoration efforts may be enhanced considerably if coupled with hydrological enhancement, such as freshwater, sediment, or sewage wastewater diversions. Large-scale restoration of coastal forests should be attempted to create a landscape capable of minimizing storm impacts and maximizing wetland sustainability in the face of climate change. Planting is the preferred regeneration method in many forested wetland sites because hydrological alterations have increased flooding, and planted seedlings must be protected from herbivory to enhance establishment. Programs identifying salt tolerance in coastal forest tree species need to be continued to help increase resilience to repetitive storm surge events.
Nadia E. Navarrete-Tindall; J.W. Van Sambeek; Jamie Coe; Warren Taylor
2007-01-01
The wooded areas of the Prairie Fork Conservation Area in central Missouri are typical of the oak/hickory forest/prairie transition zone that will require active management to restore pre-settlement, grass dominated savannas and open woodlands to improve habitat for wildlife. We initiated a management program to restore savannas and woodlands by reducing the midstory (...
NASA Astrophysics Data System (ADS)
Shepherd, Curt; Grimsrud, Kristine; Berrens, Robert P.
2009-10-01
The accumulation of fire fuels in forests throughout the world contributes significantly to the severity of wildfires. To combat the threat of wildfire, especially in the wildland-urban interface (WUI), US federal land management agencies have implemented a number of forest restoration and wildfire risk reduction programs. In the spirit of revealed preference analyses, the objective of this study is to investigate the pattern and determinants of National Fire Plan (NFP) expenditures for fuel reduction treatments in northern New Mexico (USA). Estimation results from a set of Generalized Estimating Equations models are mixed with respect to risk reduction hypotheses, and also raise issues regarding how risk reduction should be defined for a region characterized by both pockets of urban sprawl into the WUI and large areas of chronic rural poverty. Program preferences for project funding under the federal Collaborative Forest Restoration Program in New Mexico are shown to be distinctly different (e.g., exhibiting greater concern for social equity) than for other NFP-funded projects.
Use of NASA Satellite Data to Improve Coastal Cypress Forest Management
NASA Technical Reports Server (NTRS)
Spurce, Joseph; Graham, William; Barras, John
2010-01-01
Problem: Information gaps exist regarding health status and location of cypress forests in coastal Louisiana (LA). Such information is needed to aid coastal forest conservation and restoration programs. Approach to Issue Mitigation: Use NASA data to revise cypress forest cover type maps. Landsat and ASTER data. Use NASA data to identify and track cypress forest change. Landsat, ASTER, and MODIS data. Work with partners and end-users to transfer useful products and technology.
Technology transfer: taking science from the books to the ground at Bent Creek Experimental Forest
Julia Kirschman
2014-01-01
Technology transfer has been an important part of the research program at Bent Creek Experimental Forest (Bent Creek) since its establishment in 1925. Our stated mission is to develop and disseminate knowledge and strategies for restoring, managing, sustaining, and enhancing the vegetation and wildlife of upland hardwood-dominated forest ecosystems of the Southern...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, Yinghai; Coleman, Andre M.; Diefenderfer, Heida L.
We delineated 8 watersheds contributing to previously defined river reaches within the 1,468-km2 historical floodplain of the tidally influenced lower Columbia River and estuary. We assessed land-cover change at the watershed, reach, and restoration site scales by reclassifying remote-sensing data from the National Oceanic and Atmospheric Administration Coastal Change Analysis Program’s land cover/land change product into forest, wetland, and urban categories. The analysis showed a 198.3 km2 loss of forest cover during the first 6 years of the Columbia Estuary Ecosystem Restoration Program, 2001–2006. Total measured urbanization in the contributing watersheds of the estuary during the full 1996-2006 change analysismore » period was 48.4 km2. Trends in forest gain/loss and urbanization differed between watersheds. Wetland gains and losses were within the margin of error of the satellite imagery analysis. No significant land cover change was measured at restoration sites, although it was visible in aerial imagery, therefore, the 30-m land-cover product may not be appropriate for assessment of early-stage wetland restoration. These findings suggest that floodplain restoration sites in reaches downstream of watersheds with decreasing forest cover will be subject to increased sediment loads, and those downstream of urbanization will experience effects of increased impervious surfaces on hydrologic processes.« less
Use of pollen and ancient DNA as conservation baselines for offshore islands in New Zealand.
Wilmshurst, Janet M; Moar, Neville T; Wood, Jamie R; Bellingham, Peter J; Findlater, Amy M; Robinson, James J; Stone, Clive
2014-02-01
Islands play a key role globally in the conservation of endemic species. Many island reserves have been highly modified since human colonization, and their restoration and management usually occur without knowledge of their prehuman state. However, conservation paleoecology is increasingly being recognized as a tool that can help to inform both restoration and conservation of island reserves by providing prehuman vegetation baselines. Many of New Zealand's mammal-free offshore islands are foci for biological diversity conservation and, like many islands in the Polynesian region, were deforested following initial human settlement. Therefore, their current restoration, replanting, and management are guided either by historic vegetation descriptions or the occurrence of species on forested islands. We analyzed pollen and ancient DNA in soil cores from an offshore island in northern New Zealand. The result was a 2000-year record of vegetation change that began >1200 years before human settlement and spanned 550 years of human occupation and 180 years of forest succession since human occupation ceased. Between prehuman and contemporary forests there was nearly a complete species turnover including the extirpation of a dominant conifer and a palm tree. The podocarp-dominated forests were replaced by a native but novel angiosperm-dominated forest. There is no modern analog of the prehuman forests on any northern New Zealand island, and those islands that are forested are dominated by angiosperms which are assumed to be climax forests. The pollen and DNA evidence for conifer- and palm-rich forests in the prehuman era challenge this climax forest assumption. Prehuman vegetation records can thus help to inform future restoration of degraded offshore islands by informing the likely rate and direction of successional change; helping to determine whether natural rates of succession are preferable to more costly replanting programs; and providing past species lists if restoration replanting is desired. © 2013 Society for Conservation Biology.
Restoring bottomland hardwood ecosystems in the Lower Mississippi Alluvial Valley
John A. Stanturf; Emile S. Gardiner; Paul B. Hamel; Margaret S. Devall; Theodor D. Leininger; Melvin E. Warren
2000-01-01
Programs to restore southern bottomland hardwood forests to the floodplains of the Mississippi have been tested on Federal land and are now being applied to private holdings. The initial goals were to provide wildlife habitat and improve water quality, but other benefitsâpossible income from biomass and carbon creditsâmay make restoration cost-effective, even for small...
Leslie Newton; Heike Meissner; Andrea. Lemay
2011-01-01
Forests of the Greater Caribbean Region (GCR) are important ecologically and economically. These unique ecosystems are under increasing pressure from exotic pests, which may cause extensive environmental damage and cost billions of dollars in control programs, lost production, and forest restoration.
75 FR 13073 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-18
... programs acceptable to the communities. In addition it will allow for the testing of whether a self... than a paper-based survey. The Healthy Forests Restoration Act (Pub.L. 108-148) gives the Forest... evaluate the responses of California and Montana residents to different scenarios related to fire hazard...
Stephanie Mansourian; John A. Stanturf; Mercy Afua Adutwumwaa Derkyi; Vera Lex Engel
2017-01-01
Restoring forest landscapes is critical in the face of continued global forest loss and degradation. In this article, weexplore some challenges underlying the delivery of global commitments to restore forest landscapes. We propose that threefundamental questions need to be resolved upfront for the effective implementation of Forest Landscape...
Forest Restoration following Southern Pine Beetle
John D. Waldron
2011-01-01
Forest restoration is the process of transforming a damaged or unhealthy forest into a healthy one. After the southern pine beetle (SPB) has damaged a forest, it is sometimes, if not most times, necessary to restore that forest. It is important to know the restoration goals, conditions prior to SPB, current conditions, and potential future conditions of the forest...
7 CFR 625.9 - 10-year restoration cost-share agreements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 6 2011-01-01 2011-01-01 false 10-year restoration cost-share agreements. 625.9... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE WATER RESOURCES HEALTHY FORESTS RESERVE PROGRAM § 625.9 10-year... 10-year cost-share agreement and its terms are incorporated therein. (b) A 10-year cost-share...
A global meta-analysis on the ecological drivers of forest restoration success
Crouzeilles, Renato; Curran, Michael; Ferreira, Mariana S.; Lindenmayer, David B.; Grelle, Carlos E. V.; Rey Benayas, José M.
2016-01-01
Two billion ha have been identified globally for forest restoration. Our meta-analysis encompassing 221 study landscapes worldwide reveals forest restoration enhances biodiversity by 15–84% and vegetation structure by 36–77%, compared with degraded ecosystems. For the first time, we identify the main ecological drivers of forest restoration success (defined as a return to a reference condition, that is, old-growth forest) at both the local and landscape scale. These are as follows: the time elapsed since restoration began, disturbance type and landscape context. The time elapsed since restoration began strongly drives restoration success in secondary forests, but not in selectively logged forests (which are more ecologically similar to reference systems). Landscape restoration will be most successful when previous disturbance is less intensive and habitat is less fragmented in the landscape. Restoration does not result in full recovery of biodiversity and vegetation structure, but can complement old-growth forests if there is sufficient time for ecological succession. PMID:27193756
DNA fingerprinting sets for four southern pines
Craig Echt; Sedley Josserand
2018-01-01
DNA markers can provide valuable genetic information for forest tree research, breeding, conservation, and restoration programs. When properly evaluated, selected sets of DNA markers can be used to efficiently get information about genetic diversity in regions, forests, or stands, or in seed lots and orchards. Selected markers also can be used to determine parentage or...
Forest Ecosystem services and development pressures
David N. Wear
2006-01-01
Ecosystem services from forests on private lands are often under-produced because landowners bear the cost of restoring, preserving, and managing their lands to produce ecological services that benefit all members of the community or larger society. Over the last two decades, a variety of federal and state programs have applied a combination of regulations, extension,...
Oak conservation and restoration on private forestlands: negotiating a social-ecological landscape.
Knoot, Tricia G; Schulte, Lisa A; Rickenbach, Mark
2010-01-01
In the midwestern United States, oak (Quercus spp.) forests are considered critical habitat for conserving biodiversity and are a declining resource. Ecological conditions, such as deer herbivory and competition from more mesic broad-leaved deciduous species, have been linked to poor oak regeneration. In the Midwest, where up to 90% of forestland is privately owned, a greater understanding of social dimensions of oak regeneration success is especially critical to designing effective restoration strategies. We sought to determine factors that serve as direct and indirect constraints to oak restoration and identify policy mechanisms that could improve the likelihood for restoration success. We conducted in-depth qualitative interviews with 32 natural resource professionals working in the Midwest Driftless Area. We found that most professionals anticipate that oak will remain only a component of the future forest. Furthermore, they identified the general unwillingness of landowners to adopt oak restoration practices as a primary driving force of regional forest change. The professionals pointed to interdependent ecological and social factors, occurring at various scales (e.g., economic cost of management, deer herbivory, and exurban residential development) as influencing landowner oak restoration decisions. Professionals emphasized the importance of government cost-share programs and long-term personal relationships to securing landowner acceptance of oak restoration practices. However, given finite societal resources, ecologically- and socially-targeted approaches were viewed as potential ways to optimize regional success.
Oak Conservation and Restoration on Private Forestlands: Negotiating a Social-Ecological Landscape
NASA Astrophysics Data System (ADS)
Knoot, Tricia G.; Schulte, Lisa A.; Rickenbach, Mark
2010-01-01
In the midwestern United States, oak ( Quercus spp.) forests are considered critical habitat for conserving biodiversity and are a declining resource. Ecological conditions, such as deer herbivory and competition from more mesic broad-leaved deciduous species, have been linked to poor oak regeneration. In the Midwest, where up to 90% of forestland is privately owned, a greater understanding of social dimensions of oak regeneration success is especially critical to designing effective restoration strategies. We sought to determine factors that serve as direct and indirect constraints to oak restoration and identify policy mechanisms that could improve the likelihood for restoration success. We conducted in-depth qualitative interviews with 32 natural resource professionals working in the Midwest Driftless Area. We found that most professionals anticipate that oak will remain only a component of the future forest. Furthermore, they identified the general unwillingness of landowners to adopt oak restoration practices as a primary driving force of regional forest change. The professionals pointed to interdependent ecological and social factors, occurring at various scales (e.g., economic cost of management, deer herbivory, and exurban residential development) as influencing landowner oak restoration decisions. Professionals emphasized the importance of government cost-share programs and long-term personal relationships to securing landowner acceptance of oak restoration practices. However, given finite societal resources, ecologically- and socially-targeted approaches were viewed as potential ways to optimize regional success.
Use of cotton gin trash to enhance denitrification in restored forested wetlands
Ullah, S.; Faulkner, S.P.
2006-01-01
Lower Mississippi Valley (LMV) has lost about 80% bottomland hardwood forests, mainly to agriculture. This landscape scale alteration of the LMV resulted in the loss of nitrate (NO3) removal capacity of the valley, contributing to nitrogen (N)-enhanced eutrophication and potentially hypoxia in the northern Gulf of Mexico. Restoration of hardwood forests in the LMV is a highly recommended practice to reduce NO3 load of the Mississippi River. However, restored bottomland forests take decades to develop characteristic ecological functions including denitrifier activity. One way to enhance denitrifier activity in restored wetland forests is to amend the soils with an available carbon (C) source. This research investigated the effects of cotton gin trash (CGT) amendment on denitrification rate and N2O:N2 emission ratio from a restored bottomland forest soils and compared it to those from an adjacent unamended natural forest soils. CGT amendment increased denitrification rates in the restored forest soils to the level of the natural forest soils. N2O:N2 emission ratios from the restored and natural forest soils were highly variable and were not significantly different from each other. These findings suggest that restoration of bottomland hardwood forests in the LMV will require organic carbon amendment to achieve enhanced denitrifier activity for NO3 removal while the restored forest is developing into a mature state over time. ?? 2006 Elsevier B.V. All rights reserved.
Introduction to proceedings of a workshop on science considerations in functional restoration
Carlos Rodriguez-Franco
2014-01-01
There has been a great deal of discussion in the scientific literature and in traditional forest management literature about forest restoration, ecological restoration, adaptive and active management for restoring forest ecosystems, and a variety of linked topics. The USDA Forest Service manages 193 million acres of forest and grasslands for a variety of uses, and...
7 CFR 625.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Health Forests Reserve Program (HFRP) is to assist landowners, on a voluntary basis, in restoring... regulations in this part set forth the policies, procedures, and requirements for the HFRP as administered by the Natural Resources Conservation Service (NRCS) for program implementation and processing...
Baker, William L; Williams, Mark A
2018-03-01
An understanding of how historical fire and structure in dry forests (ponderosa pine, dry mixed conifer) varied across the western United States remains incomplete. Yet, fire strongly affects ecosystem services, and forest restoration programs are underway. We used General Land Office survey reconstructions from the late 1800s across 11 landscapes covering ~1.9 million ha in four states to analyze spatial variation in fire regimes and forest structure. We first synthesized the state of validation of our methods using 20 modern validations, 53 historical cross-validations, and corroborating evidence. These show our method creates accurate reconstructions with low errors. One independent modern test reported high error, but did not replicate our method and made many calculation errors. Using reconstructed parameters of historical fire regimes and forest structure from our validated methods, forests were found to be non-uniform across the 11 landscapes, but grouped together in three geographical areas. Each had a mixture of fire severities, but dominated by low-severity fire and low median tree density in Arizona, mixed-severity fire and intermediate to high median tree density in Oregon-California, and high-severity fire and intermediate median tree density in Colorado. Programs to restore fire and forest structure could benefit from regional frameworks, rather than one size fits all. © 2018 by the Ecological Society of America.
BIOMASS AND NUTRIENT DYNAMICS OF RESTORED NEOTROPICAL FORESTS
ARIEL E. LUGO; WHENDEE L. SILVER; SANDRA MOLINA COLON
2004-01-01
Restoring species-rich tropical forests is an important activity because it helps mitigate land deforestation and degradation. However, scientific understanding of the ecological processes responsible for forest restoration is poor. We review the literature to synthesize the current state of understanding of tropical forest restoration from a biogeochemical point of...
Ren, Xinyu; Lv, Yingying; Li, Mingshi
2017-03-01
Changes in forest ecosystem structure and functions are considered some of the research issues in landscape ecology. In this study, advancing Forman's theory, we considered five spatially explicit processes associated with fragmentation, including perforation, dissection, subdivision, shrinkage, and attrition, and two processes associated with restoration, i.e., increment and expansion processes. Following this theory, a forest fragmentation and restoration process model that can detect the spatially explicit processes and ecological consequences of forest landscape change was developed and tested in the current analysis. Using the National Land Cover Databases (2001, 2006 and 2011), the forest fragmentation and restoration process model was applied to US western natural forests and southeastern plantation forests to quantify and classify forest patch losses into one of the four fragmentation processes (the dissection process was merged into the subdivision process) and to classify the newly gained forest patches based on the two restoration processes. At the same time, the spatio-temporal differences in fragmentation and restoration patterns and trends between natural forests and plantations were further compared. Then, through overlaying the forest fragmentation/restoration processes maps with targeting year land cover data and land ownership vectors, the results from forest fragmentation and the contributors to forest restoration in federal and nonfederal lands were identified. Results showed that, in natural forests, the forest change patches concentrated around the urban/forest, cultivated/forest, and shrubland/forest interfaces, while the patterns of plantation change patches were scattered sparsely and irregularly. The shrinkage process was the most common type in forest fragmentation, and the average size was the smallest. Expansion, the most common restoration process, was observed in both natural forests and plantations and often occurred around the previous expansion or covered the previous subdivision or shrinkage processes. The overall temporal fragmentation pattern of natural forests had a "perforation-subdivision/shrinkage-attrition" pathway, which corresponded to Forman's landscape fragmentation rule, while the plantation forests did not follow the rule strictly. The main land cover types resulted from forest fragmentation in natural forests and plantation forests were shrubland and herbaceous, mainly through subdivision and shrinkages process. The processes and effects of restoration of plantation forests were more diverse and efficient, compared to the natural forest, which were simpler with a lower regrowth rate. The fragmentation mostly occurred in nonfederal lands. In natural forests, forest fragmentation pattern differed in different land tenures, yet plantations remained the same in federal and nonfederal lands. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hans-Erik Andersen; Jeffrey R. Foster; Stephen E. Reutebuch
2003-01-01
Three-dimensional (3-D) forest structure information is critical to support a variety of ecosystem management objectives on the Fort Lewis Military Reservation, including habitat assessment, ecological restoration, fire management, and commercial timber harvest. In particular, the Forestry Program at Fort Lewis requires measurements of shrub, understory, and overstory...
Karam, D. S.; Arifin, A.; Radziah, O.; Shamshuddin, J.; Majid, N. M.; Hazandy, A. H.; Zahari, I.; Nor Halizah, A. H.; Rui, T. X.
2012-01-01
Deforestation leads to the deterioration of soil fertility which occurs rapidly under tropical climates. Forest rehabilitation is one of the approaches to restore soil fertility and increase the productivity of degraded areas. The objective of this study was to evaluate and compare soil biological properties under enrichment planting and secondary forests at Tapah Hill Forest Reserve, Perak after 42 years of planting. Both areas were excessively logged in the 1950s and left idle without any appropriate forest management until 1968 when rehabilitation program was initiated. Six subplots (20 m × 20 m) were established within each enrichment planting (F1) and secondary forest (F2) plots, after which soil was sampled at depths of 0–15 cm (topsoil) and 15–30 cm (subsoil). Results showed that total mean microbial enzymatic activity, as well as biomass C and N content, was significantly higher in F1 compared to F2. The results, despite sample variability, suggest that the rehabilitation program improves the soil biological activities where high rate of soil organic matter, organic C, N, suitable soil acidity range, and abundance of forest litter is believed to be the predisposing factor promoting higher population of microbial in F1 as compared to F2. In conclusion total microbial enzymatic activity, biomass C and biomass N evaluation were higher in enrichment planting plot compared to secondary forest. After 42 years of planting, rehabilitation or enrichment planting helps to restore the productivity of planted forest in terms of biological parameters. PMID:22606055
Bouchard, Mathieu; Garet, Jérôme
The decreasing abundance of mature forests and their fragmentation have been identified as major threats for the preservation of biodiversity in managed landscapes. In this study, we developed a multi-level framework to coordinate forest harvestings so as to optimize the retention or restoration of large mature forest tracts in managed forests. We used mixed-integer programming for this optimization, and integrated realistic management assumptions regarding stand yield and operational harvest constraints. The model was parameterized for eastern Canadian boreal forests, where clear-cutting is the main silvicultural system, and is used to examine two hypotheses. First, we tested if mature forest tract targets had more negative impacts on wood supplies when implemented in landscapes that are very different from targeted conditions. Second, we tested the hypothesis that using more partial cuts can be useful to attenuate the negative impacts of mature forest targets on wood supplies. The results indicate that without the integration of an explicit mature forest tract target, the optimization leads to relatively high fragmentation levels. Forcing the retention or restoration of large mature forest tracts on 40% of the landscapes had negative impacts on wood supplies in all types of landscapes, but these impacts were less important in landscapes that were initially fragmented. This counter-intuitive result is explained by the presence in the models of an operational constraint that forbids diffuse patterns of harvestings, which are more costly. Once this constraint is applied, the residual impact of the mature forest tract target is low. The results also indicate that partial cuts are of very limited use to attenuate the impacts of mature forest tract targets on wood supplies in highly fragmented landscapes. Partial cuts are somewhat more useful in landscapes that are less fragmented, but they have to be well coordinated with clearcut schedules in order to contribute efficiently to conservation objectives. This modeling framework could easily be adapted and parameterized to test hypotheses or to optimize restoration schedules in landscapes where issues such as forest fragmentation and the abundance of mature or old-growth forests are a concern.
A spatially explicit decision support model for restoration of forest bird habitat
Twedt, D.J.; Uihlein, W.B.; Elliott, A.B.
2006-01-01
The historical area of bottomland hardwood forest in the Mississippi Alluvial Valley has been reduced by >75%. Agricultural production was the primary motivator for deforestation; hence, clearing deliberately targeted higher and drier sites. Remaining forests are highly fragmented and hydrologically altered, with larger forest fragments subject to greater inundation, which has negatively affected many forest bird populations. We developed a spatially explicit decision support model, based on a Partners in Flight plan for forest bird conservation, that prioritizes forest restoration to reduce forest fragmentation and increase the area of forest core (interior forest >1 km from 'hostile' edge). Our primary objective was to increase the number of forest patches that harbor >2000 ha of forest core, but we also sought to increase the number and area of forest cores >5000 ha. Concurrently, we targeted restoration within local (320 km2) landscapes to achieve >60% forest cover. Finally, we emphasized restoration of higher-elevation bottomland hardwood forests in areas where restoration would not increase forest fragmentation. Reforestation of 10% of restorable land in the Mississippi Alluvial Valley (approximately 880,000 ha) targeted at priorities established by this decision support model resulted in approximately 824,000 ha of new forest core. This is more than 32 times the amount of core forest added through reforestation of randomly located fields (approximately 25,000 ha). The total area of forest core (1.6 million ha) that resulted from targeted restoration exceeded habitat objectives identified in the Partners in Flight Bird Conservation Plan and approached the area of forest core present in the 1950s.
Fujiwara, Akio; Saito, Haruo; Horiuchi, Masahiro
2017-01-01
We investigated the influence of forest management on landscape appreciation and psychological restoration in on-site settings by exposing respondents to an unmanaged, dense coniferous (crowding) forest and a managed (thinned) coniferous forest; we set the two experimental settings in the forests of the Fuji Iyashinomoroi Woodland Study Center. The respondents were individually exposed to both settings while sitting for 15 min and were required to answer three questionnaires to analyze the psychological restorative effects before and after the experiment (feeling (the Profile of Mood States), affect (the Positive and Negative Affect Schedule), and subjective restorativeness (the Restorative Outcome Scale). To compare landscape appreciation, they were required to answer another two questionnaires only after the experiment, for scene appreciation (the semantic differential scale) and for the restorative properties of each environment (the Perceived Restorativeness Scale). Finally, we obtained these findings: (1) the respondents evaluated each forest environment highly differently and evaluated the thinned forest setting more positively; (2) the respondents’ impressions of the two physical environments did not appear to be accurately reflected in their evaluations; (3) forest environments have potential restorative effects whether or not they are managed, but these effects can be partially enhanced by managing the forests. PMID:28718831
O'Donnell, Frances C; Flatley, William T; Springer, Abraham E; Fulé, Peter Z
2018-06-25
Climate change and wildfire are interacting to drive vegetation change and potentially reduce water quantity and quality in the southwestern United States, Forest restoration is a management approach that could mitigate some of these negative outcomes. However, little information exists on how restoration combined with climate change might influence hydrology across large forest landscapes that incorporate multiple vegetation types and complex fire regimes. We combined spatially explicit vegetation and fire modeling with statistical water and sediment yield models for a large forested landscape (335,000 ha) on the Kaibab Plateau in northern Arizona, USA. Our objective was to assess the impacts of climate change and forest restoration on the future fire regime, forest vegetation, and watershed outputs. Our model results predict that the combination of climate change and high-severity fire will drive forest turnover, biomass declines, and compositional change in future forests. Restoration treatments may reduce the area burned in high-severity fires and reduce conversions from forested to non-forested conditions. Even though mid-elevation forests are the targets of restoration, the treatments are expected to delay the decline of high-elevation spruce-fir, aspen, and mixed conifer forests by reducing the occurrence of high-severity fires that may spread across ecoregions. We estimate that climate-induced vegetation changes will result in annual runoff declines of up to 10%, while restoration reduced or reversed this decline. The hydrologic model suggests that mid-elevation forests, which are the targets of restoration treatments, provide around 80% of runoff in this system and the conservation of mid- to high-elevation forests types provides the greatest benefit in terms of water conservation. We also predict that restoration treatments will conserve water quality by reducing patches of high-severity fire that are associated with high sediment yield. Restoration treatments are a management strategy that may reduce undesirable outcomes for multiple ecosystem services. © 2018 by the Ecological Society of America.
Crouzeilles, Renato; Ferreira, Mariana S.; Chazdon, Robin L.; Lindenmayer, David B.; Sansevero, Jerônimo B. B.; Monteiro, Lara; Iribarrem, Alvaro; Latawiec, Agnieszka E.; Strassburg, Bernardo B. N.
2017-01-01
Is active restoration the best approach to achieve ecological restoration success (the return to a reference condition, that is, old-growth forest) when compared to natural regeneration in tropical forests? Our meta-analysis of 133 studies demonstrated that natural regeneration surpasses active restoration in achieving tropical forest restoration success for all three biodiversity groups (plants, birds, and invertebrates) and five measures of vegetation structure (cover, density, litter, biomass, and height) tested. Restoration success for biodiversity and vegetation structure was 34 to 56% and 19 to 56% higher in natural regeneration than in active restoration systems, respectively, after controlling for key biotic and abiotic factors (forest cover, precipitation, time elapsed since restoration started, and past disturbance). Biodiversity responses were based primarily on ecological metrics of abundance and species richness (74%), both of which take far less time to achieve restoration success than similarity and composition. This finding challenges the widely held notion that natural forest regeneration has limited conservation value and that active restoration should be the default ecological restoration strategy. The proposition that active restoration achieves greater restoration success than natural regeneration may have arisen because previous comparisons lacked controls for biotic and abiotic factors; we also did not find any difference between active restoration and natural regeneration outcomes for vegetation structure when we did not control for these factors. Future policy priorities should align the identified patterns of biophysical and ecological conditions where each or both restoration approaches are more successful, cost-effective, and compatible with socioeconomic incentives for tropical forest restoration. PMID:29134195
Crouzeilles, Renato; Ferreira, Mariana S; Chazdon, Robin L; Lindenmayer, David B; Sansevero, Jerônimo B B; Monteiro, Lara; Iribarrem, Alvaro; Latawiec, Agnieszka E; Strassburg, Bernardo B N
2017-11-01
Is active restoration the best approach to achieve ecological restoration success (the return to a reference condition, that is, old-growth forest) when compared to natural regeneration in tropical forests? Our meta-analysis of 133 studies demonstrated that natural regeneration surpasses active restoration in achieving tropical forest restoration success for all three biodiversity groups (plants, birds, and invertebrates) and five measures of vegetation structure (cover, density, litter, biomass, and height) tested. Restoration success for biodiversity and vegetation structure was 34 to 56% and 19 to 56% higher in natural regeneration than in active restoration systems, respectively, after controlling for key biotic and abiotic factors (forest cover, precipitation, time elapsed since restoration started, and past disturbance). Biodiversity responses were based primarily on ecological metrics of abundance and species richness (74%), both of which take far less time to achieve restoration success than similarity and composition. This finding challenges the widely held notion that natural forest regeneration has limited conservation value and that active restoration should be the default ecological restoration strategy. The proposition that active restoration achieves greater restoration success than natural regeneration may have arisen because previous comparisons lacked controls for biotic and abiotic factors; we also did not find any difference between active restoration and natural regeneration outcomes for vegetation structure when we did not control for these factors. Future policy priorities should align the identified patterns of biophysical and ecological conditions where each or both restoration approaches are more successful, cost-effective, and compatible with socioeconomic incentives for tropical forest restoration.
John A. Stanturf
2005-01-01
The need to repair habitat and restore forest structure and funciton is recognized throughout the temperate and boreal zones as a component of sustainable forest management (Krishnaswamy and Hanson 1999; Dobson et al. 1997). Forest restoration is a complex task, complicated by diverse ecological and social conditions, that challenges our understanding of forest...
Restoration treatments in urban park forests drive long-term changes in vegetation trajectories.
Johnson, Lea R; Handel, Steven N
2016-04-01
Municipalities are turning to ecological restoration of urban forests as a measure to improve air quality, ameliorate urban heat island effects, improve storm water infiltration, and provide other social and ecological benefits. However, community dynamics following urban forest restoration treatments are poorly documented. This study examines the long-term effects of ecological restoration undertaken in New York City, New York, USA, to restore native forest in urban park natural areas invaded by woody non-native plants that are regional problems. In 2009 and 2010, we sampled vegetation in 30 invaded sites in three large public parks that were restored 1988-1993, and 30 sites in three large parks that were similarly invaded but had not been restored. Data from these matched plots reveal that the restoration treatment achieved its central goals. After 15-20 years, invasive species removal followed by native tree planting resulted in persistent structural and compositional shifts, significantly lower invasive species abundance, a more complex forest structure, and greater native tree recruitment. Together, these findings indicate that successional trajectories of vegetation dynamics have diverged between restored forests and invaded forests that were not restored. In addition, the data suggest that future composition of these urban forest patches will be novel assemblages. Restored and untreated sites shared a suite of shade-intolerant, quickly-growing tree species that colonize disturbed sites, indicating that restoration treatments created sites hospitable for germination and growth of species adapted to high light conditions and disturbed soils. These findings yield an urban perspective on the use of succession theory in ecological restoration. Models of ecological restoration developed in more pristine environments must be modified for use in cities. By anticipating both urban disturbances and ecological succession, management of urban forest patches can be adjusted to better predict and direct long-term outcomes. An urban approach to ecological restoration must use realistic, flexible targets to preserve and enhance urban biodiversity for both short-term benefits and long-term sustainability.
75 FR 14555 - Collaborative Forest Landscape Restoration Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
... Collaborative Forest Landscape Restoration Advisory Committee AGENCY: Office of the Secretary, USDA. ACTION... Forest Landscape Restoration Advisory Committee and call for nominations for committee members. The...
John S. Kush; Ralph S. Meldahl; Charles K. McMahon; William D. Boyer
2004-01-01
Natural communities dominated by longleaf pine (Pinus palustris Mill.) once covered an estimated two thirds of the forested area in the southeastern United States. Today, less than 1.2 million ha remain. However, over the past 10-15 years, public land managers have begun to restore many longleaf pine forests. More recently incentive programs have...
What is restoring bottomland hardwood forests? A study from the Lower Mississippi Alluvial Valley
Callie Jo Schweitzer
1998-01-01
The interest in changing the use of the Lower Mississippi Alluvial Valley (LMAV) floodplain has been gathering momentum. Recent changes in Federal farm programs, heightened awareness of the value of forested wetlands and increasingly productive farming practices have allowed for consideration of land use changes. Marginal agricultural land in the LMAV, cleared at the...
The influences of drought and humans on the fire regimes of northern Pennsylvania, USA
Patrick H. Brose; Daniel C. Dey; Richard P. Guyette; Joseph M. Marschall; Michael C. Stambaugh
2013-01-01
Understanding past fire regimes is necessary to justify and implement restoration of disturbance-associated forests via prescribed fire programs. In eastern North America, the characteristics of many presettlement fire regimes are unclear because of the passage of time. To help clarify this situation, we developed a 435-year fire history for the former conifer forests...
75 FR 70083 - Emergency Forest Restoration Program and Emergency Conservation Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
... Iniki in 1993 and Hurricanes Katrina and Rita in 2005 where the extent and magnitude of damage made... rehabilitate farmland damaged by wind erosion, floods, hurricanes, or other natural disasters, and for carrying... the 2008 Farm Bill and the current ECP definition, which includes wildfires, hurricanes or excessive...
Archeology as Family Recreation: The Passport in Time Program.
ERIC Educational Resources Information Center
Geiger, Brian F.
Passport in Time (PIT), a volunteer program of the United States Department of Agriculture Forest Service, is an excellent recreational learning experience. Families work side-by-side with professional archaeologists and historians to excavate, record, and restore historic and prehistoric sites across the United States. In addition, families…
Forest restoration, biodiversity and ecosystem functioning.
Aerts, Raf; Honnay, Olivier
2011-11-24
Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but it also highlights that much remains to be understood, especially regarding the relation between forest functioning on the one side and genetic diversity and above-ground-below-ground species associations on the other. The strong emphasis of the BEF-approach on functional rather than taxonomic diversity may also be the beginning of a paradigm shift in restoration ecology, increasing the tolerance towards allochthonous species.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-29
... uncharacteristicly high-severity wild fires, which can lead to loss of entire stands during one fire event. About 67..., fire, and wind. The purpose of the project is to restore forest health, move forests toward an uneven-aged forest structure with all age classes represented, and restore frequent, periodic surface fire as...
Forest restoration: a global dataset for biodiversity and vegetation structure.
Crouzeilles, Renato; Ferreira, Mariana S; Curran, Michael
2016-08-01
Restoration initiatives are becoming increasingly applied around the world. Billions of dollars have been spent on ecological restoration research and initiatives, but restoration outcomes differ widely among these initiatives in part due to variable socioeconomic and ecological contexts. Here, we present the most comprehensive dataset gathered to date on forest restoration. It encompasses 269 primary studies across 221 study landscapes in 53 countries and contains 4,645 quantitative comparisons between reference ecosystems (e.g., old-growth forest) and degraded or restored ecosystems for five taxonomic groups (mammals, birds, invertebrates, herpetofauna, and plants) and five measures of vegetation structure reflecting different ecological processes (cover, density, height, biomass, and litter). We selected studies that (1) were conducted in forest ecosystems; (2) had multiple replicate sampling sites to measure indicators of biodiversity and/or vegetation structure in reference and restored and/or degraded ecosystems; and (3) used less-disturbed forests as a reference to the ecosystem under study. We recorded (1) latitude and longitude; (2) study year; (3) country; (4) biogeographic realm; (5) past disturbance type; (6) current disturbance type; (7) forest conversion class; (8) restoration activity; (9) time that a system has been disturbed; (10) time elapsed since restoration started; (11) ecological metric used to assess biodiversity; and (12) quantitative value of the ecological metric of biodiversity and/or vegetation structure for reference and restored and/or degraded ecosystems. These were the most common data available in the selected studies. We also estimated forest cover and configuration in each study landscape using a recently developed 1 km consensus land cover dataset. We measured forest configuration as the (1) mean size of all forest patches; (2) size of the largest forest patch; and (3) edge:area ratio of forest patches. Global analyses of the factors influencing ecological restoration success at both the local and landscape scale are urgently needed to guide restoration initiatives and to further develop restoration knowledge in a topic area of much contemporary interest. © 2016 by the Ecological Society of America.
Wilson, Sarah Jane; Rhemtulla, Jeanine M
2016-01-01
Community-based tropical forest restoration projects, often promoted as a win-win solution for local communities and the environment, have increased dramatically in number in the past decade. Many such projects are underway in Andean cloud forests, which, given their extremely high biodiversity and history of extensive clearing, are understudied. This study investigates the efficacy of community-based tree-planting projects to accelerate cloud forest recovery, as compared to unassisted natural regeneration. This study takes place in northwest Andean Ecuador, where the majority of the original, highly diverse cloud forests have been cleared, in five communities that initiated tree-planting projects to restore forests in 2003. In 2011, we identified tree species along transects in planted forests (n = 5), naturally regenerating forests (n = 5), and primary forests (n = 5). We also surveyed 120 households about their restoration methods, tree preferences, and forest uses. We found that tree diversity was higher in planted than in unplanted secondary forest, but both were less diverse than primary forests. Ordination analysis showed that all three forests had distinct species compositions, although planted forests shared more species with primary forests than did unplanted forests. Planted forests also contained more animal-dispersed species in both the planted canopy and in the unplanted, regenerating understory than unplanted forests, and contained the highest proportion of species with use value for local people. While restoring forest increased biodiversity and accelerated forest recovery, restored forests may also represent novel ecosystems that are distinct from the region's previous ecosystems and, given their usefulness to people, are likely to be more common in the future.
Wallace, K J; Laughlin, Daniel C; Clarkson, Bruce D
2017-06-01
Restoring forest structure and composition is an important component of urban land management, but we lack clear understanding of the mechanisms driving restoration success. Here we studied two indicators of restoration success in temperate rainforests: native tree regeneration and epiphyte colonization. We hypothesized that ecosystem properties such as forest canopy openness, abundance of exotic herbaceous weeds, and the microclimate directly affect the density and diversity of native tree seedlings and epiphytes. Relationships between environmental conditions and the plant community were investigated in 27 restored urban forests spanning 3-70 years in age and in unrestored and remnant urban forests. We used structural equation modelling to determine the direct and indirect drivers of native tree regeneration and epiphyte colonization in the restored forests. Compared to remnant forest, unrestored forest had fewer native canopy tree species, significantly more light reaching the forest floor annually, and higher exotic weed cover. Additionally, epiphyte density was lower and native tree regeneration density was marginally lower in the unrestored forests. In restored forests, light availability was reduced to levels found in remnant forests within 20 years of restoration planting, followed shortly thereafter by declines in herbaceous exotic weeds and reduced fluctuation of relative humidity and soil temperatures. Contrary to expectations, canopy openness was only an indirect driver of tree regeneration and epiphyte colonization, but it directly regulated weed cover and microclimatic fluctuations, both of which directly drove the density and richness of regeneration and epiphyte colonization. Epiphyte density and diversity were also positively related to forest basal area, as large trees provide physical habitat for colonization. These results imply that ecosystem properties change predictably after initial restoration plantings, and that reaching critical thresholds in some ecosystem properties makes conditions suitable for the regeneration of late successional species, which is vital for restoration success and long-term ecosystem sustainability. Abiotic and biotic conditions that promote tree regeneration and epiphyte colonization will likely be present in forests with a basal area ≥27 m 2 /ha. We recommend that urban forest restoration plantings be designed to promote rapid canopy closure to reduce light availability, suppress herbaceous weeds, and stabilize the microclimate. © 2017 by the Ecological Society of America.
Installation Restoration Program. Phase I. Records. Loring AFB, Maine.
1984-01-01
forest, mixed forest, forested bogs, streams, and ponds. Managed timber lands total 4,635 acres on Loring AFB. Major harvested tree species include...Habitat 111-22 2. Threatened and Endangered Species 111-23 IV. FINDINGS IV-1 A. Activity Review IV-l 1. Industrial Waste Disposal Practices IV-1 2...Site No. 13, the BX Service Station, a number of cedar trees in the area of the fuel-saturated soil appear to have been dead for several years. 3
Ecological restoration of southwestern ponderosa pine ecosystems: A broad perspective
Allen, Craig D.; Savage, Melissa; Falk, Donald A.; Suckling, Kieran F.; Swetnam, Thomas W.; Schulke, Todd; Stacey, Peter B.; Morgan, Penelope; Hoffman, Martos; Klingel, Jon T.
2002-01-01
The purpose of this paper is to promote a broad and flexible perspective on ecological restoration of Southwestern (U.S.) ponderosa pine forests. Ponderosa pine forests in the region have been radically altered by Euro-American land uses, including livestock grazing, fire suppression, and logging. Dense thickets of young trees now abound, old-growth and biodiversity have declined, and human and ecological communities are increasingly vulnerable to destructive crown fires. A consensus has emerged that it is urgent to restore more natural conditions to these forests. Efforts to restore Southwestern forests will require extensive projects employing varying combinations of young-tree thinning and reintroduction of low-intensity fires. Treatments must be flexible enough to recognize and accommodate: high levels of natural heterogeneity; dynamic ecosystems; wildlife and other biodiversity considerations; scientific uncertainty; and the challenges of on-the-ground implementation. Ecological restoration should reset ecosystem trends toward an envelope of “natural variability,” including the reestablishment of natural processes. Reconstructed historic reference conditions are best used as general guides rather than rigid restoration prescriptions. In the long term, the best way to align forest conditions to track ongoing climate changes is to restore fire, which naturally correlates with current climate. Some stands need substantial structural manipulation (thinning) before fire can safely be reintroduced. In other areas, such as large wilderness and roadless areas, fire alone may suffice as the main tool of ecological restoration, recreating the natural interaction of structure and process. Impatience, overreaction to crown fire risks, extractive economics, or hubris could lead to widespread application of highly intrusive treatments that may further damage forest ecosystems. Investments in research and monitoring of restoration treatments are essential to refine restoration methods. We support the development and implementation of a diverse range of scientifically viable restoration approaches in these forests, suggest principles for ecologically sound restoration that immediately reduce crown fire risk and incrementally return natural variability and resilience to Southwestern forests, and present ecological perspectives on several forest restoration approaches.
Restoring Forest Landscapes: Important Lessons Learnt
NASA Astrophysics Data System (ADS)
Mansourian, Stephanie; Vallauri, Daniel
2014-02-01
Forest restoration at large scales, or landscapes, is an approach that is increasingly relevant to the practice of environmental conservation. However, implementation remains a challenge; poor monitoring and lesson learning lead to similar mistakes being repeated. The World Wildlife Fund (WWF), the global conservation organization, recently took stock of its 10 years of implementation of forest landscape restoration. A significant body of knowledge has emerged from the work of the WWF and its partners in the different countries, which can be of use to the wider conservation community, but for this to happen, lessons need to be systematically collected and disseminated in a coherent manner to the broader conservation and development communities and, importantly, to policy makers. We use this review of the WWF's experiences and compare and contrast it with other relevant and recent literature to highlight 11 important lessons for future large-scale forest restoration interventions. These lessons are presented using a stepwise approach to the restoration of forested landscapes. We identify the need for long-term commitment and funding, and a concerted and collaborative effort for successful forest landscape restoration. Our review highlights that monitoring impact within landscape-scale forest restoration remains inadequate. We conclude that forest restoration within landscapes is a challenging yet important proposition that has a real but undervalued place in environmental conservation in the twenty-first century.
Justin Paul Ziegler; Chad Hoffman; Michael Battaglia; William Mell
2017-01-01
Restoration treatments in dry forests of the western US often attempt silvicultural practices to restore the historical characteristics of forest structure and fire behavior. However, it is suggested that a reliance on non-spatial metrics of forest stand structure, along with the use of wildland fire behavior models that lack the ability to handle complex structures,...
Estimating the value of watershed services following forest restoration
NASA Astrophysics Data System (ADS)
Mueller, Julie M.; Swaffar, Wes; Nielsen, Erik A.; Springer, Abraham E.; Lopez, Sharon Masek
2013-04-01
Declining forest health, climate change, and development threaten the sustainability of water supplies in the western United States. While forest restoration may buffer threats to watershed services, funding shortfalls for landscape-scale restoration efforts limit management action. The hydrologic response and reduction in risk to watersheds following forest restoration treatments could create significant nonmarket benefits for downstream water users. Historic experimental watershed studies indicate a significant and positive response from forest thinning by a reallocation of water from evapotranspiration to surface-water yield. In this study, we estimate the willingness to pay (WTP) for improved watershed services for one group of downstream users, irrigators, following forest restoration activities. We find a positive and statistically significant WTP within our sample of 183.50 per household, at an aggregated benefit of more than 400,000 annually for 2181 irrigators. Our benefit estimate provides evidence that downstream irrigators may be willing to invest in landscape-scale forest restoration to maintain watershed services.
Restoration Concepts for Temperate and Boreal Forests of North America and Western Europe
John A. Stanturf; P. Madsen
2002-01-01
Throughout the boreal and temperate zones, forest restoration efforts attempt to counteract negative effects of conversion to other land use (afforestation and remediation) and disturbance and stress on existing forests (rehabilitation). Appropriate silvicultural practices can be designed for any forest restoration objective. Most common objectives include timber,...
Kas Dumroese; Mary I. Williams; John A. Stanturf; Brad St. Clair
2015-01-01
Tomorrowâs forests face extreme pressures from contemporary climate change, invasive pests, and anthropogenic demands for other land uses. These pressures, collectively, demand land managers to reassess current and potential forest management practices. We discuss three considerations, functional restoration, assisted migration, and bioengineering, which are currently...
Robert L. Deal
2008-01-01
A primary mission of the U.S. Department of Agriculture Forest Service is multiple resource management, and one of the emerging themes is forest restoration. The National Silviculture Workshop, a biennial event co-sponsored by the Forest Service, was held May 7-10, 2007, in Ketchikan, Alaska, with the theme of "Integrated Restoration of Forested Ecosystems to...
Christopher J Fettig; Stephen R. McKelvey
2014-01-01
Mechanical thinning and the application of prescribed fire are commonly used to restore fire-adapted forest ecosystems in the western United States. During a 10-year period, we monitored the effects of fuel-reduction and forest-restoration treatments on levels of tree mortality in an interior ponderosa pine, Pinus ponderosa Dougl. ex Laws., forest...
Impacts of forest restoration on water yield: A systematic review
Filoso, Solange; Bezerra, Maíra Ometto; Weiss, Katherine C. B.; Palmer, Margaret A.
2017-01-01
Background Enhancing water provision services is a common target in forest restoration projects worldwide due to growing concerns over freshwater scarcity. However, whether or not forest cover expansion or restoration can improve water provision services is still unclear and highly disputed. Purpose The goal of this review is to provide a balanced and impartial assessment of the impacts of forest restoration and forest cover expansion on water yields as informed by the scientific literature. Potential sources of bias on the results of papers published are also examined. Data sources English, Spanish and Portuguese peer-review articles in Agricola, CAB Abstracts, ISI Web of Science, JSTOR, Google Scholar, and SciELO. Databases were searched through 2015. Search terms Intervention terms included forest restoration, regeneration/regrowth, forest second-growth, forestation/afforestation, and forestry. Target terms included water yield/quantity, streamflow, discharge, channel runoff, and annual flow. Study selection and eligibility criteria Articles were pre-selected based on key words in the title, abstract or text. Eligible articles addressed relevant interventions and targets and included quantitative information. Results Most studies reported decreases in water yields following the intervention, while other hydrological benefits have been observed. However, relatively few studies focused specifically on forest restoration, especially with native species, and/or on projects done at large spatial or temporal scales. Information is especially limited for the humid tropics and subtropics. Conclusions and implications of key findings While most studies reported a decrease in water yields, meta-analyses from a sub-set of studies suggest the potential influence of temporal and/or spatial scales on the outcomes of forest cover expansion or restoration projects. Given the many other benefits of forest restoration, improving our understanding of when and why forest restoration can lead to recovery of water yields is crucial to help improve positive outcomes and prevent unintended consequences. Our study identifies the critical types of studies and associated measurements needed. PMID:28817639
The maintenance of key biodiversity attributes through ecosystem restoration operations
Robert W. Gray; Bruce A. Blackwell
2008-01-01
The requirement to manage for key biodiversity attributes in dry forest ecosystems is mandated in the Forest Practices Code Act of British Columbia. These attributes include snags, large old trees, and large organic debris. In the Squamish Forest District dry forest restoration activities center on the use of thinning operations followed by prescribed fire to restore...
Restoring forest health: fire and thinning effects on mixed-conifer forests
Malcolm P. North
2006-01-01
Even after 140 years without a fire, mixed-conifer forest such as Teakettle's Experimental Forest has a distinct patch pattern and complex structure. Researcher Malcolm North and colleagues examined the structure and function of these ecosystems and their response to widely used restoration treatments. Collectively the studies found fire was essential to restoring...
Nutrient fluxes in litterfall of a secondary successional alluvial rain forest in Southern Brazil.
Scheer, Maurício Bergamini; Gatti, Gustavo; Wisniewski, Celina
2011-12-01
During forest succession, litterfall nutrient fluxes increase significantly. The higher inputs of organic matter and nutrients through litterfall affects positively soil fertility and the species composition, which are essential components in forest restoration and management programs. In the present study, the input of nutrients to the forest soil via litterfall components was estimated for two sites of different development stages, in an early successional alluvial rain forest in Brazil. Litterfall returned to the soil, in kg/ha, ca. 93 N, 79 Ca, 24 K, 15 Mg, 6 P, 1.7 Mn, 0.94 Fe, 0.18 Zn, 0.09 Cu and 11.2 Al, in the site where trees were more abundant and had higher values of basal area. In the other area, where trees where less abundant and values of basal area were comparatively low, litterfall returned < 50% of those amounts to the forest soil, except for Al. The amount of Al that returned to the soil was similar in both areas due to the high contribution of Tibouchina pulchra (82% of Al returned). Comparatively, high proportion of three dominant native tree species (Myrsine coriacea, T. pulchra and Cecropia pachystachya) explained better litter nutrient use efficiency (mainly N and P) in the site with the least advanced successional stage. Although litterfall of these species show lower nutrient concentrations than the other tree species, their nutrient fluxes were high in both sites, indicating a certain independence from soil essential nutrients. Such feature of the native species is very advantageous and should be considered in forest restoration programs.
NASA Astrophysics Data System (ADS)
Mukul, S. A.; Herbohn, J. L.
2013-12-01
Reforestation against the rapid rate of deforestation and forest degradation is common in most tropical developing countries. The main objective of reforestation programs is to restore and/or enhance the degraded landscapes depreciated in environmental value. However due to changing socio-political contexts and increasing awareness on sustainable development and environmental issues such programs are becoming more challenging, particularly in the developing tropics. Like most tropical developing countries substantial deforestation has occurred in the Philippines followed by massive logging and slash-and-burn agriculture, resulting in severe social and environmental problems. The country is also one of the pioneer countries that introduces reforestation program to restore its degraded forests. Most recently the government of the Philippines has launched the National Greening Program (NGP), one of the largest reforestation projects so far, with an aim to reforest 1.5 million hectares of degraded forest in critical watersheds over a five year time period. This paper highlights the key challenges that might hinder the success of the reforestation program through National Greening Program. We found that it is unlikely to achieve the desired project goals if rural communities dependent on upland landscapes are excluded from the reforestation program through plantation establishment. Bringing larger amount of areas and greater number of people under community based forest management (CBFM) initiatives for reforestation programs, with clearly defined rights and responsibilities, as well as securing timely access to timber harvesting permits to the communities involved in maintaining the plantations could enhance the long term reforestation success in the country. The paper also tries to provide a critical review of the past reforestation efforts in the Philippines, and direction of possible research and development in order to achieve a win-win situation that will benefits both the local livelihoods and the environment, not only in the Philippines but in other tropical developing countries with similar socio-political context.
Nafus, Melia; Savidge, Julie A.; Yackel Adams, Amy A.; Christy, Michelle T.; Reed, Robert
2018-01-01
Overabundant ungulate populations can alter forests. Concurrently, global declines of seed dispersers may threaten native forest structure and function. On an island largely devoid of native vertebrate seed dispersers, we monitored forest succession for 7 years following ungulate exclusion from a 5-ha area and adjacent plots with ungulates still present. We observed succession from open scrub to forest and understory cover by non-native plants declined. Two trees, native Hibiscus tiliaceus and non-native Leucaena leucocephala, accounted for most forest regeneration, with the latter dominant. Neither species is dependent on animal dispersers nor was there strong evidence that plants dependent on dispersers migrated into the 5-ha study area. Passive restoration following ungulate removal may facilitate restoration, but did not show promise for fully restoring native forest on Guam. Restoration of native forest plants in bird depopulated areas will likely require active outplanting of native seedlings, control of factors resulting in bird loss, and reintroduction of seed dispersers.
Parklands Partnership: Education through Reforestation.
ERIC Educational Resources Information Center
Scalia, Josephine A.
1992-01-01
Describes New York City's Parklands Partnership Program, in which elementary and secondary students visit natural woodlands areas in their neighborhood, learn about forest ecology, and engage in restoration and reforestation activities that foster a connection between themselves and their local environment. (SV)
Meli, Paula; Holl, Karen D.; Rey Benayas, José María; Jones, Holly P.; Jones, Peter C.; Montoya, Daniel; Moreno Mateos, David
2017-01-01
Global forest restoration targets have been set, yet policy makers and land managers lack guiding principles on how to invest limited resources to achieve them. We conducted a meta-analysis of 166 studies in naturally regenerating and actively restored forests worldwide to answer: (1) To what extent do floral and faunal abundance and diversity and biogeochemical functions recover? (2) Does recovery vary as a function of past land use, time since restoration, forest region, or precipitation? (3) Does active restoration result in more complete or faster recovery than passive restoration? Overall, forests showed a high level of recovery, but the time to recovery depended on the metric type measured, past land use, and region. Abundance recovered quickly and completely, whereas diversity recovered slower in tropical than in temperate forests. Biogeochemical functions recovered more slowly after agriculture than after logging or mining. Formerly logged sites were mostly passively restored and generally recovered quickly. Mined sites were nearly always actively restored using a combination of planting and either soil amendments or recontouring topography, which resulted in rapid recovery of the metrics evaluated. Actively restoring former agricultural land, primarily by planting trees, did not result in consistently faster or more complete recovery than passively restored sites. Our results suggest that simply ending the land use is sufficient for forests to recover in many cases, but more studies are needed that directly compare the value added of active versus passive restoration strategies in the same system. Investments in active restoration should be evaluated relative to the past land use, the natural resilience of the system, and the specific objectives of each project. PMID:28158256
Meli, Paula; Holl, Karen D; Rey Benayas, José María; Jones, Holly P; Jones, Peter C; Montoya, Daniel; Moreno Mateos, David
2017-01-01
Global forest restoration targets have been set, yet policy makers and land managers lack guiding principles on how to invest limited resources to achieve them. We conducted a meta-analysis of 166 studies in naturally regenerating and actively restored forests worldwide to answer: (1) To what extent do floral and faunal abundance and diversity and biogeochemical functions recover? (2) Does recovery vary as a function of past land use, time since restoration, forest region, or precipitation? (3) Does active restoration result in more complete or faster recovery than passive restoration? Overall, forests showed a high level of recovery, but the time to recovery depended on the metric type measured, past land use, and region. Abundance recovered quickly and completely, whereas diversity recovered slower in tropical than in temperate forests. Biogeochemical functions recovered more slowly after agriculture than after logging or mining. Formerly logged sites were mostly passively restored and generally recovered quickly. Mined sites were nearly always actively restored using a combination of planting and either soil amendments or recontouring topography, which resulted in rapid recovery of the metrics evaluated. Actively restoring former agricultural land, primarily by planting trees, did not result in consistently faster or more complete recovery than passively restored sites. Our results suggest that simply ending the land use is sufficient for forests to recover in many cases, but more studies are needed that directly compare the value added of active versus passive restoration strategies in the same system. Investments in active restoration should be evaluated relative to the past land use, the natural resilience of the system, and the specific objectives of each project.
Shiels, Aaron B.; Medeiros, Arthur C.; von Allmen, Erica I.
2017-01-01
One potential, unintended ecological consequence accompanying forest restoration is a shift in invasive animal populations, potentially impacting conservation targets. Eighteen years after initial restoration (ungulate exclusion, invasive plant control, and out planting native species) at a 4 ha site on Maui, Hawai'i, we compared invasive rodent communities in a restored native dry forest and adjacent non-native grassland. Quarterly for 1 year, we trapped rodents on three replicate transects (107 rodent traps) in each habitat type for three consecutive nights. While repeated trapping may have reduced the rat (Black rat, Rattus rattus) population in the forest, it did not appear to reduce the mouse (House mouse, Mus musculus) population in the grassland. In unrestored grassland, mouse captures outnumbered rat captures 220:1, with mice averaging 54.9 indiv./night versus rats averaging 0.25 indiv./night. In contrast, in restored native forest, rat captures outnumbered mouse captures by nearly 5:1, averaging 9.0 indiv./night versus 1.9 indiv./night for mice. Therefore, relatively recent native forest restoration increased Black rat abundance and also increased their total biomass in the restored ecosystem 36-fold while reducing House mouse biomass 35-fold. Such a community shift is worrisome because Black rats pose a much greater threat than do mice to native birds and plants, perhaps especially to large-seeded tree species. Land managers should be aware that forest restoration (i.e. converting grassland to native forest) can invoke shifts in invasive rodent populations, potentially favoring Black rats. Without intervention, this shift may pose risks for intended conservation targets and modify future forest restoration trajectories.
Wang, Yun; Ouyang, Zhi-Yun; Zheng, Hua; Zeng, Jing; Chen, Fa-Lin; Zhang, Kai
2013-05-01
In 2008-2009, an investigation was conducted on the effects of three typical forest restoration approaches, i. e., naturally restored secondary forest, artificially restored native species Pinus massoniana plantation (Masson pine plantation), and introduced species Pinus elliottii plantation (slash pine plantation), on the soil quality in red soil region of Southern China. The results showed that the soil moisture content, bulk density, particle composition, and the contents of total carbon (C), total nitrogen (N), total phosphorus (P), organic C, available N, available P, and available potassium (K) in natural secondary forest were all superior to those in artificial plantations. The soil physical, chemical, and microbial properties were integrated into a soil quality index, which was significantly higher (1.20 +/- 0.10) in natural secondary forest than in Masson pine plantation (0.59 +/- 0.03) and slash pine plantation (0.59 +/- 0.06). Our results suggested as compared with the restoration with native species P. massoniana and with introduced P. elliottii, natural restoration could be a better forest restoration approach to improve the soil quality in red soil region of Southern China.
Kristin Floress; Anna Haines; Emily Usher; Paul Gobster; Mike Dockry
2018-01-01
This report is intended to support the ongoing pine barrens restoration on work in the Lakewood-Laona Ranger District on the Chequamegon-Nicolet National Forest (CNNF). The report provides the results from 2016 surveys and focus groups examining landowner and visitor attitudes toward forest management treatments, communication, and restoration project outcomes; their...
Landscape Context Mediates Avian Habitat Choice in Tropical Forest Restoration
Reid, J. Leighton; Mendenhall, Chase D.; Rosales, J. Abel; Zahawi, Rakan A.; Holl, Karen D.
2014-01-01
Birds both promote and prosper from forest restoration. The ecosystem functions birds perform can increase the pace of forest regeneration and, correspondingly, increase the available habitat for birds and other forest-dependent species. The aim of this study was to learn how tropical forest restoration treatments interact with landscape tree cover to affect the structure and composition of a diverse bird assemblage. We sampled bird communities over two years in 13 restoration sites and two old-growth forests in southern Costa Rica. Restoration sites were established on degraded farmlands in a variety of landscape contexts, and each included a 0.25-ha plantation, island treatment (trees planted in patches), and unplanted control. We analyzed four attributes of bird communities including frugivore abundance, nectarivore abundance, migrant insectivore richness, and compositional similarity of bird communities in restoration plots to bird communities in old-growth forests. All four bird community variables were greater in plantations and/or islands than in control treatments. Frugivore and nectarivore abundance decreased with increasing tree cover in the landscape surrounding restoration plots, whereas compositional similarity to old-growth forests was greatest in plantations embedded in landscapes with high tree cover. Migrant insectivore richness was unaffected by landscape tree cover. Our results agree with previous studies showing that increasing levels of investment in active restoration are positively related to bird richness and abundance, but differences in the effects of landscape tree cover on foraging guilds and community composition suggest that trade-offs between biodiversity conservation and bird-mediated ecosystem functioning may be important for prioritizing restoration sites. PMID:24595233
Kang, Dongwei; Wang, Xiaorong; Li, Shuang; Li, Junqing
2017-06-15
Artificial restoration is an important way to restore forests, but little is known about its effect on the habitat restoration of the giant panda. In the present study, we investigated the characteristics of artificial forest in the Wanglang Nature Reserve to determine whether through succession it has formed a suitable habitat for the giant panda. We compared artificial forest characteristics with those of natural habitat used by the giant panda. We found that the dominant tree species in artificial forest differed from those in the natural habitat. The artificial forest had lower plant species richness and diversity in the tree and shrub layers than did the latter, and its community structure was characterized by smaller tree and bamboo sizes, and fewer and lower bamboo clumps, but more trees and larger shrub sizes. The typical community collocation of artificial forest was a "Picea asperata + no-bamboo" model, which differs starkly from the giant panda's natural habitat. After several years of restoration, the artificial forest has failed to become a suitable habitat for the giant panda. Therefore, a simple way of planting individual trees cannot restore giant panda habitat; instead, habitat restoration should be based on the habitat requirements of the giant panda.
Twedt, D.J.; Uihlein, W.B.; Fredrickson, L.H.; King, S.L.; Kaminski, R.M.
2005-01-01
Thousands of ha of cleared wetlands are being reforested annually in the Mississippi Alluvial Valley (MAV). Despite the expansive and long-term impacts of reforestation on the biological communities of the MAV, there is generally a lack of landscape level planning in its implementation. To address this deficiency we used raster-based digital data to assess the value of forest restoration to migratory landbirds for each ha within the MAV. Raster themes were developed that reflected distance from 3 existing forest cover parameters: (1) extant forest, (2) contiguous forest patches between 1,012 and 40,000 ha, and (3) forest cores with contiguous area 1 km from an agricultural, urban, or pastoral edge. Two additional raster themes were developed that combined information on the proportion of forest cover and average size of forest patches, respectively, within landscapes of 50,000, 100,000, 150,000, and 200,000 ha. Data from these 5 themes were amalgamated into a single raster using a weighting system that gave increased emphasis to existing forest cores, larger forest patches, and moderately forested landscapes while deemphasizing reforestation near small or isolated forest fragments and within largely agricultural landscapes. This amalgamated raster was then modified by the geographic location of historical forest cover and the current extent of public land ownership to assign a reforestation priority score to each ha in the MAV. However, because reforestation is not required on areas with extant forest cover and because restoration is unlikely on areas of open water and urban communities, these lands were not assigned a reforestation priority score. These spatially explicit reforestation priority scores were used to simulate reforestation of 368,000 ha (5%) of the highest priority lands in the MAV. Targeting restoration to these high priority areas resulted in a 54% increase in forest core - an area of forest core that exceeded the area of simulated reforestation. Bird Conservation Regions, developed within the framework of the Partners in Flight: Mississippi Alluvial Valley Bird Conservation Plan, encompassed a large proportion (circa 70%) of the area with highest priority for reforestation. Similarly, lands with high reforestation priority often were enrolled in the Wetland Reserve Program.
Landscape and vegetation effects on avian reproduction on bottomland forest restorations
Twedt, Daniel J.; Somershoe, Scott G.; Hazler, Kirsten R.; Cooper, Robert J.
2010-01-01
Forest restoration has been undertaken on >200,000 ha of agricultural land in the Mississippi Alluvial Valley, USA, during the past few decades. Decisions on where and how to restore bottomland forests are complex and dependent upon landowner objectives, but for conservation of silvicolous (forest-dwelling) birds, ecologists have espoused restoration through planting a diverse mix of densely spaced seedlings that includes fast-growing species. Application of this planting strategy on agricultural tracts that are adjacent to extant forest or within landscapes that are predominately forested has been advocated to increase forest area and enhance forested landscapes, thereby benefiting area-sensitive, silvicolous birds. We measured support for these hypothesized benefits through assessments of densities of breeding birds and reproductive success of 9 species on 36 bottomland forest restoration sites. Densities of thamnic (shrub-scrub dwelling) and silvicolous birds, such as yellow-breasted chat (Icteria virens), indigo bunting (Passerina cyanea), and white-eyed vireo (Vireo griseus) were positively associated with 1) taller trees, 2) greater stem densities, and 3) a greater proportion of forest within the landscape, whereas densities of birds associated with grasslands, such as dickcissel (Spiza americana) and red-winged blackbird (Agelaius phoeniceus), were negatively associated with these variables. Vegetation structure, habitat edge, and temporal effects had greater influence on nest success than did landscape effects. Taller trees, increased density of woody stems, greater vegetation density, and more forest within the landscape were often associated with greater nest success. Nest success of grassland birds was positively related to distance from forest edge but, for thamnic birds, success was greater near edges. Moreover, nest success and estimated fecundity of thamnic species suggested their populations are self-sustaining on forest restoration sites, whereas these sites are likely population sinks for grassland and open-woodland species. We recommend restoration strategies that promote rapid development of dense forest stands within largely forested landscapes to recruit breeding populations of thamnic and silvicolous birds that have reproductive success sufficient to sustain their populations.
Have we been successful? Monitoring horizontal forest complexity for forest restoration projects
Yvette L. Dickinson; Kristen A. Pelz; Emma Giles; Josh Howie
2016-01-01
Forest management today often seeks to restore ecological integrity and enhance human well-being by increasing forest complexity, resilience, and functionality. However, effective and financially expedient monitoring of forest complexity is challenging. In this study, we developed a practical and inexpensive technique to measure horizontal forest complexity....
O'Hara, Charles G.; Davis, Angela A.; Kleiss, Barbara A.
2000-01-01
A working prototype decision support system (DSS) was developed for the Yazoo Backwater Area, Mississippi, to help planners and managers prioritize, plan, conduct, and optimize forested wetland restoration activities. The DSS comprises geographic information system (GIS) spatial data themes, application programs that provide a cumulative analysis of the relative ability of sites to function as wetlands, and output data that are specific to a given restoration analysis scenario. The DSS input includes GIS data themes such as geomorphology, soils, land use, elevation, farmed wetlands, flood frequency, topographic depressions, streams, public lands, roads, and permanent water bodies, which can be used as spatial templates to define areal hydrologic settings. These GIS data themes can then be ranked and combined to estimate the relative suitability of a potential wetland restoration site, thereby, determining relative wetland equivalence on the landscape. The GIS applications used in this DSS perform the following three functions: assess the ecology (the Eco-Assessor); reclassify land-use in areas selected for restoration (the Tree-Translator); and generate output data to compare restoration scenarios (the Parameter-Generator). Areas selected for reforestation are translated (in the GIS) into ?forested? land use, and the tree species that are ?planted? on the landscape (in the DSS) either compose an ecologically optimal or an economically optimal community of tree species. Output from the DSS can be compared and analyzed by using economic, statistical, graphical, and tabular methods. Output data for seven selected scenarios were generated for the Yazoo Backwater Area and are presented as examples to illustrate the flexibility of the DSS to identify areas that meet restoration objectives.
EMERGY SYNTHESIS OF AN AGRO-FOREST RESTORATION SYSTEM IN LOWER SUBTROPICAL CHINA
The low subtropical zone is the most populated and seriously degraded area in China; therefore, highly efficient restoration of degraded lands is the key to sustainable development of this region. An agro-forest restoration mode consisting of an Acacia mangium forest, a Citrus re...
Economic opportunities and trade-offs in collaborative forest landscape restoration
Alan A. Ager; Kevin C. Vogler; Michelle A. Day; John D. Bailey
2017-01-01
We modeled forest restoration scenarios to examine socioeconomic and ecological trade-offs associated with alternative prioritization scenarios. The study examined four US national forests designated as priorities for investments to restore fire resiliency and generate economic opportunities to support local industry. We were particularly interested in economic trade-...
Introduction: Forest restoration in temperate and boreal zones
Emile Gardiner; Katrine Hahn; Magnus Löf
2003-01-01
The past decade has witnessed an acceleration of forest restoration activities around the globe. Afforestation of former agricultural land, rehabilitation of natural forest processes and structures at the stand and landscape levels, and conversion of single-species plantations to mixed-species stands are among the prominent types of restoration practices currently...
Restoring forest ecosystems: the human dimension
Bruce R. Hull; Paul H. Gobster
2000-01-01
In the past two decades, ecological restoration has moved from an obscure and scientifically suspect craft to a widely practiced and respected profession with considerable scientific knowledge and refined on-the-ground practices. Concurrently, forest restoration has become a valued skill of forestry professionals and a popular goal for forest management. Politics and...
Future landscapes: opportunities and challenges
John Stanturf
2015-01-01
The global magnitude of degraded and deforested areas is best approached by restoring landscapes. Heightened international perception of the importance of forests and trees outside forests (e.g., woodlands, on farms) demands new approaches to future landscapes. The current need for forest restoration is two billion ha; most opportunities are mosaic restoration in the...
Contemporary forest restoration: A review emphasizing function
John A. Stanturf; Brian J. Palik; R. Kasten Dumroese
2014-01-01
The forest restoration challenge (globally 2 billion ha) and the prospect of changing climate with increasing frequency of extreme events argues for approaching restoration from a functional and landscape perspective. Because the practice of restoration utilizes many techniques common to silviculture, no clear line separates ordinary forestry practices from restoration...
Restoring Forests and Associated Ecosystem Services on Appalachian Coal Surface Mines
NASA Astrophysics Data System (ADS)
Zipper, Carl E.; Burger, James A.; Skousen, Jeffrey G.; Angel, Patrick N.; Barton, Christopher D.; Davis, Victor; Franklin, Jennifer A.
2011-05-01
Surface coal mining in Appalachia has caused extensive replacement of forest with non-forested land cover, much of which is unmanaged and unproductive. Although forested ecosystems are valued by society for both marketable products and ecosystem services, forests have not been restored on most Appalachian mined lands because traditional reclamation practices, encouraged by regulatory policies, created conditions poorly suited for reforestation. Reclamation scientists have studied productive forests growing on older mine sites, established forest vegetation experimentally on recent mines, and identified mine reclamation practices that encourage forest vegetation re-establishment. Based on these findings, they developed a Forestry Reclamation Approach (FRA) that can be employed by coal mining firms to restore forest vegetation. Scientists and mine regulators, working collaboratively, have communicated the FRA to the coal industry and to regulatory enforcement personnel. Today, the FRA is used routinely by many coal mining firms, and thousands of mined hectares have been reclaimed to restore productive mine soils and planted with native forest trees. Reclamation of coal mines using the FRA is expected to restore these lands' capabilities to provide forest-based ecosystem services, such as wood production, atmospheric carbon sequestration, wildlife habitat, watershed protection, and water quality protection to a greater extent than conventional reclamation practices.
Forest management in Northeast China: history, problems, and challenges.
Yu, Dapao; Zhou, Li; Zhou, Wangming; Ding, Hong; Wang, Qingwei; Wang, Yue; Wu, Xiaoqing; Dai, Limin
2011-12-01
Studies of the history and current status of forest resources in Northeast China have become important in discussions of sustainable forest management in the region. Prior to 1998, excessive logging and neglected cultivation led to a series of problems that left exploitable forest reserves in the region almost exhausted. A substantial decrease in the area of natural forests was accompanied by severe disruption of stand structure and serious degradation of overall forest quality and function. In 1998, China shifted the primary focus of forest management in the country from wood production to ecological sustainability, adopting ecological restoration and protection as key foci of management. In the process, China launched the Natural Forest Conversion Program and implemented a new system of Classification-based Forest Management. Since then, timber harvesting levels in Northeast China have decreased, and forest area and stocking levels have slowly increased. At present, the large area of low quality secondary forest lands, along with high levels of timber production, present researchers and government agencies in China with major challenges in deciding on management models and strategies that will best protect, restore and manage so large an area of secondary forest lands. This paper synthesizes information from a number of sources on forest area, stand characteristics and stocking levels, and forest policy changes in Northeastern China. Following a brief historical overview of forest harvesting and ecological research in Northeast China, the paper discusses the current state of forest resources and related problems in forest management in the region, concluding with key challenges in need of attention in order to meet the demands for multi-purpose forest sustainability and management in the future.
Rodrigo V. Leite; Brent R. Frey; Jonathan Stoll
2016-01-01
The Lower Mississippi Alluvial Valley (LMAV) once had the largest expanse of bottomland forest cover in the United States, but these diverse forests have been heavily cleared for agricultural purposes. In recent decades significant forest restoration efforts have been attempting to restore bottomland forest cover and the environmental services it provides (e.g. water...
Ecological restoration of peatlands in steppe and forest-steppe areas
NASA Astrophysics Data System (ADS)
Minayeva, Tatiana; Sirin, Andrey; Dugarjav, Chultem
2016-04-01
Peatlands in the arid and semi-arid regions of steppe and forest steppe belt of Eurasia have some specific features. That demands the special approach to their management and restoration. The distribution of peatlands under conditions of dry climate is very limited and they are extremely vulnerable. Peatlands in those regions are found in the highlands where temperate conditions still present, in floodplains where they can get water from floods and springs, or in karst areas. Peatlands on watersheds present mainly remains from the more humid climate periods. Water and carbon storage as well as maintenance of the specific biodiversity are the key ecosystem natural functions of peatlands in the steppe and forest steppe. The performance of those functions has strong implications for people wellness and livelihood. Anyhow, peatlands are usually overlooked and poorly represented in the systems of natural protected areas. Land management plans, mitigation and restoration measures for ecosystems under use do not usually include special measures for peatlands. Peatlands'use depends on the traditional practices. Peat extraction is rather limited in subhumid regions but still act as one of the threats to peatlands. The most of peatlands are used as pastures and grasslands. In densely populated areas large part of peatlands are transformed to the arable lands. In many cases peatlands of piedmonts and highlands are affected by industrial developments: road construction, mining of subsoil resources (gold, etc.). Until now, the most of peatlands of steppe and forest steppe region are irreversibly lost, what also effects water regime, lands productivity, biodiversity status. To prevent further dramatic changes the ecological restoration approach should be introduced in the subhumid regions. The feasibility study to assess the potential for introducing ecological restoration techniques for peatlands in the arid and semi-arid conditions had been undertaken in steppe and forest steppe of Russia and steppe zone of Mongolia. Functional ecosystem characteristics, including hydrology, productivity and carbon accumulation rate studied in the intact and disturbed areas. Two pilot projects are set up, including monitoring program in forest steppe (Bashkiria) and steppe (Mongolia) areas.
Restoring Forested Wetland Ecosystems
John A. Stanturf; Emile S. Gardiner; Melvin L. Warren
2003-01-01
Forests as natural systems are intrinsically linked to the sustainability of fresh-water systems. Efforts worldwide to restore forest ecosystems seek to counteract centuries of forest conversion to agriculture and other uses. Afforestation, the practice of regenerating forests on land deforested for agriculture or other uses, is occurring at an intense pace in the...
Assessing Potential of VIIRS Data for Contribution to a Forest Threat Early Warning System
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.
2007-01-01
This viewgraph presentation reviews the contributions by the Rapid Prototyping Capability (RPC) towards using Visible Infrared Imager / Radiometer Suite (VIIRS) data in assessing the damage to forests. The Healthy Forest Restoration Act of 2003 mandates development of national Early Warning System (EWS) for forest threat monitoring and mitigation. NASA Stennis is working with the US Forest Service to develop needed components of this EWS. The use of MODIS data for monitoring forest disturbance at broad regional scales is a componet of this program. This RPC experiment was initiated to assess potential of the MODIS follow-on, VIIRS, for monitoring forest disturbance at broad scales and thereby contributing to the EWS. This presentation reviews the potential use of the VIIRS to examine the damage to forests caused by gyspy moths in the West Virginia and Virginia area.
Dry forest restoration and unassisted native tree seedling recruitment at Auwahi, Maui
Medeiros, Arthur C.; von Allmen, E. I.; Chimera, C.G.
2014-01-01
Efforts to restore highly degraded but biologically significant forests draw from a limited toolbox. With less than 10% of their former distribution remaining, Hawaiian dry forests, though critically endangered, remain important biological and cultural refugia. At restoration onset (1997), vegetation of restoration and control areas of degraded Auwahi dry forest, Maui Island, was similar, dominated by nonnative graminoids (restoration 78.3%; control 75.4%), especially Cenchrus (Pennisetum) clandestinus. In 2012, unrestored control area vegetation was basically unchanged. In contrast, in the restoration area in 2012, native shrub cover increased from 3.1% to 81.9%, and cover of nonnative graminoids declined from 75.4% to 3.3%. In 2012, nonplanted seedlings of 14 of 22 native tree species and six of seven native shrub species were observed in restoration plots; the majority (99%) were five native (Dodonaea viscosa, Coprosma foliosa, Osteomeles anthyllidifolia, Chamaesyce celastoides, Nestegis sandwicensis) and one nonnative species (Bocconia frutescens). By 2012, stem counts of native woody plants had increased from 12.4 to 135.0/100 m2, and native species diversity increased from 2.4 to 6.6/100 m2. By 2012, seven rare dry forest tree species, Charpentiera obovata, Nothocestrum latifolium, Ochrosia haleakalae, Pleomele auwahiensis, Santalum ellipticum, S. haleakalae, and Streblus pendulinus, had established seedlings and/or saplings within the restoration site, especially notable because natural reproduction is largely lacking elsewhere. Without development and implementation of appropriate management strategies, remaining Hawaiian dry forest will likely disappear within the next century. Multicomponent restoration incorporating ungulate exclusion, weed control, and outplanting as described here offers one strategy to conserve and restore tracts of high-value but degraded forests.
Success of riparian restoration projects in the mountains, piedmont, and coastal plain of Virginia
Benjamin N. Bradburn; W. Michael Aust; Matthew B. Carroll; Dean Cumbia; Jerre Creighton
2010-01-01
Forested riparian buffers are a Best Management Practice (BMP) for protection of water quality and for habitat. Since the 1990s, conservation agencies in Virginia have been involved in establishment of riparian buffers under the auspices of programs such as the Conservation Reserve Enhancement Program (CREP). Although CREP was established for protection of water...
Forest Restoration and Parasitoid Wasp Communities in Montane Hawai’i
Gould, Rachelle K.; Pejchar, Liba; Bothwell, Sara G.; Brosi, Berry; Wolny, Stacie; Mendenhall, Chase D.; Daily, Gretchen
2013-01-01
Globally, most restoration efforts focus on re-creating the physical structure (flora or physical features) of a target ecosystem with the assumption that other ecosystem components will follow. Here we investigate that assumption by documenting biogeographical patterns in an important invertebrate taxon, the parasitoid wasp family Ichneumonidae, in a recently reforested Hawaiian landscape. Specifically, we test the influence of (1) planting configurations (corridors versus patches), (2) vegetation age, (3) distance from mature native forest, (4) surrounding tree cover, and (5) plant community composition on ichneumonid richness, abundance, and composition. We sampled over 7,000 wasps, 96.5% of which were not native to Hawai’i. We found greater relative richness and abundance of ichneumonids, and substantially different communities, in restored areas compared to mature forest and abandoned pasturelands. Non-native ichneumonids drive these differences; restored areas and native forest did not differ in native ichneumonid abundance. Among restored areas, ichneumonid communities did not differ by planting age or configuration. As tree cover increased within 120 m of a sampling point, ichneumonid community composition increasingly resembled that found in native forest. Similarly, native ichneumonid abundance increased with proximity to native forest. Our results suggest that restoration plantings, if situated near target forest ecosystems and in areas with higher local tree cover, can facilitate restoration of native fauna even in a highly invaded system. PMID:23527171
Forest restoration and parasitoid wasp communities in montane Hawai'i.
Gould, Rachelle K; Pejchar, Liba; Bothwell, Sara G; Brosi, Berry; Wolny, Stacie; Mendenhall, Chase D; Daily, Gretchen
2013-01-01
Globally, most restoration efforts focus on re-creating the physical structure (flora or physical features) of a target ecosystem with the assumption that other ecosystem components will follow. Here we investigate that assumption by documenting biogeographical patterns in an important invertebrate taxon, the parasitoid wasp family Ichneumonidae, in a recently reforested Hawaiian landscape. Specifically, we test the influence of (1) planting configurations (corridors versus patches), (2) vegetation age, (3) distance from mature native forest, (4) surrounding tree cover, and (5) plant community composition on ichneumonid richness, abundance, and composition. We sampled over 7,000 wasps, 96.5% of which were not native to Hawai'i. We found greater relative richness and abundance of ichneumonids, and substantially different communities, in restored areas compared to mature forest and abandoned pasturelands. Non-native ichneumonids drive these differences; restored areas and native forest did not differ in native ichneumonid abundance. Among restored areas, ichneumonid communities did not differ by planting age or configuration. As tree cover increased within 120 m of a sampling point, ichneumonid community composition increasingly resembled that found in native forest. Similarly, native ichneumonid abundance increased with proximity to native forest. Our results suggest that restoration plantings, if situated near target forest ecosystems and in areas with higher local tree cover, can facilitate restoration of native fauna even in a highly invaded system.
Forest restoration is forward thinking
R. Kasten Dumroese; Brian J. Palik; John A. Stanturf
2015-01-01
It is not surprising to us that the topic of forest restoration is being discussed in the Journal of Forestry. It is a topic frequently bantered about in the literature; a quick search in Google Scholar for "forest restoration" generates more than 1 million hits. A significant portion of the debate centers on the search for succinct, holistic, universally...
A numerical study on hydrological impacts of forest restoration in the southern United States
Y.-Q. Liu
2010-01-01
Landscape in the southern United States changed dramatically during the 1930s and the following decades when massive agricultural and abandoned logging lands were converted to forest lands through natural restoration and silviculture. The impacts of this forest restoration on hydrology were investigated in this study by conducting numerical experiments with a regional...
Joseph E. Crouse; Peter Z. Fule
2008-01-01
The landscape surrounding the Fort Valley Experimental Forest in northern Arizona has changed dramatically in the past decade due to the Fort Valley Restoration Project, a collaboration between the Greater Flagstaff Forest Partnership, Coconino National Forest, and Rocky Mountain Research Station. Severe wildfires in 1996 sparked community concern to start restoration...
Forest Restoration in China: Advances, Obstacles, and Perspectives
Hai Ren; Hongfang Lu; Jun Wang; Nan Liu; Qinfeng Guo
2012-01-01
Because of the prolonged history of disturbance caused by intense human activities, restoration in China has been a major task facing many ecologists and land managers. There are six major forest types in China: cold temperate coniferous forest, temperate coniferous and broad-leaved mixed forest, warm temperate deciduous broad-leaved forest, subtropical evergreen broad...
Selmants, Paul; Sleeter, Benjamin M.; Koch, Nicholas; Friday, James B.; Ohara, Rebekah Dickens; Friday, James B.
2016-01-01
Large areas of forest in the tropics have been cleared and converted to pastureland. Hawai‘i Island is no exception, with over 100,000 ha of historically forested land now dominated by non-native grasses. Passive forest restoration has been unsuccessful because these grasslands tend to persist even after grazers have been removed, yet active outplanting of native tree species can be cost-prohibitive at the landscape scale. It is therefore essential to seek co-benefits of forest restoration to defray costs, such as accredited carbon offsets from increased carbon sequestration. We developed a reforestation scenario for non-native grasslands on Hawai‘i Island by outplanting endemic koa (Acacia koa) trees paid for with carbon offsets via the California Cap and Trade Program. This scenario entails reforesting 53,531 ha of non-native grassland at 2500 ha y-1 over 22 years. We estimated planting costs at \\$6,178 ha-1, a total cost of approximately \\$331,000,000. We used the Land Use and Carbon Simulator (LUCAS) model to estimate island-wide ecosystem carbon sequestration with and without koa reforestation using 100 Monte Carlo simulations per year over a 60-year period. Income from carbon offsets was set at \\$13.57 per ton of CO2 equivalent, the current California Cap and Trade Program carbon market price.
Optimization strategies for sediment reduction practices on roads in steep, forested terrain
Madej, Mary Ann; Eschenbach, E.A.; Diaz, C.; Teasley, R.; Baker, K.
2006-01-01
Many forested steeplands in the western United States display a legacy of disturbances due to timber harvest, mining or wildfires, for example. Such disturbances have caused accelerated hillslope erosion, leading to increased sedimentation in fish-bearing streams. Several restoration techniques have been implemented to address these problems in mountain catchments, many of which involve the removal of abandoned roads and re-establishing drainage networks across road prisms. With limited restoration funds to be applied across large catchments, land managers are faced with deciding which areas and problems should be treated first, and by which technique, in order to design the most effective and cost-effective sediment reduction strategy. Currently most restoration is conducted on a site-specific scale according to uniform treatment policies. To create catchment-scale policies for restoration, we developed two optimization models - dynamic programming and genetic algorithms - to determine the most cost-effective treatment level for roads and stream crossings in a pilot study basin with approximately 700 road segments and crossings. These models considered the trade-offs between the cost and effectiveness of different restoration strategies to minimize the predicted erosion from all forest roads within a catchment, while meeting a specified budget constraint. The optimal sediment reduction strategies developed by these models performed much better than two strategies of uniform erosion control which are commonly applied to road erosion problems by land managers, with sediment savings increased by an additional 48 to 80 per cent. These optimization models can be used to formulate the most cost-effective restoration policy for sediment reduction on a catchment scale. Thus, cost savings can be applied to further restoration work within the catchment. Nevertheless, the models are based on erosion rates measured on past restoration sites, and need to be up-dated as additional monitoring studies evaluate long-term basin response to erosion control treatments. Copyright ?? 2006 John Wiley & Sons, Ltd.
Herrera-Rangel, J; Jiménez-Carmona, E; Armbrecht, I
2015-10-01
Hunting ants are predators of organisms belonging to different trophic levels. Their presence, abundance, and diversity may reflect the diversity of other ants and contribute to evaluate habitat conditions. Between 2003 and 2005 the restoration of seven corridors in an Andean rural landscape of Colombia was performed. The restoration took place in lands that were formerly either forestry plantations or pasturelands. To evaluate restoration progress, hunting ants were intensely sampled for 7 yr, using sifted leaf litter and mini-Winkler, and pitfall traps in 21 plots classified into five vegetation types: forests, riparian forests, two types of restored corridors, and pasturelands. The ant communities were faithful to their habitat over time, and the main differences in ant composition, abundance, and richness were due to differences among land use types. The forests and riparian forests support 45% of the species in the landscape while the restored corridors contain between 8.3-25%. The change from forest to pasturelands represents a loss of 80% of the species. Ant composition in restored corridors was significantly different than in forests but restored corridors of soil of forestry plantations retained 16.7% more species than restored corridors from pasturelands. Ubiquitous hunting ants, Hypoponera opacior (Forel) and Gnamptogenys ca andina were usually associated with pastures and dominate restored corridors. Other cryptic, small, and specialized hunting ants are not present in the restored corridors. Results suggest that the history of land use is important for the biodiversity of hunting ants but also that corridors have not yet effectively contributed toward conservation goals. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Regulations of the Forest Law, 29 June 1988.
1988-01-01
These Regulations set forth the administration and duties of various government departments under the Mexican Forest Law. They provide that the National Forest Administration is, among other things, to promote operations designed for the conservation, protection, and restoration of forest resources, especially with respect to disasters of any kind that affect forests, such as pestilence, fires, disease, floods, and acid rain, as well as other destructive and contaminating elements. Further provisions of the Regulations describe efforts to aid reforestation and silviculture to be undertaken by the Secretariat and activities with respect to use permits and forest management. In its efforts to aid reforestation, the Secretariat is to establish nurseries, give assistance to local bodies to establish nurseries, and support reforestation programs financially. Regulations of the General Law on Ecological Equilibrium and Environmental Protection with Respect to Environmental Impact of 6 June 1988 contain provisions requiring the Secretariat of Urban Development and Ecology to formulate general rules on the environmental impact involved in the use of forests. These rules are to set forth measures on prevention, improvement, preservation, restoration, and control. The Secretariat is also to issue ecological protection restrictions on the use of forest resources, which are to be relied on in the evaluation of proposed forest use projects. The Regulations also set forth procedures to be followed in examining use permit applications and information that must be included in such applications. See Diario Oficial, Vol. 417, No. 5, 7 June 1988, p. 28. full text
A quantitative assessment of the conservation benefits of the Wetlands Reserve Program to amphibians
Waddle, J. Hardin; Glorioso, Brad M.; Faulkner, Stephen P.
2013-01-01
The Mississippi Alluvial Valley (MAV) originally consisted of nearly contiguous bottomland hardwood (BLH) forest encompassing approximately 10 million hectares. Currently, only 20–25% of the historical BLH forests remain in small patches fragmented by agricultural lands. The Wetlands Reserve Program (WRP) was established to restore and protect the functions and values of wetlands in agricultural landscapes. To assess the potential benefit of WRP restoration to amphibians, we surveyed 30 randomly selected WRP sites and 20 nearby agricultural sites in the Mississippi Delta. We made repeat visits to each site from May to August 2008 and performed both visual encounter and vocalization surveys. We analyzed the encounter history data for 11 anuran species using a Bayesian hierarchical occupancy model that estimated detection probability and probability of occurrence simultaneously for each species. Nine of the 11 species had higher probabilities of occurrence at WRP sites compared to agriculture. Derived estimates of species richness were also higher for WRP sites. Five anuran species were significantly more likely to occur in WRP than in agriculture, four of which were among the most aquatic species. It appears that the restoration of a more permanent hydrology at the WRP sites may be the primary reason for this result. Although amphibians represent only one group of wildlife species, they are useful for evaluating restoration benefits for wildlife because of their intermediate trophic position. The methods used in this study to evaluate the benefit of restoration could be used in other locations and with other groups of indicator species.
Forests planted for ecosystem restoration or conservation.
Constance A. Harrington
1999-01-01
Although the phrase, "planting for ecosystem restoration," is of recent origin, many of the earliest large-scale tree plantings were made for what we now refer to as "'restoration" or "conservation" goals. Forest restoration activities may be needed when ecosystems are disturbed by either natural or anthropogenic forces. Disturbances...
R. Fenner Yarborough; Catherine S. Wightman
2008-01-01
(Please note, this is an abstract only) Forest restoration treatments are currently being conducted throughout the state of Arizona. Restoration treatments open the existing forest structure and may improve foraging habitat for mule deer (Odocoileus hemionus) but may reduce the suitability of day bed sites or decrease fawn recruitment due to removal of sufficient...
Douglas J. Shinneman; Meredith W. Cornett; Brian J. Palik
2010-01-01
Restoring altered forest landscapes toward their ranges of natural variability (RNV) may enhance ecosystem sustainability and resiliency, but such efforts can be hampered by complex land ownership and management patterns. We evaluated restoration potential for southern-boreal forests in the ~2.1 million ha Border Lakes Region of northern Minnesota (U.S.A.) and...
An early look at forest regeneration indicator results for the Midwest and Northeast United States
William H. McWilliams; James A. Westfall
2015-01-01
Interacting regeneration stressors create challenges for policy makers and managers who are tasked with making decisions for restoring forest following major disturbances, such as harvest or catastrophic mortality. Concern over an aging forest, dwindling young forest habitat, and restoration of native forests in the midwest and northeast United States has resulted in...
Marie Oliver; Susan Charnley; Thomas Spies; Jeff Kline; Eric White
2017-01-01
Interest in landscape-scale approaches to fire management and forest restoration is growing with the realization that these approaches are critical to maintaining healthy forests and protecting nearby communities. However, coordinated planning and action across multiple ownerships have been elusive because of differing goals and forest management styles among...
Log sort yard economics, planning, and feasibility
John Rusty Dramm; Robert Govett; Ted Bilek; Gerry L. Jackson
2004-01-01
This publication discusses basic marketing and economic concepts, planning approach, and feasibility methodology for assessing log sort yard operations. Special attention is given to sorting small diameter and underutilized logs from forest restoration, fuels reduction, and thinning operations. A planned programming approach of objectively determining the feasibility...
NASA Astrophysics Data System (ADS)
Mukul, S. A.; Herbohn, J.; Firn, J.; Gregorio, N.
2017-12-01
Shifting cultivation is a widespread practice in tropical forest agriculture frontiers that policy makers often regard as the major driver of forest loss and degradation. Secondary forests regrowing after shifting cultivation are generally not viewed as suitable option for biodiversity conservation and carbon retention. Drawing upon our research in the Philippines and other relevant case studies, we compared the biodiversity and carbon sequestration benefits in recovering secondary forests after shifting cultivation to other land uses that commonly follow shifting cultivation. Regenerating secondary forests had higher biodiversity than fast growing timber plantations and other restoration options available in the area. Some old plantations, however, provided carbon benefits comparable the old growth forest, although their biodiversity was less than that of the regenerating forests. Our study demonstrates that secondary forests regrowing after shifting cultivation have a high potential for biodiversity and carbon sequestration co-benefits, representing an effective strategy for forest management and restoration in countries where they are common and where the forest is an integral part of rural people's livelihoods. We discuss the issues and potential mechanisms through which such dynamic land use can be incorporated into development projects that are currently financing the sustainable management, conservation, and restoration of tropical forests.
Christin, Zachary; Bagstad, Kenneth J.; Verdone, Michael
2016-01-01
Restoring degraded forests and agricultural lands has become a global conservation priority. A growing number of tools can quantify ecosystem service tradeoffs associated with forest restoration. This evolving “tools landscape” presents a dilemma: more tools are available, but selecting appropriate tools has become more challenging. We present a Restoration Ecosystem Service Tool Selector (RESTS) framework that describes key characteristics of 13 ecosystem service assessment tools. Analysts enter information about their decision context, services to be analyzed, and desired outputs. Tools are filtered and presented based on five evaluative criteria: scalability, cost, time requirements, handling of uncertainty, and applicability to benefit-cost analysis. RESTS uses a spreadsheet interface but a web-based interface is planned. Given the rapid evolution of ecosystem services science, RESTS provides an adaptable framework to guide forest restoration decision makers toward tools that can help quantify ecosystem services in support of restoration.
GeoEthics from the Ground Up: A Carbon-Neutral Education
NASA Astrophysics Data System (ADS)
Moore, A.; Derry, L. A.
2014-12-01
Discussion with students about the science of global warming and the consequences of greenhouse gas emissions - while emitting greenhouse gasses in the process - is a focal point for geoethics in the Cornell University Earth and Environmental Systems (EES) Field Program. If we seek to educate students in the fundamentals of environmental stewardship we must also put stewardship into practice as part of that education. The EES program is a semester length earth systems field program held on Hawai`i Island. In Hawai`i students gain first-hand experience with the interconnected solid earth, living earth, ocean and atmosphere. They also gain first-hand experience with the consequences of unsustainable resource use: marine resource depletion, deforestation and species loss, development v. conservation, fossil fuel v. alternative energy options. Yet as a travel-based field program the pursuit of these goals carries a clear environmental cost. Thus a core element of EES education is to run a carbon-neutral program. To achieve this, students quantify every aspect of the program's carbon footprint. They decide which actions they must include as part of that footprint and learn how to monitor and calculate the resulting CO2 emissions. Students learn how to reduce emissions where possible, and offset emissions that cannot be eliminated. Working in partnership with island-based conservation organizations students engage in reforestation of degraded native forest landscapes. They model the carbon sequestration capacity of restored forest biomass and soil reservoirs. The outcome of this process has triple-bottom-line benefits: (1) native forest and endangered species habitat is restored, (2) carbon dioxide is removed from the atmosphere and sequestered, and (3) students gain hands-on, minds-on experience with carbon-cycle science, ecosystem science, and with the ethical imperative of putting one's knowledge into action.
1989-05-01
AFB Statement of Work. The Phase II Stage 1 investigation of Malmstrom AFB and two off-Base sites at Shelby and Brady, Montana are described in a...Flathead National Forest Headquarters in Kalispell and the Big Fork Ranger Station in Big Fork . Because there has been litigation involved with this...reviewed by phone. An interview at the spill site was held with Mr. William Pedersen, U.S. Forest Service Ranger for the Big Fork District. He personally
Assessing ecosystem restoration alternatives in eastern deciduous forests: the view from belowground
Ralph E.J. Boerner; Adam T. Coates; Daniel A. Yaussy; Thomas A. Waldrop
2008-01-01
Both structural and functional approaches to restoration of eastern deciduous forests are becoming more common as recognition of the altered state of these ecosystems grows. In our study, structural restoration involves mechanically modifying the woody plant assemblage to a species composition, density, and community structure specified by the restoration goals....
Restoration of biogeochemical function in mangrove forests
McKee, K.L.; Faulkner, P.L.
2000-01-01
Forest structure of mangrove restoration sites (6 and 14 years old) at two locations (Henderson Creek [HC] and Windstar [WS]) in southwest Florida differed from that of mixed-basin forests (>50 years old) with which they were once contiguous. However, the younger site (HC) was typical of natural, developing forests, whereas the older site (WS) was less well developed with low structural complexity. More stressful physicochemical conditions resulting from incomplete tidal flushing (elevated salinity) and variable topography (waterlogging) apparently affected plant survival and growth at the WS restoration site. Lower leaf fall and root production rates at the WS restoration site, compared with that at HC were partly attributable to differences in hydroedaphic conditions and structural development. However, leaf and root inputs at each restoration site were not significantly different from that in reference forests within the same physiographic setting. Macrofaunal consumption of tethered leaves also did not differ with site history, but was dramatically higher at HC compared with WS, reflecting local variation in leaf litter processing rates, primarily by snails (Melampus coffeus). Degradation of leaves and roots in mesh bags was slow overall at restoration sites, however, particularly at WS where aerobic decomposition may have been more limited. These findings indicate that local or regional factors such as salinity regime act together with site history to control primary production and turnover rates of organic matter in restoration sites. Species differences in senescent leaf nitrogen content and degradation rates further suggest that restoration sites dominated by Laguncularia racemosa and Rhizophora mangle should exhibit slower recycling of nutrients compared with natural basin forests where Avicennia germinans is more abundant. Structural development and biogeochemical functioning of restored mangrove forests thus depend on a number of factors, but site-specific as well as regional or local differences in hydrology and concomitant factors such as salinity and soil waterlogging will have a strong influence over the outcome of restoration projects.
Faces from the past: profiles of those who led restoration of the South’s forests
James P. Barnett
2016-01-01
Early in the 20th century, the forests in the South were devastated by aggressive harvesting and many millions of acres of forest land needed reforestation. Foresighted individuals began a committed effort to restore this land to a productive condition. This effort required dedication, cooperation, and leadership. A small cadre of individuals led the restoration of the...
Allometric equations for estimating tree biomass in restored mixed-species Atlantic Forest stands
Lauro Rodrigues Nogueira; Vera Lex Engel; John A. Parrotta; Antonio Carlos Galvão de Melo; Danilo Scorzoni Ré
2014-01-01
Restoration of Atlantic Forests is receiving increasing attention because of its role in both biodiversity conservation and carbon sequestration for global climate change mitigation. This study was carried out in an Atlantic Forest restoration project in the south-central region of São Paulo State â Brazil to develop allometric equations to estimate tree biomass of...
The role of remnant forest patches for habitat restoration in degraded areas of Palau
Julian Dendy; Susan Cordell; Christian P. Giardina; Bernice Hwang; Edwin Polloi; Kashgar Rengulbai
2015-01-01
To be successful, prescriptions for tropical forest restoration should facilitate natural recovery while also being easy to implement and inexpensive. In the Lake Ngardok Nature Reserve, Palau, we monitored native forest patches (4â275 m2) over 3 years to assess the influence of several low-cost restoration methods on patch expansion, growth of naturally established...
Fire regimes and approaches for determining fire history
James K. Agee
1996-01-01
Fire has been an important evolutionary influence in forests, affecting species composition, structure, and functional aspects of forest biology. Restoration of wildland forests of the future will depend in part on restoring fire to an appropriate role in forest ecosystems. This may include the "range of natural variability" or other concepts associated with...
Case study: Prioritization strategies for reforestation of minelands to benefit Cerulean Warblers
McDermott, Molly E.; Shumar, Matthew B.; Wood, Petra Bohall
2013-01-01
The central Appalachian landscape is being heavily altered by surface coal mining. The practice of Mountaintop Removal/Valley Fill (MTRVF) mining has transformed large areas of mature forest to non-forest and created much forest edge, affecting habitat quality for mature forest wildlife. The Appalachian Regional Reforestation Initiative is working to restore mined areas to native hardwood forest conditions, and strategies are needed to prioritize restoration efforts for wildlife. We present mineland reforestation guidelines for the imperiled Cerulean Warbler, considered a useful umbrella species, in its breeding range. In 2009, we surveyed forest predicted to have Cerulean Warblers near mined areas in the MTRVF region of West Virginia and Kentucky. We visited 36 transect routes and completed songbird surveys on 151 points along these routes. Cerulean Warblers were present at points with fewer large-scale canopy disturbances and more mature oak-hickory forest. We tested the accuracy of a predictive map for this species and demonstrated that it can be useful to guide reforestation efforts. We then developed a map of hot spot locations that can be used to determine potential habitat suitability. Restoration efforts would have greatest benefit for Cerulean Warblers and other mature forest birds if concentrated near a relative-abundance hot spot, on north- and east-facing ridgetops surrounded by mature deciduous forest, and prioritized to reduce edges and connect isolated forest patches. Our multi-scale approach for prioritizing restoration efforts using an umbrella species may be applied to restore habitat impacted by a variety of landscape disturbances.
The challenge of ecological restoration
John A. Stanturf
2012-01-01
Recent estimates by the World Conservation Union (IUCN) and World Resources Institute (WRI) suggest that over 2 billion ha of forests are degraded and in need of restoration. Goren Persson, former prime minister of Sweden, proposed the formation of a Global Restoration council to implement the Bonn Challenge to restore 150 million ha of degraded forests by 2020. The...
Rapid colonization of a Hawaiian restoration forest by a diverse avian community
Paxton, Eben H.; Yelenik, Stephanie G.; Borneman, Tracy E.; Rose, Eli; Camp, Richard J.; Kendall, Steve J.
2018-01-01
Deforestation of tropical forests has led to widespread loss and extirpation of forest bird species around the world, including the Hawaiian Islands which have experienced a dramatic loss of forests over the last 200–800 years. Given the important role birds play in forest ecosystem functions via seed dispersal and pollination, a bird community's response to forest restoration is an important measure of the success of such conservation actions. We evaluated the bird response to reforestation at an important bird sanctuary, Hakalau Forest National Wildlife Refuge, Hawai′i Island, using 26 years of bird count data. We show that most species from within the diverse avian community increased significantly, but species colonized the restoration forest at different rates. Distance from intact forest and time since restoration were both important predictors of colonization rate, interacting such that for most species it took more time to colonize areas farther from the intact forest. In addition, both forest cover and understory diversity helped to explain bird densities, but the effect varied among species, suggesting that different habitat requirements may help drive variation in colonization rates. This article provides the first detailed evaluation of how a diverse community of birds has responded to one of the largest, ongoing reforestation projects in Hawai′i.
Emergy and Eco-exergy Evaluation of Four Forest Restoration Modes
Four different forest restoration modes (Acacia mangium plantation, mixed-native species plantation, conifer plantation and Eucalyptus plantation) were evaluated using Energy System Theory and the emergy synthesis method. In addition, the eco-exergies of the four forest restorati...
Cynthia D. Huebner; Kurt W. Gottschalk; Gary W. Miller; Patrick H. Brose
2010-01-01
Research on herbaceous vegetation restoration in forests characterised by overstorey tree harvests, excessive deer herbivory, and a dominant fern understorey is lacking. Most of the plant diversity found in Eastern hardwood forests in the United States is found in the herbaceous understorey layer. Loss of forest herbaceous species is an indicator of declining forest...
Benjamin O. Knapp; G. Geoff Wang; Stacy L Clark; Lauren S. Pile; Scott E. Schlarbaum
2014-01-01
Backcross breeding programs have been used to transfer disease resistance and other traits from one forest tree species to another in order to meet restoration objectives. Evaluating the field performance of such material is critical for determining the success of breeding programs. In eastern North America, The American Chestnut Foundation has a backcross breeding...
Obeng, Elizabeth Asantewaa; Aguilar, Francisco Xavier
2018-01-15
This research analyzed whether the three distinct value orientations posited under the Value-Belief-Norm (VBN) model determine willingness-to-pay (WTP) for a payment for ecosystem services (PES) program. A survey instrument gathered U.S. residents' knowledge and attitudes toward ecosystem services and PES, and elicited WTP for the restoration of a hypothetical degraded forest watershed for improved ecosystem services. Data from over 1000 respondents nationwide were analyzed using exploratory factor analysis (EFA) and ordered logistic regression. Urban respondents were more familiar with the concepts of ecosystem service and PES than rural respondents but familiarity did not yield statistically different WTP estimates. Based on results from the EFA, we posit that latent value orientations might be distinguished as 'detrimental', 'biospheric' and 'beneficial (egoistic)' - as compared to 'altruistic', 'biospheric' and 'egoistic' as suggested in the VBN's general awareness of consequences scale. Awareness of biospheric and detrimental consequences along with ascriptions to personal norms had positive and significant effects on stated WTP. Beneficial (egoistic) value orientation was negatively associated with WTP and carried a negative average WTP per household per year (US$ -30.48) for the proposed PES restoration program as compared with biospheric (US$ 15.53) and detrimental (US$ 3.96) orientations. Besides personal norms, awareness of detrimental consequences to human wellbeing from environmental degradation seems the stronger driver of WTP for the restoration and protection of forest watershed ecosystem services under a PES program. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reference conditions for giant sequoia forest restoration: structure, process, and precision
Stephenson, Nathan L.
1999-01-01
National Park Service policy directs that more natural conditions be restored to giant sequoia groves, which have been altered by a century of fire exclusion. Efforts to find a reasonable and practical definition of “natural” have helped drive scientists and land managers to use past grove conditions as reference conditions for restoration. Extensive research aimed at determining reference conditions has demonstrated that past fire regimes can be characterized with greater precision than past grove structures. Difficulty and imprecision in determining past grove structure has helped fuel a debate between “structural restorationists,” who believe that forest structure should be restored mechanically before fire is reintroduced, and “process restorationists,” who believe that simple reintroduction of fire is appropriate. I evaluate old and new studies from sequoia groves to show that some of the arguments of both groups have been flawed. Importantly, it appears that restoration of fire without a preceding mechanical restoration may restore the pre-Euro-American structure of sequoia groves, at least within the bounds of our imprecise knowledge of past grove structure. However, the same may not be true for all forest types that have experienced lengthy fire exclusion. Our ability to draw robust generalizations about fire's role in forest restoration will depend heavily on a thorough understanding of past and present interactions among climate, fire, and forest structure. Use of reference conditions will be central to developing this understanding.
NASA Astrophysics Data System (ADS)
Wheeler, C. E.; Mitchard, E. T.; Lewis, S. L.
2017-12-01
Restoring degraded and deforested tropical lands to sequester carbon is widely considered to offer substantial climate change mitigation opportunities, if conducted over large spatial scales. Despite this assertion, explicit estimates of how much carbon could be sequestered because of large-scale restoration are rare and have large uncertainties. This is principally due to the many different characteristics of land available for restoration, and different potential restoration activities, which together cause very different rates of carbon sequestration. For different restoration pathways: natural regeneration of degraded and secondary forest, timber plantations and agroforestry, we estimate carbon sequestration rates from the published literature. Then based on tropical restoration commitments made under the Bonn challenge and using carbon density maps, these carbon sequestration rates were used to predict total pan-tropical carbon sequestration to 2100. Restoration of degraded or secondary forest via natural regeneration offers the greatest carbon sequestration potential, considerably exceeding the carbon captured by either timber plantations or agroforestry. This is predominantly due to naturally regenerating forests representing a more permanent store of carbon in comparison to timber plantations and agroforestry land-use options, which, due to their rotational nature, result in the sequential return of carbon to the atmosphere. If the Bonn Challenge is to achieve its ambition of providing substantial climate change mitigation from restoration it must incorporate large areas of natural regeneration back to an intact forest state, otherwise it stands to be a missed opportunity in helping meet the Paris climate change goals.
Leaf litter arthropod responses to tropical forest restoration.
Cole, Rebecca J; Holl, Karen D; Zahawi, Rakan A; Wickey, Philipp; Townsend, Alan R
2016-08-01
Soil and litter arthropods represent a large proportion of tropical biodiversity and perform important ecosystem functions, but little is known about the efficacy of different tropical forest restoration strategies in facilitating their recovery in degraded habitats. We sampled arthropods in four 7- to 8-year-old restoration treatments and in nearby reference forests. Sampling was conducted during the wet and dry seasons using extractions from litter and pitfall samples. Restoration treatments were replicated in 50 × 50-m plots in four former pasture sites in southern Costa Rica: plantation - trees planted throughout the plot; applied nucleation/islands - trees planted in patches of different sizes; and natural regeneration - no tree planting. Arthropod abundance, measures of richness and diversity, and a number of functional groups were greater in the island treatment than in natural regeneration or plantation treatments and, in many cases, were similar to reference forest. Litter and pitfall morphospecies and functional group composition in all three restoration treatments were significantly different than reference sites, but island and plantation treatments showed more recovery than natural regeneration. Abundance and functional group diversity showed a much greater degree of recovery than community composition. Synthesis and applications: The less resource-intensive restoration strategy of planting tree islands was more effective than tree plantations in restoring arthropod abundance, richness, and functional diversity. None of the restoration strategies, however, resulted in similar community composition as reference forest after 8 years of recovery, highlighting the slow rate of recovery of arthropod communities after disturbance, and underscoring the importance of conservation of remnant forests in fragmented landscapes.
Rocky to bullwinkle: understanding flying squirrels helps us restore dry forest ecosystems.
Jonathan Thompson
2006-01-01
A century of effective fire suppression has radically transformed many forested landscapes on the east side of the Cascades. Managers of dry forests critically need information to help plan for and implement forest restoration . Management priorities include the stabilization of fire regimes and the maintenance of habitat for the northern spotted owl and other old-...
Initial effects of restoring natural forest structures in Estonia
D. Laarmann; H. Korjus; A. Sims; A. Kangur; J.A. Stanturf
2013-01-01
The legacy of structural homogenization due to forest management for commercial products is a loss of biodiversity. A common policy in many European countries is to increase forest diversity by converting managed forests to more natural conditions. The aim of this study was to provide an early evaluation of the effectiveness of different restoration treatments to...
Restoration seed reserves for assisted gene flow within seed orchards
C.S. Echt; B.S. Crane
2017-01-01
Changing climate and declining forest populations imperil the future of certain forest tree species. To complement forest management and genetic conservation plans, we propose a new paradigm for seedling seed orchards: foster genetic mixing among a variety of seed sources to increase genetic diversity and adaptive potential of seed supplies used for forest restoration...
Historical open forest ecosystems in the Missouri Ozarks: reconstruction and restoration targets
Brice B. Hanberry; D. Todd Jones-Farrand; John M. Kabrick
2014-01-01
Current forests no longer resemble historical open forest ecosystems in the eastern United States. In the absence of representative forest ecosystems under a continuous surface fire regime at a large scale, reconstruction of historical landscapes can provide a reference for restoration efforts. For initial expert-assigned vegetation phases ranging from prairie to...
Michael M. Huebschmann; Daniel S. Tilley; Thomas B. Lynch; David K. Lewis; James M. Guldin
2002-01-01
The USDA Forest Service is restoring pre-European settlement forest conditions on about 10 percent (155,000 acres) of the Ouachita National Forest in western Arkansas. These conditions - characterized by large, scattered shortleaf pine and hardwoods maintained on 120-year rotations, with bluestem grass and associated herbaceous vegetation in the understory - are...
Harmony Dalgleish; C. Dana Nelson; John Scrivani; Douglass Jacobs
2015-01-01
Restoration of foundation species, such as the American chestnut (Castanea dentata) that was devastated by an introduced fungus, can restore ecosystem function. Understanding both the current distribution as well as biogeographic patterns is important for restoration planning. We used United States Department of Agriculture Forest...
Hou, Lin; Hou, Sijia
2017-01-01
Restoration of degraded forest ecosystem is crucial for regional sustainable development. To protect the country's fragile and fragmented environment, the Chinese government initiated an ecological engineering project, the Natural Forest Protection Program, in seventeen provinces in China beginning in 1998. Fully hillside-closed forest protection (vegetation restoration naturally without any artificial disturbance) was one of vital measures of the Natural Forest Protection Program applied nation wide. Whether plant diversity, biomass and age structure of dominant tree species and soil nutrients in protected stands may become better with increase of protected period are still open problems. We investigated community diversity, biomass of dominant tree species, age structures, and analyzed soil chemical properties of a Pinus tabulaeformis population at protected sites representing different protected ages at Huanglongshan Forest Bureau on the Loess Plateau, Shaanxi, China. Plant species richness of Pinus tabulaeformis community was significantly affected ( p < 0.05) by forest protection and the effect attenuated with protection age. Shannon evenness index of plant species generally increased with protection age. Stands protected for 45 years had the highest tree biomass and considerable natural regeneration capacity. Contents of organic carbon, available phosphorus and available potassium in top soil increased in protected stands less than 45 years, however decreased significantly thereafter. Long-term forest protection also decreased the content of mineral nitrogen in top soil. We found that the richness of shrubs and herbs was significantly affected by forest protection, and evenness indices of tree, shrub and herb increased inconsistently with protected ages. Forest protection created more complex age structures and tree densities with increasing age of protection. Content of soil mineral nitrogen at 0-20 cm soil depth showed a decreasing trend in stands of up to 30 years. Soil available phosphorus and potassium contents were higher in stands with greater proportions of big and medium trees. Long-term protection (>45 years) of Pinus tabulaeformis stands in southeast Loess Plateau, China, may be associated with decreasing plant species richness, proportion of medium to large trees, dominant biomass of Pinus tabulaeformis and soil nutrients.
Callie Schweitzer; Stacy L. Clark; Kurt W. Gottschalk; Jeff Stringer; Robbie Sitzlar
2014-01-01
Determining targets in forest restoration is a complicated task that can be facilitated by cooperative partnerships. Too often restoration plans are implemented after adverse events that cause widespread tree mortality, such as drought or insect outbreaks, have occurred. Reactive management precludes the use of preemptive management techniques that can result in more...
NASA Astrophysics Data System (ADS)
Duan, Z.; Sun, N.; Wigmosta, M. S.; Hessburg, P. F., Sr.; Coleman, A. M.; Salter, B.
2017-12-01
Management of forest lands in the Upper Columbia River basin is necessary to ensure the sustainability of natural ecosystems and enhance protection and recovery of fish and wildlife populations. By 2030, summertime surface water demand is expected to significantly exceed supply in most years in many Upper Columbia tributaries; in some years, a portion of these tributaries will exceed supply even outside the summer months. Forest restoration (i.e., timber harvest, prescribed burning, thinning) reduces canopy cover and, subsequently, has been shown in many cases to increase snow accumulation and total runoff volume. We use the Distributed Hydrology Soil Vegetation Model (DHSVM) to predict hydrologic properties and changes associated with realistic forest restoration scenarios prescribed in high spatial detail (90 m) within snow-dominated watersheds of the upper Columbia under current and future climate conditions. We consider changes in hydrological processes related to snowpack, stream discharge, and water temperature. Model results suggest forest restoration will impact annual water yield under both current and future climate conditions and the impact of forest restoration on the timing of snowmelt and streamflow varies from year to year and is highly dependent on local meteorological conditions and particular forest restoration scenarios. Corresponding changes in water temperature will also be discussed.
Soil responses to management, increased precipitation, and added nitrogen in ponderosa pine forests.
Hungate, Bruce A; Hart, Stephen C; Selmants, Paul C; Boyle, Sarah I; Gehring, Catherine A
2007-07-01
Forest management, climatic change, and atmospheric N deposition can affect soil biogeochemistry, but their combined effects are not well understood. We examined the effects of water and N amendments and forest thinning and burning on soil N pools and fluxes in ponderosa pine forests near Flagstaff, Arizona (USA). Using a 15N-depleted fertilizer, we also documented the distribution of added N into soil N pools. Because thinning and burning can increase soil water content and N availability, we hypothesized that these changes would alleviate water and N limitation of soil processes, causing smaller responses to added N and water in the restored stand. We found little support for this hypothesis. Responses of fine root biomass, potential net N mineralization, and the soil microbial N to water and N amendments were mostly unaffected by stand management. Most of the soil processes we examined were limited by N and water, and the increased N and soil water availability caused by forest restoration was insufficient to alleviate these limitations. For example, N addition caused a larger increase in potential net nitrification in the restored stand, and at a given level of soil N availability, N addition had a larger effect on soil microbial N in the restored stand. Possibly, forest restoration increased the availability of some other limiting resource, amplifying responses to added N and water. Tracer N recoveries in roots and in the forest floor were lower in the restored stand. Natural abundance delta15N of labile soil N pools were higher in the restored stand, consistent with a more open N cycle. We conclude that thinning and burning open up the N cycle, at least in the short-term, and that these changes are amplified by enhanced precipitation and N additions. Our results suggest that thinning and burning in ponderosa pine forests will not increase their resistance to changes in soil N dynamics resulting from increased atmospheric N deposition or increased precipitation due to climatic change. Restoration plans should consider the potential impact on long-term forest productivity of greater N losses from a more open N cycle, especially during the period immediately after thinning and burning.
77 FR 21722 - Gore Creek Restoration Project; Intent To Prepare an Environmental Impact Statement
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-11
... complete previously analyzed vegetation management projects, an analysis of additional temporary roads... DEPARTMENT OF AGRICULTURE Forest Service Gore Creek Restoration Project; Intent To Prepare an Environmental Impact Statement AGENCY: Medicine Bow-Routt National Forests, Forest Service, USDA. Project: Gore...
Cretini, Kari F.; Visser, Jenneke M.; Krauss, Ken W.; Steyer, Gregory D.
2011-01-01
This document identifies the main objectives of the Coastwide Reference Monitoring System (CRMS) vegetation analytical team, which are to provide (1) collection and development methods for vegetation response variables and (2) the ways in which these response variables will be used to evaluate restoration project effectiveness. The vegetation parameters (that is, response variables) collected in CRMS and other coastal restoration projects funded under the Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) are identified, and the field collection methods for these parameters are summarized. Existing knowledge on community and plant responses to changes in environmental drivers (for example, flooding and salinity) from published literature and from the CRMS and CWPPRA monitoring dataset are used to develop a suite of indices to assess wetland condition in coastal Louisiana. Two indices, the floristic quality index (FQI) and a productivity index, are described for herbaceous and forested vegetation. The FQI for herbaceous vegetation is tested with a long-term dataset from a CWPPRA marsh creation project. Example graphics for this index are provided and discussed. The other indices, an FQI for forest vegetation (that is, trees and shrubs) and productivity indices for herbaceous and forest vegetation, are proposed but not tested. New response variables may be added or current response variables removed as data become available and as our understanding of restoration success indicators develops. Once indices are fully developed, each will be used by the vegetation analytical team to assess and evaluate CRMS/CWPPRA project and program effectiveness. The vegetation analytical teams plan to summarize their results in the form of written reports and/or graphics and present these items to CRMS Federal and State sponsors, restoration project managers, landowners, and other data users for their input.
Elizabeth A. Eschenbach; Rebecca Teasley; Carlos Diaz; Mary Ann Madej
2007-01-01
Sediment contributions from unpaved forest roads have contributed to the degradation of anadromous fisheries streams in the Pacific Northwest.Efforts to reduce this degradation have included road decommissioning and road upgrading. These expensive activities have usually been implemented on a site specific basis without considering the sediment...
Assessment of timber availability from forest restoration within the Blue Mountains of Oregon.
Robert Rainville; Rachel White; Jamie Barbour
2008-01-01
Changes in forest management have detrimentally affected the economic health of small communities in the Blue Mountain region of Oregon over the past few decades. A build-up of small trees threatens the ecological health of these forests and increases wildland fire hazard. Hoping to boost their economies and also restore these forests, local leaders are interested in...
David Nicholls
2014-01-01
Since 2004, close to 50,000 ac of hazardous fuels have been mechanically treated in east-central Arizona as part of the USDA Forest Service's first 10-year stewardship project on national forest lands. The need for coordinated wood products and biomass utilization in Arizona is likely to increase as broad-scale restoration treatments across Arizona's national...
Barry L. Bollenbacher; Russell T. Graham; Keith M. Reynolds
2014-01-01
National law and policy direct the management of the National Forests, with restoring resilient forest conditions being an overarching theme. Climate is a major driver of disturbances that affect ecosystems, especially those with vegetation that show large departures from historical conditions. Drought, fire, insects, and diseases are common forest stressors whose...
Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest
T. Rambo; M. North
2009-01-01
Restoring Sierra Nevada mixed-conifer forests after a century of fire suppression has become an important management priority as fuel reduction thinning has been mandated by the Healthy Forests Restoration Act. However, in mechanically thinned stands there is little information on the effects of different patterns and densities of live-tree retention on forest canopy...
Jared M. Thaxton; Susan Cordell; Robert J. Cabin; Darren R. Sandquist
2012-01-01
Invasive non-native species can create especially problematic restoration barriers in subtropical and tropical dry forests. Native dry forests in Hawaii presently cover less than 10% of their original area. Many sites that historically supported dry forest are now completely dominated by non-native species, particularly grasses. Within a grass-dominated site in leeward...
Reality check: Shedding new light on the restoration needs of mixed-conifer forests
Marie Oliver; Thomas Spies; Andrew. Merschel
2014-01-01
Until recently, scientific understanding of the history and ecology of the Pacific Northwest's mixed-conifer forests east of the Cascade Range was minimal. As a result, forest managers have had limited ability to restore the health of publicly owned forests that show signs of acute stress caused by insects, disease, grazing, logging, and wildfire. A...
Opportunities for biodiversity gains under the world's largest reforestation programme
Hua, Fangyuan; Wang, Xiaoyang; Zheng, Xinlei; Fisher, Brendan; Wang, Lin; Zhu, Jianguo; Tang, Ya; Yu, Douglas W.; Wilcove, David S.
2016-01-01
Reforestation is a critical means of addressing the environmental and social problems of deforestation. China's Grain-for-Green Program (GFGP) is the world's largest reforestation scheme. Here we provide the first nationwide assessment of the tree composition of GFGP forests and the first combined ecological and economic study aimed at understanding GFGP's biodiversity implications. Across China, GFGP forests are overwhelmingly monocultures or compositionally simple mixed forests. Focusing on birds and bees in Sichuan Province, we find that GFGP reforestation results in modest gains (via mixed forest) and losses (via monocultures) of bird diversity, along with major losses of bee diversity. Moreover, all current modes of GFGP reforestation fall short of restoring biodiversity to levels approximating native forests. However, even within existing modes of reforestation, GFGP can achieve greater biodiversity gains by promoting mixed forests over monocultures; doing so is unlikely to entail major opportunity costs or pose unforeseen economic risks to households. PMID:27598524
Restoring and Enhancing Productivity of Degraded Tephra-Derived Soils
Chuck Bulmer; Jim Archuleta; Mike Curran
2007-01-01
Soil restoration (sometimes termed enhancement) is an important strategy for sustaining the productivity of managed forest landscapes. Tephra-derived soils have unique physical and chemical characteristics that affect their response to disturbance and restoration. A variety of factors reduce forest productivity on degraded soils. Site-specific information on soil...
Restoration of southern ecosystems
John A. Stanturf; Emile S. Gardiner; Kenneth Outcalt; William H. Conner; James M. Guldin
2004-01-01
Restoration of the myriad communities of bottomland hardwood and wetland forests and of the diverse communities of fire-dominated pine forests is the subject of intense interest in the Southern United States. Restoration practice is relatively advanced for bottomland hardwoods and longleaf pine (Pinus palustris Mill.), and less so for swamps and...
Restoring riparian forests in the Missouri Ozarks
Kyle L. Steele; John M. Kabrick; Daniel C. Dey; Randy G. Jensen
2013-01-01
Restoring the function of riparian forest ecosystems has become a primary objective of many land management agencies throughout the central hardwood region, and consequently, much emphasis has been placed on planting native hardwood tree species in former bottomland agricultural fields. However, there is little information providing successful restoration techniques in...
Paul G. Scowcroft; Justin T. Yeh
2013-01-01
Active forest restoration in Hawaiiâs Hakalau Forest National Wildlife Refuge has produced a network of Acacia koa tree corridors and islands in deforested grasslands. Passive restoration by root suckering has potential to expand tree cover and close gaps between planted stands. This study documents rates of encroachment into grassland, clonal...
Wang, Zhuang; Luo, You-Qing; Shi, Juan; Gao, Ruihe; Wang, Guoming
2014-01-01
Abstract With growing concerns over the serious ecological problems in pine forests ( Pinus massoniana , P. thunbergii ) caused by the invasion of Bursaphelenchus xylophilus (the pine wood nematode), a particular challenge is to determine the succession and restoration of damaged pine forests in Asia. We used two-way indicator species analysis and canonical correlation analysis for the hierarchical classification of existing secondary forests that have been restored since the invasion of B. xylophilus 18 years ago. Biserial correlation analysis was used to relate the spatial distribution of species to environmental factors. After 18 years of natural recovery, the original pine forest had evolved into seven types of secondary forest. Seven environmental factors, namely soil depth, humus depth, soil pH, aspect, slope position, bare rock ratio, and distance to the sea, were significantly correlated with species distribution. Furthermore, we proposed specific reform measures and suggestions for the different types of secondary forest formed after the damage and identified the factors driving the various forms of restoration. These results suggest that it is possible to predict the restoration paths of damaged pine forests, which would reduce the negative impact of B. xylophilus invasions. PMID:25527600
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
... opportunity involving a variety of timber harvest, road construction, and forest restoration and enhancement... authorize forest restoration and enhancement activities, timber harvest, and associated road construction on... Forest Service is proposing a multi-year stewardship project involving a variety of timber harvest, road...
Butler, William H; Monroe, Ashley; McCaffrey, Sarah
2015-03-01
The Collaborative Forest Landscape Restoration Program (CFLRP), established in 2009, encourages collaborative landscape scale ecosystem restoration efforts on United States Forest Service (USFS) lands. Although the USFS employees have experience engaging in collaborative planning, CFLRP requires collaboration in implementation, a domain where little prior experience can be drawn on for guidance. The purpose of this research is to identify the ways in which CFLRP's collaborative participants and agency personnel conceptualize how stakeholders can contribute to implementation on landscape scale restoration projects, and to build theory on dynamics of collaborative implementation in environmental management. This research uses a grounded theory methodology to explore collaborative implementation from the perspectives and experiences of participants in landscapes selected as part of the CFLRP in 2010. Interviewees characterized collaborative implementation as encompassing three different types of activities: prioritization, enhancing treatments, and multiparty monitoring. The paper describes examples of activities in each of these categories and then identifies ways in which collaborative implementation in the context of CFLRP (1) is both hindered and enabled by overlapping legal mandates about agency collaboration, (2) creates opportunities for expanded accountability through informal and relational means, and, (3) creates feedback loops at multiple temporal and spatial scales through which monitoring information, prioritization, and implementation actions shape restoration work both within and across projects throughout the landscape creating more robust opportunities for adaptive management.
NASA Astrophysics Data System (ADS)
Butler, William H.; Monroe, Ashley; McCaffrey, Sarah
2015-03-01
The Collaborative Forest Landscape Restoration Program (CFLRP), established in 2009, encourages collaborative landscape scale ecosystem restoration efforts on United States Forest Service (USFS) lands. Although the USFS employees have experience engaging in collaborative planning, CFLRP requires collaboration in implementation, a domain where little prior experience can be drawn on for guidance. The purpose of this research is to identify the ways in which CFLRP's collaborative participants and agency personnel conceptualize how stakeholders can contribute to implementation on landscape scale restoration projects, and to build theory on dynamics of collaborative implementation in environmental management. This research uses a grounded theory methodology to explore collaborative implementation from the perspectives and experiences of participants in landscapes selected as part of the CFLRP in 2010. Interviewees characterized collaborative implementation as encompassing three different types of activities: prioritization, enhancing treatments, and multiparty monitoring. The paper describes examples of activities in each of these categories and then identifies ways in which collaborative implementation in the context of CFLRP (1) is both hindered and enabled by overlapping legal mandates about agency collaboration, (2) creates opportunities for expanded accountability through informal and relational means, and, (3) creates feedback loops at multiple temporal and spatial scales through which monitoring information, prioritization, and implementation actions shape restoration work both within and across projects throughout the landscape creating more robust opportunities for adaptive management.
Ant Foraging As an Indicator of Tropical Dry Forest Restoration.
Hernández-Flores, J; Osorio-Beristain, M; Martínez-Garza, C
2016-08-01
Variation in foraging behavior may indicate differences in food availability and allow assessment of restoration actions. Ants are prominent bioindicators used in assessing ecological responses to disturbance. However, behavioral data have been poorly incorporated as an index. The foraging performance of red harvester ants was quantified in order to evaluate the success of a restoration ecology experiment in the tropical dry forest of Sierra de Huautla, Morelos, in central Mexico. Foraging performance by granivorous, Pogonomyrmex barbatus, ants was diminished after 6 and 8 years of cattle grazing and wood harvest were excluded as part of a restoration experiment in a highly degraded biome. Despite investing more time in foraging, ant colonies in exclusion plots showed lower foraging success and acquired less seed biomass than colonies in control plots. In line with the predictions of optimal foraging theory, in restored plots where ant foraging performance was poor, ants harvested a higher diversity of seeds. Reduced foraging success and increased harvest of non-preferred foods in exclusion plots were likely due to the growth of herbaceous vegetation, which impedes travel by foragers. Moreover, by 8 years of exclusion, 37% of nests in exclusion plots had disappeared compared to 0% of nests in control plots. Ants' foraging success and behavior were sensitive to changes in habitat quality due to the plant successional process triggered by a restoration intervention. This study spotlights on the utility of animal foraging behavior in the evaluation of habitat restoration programs. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Enabling large-scale forest restoration in Minas Gerais state, Brazil
NASA Astrophysics Data System (ADS)
Nunes, Felipe S. M.; Soares-Filho, Britaldo S.; Rajão, Raoni; Merry, Frank
2017-04-01
Large-scale forest restoration is a cornerstone of Brazil’s new Forest Code and a key element in its National Determined Contribution (NDC) to emissions reduction. But the path to this target remains unclear due to a lack of information on its economics and implementation challenges. Here, we begin to fill this gap by developing a spatially-explicit model for Minas Gerais state that estimates the costs and benefits of native vegetation regeneration under different restoration approaches. Our results show that 36% (0.7 million ha) of the Forest Code debt in Minas Gerais can be restored using only passive restoration, at a cost of US 175 ± 47 million. Adding low-cost assisted natural regeneration would increase that number to 75% (1.5 million ha) at a cost of US 776 ± 137 million over a 20 yr period. This would result in a potential sequestration of 284 MtCO2e. However, including the intensive planting methods needed to restore the remaining 25% of highly degraded areas—to fully solve the Forest Code debt and result in a potential sequestration of 345 MtCO2e—would more than double the costs to US 1.7 ± 0.3 billion. Our results emphasize the need to implement regional policies that take advantage of the natural regeneration potential as well as prioritize the restoration of areas key to ecosystem services.
Theresa B. Jain; Russell T. Graham; Jonathan Sandquist; Matthew Butler; Karen Brockus; Daniel Frigard; David Cobb; Han Sup-Han; Jeff Halbrook; Robert Denner; Jeffrey S. Evans
2008-01-01
Restoration and fuel treatments in the moist forests of the northern Rocky Mountains are complex and far different from those applicable to the dry ponderosa pine forests. In the moist forests, clearcuts are the favored method to use for growing early-seral western white pine and western larch. Nevertheless, clearcuts and their associated roads often affect wildlife...
Oliver H. Knowles; John A. Parrotta
1995-01-01
One hundred and sixty taxa of upland moist forest trees were studied with reference to their suitability for forest restoration on bauxite mined Iands in western Para State, Brazil. Over a 14-year period, field observations in native primary forests, nursery studies, and evaluations of over 600 ha of mixed-species reforestation areas were used to characterize fruiting...
NASA Astrophysics Data System (ADS)
O'Donnell, F. C.; Flatley, W. T.; Masek Lopez, S.; Fulé, P. Z.; Springer, A. E.
2017-12-01
Climate change and fire suppression are interacting to reduce forest health, drive high-intensity wildfires, and potentially reduce water quantity and quality in high-elevation forests of the southwestern US. Forest restoration including thinning and prescribed fire, is a management approach that reduces fire risk. It may also improve forest health by increasing soil moisture through the combined effects of increased snow pack and reduced evapotranspiration (ET), though the relative importance of these mechanisms is unknown. It is also unclear how small-scale changes in the hydrologic cycle will scale-up to influence watershed dynamics. We conducted field and modeling studies to investigate these issues. We measured snow depth, snow water equivalent (SWE), and soil moisture at co-located points in paired restoration-control plots near Flagstaff, AZ. Soil moisture was consistently higher in restored plots across all seasons. Snow depth and SWE were significantly higher in restored plots immediately after large snow events with no difference one week after snowfall, suggesting that restoration leads to both increased accumulation and sublimation. At the point scale, there was a small (ρ=0.28) but significant correlation between fall-to-spring soil moisture increase and peak SWE during the winter. Consistent with previous studies, soil drying due to ET was more rapid in recently restored sites than controls, but there was no difference 10 years after restoration. In addition to the small role played by snow and ET, we also observed more rapid soil moisture loss in the 1-2 days following rain or rapid snowmelt in control than in restoration plots. We hypothesize that this is due to a loss of macropores when woody plants are replaced by herbaceous vegetation and warrants further study. To investigate watershed-scale dynamics, we combined spatially-explicit vegetation and fire modeling with statistical water and sediment yield models for a large forested landscape on the Kaibab Plateau, AZ. Our results predicted that climate-induced vegetation changes will result in annual runoff declines of 2%-10% in the next century, but that restoration reversed these declines. We also predict that restoration treatments will protect water quality by reducing the incidence of high severity fire and the associated erosion.
[Distribution characteristics of soil organic carbon of burned area under different restorations.
Li, Hong Yun; Xin, Ying; Zhao, Yu Sen
2016-09-01
The distribution characteristics of soil organic carbon (SOC), soil dissolved organic carbon (DOC) and soil microbial biomass carbon (MBC) under different restorations were studied in Larix gmelinii plantation, Pinus sylvestris var. mongolica plantation, artificial promotion poplar-birch forest and the natural secondary poplar-birch forest restored from burned area after the severe fire of Greater Xing' an Mountains in 1987. The results showed that the variations in SOC, DOC and MBC ranged from 9.63 to 79.72 g·kg -1 , from 33.21 to 186.30 mg·kg -1 and from 200.85 to 1755.63 mg·kg -1 , respectively, which decreased with soil depth increasing. There was significant diffe-rence in SOC, DOC and MBC among different restorations, with the maximum carbon contents for artificial promotion poplar-birch forest, followed by L. gmelinii plantation, natural secondary poplar-birch forest and P. sylvestris var. mongolica plantation successively. The soil microbial quotient va-ried from 1.1% under P. sylvestris var. mongolica plantation to 2.3% under artificial promotion poplar-birch forest, and its vertical distributions were different in the four restoration forests. Correlation analysis indicated that MBC had a significant positive correlation with SOC and DOC, respectively. The activity of soil organic carbon in artificial promotion poplar-birch forest was higher than in other forest stands, suggesting a stronger capacity of the soil carbon cycle through natural regeneration with artificial promotion on burned area in Greater Xing'an Mountains.
Effects of native forest restoration on soil hydraulic properties, Auwahi, Maui, Hawaiian Islands
Perkins, Kimberlie S.; Nimmo, John R.; Medeiros, Arthur C.
2012-01-01
Over historic time Hawai'i's dryland forests have been largely replaced by grasslands for grazing livestock. On-going efforts have been undertaken to restore dryland forests to bring back native species and reduce erosion. The reestablishment of native ecosystems on land severely degraded by long-term alternative use requires reversal of the impacts of erosion, organic-matter loss, and soil structural damage on soil hydraulic properties. This issue is perhaps especially critical in dryland forests where the soil must facilitate native plants' optimal use of limited water. These reforestation efforts depend on restoring soil ecological function, including soil hydraulic properties. We hypothesized that reforestation can measurably change soil hydraulic properties over restoration timescales. At a site on the island of Maui (Hawai'i, USA), we measured infiltration capacity, hydrophobicity, and abundance of preferential flow channels in a deforested grassland and in an adjacent area where active reforestation has been going on for fourteen years. Compared to the nearby deforested rangeland, mean field-saturated hydraulic conductivity in the newly restored forest measured by 55 infiltrometer tests was greater by a factor of 2.0. Hydrophobicity on an 8-point scale increased from average category 6.0 to 6.9. A 4-point empirical categorization of preferentiality in subsurface wetting patterns increased from an average 1.3 in grasslands to 2.6 in the restored forest. All of these changes act to distribute infiltrated water faster and deeper, as appropriate for native plant needs. This study indicates that vegetation restoration can lead to ecohydrologically important changes in soil hydraulic properties over decadal time scales.
Barrientos, Zaidett
2012-09-01
Little is known about how restoration strategies affect aspects like leaf litter's quantity, depth and humidity. I analyzed leaf litter's quantity, depth and humidity yearly patterns in a primary tropical lower montane wet forest and two restored areas: a 15 year old secondary forest (unassisted restoration) and a 40 year old Cupressus lusitanica plantation (natural understory). The three habitats are located in the Rio Macho Forest Reserve, Costa Rica. Twenty litter samples were taken every three months (April 2009-April 2010) in each habitat; humidity was measured in 439g samples (average), depth and quantity were measured in five points inside 50x50cm plots. None of the restoration strategies reproduced the primary forest leaf litter humidity, depth and quantity yearly patterns. Primary forest leaf litter humidity was higher and more stable (mean=73.2), followed by secondary forest (mean=63.3) and cypress plantation (mean=52.9) (Kruskall-Wallis=77.93, n=232, p=0.00). In the primary (Kruskal-Wallis=31.63, n=78, p<0.001) and secondary (Kruskal-Wallis=11.79, n=75, p=0.008) forest litter accumulation was higher during April due to strong winds. In the primary forest (Kruskal-wallis=21.83, n=78, p<0.001) and the cypress plantation (Kruskal-wallis=39.99, n=80, p<0.001) leaf litter depth was shallow in October because heavy rains compacted it. Depth patterns were different from quantity patterns and described the leaf litter's structure in different ecosystems though the year. September 01.
A Guide to Bottomland Hardwood Restoration
Allen, J.A.; Keeland, B.D.; Stanturf, J.A.; Clewell, A.F.; Kennedy, H.E.
2001-01-01
During the last century, a large amount of the original bottomland hardwood forest area in the United States has been lost, with losses greatest in the Lower Mississippi Alluvial Valley and East Texas. With a holistic approach in mind, this manual describes methods to restore bottomland hardwoods in the lower Midwest, including the Lower Mississippi Alluvial Valley and the southeastern United States. Bottomland hardwoods in this guide include not only the hardwood species that predominate in most forested floodplains of the area but also the softwood species such as baldcypress that often co-occur. General restoration planning considerations are discussed as well as more specific elements of bottomland hardwood restoration such as species selection, site preparation, direct seeding, planting of seedlings, and alternative options for revegetation. We recognize that most projects will probably fall more within the realm of reforestation or afforestation rather than a restoration, as some site preparation and the planting of seeds or trees may be the only actions taken. Practical information needed to restore an area is provided in the guide, and it is left up to the restorationist to decide how complete the restoration will be. Postplanting and monitoring considerations are also addressed. Restoration and management of existing forests are included because of the extensive areas of degraded natural forests in need of rehabilitation.
Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services
Birch, Jennifer C.; Newton, Adrian C.; Aquino, Claudia Alvarez; Cantarello, Elena; Echeverría, Cristian; Kitzberger, Thomas; Schiappacasse, Ignacio; Garavito, Natalia Tejedor
2010-01-01
Although ecological restoration is widely used to combat environmental degradation, very few studies have evaluated the cost-effectiveness of this approach. We examine the potential impact of forest restoration on the value of multiple ecosystem services across four dryland areas in Latin America, by estimating the net value of ecosystem service benefits under different reforestation scenarios. The values of selected ecosystem services were mapped under each scenario, supported by the use of a spatially explicit model of forest dynamics. We explored the economic potential of a change in land use from livestock grazing to restored native forest using different discount rates and performed a cost–benefit analysis of three restoration scenarios. Results show that passive restoration is cost-effective for all study areas on the basis of the services analyzed, whereas the benefits from active restoration are generally outweighed by the relatively high costs involved. These findings were found to be relatively insensitive to discount rate but were sensitive to the market value of carbon. Substantial variation in values was recorded between study areas, demonstrating that ecosystem service values are strongly context specific. However, spatial analysis enabled localized areas of net benefits to be identified, indicating the value of this approach for identifying the relative costs and benefits of restoration interventions across a landscape. PMID:21106761
Birch, Jennifer C; Newton, Adrian C; Aquino, Claudia Alvarez; Cantarello, Elena; Echeverría, Cristian; Kitzberger, Thomas; Schiappacasse, Ignacio; Garavito, Natalia Tejedor
2010-12-14
Although ecological restoration is widely used to combat environmental degradation, very few studies have evaluated the cost-effectiveness of this approach. We examine the potential impact of forest restoration on the value of multiple ecosystem services across four dryland areas in Latin America, by estimating the net value of ecosystem service benefits under different reforestation scenarios. The values of selected ecosystem services were mapped under each scenario, supported by the use of a spatially explicit model of forest dynamics. We explored the economic potential of a change in land use from livestock grazing to restored native forest using different discount rates and performed a cost-benefit analysis of three restoration scenarios. Results show that passive restoration is cost-effective for all study areas on the basis of the services analyzed, whereas the benefits from active restoration are generally outweighed by the relatively high costs involved. These findings were found to be relatively insensitive to discount rate but were sensitive to the market value of carbon. Substantial variation in values was recorded between study areas, demonstrating that ecosystem service values are strongly context specific. However, spatial analysis enabled localized areas of net benefits to be identified, indicating the value of this approach for identifying the relative costs and benefits of restoration interventions across a landscape.
Perkins, Kim S.; Nimmo, John R.; Medeiros, Arthur C.; Szutu, Daphne J.; von Allmen, Erica
2014-01-01
Understanding the role of soils in regulating water flow through the unsaturated zone is critical in assessing the influence of vegetation on soil moisture dynamics and aquifer recharge. Because of fire, introduced ungulates and landscape-level invasion of non-native grasses, less than 10% of original dry forest (~730 mm precipitation annually) still exists on leeward Haleakalā, Maui, Hawaiian Islands. Native dry forest restoration at Auwahi has demonstrated the potential for dramatic revegetation, allowing a unique experimental comparison of hydrologic function between tracts of restored forest and adjacent grasslands. We hypothesized that even relatively recent forest restoration can assist in the recovery of impaired hydrologic function, potentially increasing aquifer recharge. To compare restored forest and grassland sites, we experimentally irrigated and measured soil moisture and temperature with subsurface instrumentation at four locations within the reforested area and four within the grassland, each with a 2·5 × 2·5-m plot. Compared with grassland areas, water in reforested sites moved to depth faster with larger magnitude changes in water content. The median first arrival velocity of water was greater by a factor of about 13 in the reforested sites compared with the grassland sites. This rapid transport of water to depths of 1 m or greater suggests increased potential aquifer recharge. Improved characterization of how vegetation and soils influence recharge is crucial for understanding the long-term impacts of forest restoration on aquifer recharge and water resources, especially in moisture-limited regions.
Ianni, Elena; Geneletti, Davide
2010-11-01
This paper proposes a method to select forest restoration priority areas consistently with the key principles of the Ecosystem Approach (EA) and the Forest Landscape Restoration (FLR) framework. The methodology is based on the principles shared by the two approaches: acting at ecosystem scale, involving stakeholders, and evaluating alternatives. It proposes the involvement of social actors which have a stake in forest management through multicriteria analysis sessions aimed at identifying the most suitable forest restoration intervention. The method was applied to a study area in the native forests of Northern Argentina (the Yungas). Stakeholders were asked to identify alternative restoration actions, i.e. potential areas implementing FLR. Ten alternative fincas-estates derived from the Spanish land tenure system-differing in relation to ownership, management, land use, land tenure, and size were evaluated. Twenty criteria were selected and classified into four groups: biophysical, social, economic and political. Finca Ledesma was the closest to the economic, social, environmental and political goals, according to the values and views of the actors involved in the decision. This study represented the first attempt to apply EA principles to forest restoration at landscape scale in the Yungas region. The benefits obtained by the application of the method were twofold: on one hand, researchers and local actors were forced to conceive the Yungas as a complex net of rights rather than as a sum of personal interests. On the other hand, the participatory multicriteria approach provided a structured process for collective decision-making in an area where it has never been implemented.
NASA Astrophysics Data System (ADS)
Ianni, Elena; Geneletti, Davide
2010-11-01
This paper proposes a method to select forest restoration priority areas consistently with the key principles of the Ecosystem Approach (EA) and the Forest Landscape Restoration (FLR) framework. The methodology is based on the principles shared by the two approaches: acting at ecosystem scale, involving stakeholders, and evaluating alternatives. It proposes the involvement of social actors which have a stake in forest management through multicriteria analysis sessions aimed at identifying the most suitable forest restoration intervention. The method was applied to a study area in the native forests of Northern Argentina (the Yungas). Stakeholders were asked to identify alternative restoration actions, i.e. potential areas implementing FLR. Ten alternative fincas—estates derived from the Spanish land tenure system—differing in relation to ownership, management, land use, land tenure, and size were evaluated. Twenty criteria were selected and classified into four groups: biophysical, social, economic and political. Finca Ledesma was the closest to the economic, social, environmental and political goals, according to the values and views of the actors involved in the decision. This study represented the first attempt to apply EA principles to forest restoration at landscape scale in the Yungas region. The benefits obtained by the application of the method were twofold: on one hand, researchers and local actors were forced to conceive the Yungas as a complex net of rights rather than as a sum of personal interests. On the other hand, the participatory multicriteria approach provided a structured process for collective decision-making in an area where it has never been implemented.
A Role for Agroforestry in Forest Restoration in the Lower Mississippi Alluvial Valley
Michael G. Dosskey; Gary Bentrup; Michele Schoeneberger
2012-01-01
Agroforestry options are explored for restoring important functions and values of bottomland hardwood (BLH) forests in the lower Mississippi River Alluvial Valley (LMAV). Agroforestry practices can augment the size and quality of BLH habitat, provide corridors between BLH areas, and enable restoration of natural hydrologic patterns and water quality. Agroforestry...
Mechanical site preparation for forest restoration
Magnus Lof; Daniel C. Dey; Rafael M. Navarro; Douglass F. Jacobs
2012-01-01
Forest restoration projects have become increasingly common around the world and planting trees is almost always a key component. Low seedling survival and growth may result in restoration failures and various mechanical site preparation techniques for treatment of soils and vegetation are important tools used to help counteract this. In this article, we synthesize the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-03
...-Challis National Forest, ID; Upper North Fork HFRA Ecosystem Restoration Project Environmental Impact... improve the health of the ecosystem and reach the desired future condition. DATES: Comments concerning the... Ecosystem Restoration Project EIS, P.O. Box 180, 11 Casey Rd., North Fork, ID 83466. Comments may also be...
Alternative ponderosa pine restoration treatments in the western United States
James McIver; Phillip Weatherspoon; Carl Edminster
2001-01-01
Compared to presettlement times, many ponderosa pine forests of the United States are now more dense and have greater quantities of fuels. Widespread treatments are needed in these forests to restore ecological integrity and to reduce the risk of uncharacteristically severe fires. Among possible restorative treatments, however, the appropriate balance among cuttings,...
Restoration ecology: A new forest management paradigm, or another merit badge for foresters?
Michael R. Wagner; William M. Block; Brian W. Geils; Karl F Wenger
2000-01-01
Focusing on the Southwest but raising questions that are more broadly applicable, we compare ecological restoration with conventional management regimes -- multiple-use management, ecosystem management, and managing for specific resourse objectives. That restoration assumes a holistic prespective and active intervention does not distinguish it from other approaches to...
Long-term outcomes of forest restoration in an urban park
Brady L. Simmons; Richard A. Hallett; Nancy Falxa Sonti; D. S. N. Auyeung; Jacqueline W. T. Lu
2016-01-01
Creating, restoring, and sustaining forests in urban areas are complicated by habitat fragmentation, invasive species, and degraded soils. Although there is some research on the outcomes of urban reforestation plantings during the first 5 years, there is little research on longer term outcomes. Here, we compare the successional trajectories of restored and unrestored...
Habitat use by giant panda in relation to man-made forest in Wanglang Nature Reserve of China.
Kang, Dongwei; Wang, Xiaorong; Yang, Hongwei; Duan, Lijuan; Li, Junqing
2014-12-01
To evaluate the effectiveness of human restoration in species conservation, in this study, we undertook a field survey of giant panda (Ailuropoda melanoleuca) habitat and man-made forest habitat in Wanglang Nature Reserve of China. Our results revealed that giant panda did not use the man-made forest in this area so far, and that there were significant differences between the giant panda habitat and the man-made forest habitat. Compared with giant panda habitat, the man-made forest habitat was characterized by lower shrub coverage, thinner trees and lower bamboo density. To improve the effectiveness of human restoration, the habitat requirement of giant panda should be fully consider in the whole process of habitat restoration.
Durigan, Giselda; Guerin, Natalia; da Costa, José Nicola Martorano Neves
2013-01-01
Over the past two decades, the headwaters of the Xingu Basin in the Amazon have been subjected to one of the highest deforestation rates in Brazil, with negative effects on both terrestrial and aquatic systems. The environmental consequences of forest land conversion have concerned the indigenous people living downstream, and this was the first motivation for the Y Ikatu Xingu campaign—‘save the good water of the Xingu’. Among the objectives of the initiative was to restore riparian forests on private land across the basin. For a region where the rivers, rainstorms, forest remnants, distances and farms are huge, the challenges were equally large: crossing the biotic and abiotic thresholds of degradation, as well as addressing the lack of technology, know-how, seeds, forest nurseries, trained personnel and roads, and the lack of motivation for restoration. After 6 years, despite the remarkable advances in terms of technical innovation coupled with a broad and effective social involvement, the restored areas represent only a small portion of those aimed for. The still high costs of restoration, the uncertainties of legislation and also the global economy have been strong forces constraining the expansion of restored forests. Additional efforts and strategies are necessary to overcome these barriers. PMID:23610171
To What Extent Local Forest Soil Pollen Can Assist Restoration in Subtropical China?
Sun, Zhongyu; Wang, Jun; Ren, Hai; Guo, Qinfeng; Shu, Junwu; Liu, Nan
2016-01-01
Long-term ecological data play a vital role in ecological conservation and restoration, however, using information from local forest soil pollen data to assist restoration remains a challenge. This study analyzed two data sets, including 1) surface soil pollen (0–5 cm) and current vegetation data from four near-natural communities and four plantations, and 2) fossil pollen from soil profiles (0–80 cm) from a regional climax community and a degraded land. The pollen representativeness and similarity indexes were calculated. The results showed a low similarity between soil pollen and current vegetation (about 20%) thus forest soil pollen data should be used with caution when defining reference ecosystems. Pollen from Gironniera and Rutaceae which were abundant in broadleaved forest, were also detected in the 40–80 cm layer of a soil profile from the degraded land, which indicates its restoration possibility. Our study considered that the early restoration stage of the study area may benefit from using plant taxa of Pinus, Poaceae, Lonicera, Casuarina, Trema and Quercus. As Pinus, Castanopsis, Gironniera, Rutaceae, Helicia, Randia, Poaceae, Dicranopteris and Pteris always existed during succession, for regional forest restoration under global climate change, the roles of such “stable species” should be considered. PMID:27857187
Brazil’s Market for Trading Forest Certificates
Soares-Filho, Britaldo; Rajão, Raoni; Merry, Frank; Rodrigues, Hermann; Davis, Juliana; Lima, Letícia; Macedo, Marcia; Coe, Michael; Carneiro, Arnaldo; Santiago, Leonardo
2016-01-01
Brazil faces an enormous challenge to implement its revised Forest Code. Despite big losses for the environment, the law introduces new mechanisms to facilitate compliance and foster payment for ecosystem services (PES). The most promising of these is a market for trading forest certificates (CRAs) that allows landowners to offset their restoration obligations by paying for maintaining native vegetation elsewhere. We analyzed the economic potential for the emerging CRA market in Brazil and its implications for PES programs. Results indicate a potential market for trading 4.2 Mha of CRAs with a gross value of US$ 9.2±2.4 billion, with main regional markets forming in the states of Mato Grosso and São Paulo. This would be the largest market for trading forests in the world. Overall, the potential supply of CRAs in Brazilian states exceeds demand, creating an opportunity for additional PES programs to use the CRA market. This expanded market could provide not only monetary incentives to conserve native vegetation, but also environmental co-benefits by fostering PES programs focused on biodiversity, water conservation, and climate regulation. Effective implementation of the Forest Code will be vital to the success of this market and this hurdle brings uncertainty into the market. Long-term commitment, both within Brazil and abroad, will be essential to overcome the many challenges ahead. PMID:27050309
Brazil's Market for Trading Forest Certificates.
Soares-Filho, Britaldo; Rajão, Raoni; Merry, Frank; Rodrigues, Hermann; Davis, Juliana; Lima, Letícia; Macedo, Marcia; Coe, Michael; Carneiro, Arnaldo; Santiago, Leonardo
2016-01-01
Brazil faces an enormous challenge to implement its revised Forest Code. Despite big losses for the environment, the law introduces new mechanisms to facilitate compliance and foster payment for ecosystem services (PES). The most promising of these is a market for trading forest certificates (CRAs) that allows landowners to offset their restoration obligations by paying for maintaining native vegetation elsewhere. We analyzed the economic potential for the emerging CRA market in Brazil and its implications for PES programs. Results indicate a potential market for trading 4.2 Mha of CRAs with a gross value of US$ 9.2±2.4 billion, with main regional markets forming in the states of Mato Grosso and São Paulo. This would be the largest market for trading forests in the world. Overall, the potential supply of CRAs in Brazilian states exceeds demand, creating an opportunity for additional PES programs to use the CRA market. This expanded market could provide not only monetary incentives to conserve native vegetation, but also environmental co-benefits by fostering PES programs focused on biodiversity, water conservation, and climate regulation. Effective implementation of the Forest Code will be vital to the success of this market and this hurdle brings uncertainty into the market. Long-term commitment, both within Brazil and abroad, will be essential to overcome the many challenges ahead.
Fountain, Emily D; Malumbres-Olarte, Jagoba; Cruickshank, Robert H; Paterson, Adrian M
2015-01-01
Human alteration of islands has made restoration a key part of conservation management. As islands are restored to their original state, species interactions change and some populations may be impacted. In this study we examine the coxella weevil, (Hadramphus spinipennis Broun) and its host-plant Dieffenbach's speargrass (Aciphylla dieffenbachii Kirk), which are both open habitat specialists with populations on Mangere and Rangatira Islands, Chathams, New Zealand. Both of these islands were heavily impacted by the introduction of livestock; the majority of the forest was removed and the weevil populations declined due to the palatability of their host-plant to livestock. An intensive reforestation program was established on both islands over 50 years ago but the potential impacts of this restoration project on the already endangered H. spinipennis are poorly understood. We combined genetic and population data from 1995 and 2010-2011 to determine the health and status of these species on both islands. There was some genetic variation between the weevil populations on each island but little variation within the species as a whole. The interactions between the weevil and its host-plant populations appear to remain intact on Mangere, despite forest regeneration. A decline in weevils and host-plant on Rangatira does not appear to be caused by canopy regrowth. We recommend that (1) these populations be monitored for ongoing effects of long-term reforestation, (2) the cause of the decline on Rangatira be investigated, and (3) the two populations of weevils be conserved as separate evolutionarily significant units.
78 FR 14072 - Trestle Forest Health Project, Eldorado National Forest, El Dorado County, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-04
... compaction, restore infiltration, and discourage unauthorized motor vehicle use. Approximately 70 existing..., restore infiltration, and discourage unauthorized motor vehicle use. Remove approximately 26 miles of...
[Spatial pattern of sub-alpine forest restoration in west Sichuan].
Zhang, Yuandong; Liu, Shirong; Zhao, Changming
2005-09-01
West Sichuan sub-alpine is an extension of Qinghai-Tibet Plateau to southeast China, which is covered mainly with dark coniferous forest. As a result of long-term large scale over-logging, the forests have been greatly reduced and degraded. Nowadays, the forest restoration and regeneration in the region are being highlighted. Selecting Miyaluo as a case study area and employing the methods of plot investigation, ETM image interpretation, and overlaying vegetation map with digital topography, this paper analyzed the relations between the appearance and origin of four forest vegetation types, along with their topography differentiation and spatial patterns after a large scale logging and regeneration. The results showed that the appearance of forest vegetations was significantly correlated with their origin. Old coniferous forests (OC) were primitive ones, middle-aged and young coniferous forests (MYC) were from artificial regeneration, deciduous broadleaf forests (DB) were natural secondary ones, while mixed coniferous and deciduous forests (MCD) were partly from natural secondary ones and others from the conjunct action of artificial and natural regeneration. The main cut area in Miyaluo located in the sites with elevation from 2 800 to 3 600 m, where forest restoration appeared difference among different aspects. MYC was mainly distributed on sunny and half-sunny slope, DB and MCD were distributed on shady and half-shady slope, and OC were reserved on the sites with elevation more than 3 600 m. In the process of forest restoration, the four forest vegetation types were in mosaic pattern, and the landscape was seriously fragmentized.
Michael T. Stoddard; Christopher M. McGlone; Peter Z. Fule
2008-01-01
Disturbances generated by forest restoration treatments have the potential for enhancing the establishment of nonnative species thereby impeding long-term native plant recovery. In a ponderosa pine forest next to the Fort Valley Experimental Forest, Arizona, we examined the establishment of nonnative species after three alternative treatments with different intensities...
Effects of ecological restoration alternative treatments on nonnative plant species establishment
Michael T. Stoddard; Christopher M. McGlone; Peter Z. Fule
2008-01-01
Disturbances generated by forest restoration treatments have the potential for enhancing the establishment of nonnative species thereby impeding long-term native plant recovery. In a ponderosa pine forest next to the Fort Valley Experimental Forest, Arizona, we examined the establishment of nonnative species after three alternative treatments with different intensities...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-06
... authorities of the Healthy Forest Restoration Act (HFRA) of 2004. After the initial request for public comment... and treatment of fuels within select Riparian Habitat Conservation Areas (RHCAs). RHCA treatment is... objectives were identified based on the intent of the 2004 Healthy Forest Restoration Act, the Umatilla...
Financial results of ponderosa pine forest restoration in southwestern Colorado
Dennis L. Lynch
2001-01-01
From 1996 to 1998, the Ponderosa Pine Partnership conducted an experimental forest restoration project on 493 acres of small diameter ponderosa pine in the San Juan National Forest, Montezuma County, Colorado. The ecological basis and the financial analysis for this project are discussed. Specific financial results of the project including products sold, revenues...
NASA Astrophysics Data System (ADS)
Landhäusser, Simon
2017-04-01
Forest loss and degradation is occurring worldwide, but at the same time efforts in forest restoration are ever increasing. While approaches to restoration often follow specific stakeholder objectives, regional climates and the degree of site degradation also play an important role in the prioritization of restoration efforts. Often the restoration of degraded lands can satisfy only few measurable objectives; however, to design and restore resistant and resilient ecosystems that can adapt to changing conditions, there is a need for new and adaptive management approaches. Mining and other resource extraction industries are affecting more and more forested areas worldwide. A priority in the reclamation and certification of forest lands disturbed by industrial activity is their expeditious redevelopment to functioning forests. To rehabilitate these heavily disturbed areas back to forest ecosystems, planting of trees remains one of the most effective strategies for the redevelopment of a continuous tree canopy on a site. It is well understood that access to good quality seedling stock is essential to achieve establishment success and early growth of seedlings. However, most reclamation areas have challenging initial site conditions and these conditions are often not a single factor but a combination of factors that can be additive or synergistic. Therefore successful forest restoration on degraded lands needs to consider multiple objectives and approaches to minimize trade-offs in achieving these objectives. To meet these demands, new methods for the production and evaluation of seedling stock types are needed to ensure that that seedlings are fit to grow on a wide range of site conditions or are particularly designed to grow in very specific conditions. Generally, defining seedling quality is difficult as it is species specific and results have been mixed; likely influenced by site conditions, further reiterating the need to carefully evaluate sites allowing appropriate seedling qualities to be identified. In this presentation, I will show results from a range of studies that explored the role of seedling characteristics in response to challenging site conditions and explore the need for a balance between the recognition and improvement of limiting site conditions and the availability of quality seedling stock in forest restoration.
Chemical and Physical Soil Restoration in Mining Areas
NASA Astrophysics Data System (ADS)
Teresinha Gonçalves Bizuti, Denise; de Marchi Soares, Thaís; Roberti Alves de Almeida, Danilo; Sartorio, Simone Daniela; Casagrande, José Carlos; Santin Brancalion, Pedro Henrique
2017-04-01
The current trend of ecological restoration is to address the recovery of degraded areas by ecosystemic way, overcoming the rehabilitation process. In this sense, the topsoil and other complementary techniques in mining areas plays an important role in soil recovery. The aim of this study was to contextualize the soil improvement, with the use of topsoil through chemical and physical attributes, relative to secondary succession areas in restoration, as well as in reference ecosystems (natural forest). Eighteen areas were evaluated, six in forest restoration process, six native forests and six just mining areas. The areas were sampled in the depths of 0-5, 5-10, 10-20, 20-40 and 40-60 cm. Chemical indicators measured were parameters of soil fertility and texture, macroporosity, microporosity, density and total porosity as physical parameters. The forest restoration using topsoil was effective in triggering a process of soil recovery, promoting, in seven years, chemical and physical characteristics similar to those of the reference ecosystem.
Jayne Fingerman Johnson; David N. Bengston; David P. Fan; Kristen C. Nelson
2006-01-01
The Healthy Forests Initiative (HFI) and Healthy Forests Restoration Act (HFRA) represent major policy and legislative responses to the fuels management problem in the United States. This study examined the nature and evolution of the public discussion and debate about these policy responses. Computer content analysis was used to analyze favorable and unfavorable...
Paul G. Scowcroft; Jack Jeffrey
1999-01-01
Beginning in the 1850s, logging, land clearing, and burning were used to convert high elevation Hawaiian forests to cattle pasture. Recently, declining pro®ts from ranching, the need to expand habitat for endangered species, and diminishing supplies of native saw-timber have prompted interest in restoring native forests. The Forest Service, in cooperation with the...
A landscape perspective for forest restoration
Sisk, Thomas D.; Savage, Melissa; Falk, Donald A.; Allen, Craig D.; Muldavin, Esteban; McCarthy, Patrick
2005-01-01
Forest managers throughout the West are anxiously seeking solutions to the problem of “large crown fires” - destructive blazes atypical of many forest types in the region. These wildfires have created a crisis mentality in management that has focused on rigid prescriptions for fuels reduction, rather than the restoration of diverse, resilient, and self-regulating forest ecosystems. Now, as we shape our responses to the threat of larger and more frequent crown fires, we are in danger of missing the forest for the trees.
NASA Astrophysics Data System (ADS)
Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming
2017-05-01
Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha-1, were higher than 45.90 Mg C ha-1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.
Gomes Viana, João Paulo; Bohrer Monteiro Siqueira, Marcos Vinícius; Araujo, Fabiano Lucas; Grando, Carolina; Sanae Sujii, Patricia; Silvestre, Ellida de Aguiar; Novello, Mariana; Pinheiro, José Baldin; Cavallari, Marcelo Mattos; Brancalion, Pedro H S; Rodrigues, Ricardo Ribeiro; Pereira de Souza, Anete; Catchen, Julian; Zucchi, Maria I
2018-01-01
The primary focus of tropical forest restoration has been the recovery of forest structure and tree taxonomic diversity, with limited attention given to genetic conservation. Populations reintroduced through restoration plantings may have low genetic diversity and be genetically structured due to founder effects and genetic drift, which limit the potential of restoration to recover ecologically resilient plant communities. Here, we studied the genetic diversity, genetic structure and differentiation using single nucleotide polymorphisms (SNP) markers between restored and natural populations of the native tree Casearia sylvestris in the Atlantic Forest of Brazil. We sampled leaves from approximately 24 adult individuals in each of the study sites: two restoration plantations (27 and 62 years old) and two forest remnants. We prepared and sequenced a genotyping-by-sequencing library, SNP markers were identified de novo using Stacks pipeline, and genetic parameters and structure analyses were then estimated for populations. The sequencing step was successful for 80 sampled individuals. Neutral genetic diversity was similar among restored and natural populations (AR = 1.72 ± 0.005; HO = 0.135 ± 0.005; HE = 0.167 ± 0.005; FIS = 0.16 ± 0.022), which were not genetically structured by population subdivision. In spite of this absence of genetic structure by population we found genetic structure within populations but even so there is not spatial genetic structure in any population studied. Less than 1% of the neutral alleles were exclusive to a population. In general, contrary to our expectations, restoration plantations were then effective for conserving tree genetic diversity in human-modified tropical landscapes. Furthermore, we demonstrate that genotyping-by-sequencing can be a useful tool in restoration genetics.
Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming
2017-05-01
Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha -1 , were higher than 45.90 Mg C ha -1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.
NASA Astrophysics Data System (ADS)
Sankey, T.; Springer, A. E.; O'Donnell, F. C.; Donald, J.; McVay, J.; Masek Lopez, S.
2014-12-01
The U.S. Forest Service plans to conduct forest restoration treatments through the Four Forest Restoration Initiative (4FRI) on hundreds of thousands of acres of ponderosa pine forest in northern Arizona over the next 20 years with the goals of reducing wildfire hazard and improving forest health. The 4FRI's key objective is to thin and burn the forests to create within-stand openings that "promote snowpack accumulation and retention which benefit groundwater recharge and watershed processes at the fine (1 to 10 acres) scale". However, little is known about how these openings created by restoration treatments affect snow water equivalence (SWE) and soil moisture, which are key parts of the water balance that greatly influence water availability for healthy trees and for downstream water users in the Sonoran Desert. We have examined forest canopy cover by calculating a Normalized Difference Vegetation Index (NDVI), a key indicator of green vegetation cover, using Landsat satellite data. We have then compared NDVI between treatments at our study sites in northern Arizona and have found statistically significant differences in tree canopy cover between treatments. The control units have significantly greater forest canopy cover than the treated units. The thinned units also have significantly greater tree canopy cover than the thin-and-burn units. Winter season Landsat images have also been analyzed to calculate Normalized Difference Snow Index (NDSI), a key indicator of snow water equivalence and snow accumulation at the treated and untreated forests. The NDSI values from these dates are examined to determine if snow accumulation and snow water equivalence vary between treatments at our study sites. NDSI is significantly greater at the treated units than the control units. In particular, the thinned forest units have significantly greater snow cover than the control units. Our results indicate that forest restoration treatments result in increased snow pack accumulation and this increase can be efficiently estimated at a landscape scale using satellite data.
36 CFR 230.30 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for the establishment, management, maintenance, enhancement, and restoration of forests on nonindustrial private forest land. (b) The educational assistance, resource management expertise, and financial... the establishment, maintenance, enhancement, and restoration of nonindustrial private forestlands. (c...
NASA Astrophysics Data System (ADS)
Yin, Runsheng; Yin, Guiping
2010-03-01
China has undertaken several major programs of terrestrial ecosystem restoration (ERPs) in recent years, including the Natural Forest Protection Program (NFPP) and the Sloping Land Conversion Program (SLCP). There have been reports on the implementation of these programs, their preliminary impacts, and the problems encountered in carrying them out; a great deal has been learned from these studies. Nonetheless, China’s ERPs are not limited to the NFPP and the SLCP. Because a complete documentation and a timely update of these major efforts are still missing from the literature, it is difficult to gauge the scope of these programs and the scale of their impacts. In addition, a more thorough and critical analysis of both the general ERP policy and the specific technical measures used in implementing the ERPs remains urgently needed. The purpose of this article is to tackle these tasks. Overall, with the huge government investments in the ERPs, tremendous progress has been made in implementing them. To complete them successfully and to fundamentally improve the targeted ecosystems, however, it is essential for China to have a more balanced and comprehensive approach to ecological restoration. This approach must include: adopting better planning and management practices; strengthening the governance of program implementation; emphasizing the active engagement of local people; establishing an independent, competent monitoring network; and conducting adequate assessments of program effectiveness and impact.
Ilyas Siddique; Vera Lex Engel; David Lamb; Gabriela B. Nardoto; Jean P.H.B. Ometto; Luiz A. Martinelli; Susanne Schmidt
2008-01-01
Failures in reforestation are often attributed to nutrient limitation for tree growth. We compared tree performance and nitrogen and phosphorus relations in adjacent mixed-species plantings of contrasting composition, established for forest restoration on Ultisol soil, originally covered by tropical semi-deciduous Atlantic Forest in Southeast Brazil. Nutrient relations...
Community wildfire protection planning: is the Healthy Forests Restoration Act's vagueness genius?
Pamela J. Jakes; Kristen C. Nelson; Sherry A. Enzler; Sam Burns; Antony S. Cheng; Victoria Sturtevant; Daniel R. Williams; Alexander Bujak; Rachel F. Brummel; Stephanie Grayzeck-Souter; Emily Staychock
2011-01-01
The Healthy Forests Restoration Act of 2003 (HFRA) encourages communities to develop community wildfire protection plans (CWPPs) to reduce their wildland fire risk and promote healthier forested ecosystems. Communities who have developed CWPPs have done so using many different processes, resulting in plans with varied form and content. We analysed data from 13 case-...
Small-diameter success stories II
Jean Livingston
2006-01-01
Many of our national forests are in critical need of restoration. These forests are dense, with an abundance of small-diameter, tightly spaced trees and underbrush that can contribute to the rapid growth of fire. If economic and value-added uses for this small-diameter and unmerchantable material can be found, forest restoration costs could be offset and catastrophic...
Small-diameter success stories III.
Jean Livingston
2008-01-01
More than 73 million acres of our national forests and millions more in public and private forestlands are in need of some form of restoration. Our forests are declining in health because of major changes over the years in forest structure and composition. However, restoration of these overstocked stands is extremely expensive. If new, economical, and value-added uses...
Emile S. Gardiner; John A. Stanturf; Callie J. Schweitzer
2004-01-01
Bottomland hardwood forests of the southeastern United States have declined in extent since European settlement. Forest restoration activities over the past decade, however, have driven recent changes in land use through an intensified afforestation effort on former agricultural land. This intense afforestation effort, particularly in the Lower Mississippi Alluvial...
Ponderosa pine forest restoration treatment longevity: Implications of regeneration on fire hazard
Wade T. Tinkham; Chad M. Hoffman; Seth A. Ex; Michael A. Battaglia; Jarred D. Saralecos
2016-01-01
Restoration of pine forests has become a priority for managers who are beginning to embrace ideas of highly heterogeneous forest structures that potentially encourages high levels of regeneration. This study utilizes stem-mapped stands to assess how simulated regeneration timing and magnitude influence longevity of reduced fire behavior by linking growth and...
Somatic embryogenesis and cryostorage for conservation and restoration of threatened forest trees
S.A. Merkle; A.R. Tull; H.J. Gladfelter; P.M. Montello; J.E. Mitchell; C. Ahn; R.D. McNeill
2017-01-01
Threats to North American forest trees from exotic pests and pathogens or habitat loss, make it imperative that every available tool be employed for conservation and restoration of these at risk species. One such tool, in vitro propagation, could greatly enhance conservation of forest tree genetic material and selection and breeding of resistant or...
Acorn viability following prescribed fire in upland hardwood forests
Katie Greenberg; Tara Keyser; Stan Zarnoch; Kris Connor
2012-01-01
Restoration of structure and function of mixed-oak (Quercus spp.) forests is a focal issue of forest land managers in the eastern United States due to widespread regeneration failure and poor overstory recruitment of oaks, particularly on productive sites. Prescribed fire is increasingly used as a tool in oak ecosystem restoration, with the goal of reducing competition...
Jack Tribble; Thomas Minney; Catherine Johnson; Ken. Sturm
2010-01-01
Habitat-based ecosystem partnerships are necessary for implementing strategic forest restoration plans. Overwhelming environmental threats such as climate change and invasive pests and pathogens could have traumatic and devastating effects to our native forests. Additionally, past land-use history has left existing forests isolated, fragmented and in some cases...
Contemporary patterns of burn severity heterogeneity from fires in the Northwestern U.S.
R. Travis Belote
2015-01-01
Historically, frequent, low-severity fires maintained opengrown structure of dry ponderosa pine forests (Hessburg and Agee 2003). Thus, an open forest structure may be a reasonable template for ecological restoration in those particular forest types (Allen and others 2002). In contrast, setting goals for ecosystem management and restoration targets in the vast majority...
Woodward, Andrea; Hollar, Kathy
2011-01-01
The U.S. Fish and Wildlife Service's (FWS) Pacific Region (Region 1) includes more than 158 million acres (almost 247,000 square miles) of land base in Idaho, Oregon, Washington, Hawai`i, the Commonwealth of the Northern Mariana Islands, American Samoa, Guam, the Republic of Palau, the Federated States of Micronesia, and the Republic of the Marshall Islands. Region 1 is ecologically diverse with landscapes that range from coral reefs, broadleaf tropical forests, and tropical savannahs in the Pacific Islands, to glacial streams and lakes, lush old-growth rainforests, inland fjords, and coastal shoreline in the Pacific Northwest, to the forested mountains, shrub-steppe desert, and native grasslands in the Inland Northwest. Similarly, the people of the different landscapes perceive, value, and manage their natural resources in ways unique to their respective regions and cultures. The Partners for Fish and Wildlife Program (Partners Program) and Coastal Program work with a variety of partners in Region 1 including individual landowners, watershed councils, land trusts, Soil and Water Conservation Districts, non-governmental organizations, Tribal governments, Native Hawaiian organizations, and local, State, and Federal agencies. The Partners Program is the FWS's vanguard for working with private landowners to voluntarily restore and conserve fish and wildlife habitat. Using non-regulatory incentives, the Partners Program engages willing partners to conserve and protect valuable fish and wildlife habitat on their property and in their communities. This is accomplished by providing the funding support and technical and planning tools needed to make on-the-ground conservation affordable, feasible, and effective. The primary goals of the Pacific Region Partners Program are to: Promote citizen and community-based stewardship efforts for fish and wildlife conservation Contribute to the recovery of at-risk species, Protect the environmental integrity of the National Wildlife Refuges, Contribute to the implementation of the State Comprehensive Wildlife Conservation Strategies, and Help achieve the objectives of the National Fish Habitat Partnerships and regionally based bird conservation plans (for example, North American Waterfowl Management Plan, U.S. Pacific Island Shorebird Conservation Plans, Intermountain West Regional Shorebird Plan, etc.). The Partners Program accomplishes these priorities by: Developing and maintaining strong partnerships, and delivering on-the-ground habitat restoration projects designed to reestablish habitat function and restore natural processes; Addressing key habitat limiting factors for declining species; Providing corridors for wildlife and decrease impediments to native fish and wildlife migration; and Enhancing native plant communities by reducing invasive species and improving native species composition. The Coastal Program is a voluntary fish and wildlife conservation program that focuses on watershed-scale, long-term collaborative resource planning and on-the-ground restoration projects in high-priority coastal areas. The Coastal Program conducts planning and restoration work on private, State, and Federal lands, and partnerships with other agencies-Native American Tribes, citizens, and organizations are emphasized. Coastal Program goals include restoring and protecting coastal habitat, providing technical and cost-sharing assistance where appropriate, supporting community-based restoration, collecting and developing information on the status of and threats to fish and wildlife, and using outreach to promote stewardship of coastal resources. The diversity of habitats and partners in Region 1 present many opportunities for conducting restoration projects. Faced with this abundance of opportunity, the Partners Program and Coastal Program must ensure that limited staffing and project dollars are allocated to benefit the highest priority resources and achieve the highest quality results for Federal trust species. In 2007, the Partners Program and Coastal Program developed a Strategic Plan to guide program operations and more efficiently conserve habitat by focusing partnership building and habitat improvement actions within 35 Partners Program Focus Areas and 9 Coastal Program Focus Areas (U.S. Fish and Wildlife Service, 2010). The Strategic Plan also contains four other goals: broaden and strengthen partnerships; improve information sharing and communications; enhance workforce; and increase accountability to ensure that program resources are used efficiently and effectively. This protocol will help achieve all goals of the Strategic Plan.
Jamie Lydersen; Malcolm North; Brandon M. Collins
2014-01-01
The 2013 Rim Fire, originating on Forest Service land, burned into old-growth forests within Yosemite National Park with relatively restored frequent-fire regimes (¡Ã2 predominantly low and moderate severity burns within the last 35 years). Forest structure and fuels data were collected in the field 3-4 years before the fire, providing a rare chance to use pre-existing...
Ganzlin, Peter W; Gundale, Michael J; Becknell, Rachel E; Cleveland, Cory C
2016-07-01
Decades of fire suppression following extensive timber harvesting have left much of the forest in the intermountain western United States exceedingly dense, and forest restoration techniques (i.e., thinning and prescribed fire) are increasingly being used in an attempt to mitigate the effects of severe wildfire, to enhance tree growth and regeneration, and to stimulate soil nutrient cycling. While many of the short-term effects of forest restoration have been established, the long-term effects on soil biogeochemical and ecosystem processes are largely unknown. We assessed the effects of commonly used forest restoration treatments (thinning, burning, and thinning + burning) on nutrient cycling and other ecosystem processes 11 yr after restoration treatments were implemented in a ponderosa pine (Pinus ponderosa var. scopulorum)/Douglas fir (Pseudotsuga menziesii var. glauca) forest at the Lubrecht Fire and Fire Surrogates Study (FFS) site in western Montana, USA. Despite short-term (<3 yr) increases in soil inorganic nitrogen (N) pools and N cycling rates following prescribed fire, long-term soil N pools and N mineralization rates showed only subtle differences from untreated control plots. Similarly, despite a persistent positive correlation between fuels consumed in prescribed burns and several metrics of N cycling, variability in inorganic N pools decreased significantly since treatments were implemented, indicating a decline in N spatial heterogeneity through time. However, rates of net nitrification remain significantly higher in a thin + burn treatment relative to other treatments. Short-term declines in forest floor carbon (C) pools have persisted in the thin + burn treatment, but there were no significant long-term differences among treatments in extractable soil phosphorus (P). Finally, despite some short-term differences, long-term foliar nutrient concentrations, litter decomposition rates, and rates of free-living N fixation in the experimental plots were not different from control plots, suggesting nutrient cycles and ecosystem processes in temperate coniferous forests are resilient to disturbance following long periods of fire suppression. Overall, this study provides forest managers and policymakers valuable information showing that the effects of these commonly used restoration prescriptions on soil nutrient cycling are ephemeral and that use of repeated treatments (i.e., frequent fire) will be necessary to ensure continued restoration success. © 2016 by the Ecological Society of America.
Ecological restoration of litter in mined areas
NASA Astrophysics Data System (ADS)
Teresinha Gonçalves Bizuti, Denise; Nino Diniz, Najara; Schweizer, Daniella; de Marchi Soares, Thaís; Casagrande, José Carlos; Henrique Santin Brancalion, Pedro
2016-04-01
The success of ecological restoration projects depends on going monitoring of key ecological variables to determine if a desired trajectory has been established and, in the case of mining sites, nutrient cycling recovery plays an utmost importance. This study aimed to quantify and compare the annual litter production in native forests, and in restoration sites established in bauxite mines. We collected samples in 6 native forest remnants and 6 year-old restoration sites every month for a period of one year, in the city of Poços de Caldas/MG, SE Brazil. 120 wire collectors were used (0,6x0,6) and suspended 30cm above the soil surface. The material was dried until constant weight, weighed and fractionated in leaves, branches and reproductive material. The average annual litter production was 2,6 Mg ha-1 in native forests and 2,1 in forest in restoration sites, differing statistically. Litter production was higher in the rainy season, especially in September. Among the litter components, the largest contributor to total production was the fraction leaves, with 55,4% of the total dry weight of material collected, followed by reproductive material which contributed 24,5% and branches, with 20%. We conclude that the young areas in restoration process already restored important part, but still below the production observed in native areas.
Arthropod recolonization in the restoration of a semideciduous forest in southeastern Brazil.
Pais, Mara P; Varanda, Elenice M
2010-01-01
The use of arthropods for monitoring habitat changes has grown widely in the last decades. In Brazil, however, most of the studies in restored areas have involved only vegetation changes. The present study aimed at investigating recolonization patterns of epigeic arthropods in recently restored sites of semideciduous forests in southeastern Brazil. We compared the community structure of adjoining sites 5, 17, 29 and 36 months old with that at a nearby forest remnant (reference site). We also determined the most abundant species and looked for ecological indicator species of each site age. Arthropods were sampled using pitfall traps, and their assemblages were described and compared with multi- and univariate statistical methods. Species abundance and richness equivalent to the reference site were reached at five months after planting, however species composition was very distinctive not only in relation to the reference site, but also among restored sites. Some of the main species found in this restoration stage are common in agroecosystems or cerrado vegetation. Nevertheless, there was a clear trend of arthropod fauna in restored sites moving toward the fauna in the forest remnant over time. Our results also highlighted ants and termites because of their abundance and ants because of their high value as ecological indicators of restoration age.
Ramachandran, Andimuthu; Radhapriya, Parthasarathy
2016-01-01
Restoration of a highly degraded forest, which had lost its natural capacity for regeneration, was attempted in the Nanmangalam Reserve Forest in Eastern Ghats of India. In field experiment, 12 native tree species were planted. The restoration included inoculation with a consortium of 5 native plant growth-promoting bacteria (PGPB), with the addition of small amounts of compost and a chemical fertilizer (NPK). The experimental fields were maintained for 1080 days. The growth and biomass varied depending on the plant species. All native plants responded well to the supplementation with the native PGPB. The plants such as Pongamia pinnata, Tamarindus indica, Gmelina arborea, Wrightia tinctoria, Syzygium cumini, Albizia lebbeck, Terminalia bellirica, and Azadirachta indica performed well in the native soil. This study demonstrated, by using native trees and PGPB, a possibility to restore the degraded forest. PMID:27195310
Ramachandran, Andimuthu; Radhapriya, Parthasarathy
Restoration of a highly degraded forest, which had lost its natural capacity for regeneration, was attempted in the Nanmangalam Reserve Forest in Eastern Ghats of India. In field experiment, 12 native tree species were planted. The restoration included inoculation with a consortium of 5 native plant growth-promoting bacteria (PGPB), with the addition of small amounts of compost and a chemical fertilizer (NPK). The experimental fields were maintained for 1080 days. The growth and biomass varied depending on the plant species. All native plants responded well to the supplementation with the native PGPB. The plants such as Pongamia pinnata, Tamarindus indica, Gmelina arborea, Wrightia tinctoria, Syzygium cumini, Albizia lebbeck, Terminalia bellirica, and Azadirachta indica performed well in the native soil. This study demonstrated, by using native trees and PGPB, a possibility to restore the degraded forest.
Sara Loreno; Jeremy S. Fried; Andrew Yost
2015-01-01
The state of Oregon recently invested in exploring options for increasing the extent of forest restoration activity. This initiative aims to reduce the incidence, effects, and expense of catastrophic fire events and restore economic stability to rural communities by enhancing the supply of raw materials for wood processing facilities and wood-based, renewable energy...
J. Stephen Brewer
2016-01-01
An important goal of restoring fire to upland oak-dominated communities that have experienced fire exclusion is restoring groundcover plant species diversity and composition indicative of fire-maintained habitats. Several studies have shown that fire alone, however, may not be sufficient to accomplish this goal. Furthermore, treatment-driven declines in rare forest...
Restoration of fire in managed forests: a model to prioritize landscapes and analyze tradeoffs
Alan A. Ager; Nicole M. Vaillant; Andrew McMahan
2013-01-01
Ongoing forest restoration on public lands in the western US is a concerted effort to counter the growing incidence of uncharacteristic wildfire in fire-adapted ecosystems. Restoration projects cover 725,000 ha annually, and include thinning and underburning to remove ladder and surface fuel, and seeding of fire-adapted native grasses and shrubs. The backlog of areas...
Restoration of degraded lands in the interior Columbia River basin: passive vs. active approaches.
James McIver; Lynn Starr
2001-01-01
Evidence for success of passive and active restoration is presented for interior conifer forest, sagebrush steppe, and riparian ecosystems, with a focus on the Columbia River basin. Passive restoration, defined as removal of the stresses that cause degradation, may be most appropriate for higher elevation forests, low-order riparian ecosystems, and for sagebrush steppe...
Methods to reduce forest residue volume after timber harvesting and produce black carbon
Deborah S. Page-Dumroese; Matt D. Busse; James G. Archuleta; Darren McAvoy; Eric Roussel
2017-01-01
Forest restoration often includes thinning to reduce tree density and improve ecosystem processes and function while also reducing the risk of wildfire or insect and disease outbreaks. However, one drawback of these restoration treatments is that slash is often burned in piles that may damage the soil and require further restoration activities. Pile burning is...
Forest Service Nurseries: 100 years of ecosystem restoration
R. Kasten Dumroese; Thomas D. Landis; James P. Barnett; Frank Burch
2005-01-01
The USDA Forest Service broke ground on its first nursery in 1902 and since then its nurseries have adapted to many changes in scope and direction: from fire restoration to conservation, to reforestation, and back to restoration. In addition to providing a reliable source of native plant material, they have also been a source of research and technology transfer in...
Growth projection and valuation of restoration of the shortleaf pine-bluestem grass ecosystem
Difei Zhang; Michael M. Huebschmann; Thomas B. Lynch; James M. Guldin
2012-01-01
The fire-dependent shortleaf pineâbluestem grass ecosystem that existed prior to European settlement is being restored on approximately 62,700 ha in the Ouachita National Forest. The restoration effort's economic effects are not completely understood. This study will provide the Forest Service with a framework for better communicating the biological and economic...
Assessing the benefits and costs of dryland forest restoration in central Chile.
Schiappacasse, Ignacio; Nahuelhual, Laura; Vásquez, Felipe; Echeverría, Cristian
2012-04-30
Investment in natural capital restoration is increasing as a response to the widespread ecological degradation of dryland forests. However, finding efficient mechanisms to promote restoration among private landowners is a significant challenge for policy makers with limited financial resources. Furthermore, few attempts have been made to evaluate the costs and benefits of restoration interventions even though this information is relevant to orient decision making. Hence, our goal was to estimate the benefits and costs of dryland forest restoration by means of reforestation with native trees in a study area in central Chile. To determine benefits we applied a Contingent Valuation questionnaire that allowed for the calculation of willingness to pay measures. Restoration costs were calculated based on market prices following existing technical recommendations developed for the study area. The results showed that the restoration project had a negative NPV irrespective of the discount rate applied in the analysis. Thus, the NPV varied between -US$71,000 and -US$258,000. The NPV attained positive results only for negative discount rates (US$15,039 for -2%) and only when the national subsidy available for forest restoration was taken into account. This shows that landowners in Colliguay do not have incentives for carrying out restoration interventions due to a classic market failure: that in which ecosystems are mismanaged because many of their benefits are externalities from the perspective of landowners. Overall, these results stress the need for developing new compensation mechanisms and enhancing those in existence, with the aim of making restoration competitive with other land uses. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diefenderfer, Heida L.; Montgomery, David R.
2008-10-09
Tidal forested wetlands have sustained substantial areal losses, and restoration practitioners lack a description of many ecosystem structures associated with these late-successional systems in which surface water is a significant controlling factor on the flora and fauna. The roles of large woody debris in terrestrial and riverine ecosystems have been well described compared to functions in tidal areas. This study documents the role of large wood in forcing channel morphology in Picea-sitchensis (Sitka spruce) dominated freshwater tidal wetlands in the floodplain of the Columbia River, U.S.A. near the Pacific coast. The average pool spacing documented in channel surveys of threemore » freshwater tidal forested wetlands near Grays Bay were 2.2 ± 1.3, 2.3 ± 1.2, and 2.5 ± 1.5. There were significantly greater numbers of pools on tidal forested wetland channels than on a nearby restoration site. On the basis of pool spacing and the observed sequences of log jams and pools, the tidal forested wetland channels were classified consistent with a forced step-pool class. Tidal systems, with bidirectional flow, have not previously been classified in this way. The classification provides a useful basis for restoration project design and planning in historically forested tidal freshwater areas, particularly in regard to the use of large wood in restoration actions and the development of pool habitats for aquatic species. Significant modifications by beaver on these sites warrant further investigation to explore the interactions between these animals and restoration actions affecting hydraulics and channel structure in tidal areas.« less
Al-Chokhachy, Robert K.; Black, Tom A.; Thomas, Cameron; Luce, Charlie H.; Rieman, Bruce; Cissel, Richard; Carlson, Anne; Hendrickson, Shane; Archer, Eric K.; Kershner, Jeffrey L.
2016-01-01
Unpaved forest roads remain a pervasive disturbance on public lands and mitigating sediment from road networks remains a priority for management agencies. Restoring roaded landscapes is becoming increasingly important for many native coldwater fishes that disproportionately rely on public lands for persistence. However, effectively targeting restoration opportunities requires a comprehensive understanding of the effects of roads across different ecosystems. Here, we combine a review and a field study to evaluate the status of knowledge supporting the conceptual framework linking unpaved forest roads with streambed sediment. Through our review, we specifically focused on those studies linking measures of the density of forest roads or sediment delivery with empirical streambed sediment measures. Our field study provides an example of a targeted effort of linking spatially explicit estimates of sediment production with measures of streambed sediment. Surprisingly, our review uncovered few studies (n = 8) that empirically tested the conceptual framework linking unpaved forest roads and streambed sediment, and the results varied considerably. Field results generally supported the conceptual model that unpaved forest roads can control streambed sediment quality, but demonstrated high-spatial variability in the effects of forest roads on streambed sediment and the need to address hotspots of sediment sources. The importance of context in the effects of forest roads is apparent in both our review and field data, suggesting the need for in situ studies to avoid misdirected restoration actions.
Jane E. Smith; Donaraye McKay; Greg Brenner; Jim McIver; Joseph W. Spatafora
2005-01-01
1. The obligate symbiosis formed between ectomycorrhizal fungi (EMF) and roots of tree species in the Pinaceae influences nutrient uptake and surrounding soil structure. Understanding how EMF respond to prescribed fire and thinning will assist forest managers in selecting fuel-reducing restoration treatments that maintain critical soil processes and site productivity....
Potential of decaying wood to restore root-available base cations in depleted forest soils
Walter C. Shortle; Kevin T. Smith; Jody Jellison; Jonathan S. Schilling
2012-01-01
The depletion of root-available Ca in northern forest soils exposed to decades of increased acid deposition adversely affects forest health and productivity. Laboratory studies indicated the potential of wood-decay fungi to restore lost Ca. This study presents changes in concentration of Ca, Mg, and K in sapwood of red spruce (Picea rubens Sarg.),...
Ecosystem responses to variable-density thinning for forest restoration in Mill Creek
Lathrop P. Leonard; John-Pascal Berrill; Christa M. Dagley
2017-01-01
Variable-density thinning (VDT) has promise as a forest restoration tool that accelerates development of old-growth redwood (Sequoia sempervirens (D.Don) Endl.) forest characteristics (OâHara et al. 2010) but can lead to bear damage in north coastal California (Hosack and Fulgham 1998, Perry et al. 2016). Three novel VDT prescriptions (Oâ...
Erich Kyle Dodson; David W. Peterson
2010-01-01
Maintaining understory plant species diversity is an important management goal as forest restoration and fuel reduction treatments are applied extensively to dry coniferous forests of western North America. However, understory diversity is a function of both local species richness (number of species in a sample unit) and community heterogeneity (beta diversity) at...
Jarrod M. Thaxton; T. Colleen Cole; Susan Cordell; Robert J. Cabin; Darren R. Sandquist; Creighton M. Litton
2010-01-01
Hawaiian lowland dry forests have been reduced by >90% since first human contact. Restoration has focused on protection from fire and ungulates, and removal of invasive grasses as ways to stimulate native forest regeneration. Despite these efforts, natural regeneration of native plants has been infrequent. To assess effects of previous restoration treatments on...
Douglas J. Shinneman; Brian J. Palik; Meredith W. Cornett
2012-01-01
Management strategies to restore forest landscapes are often designed to concurrently reduce fire risk. However, the compatibility of these two objectives is not always clear, and uncoordinated management among landowners may have unintended consequences. We used a forest landscape simulation model to compare the effects of contemporary management and hypothetical...
Tree planters` notes, Volume 46, Number 2, Spring 1995. Quarterly report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nisley, R.
1995-12-31
;Contents: Certified Seed and Artificial Forest Regeneration; Missoula Technology and Development Center`s 1995 Nursery and Reforestation Programs; Trees Grow Better With Water; Botrytis cinerea Carried by Adult Fungus Gnats (Diptera: Sciaridae) in Container Nurseries; Oak Seedling Root and Shoot Growth on Restored Topsoil; Improved Vegetative Propagation of Scouler Willow; Estimating Poller Yield From Western White Pine: Preliminary Studies.
Recognizing and Overcoming Difficult Site Conditions for Afforestation of Bottomland Hardwoods
John A. Stanturf; William H. Conner; Emile S. Gardiner; Callie Jo Schweitzer; Andrew W. Ezell
2004-01-01
In the last decade, about 370,000 acres (150,000 ha) of economically marginal farmland in the Lower Mississippi Alluvial Valley (LMAV) have been restored to bottomland hardwood forests (Stanturf and others 1998, King and Keeland 1999, Schoenholtz and others 2001). Planting of this considerable acreage is due to several federal programs, such as the Wetlands Reserve...
Identifying markets for pinyon pine in the Four Corners Region
Kurt H. Mackes
2008-01-01
A search for opportunities to use pinyon pine is currently being conducted at Colorado State University by the Colorado Wood Utilization and Marketing Program as part of an effort to improve financial feasibility of forest restoration and hazardous fuel reduction work in pinyon-juniper stands. The properties of pinyon wood reveal that it is suitable for a range of...
Water, Forests, People: The Swedish Experience in Building Resilient Landscapes.
Eriksson, Mats; Samuelson, Lotta; Jägrud, Linnéa; Mattsson, Eskil; Celander, Thorsten; Malmer, Anders; Bengtsson, Klas; Johansson, Olof; Schaaf, Nicolai; Svending, Ola; Tengberg, Anna
2018-07-01
A growing world population and rapid expansion of cities increase the pressure on basic resources such as water, food and energy. To safeguard the provision of these resources, restoration and sustainable management of landscapes is pivotal, including sustainable forest and water management. Sustainable forest management includes forest conservation, restoration, forestry and agroforestry practices. Interlinkages between forests and water are fundamental to moderate water budgets, stabilize runoff, reduce erosion and improve biodiversity and water quality. Sweden has gained substantial experience in sustainable forest management in the past century. Through significant restoration efforts, a largely depleted Swedish forest has transformed into a well-managed production forest within a century, leading to sustainable economic growth through the provision of forest products. More recently, ecosystem services are also included in management decisions. Such a transformation depends on broad stakeholder dialog, combined with an enabling institutional and policy environment. Based on seminars and workshops with a wide range of key stakeholders managing Sweden's forests and waters, this article draws lessons from the history of forest management in Sweden. These lessons are particularly relevant for countries in the Global South that currently experience similar challenges in forest and landscape management. The authors argue that an integrated landscape approach involving a broad array of sectors and stakeholders is needed to achieve sustainable forest and water management. Sustainable landscape management-integrating water, agriculture and forests-is imperative to achieving resilient socio-economic systems and landscapes.
Kalies, E L; Dickson, B G; Chambers, C L; Covington, W W
2012-01-01
In western North American conifer forests, wildfires are increasing in frequency and severity due to heavy fuel loads that have accumulated after a century of fire suppression. Forest restoration treatments (e.g., thinning and/or burning) are being designed and implemented at large spatial and temporal scales in an effort to reduce fire risk and restore forest structure and function. In ponderosa pine (Pinus ponderosa) forests, predominantly open forest structure and a frequent, low-severity fire regime constituted the evolutionary environment for wildlife that persisted for thousands of years. Small mammals are important in forest ecosystems as prey and in affecting primary production and decomposition. During 2006-2009, we trapped eight species of small mammals at 294 sites in northern Arizona and used occupancy modeling to determine community responses to thinning and habitat features. The most important covariates in predicting small mammal occupancy were understory vegetation cover, large snags, and treatment. Our analysis identified two generalist species found at relatively high occupancy rates across all sites, four open-forest species that responded positively to treatment, and two dense-forest species that responded negatively to treatment unless specific habitat features were retained. Our results indicate that all eight small mammal species can benefit from restoration treatments, particularly if aspects of their evolutionary environment (e.g., large trees, snags, woody debris) are restored. The occupancy modeling approach we used resulted in precise species-level estimates of occupancy in response to habitat attributes for a greater number of small mammal species than in other comparable studies. We recommend our approach for other studies faced with high variability and broad spatial and temporal scales in assessing impacts of treatments or habitat alteration on wildlife species. Moreover, since forest planning efforts are increasingly focusing on progressively larger treatment implementation, better and more efficiently obtained ecological information is needed to inform these efforts.
Sediment dynamics in restored riparian forest with different widths and agricultural surroundings
NASA Astrophysics Data System (ADS)
Stucchi Boschi, Raquel; Simões da Silva, Laura; Ribeiro Rodrigues, Ricardo; Cooper, Miguel
2016-04-01
The riparian forests are essential to maintaining the quality of water resources, aquifer recharge and biodiversity. Due to the ecological services provided by riparian forests, these areas are considered by the law as Permanent Preservation Areas, being mandatory maintenance and restoration. However, the obligation of restoration and the extent of the Permanent Preservation Areas as defined by the Brazilian Forest Code, based on water body width, elucidates the lack of accurate scientific data on the influence of the size of the riparian forest in maintaining their ecological functions, particularly regarding the retention of sediments. Studies that evaluate the ideal width of riparian forests to guarantee their ecological functions are scarce and not conclusive, especially when we consider newly restored forests, located in agricultural areas. In this study, we investigate the dynamics of erosion and sedimentation in restored riparian forests with different widths situated in agricultural areas. The two study areas are located in a Semideciduous Tropical Forest inserted in sugarcane landscapes of São Paulo state, Brazil. The installed plots had 60 and 100 m in length and the riparian forest has a width of 15, 30 and 50 m. The characteristics of the sediments inside the plots were evaluated by detailed morphological and micromorphological studies as well as physical characterization. The dynamics of deposition and the amount of deposited sediments have been assessed with graded metal stakes partially buried inside the plots. The intensity, frequency and distribution of rainfall, as well as the occurrence of extreme events, have been evaluated by data collected from rain gauges installed in the areas. We expect that smaller widths are not able to retain sediments originated from the adjacent sugarcane areas. We also believe that extreme events are responsible for generating most of the sediments. The results will be important to support the discussion about an ideal width of riparian vegetation to ensure the retention of sediments and quality of water bodies.
Julie E. Korb; Nancy C. Johnson; W. W. Covington
2004-01-01
Ponderosa pine forest restoration consists of thinning trees and reintroducing prescribed fire to reduce unnaturally high tree densities and fuel loads to restore ecosystem structure and function. A current issue in ponderosa pine restoration is what to do with the large quantity of slash that is created from thinning dense forest stands. Slash piling burning is...
Gregory Nowacki; Michael Ablutz; Dan Yaussy; Thomas Schuler; Dan Dey
2009-01-01
The U.S. Forest Service has recently completed an ecosystem restoration framework and enacted accompanying policy to help guide its nationwide efforts. The Eastern Region is in the midst of translating the general guidance set forth in these documents to actual on-the-ground restoration. We envision a set of coordinated field demonstrations that will initially focus on...
Future directions for forest restoration in Hawai'i
James B. Friday; Susan Cordell; Christian P. Giardina; Faith Inman-Narahari; Nicholas Koch; James J. K. Leary; Creighton M. Litton; Clay Trauernicht
2015-01-01
Hawaiâi has served as a model system for studies of nutrient cycling and conservation biology. The islands may also become a laboratory for exploring new approaches to forest restoration because of a common history of degradation and the growing number of restoration projects undertaken. Approximately half of the native ecosystems of Hawaiâi have been converted to non-...
Jeremy Pinto; Anthony S. Davis; James J. K. Leary; Matthew M. Aghai
2015-01-01
Restoring degraded mesic-montane forests represents a major challenge in maintaining functioning ecosystems throughout the tropics. A key example of this lies in Hawaiâi, where restoring native koa (Acacia koa, A. Gray) forests are a top conservation and forestry priority because of the critical habitat and high-value timber products that they provide. Efforts...
Wang, Xiang; Li, Jin-chuan; Yue, Jian-ying; Zhou, Xiao-mei; Guo, Chun-yan; Lu, Ning; Wang, Yu-hong; Yang, Sheng-quan
2013-09-01
Re-vegetation is mainly applied into regeneration in opencast mine to improve the soil quality. It is very important to choose feasible vegetation types for soil restoration. In this study, three typical forest restoration types were studied at Antaibao mine, namely, Medicago sativa, mixed forests Pinus taebelaefolius-Robinia pseudoacacia-Caragana korshinskii and Elaeagnus angustifolia-Robinia pseudoacacia-Caragana korshinskii-Hipophae rhamnoides, to determine the nutrient contents and enzyme activities in different soil layers. The results showed that re-vegetation markedly increased soil nutrient contents and the enzyme activities during the restoration process. The nutrient content of soil in the P. taebelaefolius-R. pseudoacacia-C. korshinskii mixed forest field was significantly higher than those in other plots. It was found that the soil of the P. taebelaefolius-R. pseudoacacia-C. korshinskii mixed forest had the highest integrated fertility index values. In conclusion, the restoration effects of the P. zaebelaefolius-R. pseudoacacia-C. Korshinskii mixed forest was better than that of E. angustifolia-R. pseudoacacia-C. korshinskii-H. rhamnoides, while M. sativa grassland had the least effect.
Celentano, Danielle; Rousseau, Guillaume Xavier; Engel, Vera Lex; Façanha, Cristiane Lima; Oliveira, Elivaldo Moreira de; Moura, Emanoel Gomes de
2014-01-27
Riparian forests provide ecosystem services that are essential for human well-being. The Pepital River is the main water supply for Alcântara (Brazil) and its forests are disappearing. This is affecting water volume and distribution in the region. Promoting forest restoration is imperative. In deprived regions, restoration success depends on the integration of ecology, livelihoods and traditional knowledge (TEK). In this study, an interdisciplinary research framework is proposed to design riparian forest restoration strategies based on ecological data, TEK and social needs. This study takes place in a region presenting a complex history of human relocation and land tenure. Local populations from seven villages were surveyed to document livelihood (including 'free-listing' of agricultural crops and homegarden tree species). Additionally, their perceptions toward environmental changes were explored through semi-structured interviews (n = 79). Ethnobotanical information on forest species and their uses were assessed by local-specialists (n = 19). Remnants of conserved forests were surveyed to access ecological information on tree species (three plots of 1,000 m2). Results included descriptive statistics, frequency and Smith’s index of salience of the free-list results. The local population depends primarily on slash-and-burn subsistence agriculture to meet their needs. Interviewees showed a strong empirical knowledge about the environmental problems of the river, and of their causes, consequences and potential solutions. Twenty-four tree species (dbh > 10 cm) were found at the reference sites. Tree density averaged 510 individuals per hectare (stdv = 91.6); and 12 species were considered the most abundant (density > 10ind/ha). There was a strong consensus among plant-specialists about the most important trees. The species lists from reference sites and plant-specialists presented an important convergence. Slash-and-burn agriculture is the main source of livelihood but also the main driver of forest degradation. Effective restoration approaches must transform problems into solutions by empowering local people. Successional agroforestry combining annual crops and trees may be a suitable transitional phase for restoration. The model must be designed collectively and include species of ecological, cultural, and socioeconomic value. In deprived communities of the Amazon, forest restoration must be a process that combines environmental and social gains.
Seed dispersal limitations shift over time in tropical forest restoration.
Reid, J Leighton; Holl, Karen D; Zahawi, Rakan A
2015-06-01
Past studies have shown that tropical forest regeneration on degraded farmlands is initially limited by lack of seed dispersal, but few studies have tracked changes in abundance and composition of seed rain past the first few years after land abandonment. We measured seed rain for 12 months in 10 6-9-year-old restoration sites and five mature, reference forests in southern Costa Rica in order to learn (1) if seed rain limitation persists past the first few years of regeneration; (2) how restoration treatments influence seed community structure and composition; and (3) whether seed rain limitation is contingent on landscape context. Each restoration site contained three 0.25-ha treatment plots: (1) a naturally regenerating control, (2) tree islands, and (3) a mixed-species tree plantation. Sites spanned a deforestation gradient with 9-89% forest area within 500 m around the treatment plots. Contrary to previous studies, we found that tree seeds were abundant and ubiquitous across all treatment plots (585.1 ± 142.0 seeds · m(-2) · yr(-1) [mean ± SE]), indicating that lack of seed rain ceased to limit forest regeneration within the first decade of recovery. Pioneer trees and shrubs comprised the vast majority of seeds, but compositional differences between restoration sites and reference forests were driven by rarer, large-seeded species. Large, animal-dispersed tree seeds were more abundant in tree islands (4.6 ± 2.9 seeds · m(-2) · yr(-1)) and plantations (5.8 ± 3.0 seeds · m(-2) · yr(-1)) than control plots (0.2 ± 0.1 seeds · m(-2) · yr(-1)), contributing to greater tree species richness in actively restored plots. Planted tree species accounted for < 1% of seeds. We found little evidence for landscape forest cover effects on seed rain, consistent with previous studies. We conclude that seed rain limitation shifted from an initial, complete lack of tree seeds to a specific limitation on large-seeded, mature forest species over the first decade. Although total seed abundance was equal among restoration treatments, tree plantations and tree islands continued to diversify seed rain communities compared to naturally regenerating controls. Compositional differences between regenerating plots and mature forests suggest that large-seeded tree species are appropriate candidates for enrichment planting.
2014-01-01
Background Riparian forests provide ecosystem services that are essential for human well-being. The Pepital River is the main water supply for Alcântara (Brazil) and its forests are disappearing. This is affecting water volume and distribution in the region. Promoting forest restoration is imperative. In deprived regions, restoration success depends on the integration of ecology, livelihoods and traditional knowledge (TEK). In this study, an interdisciplinary research framework is proposed to design riparian forest restoration strategies based on ecological data, TEK and social needs. Methods This study takes place in a region presenting a complex history of human relocation and land tenure. Local populations from seven villages were surveyed to document livelihood (including ‘free-listing’ of agricultural crops and homegarden tree species). Additionally, their perceptions toward environmental changes were explored through semi-structured interviews (n = 79). Ethnobotanical information on forest species and their uses were assessed by local-specialists (n = 19). Remnants of conserved forests were surveyed to access ecological information on tree species (three plots of 1,000 m2). Results included descriptive statistics, frequency and Smith’s index of salience of the free-list results. Results The local population depends primarily on slash-and-burn subsistence agriculture to meet their needs. Interviewees showed a strong empirical knowledge about the environmental problems of the river, and of their causes, consequences and potential solutions. Twenty-four tree species (dbh > 10 cm) were found at the reference sites. Tree density averaged 510 individuals per hectare (stdv = 91.6); and 12 species were considered the most abundant (density > 10ind/ha). There was a strong consensus among plant-specialists about the most important trees. The species lists from reference sites and plant-specialists presented an important convergence. Conclusions Slash-and-burn agriculture is the main source of livelihood but also the main driver of forest degradation. Effective restoration approaches must transform problems into solutions by empowering local people. Successional agroforestry combining annual crops and trees may be a suitable transitional phase for restoration. The model must be designed collectively and include species of ecological, cultural, and socioeconomic value. In deprived communities of the Amazon, forest restoration must be a process that combines environmental and social gains. PMID:24468421
Sue Miller; Rob Addington; Greg Aplet; Mike Battaglia; Tony Cheng; Jonas Feinstein; Jeff Underhill
2018-01-01
Historically, the ponderosa and dry mixed-conifer forests of the Colorado Front Range were more open and grassy, and trees of all size classes were found in a grouped arrangement with sizable openings between the clumps. As a legacy of fire suppression, todayâs forests are denser, with smaller trees. Proactive restoration of this forest type will help to reduce fuel...
Selection of Native Tree Species for Subtropical Forest Restoration in Southwest China.
Lu, Yang; Ranjitkar, Sailesh; Harrison, Rhett D; Xu, Jianchu; Ou, Xiaokun; Ma, Xuelan; He, Jun
2017-01-01
The use of native species in forest restoration has been increasingly recognized as an effective means of restoring ecosystem functions and biodiversity to degraded areas across the world. However, successful selection of species adapted to local conditions requires specific knowledge which is often lacking, especially in developing countries. In order to scale up forest restoration, experimental data on the responses of native species to propagation and restoration treatments across a range of local conditions are required. In this study, the restoration potential of 34 native tree species was evaluated based on nursery research and field planting experiments at a highly degraded site in a subtropical area of southwest China. We examined species performance in terms of germination rates as well as survival rates and growth over 2 years after planting. Of the 34 species examined, 25 had a germination percentage greater than 50%. Survivorship ranged from 0 to 97% across species and was greater than 50% for 20 species. Mean monthly growth increments varied between species. Pioneer species performed well, and 14 mid- and late-successional species performed reasonably well to very well in this study. However, the remaining 16 mid- and late-successional species performed poorly. These results indicate that carefully selected mid- and late-successional species can be effectively incorporated into mixed species plantings. This data can be used to inform restoration planning, helping to identify suitable species and so enhance the biodiversity and resilience of restored forests.
Selection of Native Tree Species for Subtropical Forest Restoration in Southwest China
Lu, Yang; Ranjitkar, Sailesh; Harrison, Rhett D.; Xu, Jianchu; Ou, Xiaokun; Ma, Xuelan; He, Jun
2017-01-01
The use of native species in forest restoration has been increasingly recognized as an effective means of restoring ecosystem functions and biodiversity to degraded areas across the world. However, successful selection of species adapted to local conditions requires specific knowledge which is often lacking, especially in developing countries. In order to scale up forest restoration, experimental data on the responses of native species to propagation and restoration treatments across a range of local conditions are required. In this study, the restoration potential of 34 native tree species was evaluated based on nursery research and field planting experiments at a highly degraded site in a subtropical area of southwest China. We examined species performance in terms of germination rates as well as survival rates and growth over 2 years after planting. Of the 34 species examined, 25 had a germination percentage greater than 50%. Survivorship ranged from 0 to 97% across species and was greater than 50% for 20 species. Mean monthly growth increments varied between species. Pioneer species performed well, and 14 mid- and late-successional species performed reasonably well to very well in this study. However, the remaining 16 mid- and late-successional species performed poorly. These results indicate that carefully selected mid- and late-successional species can be effectively incorporated into mixed species plantings. This data can be used to inform restoration planning, helping to identify suitable species and so enhance the biodiversity and resilience of restored forests. PMID:28103281
Yao, Jing; He, Xingyuan; He, Hongshi; Chen, Wei; Dai, Limin; Lewis, Bernard J.; Yu, Lizhong
2016-01-01
Unlike the virgin forest in the Changbaishan Nature Reserve in northeastern China, little research on a landscape scale has been conducted on secondary forests in the region under conditions of a warming climate. This research was undertaken in the upper Hun River region where the vegetation is representative of the typical secondary forest of northeastern China. The spatially explicit forest landscape model LANDIS was utilized to simulate the responses of forest restoration dynamics to anthropogenic disturbance (planting and harvesting) and evaluate the difference of the restoration process under continuation of current climatic conditions and climate warming. The results showed that: (1) The interaction of planting and harvesting has organizational scale effects on the forest. The combination of planting and harvesting policies has significant effects on the overall forest but not on individual species. (2) The area expansion of the historically dominant species Pinus koraiensis is less under climate warming than under continuation of current climatic conditions. These suggests that we should carefully take historically dominant species as the main focus for forest restoration, especially when they are near their natural distribution boundary, because they are probably less capable of successfully adapting to climate change. PMID:26725308
Yao, Jing; He, Xingyuan; He, Hongshi; Chen, Wei; Dai, Limin; Lewis, Bernard J; Yu, Lizhong
2016-01-04
Unlike the virgin forest in the Changbaishan Nature Reserve in northeastern China, little research on a landscape scale has been conducted on secondary forests in the region under conditions of a warming climate. This research was undertaken in the upper Hun River region where the vegetation is representative of the typical secondary forest of northeastern China. The spatially explicit forest landscape model LANDIS was utilized to simulate the responses of forest restoration dynamics to anthropogenic disturbance (planting and harvesting) and evaluate the difference of the restoration process under continuation of current climatic conditions and climate warming. The results showed that: (1) The interaction of planting and harvesting has organizational scale effects on the forest. The combination of planting and harvesting policies has significant effects on the overall forest but not on individual species. (2) The area expansion of the historically dominant species Pinus koraiensis is less under climate warming than under continuation of current climatic conditions. These suggests that we should carefully take historically dominant species as the main focus for forest restoration, especially when they are near their natural distribution boundary, because they are probably less capable of successfully adapting to climate change.
Jennifer L. Birdsall; Ward McCaughey; Justin B. Runyon
2012-01-01
A century of fire suppression has created unnaturally dense stands in many western North American forests, and silviculture treatments are being increasingly used to reduce fuels to mitigate wildfire hazards and manage insect infestations. Thinning prescriptions have the potential to restore forests to a more historically sustainable state, but land managers need to be...
Debra Larson; Richard Mirth
2001-01-01
The Grand Canyon Forest Partnership (GCFP), located in Flagstaff, AZ, has implemented a 16-inch diameter breast height cutting cap in the Fort Valley Restoration (Phase One) Project to secure the support of environmental organizations for urban interface forest restoration and fuels reduction projects. This paper provides insights into the economic impacts of this...
R. Ostertag; S. Cordell; J. Michaud; T.C. Cole; J.R. Schulten; K.M. Publico; J.H. Enoka
2009-01-01
A removal experiment was used to examine the restoration potential of a lowland wet forest in Hawaii, a remnant forest type that has been heavily invaded by non-native species and in which there is very little native species regeneration. All non-native woody and herbaceous biomass (approximately 45% of basal area) was removed in four 100-m² removal plots;...
Prescribed fire applications: Restoring ecological structure and process in ponderosa pine forests
Michael G. Harrington
1996-01-01
The decision to include the fire process as part of a restoration treatment for a particular forest site is most logically made in conjunction with the decision for a silvicultural treatment. In other words, forest managers do not typically wait to visually or quantitatively evaluate the post harvest site before deciding whether or not to apply fire. Each phase of the...
Fire in upper Midwestern oak forest ecosystems: an oak forest restoration and management handbook
Lee E. Frelich; Peter B. Reich; David W. Peterson
2015-01-01
We reviewed the literature to synthesize what is known about the use of fire to maintain and restore oak forests, woodlands, and savannas of the upper Midwestern United States, with emphasis on Minnesota, Wisconsin, and Michigan. Included are (1) known physical and ecological effects of fire on oaks from acorn through seedling, established sapling, and mature stages of...
Water quality and fish dynamics in forested wetlands associated with an oxbow lake
Andrews, Caroline S.; Miranda, Leandro E.; Kroger, Robert
2015-01-01
Forested wetlands represent some of the most distinct environments in the Lower Mississippi Alluvial Valley. Depending on season, water in forested wetlands can be warm, stagnant, and oxygen-depleted, yet may support high fish diversity. Fish assemblages in forested wetlands are not well studied because of difficulties in sampling heavily structured environments. During the April–July period, we surveyed and compared the water quality and assemblages of small fish in a margin wetland (forested fringe along a lake shore), contiguous wetland (forested wetland adjacent to a lake), and the open water of an oxbow lake. Dissolved-oxygen levels measured hourly 0.5 m below the surface were higher in the open water than in either of the forested wetlands. Despite reduced water quality, fish-species richness and catch rates estimated with light traps were greater in the forested wetlands than in the open water. The forested wetlands supported large numbers of fish and unique fish assemblages that included some rare species, likely because of their structural complexity. Programs developed to refine agricultural practices, preserve riparian zones, and restore lakes should include guidance to protect and reestablish forested wetlands.
Ecosystem-based management in the whitebark pine zone
Robert E. Keane; Stephen F. Arno; Catherine A. Stewart
2000-01-01
Declining whitebark pine (Pinus albicaulis) forests have necessitated development of innovative methods to restore these ecologically valuable, high elevation ecosystems. We have began an extensive restoration study using prescribed fire and silvicultural cuttings to return native ecological processes to degenerating whitebark pine forests....
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Restoration. 910.65 Section 910.65 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Restoration. 910.65 Section 910.65 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE...
Methods to Reduce Forest Residue Volume after Timber Harvesting and Produce Black Carbon.
Page-Dumroese, Deborah S; Busse, Matt D; Archuleta, James G; McAvoy, Darren; Roussel, Eric
2017-01-01
Forest restoration often includes thinning to reduce tree density and improve ecosystem processes and function while also reducing the risk of wildfire or insect and disease outbreaks. However, one drawback of these restoration treatments is that slash is often burned in piles that may damage the soil and require further restoration activities. Pile burning is currently used on many forest sites as the preferred method for residue disposal because piles can be burned at various times of the year and are usually more controlled than broadcast burns. In many cases, fire can be beneficial to site conditions and soil properties, but slash piles, with a large concentration of wood, needles, forest floor, and sometimes mineral soil, can cause long-term damage. We describe several alternative methods for reducing nonmerchantable forest residues that will help remove excess woody biomass, minimize detrimental soil impacts, and create charcoal for improving soil organic matter and carbon sequestration.
A GIS Approach to Prioritizing Habitat for Restoration Using Neotropical Migrant Songbird Criteria
NASA Astrophysics Data System (ADS)
Holzmueller, Eric J.; Gaskins, Michael D.; Mangun, Jean C.
2011-07-01
Restoration efforts to increase wildlife habitat quality in agricultural landscapes have limited funding and are typically done on a first come, first serve basis. In order to increase the efficiency of these restoration efforts, a prioritized ranking system is needed to obtain the greatest increase in habitat quality possible for the fewest amount of hectares restored. This project examines the use of a GIS based multi-criteria approach to prioritize lands for reforestation along the Kaskaskia River in Illinois. Loss of forested area and corresponding increase in forest fragmentation has decreased songbird habitat quality across the Midwestern United States. We prioritized areas for reforestation based on nine landscape metrics: available agricultural land, forest cover gaps, edge density, proximity to river, 200 m corridor area, total forest core area, fringe core area, distance to primary core value, and primary core area. The multi-criteria analysis revealed that high priority areas for reforestation were most likely to be close to the riparian corridor and existing large blocks of forest. Analysis of simulated reforestation (0, 0.5, 1.0, 5.0 10.0, 25.0, and 50.0% of highest priority parcels reforested) revealed different responses for multiple landscape metrics used to quantify forest fragmentation following reforestation, but indicated that the study area would get the greatest rate of return on reforestation efforts by reforesting 10.0% of the highest priority areas. This project demonstrates how GIS and a multi-criteria analysis approach can be used to increase the efficiency of restoration projects. This approach should be considered by land managers when attempting to identify the location and quantity of area for restoration within a landscape.
A GIS approach to prioritizing habitat for restoration using neotropical migrant songbird criteria.
Holzmueller, Eric J; Gaskins, Michael D; Mangun, Jean C
2011-07-01
Restoration efforts to increase wildlife habitat quality in agricultural landscapes have limited funding and are typically done on a first come, first serve basis. In order to increase the efficiency of these restoration efforts, a prioritized ranking system is needed to obtain the greatest increase in habitat quality possible for the fewest amount of hectares restored. This project examines the use of a GIS based multi-criteria approach to prioritize lands for reforestation along the Kaskaskia River in Illinois. Loss of forested area and corresponding increase in forest fragmentation has decreased songbird habitat quality across the Midwestern United States. We prioritized areas for reforestation based on nine landscape metrics: available agricultural land, forest cover gaps, edge density, proximity to river, 200 m corridor area, total forest core area, fringe core area, distance to primary core value, and primary core area. The multi-criteria analysis revealed that high priority areas for reforestation were most likely to be close to the riparian corridor and existing large blocks of forest. Analysis of simulated reforestation (0, 0.5, 1.0, 5.0 10.0, 25.0, and 50.0% of highest priority parcels reforested) revealed different responses for multiple landscape metrics used to quantify forest fragmentation following reforestation, but indicated that the study area would get the greatest rate of return on reforestation efforts by reforesting 10.0% of the highest priority areas. This project demonstrates how GIS and a multi-criteria analysis approach can be used to increase the efficiency of restoration projects. This approach should be considered by land managers when attempting to identify the location and quantity of area for restoration within a landscape.
Susan Cordell; Rebecca Ostertag; Jené Michaud; Laura Warman
2016-01-01
We evaluate the outcomes and consequences of a decade-long restoration project in a Hawaiian lowland wet forest as they relate to long-term management actions. Our initial study was designed both to promote native biodiversity and to develop knowledge that would enable land management agencies to restore invaded forests. Our premise of success followed the...
Finding common ground: Montana forest restoration committee
Sharon Ritter
2008-01-01
What in the world made Brian Kahn think he could get consensus among 34 people representing timber, environmental, government, and off-highway vehicle groups - especially when the topic was forest restoration? "Actually," he said, "I didn't believe we could get 100% consensus. But we did
Code of Federal Regulations, 2011 CFR
2011-07-01
... Authorized by the Healthy Forests Restoration Act of 2003 § 218.2 Definitions. Address: An individual's or organization's current physical mailing address. An e-mail address is not sufficient. Authorized hazardous fuel reduction project: A hazardous fuel reduction project authorized by the Healthy Forests Restoration Act of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Authorized by the Healthy Forests Restoration Act of 2003 § 218.2 Definitions. Address: An individual's or organization's current physical mailing address. An e-mail address is not sufficient. Authorized hazardous fuel reduction project: A hazardous fuel reduction project authorized by the Healthy Forests Restoration Act of...
Lauro R. Nogueira; José Leonardo M. Goncalves; Vera L. Engel; John A. Parrotta
2011-01-01
Brazilâs Atlantic Forest ecosystem has been greatly affected by land use changes, with only 11.26% of its original vegetation cover remaining. Currently, Atlantic Forest restoration is receiving increasing attention because of its potential for carbon sequestration and the important role of soil carbon in the global carbon balance. Soil organic matter is also essential...
R.A. Sniezko; L.A. Winn
2017-01-01
North American native tree species in forest ecosystems, as well as managed forests and urban plantings, are being severely impacted by pathogens and insects. The impacts of these pathogens and insects often increase over time, and they are particularly acute for those species affected by non-native pathogens and insects. For restoration of affected tree species or for...
Dale R. Weigel; Daniel C. Dey
2005-01-01
Bottomland forest restoration has become an area of interest in the last 10 to 15 years due to large scale bottomland flooding. Seed sources for large heavy seeded species such as the various native bottomland oaks are nonexistent, thus planting seedlings is needed to increase the proportion of heavy seeded trees to diversify bottomland forests. Nursery-grown bareroot...
When does seed limitation matter for scaling up reforestation from patches to landscapes?
Caughlin, T Trevor; Elliott, Stephen; Lichstein, Jeremy W
2016-12-01
Restoring forest to hundreds of millions of hectares of degraded land has become a centerpiece of international plans to sequester carbon and conserve biodiversity. Forest landscape restoration will require scaling up ecological knowledge of secondary succession from small-scale field studies to predict forest recovery rates in heterogeneous landscapes. However, ecological field studies reveal widely divergent times to forest recovery, in part due to landscape features that are difficult to replicate in empirical studies. Seed rain can determine reforestation rate and depends on landscape features that are beyond the scale of most field studies. We develop mathematical models to quantify how landscape configuration affects seed rain and forest regrowth in degraded patches. The models show how landscape features can alter the successional trajectories of otherwise identical patches, thus providing insight into why some empirical studies reveal a strong effect of seed rain on secondary succession, while others do not. We show that seed rain will strongly limit reforestation rate when patches are near a threshold for arrested succession, when positive feedbacks between tree canopy cover and seed rain occur during early succession, and when directed dispersal leads to between-patch interactions. In contrast, seed rain has weak effects on reforestation rate over a wide range of conditions, including when landscape-scale seed availability is either very high or very low. Our modeling framework incorporates growth and survival parameters that are commonly estimated in field studies of reforestation. We demonstrate how mathematical models can inform forest landscape restoration by allowing land managers to predict where natural regeneration will be sufficient to restore tree cover. Translating quantitative forecasts into spatially targeted interventions for forest landscape restoration could support target goals of restoring millions of hectares of degraded land and help mitigate global climate change. © 2016 by the Ecological Society of America.
Three Global Land Cover and Use Stage considering Environmental Condition and Economic Development
NASA Astrophysics Data System (ADS)
Lee, W. K.; Song, C.; Moon, J.; Ryu, D.
2016-12-01
The Mid-Latitude zone can be broadly defined as part of the hemisphere between around 30° - 60° latitude. This zone is a home to over more than 50% of the world population and encompasses about 36 countries throughout the principal regions which host most of the global problems related to development and poverty. Mid-Latitude region and its ecotone demands in-depth analysis, however, latitudinal approach has not been widely recognized, considering that many of natural resources and environment indicators, as well as social and economic indicators are based on administrative basis or by country and regional boundaries. This study sets the land cover change and use stage based on environmental condition and economic development. Because various land cover and use among the regions, form vegetated parts of East Asia and Mediterranean to deserted parts of Central Asia, the forest area was varied between countries. In addition, some nations such as North Korea, Afghanistan, Pakistan showed decreasing trends in forest area whereas some nations showed increasing trends in forest area. The economic capacity for environmental activities and policies for restoration were different among countries. By adopting the standard from IMF or World Bank, developing and developed counties were classified. Based on the classification, this study suggested the land cover and use stages as degradation, restoration, and sustainability. As the degradation stage, the nations which had decreasing forest area with less environmental restoration capacity based on economic size were selected. As the restoration stage, the nation which had increasing forest area or restoration capacity were selected. In the case of the sustainability, the nation which had enough restoration capacity with increasing forest area or small ratio in forest area decreasing were selected. In reviewing some of the past and current major environmental challenges that regions of Mid-Latitudes are facing, grouping by land cover and use stage provides environmental rationale of research, which enables better understanding on the function and interaction of ecosystem from various perspectives with preparing global climate change and sustainable management of natural resources. Keywords: Global land stage, Degradation, Restoration, Sustainability, Mid-Latitude
Bleby, Timothy M; Colquhoun, Ian J; Adams, Mark A
2009-08-01
The aboveground architecture of Eucalyptus marginata (Jarrah) was investigated in chronosequences of young trees (2.5, 5 and 10 m height) growing in a seasonally dry climate in a natural forest environment with intact soils, and on adjacent restored bauxite mine sites on soils with highly modified A and B horizons above an intact C horizon. Compared to forest trees, trees on restored sites were much younger and faster growing, with straighter, more clearly defined main stems and deeper, narrower crowns containing a greater number of branches that were longer, thinner and more vertically angled. Trees on restored sites also had a higher fraction of biomass in leaves than forest trees, as indicated by 20-25% thicker leaves, 30-70% greater leaf area, 10-30% greater leaf area to sapwood area ratios and 5-30% lesser branch Huber values. Differences in crown architecture and biomass distribution were consistent with putatively greater soil-water, nutrient and light availability on restored sites. Our results demonstrate that under the same climatic conditions, E. marginata displays a high degree of plasticity of aboveground architecture in response to the net effects of resource availability and soil environment. These differences in architecture are likely to have functional consequences in relation to tree hydraulics and growth that, on larger scales, is likely to affect the water and carbon balances of restored forest ecosystems. This study highlights substrate as a significant determinant of tree architecture in water-limited environments. It further suggests that the architecture of young trees on restored sites may need to change again if they are to survive likely longer-term changes in resource availability.
Hector, Andy; Philipson, Christopher; Saner, Philippe; Chamagne, Juliette; Dzulkifli, Dzaeman; O'Brien, Michael; Snaddon, Jake L.; Ulok, Philip; Weilenmann, Maja; Reynolds, Glen; Godfray, H. Charles J.
2011-01-01
Relatively, little is known about the relationship between biodiversity and ecosystem functioning in forests, especially in the tropics. We describe the Sabah Biodiversity Experiment: a large-scale, long-term field study on the island of Borneo. The project aims at understanding the relationship between tree species diversity and the functioning of lowland dipterocarp rainforest during restoration following selective logging. The experiment is planned to run for several decades (from seed to adult tree), so here we focus on introducing the project and its experimental design and on assessing initial conditions and the potential for restoration of the structure and functioning of the study system, the Malua Forest Reserve. We estimate residual impacts 22 years after selective logging by comparison with an appropriate neighbouring area of primary forest in Danum Valley of similar conditions. There was no difference in the alpha or beta species diversity of transect plots in the two forest types, probably owing to the selective nature of the logging and potential effects of competitive release. However, despite equal total stem density, forest structure differed as expected with a deficit of large trees and a surfeit of saplings in selectively logged areas. These impacts on structure have the potential to influence ecosystem functioning. In particular, above-ground biomass and carbon pools in selectively logged areas were only 60 per cent of those in the primary forest even after 22 years of recovery. Our results establish the initial conditions for the Sabah Biodiversity Experiment and confirm the potential to accelerate restoration by using enrichment planting of dipterocarps to overcome recruitment limitation. What role dipterocarp diversity plays in restoration only will become clear with long-term results. PMID:22006970
Hector, Andy; Philipson, Christopher; Saner, Philippe; Chamagne, Juliette; Dzulkifli, Dzaeman; O'Brien, Michael; Snaddon, Jake L; Ulok, Philip; Weilenmann, Maja; Reynolds, Glen; Godfray, H Charles J
2011-11-27
Relatively, little is known about the relationship between biodiversity and ecosystem functioning in forests, especially in the tropics. We describe the Sabah Biodiversity Experiment: a large-scale, long-term field study on the island of Borneo. The project aims at understanding the relationship between tree species diversity and the functioning of lowland dipterocarp rainforest during restoration following selective logging. The experiment is planned to run for several decades (from seed to adult tree), so here we focus on introducing the project and its experimental design and on assessing initial conditions and the potential for restoration of the structure and functioning of the study system, the Malua Forest Reserve. We estimate residual impacts 22 years after selective logging by comparison with an appropriate neighbouring area of primary forest in Danum Valley of similar conditions. There was no difference in the alpha or beta species diversity of transect plots in the two forest types, probably owing to the selective nature of the logging and potential effects of competitive release. However, despite equal total stem density, forest structure differed as expected with a deficit of large trees and a surfeit of saplings in selectively logged areas. These impacts on structure have the potential to influence ecosystem functioning. In particular, above-ground biomass and carbon pools in selectively logged areas were only 60 per cent of those in the primary forest even after 22 years of recovery. Our results establish the initial conditions for the Sabah Biodiversity Experiment and confirm the potential to accelerate restoration by using enrichment planting of dipterocarps to overcome recruitment limitation. What role dipterocarp diversity plays in restoration only will become clear with long-term results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allard, Donna; Smith, maureen; Schmidt, Peter
Located in the northern Willamette River basin, Tualatin River National Wildlife Refuge (Refuge) was established in 1992 with an approved acquisition boundary to accommodate willing sellers with potentially restorable holdings within the Tualatin River floodplain. The Refuge's floodplain of seasonal and emergent wetlands, Oregon ash riparian hardwood, riparian shrub, coniferous forest, and Garry oak communities are representative of remnant plant communities historically common in the Willamette River valley and offer an opportunity to compensate for wildlife habitat losses associated with the Willamette River basin federal hydroelectric projects. The purchase of the Oleson Units as additions to the Refuge using Bonnevillemore » Power Administration (BPA) funds will partially mitigate for wildlife habitat and target species losses incurred as a result of construction and inundation activities at Dexter and Detroit Dams. Lands acquired for mitigation of Federal Columbia River Power System (FCRPS) impacts to wildlife are evaluated using the Habitat Evaluation Procedures (HEP) methodology, which quantifies how many Habitat Units (HUs) are to be credited to BPA. HUs or credits gained lessen BPA's debt, which was formally tabulated in the FCRPS Loss Assessments and adopted as part of the Northwest Power and Conservation Council's Fish and Wildlife Program as a BPA obligation (NWPCC, 1994 and 2000). There are two basic management scenarios to consider for this evaluation: (1) Habitats can be managed without restoration activities to benefit wildlife populations, or (2) Habitats can be restored using a number of techniques to improve habitat values more quickly. Without restoration, upland and wetland areas may be periodically mowed and disced to prevent invasion of exotic vegetation, volunteer trees and shrubs may grow to expand forested areas, and cooperative farming may be employed to provide forage for migrating and wintering waterfowl. Abandoned cropland would comprise over half the total acreage and may be mowed or hayed to reduce exotic vegetation. Grasslands and wetlands may similarly be mowed or hayed, or left fallow. Wetlands would be subject to periodic flooding from the Tualatin River, but would drain quickly and promote undesirable vegetation. Riverine, forested wetland, and mixed forest habitats would likely change little from their current condition. Active restoration would include restoring wetlands with limited use of dikes and water control structures; planting and maintaining native grass, trees, and shrubs; and aggressive management of non-native invasive vegetation. Hydrology would be restored to emergent wetlands mimicking natural cycles thus promoting hydrophytic vegetation beneficial to fish and wildlife. Grassland and former crop areas would be planted with native grasses and trees to recreate prairie and savanna habitat types. Riverine riparian and forested wetland areas would be expanded by planting native trees and shrubs benefiting a multitude of species. Although a 'hands off' approach may provide habitat benefits after many decades, a more proactive approach would provide far more benefits to fish and wildlife, and thus would provide additional habitat credits more quickly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ledvina, Joseph A.
2008-05-01
Research on the effects of wetland restoration on reptiles and amphibians is becoming more common, but almost all of these studies have observed the colonization of recently disturbed habitats that were completely dry at the time of restoration. In a similar manner, investigations herpetofaunal responses to forest management have focused on clearcuts, and less intensive stand manipulations are not as well studied. To evaluate community and population responses of reptiles and amphibians to hydrology restoration and canopy removal in the interior of previously degraded Carolina bays, I monitored herpetofauna in the uplands adjacent to six historically degraded Carolina bays atmore » the Savannah River Site (SRS) in South Carolina for four years after restoration. To evaluate the effects of forest thinning on upland herpetofauna, forests were thinned in the margins of three of these bays. I used repeated measures ANOVA to compare species richness and diversity and the abundance of selected species and guilds between these bays and with those at three reference bays that were not historically drained and three control bays that remained degraded. I also used Non-metric Multidimensional Scaling (NMDS) to look for community-level patterns based treatments.« less
NASA Astrophysics Data System (ADS)
Orzetti, L. L.; Jones, R. C.
2005-05-01
Forested riparian buffer zones have been proposed as an important aid in curtailing upland sources of pollution before they reach stream surface waters, and enhancing habitat for stream organisms. Our objective was to test the efficacy of restored forest riparian buffers along streams in the Chesapeake Bay watershed by examining the stream macrobenthic community structure. To test our hypothesis, we collected riffle benthic and water samples, and performed habitat evaluations at 30 stream sites in the mid-Atlantic Piedmont, ranging in buffer age from 0 to greater than 50 years of age. Results showed that habitat, water quality, and benthic macroinvertebrate metrics improved with age of restored buffer. Habitat scores were driven mostly by instream substrate availability and width and age of riparian buffer zones. Water quality parameters varied within buffer age groups depending age of surrounding forest vegetation. Benthic invertebrate taxa richness, % EPT, % Plecoptera, % Ephemeroptera, and the FBI all improved with age of buffer zone. Instream habitat quality was the greatest driver of benthic macroinvertebrate community diversity and health, and appeared to plateau within 10-15 years of restoration with noticeable improvements occurring within 5-10 years post restoration.
Small clusters of fast-growing trees enhance forest structure on restored bottomland sites
Twedt, D.J.
2006-01-01
Despite the diversity of trees in bottomland forests, restoration on bottomland sites is often initiated by planting only a few species of slow-growing, hard mast?producing trees. Although successful at establishing trees, these young forests are slow to develop vertical structure, which is a key predictor of forest bird colonization. Furthermore, when natural seed sources are few, restored sites may be depauperate in woody species. To increase richness of woody species, maximum tree height, and total stem density, I supplemented traditional plantings on each of 40 bottomland restoration sites by planting 96 Eastern cottonwood (Populus deltoides) and American sycamore (Platanus occidentalis) in eight clusters of 12 trees. First year survival of cottonwood stem cuttings (25%) and sycamore seedlings (47%) was poor, but survival increased when afforded protection from competition with weeds. After five growing seasons, 165 of these 320 supplemental tree clusters had at least one surviving tree. Vegetation surrounding surviving clusters of supplemental trees harbored a greater number of woody species, increased stem density, and greater maximum tree height than was found on paired restoration sites without supplemental trees. These increases were primarily accounted for by the supplemental trees.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, Robin
During the period 2008-2009, there were 2 contracts with BPA. One (38539) was dealing with the restoration work for 2007 and the other (26198) was an extension on the 2006 contract including the NEPA for Dam removal on the old channel of the Sandy River. For contract 38539, the Sandy River Delta Habitat Restoration project continued its focus on riparian hardwood reforestation with less emphasis on wetlands restoration. Emphasis was placed on Sundial Island again due to the potential removal of the dike and the loss of access in the near future. AshCreek Forest Management was able to leverage additionalmore » funding from grants to help finance the restoration effort; this required a mid year revision of work funded by BPA. The revised work not only continued the maintenance of restored hardwood forests, but was aimed to commence the restoration of the Columbia River Banks, an area all along the Columbia River. This would be the final restoration for Sundial Island. The grant funding would help achieve this. Thus by 2011, all major work will have been completed on Sundial Island and the need for access with vehicles would no longer be required. The restored forests continued to show excellent growth and development towards true riparian gallery forests. Final inter-planting was commenced, and will continue through 2010 before the area is considered fully restored. No new wetland work was completed. The wetlands were filled by pumping in early summer to augment the water levels but due to better rainfall, no new fuel was required to augment existing. Monitoring results continued to show very good growth of the trees and the restoration at large was performing beyond expectations. Weed problems continue to be the most difficult issue. The $100,000 from BPA planned for forest restoration in 2008, was augmented by $25,000 from USFS, $120,000 from OR150 grant, $18,000 from LCREP, and the COE continued to add $250,000 for their portion. Summary of the use of these funds are displayed in Table 1 (page 5). Work on the restoration of the original Sandy River channel (dam removal, contract 26198) continued slowly. The draft EA was completed and sent out for review. The COE has decided to finish the NEPA with the intent to complete the project.« less
Baker, William L
2015-01-01
Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used new reference data and records of high-severity fire from 1984-2012 across all dry forests (25.5 million ha) of the western USA to test these hypotheses. I also approximated projected effects of climatic change on high-severity fire in dry forests by applying existing projections. This analysis showed the rate of recent high-severity fire in dry forests is within the range of historical rates, or is too low, overall across dry forests and individually in 42 of 43 analysis regions. Significant upward trends were lacking overall from 1984-2012 for area burned and fraction burned at high severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis regions. Projections for A.D. 2046-2065 showed high-severity fire would generally be still operating at, or have been restored to historical rates, although high projections suggest high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change. Some adverse ecological effects of high-severity fires are concerns. Managers and communities can improve our ability to live with high-severity fire in dry forests.
Knutson, M.G.; Hoover, J.P.; Klaas, E.E.; Thompson, Frank R.
1996-01-01
Bottomland forests of the Central Forest Region of the Upper Midwest are found primarily on the floodplains of large rivers and include at least six types of forest communities. Birds breeding in bottomland forests are affected by extensive variation in latitude, climate, hydrology, forest succession, and change caused by anthropogenic disturbances. The floodplain forest bird community differs in species composition and in relative abundance from adjacent upland habitats. High abundances of some species are found in the floodplain and some species, such as the prothonotary warbler, brown creeper, yellow-billed cuckoo, yellow-bellied sapsucker, and great crested flycatcher, show a clear preference for floodplain forests. Studies of nesting success indicate that, for some species, nest success may be higher in the floodplain than in the uplands. Floodplain birds face threats due to large-scale loss of floodplain forest habitat. Conservation efforts should focus on restoring degraded floodplains by maintaining high tree species diversity and wide corridors. To accomplish this, the underlying hydrodynamics which support a diverse floodplain forest habitat may need to be restored. Large, contiguous tracts of floodplain and upland forests should be maintained where they exist and restored in other locations. This will provide some high quality habitat for area-sensitive neotropical migratory birds (NTMBs) in agricultural landscapes where small, scattered forest fragments are the rule. Future research efforts should examine the importance of floodplain forests in maintaining populations of neotropical migrants, especially birds experiencing population declines in adjacent uplands.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
..., California, Grey's Mountain Ecosystem Restoration Project AGENCY: Forest Service, USDA. ACTION: Notice of... a series of ecological restoration treatments, north of the community of Bass Lake, California, south of Soquel Meadow, east of Nelder Grove Historical Area and west of Graham Mountain. Treatment...
Weimin Xi; Robert N. Coulson; John D. Waldron; Maria D. Tchakerian; Charles W. Lafon; David M. Cairns; Andrew G. Birt; Kier D. Klepzig
2009-01-01
Restoration planning, evaluation, and implementation are important in areas where abiotic disturbances (e.g., wildfires, hurricanes, and ice storms), biotic disturbances (e.g., outbreaks of native and exotic invasive pests and diseases), and anthropogenic disturbances (e.g., harvesting, planting, and fire exclusion) have altered forest...
77 FR 775 - Nez Perce-Clearwater National Forests; Idaho; Clear Creek Integrated Restoration Project
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-06
... species distributions habitat complexity (diversity) and landscape pattern across the forested portions of..., improve long term resistance and resilience at the landscape level; restore natural fire regimes and... landscape that is more highly fragmented than what would be expected through natural disturbance. Ladder...
Meeting forest restoration challenges: Using the Target Plant Concept
Kas Dumroese; Thomas D. Landis; Jeremy Pinto; Diane L. Haase; Kim W. Wilkinson; Anthony S. Davis
2016-01-01
Meeting forest restoration challenges relies on successful establishment of plant materials (e.g., seeds, cuttings, rooted cuttings, or seedlings, etc.; hereafter simply "seedlings"). The Target Plant Concept (TPC) provides a flexible framework that nursery managers and their clients can use to improve the survival and growth of these seedlings. The...
Restoration management in redwood forests degraded by sudden oak death
Richard C. Cobb; Peter Hartsough; Kerri Frangioso; Janet Klein; Mike Swezy; Andrea Williams; Carl Sanders; Susan J. Frankel; David M. Rizzo
2017-01-01
We describe the foundation, objectives, and initial results from a stand-level experiment focused on restoration of redwood (Sequoia sempervirens (D. Don) Endl.) forests impacted by sudden oak death (SOD), caused by Phytophthora ramorum. Our study stands were primed for heavy impacts by SOD. Extensive harvesting which ended...
Stand dynamics of an oak woodland forest and effects of a restoration treatment on forest health
Stacy L. Clark; Callie J. Schweitzer
2016-01-01
Woodland restoration has been conducted in many countries, primarily in Mediterranean regions, but has only recently been attempted on publically and privately owned lands in the eastern United States. We reconstructed historical stand dynamics and tested the immediate effects of an oak
Restoring southern Ontario forests by managing succession in conifer plantations
William C. Parker; Ken A. Elliott; Daniel C. Dey; Eric Boysen
2008-01-01
Thinning and underplanting of conifer plantations to promote natural succession in southern Ontario's forests for restoration purposes was examined in a young red pine (Pinus resinosa Ait.) plantation. Eleven years after application of five thinning treatments, seedling diameter, height, and stem volume of planted white ash (Fraxinus...
Red spruce restoration modeling in LANDIS
Melissa. Thomas-Van Gundy
2010-01-01
Scenarios for the restoration of red spruce (Picea rubens)-dominated forests on the Monongahela National Forest were created in the landscape simulation model LANDIS. The resulting landscapes were compared to existing habitat suitability index models for the Virginia northern flying squirrel (VNFS) and Cheat Mountain salamander (CMS) as a measure of...
Restoring tropical forests on bauxite mined lands: lessons from the Brazilian Amazon
John A. Parrotta; Oliver H. Knowles
2001-01-01
Restoring self-sustaining tropical forest ecosystems on surface mined sites is a formidable challenge that requires the integration of proven reclamation techniques and reforestation strategies appropriate to specific site conditions, including landscape biodiversity patterns. Restorationists working in most tropical settings are usually hampered by lack of basic...
Michael I. Premer; Sophan Chhin; Jianwei Zhang
2017-01-01
Forest restoration efforts in the intermountain west of North America generally seek to promote the continuation of pine dominance, enhance wildlife habitat, and decrease hazardous fuels, thereby mitigating catastrophic losses from various stressors and disturbances. We propose a method of focal tree release thinning that partitions the...
A road for a promising future for China's primates: The potential for restoration.
Chapman, Colin A
2018-07-18
China is one of the most dynamic countries of the world and it shelters some amazing levels of biodiversity, including some very special primate species. However, primarily as a result of forest loss, most of which occurred in historical times, approximately 70% of China's primate species have less than 3 000 individuals. Here I evaluate one road for future conservation/development that could produce very positive gains for China's primates; namely forest restoration. I argue that for a large scale restoration project to be possible two conditions must be met; the right societal conditions must exist and the right knowledge must be in hand. This evaluation suggests that the restoration of native forest to support many of China's primates holds great potential to advance conservation goals and to promote primate population recovery.
The effects of floodplain forest restoration and logjams on flood risk and flood hydrology
NASA Astrophysics Data System (ADS)
Dixon, Simon; Sear, David A.; Sykes, Tim; Odoni, Nicholas
2015-04-01
Flooding is the most common natural catastrophe, accounting for around half of all natural disaster related deaths and causing economic losses in Europe estimated at over € 2bn per year. In addition flooding is expected to increase in magnitude and frequency with climate change, effectively shortening the return period for a given magnitude flood. Increasing the height and extent of hard engineered defences in response to increased risk is both unsustainable and undesirable. Thus alternative approaches to flood mitigation are needed such as harnessing vegetation processes to slow the passage of flood waves and increase local flood storage. However, our understanding of these effects at the catchment scale is limited. In this presentation we demonstrate the effects of two river restoration approaches upon catchment scale flood hydrology. The addition of large wood to river channels during river restoration projects is a popular method of attempting to improve physical and biological conditions in degraded river systems. Projects utilising large wood can involve the installation of engineered logjams (ELJs), the planting and enhancement of riparian forests, or a combination of both. Altering the wood loading of a channel through installation of ELJs and increasing floodplain surface complexity through encouraging mature woodland could be expected to increase the local hydraulic resistance, increasing the timing and duration of overbank events locally and therefore increasing the travel time of a flood wave through a reach. This reach-scale effect has been documented in models and the field; however the impacts of these local changes at a catchment scale remains to be illustrated. Furthermore there is limited knowledge of how changing successional stages of a restored riparian forest through time may affect its influence on hydromorphic processes. We present results of a novel paired numerical modelling study. We model changes in flood hydrology based on a 98km² catchment using OVERFLOW; a simplified hydrological model using a spatially distributed unit hydrograph approach. Restoration scenarios for the hydrological modelling are informed by the development of a new conceptual model of riparian forest succession, including quantitative estimates of deadwood inputs to the system, using a numerical forest growth model. We explore scenarios using ELJs alone as well as managed and unmanaged riparian forest restoration at scales from reach to sub-catchment. We demonstrate that changes to catchment flood hydrology with restoration are highly location dependant and downstream flood peaks can in some cases increase through synchronisation of sub-catchment flood waves. We constrain magnitude estimates for increases and decreases in flood peaks for modelled restoration scenarios and scales. Finally we analyse the potential for using riparian forest restoration as part of an integrated flood risk management strategy, including specific examples of type and extent of restoration which may prove most beneficial.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-11
... quality, stream restoration, agriculture conservation, wetland restoration, forest buffers, fish passage... Bay Protection and Restoration Section 203 Final Coordinated Implementation Strategy AGENCY... availability of a final strategy for restoration and protection of the Chesapeake Bay that was prepared...
Impacts of forest and land management on biodiversity and carbon
Valerie Kapos; Werner A. Kurz; Toby Gardner; Joice Ferreira; Manuel Guariguata; Lian Pin Koh; Stephanie Mansourian; John A. Parrotta; Nokea Sasaki; Christine B. Schmitt; Jos Barlow; Markku Kanninen; Kimiko Okabe; Yude Pan; Ian D. Thompson; Nathalie van Vliet
2012-01-01
Changes in the management of forest and non-forest land can contribute significantly to reducing emissions from deforestation and forest degradation. Such changes can include both forest management actions - such as improving the protection and restoration of existing forests, introducing ecologically responsible logging practices and regenerating forest on degraded...
NASA Astrophysics Data System (ADS)
O'Donnell, F. C.; Springer, A. E.; Sankey, T.; Masek Lopez, S.
2014-12-01
Forest restoration projects are being planned for large areas of overgrown semi-arid ponderosa pine forests of the Southwestern US. Restoration involves the thinning of smaller trees and prescribed or managed fire to reduce tree density, restore a more natural fire regime, and decrease the risk of catastrophic wildfire. The stated goals of these projects generally reduced plant water stress and improvements in hydrologic function. However, little is known about how to design restoration treatments to best meet these goals. As part of a larger project on snow cover, soil moisture, and groundwater recharge, we measured soil moisture, an indicator of plant water status, in four pairs of control and restored sites near Flagstaff, Arizona. The restoration strategies used at the sites range in both amount of open space created and degree of clustering of the remaining trees. We measured soil moisture using 30 cm vertical time domain reflectometry probes installed on 100 m transects at 5 m intervals so it would be possible to analyze the spatial pattern of soil moisture. Soil moisture was higher and more spatially variable in the restored sites than the control sites with differences in spatial pattern among the restoration types. Soil moisture monitoring will continue until the first snow fall, at which point measurements of snow depth and snow water equivalent will be made at the same locations.
Jiang, Fengqi; Zeng, Dehui; Yu, Zhanyuan
2006-12-01
Aimed at the decline of protective forest in China, and applying the key principles of restoration ecology, such as ecological succession, disturbance, and population density, etc., this paper assessed the rationality of designing elements of protective forest in decision-making level, and analyzed its relationships with the decline of the forest, taking Pinus sylvestris var. mongolica plantation in Zhanggutai sandy land as an example. It was considered that the disagreement of large-scale afforestation with succession climax in regional scale was aberrant to the ecological principles, and resulted in the aberrancy of the objectives, steps, species composition, and stand density of protective forest establishment, being the main cause of protective forest decline. Mismanagement and frequent natural and human disturbances were also the important causes for the decline. Three strategies for preventing the decline, i.e., better understanding damaged ecosystems, increasing material and energy input, and overcoming disturbances were put forward, and the objectives of restoring vegetation, judgment of climax for ecological succession, and application of plagioclimax in establishing artificial vegetation were discussed.
Zhang, Liping; Zhang, Shiwen; Huang, Yajie; Cao, Meng; Huang, Yuanfang; Zhang, Hongyan
2016-01-01
Understanding abandoned mine land (AML) changes during land reclamation is crucial for reusing damaged land resources and formulating sound ecological restoration policies. This study combines the linear programming (LP) model and the CLUE-S model to simulate land-use dynamics in the Mentougou District (Beijing, China) from 2007 to 2020 under three reclamation scenarios, that is, the planning scenario based on the general land-use plan in study area (scenario 1), maximal comprehensive benefits (scenario 2), and maximal ecosystem service value (scenario 3). Nine landscape-scale graph metrics were then selected to describe the landscape characteristics. The results show that the coupled model presented can simulate the dynamics of AML effectively and the spatially explicit transformations of AML were different. New cultivated land dominates in scenario 1, while construction land and forest land account for major percentages in scenarios 2 and 3, respectively. Scenario 3 has an advantage in most of the selected indices as the patches combined most closely. To conclude, reclaiming AML by transformation into more forest can reduce the variability and maintain the stability of the landscape ecological system in study area. These findings contribute to better mapping AML dynamics and providing policy support for the management of AML. PMID:27023575
Zhang, Liping; Zhang, Shiwen; Huang, Yajie; Cao, Meng; Huang, Yuanfang; Zhang, Hongyan
2016-03-24
Understanding abandoned mine land (AML) changes during land reclamation is crucial for reusing damaged land resources and formulating sound ecological restoration policies. This study combines the linear programming (LP) model and the CLUE-S model to simulate land-use dynamics in the Mentougou District (Beijing, China) from 2007 to 2020 under three reclamation scenarios, that is, the planning scenario based on the general land-use plan in study area (scenario 1), maximal comprehensive benefits (scenario 2), and maximal ecosystem service value (scenario 3). Nine landscape-scale graph metrics were then selected to describe the landscape characteristics. The results show that the coupled model presented can simulate the dynamics of AML effectively and the spatially explicit transformations of AML were different. New cultivated land dominates in scenario 1, while construction land and forest land account for major percentages in scenarios 2 and 3, respectively. Scenario 3 has an advantage in most of the selected indices as the patches combined most closely. To conclude, reclaiming AML by transformation into more forest can reduce the variability and maintain the stability of the landscape ecological system in study area. These findings contribute to better mapping AML dynamics and providing policy support for the management of AML.
Dealing with public concerns in restoring fire to the forest
Leslie A. C. Weldon
1996-01-01
Public support is important to all restoration efforts on public lands. Some types of restoration activities are easier for the public to support than others. Restoring wetlands, habitat restoration for salmon or burrowing owls, and vegetative rehabilitation are generally acceptable practices. Most restoration projects and activities such as these do not have much...
Venson, Graziela R; Marenzi, Rosemeri C; Almeida, Tito César M; Deschamps-Schmidt, Alexandre; Testolin, Renan C; Rörig, Leonardo R; Radetski, Claudemir M
2017-03-01
River or alluvial sand mining is causing a variety of environmental problems in the Itajaí-açú river basin in Santa Catarina State (south of Brazil). When this type of commercial activity degrades areas around rivers, environmental restoration programs need to be executed. In this context, the aim of this study was to assess the evolution of a restored riparian forest based on data on the soil microbial activity and plant biomass growth. A reference site and three sites with soil degradation were studied over a 3-year period. Five campaigns were performed to determine the hydrolysis of the soil enzyme fluorescein diacetate (FDA), and the biomass productivity was determined at the end of the studied period. The variation in the enzyme activity for the different campaigns at each site was low, but this parameter did differ significantly according to the site. Well-managed sites showed the highest biomass productivity, and this, in turn, showed a strong positive correlation with soil enzyme activity. In conclusion, soil enzyme activity could form the basis for monitoring and the early prediction of the success of vegetal restoration programs, since responses at the higher level of biological organization take longer, inhibiting the assessment of the project within an acceptable time frame.
Methods to Reduce Forest Residue Volume after Timber Harvesting and Produce Black Carbon
Busse, Matt D.; Archuleta, James G.; McAvoy, Darren; Roussel, Eric
2017-01-01
Forest restoration often includes thinning to reduce tree density and improve ecosystem processes and function while also reducing the risk of wildfire or insect and disease outbreaks. However, one drawback of these restoration treatments is that slash is often burned in piles that may damage the soil and require further restoration activities. Pile burning is currently used on many forest sites as the preferred method for residue disposal because piles can be burned at various times of the year and are usually more controlled than broadcast burns. In many cases, fire can be beneficial to site conditions and soil properties, but slash piles, with a large concentration of wood, needles, forest floor, and sometimes mineral soil, can cause long-term damage. We describe several alternative methods for reducing nonmerchantable forest residues that will help remove excess woody biomass, minimize detrimental soil impacts, and create charcoal for improving soil organic matter and carbon sequestration. PMID:28377830
Silvicultural applications: Restoring ecological structure and process in ponderosa pine forests
Carl E. Fiedler
1996-01-01
A primary goal of restoration treatments in ponderosa pine (Pinus ponderosa)/fir forests is to create more open stand structures, thereby improving tree vigor and reducing vulnerability to insects, disease, and severe fire. An additional goal in some stands is to manipulate existing species composition and site conditions to favor regeneration of...
Grassland restoration with and without fire: evidence from a tree-removal experiment
C.B. Halpern; R.D. Haugo; J.A. Antos; S.S. Kaas; A.L. Kilanowski
2012-01-01
Forest encroachment threatens the biological diversity of grasslands globally. Positive feedbacks can reinforce the process, affecting soils and ground vegetation, ultimately leading to replacement of grassland by forest species. We tested whether restoration treatments (tree removal, with or without fire) reversed effects of nearly two centuries of encroachment by...
Cultural practices for restoring and maintaining ecosystem function
David H. Van Lear; Tricia L. Wurtz
2005-01-01
Forest restoration, in a general sense, suggests a transition from a degraded state to some "natural" condition, presumably devoid of human influence (Stanturf, this volume). Yet, because nearly all temperate and boreal forests have been influenced to varying and unknown degrees by aborigional man, as well as being subject to continually changing climate and...
Forest restoration in a global context
John A. Stanturf
2000-01-01
Forest restoration on land cleared for agriculture is occurring around the world. Often land was abandoned because of infertility, frequent flooding, or other site limitations. In some countries, market forces or changing trade policies drive conversion of cleared land to plantations of exotic or native tree species. The objective of this paper is to introduce the...
Dynamics of buckbrush populations under simulated forest restoration alternatives
David W. Huffman; Margaret M. Moore
2008-01-01
Plant population models are valuable tools for assessing ecological tradeoffs between forest management approaches. In addition, these models can provide insight on plant life history patterns and processes important for persistence and recovery of populations in changing environments. In this study, we evaluated a set of ecological restoration alternatives for their...
Dynamics of buckbrush populations under simulated forest restoration alternatives (P-53)
David W. Huffman; Margaret M. Moore
2008-01-01
Plant population models are valuable tools for assessing ecological tradeoffs between forest management approaches. In addition, these models can provide insight on plant life history patterns and processes important for persistence and recovery of populations in changing environments. In this study, we evaluated a set of ecological restoration alternatives for their...
Don C. Bragg; Michael G. Shelton; James M. Guldin
2008-01-01
The successful restoration of old-growth-like loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine-dominated forests requires the integration of ecological information with long-term silvicultural research from places such as the Crossett Experimental Forest (CEF). Conventional management practices such as timber harvesting or competition control have supplied...
Synergy between ecological needs and economic aspects of ecosystem restoration
Charles E. Keegan; Carl E. Fiedler
2000-01-01
The implementation of properly designed treatments to restore and sustain desired forest conditions in the Inland Northwest, besides moving forest stands more rapidly to an ecologically desirable and sustainable condition, can generate positive revenues from the timber to be removed. These treatments also have potential to increase the number of relatively high paying...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-24
... the Healthy Forests Restoration Act of 2003 is the minimum necessary for an individual or organization... for Hazardous Fuel Reduction Projects Authorized by the Healthy Forest Restoration Act of 2003 AGENCY... organizations on the extension, with no revision, of a currently approved information collection, OMB 0596-0172...
Keith Reynolds; Paul Hessburg; Joan O’Callaghan
2014-01-01
Human settlement and land management have radically altered the composition and structure of eastern Washington forests. Restoring high-functioning landscapes and habitat patterns have broad implications for the future sustainability of native species, ecosystem services, and ecosystem processes. Many land managers and scientists have turned their attention to whole...
Small-diameter success stories
Jean Livingston
2004-01-01
Public and private forests are in critical need of restoration by thinning small-diameter timber. If economical and value-added uses for this thinned material can be found, forest restoration costs could be offset and catastrophic wildfires would be minimized. At the same time, forestry- dependent rural communities?faced with diminishing timber supplies, loss of jobs,...
Restoring historic landscape patterns through management: Restoring fire mosaics on the landscape
Cathy Stewart
1996-01-01
Seral, fire dependent lodgepole pine (Pinus contorta Dougl.) communities are an important component of upper elevation forests throughout the Northern Rockies, where they cover 4 million acres, or about 17 percent of the land base. On the Bitterroot National Forest, lodgepole pine occurs mostly between 5,500 and 7,500 feet.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-12
... Policy Act: Categorical Exclusions for Soil and Water Restoration Activities AGENCY: Forest Service, USDA... more efficiently analyze and document the potential environmental effects of soil and water restoration... achieve soil and water restoration objectives. Category 18 allows the restoration of wetlands, streams...
Restoration islands: A tool for efficently restoring dryland ecosystems
USDA-ARS?s Scientific Manuscript database
Restoration islands are concentrated plantings in strategic locations, created to efficiently use resources and capitalize on landscape-scale processes to achieve restoration goals. These methods have been used effectively in mesic ecosystems, particularly tropical forests, where the goal of island ...
Li, Cong; Li, Shuzhuo; Feldman, Marcus W; Li, Jie; Zheng, Hua; Daily, Gretchen C
2018-03-01
China's largest-ever resettlement program is underway, aiming to restore ecosystems and lift ecosystem service providers out of the poverty trap and into sustainable livelihoods. We examine the impact of the relocation and settlement program (RSP) to date, reporting on an ecosystem services (ES) assessment and a 1400-household survey. The RSP generally achieves the goals of ES increase and livelihood restore. In biophysical terms, the RSP improves water quality, sediment retention, and carbon sequestration. In social terms, resettled households so far report transformation of livelihoods activities from traditional inefficient agricultural and forest production to non-farm activities. Increased income contributes to decrease the poverty rate and improve resettled households' living condition and standard. Meanwhile, the RSP decreases households' dependence on ES in terms of provisioning services. Difficulty and challenge also showed up subsequently after relocation. A major current challenge is to enable poorer households to move, while providing greater follow-up support to relocated households. While the program is unique to China, it illuminates widespread opportunities for addressing environmental and poverty-related concerns in a rapidly changing world.
Efficacy of landscape scale woodland and savanna restoration at multiple spatial and temporal scales
Pittman, H. Tyler; Krementz, David G.
2016-01-01
The loss of historic ecosystem conditions has led forest managers to implement woodland and savanna ecosystem restoration on a landscape scale (≥10,000 ha) in the Ozark Plateau of Arkansas. Managers are attempting to restore and conserve these ecosystems through the reintroduction of disturbance, mainly short-rotation early-growing-season prescribed fire. Short-rotation early-growing season prescribed fire in the Ozarks typically occurs immediately before bud-break, through bud-break, and before leaf-out, and fire events occur on a three-to five-year interval. We examined short-rotation early-growing season prescribed fire as a restoration tool on vegetation characteristics. We collected vegetation measurements at 70 locations annually from 2011 to 2012 in and around the White Rock Ecosystem Restoration Area (WRERA), Ozark-St. Francis National Forest, Arkansas, and used generalized linear models to investigate the impact and efficacy of prescribed fire on vegetation structure. We found the number of large shrubs (>5 cm base diameter) decreased and small shrubs (<5 cm ground diameter) increased with prescribed fire severity. We found that horizontal understory cover from ground level to 1 m in height increased with time-since-prescribed-fire and woody ground cover decreased with the number of prescribed fire treatments. Using LANDFIRE datasets at the landscape scale, we found that since the initiation of a short-rotation early-growing season prescribed fire management regime, forest canopy cover has not reverted to levels characteristic of woodlands and savannas or reached restoration objectives over large areas. Without greater reductions in forest canopy cover and increases in forest-canopy cover heterogeneity, advanced regeneration will be limited in success, and woodland and savanna conditions will not return soon or to the extent desired.
Developing New Coastal Forest Restoration Products Based on Landsat, ASTER, and MODIS Data
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Graham, William; Smoot, James
2009-01-01
This paper discusses an ongoing effort to develop new geospatial information products for aiding coastal forest restoration and conservation efforts in coastal Louisiana and Mississippi. This project employs Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data in conjunction with airborne elevation data to compute coastal forest cover type maps and change detection products. Improved forest mapping products are needed to aid coastal forest restoration and management efforts of State and Federal agencies in the Northern Gulf of Mexico (NGOM) region. In particular, such products may aid coastal forest land acquisition and conservation easement procurements. This region's forests are often disturbed and subjected to multiple biotic and abiotic threats, including subsidence, salt water intrusion, hurricanes, sea-level rise, insect-induced defoliation and mortality, altered hydrology, wildfire, and conversion to non-forest land use. In some cases, such forest disturbance has led to forest loss or loss of regeneration capacity. In response, a case study was conducted to assess and demonstrate the potential of satellite remote sensing products for improving forest type maps and for assessing forest change over the last 25 years. Change detection products are needed for assessing risks for specific priority coastal forest types, such as live oak and baldcypress-dominated forest. Preliminary results indicate Landsat time series data are capable of generating the needed forest type and change detection products. Useful classifications were obtained using 2 strategies: 1) general forest classification based on use of 3 seasons of Landsat data from the same year; and 2) classification of specific forest types of concern using a single date of Landsat data in which a given targeted type is spectrally distinct compared to adjacent forested cover. When available, ASTER data was useful as a complement to Landsat data. Elevation data helped to define areas in which targeted forest types occur, such as live oak forests on natural levees. MODIS Normalized Difference Vegetation Index time series data aided visual assessments of coastal forest damage and recovery from hurricanes. Landsat change detection products enabled change to be identified at the stand level and at 10- year intervals with the earliest date preceding available change detection products from the National Oceanic and Atmospheric Administration and from the U.S. Geological Survey. Additional work is being done in collaboration with State and Federal agency partners in a follow-on NASA ROSES project to refine and validate these new, promising products. The products from the ROSES project will be available for aiding NGOM coastal forest restoration and conservation.
Sen. Thune, John [R-SD
2013-03-22
Senate - 03/22/2013 Read twice and referred to the Committee on Agriculture, Nutrition, and Forestry. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Ryan, Robert E.; McKellip, Rodney
2008-01-01
The Healthy Forest Restoration Act of 2003 mandated that a national forest threat Early Warning System (EWS) be developed. The USFS (USDA Forest Service) is currently building this EWS. NASA is helping the USFS to integrate remotely sensed data into the EWS, including MODIS data for monitoring forest disturbance at broad regional scales. This RPC experiment assesses the potential of VIIRS (Visible/Infrared Imager/Radiometer Suite) and MODIS (Moderate Resolution Imaging Spectroradiometer) data for contribution to the EWS. In doing so, the RPC project employed multitemporal simulated VIIRS and MODIS data for detecting and monitoring forest defoliation from the non-native Eurasian gypsy moth (Lymantria despar). Gypsy moth is an invasive species threatening eastern U.S. hardwood forests. It is one of eight major forest insect threats listed in the Healthy Forest Restoration Act of 2003. This RPC experiment is relevant to several nationally important mapping applications, including carbon management, ecological forecasting, coastal management, and disaster management
Soil Quality of Bauxite Mining Areas
NASA Astrophysics Data System (ADS)
Terezinha Gonçalves Bizuti, Denise; Dinarowski, Marcela; Casagrande, José Carlos; Silva, Luiz Gabriel; Soares, Marcio Roberto; Henrique Santin Brancalion, Pedro
2015-04-01
The study on soil quality index (SQI) aims to assess the current state of the soil after use and estimating its recovery through sustainable management practices This type of study is being used in this work in order to check the efficiency of forest recovery techniques in areas that have been deeply degraded by bauxite mining process, and compare them with the area of native forest, through the determination of SQI. Treatments were newly mined areas, areas undergoing restoration (topsoil use with planting of native forest species), areas in rehabilitation (employment of the green carpet with topsoil and planting of native forest species) and areas of native forests, with six repetitions, in areas of ALCOA, in the municipality of Poços de Caldas/MG. To this end, we used the additive pondered model, establishing three functions: Fertility, water movement and root development, based on chemical parameters (organic matter, base saturation, aluminum saturation and calcium content); physical (macroporosity, soil density and clay content); and microbiological testing (basal respiration by the emission of CO2 ). The SQIs obtained for each treatment was 41%, 56%, 63% and 71% for newly mined areas, native forest, areas in restoration and rehabilitation, respectively. The recovering technique that most approximates the degraded soil to the soil of reference is the restoration, where there was no statistically significant difference of areas restored with native forest. It was found that for the comparison of the studied areas must take into account the nutrient cycling, that disappear with plant removal in mining areas, once the soil of native forest features low fertility and high saturation by aluminum, also taking in account recovering time.
Efficiency of protected areas in Amazon and Atlantic Forest conservation: A spatio-temporal view
NASA Astrophysics Data System (ADS)
Sobral-Souza, Thadeu; Vancine, Maurício Humberto; Ribeiro, Milton Cezar; Lima-Ribeiro, Matheus S.
2018-02-01
The Amazon and Atlantic Forest are considered the world's most biodiverse biomes. Human and climate change impacts are the principal drivers of species loss in both biomes, more severely in the Atlantic Forest. In response to species loss, the main conservation action is the creation of protected areas (PAs). Current knowledge and research on the PA network's conservation efficiency is scarce, and existing studies have mainly considered a past temporal view. In this study, we tested the efficiency of the current PA network to maintain climatically stable areas (CSAs) across the Amazon and Atlantic Forest. To this, we used an ecological niche modeling approach to biome and paleoclimatic simulations. We propose three categories of conservation priority areas for both biomes, considering CSAs, PAs and intact forest remnants. The biomes vary in their respective PA networks' protection efficiency. Regarding protect CSAs, the Amazon PA network is four times more efficient than the Atlantic Forest PA network. New conservation efforts in these two forest biomes require different approaches. We discussed the conservation actions that should be taken in each biome to increase the efficiency of the PA network, considering both the creation and expansion of PAs as well as restoration programs.
A mangrove creek restoration plan utilizing hydraulic modeling.
Marois, Darryl E; Mitsch, William J
2017-11-01
Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. Urban development has been a primary cause for mangrove destruction and deterioration in south Florida USA for the last several decades. As a result, the restoration of mangrove forests has become an important topic of research. Using field sampling and remote-sensing we assessed the past and present hydrologic conditions of a mangrove creek and its connected mangrove forest and brackish marsh systems located on the coast of Naples Bay in southwest Florida. We concluded that the hydrology of these connected systems had been significantly altered from its natural state due to urban development. We propose here a mangrove creek restoration plan that would extend the existing creek channel 1.1 km inland through the adjacent mangrove forest and up to an adjacent brackish marsh. We then tested the hydrologic implications using a hydraulic model of the mangrove creek calibrated with tidal data from Naples Bay and water levels measured within the creek. The calibrated model was then used to simulate the resulting hydrology of our proposed restoration plan. Simulation results showed that the proposed creek extension would restore a twice-daily flooding regime to a majority of the adjacent mangrove forest and that there would still be minimal tidal influence on the brackish marsh area, keeping its salinity at an acceptable level. This study demonstrates the utility of combining field data and hydraulic modeling to aid in the design of mangrove restoration plans.
Stigsdotter, Ulrika K; Corazon, Sus Sola; Sidenius, Ulrik; Kristiansen, Jesper; Grahn, Patrik
2017-07-01
Today, urbanization presents a challenge to urban planning with regard to creating healthy living environments. The aim of this research is to gain further knowledge of the restorativeness of a best case urban and natural environment: that is a historic down town urban environment and forest environment located in an arboretum. The study has a cross-over design where 51 (N) female university students are exposed to the two environments through both seated viewing and walking. A mixed method approach is used with both physiological measurements of blood pressure (BP) and heart rate variability (HRV) and psychological measurements of mood change and perceived restorativeness. The HRV results show no significant differences between the two environments, and both environments are found to be more physiologically restorative than being at the office or on the minibus. The results of the psychological measures indicate that the forest walk has a positive effect on mood, while the walk in the urban environment has no effect. The forest environment is also rated more highly with regard to perceived restorativeness than the urban environment. The results support the current research that shows natural environments as more restorative than urban environments. The study also adds to the ongoing debate on healthy urban planning by indicating that architectural and historical qualities may be associated with the physiological well-being of citizens. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Landscape evaluation for restoration planning on the Okanogan-Wenatchee National Forest, USA
Paul F. Hessburg; Keith M. Reynolds; R. Brion Salter; James D. Dickinson; William L. Gaines; Richy J. Harrod
2013-01-01
Land managers in the western US are beginning to understand that early 20th century forests displayed complex patterns of composition and structure at several different spatial scales, that there was interplay between patterns and processes within and across scales, and that these conditions have been radically altered by management. Further, they know that restoring...
Restoration of plant cover on campsites in subalpine forests: Sawtooth Wilderness, Idaho
David N. Cole; Liese Dean; Debarah Taylor; Troy E. Hall
2012-01-01
This study assessed the effectiveness of restoration treatments in enhancing the growth of Vaccinium scoparium transplants and plants established from seed on six closed campsites in subalpine forests in the Sawtooth Wilderness, Idaho. In the primary experiment, the soil on all plots was scarified and amended with organic matter; plots varied regarding the type and...
Margaret M. Moore; W. Wallace Covington; Peter Z. Fule; Stephen C. Hart; Thomas E. Kolb; Joy N. Mast; Stephen S. Sackett; Michael R. Wagner
2008-01-01
In 1992 an experiment was initiated at the G. A. Pearson Natural Area on the Fort Valley Experimental Forest to evaluate long-term ecosystem responses to two restoration treatments: thinning only and thinning with prescribed burning. Fifteen years of key findings about tree physiology, herbaceous, and ecosystem responses are presented.
The use of fire in forest restoration
Colin C. Hardy; Stephen F. Arno
1996-01-01
The 26 papers in this document address the current knowledge of fire as a disturbance agent, fire history and fire regimes, applications of prescribed fire for ecological restoration, and the effects of fire on the various forested ecosystems of the north-western United States. The main body of this document is organized in three sections: Assessing Needs for Fire in...
Paul B. Hamel
2003-01-01
Forest community restoration in the primarily agricultural landscape of the Lower Mississippi Alluvial Valley (LMAV), USA, has been initiated for recreational, economic and biological objectives, including provision of habitat for migratory birds of late successional stands. A long-term demonstration experiment of succession under several afforestation treatments was...
A decision tree approach using silvics to guide planning for forest restoration
Sharon M. Hermann; John S. Kush; John C. Gilbert
2013-01-01
We created a decision tree based on silvics of longleaf pine (Pinus palustris) and historical descriptions to develop approaches for restoration management at Horseshoe Bend National Military Park located in central Alabama. A National Park Service goal is to promote structure and composition of a forest that likely surrounded the 1814 battlefield....
Heather Griscom; Helmut Kraenzle; Zachary. Bortolot
2010-01-01
The objective of our project is to create a habitat suitability model to predict potential and future red spruce forest distributions. This model will be used to better understand the influence of climate change on red spruce distribution and to help guide forest restoration efforts.
Thomas A. Waldrop; Daniel A. Yaussy; Ralph E.J. Boerner; Cathryn H. Greenberg; Dean M. Simon
2013-01-01
The Southern Appalachian Mountains and Ohio Hills sites are unique within the National Fire and Fire Surrogate Study because they are in hardwood-dominated forests. The efficacy of four fuel-reduction treatments was evaluated to restore these unmanaged hardwood forests to the structure and function of open woodland habitats. Treatments included control, prescribed...
E. Gardiner; J. Stanturf; T. Leininger; P. Hamel; L. Jr. Dorris; J. Portwood; J. Shepard
2008-01-01
As forest scientists increase their role in the process of science delivery, many research organizations are searching for novel methods to effectively build collaboration with managers to produce valued results. This article documents our experience with establishment of a forest restoration research and demonstration area in the Lower Mississippi Alluvial Valley (...
Restoring bottomland hardwood forests: A comparison of four techniques
John A. Stanturf; Emile S. Cardiner; James P. Shepard; Callie J. Schweitzer; C. Jeffrey Portwood; Lamar Dorris
2004-01-01
Large-scale afforestation of former agricultural lands in the Lower Mississippi Alluvial Valley (LMAV) is one of the largest forest restoration efforts in the world and continues to attract interest from landowners, policy makers, scientists, and managers. The decision by many landowners to afforest these lands has been aided in part by the increased availability of...
Accelerated restoration: new landscape tools to prioritize projects and analyze tradeoffs
Alan Ager; Paul Meznarich
2014-01-01
The catastrophic fires and tragic losses during the 2013 fire season have resulted in many discussions about fire management policies aimed at protecting communities and restoring fire-resilient forests from the growing incidence of severe wildfires. Forest Service scientist Alan Ager has been exploring how concepts in spatial ecology and operations research can be...
Frederick J. Swanson; Charles B. Halpern; John H. Cissel
2007-01-01
Mountain meadows in the Pacific Northwest, as in much of western North America, have experienced recent and rapid invasion by conifers. Changes in climate, cessation of sheep grazing, and long-term suppression of wildfire likely contribute to the observed replacement of meadow by forest. Faced by gradual loss of these habitats, land managers in the western Cascades of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, Allen B.
1999-07-01
This Annual Report provides a detailed overview of watershed restoration accomplishments achieved by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and project partners in the Upper Grande Ronde River Basin under contract with the Bonneville Power Administration (BPA) during the period July 1, 1997 through June 30, 1998. The Contract Agreement entitled McCoy Meadows Watershed Restoration Project (Project No.96-83-01) includes habitat restoration planning, design, and implementation in two project areas--the McCoy Meadows Ranch located in the Meadow, McCoy, and McIntyre Creek subbasins on private land and the Mainstem Grande Ronde River Habitat Enhancement Project located on private andmore » National Forest System lands near Bird Tract Springs along the Grande Ronde River. During the contract period, the CTUIR and partners (Mark and Lorna Tipperman, landowners), Oregon Department of Environmental Quality (ODEQ), U.S. Environmental Protection Agency (EPA), Oregon Department of Fish and Wildlife (ODFW), and Natural Resource Conservation Service (NRCS) initiated phase 1 construction of the McCoy Meadows Restoration Project. Phase 1 involved reintroduction of a segment of McCoy Creek from its existing channelized configuration into a historic meander channel. Project efforts included bioengineering and tree/shrub planting and protection, transporting salvaged cottonwood tree boles and limbs from offsite source to the project area for utilization by resident beaver populations for forage and dam construction materials, relocation of existing BPA/ODFW riparian corridor fencing to outer edges of meadow floodplain, establishment of pre-project photo points, and coordination of other monitoring and evaluation efforts being led by other project partners including groundwater monitoring wells, channel cross sections, water quality monitoring stations, juvenile population sampling index sites, redd surveys, and habitat surveys. Project activities also included coordination with the U.S. Forest Service, Wallowa-Whitman National Forest, LaGrande Ranger District (USFS) on the Forest Road 2137 (McIntyre Road) Relocation and Obliteration Project and the McCoy Creek crossing. The USFS completed engineering designs under the cooperative effort for the McCoy Creek crossing. Project activities accomplished on the Upper Mainstem Large Wood Addition Project included placement of approximately 120 whole trees to enhance instream structural diversity, pool habitat quality, streambank stability, and improved floodplain morphology. Project activities accomplished on the Mainstem Grande Ronde Habitat Enhancement Project included coordination with landowners (Shauna Musgrove of Cuhna Ranches, Dean Stone, and the Wallowa-Whitman National Forest, LaGrande Ranger District) to develop a habitat enhancement/restoration project opportunity along a 3 mile section of the mainstem Grande Ronde River and major tributaries including the lower reaches of Bear Creek and Jordan Creek. Upon securing an agreement with the landowners, project partners including the CTUIR, ODFW, NRCS, and USFS initiated development of project objectives and site-specific designs. By June 1998, project designs were completed and preparations nearly complete to initiate onsite project construction.« less
Margolis, Ellis; Malevich, Steven B.
2016-01-01
Anthropogenic alteration of ecosystem processes confounds forest management and conservation of rare, declining species. Restoration of forest structure and fire hazard reduction are central goals of forest management policy in the western United States, but restoration priorities and treatments have become increasingly contentious. Numerous studies have documented changes in fire regimes, forest stand structure and species composition following a century of fire exclusion in dry, frequent-fire forests of the western U.S. (e.g., ponderosa pine and dry mixed-conifer). In contrast, wet mixed-conifer forests are thought to have historically burned infrequently with mixed- or high-severity fire—resulting in reduced impacts from fire exclusion and low restoration need—but data are limited. In this study we quantified the current forest habitat of the federally endangered, terrestrial Jemez Mountains salamander (Plethodon neomexicanus) and compared it to dendroecological reconstructions of historical habitat (e.g., stand structure and composition), and fire regime parameters along a gradient from upper ponderosa pine to wet mixed-conifer forests. We found that current fire-free intervals in Jemez Mountains salamander habitat (116–165 years) are significantly longer than historical intervals, even in wet mixed-conifer forests. Historical mean fire intervals ranged from 10 to 42 years along the forest gradient. Low-severity fires were historically dominant across all forest types (92 of 102 fires). Although some mixed- or highseverity fire historically occurred at 67% of the plots over the last four centuries, complete mortality within 1.0 ha plots was rare, and asynchronous within and among sites. Climate was an important driver of temporal variability in fire severity, such that mixed- and high-severity fires were associated with more extreme drought than low-severity fires. Tree density in dry conifer forests historically ranged from open (90 trees/ha) to moderately dense (400 trees/ha), but has doubled on average since fire exclusion. Infill of fire-sensitive tree species has contributed to the conversion of historically dry mixedconifer to wet mixed-conifer forest. We conclude that low-severity fire, which has been absent for over a century, was a critical ecosystem process across the forest gradient in Jemez Mountains salamander habitat, and thus is an important element of ecosystem restoration, resilience, and rare species recovery.
An integrated approach to mapping forest conditions in the Southern Appalachians (North Carolina)
Weimin Xi; Lei Wang; Andrew G Birt; Maria D. Tchakerian; Robert N. Coulson; Kier D. Klepzig
2009-01-01
Accurate and continuous forest cover information is essential for forest management and restoration (SAMAB 1996, Xi et al. 2007). Ground-truthed, spatially explicit forest data, however, are often limited to federally managed land or large-scale commercial forestry operations where forest inventories are regularly collected. Moreover,...
Light, canopy closure, and overstory retention in upland Ozark forests
Elizabeth M. Blizzard; John M. Kabrick; Daniel C. Dey; David R. Larsen; Stephen G. Pallardy; David P. Gwaze
2013-01-01
Foresters, wildlife biologists, and naturalists manipulate forest composition and structure for numerous reasons including forest regeneration, timber production, wildlife habitat, conservation of native biodiversity, and ecosystem restoration. Light conditions in the understory of forests and woodlands are often key in meeting the management objectives. In this study...
Genetic diversity of Casearia sylvestris populations in remnants of the Atlantic Forest.
Araujo, F L; Siqueira, M V B M; Grando, C; Viana, J P G; Pinheiro, J B; Alves-Pereira, A; Campos, J B; Brancalion, P H S; Zucchi, M I
2017-01-23
Guaçatonga (Casearia sylvestris) is a native plant of the Atlantic Forest, with high medicinal potential and relevance for reforestation programs. The aim of this study was to characterize, with microsatellite markers, two populations of C. sylvestris from remaining areas of the Atlantic Forest in the State of São Paulo. High allelic variation was found in both populations (N A = 101 and 117; A R = 12.5 and 14.4), although with high endogamy coefficients (f = 0.640 and 0.363). Estimates of genetic structure suggested the presence of considerable genetic divergence between the populations (F ST = 0.103); however, there was no spatial genetic structure within the populations. Genetic divergence may have occurred due to decreased gene flow between the fragmented populations as the result of deforestation. The results of this study demonstrate the importance of genetic diversity and its characterization in native plants within remaining forest areas for the management and restoration of such areas.
Participatory monitoring to connect local and global priorities for forest restoration.
Evans, Kristen; Guariguata, Manuel R; Brancalion, Pedro H S
2018-06-01
New global initiatives to restore forest landscapes present an unparalleled opportunity to reverse deforestation and forest degradation. Participatory monitoring could play a crucial role in providing accountability, generating local buy in, and catalyzing learning in monitoring systems that need scalability and adaptability to a range of local sites. We synthesized current knowledge from literature searches and interviews to provide lessons for the development of a scalable, multisite participatory monitoring system. Studies show that local people can collect accurate data on forest change, drivers of change, threats to reforestation, and biophysical and socioeconomic impacts that remote sensing cannot. They can do this at one-third the cost of professionals. Successful participatory monitoring systems collect information on a few simple indicators, respond to local priorities, provide appropriate incentives for participation, and catalyze learning and decision making based on frequent analyses and multilevel interactions with other stakeholders. Participatory monitoring could provide a framework for linking global, national, and local needs, aspirations, and capacities for forest restoration. © 2018 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Katherine J. Elliott; James M. Vose
2005-01-01
Prescribed burning is being used in the Conasauga River Watershed in southeastern Tennessee and northern Georgia by National Forest managers to restore degraded pine/oak communities. The purpose of these burns is to restore shortleaf pine (Pinus echinata Miller)/mixed-oak forests with more diverse understories, which include native bluestem grasses...
Jodie R. Schulten; T. Colleen Cole; Susan Cordell; Keiko M. Publico; Rebecca Ostertag; Jaime E. Enoka; Jené D. Michaud
2014-01-01
Hawaiian lowland wet forests are heavily invaded and their restoration is most likely to be successful if native species selected for restoration have efficient resource-use traits. We evaluated growth, survival, and ecophysiological responses of four native and four invasive species in a greenhouse experiment that simulated reduced light and water conditions commonly...
Margaret M. Moore; Wallace Covington; Peter Z. Fulé; Stephen C. Hart; Thomas E. Kolb; Joy N. Mast; Stephen S. Sackett; Michael R. Wagner
2008-01-01
In 1992 an experiment was initiated at the G. A. Pearson Natural Area on the Fort Valley Experimental Forest to evaluate long-term ecosystem responses to two restoration treatments: thinning only and thinning with prescribed burning. Fifteen years of key findings about tree physiology, herbaceous, and ecosystem responses are presented.
Hai Ren; Hongfang Lu; Weijun Shen; Charlie Huang; Qinfeng Guo; Zhi' an Li; Shuguang Jian
2010-01-01
By the end of 1990s when China initiated a 10-year mangrove reforestation project, the mangrove forest area had decreased from250,000 to 15,000 ha. Over 80% of current Chinese mangroves are degraded secondary forests or plantations. As an initial restoration and reforestation effort, Sonneratia apetala, a native of...
Pacific Northwest forest tree seed zones: a template for native plants?
GR Johnson; Frank C Sorensen; J Bradley St Clair; Richard C. Cronn
2004-01-01
Seed movement guidelines for restoration activities are lacking for most native grasses, forbs, and shrubs. The forestry community has decades of experience in establishing seed zones and seed movement guidelines that may be of value to restoration managers. We review the history of seed zone development in forest trees, with emphasis on the Pacific Northwest, and make...
Erich Kyle Dodson; David W. Peterson; Richy J. Harrod
2008-01-01
Restoration/fuel reduction treatments are being widely used in fire-prone forests to modify stand structure, reduce risks of severe wildfire, and increase ecosystem resilience to natural disturbances. These treatments are designed to manipulate stand structure and fuels, but may also affect understory vegetation and biodiversity. In this study, we describe prescribed...
Timothy Ingalsbee; Daniel Henry; Oshana Catranides; Todd Schulke
2008-01-01
Successfully educating homeowners and communities about wildland fire ecology and management, reducing hazardous fuels, and restoring fire-adapted forest ecosystems will place enormous demands on the budgets, resources, and staff of federal agencies for several decades to come. This work can be aided by collaboration with non-governmental organizations (NGOs) that are...
Vanessa L. Artman; Elaine K. Sutherland; Jerry F. Downhower
2001-01-01
Fire is being experimentally reintroduced to the forests of southern Ohio to determine its effectiveness in restoring and maintaining mixed-oak (Quercus spp.) forest communities. We studied the effects of repeated burning (1-4 years of annual burning) and recovery (1 year after burning) on the breeding bird community. Burning resulted in incremental but temporary...
Seedling response to initial oak woodland restoration treatments on the Ozark National Forest
Jamie L. Schuler; Don C. Bragg; Eric Heitzman; Jason Milks
2013-01-01
Over the last century, the range of oak woodland ecosystems has diminished as woodlands have become more closed-canopy forests. A century of fire suppression efforts has all but eliminated the frequent ground fires necessary to maintain the open canopy characteristics of oak woodland ecosystems. Restoration efforts are underway to return some of the closed-canopy...
Keith Reynolds; Barry Bollenbacher; Chip Fisher; Melissa Hart; Mary Manning; Eric Henderson; Bruce Sims
2016-01-01
This report documents a decision-support process developed in the U.S. Department of Agriculture, Forest Service, Northern Region to assess management opportunities as part of an ecosystem-based approach to management that emphasizes ecological resilience. The decision-support system described in this work implements what is known as the Integrated Restoration and...
Patterns and consequences of re-invasion into a Hawaiian dry forest restoration
Erin J. Questad; Jarrod M. Thaxton; Susan Cordell
2012-01-01
The restoration of native plant diversity may be an effective tool for weed control, but its use has not been tested in the heavily invaded Hawaiian dry forest ecosystem. In addition, the ecological mechanisms by which invasive plants may cause declines in native plant diversity are generally not well understood. We examined invasion resistance and the relationships...
Silviculture to restore oak woodlands
Daniel C. Dey; Callie J. Schweitzer; John M. Kabrick
2016-01-01
Variability in historic fire regimes in eastern North America resulted in an array of oak savannas, woodlands and forests that were dominant vegetation types throughout the region. In the past century, once abundant woodlands have become scarce due to conversion to agriculture, or development of forest structure in the absence of fire. Restoration of oak woodlands is a...
Wood decay fungi restore essential calcium to acidic soils in northern New England
Walter C. Shortle; Kevin T. Smith
2015-01-01
The depletion of root-available calcium in northern forests soils exposed to decades of increased acid deposition adversely affects forest health and productivity. Laboratory studies indicated the potential of wood-decay fungi to restore lost calcium to the rooting zone of trees. This study reports changes in concentrations of Ca, Mg, and K during decay of sapwood of...
Ralph E.J. Boerner; Jennifer a. Brinkman; Daniel A. Yaussy
2007-01-01
This study presents an analysis of the effect of ecosystem restoration treatments on soil properties in the oak forests of southern Ohio. The treatments were (1) prescribed fire, (2) mechanical thinning, (3) fire and thinning, and (4) passive management (control). Fire and thinning resulted in increased mineral soil exposure, with the effect decreasing by the fourth...
Grassland restoration with and without fire: evidence from a tree-removal experiment.
Halpern, Charles B; Haugo, Ryan D; Antos, Joseph A; Kaas, Sheena S; Kilanowski, Allyssa L
2012-03-01
Forest encroachment threatens the biological diversity of grasslands globally. Positive feedbacks can reinforce the process, affecting soils and ground vegetation, ultimately leading to replacement of grassland by forest species. We tested whether restoration treatments (tree removal, with or without fire) reversed effects of nearly two centuries of encroachment by Abies grandis and Pinus contorta into dry, montane meadows in the Cascade Range, Oregon, USA. In nine, 1-ha plots containing a patchy mosaic of meadow openings and forests of varying age (20 to > 140 yr), we compared three treatments affecting the ground vegetation: control (no trees removed), unburned (trees removed, slash burned in piles leaving 90% of the area unburned), and burned (trees removed, slash broadcast burned). We quantified changes over 3-4 years in soils, abundance and richness of species with differing habitat associations (meadow, forest, and ruderal), and recruitment of conifers. Except for a transient increase in available N (especially in burn scars), effects of burning on soils were minimal due, in part, to mixing by gophers. Tree removal greatly benefited meadow species at the expense of forest herbs. Cover and richness of meadow species increased by 47% and 38% of initial values in unburned plots, but changed minimally in burned plots. In contrast, cover and richness of forest herbs declined by 44% and 26% in unburned plots and by 79% and 58% in burned plots. Ruderal species and conifer seedlings were uncommon in both treatments. Although vegetation was consumed beneath burn piles, meadow species recovered significantly after three years. Long-term tree presence did not preclude recovery of meadow species; in fact, colonization was greater in older than in younger forests. In sum, temporal trends were positive for most indicators, suggesting strong potential for restoration. Contrary to conventional wisdom, tree removal without fire may be sufficient to shift the balance from forest to meadow species. In meadows characterized by historically infrequent fire, small-scale disturbances and competitive interactions may be more critical to ecosystem maintenance and restoration. Managers facing the worldwide phenomenon of tree invasion should critically evaluate the ecological vs. operational need for fire in ecosystem restoration.
Patricia N. Manley; Leif Mortenson; James J. Halperin; Nguyen Hanh Quyen
2013-01-01
Changes in forest carbon stocks can be detected through monitoring of deforestation (conversion of| forests to some other cover type), forest degradation (forests that remain forests), and/or reforestation| (restoration of forests). Techniques for monitoring deforestation and resultant changes to forest carbon| stocks are widespread and well published. However,...
Francis Marion National Forest forest plan revision - ecosystems & restoration needs
Mark Danaher
2016-01-01
The Forest Service is currently revising the previous 1995 Forest Plan for the Francis Marion National Forest in Coastal South Carolina developed in the wake of Hurricane Hugo which devastated the forest in 1989. Since 1995, the human communities surrounding the Francis Marion National Forest have grown and changed significantly. The revised Francis Marion Forest Plan...
Merschel, Andrew; Heyerdahl, Emily K.; Spies, Thomas A; Loehman, Rachel A.
2018-01-01
Context In the interior Northwest, debate over restoring mixed-conifer forests after a century of fire exclusion is hampered by poor understanding of the pattern and causes of spatial variation in historical fire regimes. Objectives To identify the roles of topography, landscape structure, and forest type in driving spatial variation in historical fire regimes in mixed-conifer forests of central Oregon. Methods We used tree rings to reconstruct multicentury fire and forest histories at 105 plots over 10,393 ha. We classified fire regimes into four types and assessed whether they varied with topography, the location of fuel-limited pumice basins that inhibit fire spread, and an updated classification of forest type. Results We identified four fire-regime types and six forest types. Although surface fires were frequent and often extensive, severe fires were rare in all four types. Fire regimes varied with some aspects of topography (elevation), but not others (slope or aspect) and with the distribution of pumice basins. Fire regimes did not strictly co-vary with mixed-conifer forest types. Conclusions Our work reveals the persistent influence of landscape structure on spatial variation in historical fire regimes and can help inform discussions about appropriate restoration of fire-excluded forests in the interior Northwest. Where the goal is to restore historical fire regimes at landscape scales, managers may want to consider the influence of topoedaphic and vegetation patch types that could affect fire spread and ignition frequency.
Using an intergrated moisture index to assess forest composition and productivity. Chapter 11.
Matthew Peters; Louis R. Iverson; Anantha M. Prasad
2010-01-01
The 834,000-acre Wayne National Forest, Ohio's only national forest, lies in the rolling foothills of the Appalachians in the state's southeast. Congress established the forest boundary in 1934 to prioritize land acquisition and ownership of forest lands in need of restoration. The forest is composed of both central hardwoods,...
The Eastern Non-industrial Private Forests
Gerard D. Hertel
The USDA Forest Service ?cares for the land and serves the people? under the framework of the Natural Resources Agenda (Watershed Health and Restoration; Sustainable Forest Ecosystems; Recreation; and Forest Roads). The National Forests comprise only 19 percent of the forestland (land that is at least 10% covered with trees) in the United States. The Forest Service has...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-13
... Policy Act: Categorical Exclusions for Soil and Water Restoration Activities AGENCY: Forest Service, USDA... document the potential environmental effects of soil and water restoration projects that are intended to... adding three new categorical exclusions for activities that achieve soil and water restoration objectives...
AIMing to restore forests: evaluation with SER critera.
Andrew B. Carey
2006-01-01
The Society for Ecological Restoration Primer on Ecological Restoration (SERPER) states, "Ecological restoration is an intentional activity that initiates or accelerates the recovery of an ecosystem with respect to its health, integrity, and sustainability" and attempts to return an ecosystem to its historic condition. There are questions, however, about...
Wood, William B.; Shaffer, Gary P.; Visser, Jenneke M.; Krauss, Ken W.; Piazza, Sarai C.; Sharp, Leigh Anne; Cretini, Kari F.
2017-02-08
The U.S. Geological Survey, in cooperation with the Coastal Protection and Restoration Authority of Louisiana and the Coastal Wetlands Planning, Protection and Restoration Act, developed the Forested Floristic Quality Index (FFQI) for the Coastwide Reference Monitoring System (CRMS). The FFQI will help evaluate forested wetland sites on a continuum from severely degraded to healthy and will assist in defining areas where forested wetland restoration can be successful by projecting the trajectories of change. At each CRMS forested wetland site there are stations for quantifying the overstory, understory, and herbaceous vegetation layers. Rapidly responding overstory canopy cover and herbaceous layer composition are measured annually, while gradually changing overstory basal area and species composition are collected on a 3-year cycle.A CRMS analytical team has tailored these data into an index much like the Floristic Quality Index (FQI) currently used for herbaceous marsh and for the herbaceous layer of the swamp vegetation. The core of the FFQI uses basal area by species to assess the quality and quantity of the overstory at each of three stations within each CRMS forested wetland site. Trees that are considered by experts to be higher quality swamp species like Taxodium distichum (bald cypress) and Nyssa aquatica (water tupelo) are scored higher than tree species like Triadica sebifera (Chinese tallow) and Salix nigra (black willow) that are indicators of recent disturbance. This base FFQI is further enhanced by the percent canopy cover in the overstory and the presence of indicator species at the forest floor. This systemic approach attempts to differentiate between locations with similar basal areas that are on different ecosystem trajectories. Because of these varying states of habitat degradation, paired use of the FQI and the FFQI is useful to interpret the vegetative data in transitional locations. There is often an inverse relation between the health of the overstory and health of the herbaceous community beneath it because of resource competition (for example, light) and differing environmental preferences between the two communities. The herbaceous layer vegetation responds rapidly to basic environmental factors such as flooding, salinity, and nutrients and can offer insight into the sustainability of swamps on a temporal scale shorter than tha of the slowly growing woody vegetation.The FFQI will be available via the CRMS spatial viewer (http://lacoast.gov/crms2/home.aspx), and a new score will be calculated annually for each CRMS forested wetland site as data are collected to establish trends, to compare among sites, and to evaluate specific restoration projects when applicable. The FFQI will identify forested wetland areas in need of restoration and conservation and will help define targets and trajectories for restoration planning.
Baker, William L.
2015-01-01
Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used new reference data and records of high-severity fire from 1984–2012 across all dry forests (25.5 million ha) of the western USA to test these hypotheses. I also approximated projected effects of climatic change on high-severity fire in dry forests by applying existing projections. This analysis showed the rate of recent high-severity fire in dry forests is within the range of historical rates, or is too low, overall across dry forests and individually in 42 of 43 analysis regions. Significant upward trends were lacking overall from 1984–2012 for area burned and fraction burned at high severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis regions. Projections for A.D. 2046–2065 showed high-severity fire would generally be still operating at, or have been restored to historical rates, although high projections suggest high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change. Some adverse ecological effects of high-severity fires are concerns. Managers and communities can improve our ability to live with high-severity fire in dry forests. PMID:26351850
Targeted habitat restoration can reduce extinction rates in fragmented forests.
Newmark, William D; Jenkins, Clinton N; Pimm, Stuart L; McNeally, Phoebe B; Halley, John M
2017-09-05
The Eastern Arc Mountains of Tanzania and the Atlantic Forest of Brazil are two of the most fragmented biodiversity hotspots. Species-area relationships predict that their habitat fragments will experience a substantial loss of species. Most of these extinctions will occur over an extended time, and therefore, reconnecting fragments could prevent species losses and allow locally extinct species to recolonize former habitats. An empirical relaxation half-life vs. area relationship for tropical bird communities estimates the time that it takes to lose one-half of all species that will be eventually lost. We use it to estimate the increase in species persistence by regenerating a forest connection 1 km in width among the largest and closest fragments at 11 locations. In the Eastern Arc Mountains, regenerating 8,134 ha of forest would create >316,000 ha in total of restored contiguous forest. More importantly, it would increase the persistence time for species by a factor of 6.8 per location or ∼2,272 years, on average, relative to individual fragments. In the Atlantic Forest, regenerating 6,452 ha of forest would create >251,000 ha in total of restored contiguous forest and enhance species persistence by a factor of 13.0 per location or ∼5,102 years, on average, relative to individual fragments. Rapidly regenerating forest among fragments is important, because mean time to the first determined extinction across all fragments is 7 years. We estimate the cost of forest regeneration at $21-$49 million dollars. It could provide one of the highest returns on investment for biodiversity conservation worldwide.
Targeted habitat restoration can reduce extinction rates in fragmented forests
Newmark, William D.; Pimm, Stuart L.; McNeally, Phoebe B.; Halley, John M.
2017-01-01
The Eastern Arc Mountains of Tanzania and the Atlantic Forest of Brazil are two of the most fragmented biodiversity hotspots. Species–area relationships predict that their habitat fragments will experience a substantial loss of species. Most of these extinctions will occur over an extended time, and therefore, reconnecting fragments could prevent species losses and allow locally extinct species to recolonize former habitats. An empirical relaxation half-life vs. area relationship for tropical bird communities estimates the time that it takes to lose one-half of all species that will be eventually lost. We use it to estimate the increase in species persistence by regenerating a forest connection 1 km in width among the largest and closest fragments at 11 locations. In the Eastern Arc Mountains, regenerating 8,134 ha of forest would create >316,000 ha in total of restored contiguous forest. More importantly, it would increase the persistence time for species by a factor of 6.8 per location or ∼2,272 years, on average, relative to individual fragments. In the Atlantic Forest, regenerating 6,452 ha of forest would create >251,000 ha in total of restored contiguous forest and enhance species persistence by a factor of 13.0 per location or ∼5,102 years, on average, relative to individual fragments. Rapidly regenerating forest among fragments is important, because mean time to the first determined extinction across all fragments is 7 years. We estimate the cost of forest regeneration at $21–$49 million dollars. It could provide one of the highest returns on investment for biodiversity conservation worldwide. PMID:28827340
Mitigation bank promotes research on restoring Coastal Plain depression wetlands (South Carolina).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barton, Christopher D.; DeSteven, Diane; Kilgo, John C.
Barton, Christopher, D., Diane DeSteven and John C. Kilgo. 2004. Mitigation bank promotes research on restoring Coastal Plain depression wetlands (South Carolina). Ecol. Rest. 22(4):291-292. Abstract: Carolina bays and smaller depression wetlands support diverse plant communities and provide critical habitat for semi-aquatic fauna throughout the Coastal Plain region of the southeastern United States. Historically, many depression wetlands were altered or destroyed by surface ditching, drainage, and agricultural or silviculture uses. These important habitats are now at further risk of alteration and loss following a U.S. Supreme Court decision in 2001 restricting federal regulation of isolated wetlands. Thus, there is increasedmore » attention towards protecting intact sites and developing methods to restore others. The U.S. Department of Energy's (DOE) 312-mi2 (800-km2) Savannah River Site (SRS) in west-central South Carolina includes about 350 Carolina bays and bay-like wetland depressions, of which about two-thirds were degraded or destroyed prior to federal acquisition of the land. Although some of the altered wetlands have recovered naturally, others still have active active drainage ditches and contain successional forests typical of drained sites. In 1997, DOE established a wetland mitigation bank to compensate for unavoidable wetland impacts on the SRS. This effort provided an opportunity fir a systematic research program to investigate wetland restoration techniques and ecological responses. Consequently, research and management staffs from the USDA Forest Service, Westinghouse Savannah River Corporation, the Savannah River Technology Center, the Savannah River Ecology Laboratory (SREL) and several universities developed a collaborative project to restore degraded depression wetlands on the SRS. The mitigation project seeks cost-effective methods to restore the hydrology and vegetation typical of natural depression wetlands, and so enhance habitats for wetland-dependent wildlife. We present a brief summary of this project and the research studies now underway.« less
Biomass and carbon pools of disturbed riparian forests
Laura A.B. Giese; W.M. Aust; Randall K. Kolka; Carl C. Trettin
2003-01-01
Quantification of carbon pools as affected by forest ageldevelopment can facilitate riparian restoration and increase awareness of the potential for forests to sequester global carbon. Riparian forest biomass and carbon pools were quantified for four riparian forests representing different sera1 stages in the South Carolina Upper Coastal Plain. Three of the riparian...
Biomass and carbon pools of disturbed riparian forests
Laura A. B. Giese; W. M. Aust; Randall K. Kolka; Carl C. Trettin
2003-01-01
Quantification of carbon pools as affected by forest age/development can facilitate riparian restoration and increase awareness of the potential for forests to sequester global carbon. Riparian forest biomass and carbon pools were quantified for four riparian forests representing different seral stages in the South Carolina Upper Coastal Plain. Three of the riparian...
Visualization of heterogeneous forest structures following treatment in the southern Rocky Mountains
Wade T. Tinkham; Yvette Dickinson; Chad M. Hoffman; Mike A. Battaglia; Seth Ex; Jeffrey Underhill
2017-01-01
Manipulation of forest spatial patterns has become a common objective in restoration prescriptions throughout the central and southern Rocky Mountain dry-mixed conifer forest systems. Pre-Euro-American settlement forest reconstructions indicate that frequent-fire regimes developed forests with complex mosaics of individual trees, tree clumps of varying size, and...
NASA Astrophysics Data System (ADS)
Williams-Guillen, K.; Otterstrom, S.; Perla, C.
2015-12-01
Tropical dry forests have been reduced to a fraction of their original extent in the Neotropics due to conversion to agriculture and cattle pasture. While TDF can recover via natural regeneration, resulting forests are dominated by wind-dispersed pioneer species of limited value for frugivorous wildlife. Additionally, passive restoration can be perceived as "abandonment" resulting in neighbors casually invading property to rear livestock and extract timber. In 2007, the NGO Paso Pacífico initiated restoration in a highly degraded tropical dry forest landscape of southwestern Nicaragua; funded by an ex-ante carbon purchase, the project was designed to integrate multiple native tree species known to provide resources used by local wildlife. We restored roughly 400 hectares spanning a rainfall gradient from dry to transitional moist forest, using reforestation (planting 70 species of tree seedlings in degraded pastures on a 4x4 m grid, leaving occurring saplings) and assisted regeneration (clearing vines and competing vegetation from saplings in natural regeneration and strategically managing canopy cover). In just over seven years, mean carbon increased nearly threefold, from to 21.5±5.0 to 57.9±9.6 SE tonnes/ha. Current carbon stocks match those of 20-year-old forests in the area, accumulated in less than a decade. Stem density per 15-m radius plot decreased from 16.3±2.3 to 12.5±0.9 SE, while species richness increased from 3.9±0.4 to 18.4±1.4 SE. Alpha richness of woody stems across plots increased from 36 to 94 species, and over 20 tree species established as a result of natural dispersal and recruitment. We have observed sensitive species such as spider monkeys and parrots foraging in restoration areas. Managed reforestation is a highly effective method for rapidly restoring the functionality of multiple ecosystem services in degraded TDF, particularly when social and political realities force restoration to coexist with human productive activities. Project techniques were developed in collaboration with local community members and incorporated indigenous practices regarding lunar cycles, intercropping, and other management aspects. We suggest that this integration was a critical aspect to project success, and that these approaches could be widely adapted throughout Central America.
Greenhouse gas balance of blanket peat bog restoration from forestry in the Flow Country, Scotland
NASA Astrophysics Data System (ADS)
Hermans, Renée; Subke, Jens-Arne; Cowie, Neil; Arn Teh, Yit; Andersen, Roxane
2017-04-01
The Flow country in the far north of Scotland has the largest expanse of blanket peat bog in Europe. With peat depths of up to several metres, this area represents a significant carbon store. Large parts of the Flows were drained for afforestation with non-native conifers during the 1980s, which resulted in considerable damage to the peat, leading to significant carbon loss. To restore the peatland, the Royal Society for the Protection of Birds (RSPB) started in the late 1990s to fell trees and block drains. Over 2200 ha of forestry are felled. The main objective of this study is to measure the impact of forest removal on the budget of three main greenhouse gases, CO2, CH4 and N2O. Local variations in fluxes were measured using dark closed chambers. In order to capture abiotic conditions likely to determine microbial activity and therefor CO2, CH4 and N2O production, I record water table depth as well as soil moisture and soil temperature (both measured at 5 and 20 cm deep). These measurements are done in near pristine bog (control plot), in forest (control plot), in recently felled areas and in areas that were felled up to 19 years ago, creating a chronosequence to follow the effects of restoration. Results indicate only small differences in annual CO2 flux to the atmosphere between sites, with only the 19-year old restored site showing higher fluxes than forest control plots. However some seasonal differences in CO2 flux between land cover are evident. CH4 fluxes from forest are significantly lower than from bog and the site restored 17 years ago, and N2O fluxes are very low in all sites with no significant differences between sites. Sites where forests were removed recently (< 1 year previously) show a high degree of variability in CH4 fluxes, indicating potential flux spikes from disturbance. There is a positive correlation between soil temperature and CO2 and CH4 flux. Soil moisture varies a lot between bog, restored sites and forest, however there does not seem to be a direct correlation between soil moisture at the surface and CO2 and CH4 fluxes. Peatlands store big amounts of carbon, therefore there is a high level of importance to quantify the impact of various restoration techniques used.
Pioneer forest - a half century of sustainable uneven-aged forest management in the Missouri Ozarks
James M. Guldin; Greg F. Iffrig; Susan L. Flader
2008-01-01
This collection of papers analyzes the Pioneer Forest, a privately owned 150,000-acre working forest in the Missouri Ozarks, on which the science and art of forest management has been practiced for more than 50 years. The papers discuss how this half century of management has contributed to forest restoration and sustainability on the forest itself and, through its...
Matthew D. Hurteau; Shuang Liang; Katherine L. Martin; Malcolm P. North; George W. Koch; Bruce A. Hungate
2016-01-01
Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and...
H. Manrique-Hernandez; Tamara Heartsill Scalley; M. Barreto-Orta; C. M. Betancourt-Roman; J. R. Ortiz-Zayas
2016-01-01
Today there is a wide variety of approaches on how to determine when a river restoration project can be considered ecologically successful. The limited information on river restoration responses renders this practice a subjective component of river management. We aimed to contribute to this issue by assessing the ecological outcomes of a restoration project conducted...
Restoring the rare Kentucky lady's slipper orchid to the Kisatchie National Forest
James P. Barnett; Kevin Allen; David Moore
2012-01-01
The Kentucky ladyâs slipper (Cypripedium kentuckiense C.F. Reed [Orchidaceae]) is a spectacular orchid native to the southeastern US. Although its range includes much of the Southeast, it is rare due to loss of appropriate edaphic and climatic habitats. Efforts to restore this species to the Kisatchie National Forest in Louisiana were initiated by a high school student...
Daniel A. Yaussy; Gregory J. Nowacki; Thomas M. Schuler; Daniel C. Dey
2008-01-01
Many national forests and grasslands in the Central Hardwoods region of the United States recently have undergone Land Management Plan revision, which include management areas that promote restoration through a variety of management activities. Monitoring is a vital component of adaptive management whereby the effects from a variety of treatments (including controls)...
Jessica C. Seifert; Hal O. Liechty; Martin A. Spetich; Daniel A. Marion
2004-01-01
Abstract - The Ouachita National Forest is restoring pine-mixed hardwood forests to a shortleaf pine-bluestem grass ecosystem through harvesting, midstory control, and the application of prescribed fire. Mean mass and volume of downed woody debris (DWD) in plots following initial harvesting and midstory-control were respectively 335 percent and 253...
A dendrochronological study of teak (Tectona grandis L. f., Verbenaceae) in Puerto Rico
Margaret S. Devall; Bernard R. Parresol
2003-01-01
In Puerto Rico, an island in the West Indies, large areas of primary forest have been cut and converted to farmland or to secondary forest; subsequently the farmlands declined in fertility and were abandoned. Various tree species were planted in order to restore the degraded land and to provide timber. Teak is a species with great restoration potential in Puerto Rico...
J.S. Rentch; W.M. Ford; Thomas Schuler; Jeff Palmer; C.A. Diggins
2016-01-01
Red spruce (Picea rubens) and red spruce-northern hardwood mixed stands once covered as much as 300,000 ha in the Central Appalachians, but now comprise no more than 21,000 ha. Recently, interest in restoration of this forest type has increased because red spruce forests provide habitat for a number of rare animal species. Our study reports the...
Stand conditions immediately following a restoration harvest in an old-growth pine-hardwood remnant
D. C. Bragg
2010-01-01
Portions of the Levi Wilcoxon Demonstration Forest (LWDF), a privately owned parcel of old-growth pine and hardwoods in Ashley County, Arkansas, were recently treated to restore conditions similar to some historic accounts of the virgin forest. Following a hardwood-only cut, a post-harvest inventory showed that the number of tree species in the sample area declined...
Mee-Sook Kim; Jane E. Stewart; Nicklos Dudley; John Dobbs; Tyler Jones; Phil G. Cannon; Robert L. James; Kas Dumroese; Ned B. Klopfenstein
2015-01-01
Several forest diseases are causing serious threats to the native Hawaiian forest. Among them, koawilt disease (caused by Fusarium oxysporum) is damaging to native populations of koa (Acacia koa), and it also hinders koa restoration/reforestation. Because F. oxysporum likely represents a complex of species with distinct pathogenic activities, more detailed...
Woodam Chung; Tyron J. Venn; Dan Loeffler; Greg Jones; Han-Sup Han; Dave E. Calkin
2012-01-01
Forest restoration and fuel reduction treatments have been widely applied in the western United States with the purpose of reducing the size and intensity of wildfires. However, the low value of small-diameter trees produced from such treatments has partly constrained the ability to treat all the areas identified as being in need of treatments. The objective of this...
Keith M. Slauson
2012-01-01
The management of second growth forests to accelerate the restoration of late-successional and old growth characteristics will be one of the greatest challenges for conservation in the redwood region over the next century. In the redwood region, the largest complex of protected areas exists in the north, however >50 percent of these forest reserves are composed...
Robert L. Ryan; Elisabeth M. Hamin
2006-01-01
Our research provides advice to managers in their work in post-fire forest rehabilitation based on focus groups and interviews in the Los Alamos, New Mexico, community after the Cerro Grande fire of 2000. We address two key issues: how different restoration efforts compare to natural revegetation from the public?s perspective, and how to effectively communicate with...
Michaeleen Gerken Golay; Robert Manatt; Catherine Mabry; Janette Thompson; Randall Kolka
2013-01-01
Restoring the forest herbaceous layer in remnant forests throughout the Midwestern United States (U.S.) is limited by the lack of seed and propagules for many plant species. As a result, restorationists often have limited material to work with and must seek out plant material at a regional rather than a local scale, without knowing whether regional provenances are...
David J. Flaspohler; Christian P. Giardina; Gregory P. Asner; Patrick Hart; Jonathan Price; Cassie Ka’apu Lyons; Xeronimo Castaneda
2010-01-01
Forest fragmentation is a common disturbance affecting biological diversity, yet the impacts of fragmentation on many forest processes remain poorly understood. Forest restoration is likely to be more successful when it proceeds with an understanding of how native and exotic vertebrates utilize forest patches of different size. We used a system of forest fragments...
In Land of Cypress and Pine: An Environmental History of the Santee Experimental Forest, 1683-1937
Hayden R. Smith
2012-01-01
The Santee Experimental Forest is a 6,100-acre research facility located within the Francis Marion National Forest, SC. Situated within the Huger Creek watershed in the headwaters of the East Branch of the Cooper River, the Santee Experimental Forest supports research in forest ecology, silviculture, prescribed fire, forest hydrology, ecosystem restoration, and...
Restore McComas Watershed; Meadow Creek Watershed, 2002-2003 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McRoberts, Heidi
2004-01-01
The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing. During years 2000-2003, trees were planted in riparian areas within the meadow and its tributaries. Culverts have been prioritized for replacement to accommodate fish passage throughoutmore » the watershed. Designs for replacement are being coordinated with the Nez Perce National Forest. Twenty miles of road were contracted for decommissioning. Tribal crews completed maintenance to the previously built fence.« less
Restore McComas Meadows; Meadow Creek Watershed, 2003-2004 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McRoberts, Heidi
2006-08-01
The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated and cost shared with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing, planting trees in riparian areas within the meadow and its tributaries, prioritizing culverts for replacement to accommodate fish passage, and decommissioning roads tomore » reduce sediment input. Designs for culvert replacements are being coordinated with the Nez Perce National Forest. 20 miles of roads were decommissioned. Tribal crews completed maintenance to the previously built fence.« less
Development of an Assessment Framework for Restored Forested Wetlands
Randall K. Kolka; Carl C. Trettin; E.A. Nelson
1998-01-01
Development of an assessment framework and associated indicators that can be used to evaluate the effectiveness of a wetland restoration is critical to demonstrating the sustainability of restored sites. An interdisciplinary approach was developed to assess how succession is proceeding on a restored bottomland site in South Carolina relative to an undisturbed...
Riparian forest restoration: Conflicting goals, trade-offs, and measures of success
Heather L. Bateman; David M. Merritt; J. Bradley Johnson
2012-01-01
Restoration projects can have varying goals, depending on the specific focus, rationale, and aims for restoration. When restoration projects use project-specific goals to define activities and gauge success without considering broader ecological context, determination of project implications and success can be confounding. We used case studies from the Middle Rio...
Roles of Birds and Bats in Early Tropical-Forest Restoration
de la Peña-Domene, Marinés; Martínez-Garza, Cristina; Palmas-Pérez, Sebastián; Rivas-Alonso, Edith; Howe, Henry F.
2014-01-01
Restoration of tropical forest depended in large part on seed dispersal by fruit-eating animals that transported seeds into planted forest patches. We tested effectiveness of dispersal agents as revealed by established recruits of tree and shrub species that bore seeds dispersed by birds, bats, or both. We documented restoration of dispersal processes over the first 76 months of experimental restoration in southern Mexico. Mixed-model repeated-measures randomized-block ANOVAs of seedlings recruited into experimental controls and mixed-species plantings from late-secondary and mature forest indicated that bats and birds played different roles in the first years of a restoration process. Bats dispersed pioneer tree and shrub species to slowly regenerating grassy areas, while birds mediated recruitment of later-successional species into planted stands of trees and to a lesser extent into controls. Of species of pioneer trees and shrubs established in plots, seven were primarily dispersed by birds, three by bats and four by both birds and bats. Of later-successional species recruited past the seedling stage, 13 were of species primarily dispersed by birds, and six were of species dispersed by both birds and bats. No later-successional species primarily dispersed by bats established in control or planted plots. Establishment of recruited seedlings was ten-fold higher under cover of planted trees than in grassy controls. Even pre-reproductive trees drew fruit-eating birds and the seeds that they carried from nearby forest, and provided conditions for establishment of shade-tolerant tree species. Overall, after 76 months of cattle exclusion, 94% of the recruited shrubs and trees in experimental plots were of species that we did not plant. PMID:25118608
Roles of birds and bats in early tropical-forest restoration.
de la Peña-Domene, Marinés; Martínez-Garza, Cristina; Palmas-Pérez, Sebastián; Rivas-Alonso, Edith; Howe, Henry F
2014-01-01
Restoration of tropical forest depended in large part on seed dispersal by fruit-eating animals that transported seeds into planted forest patches. We tested effectiveness of dispersal agents as revealed by established recruits of tree and shrub species that bore seeds dispersed by birds, bats, or both. We documented restoration of dispersal processes over the first 76 months of experimental restoration in southern Mexico. Mixed-model repeated-measures randomized-block ANOVAs of seedlings recruited into experimental controls and mixed-species plantings from late-secondary and mature forest indicated that bats and birds played different roles in the first years of a restoration process. Bats dispersed pioneer tree and shrub species to slowly regenerating grassy areas, while birds mediated recruitment of later-successional species into planted stands of trees and to a lesser extent into controls. Of species of pioneer trees and shrubs established in plots, seven were primarily dispersed by birds, three by bats and four by both birds and bats. Of later-successional species recruited past the seedling stage, 13 were of species primarily dispersed by birds, and six were of species dispersed by both birds and bats. No later-successional species primarily dispersed by bats established in control or planted plots. Establishment of recruited seedlings was ten-fold higher under cover of planted trees than in grassy controls. Even pre-reproductive trees drew fruit-eating birds and the seeds that they carried from nearby forest, and provided conditions for establishment of shade-tolerant tree species. Overall, after 76 months of cattle exclusion, 94% of the recruited shrubs and trees in experimental plots were of species that we did not plant.
Trap-Nesting Hymenoptera and Their Network with Parasites in Recovered Riparian Forests Brazil.
Araujo, G J; Fagundes, R; Antonini, Y
2018-02-01
Different aspects of human activities can cause environmental change that endanger species persistence, alter species distributions, and lead to changes in antagonistic and mutualistic interactions, whereas deforestation and flooding of riparian forest results in landscapes consisting of patchily distributed riparian forest fragments in a matrix of pastures, plantations, and urban areas. Therefore, we assessed the richness, abundance, and trophic interactions of trap-nesting Hymenoptera and their parasites at four patches of restored riparian forest and at one reference natural fragment, of different sizes and ages, located at the Volta Grande Reservoir, in Minas Gerais and São Paulo states to answer the following questions: (1) Does the richness and abundance of cavity-nesting bees and wasps differ in riparian forest fragments according to the seasonal periods? (2) Does the composition of cavity-nesting bees and wasps vary among restoration and reference sites and between climate seasons (wet and dry)? (3) How do the degrees of specialization of the parasites vary among the patches of forest? We recorded 12 species of wasps, eight of bees, and nine species of parasites. Areas with longer time since restoration (reference site) showed higher species richness. However, the abundance was higher in most recent areas. The composition of bee and wasp assembly has not significantly changed between the climate seasons, although it is different between sampling areas. The richness and abundance were higher in warmer and rainy periods. The rate of bee and wasp mortality was high. The degree of specialization of parasites varies among sampling units, and the network of host-parasite interaction has a modular configuration with generalists and specialists. We concluded that the restored areas with more complex habitat could provide better conditions for the reestablishment of ecological interactions among these insects, the local flora, and other invertebrates, which together contribute to the success of the restored environments.
NASA Astrophysics Data System (ADS)
Takayama, Norimasa; Saito, Haruo; Fujiwara, Akio; Horiuchi, Masahiro
2017-12-01
We investigated the influence of slight thinning (percentage of woods: 16.6%, basal area: 9.3%) on landscape appreciation and the psychological restorative effect of an on-site setting by exposing respondents to an ordinarily managed coniferous woodland. The experiments were conducted in an experimental plot in the same coniferous woodland in May (unthinned) and October 2013 (thinned). The respondents were the same 15 individuals for both experiments. Respondents were individually exposed to the enclosed plot and the forest-view plot within the same tent for 15 min. In both sessions, respondents were required to answer three questionnaires measuring their mood (Profile of Mood States), emotion (Positive and Negative Affect Schedule), and feeling of restoration (Restorative Outcome Scale) to investigate the psychological restorative effect before and after the experiment. They completed two other questionnaires measuring appreciation for the environment (Semantic Differential) and the restorative properties of the environment (Perceived Restorativeness Scale) following the experiments. We first analyzed the difference in landscape appreciation between the unthinned and thinned conditions. We did not find any statistical difference in appreciation for the environment (Semantic Differential) or the restorative properties of the environment (Perceived Restorativeness Scale); rather, we found that weather conditions had a primary influence on landscape appreciation. With respect to the psychological restorative effect, a two-way repeated analysis of valiance (ANOVA) revealed significant main effects for a selection of indices, depending on the presence or absence of thinning. However, multiple comparison analyses revealed that these effects seemed to be due to the difference in the experimental experience rather than the presence or absence of thinning. In conclusion, the effect of the slight thinning of the managed coniferous forest was too weak to be reflected in the respondents' landscape appreciation or to exert a psychological restorative effect. Therefore, planners should consider stronger thinning as it is unlikely to result in serious damage to users' appreciation and may increase their landscape appreciation of coniferous woodland and enhance its psychological restorative effect.
Restoring complexity: second-growth forests and habitat diversity.
Valerie Rapp
2002-01-01
Old-growth forests supply many important values, including critical habitat for some wildlife species. These forests are most useful for some wildlife species when they exist in large blocks. But many areas dedicated to old-growth values on federal lands are fragmented by patches of second-growth forests planted after timber harvest. These second-growth forests are...
Forest structure and fire hazard in dry forests of the Western United States
David L. Peterson; Morris C. Johnson; James K. Agee; Theresa B. Jain; Donald McKenzie; Elizabeth D. Reinhardt
2005-01-01
Fire, in conjunction with landforms and climate, shapes the structure and function of forests throughout the Western United States, where millions of acres of forest lands contain accumulations of flammable fuel that are much higher than historical conditions owing to various forms of fire exclusion. The Healthy Forests Restoration Act mandates that public land...
Prescribed fire in upland harwood forests
T.L. Keyser; C.H. Greenberg; H. McNab
2014-01-01
In upland hardwood forests of the Southeastern U.S.,prescribed fire is increasingly used by land managers citing objectives that include hazardous fuels reduction, wildlife habitat improvement, promoting oak regeneration, or restoring forest composition or structure to an historic condition. Research suggests that prescribed fire effects on hardwood forests and...
James S. Rentch; Thomas M. Schuler
2010-01-01
The proceedings includes 18 peer-reviewed papers and 41 abstracts pertaining to acid deposition and nutrient cycling, ecological classification, forest dynamics, avifauna, wildlife and fisheries, forests pests, climate change, old-growth forest structure, regeneration, and restoration.
Riparian vegetation and water yield: A synthesis
NASA Astrophysics Data System (ADS)
Salemi, Luiz Felippe; Groppo, Juliano Daniel; Trevisan, Rodrigo; Marcos de Moraes, Jorge; de Paula Lima, Walter; Martinelli, Luiz Antonio
2012-08-01
SummaryForested riparian zones perform numerous ecosystem functions, including the following: storing and fixing carbon; serving as wildlife habitats and ecological corridors; stabilizing streambanks; providing shade, organic matter, and food for streams and their biota; retaining sediments and filtering chemicals applied on cultivated/agricultural sites on upslope regions of the catchments. In this paper, we report a synthesis of a different feature of this type of vegetation, which is its effect on water yield. By synthesizing results from studies that used (i) the nested catchment and (ii) the paired catchment approaches, we show that riparian forests decrease water yield on a daily to annual basis. In terms of the treated area increases on average were 1.32 ± 0.85 mm day-1 and 483 ± 309 mm yr-1, respectively; n = 9. Similarly, riparian forest plantation or regeneration promoted reduced water yield (on average 1.25 ± 0.34 mm day-1 and 456 ± 125 mm yr-1 on daily and annual basis, respectively, when prorated to the catchment area subjected to treatment; n = 5). Although there are substantially fewer paired catchment studies assessing the effect of this vegetation type compared to classical paired catchment studies that manipulate the entire vegetation of small catchments, our results indicate the same trend. Despite the occurrence of many current restoration programs, measurements of the effect on water yield under natural forest restoration conditions are still lacking. We hope that presenting these gaps will encourage the scientific community to enhance the number of observations in these situations as well as produce more data from tropical regions.
Merrill R. Kaufmann; Paula J. Fornwalt; Laurie S. Huckaby; Jason M. Stoker
2001-01-01
An unlogged and ungrazed ponderosa pine/Douglas-fir landscape in the Colorado Front Range provides critical information for restoring forests in the South Platte watershed. A frame-based model was used to describe the relationship among the four primary patch conditions in the 35-km2 Cheesman Lake landscape: (1) openings, (2) ponderosa pine forest, (3) ponderosa pine/...
Implementing forest landscape restoration, a practitioner's guide
John Stanturf; Stephanie Mansourian; Michael (eds.) Kleine
2017-01-01
Forest landscape restoration (FLR) in a nutshell FLR was defined in 2000 by a group of 30 specialists as âa planned process that aims to regain ecological integrity and enhance human wellbeing in deforested or degraded landscapesâ. It does not seek to recreate past ecosystems given the uncertainty concerning the âpastâ, the significantly altered conditions of the...
Robert M. Hubbard; James M. Vose; Barton D. Clinton; Katherine J. Elliott; Jennifer D. Knoepp
2004-01-01
Understory prescribed burning is being suggested as a viable management tool for restoring degraded oakâpine forest communities in the southern Appalachians yet information is lacking on how this will affect ecosystem processes. Our objectives in this study were to evaluate the watershed scale effects of understory burning on total aboveground biomass, and the carbon...
Joseph L. Ganey; James P. Ward; David W. Willey
2011-01-01
This report summarizes current knowledge on the status and ecology of the Mexican spotted owl within the Upper Gila Mountains Recovery Unit (UGM RU). It was written at the request of U.S. Forest Service personnel involved in the Four Forests Restoration Initiative (4FRI), a collaborative, landscape-scale restoration effort covering approximately 2.4 million ac (1...
Robert E. Keane; Matthew Rollins; Zhi-Liang Zhu
2007-01-01
Canopy and surface fuels in many fire-prone forests of the United States have increased over the last 70 years as a result of modern fire exclusion policies, grazing, and other land management activities. The Healthy Forest Restoration Act and National Fire Plan establish a national commitment to reduce fire hazard and restore fire-adapted ecosystems across the USA....
Assessment and monitoring of deforestation and forest fragmentation in South Asia since the 1930s
NASA Astrophysics Data System (ADS)
Sudhakar Reddy, C.; Saranya, K. R. L.; Vazeed Pasha, S.; Satish, K. V.; Jha, C. S.; Diwakar, P. G.; Dadhwal, V. K.; Rao, P. V. N.; Krishna Murthy, Y. V. N.
2018-02-01
The present study, first of its kind, has analyzed the land cover and investigated the spatial patterns of deforestation and forest fragmentation in South Asian region since the 1930's. This region comprises of eight countries: India, Bangladesh, Bhutan, Nepal, Pakistan, Afghanistan, Sri Lanka and Maldives. In South Asia, agricultural land is predominant constituting 43% of the total geographical area followed by barren land (19.99%) and forests (14.72%). The long-term change analysis using the classified maps of 1930 and 2014 indicated a loss of 29.62% of the forest cover. Higher annual net deforestation rates were observed in the period from 1930-1975 (0.68%) followed by 1975-1985 (0.23%), 1985-1995 (0.12%), 1995-2005 (0.06%) and 2005-2014 (0.04%) for the region. Forest fragmentation had significant spatio-temporal variation across the South Asian countries. In 1930, 88.91% of the South Asian forest was classified as large core forest, 8.18% as edge forest and 1.18% as perforated forest. The large core forest category has decreased significantly in area over last eight decades. The results of the present study are expected to serve as a reference for the evaluation of globally agreed Aichi biodiversity target 5 for South Asian countries. This study will be a valuable basis for developing management strategies and restoration programs as it tracks the spatial changes in deforestation and forest fragmentation.
Gonzalez, Eduardo; Martinez-Fernandez, Vanesa; Shafroth, Patrick B.; Sher, Anna A.; Henry, Annie L.; Garofano-Gomez, Virginia; Corenblit, Dov
2018-01-01
Human activities on floodplains have severely disrupted the regeneration of foundation riparian shrub and tree species of the Salicaceae family (Populus and Salix spp.) throughout the Northern Hemisphere. Restoration ecologists initially tackled this problem from a terrestrial perspective that emphasized planting. More recently, floodplain restoration activities have embraced an aquatic perspective, inspired by the expanding practice of managing river flows to improve river health (environmental flows). However, riparian Salicaceae species occupy floodplain and riparian areas, which lie at the interface of both terrestrial and aquatic ecosystems along watercourses. Thus, their regeneration depends on a complex interaction of hydrologic and geomorphic processes that have shaped key life-cycle requirements for seedling establishment. Ultimately, restoration needs to integrate these concepts to succeed. However, while regeneration of Salicaceae is now reasonably well-understood, the literature reporting restoration actions on Salicaceae regeneration is sparse, and a specific theoretical framework is still missing. Here, we have reviewed 105 peer-reviewed published experiences in restoration of Salicaceae forests, including 91 projects in 10 world regions, to construct a decision tree to inform restoration planning through explicit links between the well-studied biophysical requirements of Salicaceaeregeneration and 17 specific restoration actions, the most popular being planting (in 55% of the projects), land contouring (30%), removal of competing vegetation (30%), site selection (26%), and irrigation (24%). We also identified research gaps related to Salicaceae forest restoration and discuss alternative, innovative and feasible approaches that incorporate the human component.
González, Eduardo; Martínez-Fernández, Vanesa; Shafroth, Patrick B; Sher, Anna A; Henry, Annie L; Garófano-Gómez, Virginia; Corenblit, Dov
2018-07-15
Human activities on floodplains have severely disrupted the regeneration of foundation riparian shrub and tree species of the Salicaceae family (Populus and Salix spp.) throughout the Northern Hemisphere. Restoration ecologists initially tackled this problem from a terrestrial perspective that emphasized planting. More recently, floodplain restoration activities have embraced an aquatic perspective, inspired by the expanding practice of managing river flows to improve river health (environmental flows). However, riparian Salicaceae species occupy floodplain and riparian areas, which lie at the interface of both terrestrial and aquatic ecosystems along watercourses. Thus, their regeneration depends on a complex interaction of hydrologic and geomorphic processes that have shaped key life-cycle requirements for seedling establishment. Ultimately, restoration needs to integrate these concepts to succeed. However, while regeneration of Salicaceae is now reasonably well-understood, the literature reporting restoration actions on Salicaceae regeneration is sparse, and a specific theoretical framework is still missing. Here, we have reviewed 105 peer-reviewed published experiences in restoration of Salicaceae forests, including 91 projects in 10 world regions, to construct a decision tree to inform restoration planning through explicit links between the well-studied biophysical requirements of Salicaceae regeneration and 17 specific restoration actions, the most popular being planting (in 55% of the projects), land contouring (30%), removal of competing vegetation (30%), site selection (26%), and irrigation (24%). We also identified research gaps related to Salicaceae forest restoration and discuss alternative, innovative and feasible approaches that incorporate the human component. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effects of Conservation Policies on Forest Cover Change in Giant Panda Habitat Regions, China
Li, Yu; Viña, Andrés; Yang, Wu; Chen, Xiaodong; Zhang, Jindong; Ouyang, Zhiyun; Liang, Zai; Liu, Jianguo
2014-01-01
After long periods of deforestation, forest transition has occurred globally, but the causes of forest transition in different countries are highly variable. Conservation policies may play important roles in facilitating forest transition around the world, including China. To restore forests and protect the remaining natural forests, the Chinese government initiated two nationwide conservation policies in the late 1990s -- the Natural Forest Conservation Program (NFCP) and the Grain-To-Green Program (GTGP). While some studies have discussed the environmental and socioeconomic effects of each of these policies independently and others have attributed forest recovery to both policies without rigorous and quantitative analysis, it is necessary to rigorously quantify the outcomes of these two conservation policies simultaneously because the two policies have been implemented at the same time. To fill the knowledge gap, this study quantitatively evaluated the effects of the two conservation policies on forest cover change between 2001 and 2008 in 108 townships located in two important giant panda habitat regions -- the Qinling Mountains region in Shaanxi Province and the Sichuan Giant Panda Sanctuary in Sichuan Province. Forest cover change was evaluated using a land-cover product (MCD12Q1) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). This product proved to be highly accurate in the study region (overall accuracy was ca. 87%, using 425 ground truth points collected in the field), thus suitable for the forest change analysis performed. Results showed that within the timeframe evaluated, most townships in both regions exhibited either increases or no changes in forest cover. After accounting for a variety of socioeconomic and biophysical attributes, an Ordinary Least Square (OLS) regression model suggests that the two policies had statistically significant positive effects on forest cover change after seven years of implementation, while population density, percent agricultural population, road density, and initial forest cover (i.e. in 2001) had significant negative effects. The methods and results from this study will be useful for continuing the implementation of these conservation policies, for the development of future giant panda habitat conservation projects, and for achieving forest sustainability in China and elsewhere. PMID:26146431
Effects of Conservation Policies on Forest Cover Change in Giant Panda Habitat Regions, China.
Li, Yu; Viña, Andrés; Yang, Wu; Chen, Xiaodong; Zhang, Jindong; Ouyang, Zhiyun; Liang, Zai; Liu, Jianguo
2013-07-01
After long periods of deforestation, forest transition has occurred globally, but the causes of forest transition in different countries are highly variable. Conservation policies may play important roles in facilitating forest transition around the world, including China. To restore forests and protect the remaining natural forests, the Chinese government initiated two nationwide conservation policies in the late 1990s -- the Natural Forest Conservation Program (NFCP) and the Grain-To-Green Program (GTGP). While some studies have discussed the environmental and socioeconomic effects of each of these policies independently and others have attributed forest recovery to both policies without rigorous and quantitative analysis, it is necessary to rigorously quantify the outcomes of these two conservation policies simultaneously because the two policies have been implemented at the same time. To fill the knowledge gap, this study quantitatively evaluated the effects of the two conservation policies on forest cover change between 2001 and 2008 in 108 townships located in two important giant panda habitat regions -- the Qinling Mountains region in Shaanxi Province and the Sichuan Giant Panda Sanctuary in Sichuan Province. Forest cover change was evaluated using a land-cover product (MCD12Q1) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). This product proved to be highly accurate in the study region (overall accuracy was ca. 87%, using 425 ground truth points collected in the field), thus suitable for the forest change analysis performed. Results showed that within the timeframe evaluated, most townships in both regions exhibited either increases or no changes in forest cover. After accounting for a variety of socioeconomic and biophysical attributes, an Ordinary Least Square (OLS) regression model suggests that the two policies had statistically significant positive effects on forest cover change after seven years of implementation, while population density, percent agricultural population, road density, and initial forest cover (i.e. in 2001) had significant negative effects. The methods and results from this study will be useful for continuing the implementation of these conservation policies, for the development of future giant panda habitat conservation projects, and for achieving forest sustainability in China and elsewhere.
Role of the USDA Forest Service experimental forest: an extension point of view
Eric L. Taylor; C. Darwin Foster; Diomy Zamora
2013-01-01
The expansive network of experimental forests (EF) facilitated by the U.S. Forest Service (Forest Service) encompasses a fairly complete representation of the forest ecotypes in the nation. The network, 101 years old this year (2009), has provided researchers with a wealth of long-term data on silviculture, watershed protection, and restoration. However, our nationâs...
Difei Zhang; Michael M. Huebschmann; Thomas B. Lynch; James M. Guldin
2010-01-01
Problem statement: The Ouachita National Forest received approval in 1996 for an amendment to its Forest Plan that would allocate 10% of the Forest to long-rotation silviculture. The purpose of the new management area is to restore pre-European settlement forest conditions and recreate habitat for the endangered red-cockaded woodpecker. Approach: This study explored...
Fruit color preference by birds and applications to ecological restoration.
Gagetti, B L; Piratelli, A J; Piña-Rodrigues, F C M
2016-01-01
Ecological restoration aims to retrieve not only the structure but also the functionality of ecosystems. Frugivorous birds may play an important role in this process due to their efficiency in seed dispersal. Color perception in these animals is highly developed, and then the colors of fleshy fruits may provide important clues for choosing plant species for restoration plans. This study aims to integrate bird color preferences and restoration of degraded areas, with an objective to evaluate the potential attractiveness to birds by colored fruits. We carried out an experiment with 384 artificial fruits made of edible modeling clay with the following colors: black, blue, green and red, with 96 fruits of each color in six sites, including four restored areas and two second-growth forest fragments. We also tested the possible effect of light intensity on fruit consumption by color. A total of 120 (38.6%) were assumed to be consumed by birds, and the fruit consumption varied in response to the location and light incidence. Consumption of black and blue fruits was not related to site by chance. Notwithstanding, red and black fruits were consumed significantly more than any other colors, emphasizing bird preference to these colors, regardless of location. Enrichment with shade tolerant shrubs or forest species with black or red fruits may be an alternative way to manage established restorations. In recently established or new restorations, one may introduce pioneer shrubs or short-lived forest species which have blue fruits, but also those having black or red ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diefenderfer, Heida L.; Coleman, Andre M.; Borde, Amy B.
2008-01-01
The hydrologic reconnection of tidal channels, riverine floodplains, and main stem channels are among responses by ecological restoration practitioners to the increasing fragmentation and land conversion occurring in coastal and riparian zones. Design standards and monitoring of such ecological restoration depend upon the characterization of reference sites that vary within and among regions. Few locales, such as the 235 km tidal portion of the Columbia River on the West Coast U.S.A., remain in which the reference conditions and restoration responses of tidal freshwater forested wetlands on temperate zone large river floodplains can be compared. This study developed hydraulic geometry relationshipsmore » for Picea sitchensis (Sitka spruce) dominated tidal forests (swamps) in the vicinity of Grays Bay on the Columbia River some 37 km from the Pacific Coast using field surveys and Light Detection and Ranging (LiDAR) data. Scaling relationships between catchment area and the parameters of channel cross-sectional area at outlet and total channel length were comparable to tidally influenced systems of San Francisco Bay and the United Kingdom. Dike breaching, culvert replacement, and tide gate replacement all affected channel cross-sectional geometry through changes in the frequency of over-marsh flows. Radiocarbon dating of buried wood provided evidence of changes in sedimentation rates associated with diking, and restoration trajectories may be confounded by historical subsidence behind dikes rendering topographical relationships with water level incomparable to reference conditions. At the same time, buried wood is influencing the development of channel morphology toward characteristics resembling reference conditions. Ecological restoration goals and practices in tidal forested wetland regions of large river floodplains should reflect the interactions of these controlling factors.« less
Finney, Christopher
2015-02-13
Banks-Leite et al. (Reports, 29 August 2014, p. 1041) conclude that a large-scale program to restore the Brazilian Atlantic Forest using payments for environmental services (PES) is economically feasible. They do not analyze transaction costs, which are quantified infrequently and incompletely in the literature. Transaction costs can exceed 20% of total project costs and should be included in future research. Copyright © 2015, American Association for the Advancement of Science.
Ecosystem restoration: a systems approach to exotic plant control
Karl D. Smith
1998-01-01
Ecosystem restoration is a systems approach because it relates to all of the thousands of interrelated and interacting systems within the ecosystem. Ecosystem restoration also changes your role in the forest from observer to participant. Some of the goals of ecosystem restoration are to improve the health, vigor, and diversity of the ecosystem--and these goals can and...
Conceptual assessment framework for forested wetland restoration: the Pen Branch experience
Randy K. Kolka; E. A. Nelson; C. C. Trettin
2000-01-01
Development of an assessment framework and associated indicators that can be used to evaluate the effectiveness of a wetland restoration is critical to demonstrating the sustainability of restored sites. Current wetland restoration assessment techniques such as the index of biotic integrity (IBI) or the hydrogeomorphic method (HGM) generally focus on either the biotic...
Transformational restoration: novel ecosystems in Denmark
John A. Stanturf; Palle Madsen; Khosro Sagheb-Talebi; Ole K. Hansen
2018-01-01
Restoring the estimated 1 billion hectares of degraded forests must consider future climate accompanied by novel ecosystems. Transformational restoration can play a key role in adaptation to climate change but it is conceptually the most divergent from contemporary approaches favoring native species and natural disturbance regimes. Here...
Phillip J. Van Mantgem; Nathan L. Stephenson; Eric Knapp; John Barrles; Jon E. Keeley
2011-01-01
The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before...
Vertical distribution and persistence of soil organic carbon in fire-adapted longleaf pine forests
John R. Butnor; Lisa J. Samuelson; Kurt H. Johnsen; Peter H. Anderson; Carlos A. Gonzalez Benecke; Claudia M. Boot; M. Francesca Cotrufo; Katherine A. Heckman; Jason A. Jackson; Thomas A. Stokes; Stanley J. Zarnoch
2017-01-01
Longleaf pine (Pinus palustris Miller) forests in the southern United States are being restored and actively managed for a variety of goals including: forest products, biodiversity, C sequestration and forest resilience in the face of repeated isturbances from hurricanes and climate change. Managed southern pine forests can be sinks for atmospheric...
Transitions in forest fragmentation: implications for restoration opportunities at regional scales
James D. Wickham; K. Bruce Jones; Kurt H. Riitters; Timothy G. Wade; Robert V. O' Neill
1999-01-01
Where the potential natural vegetation is continuous forest (e.g., eastern US), a region can be divided into smaller units (e.g., counties, watersheds), and a graph of the proportion of forest in the largest patch versus the proportion in anthropogenic cover can be used as an index of forest fragmentation. If forests are not fragmented beyond that converted to...
Russell T. Graham; Theresa B. Jain
2007-01-01
In the western United States and throughout the world, three general classes of coniferous forests can be identified with each having similar vegetative complexes, native disturbances, and climate (Daubenmire and Daubenmire 1968, Hann et al. 1997). Dry forests, often dominated by pines (Pinus), cold forests often dominated by spruces (Picea...
Conservation of Louisiana's coastal wetland forests
Jim L. Chambers; Richard F. Keim; William H. Conner; John W. Jr. Day; Stephen P. Faulkner; Emile S. Gardiner; Melinda s. Hughes; Sammy L. King; Kenneth W. McLeod; Craig A. Miller; J. Andrew Nyman; Gary P. Shaffer
2006-01-01
Large-scale efforts to protect and restore coastal wetlands and the concurrent renewal of forest harvesting in cypress-tupelo swamps have brought new attention to Louisiana's coastal wetland forests in recent years. Our understanding of these coastal wetland forests has been limited by inadequate data and the lack of a comprehensive review of existing information...
What is forest landscape restoration?
David Lamb; John Stanturf; Palle Madsen
2012-01-01
The extent and distribution of global forests is a matter of considerable concern. The overall rate of deforestation remains high although recent reports suggest it is fi nally beginning to decline (FAO 2011 ) . But this hides regional differences. In temperate regions net forest cover is increasing because of afforestation and natural expansion of forests. By contrast...
Sediment loads and erosion in forest headwater streams of the Sierra Nevada, California
Carolyn T. Hunsaker; Daniel G. Neary
2012-01-01
Defining best management practices for forests requires quantification of the variability of stream sediment loads for managed and unmanaged forest conditions and their associated sediment sources. Although "best management practices" are used, the public has concerns about effects from forest restoration activities and commercial timber harvests. It is...
An assessment of fisher (Pekania pennanti) tolerance to forest management intensity on the landscape
William J. Zielinski; Craig M. Thompson; Kathryn L. Purcell; James D. Garner
2013-01-01
Forest restoration intended to reduce the overabundance of dense vegetation can be at odds with wildlife habitat conservation, particularly for species of wildlife that are strongly associated with structurally diverse forests with dense canopies. The fisher (Pekania pennanti), a mesopredator that occurs in mid-elevation forests of the southern...
Russell T. Graham; Theresa B. Jain
2007-01-01
Fire exclusion, especially in the dry forests (i.e. those dominated or potentially dominated by ponderosa pine) has most often altered tree and shrub composition and structure and, though often overlooked in many locales, the forest floor from conditions that occurred historically (pre-1900).